Sample records for air sampling systems

  1. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    PubMed

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  3. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  4. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  5. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  6. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  7. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11

  8. A new device for dynamic sampling of radon in air

    NASA Astrophysics Data System (ADS)

    Lozano, J. C.; Escobar, V. Gómez; Tomé, F. Vera

    2000-08-01

    A new system is proposed for the active sampling of radon in air, based on the well-known property of activated charcoal to retain radon. Two identical carbon-activated cartridges arranged in series remove the radon from the air being sampled. The air passes first through a desiccant cell and then the carbon cartridges for short sampling times using a low-flow pump. The alpha activity for each cartridge is determined by a liquid scintillation counting system. The cartridge is placed in a holder into a vial that also contains the appropriate amount of scintillation cocktail, in a way that avoids direct contact between cocktail and charcoal. Once dynamic equilibrium between the phases has been reached, the vials can be counted. Optimum sampling conditions concerning flow rates and sampling times are determined. Using those conditions, the method was applied to environmental samples, straightforwardly providing good results for very different levels of activity.

  9. [Microbial air monitoring in operating theatre: active and passive samplings].

    PubMed

    Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L

    2004-01-01

    Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.

  10. Innovations in air sampling to detect plant pathogens

    PubMed Central

    West, JS; Kimber, RBE

    2015-01-01

    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics. PMID:25745191

  11. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Air sampling. 61.34 Section 61.34... sampling. (a) Stationary sources subject to § 61.32(b) shall locate air sampling sites in accordance with a... concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  12. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  13. 40 CFR 1065.805 - Sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Sampling system. 1065.805 Section 1065.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... background samples for correcting dilution air for background concentrations of alcohols and carbonyls. (c...

  14. 40 CFR 1065.805 - Sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Sampling system. 1065.805 Section 1065.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... background samples for correcting dilution air for background concentrations of alcohols and carbonyls. (c...

  15. 40 CFR 1065.805 - Sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Sampling system. 1065.805 Section 1065.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... background samples for correcting dilution air for background concentrations of alcohols and carbonyls. (c...

  16. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Gustafsson, U. R. C.

    1976-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.

  17. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P.; Gustafsson, U. R. C.

    1975-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.

  18. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  19. Air sampling workshop: October 24-25, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    A two-day workshop was held in October 1978 on air sampling strategies for the occupational environment. Strategies comprise the elements of implementing an air sampling program including deciding on the extent of sampling, selecting appropriate types of measurement, placing sampling instruments properly, and interpreting sample results correctly. All of these elements are vital in the reliable assessment of occupational exposures yet their coverage in the industrial hygiene literature is meager. Although keyed to a few introductory topics, the agenda was sufficiently informal to accommodate extemporaneous discussion on any subject related to sampling strategies. Questions raised during the workshop mirror themore » status of air sampling strategy as much as the factual information that was presented. It may be concluded from the discussion and questions that air sampling strategy is an elementary state and urgently needs concerted attention from the industrial hygiene profession.« less

  20. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  1. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  2. A new analysis system for whole air sampling: description and results from 2013 SENEX

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Gilman, J.; Dumas, M.; Hughes, D.; Jaksich, A.; Hatch, C. D.; Graus, M.; Warneke, C.; Apel, E. C.; Hornbrook, R. S.; Holloway, J. S.; De Gouw, J. A.

    2014-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven especially challenging due to the requirement of both high sensitivity (pptv) and short sample collection times (≤15 s) to maximize spatial resolution and sampling frequency for targeted plume analysis. The use of stainless steel canisters to collect whole air samples (WAS) for post-flight analysis has been pioneered by the groups of D. Blake and E. Atlas [Blake et al., 1992; Atlas et al., 1993]. For the 2013 Southeast Nexus Study (SENEX), the NOAA ESRL CSD laboratory undertook WAS measurements for the first time. This required the construction of three new, highly-automated, and field-portable instruments designed to sample, analyze, and clean the canisters for re-use. Analysis was performed with a new custom-built gas chromatograph-mass spectrometer system. The instrument pre-concentrates analyte cryostatically into two parallel traps by means of a Stirling engine, a novel technique which obviates the need for liquid nitrogen to reach trapping temperatures of -175C. Here we present an evaluation of the retrieval of target VOC species from WAS canisters. We discuss the effects of humidity and sample age on the analyte, particularly upon C8+ alkane and aromatic species and biogenic species. Finally, we present results from several research flights during SENEX that targeted emissions from oil/natural gas production.

  3. Active AirCore Sampling: Constraining Point Sources of Methane and Other Gases with Fixed Wing Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.

    2017-12-01

    Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.

  4. A novel atmospheric tritium sampling system

    NASA Astrophysics Data System (ADS)

    Qin, Lailai; Xia, Zhenghai; Gu, Shaozhong; Zhang, Dongxun; Bao, Guangliang; Han, Xingbo; Ma, Yuhua; Deng, Ke; Liu, Jiayu; Zhang, Qin; Ma, Zhaowei; Yang, Guo; Liu, Wei; Liu, Guimin

    2018-06-01

    The health hazard of tritium is related to its chemical form. Sampling different chemical forms of tritium simultaneously becomes significant. Here a novel atmospheric tritium sampling system (TS-212) was developed to collect the tritiated water (HTO), tritiated hydrogen (HT) and tritiated methane (CH3T) simultaneously. It consisted of an air inlet system, three parallel connected sampling channels, a hydrogen supply module, a methane supply module and a remote control system. It worked at air flow rate of 1 L/min to 5 L/min, with temperature of catalyst furnace at 200 °C for HT sampling and 400 °C for CH3T sampling. Conversion rates of both HT and CH3T to HTO were larger than 99%. The collecting efficiency of the two-stage trap sets for HTO was larger than 96% in 12 h working-time without being blocked. Therefore, the collected efficiencies of TS-212 are larger than 95% for tritium with different chemical forms in environment. Besides, the remote control system made sampling more intelligent, reducing the operator's work intensity. Based on the performance parameters described above, the TS-212 can be used to sample atmospheric tritium in different chemical forms.

  5. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Xiang, Kai

    2017-01-01

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766

  6. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  7. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  8. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  9. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  10. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  11. 40 CFR 264.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Sampling connection systems... FACILITIES Air Emission Standards for Equipment Leaks § 264.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent...

  12. 40 CFR 265.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Sampling connection systems..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop...

  13. 40 CFR 264.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Sampling connection systems... FACILITIES Air Emission Standards for Equipment Leaks § 264.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent...

  14. 40 CFR 265.1055 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Sampling connection systems..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1055 Standards: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop...

  15. Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay

    PubMed Central

    Stärk, Katharina D. C.; Nicolet, Jacques; Frey, Joachim

    1998-01-01

    This article describes the first successful detection of airborne Mycoplasma hyopneumoniae under experimental and field conditions with a new nested PCR assay. Air was sampled with polyethersulfone membranes (pore size, 0.2 μm) mounted in filter holders. Filters were processed by dissolution and direct extraction of DNA for PCR analysis. For the PCR, two nested pairs of oligonucleotide primers were designed by using an M. hyopneumoniae-specific DNA sequence of a repeated gene segment. A nested PCR assay was developed and used to analyze samples collected in eight pig houses where respiratory problems had been common. Air was also sampled from a mycoplasma-free herd. The nested PCR was highly specific and 104 times as sensitive as a one-step PCR. Under field conditions, the sampling system was able to detect airborne M. hyopneumoniae on 80% of farms where acute respiratory disease was present. No airborne M. hyopneumoniae was detected on infected farms without acute cases. The chance of successful detection was increased if air was sampled at several locations within a room and at a lower air humidity. PMID:9464391

  16. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  17. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  18. Modeling and Qualification of a Modified Emission Unit for Radioactive Air Emissions Stack Sampling Compliance.

    PubMed

    Barnett, J Matthew; Yu, Xiao-Ying; Recknagle, Kurtis P; Glissmeyer, John A

    2016-11-01

    A planned laboratory space and exhaust system modification to the Pacific Northwest National Laboratory Material Science and Technology Building indicated that a new evaluation of the mixing at the air sampling system location would be required for compliance to ANSI/HPS N13.1-2011. The modified exhaust system would add a third fan, thereby increasing the overall exhaust rate out the stack, thus voiding the previous mixing study. Prior to modifying the radioactive air emissions exhaust system, a three-dimensional computational fluid dynamics computer model was used to evaluate the mixing at the sampling system location. Modeling of the original three-fan system indicated that not all mixing criteria could be met. A second modeling effort was conducted with the addition of an air blender downstream of the confluence of the three fans, which then showed satisfactory mixing results. The final installation included an air blender, and the exhaust system underwent full-scale tests to verify velocity, cyclonic flow, gas, and particulate uniformity. The modeling results and those of the full-scale tests show agreement between each of the evaluated criteria. The use of a computational fluid dynamics code was an effective aid in the design process and allowed the sampling system to remain in its original location while still meeting the requirements for sampling at a well mixed location.

  19. Measurements of concentrations of chlorofluoromethanes (CFMs) carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems

    NASA Technical Reports Server (NTRS)

    Itoh, T.; Kubo, H.; Honda, H.; Tominaga, T.; Makide, Y.; Yakohata, A.; Sakai, H.

    1985-01-01

    Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems are reported. The balloon-borne grab-sampling system has been launched from Sanriku Balloon Center three times since 1981. It consists of: (1) six sampling cylinders, (2) eight motor driven values, (3) control and monitor circuits, and (4) pressurized housing. Particular consideration is paid to the problem of contamination. Strict requirements are placed on the choice of materials and components, construction methods, cleaning techniques, vacuum integrity, and sampling procedures. An aluminum pressurized housing and a 4-m long inlet line are employed to prevent the sampling air from contamination by outgassing of sampling and control devices. The sampling is performed during the descent of the system. Vertical profiles of mixing ratios of CF2Cl2, CFCl3 and CH4 are given. Mixing ratios of CF2Cl2 and CFCl3 in the stratosphere do not show the discernible effect of the increase of those in the ground level background, and decrease with altitude. Decreasing rate of CFCl3 is larger than that of CF2Cl2. CH4 mixing ratio, on the other hand, shows diffusive equilibrium, as the photodissociation cross section of CH4 is small and concentrations of OH radical and 0(sup I D) are low.

  20. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  1. Early Detection of Foot-And-Mouth Disease Virus from Infected Cattle Using A Dry Filter Air Sampling System.

    PubMed

    Pacheco, J M; Brito, B; Hartwig, E; Smoliga, G R; Perez, A; Arzt, J; Rodriguez, L L

    2017-04-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to the aerogenous nature of the virus. In the current study, air from rooms housing individual (n = 17) or two groups (n = 4) of cattle experimentally infected with FDMV A24 Cruzeiro of different virulence levels was sampled to assess the feasibility of applying air sampling as a non-invasive, screening tool to identify sources of FMDV infection. Detection of FMDV RNA in air was compared with first detection of clinical signs and FMDV RNA levels in serum and oral fluid. FMDV RNA was detected in room air samples 1-3 days prior (seven animals) or on the same day (four animals) as the appearance of clinical signs in 11 of 12 individually housed cattle. Only in one case clinical signs preceded detection in air samples by one day. Overall, viral RNA in oral fluid or serum preceded detection in air samples by 1-2 days. Six individually housed animals inoculated with attenuated strains did not show clinical signs, but virus was detected in air in one of these cases 3 days prior to first detection in oral fluid. In groups of four cattle housed together, air detection always preceded appearance of clinical signs by 1-2 days and coincided more often with viral shedding in oral fluid than virus in blood. These data confirm that air sampling is an effective non-invasive screening method for detecting FMDV infection in confined to enclosed spaces (e.g. auction barns, milking parlours). This technology could be a useful tool as part of a surveillance strategy during FMD prevention, control or eradication efforts. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  3. Double-layer Tedlar bags: a means to limit humidity evolution of air samples and to dry humid air samples.

    PubMed

    Cariou, Stephane; Guillot, Jean-Michel

    2006-01-01

    Tedlar bags, which are widely used to collect air samples, especially VOCs and odorous atmospheres, can allow humidity to diffuse when relative humidity levels differ between the inside and outside. Starting with dry air inside the bag and humid air outside, we monitored equilibrium times under several conditions showing the evolution and influence of collected volumes and exposed surfaces. A double-film Tedlar bag was made, to limit the impact of external humidity on a sample at low humidity level. With the addition of a drying agent between both films, the evolution of humidity of a sample can be stopped for several hours. When a VOC mixture was monitored in a humid atmosphere, humidity was decreased but no significant evolution of VOC concentrations was observed.

  4. Fluid sampling system

    DOEpatents

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  5. Fluid sampling system

    DOEpatents

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  6. Sequential air sampler system : its use by the Virginia Department of Highways & Transportation.

    DOT National Transportation Integrated Search

    1975-01-01

    The Department of Highways & Transportation needs an economical and efficient air quality sampling system for meeting requirements on air monitoring for proposed projects located In critical areas. Two sequential air sampling systems, the ERAI and th...

  7. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study.

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-06-22

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.

  8. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study

    PubMed Central

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-01-01

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202

  9. Improvement of a wind-tunnel sampling system for odour and VOCs.

    PubMed

    Wang, X; Jiang, J; Kaye, R

    2001-01-01

    Wind-tunnel systems are widely used for collecting odour emission samples from surface area sources. Consequently, a portable wind-tunnel system was developed at the University of New South Wales that was easy to handle and suitable for sampling from liquid surfaces. Development work was undertaken to ensure even air-flows above the emitting surface and to optimise air velocities to simulate real situations. However, recovery efficiencies for emissions have not previously been studied for wind-tunnel systems. A series of experiments was carried out for determining and improving the recovery rate of the wind-tunnel sampling system by using carbon monoxide as a tracer gas. It was observed by mass balance that carbon monoxide recovery rates were initially only 37% to 48% from a simulated surface area emission source. It was therefore apparent that further development work was required to improve recovery efficiencies. By analysing the aerodynamic character of air movement and CO transportation inside the wind-tunnel, it was determined that the apparent poor recoveries resulted from uneven mixing at the sample collection point. A number of modifications were made for the mixing chamber of the wind-tunnel system. A special sampling chamber extension and a sampling manifold with optimally distributed sampling orifices were developed for the wind-tunnel sampling system. The simulation experiments were repeated with the new sampling system. Over a series of experiments, the recovery efficiency of sampling was improved to 83-100% with an average of 90%, where the CO tracer gas was introduced at a single point and 92-102% with an average of 97%, where the CO tracer gas was introduced along a line transverse to the sweep air. The stability and accuracy of the new system were determined statistically and are reported.

  10. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  11. Presence of organophosphorus pesticide oxygen analogs in air samples

    NASA Astrophysics Data System (ADS)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  12. Analysis of EPA and DOE WIPP Air Sampling Data

    EPA Pesticide Factsheets

    During the April 2014 EPA visit to WIPP, EPA co-located four ambient air samplers with existing Department of Energy (DOE) ambient air samplers to independently corroborate DOE's reported air sampling results.

  13. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  14. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  15. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  16. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  17. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  18. The microbiological quality of air improves when using air conditioning systems in cars.

    PubMed

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  19. A simple novel device for air sampling by electrokinetic capture.

    PubMed

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is

  20. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  1. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate...

  2. A system for high-quality CO2 isotope analyses of air samples collected by the CARIBIC Airbus A340-600.

    PubMed

    Assonov, S; Taylor, P; Brenninkmeijer, C A M

    2009-05-01

    In 2007, JRC-IRMM began a series of atmospheric CO2 isotope measurements, with the focus on understanding instrumental effects, corrections as well as metrological aspects. The calibration approach at JRC-IRMM is based on use of a plain CO2 sample (working reference CO2) as a calibration carrier and CO2-air mixtures (in high-pressure cylinders) to determine the method-related correction under actual analytical conditions (another calibration carrier, in the same form as the samples). Although this approach differs from that in other laboratories, it does give a direct link to the primary reference NBS-19-CO2. It also helps to investigate the magnitude and nature for each of the instrumental corrections and allows for the quantification of the uncertainty introduced. Critical tests were focused on the instrumental corrections. It was confirmed that the use of non-symmetrical capillary crimping (an approach used here to deal with small samples) systematically modifies delta13C(CO2) and delta18O(CO2), with a clear dependence on the amount of extracted CO2. However, the calibration of CO2-air mixtures required the use of the symmetrical dual-inlet mode. As a proof of our approach, we found that delta13C(CO2) on extracts from mixtures agreed (within 0.010 per thousand) with values obtained from the 'mother' CO2 used for the mixtures. It was further found that very low levels of hydrocarbons in the pumping systems and the isotope ratio mass spectrometry (IRMS) instrument itself were critical. The m/z 46 values (consequently the calculated delta18O(CO2) values) are affected by several other effects with traces of air co-trapped with frozen CO2 being the most critical. A careful cryo-distillation of the extracted CO2 is recommended. After extensive testing, optimisation, and routine automated use, the system was found to give precise data on air samples that can be traced with confidence to the primary standards. The typical total combined uncertainty in delta13C(CO2) and

  3. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  4. Convair F-106B Delta Dart with Air Sampling Equipment

    NASA Image and Video Library

    1974-04-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center’s Convair F-106B Delta Dart equipped with air sampling equipment in the mid-1970s. NASA Lewis created and managed the Global Air Sampling Program (GASP) in 1972 in partnership with several airline companies. NASA researchers used the airliners’ Boeing 747 aircraft to gather air samples to determine the amount of pollution present in the stratosphere. Private companies developed the air sampling equipment for the GASP program, and Lewis created a particle collector. The collector was flight tested on NASA Lewis’ F-106B in the summer of 1973. The sampling equipment was automatically operated once the proper altitude was achieved. The sampling instruments collected dust particles in the air so their chemical composition could be analyzed. The equipment analyzed one second’s worth of data at a time. The researchers also monitored carbon monoxide, monozide, ozone, and water vapor. The 747 flights began in December 1974 and soon included four airlines flying routes all over the globe. The F-106B augmented the airline data with sampling of its own, seen here. It gathered samples throughout this period from locations such as New Mexico, Texas, Michigan, and Ohio. In July 1977 the F-106B flew eight GASP flights in nine days over Alaska to supplement the earlier data gathered by the airlines.

  5. Systematic Evaluation of Aggressive Air Sampling for Bacillus ...

    EPA Pesticide Factsheets

    Report The primary objectives of this project were to evaluate the Aggressive Air Sampling (AAS) method compared to currently used surface sampling methods and to determine if AAS is a viable option for sampling Bacillus anthracis spores.

  6. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  7. Does the air condition system in busses spread allergic fungi into driver space?

    PubMed

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  8. Evaluation of Urban Air Quality By Passive Sampling Technique

    NASA Astrophysics Data System (ADS)

    Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.

    Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many

  9. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  10. A simple novel device for air sampling by electrokinetic capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  11. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  12. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  13. Can car air filters be useful as a sampling medium for air pollution monitoring purposes?

    PubMed

    Katsoyiannis, Athanasios; Birgul, Askin; Ratola, Nuno; Cincinelli, Alessandra; Sweetman, Andy J; Jones, Kevin C

    2012-11-01

    Urban air quality and real human exposure to chemical environmental stressors is an issue of high scientific and political interest. In an effort to find innovative and inexpensive means for air quality monitoring, the ability of car engine air filters (CAFs) to act as efficient samplers collecting street level air, to which people are exposed to, was tested. In particular, in the case of taxis, air filters are replaced after regular distances, the itineraries are almost exclusively urban, cruising mode is similar and, thus, knowledge of the air flow can provide with an integrated city air sample. The present pilot study focused on polycyclic aromatic hydrocarbons (PAHs), the most important category of organic pollutants associated with traffic emissions. Concentrations of ΣPAHs in CAFs ranged between 650 and 2900 μg CAF(-1), with benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[123-cd]pyrene being the most abundant PAHs. Benzo[a]pyrene (BaP) ranged between 110 and 250 μg CAF(-1), accounting regularly for 5-15% of the total carcinogenic PAHs. The CAF PAH loads were used to derive road-level atmospheric PAH concentrations from a standard formula relating to the CAF air flow. Important parameters/assumptions for these estimates are the cruising speed and the exposure duration of each CAF. Based on information obtained from the garage experts, an average 'sampled air volume' of 48,750 m(3) per CAF was estimated, with uncertainty in this calculation estimated to be about a factor of 4 between the two extreme scenarios. Based on this air volume, ΣPAHs ranged between 13 and 56 ng m(-3) and BaP between 2.1 and 5.0 ng m(-3), suggesting that in-traffic BaP concentrations can be many times higher than the limit values set by the UK (0.25 ng m(-3)) and the European Union (1.0 ng m(-3)), or from active sampling stations normally cited on building roof tops or far from city centres. Notwithstanding the limitations of this approach, the very low cost, the continuous

  14. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  15. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  16. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  17. Comparison of stationary and personal air sampling with an ...

    EPA Pesticide Factsheets

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency’s Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and −0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. The purpose of the study was to investigate the use of air-dispersion modeling as an approach to exposure assessment for ambient manganese.

  18. The use of an air filtration system in podiatry clinics.

    PubMed

    McLarnon, Nichola; Burrow, Gordon; Maclaren, William; Aidoo, Kofi; Hepher, Mike

    2003-06-01

    A small-scale study was conducted to ascertain the efficiency and effectiveness of an air filtration system for use in podiatry/chiropody clinics (Electromedia Model 35F (A), Clean Air Ltd, Scotland, UK). Three clinics were identified, enabling comparison of data between podiatry clinics in the West of Scotland. The sampling was conducted using a portable Surface Air Sampler (Cherwell Laboratories, Bicester, UK). Samples were taken on two days at three different times before and after installation of the filtration units. The global results of the study indicate the filter has a statistically significant effect on microbial counts, with an average percentage decrease of 65%. This study is the first time, to the authors' knowledge, such a system has been tested within podiatric practice.

  19. Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Jams, John T.

    2010-01-01

    Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.

  20. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  1. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  2. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  3. [Biological contamination in office buildings related to ventilation/air conditioning system].

    PubMed

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  4. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples

    NASA Astrophysics Data System (ADS)

    Baranov, Dmitry; Hill, Robert J.; Ryu, Jisu; Park, Samuel D.; Huerta-Viga, Adriana; Carollo, Alexa R.; Jonas, David M.

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  5. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples.

    PubMed

    Baranov, Dmitry; Hill, Robert J; Ryu, Jisu; Park, Samuel D; Huerta-Viga, Adriana; Carollo, Alexa R; Jonas, David M

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  6. Prototype sampling system for measuring workplace protection factors for gases and vapors.

    PubMed

    Groves, William A; Reynolds, Stephen J

    2003-05-01

    A prototype sampling system for measuring respirator workplace protection factors (WPFs) was developed. Methods for measuring the concentration of contaminants inside respirators have previously been described; however, these studies have typically involved continuous sampling of aerosols. Our work focuses on developing an intermittent sampling system designed to measure the concentration of gases and vapors during inspiration. This approach addresses two potential problems associated with continuous sampling: biased results due to lower contaminant concentrations and high humidity in exhaled air. The system consists of a pressure transducer circuit designed to activate a pair of personal sampling pumps during inspiration based on differential pressure inside the respirator. One pump draws air from inside the respirator while the second samples the ambient air. Solid granular adsorbent tubes are used to trap the contaminants, making the approach applicable to a large number of gases and vapors. Laboratory testing was performed using a respirator mounted on a headform connected to a breathing machine producing a sinusoidal flow pattern with an average flow rate of 20 L/min and a period of 3 seconds. The sampling system was adjusted to activate the pumps when the pressure inside the respirator was less than -0.1 inch H(2)O. Quantitative fit-tests using human subjects were conducted to evaluate the effect of the sampling system on respirator performance. A total of 299 fit-tests were completed for two different types of respirators (half- and full-facepiece) from two different manufacturers (MSA and North). Statistical tests showed no significant differences between mean fit factors for respirators equipped with the sampling system versus unmodified respirators. Field testing of the prototype sampling system was performed in livestock production facilities and estimates of WPFs for ammonia were obtained. Results demonstrate the feasibility of this approach and will be

  7. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  8. Geographical Information Systems (GIS) Mapping of Environmental Samples across College Campuses

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Moeur, Harriet P.; Zanella, Andrew

    2007-01-01

    In this laboratory experiment, students take environmental samples at various locations around the college campuses, take geospatial coordinates with a global position systems (GPS) unit, and map their results on a geo-referenced campus map with geographical information systems (GIS) software. Nitrogen dioxide air pollution sampling is used as an…

  9. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries

    PubMed Central

    Goutziana, Georgia; Mouchtouri, Varvara A; Karanika, Maria; Kavagias, Antonios; Stathakis, Nikolaos E; Gourgoulianis, Kostantinos; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-01-01

    Background Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS), recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. Methods Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. Results The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7%) were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6%) were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg) 1 and that of L. pneumophila sg 2 to 14. Increases in pH ≥7.8 and total plate count ≥400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of ≥0.2 mg/L inhibited colonization of Legionella spp. Conclusion WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members. PMID:19025638

  10. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries.

    PubMed

    Goutziana, Georgia; Mouchtouri, Varvara A; Karanika, Maria; Kavagias, Antonios; Stathakis, Nikolaos E; Gourgoulianis, Kostantinos; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-11-24

    Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS), recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7%) were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6%) were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg) 1 and that of L. pneumophila sg 2 to 14. Increases in pH >/=7.8 and total plate count > or =400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of > or =0.2 mg/L inhibited colonization of Legionella spp. WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members.

  11. Air and smear sample calculational tool for Fluor Hanford Radiological control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAUMANN, B.L.

    2003-07-11

    A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alphamore » and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.« less

  12. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  13. Crossett Hydrogen Sulfide Air Sampling Report

    EPA Pesticide Factsheets

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  14. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres.

    PubMed

    Napoli, Christian; Marcotrigiano, Vincenzo; Montagna, Maria Teresa

    2012-08-02

    Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.

  15. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  16. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  17. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  18. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  19. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  20. Detection of the urban release of a bacillus anthracis simulant by air sampling.

    PubMed

    Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M

    2014-01-01

    In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.

  1. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.

  2. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-02

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.

  3. Methane mole fraction and δ13C above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics

    NASA Astrophysics Data System (ADS)

    Brownlow, R.; Lowry, D.; Thomas, R. M.; Fisher, R. E.; France, J. L.; Cain, M.; Richardson, T. S.; Greatwood, C.; Freer, J.; Pyle, J. A.; MacKenzie, A. R.; Nisbet, E. G.

    2016-11-01

    Ascension Island is a remote South Atlantic equatorial site, ideal for monitoring tropical background CH4. In September 2014 and July 2015, octocopters were used to collect air samples in Tedlar bags from different heights above and below the well-defined Trade Wind Inversion (TWI), sampling a maximum altitude of 2700 m above mean sea level. Sampling captured both remote air in the marine boundary layer below the TWI and also air masses above the TWI that had been lofted by convective systems in the African tropics. Air above the TWI was characterized by higher CH4, but no distinct shift in δ13C was observed compared to the air below. Back trajectories indicate that lofted CH4 emissions from Southern Hemisphere Africa have bulk δ13CCH4 signatures similar to background, suggesting mixed emissions from wetlands, agriculture, and biomass burning. The campaigns illustrate the usefulness of unmanned aerial system sampling and Ascension's value for atmospheric measurement in an understudied region.

  4. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  5. Commander De Winne poses for a photo during Air Sampling

    NASA Image and Video Library

    2009-11-11

    ISS021-E-024700 (11 Nov. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, uses the Microbial Air Sampler kit (floating freely near De Winne) to obtain microbiology (bacterial & fungal) air samples in the Kibo laboratory of the International Space Station.

  6. Air sampling methods to evaluate microbial contamination in operating theatres: results of a comparative study in an orthopaedics department.

    PubMed

    Napoli, C; Tafuri, S; Montenegro, L; Cassano, M; Notarnicola, A; Lattarulo, S; Montagna, M T; Moretti, B

    2012-02-01

    To evaluate the level of microbial contamination of air in operating theatres using active [i.e. surface air system (SAS)] and passive [i.e. index of microbial air contamination (IMA) and nitrocellulose membranes positioned near the wound] sampling systems. Sampling was performed between January 2010 and January 2011 in the operating theatre of the orthopaedics department in a university hospital in Southern Italy. During surgery, the mean bacterial loads recorded were 2232.9 colony-forming units (cfu)/m(2)/h with the IMA method, 123.2 cfu/m(3) with the SAS method and 2768.2 cfu/m(2)/h with the nitrocellulose membranes. Correlation was found between the results of the three methods. Staphylococcus aureus was detected in 12 of 60 operations (20%) with the membranes, five (8.3%) operations with the SAS method, and three operations (5%) with the IMA method. Use of nitrocellulose membranes placed near a wound is a valid method for measuring the microbial contamination of air. This method was more sensitive than the IMA method and was not subject to any calibration bias, unlike active air monitoring systems. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Microbiological quality of air in free-range and box-stall stable horse keeping systems.

    PubMed

    Wolny-Koładka, Katarzyna

    2018-04-07

    The aim of this study was to assess the microbiological quality of air in three horse riding centers differing in the horse keeping systems. The air samples were collected in one facility with free-range horse keeping system and two with box stalls of different sizes. The samples were collected over a period of 3 years (2015-2017), four times per year (spring, summer, autumn, winter) to assess the effect of seasonal changes. The prevalence of aerobic mesophilic bacteria, mold fungi, actinomycetes, Staphylococcus spp., and Escherichia coli was determined by the air collision method on Petri dishes with appropriate microbiological media. At the same time, air temperature, relative humidity, and particulate matter concentration (PM 10 , PM 2.5 ) were measured. It was found that the horse keeping system affects the occurrence of the examined airborne microorganisms. Over the 3-year period of study, higher temperature and humidity, as well as particulate matter concentration-which notoriously exceeded limit values-were observed in the facilities with the box-stall system. The air sampled from the largest horse riding center, with the largest number of horses and the box-stall system of horse keeping, was also characterized by the heaviest microbiological contamination. Among others, bacteria from the following genera: Staphylococcus spp., Streptococcus spp., Bacillus spp., and E. coli and fungi from the genera Aspergillus, Fusarium, Mucor, Rhizopus, Penicillium, Trichothecium, Cladosporium, and Alternaria were identified in the analyzed samples.

  8. Development and deployment of a low-cost, mobile-ready, air quality sensor system: progress toward distributed networks and autonomous aerial sampling

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; DiVerdi, R.; Gadtaula, P.; Sheneman, T.; Flores, K.; Chen, Y. H.; Jayne, J. T.; Cross, E. S.

    2017-12-01

    Throughout the 2016-2017 academic year, a new partnership between Olin College of Engineering and Aerodyne Research, Inc. developed an affordable, self-contained air quality monitoring instrument called Modulair. The Modulair instrument is based on the same operating principles as Aerodyne's newly-developed ARISense integrated sensor system, employing electrochemical sensors for gas-phase measurements of CO, NO, NO2, and O3 and an off-the-shelf optical particle counter for particle concentration, number, and size distribution information (0.4 < dp < 17 microns). High Dimensional Model Representation (HDMR) has been used to model the interference derived from relative humidity and temperature as well as the cross-sensitivity of the electrochemical sensors to non-target gas-phase species. The aim of the modeling effort is to provide transparent and robust calibration of electrical signals to pollutant concentrations from a set of electrochemical sensors. Modulair was designed from the ground-up, with custom electronics - including a more powerful microcontroller, a fully re-designed housing and a device-specific backend with a mobile, cloud-based data management system for real-time data posting and analysis. Open source tools and software were utilized in the development of the instrument. All initial work was completed by a team of undergraduate students as part of the Senior Capstone Program in Engineering (SCOPE) at Olin College. Deployment strategies for Modulair include distributed, mobile measurements and drone-based aerial sampling. Design goals for the drone integration include maximizing airborne sampling time and laying the foundation for software integration with the drone's autopilot system to allow for autonomous plume sampling across concentration gradients. Modulair and its flexible deployments enable real-time mapping of air quality data at exposure-relevant spatial scales, as well as regular, autonomous characterization of sources and dispersion of

  9. Design and validation of a wind tunnel system for odour sampling on liquid area sources.

    PubMed

    Capelli, L; Sironi, S; Del Rosso, R; Céntola, P

    2009-01-01

    The aim of this study is to describe the methods adopted for the design and the experimental validation of a wind tunnel, a sampling system suitable for the collection of gaseous samples on passive area sources, which allows to simulate wind action on the surface to be monitored. The first step of the work was the study of the air velocity profiles. The second step of the work consisted in the validation of the sampling system. For this purpose, the odour concentration of some air samples collected by means of the wind tunnel was measured by dynamic olfactometry. The results of the air velocity measurements show that the wind tunnel design features enabled the achievement of a uniform and homogeneous air flow through the hood. Moreover, the laboratory tests showed a very good correspondence between the odour concentration values measured at the wind tunnel outlet and the odour concentration values predicted by the application of a specific volatilization model, based on the Prandtl boundary layer theory. The agreement between experimental and theoretical trends demonstrate that the studied wind tunnel represents a suitable sampling system for the simulation of specific odour emission rates from liquid area sources without outward flow.

  10. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres

    PubMed Central

    2012-01-01

    Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information. PMID:22853006

  11. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns.

    PubMed Central

    Whyatt, Robin M; Barr, Dana B; Camann, David E; Kinney, Patrick L; Barr, John R; Andrews, Howard F; Hoepner, Lori A; Garfinkel, Robin; Hazi, Yair; Reyes, Andria; Ramirez, Judyth; Cosme, Yesenia; Perera, Frederica P

    2003-01-01

    We have measured 29 pesticides in plasma samples collected at birth between 1998 and 2001 from 230 mother and newborn pairs enrolled in the Columbia Center for Children's Environmental Health prospective cohort study. Our prior research has shown widespread pesticide use during pregnancy among this urban minority cohort from New York City. We also measured eight pesticides in 48-hr personal air samples collected from the mothers during pregnancy. The following seven pesticides were detected in 48-83% of plasma samples (range, 1-270 pg/g): the organophosphates chlorpyrifos and diazinon, the carbamates bendiocarb and 2-isopropoxyphenol (metabolite of propoxur), and the fungicides dicloran, phthalimide (metabolite of folpet and captan), and tetrahydrophthalimide (metabolite of captan and captafol). Maternal and cord plasma levels were similar and, except for phthalimide, were highly correlated (p < 0.001). Chlorpyrifos, diazinon, and propoxur were detected in 100% of personal air samples (range, 0.7-6,010 ng/m(3)). Diazinon and propoxur levels were significantly higher in the personal air of women reporting use of an exterminator, can sprays, and/or pest bombs during pregnancy compared with women reporting no pesticide use or use of lower toxicity methods only. A significant correlation was seen between personal air level of chlorpyrifos, diazinon, and propoxur and levels of these insecticides or their metabolites in plasma samples (maternal and/or cord, p < 0.05). The fungicide ortho-phenylphenol was also detected in 100% of air samples but was not measured in plasma. The remaining 22 pesticides were detected in 0-45% of air or plasma samples. Chlorpyrifos, diazinon, propoxur, and bendiocarb levels in air and/or plasma decreased significantly between 1998 and 2001. Findings indicate that pesticide exposures are frequent but decreasing and that the pesticides are readily transferred to the developing fetus during pregnancy. PMID:12727605

  12. IceBreaker: Mars Drill and Sample Delivery System

    NASA Astrophysics Data System (ADS)

    Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.

    2012-12-01

    We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling

  13. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how

  15. Composition Alteration of Stratospheric Air Due to Sampling through a Flow Tube.

    DTIC Science & Technology

    1984-02-03

    C. C. , Forsberg, C. A. , and Pieri , H. V. (19)83) Stratospheric N 20 CF2 Cl and CFCI3 composition studies utilizing in situ cryogenic whole air...Gas-Surface Interactions in Cryogenic Whole Air Sampling, AFGL-TR-81-0162, AD A108255. 19. Gallagher, C. C., Forsberg, C. A., and Pieri , R. V. (1983...Gallagher, C. C., Forsberg, C. A., Pieri , R. V., and Faucher, G. A. (1983a) Oxides of Nitrogen Content of Whole Air Samples Obtained at Altitudes From 12

  16. Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  17. A UAV-based active AirCore system for measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin

    2018-05-01

    We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides

  18. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels.

    PubMed

    Araujo, Ricardo; Cabral, João Paulo; Rodrigues, Acácio Gonçalves

    2008-03-01

    High-efficiency particulate air (HEPA) filters do not completely prevent nosocomial fungal infections. The first aim of this study was to evaluate the impact of different filters and access conditions upon airborne fungi in hospital facilities. Additionally, this study identified fungal indicators of indoor air concentrations. Eighteen rooms and wards equipped with different air filter systems, and access conditions were sampled weekly, during 16 weeks. Tap water samples were simultaneously collected. The overall mean concentration of atmospheric fungi for all wards was 100 colony forming units/m(3). We found a direct proportionality between the levels of the different fungi in the studied atmospheres. Wards with HEPA filters at positive air flow yielded lower fungal levels. Also, the existence of an anteroom and the use of protective clothes were associated to the lowest fungal levels. Principal component analysis showed that penicillia afforded the best separation between wards' air fungal levels. Fungal strains were rarely recovered from tap water samples. In addition to air filtration systems, some access conditions to hospital units, like presence of anteroom and use of protective clothes, may prevent high fungal air load. Penicillia can be used as a general indicator of indoor air fungal levels at Hospital S. João.

  19. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  20. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro

    2012-10-09

    A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Lindberg, Michael J.

    Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less

  2. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    PubMed

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  3. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    PubMed

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  4. Strategy Guideline: Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward themore » exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.« less

  5. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  6. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  7. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2008-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  8. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  9. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    PubMed

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  10. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine

  12. High-throughput liquid-absorption air-sampling apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  13. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  14. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  15. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  16. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  17. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  18. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  19. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  20. Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  1. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  2. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  3. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  4. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  5. Strategy Guideline. Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less

  6. 3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred; hide

    2008-01-01

    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.

  7. Air Sampling Logbook of Region 4 Yellow Bluff Air Study Wilcox County, Alabama SESD Project Identification Number:11-0068

    EPA Pesticide Factsheets

    Contains the Air Sampling Logbook between 1-24-2011 thru 1-28-2011 from the Region 4 Yellow Bluff Air Study Wilcox County, Alabama SESD Project Identification Number:11-0068 November 2010-December 2010

  8. Chemical reactivities of ambient air samples in three Southern California communities

    PubMed Central

    Eiguren-Fernandez, Arantza; Di Stefano, Emma; Schmitz, Debra A.; Guarieiro, Aline Lefol Nani; Salinas, Erika M.; Nasser, Elina; Froines, John R.; Cho, Arthur K.

    2015-01-01

    The potential adverse health effects of PM2.5 and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT) and dihydrobenzoic acid (DHBA) based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities with higher levels in the winter whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. PMID:25947123

  9. An automated system for global atmospheric sampling using B-747 airliners

    NASA Technical Reports Server (NTRS)

    Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.

    1981-01-01

    The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.

  10. Atmospheric Methane Mixing Ratios--The NOAA/CMDL Global Cooperative Air Sampling Network\\, 1983-1993

    DOE Data Explorer

    Dlugokencky, E. J. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Lang, P. M. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Masarie, K. A. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Steele, L. P. [Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria, Australia

    1994-01-01

    This data base presents atmospheric methane (CH4) mixing ratios from flask air samples collected over the period 1983-1993 by the National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory's (NOAA/CMDL's) global cooperative air sampling network. Air samples were collected approximately once per week at 44 fixed sites (37 of which were still active at the end of 1993). Samples were also collected at 5 degree latitude intervals along shipboard cruise tracks in the Pacific Ocean between North America and New Zealand (or Australia) and at 3 degree latitude intervals along cruise tracks in the South China Sea between Singapore and Hong Kong. The shipboard measurements were made approximately every 3 weeks per latitude zone by each of two ships in the Pacific Ocean and approximately once every week per latitude zone in the South China Sea. All samples were analyzed for CH4 at the NOAA/CMDL laboratory in Boulder, Colorado, by gas chromatography with flame ionization detection, and each aliquot was referenced to the NOAA/CMDL methane standard scale. In addition to providing the complete set of atmospheric CH4 measurements from flask air samples collected at the NOAA/CMDL network sites, this data base also includes files which list monthly mean mixing ratios derived from the individual flask air measurements. These monthly summary data are available for 35 of the fixed sites and 21 of the shipboard sampling sites.

  11. Early detection of foot-and-mouth disease virus from infected cattle using a dry filter air sampling system

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...

  12. Curve fitting air sample filter decay curves to estimate transuranic content.

    PubMed

    Hayes, Robert B; Chiou, Hung Cheng

    2004-01-01

    By testing industry standard techniques for radon progeny evaluation on air sample filters, a new technique is developed to evaluate transuranic activity on air filters by curve fitting the decay curves. The industry method modified here is simply the use of filter activity measurements at different times to estimate the air concentrations of radon progeny. The primary modification was to not look for specific radon progeny values but rather transuranic activity. By using a method that will provide reasonably conservative estimates of the transuranic activity present on a filter, some credit for the decay curve shape can then be taken. By carrying out rigorous statistical analysis of the curve fits to over 65 samples having no transuranic activity taken over a 10-mo period, an optimization of the fitting function and quality tests for this purpose was attained.

  13. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  14. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure

  15. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  16. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  17. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  18. A new technique for preliminary estimates of TRU activity on air sample filters and radiological smears.

    PubMed

    Hayes, Robert

    2004-10-01

    In most nuclear facilities, fixed air samplers and sometimes portable air samplers are used where some probability of a release exists but is not expected, and so the added expense and effort of using a continuous air monitor is not deemed justified. When a release is suspected, naturally occurring radioactive material buildup on the filter typically prevents any quantitative measurements within the first day or so. Likewise, outdoor air measurements suffer from the same limitations (such as those taken during the Los Alamos fires) and so any rapid quantifiable measurements of fixed air sampler/portable air sampler filters which are technically defendable (even though conservative) are of use. The technique presented here is only intended for use in routine health physics survey applications and does not presently appear to be appropriate for sub pico Curie activity determinations. This study evaluates the utility of using a portable continuous air monitor as an alpha spectrometer to make transuranic activity determinations of samples using both the built in algorithm for air monitoring and a simple region of interest analysis. All samples evaluated were from air sample filters taken using a portable air sampler. Samples were taken over many months to quantify effects from natural variation in radon progeny activity distributions.

  19. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  20. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  1. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  2. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  3. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR.

    PubMed

    Cox, Jennie; Indugula, Reshmi; Vesper, Stephen; Zhu, Zheng; Jandarov, Roman; Reponen, Tiina

    2017-10-18

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample collected with a Button™ inhalable aerosol sampler and four types of dust samples: a vacuumed floor dust sample, newly settled dust collected for four weeks onto two types of electrostatic dust cloths (EDCs) in trays, and a wipe sample of dust from above floor surfaces. The samples were obtained in the bedrooms of asthmatic children (n = 14). Quantitative polymerase chain reaction (qPCR) was used to analyze the dust and air samples for the 36 fungal species that make up the Environmental Relative Moldiness Index (ERMI). The results from the samples were compared by four matrices: total concentration of fungal cells, concentration of fungal species associated with indoor environments, concentration of fungal species associated with outdoor environments, and ERMI values (or ERMI-like values for air samples). The ERMI values for the dust samples and the ERMI-like values for the 48 hour air samples were not significantly different. The total cell concentrations of the 36 species obtained with the four dust collection methods correlated significantly (r = 0.64-0.79, p < 0.05), with the exception of the vacuumed floor dust and newly settled dust. In addition, fungal cell concentrations of indoor associated species correlated well between all four dust sampling methods (r = 0.68-0.86, p < 0.01). No correlation was found between the fungal concentrations in the air and dust samples primarily because of differences in concentrations of Cladosporium cladosporioides Type 1 and Epicoccum nigrum. A representative type of dust sample and a 48 hour air sample might both provide useful information about fungal exposures.

  4. Applicability of canisters for sample storage in the determination of hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas J.; Holdren, Michael W.

    This paper evaluates the applicability of canisters for storage of air samples containing volatile organic compounds listed among the 189 hazardous air pollutants (HAPs) in the 1990 U.S. Clean Air Act Amendments. Nearly 100 HAPs have sufficient vapor pressure to be considered volatile compounds. Of those volatile organic HAPs, 52 have been tested previously for stability during storage in canisters. The published HAP stability studies are reviewed, illustrating that for most of the 52 HAPs tested, canisters are an effective sample storage approach. However, the published stability studies used a variety of canister types and test procedures, and generally considered only a few compounds in a very small set of canisters. A comparison of chemical and physical properties of the HAPs has also been conducted, to evaluate the applicability of canister sampling for other HAPs, for which canister stability testing has never been conducted. Of 45 volatile HAPs never tested in canisters, this comparison identifies nine for which canisters should be effective, and 17 for which canisters are not likely to be effective. For the other 19 HAPs, no clear decision can be reached on the likely applicability of air sample storage in canisters.

  5. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System,more » Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.« less

  6. An Improved Extraction and Analysis Technique for Determination of Carbon Monoxide Stable Isotopes and Mixing Ratios from Ice Core and Atmospheric Air Samples.

    NASA Astrophysics Data System (ADS)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.

    2017-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to anthropogenic radiative forcing. Carbon monoxide stable isotopes can also serve as a tracer for variations in biomass burning, particularly in the preindustrial atmosphere. A good understanding of the past variations in CO mole fractions and isotopic composition can help improve the skill of chemical transport models and constrain biomass burning changes. Ice cores may preserve a record of past atmospheric CO for analysis and interpretation. To this end, a new extraction system has been developed for analysis of stable isotopes (δ13CO and δC18O) of atmospheric carbon monoxide from ice core and atmospheric air samples. This system has been designed to measure relatively small sample sizes (80 cc STP of air) to accommodate the limited availability of ice core samples. Trapped air is extracted from ice core samples via melting in a glass vacuum chamber. This air is expanded into a glass expansion loop and then compressed into the sample loop of a Reducing Gas Detector (Peak Laboratories, Peak Performer 1 RCP) for the CO mole fraction measurement. The remaining sample gas will be expelled from the melt vessel into a larger expansion loop via headspace compression for isotopic analysis. The headspace compression will be accomplished by introduction of clean degassed water into the bottom of the melt vessel. Isotopic analysis of the sample gas is done utilizing the Schütze Reagent to convert the carbon monoxide to carbon dioxide (CO2) which is then measured using continuous-flow isotope ratio mass spectrometry (Elementar Americas, IsoPrime 100). A series of cryogenic traps are used to purify the sample air, capture the converted sample CO2, and cryofocus the sample CO2 prior to injection.

  7. Effect of heating-ventilation-air conditioning system sanitation on airborne fungal populations in residential environments.

    PubMed

    Garrison, R A; Robertson, L D; Koehn, R D; Wynn, S R

    1993-12-01

    Commercial air duct sanitation services are advertised to the public as being effective in reducing indoor aeroallergen levels despite the absence of published supporting data. Eight residential heat-ventilation-air conditioning (HVAC) systems in six homes and seven HVAC systems in five homes in winter and summer, respectively, were sampled to determine fungal colony forming units (CFUs) prior to and after an HVAC sanitation procedure was performed by a local company. Two houses in which no sanitation procedure was performed served as controls in each study phase. Two sample sets were obtained at each HVAC system prior to cleaning in order to determine baseline CFU levels. The test HVAC systems were then cleaned, and the HVAC systems allowed to operate as desired by the residents. Posttreatment sampling was performed 48 hours and then weekly after cleaning for 8 weeks. The HVAC systems were analyzed by exposing sterile 2% malt extract media plates at a 90-degree angle to the air flow at the air supply and air return vents. The baseline CFUs were similar in the control and study houses. Eight weeks after sanitation, the study houses demonstrated an overall CFU reduction of 92% during winter and 84% during summer. No reduction in CFU values was observed over the 8-week study period for the houses selected as controls. Further, HVAC sanitation appeared to reduce the number of fungal colonies entering and leaving the HVAC system, suggesting that the HVAC contained a significant percentage of the total fungal load in these homes. These data suggest that HVAC sanitation may be an effective tool in reducing airborne fungal populations in residential environments.

  8. [Effectiveness of the maintenance operations on the air conditioning systems of a university building in relation to the microbiological quality of the air indoor].

    PubMed

    De Filippis, Patrizia; Spinaci, Anna; Coia, Maura; Maggi, Oriana; Panà, Augusto

    2003-01-01

    The microbiological quality of the air indoor is influenced from various factors and one of the most important is represented from the maintenance of the conditioning systems. In this study it has been estimated the effectiveness of an intervention of cleaning and maintenance on the systems of conditioning of an university building executing sampling before and after such intervention. The two results were confronted and it is observed as the maintenance of the air conditioners has influenced on the quality of the air indoor.

  9. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.

    PubMed

    Tuduri, Ludovic; Harner, Tom; Hung, Hayley

    2006-11-01

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.

  10. Air Quality System (AQS) Metadata

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal

  11. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less

  12. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  13. Permeability of gypsum samples dehydrated in air

    NASA Astrophysics Data System (ADS)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  14. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  15. Analytical method validation for the determination of 2,3,3,3-tetrafluoropropene in air samples using gas chromatography with flame ionization detection.

    PubMed

    Mawn, Michael P; Kurtz, Kristine; Stahl, Deborah; Chalfant, Richard L; Koban, Mary E; Dawson, Barbara J

    2013-01-01

    A new low global warming refrigerant, 2,3,3,3-tetrafluoro propene, or HFO-1234yf, has been successfully evaluated for automotive air conditioning, and is also being evaluated for stationary refrigeration and air conditioning systems. Due to the advantageous environmental properties of HFO-1234yf versus HFC-134a, coupled with its similar physical properties and system performance, HFO-1234yf is also being evaluated to replace HFC-134a in refrigeration applications where neat HFC-134a is currently used. This study reports on the development and validation of a sampling and analytical method for the determination of HFO-1234yf in air. Different collection media were screened for desorption and simulated sampling efficiency with three-section (350/350/350 mg) Anasorb CSC showing the best results. Therefore, air samples were collected using two 3-section Anasorb CSC sorbent tubes in series at 0.02 L/min for up to 8 hr for sample volumes of up to 9.6 L. The sorbent tubes were extracted in methylene chloride, and analyzed by gas chromatography with flame ionization detection. The method was validated from 0.1× to 20× the target level of 0.5 ppm (2.3 mg/m(3)) for a 9.6 L air volume. Desorption efficiencies for HFO-1234yf were 88 to 109% for all replicates over the validation range with a mean overall recovery of 93%. Simulated sampling efficiencies ranged from 87 to 104% with a mean of 94%. No migration or breakthrough to the back tube was observed under the sampling conditions evaluated. HFO-1234yf samples showed acceptable storage stability on Anasorb CSC sorbent up to a period of 30 days when stored under ambient, refrigerated, or frozen temperature conditions.

  16. High-pressure swing system for measurements of radioactive fission gases in air samples

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.

    1999-01-01

    Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.

  17. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  18. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2014-10-01 2014-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  19. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  20. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2012-10-01 2012-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  1. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2013-10-01 2013-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  2. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to hazardous...

  3. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to hazardous...

  4. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    PubMed Central

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  5. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  6. Automated simultaneous measurement of the δ(13) C and δ(2) H values of methane and the δ(13) C and δ(18) O values of carbon dioxide in flask air samples using a new multi cryo-trap/gas chromatography/isotope ratio mass spectrometry system.

    PubMed

    Brand, Willi A; Rothe, Michael; Sperlich, Peter; Strube, Martin; Wendeberg, Magnus

    2016-07-15

    The isotopic composition of greenhouse gases helps to constrain global budgets and to study sink and source processes. We present a new system for high-precision stable isotope measurements of carbon, hydrogen and oxygen in atmospheric methane and carbon dioxide. The design is intended for analyzing flask air samples from existing sampling programs without the need for extra sample air for methane analysis. CO2 and CH4 isotopes are measured simultaneously using two isotope ratio mass spectrometers, one for the analysis of δ(13) C and δ(18) O values and the second one for δ(2) H values. The inlet carousel delivers air from 16 sample positions (glass flasks 1-5 L and high-pressure cylinders). Three 10-port valves take aliquots from the sample stream. CH4 from 100-mL air aliquots is preconcentrated in 0.8-mL sample loops using a new cryo-trap system. A precisely calibrated working reference air is used in parallel with the sample according to the Principle of Identical Treatment. It takes about 36 hours for a fully calibrated analysis of a complete carousel including extractions of four working reference and one quality control reference air. Long-term precision values, as obtained from the quality control reference gas since 2012, account for 0.04 ‰ (δ(13) C values of CO2 ), 0.07 ‰ (δ(18) O values of CO2 ), 0.11 ‰ (δ(13) C values of CH4 ) and 1.0 ‰ (δ(2) H values of CH4 ). Within a single day, the system exhibits a typical methane δ(13) C standard deviation (1σ) of 0.06 ‰ for 10 repeated measurements. The system has been in routine operation at the MPI-BGC since 2012. Consistency of the data and compatibility with results from other laboratories at a high precision level are of utmost importance. A high sample throughput and reliability of operation are important achievements of the presented system to cope with the large number of air samples to be analyzed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Whole Air Sampling During NASA's March-April 1999 Pacific Exploratory Expedition (PEM-Tropics B)

    NASA Technical Reports Server (NTRS)

    Blake, Donald R.

    2001-01-01

    University of California, Irvine (UCI) collected more than 4500 samples whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. Approximately 140 samples during a typical 8-hour DC-8 flight, and 120 canisters for each 8-hour flight aboard the P-3B. These samples were obtained roughly every 3-7 min during horizontal flight legs and 1-3 min during vertical legs. The filled canisters were analyzed in the laboratory at UCI within ten days of collection. The mixing ratios of 58 trace gases comprising hydrocarbons, halocarbons, alkyl nitrates and DMS were reported (and archived) for each sample. Two identical analytical systems sharing the same standards were operated simultaneously around the clock to improve canister turn-around time and to keep our measurement precision optimal. This report presents a summary of the results for sample collected.

  8. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    PubMed

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Microbiological contamination of compressed air used in dentistry: an investigation.

    PubMed

    Conte, M; Lynch, R M; Robson, M G

    2001-11-01

    The purpose of this preliminary investigation was twofold: 1) to examine the possibility of cross-contamination between a dental-evacuation system and the compressed air used in dental operatories and 2) to capture and identify the most common microflora in the compressed-air supply. The investigation used swab, water, and air sampling that was designed to track microorganisms from the evacuation system, through the air of the mechanical room, into the compressed-air system, and back to the patient. Samples taken in the vacuum system, the air space in the mechanical room, and the compressed-air storage tank had significantly higher total concentrations of bacteria than the outside air sampled. Samples of the compressed air returning to the operatory were found to match the outside air sample in total bacteria. It was concluded that the air dryer may have played a significant role in the elimination of microorganisms from the dental compressed-air supply.

  10. Determination of methyl bromide in air samples by headspace gas chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodrow, J.E.; McChesney, M.M.; Seiber, J.N.

    1988-03-01

    Methyl bromide is extensively used in agriculture (4 x 10/sup 6/ kg for 1985 in California alone as a fumigant to control nematodes, weeds, and fungi in soil and insect pests in harvested grains and nuts. Given its low boiling point (3.8/sup 0/C) and high vapor pressure (approx. 1400 Torr at 20/sup 0/C), methyl bromide will readily diffuse if not rigorously contained. Methods for determining methyl bromide and other halocarbons in air vary widely. A common practice is to trap the material from air on an adsorbent, such as polymeric resins, followed by thermal desorption either directly into the analyticalmore » instrumentation or after intermediary cryofocusing. While in some cases analytical detection limits were reasonable (parts per million range), many of the published methods were labor intensive and required special handling techniques that precluded high sample throughput. They describe here a method for the sampling and analysis of airborne methyl bromide that was designed to handle large numbers of samples through automating some critical steps of the analysis. The result was a method that allowed around-the-clock operation with a minimum of operator attention. Furthermore, the method was not specific to methyl bromide and could be used to determine other halocarbons in air.« less

  11. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1;more » but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.« less

  12. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  13. Air exposure and sample storage time influence on hydrogen release from tungsten

    NASA Astrophysics Data System (ADS)

    Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.

    2010-09-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  14. Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools.

    ERIC Educational Resources Information Center

    Rockwell, Dean M.; Hansen, Tony

    1994-01-01

    Describes two variations of an air sampler and analyzer that are inexpensive to construct, easy to operate, and designed to be used in an educational program. Variations use vacuum cleaners and aquarium pumps, and white facial tissues serve as filters. Samples of air pollution obtained by this method may be used from early grade school to advanced…

  15. Improved Sampling Method Reduces Isokinetic Sampling Errors.

    ERIC Educational Resources Information Center

    Karels, Gale G.

    The particulate sampling system currently in use by the Bay Area Air Pollution Control District, San Francisco, California is described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. The method represents a practical, inexpensive tool that can…

  16. EVALUATION OF THE FILTER PACK FOR LONG-DURATION SAMPLING OF AMBIENT AIR

    EPA Science Inventory

    A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks...

  17. An Improved, Automated Whole-Air Sampler and VOC Analysis System: Results from SONGNEX 2015

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Gilman, J.; Tokarek, T. W.; Peischl, J.; Koss, A.; Yuan, B.; Warneke, C.; Isaacman-VanWertz, G. A.; Sueper, D.; De Gouw, J. A.; Aikin, K. C.

    2015-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven challenging due to the requirements of short sample collection times (=10 s) to maximize spatial resolution and sampling frequency and high sensitivity (pptv) to chemically diverse hydrocarbons, halocarbons, oxygen- and nitrogen-containing VOCs. NOAA ESRL CSD has built an improved whole air sampler (iWAS) which collects compressed ambient air samples in electropolished stainless steel canisters, based on the NCAR HAIS Advanced Whole Air Sampler [Atlas and Blake]. Post-flight chemical analysis is performed with a custom-built gas chromatograph-mass spectrometer system that pre-concentrates analyte cryostatically via a Stirling cooler, an electromechanical chiller which precludes the need for liquid nitrogen to reach trapping temperatures. For the 2015 Shale Oil and Natural Gas Nexus Study (SONGNEX), CSD conducted iWAS measurements on 19 flights aboard the NOAA WP-3D aircraft between March 19th and April 27th. Nine oil and natural gas production regions were surveyed during SONGNEX and more than 1500 air samples were collected and analyzed. For the first time, we employed real-time mapping of sample collection combined with live data from fast time-response measurements (e.g. ethane) for more uniform surveying and improved target plume sampling. Automated sample handling allowed for more than 90% of iWAS canisters to be analyzed within 96 hours of collection - for the second half of the campaign improved efficiencies reduced the median sample age at analysis to 36 hours. A new chromatography peak-fitting software package was developed to minimize data reduction time by an order of magnitude without a loss of precision or accuracy. Here we report mixing ratios for aliphatic and aromatic hydrocarbons (C2-C8) along with select

  18. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  19. Passive air sampling of organochlorine pesticides in Mexico.

    PubMed

    Wong, Fiona; Alegria, Henry A; Bidleman, Terry F; Alvarado, Víctor; Angeles, Felipe; Galarza, Alfredo Avila; Bandala, Erick R; Hinojosa, Idolina de la Cerda; Estrada, Ignacio Galindo; Reyes, Guillermo Galindo; Gold-Bouchot, Gerardo; Zamora, Jose Vinicio Macías; Murguía-González, Joaquín; Espinoza, Elias Ramirez

    2009-02-01

    The spatial and temporal variation of organochlorine pesticides (OCs) in air across Mexico was investigated by deploying passive samplers at eleven stations across the country during 2005-2006. Integrated samples were taken over three-month periods and quantified for DDT compounds, endosulfans, toxaphenes, components of technical chlordane, hexachlorocyclohexanes (HCHs), and dieldrin. Enantiomers of chiral chlordanes and o,p'-DDT were determined on chiral stationary phase columns as an indicator of source and age. Results are discussed in combination with pumped air samples taken at four other stations in southern Mexico during 2002-2004. DDT and its metabolites, endosulfan and toxaphene were the most abundant OCs detected in all sampling sites. Atmospheric concentrations of SigmaDDT (p,p'-DDT + o,p'-DDT + p,p'-DDE + o,p'-DDE + p,p'-DDD + o,p'-DDD) ranged from 15 to 2360 pg m(-3) with the highest concentrations found in southern Mexico and the lowest found in northern and central Mexico. A fresher DDT residue was observed at sites with greater DDT use and in the southern part of the country, as shown from the higher FDDTe = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and nearly racemic o,p'-DDT. This agrees with the former heavy use of DDT in the endemic malarious area of the country. A local hotspot of endosulfan was identified at an agricultural area in Mazatlan, Sinaloa, with a annual mean concentration of SigmaENDO (endosulfans I + II + endosulfan sulfate) = 26,800 pg m(-3). At this site, higher concentrations of SigmaENDO were recorded during the winter (November to February) and spring (February to May) periods. From back trajectory analysis, this coincides with a shift in the air mass coming from the Pacific Ocean (May to November) to the inland agricultural area (November to May). The elevated SigmaENDO observed is likely due to the local agricultural usage. HCHs, chlordanes, transnonachlors, and dieldrin were more evenly distributed across the country likely due to

  20. Air Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  1. Concentrations and elemental composition of particulate matter in the Buenos Aires underground system

    NASA Astrophysics Data System (ADS)

    Murruni, L. G.; Solanes, V.; Debray, M.; Kreiner, A. J.; Davidson, J.; Davidson, M.; Vázquez, M.; Ozafrán, M.

    Total suspended particulate (TSP) samples have been collected at six stations in the C and B lines of the Buenos Aires underground system and, almost simultaneously, at six ground level sites outside and nearby the corresponding underground stations, in the Oct 2005/Oct 2006 period. All these samples were analyzed for mass and elemental Fe, Cu, and Zn concentrations by using the Particle Induced X-ray Emission (PIXE) technique. Mostly, TSP concentrations were found to be between 152 μg m -3 (25% percentile) and 270 μg m -3 (75% percentile) in the platform of the stations, while those in outside ambient air oscillated from 55 μg m -3 (25% percentile) to 137 μg m -3 (75% percentile). Moreover, experimental results indicate that TSP levels are comparable to those measured for other underground systems worldwide. Statistical results demonstrate that subway TSP levels are about 3 times larger on average than those for urban ambient air. The TSP levels inside stations and outdoors are poorly correlated, indicating that TSP levels in the metro system are mainly influenced by internal sources. Regarding metal concentrations, the most enriched element in TSP samples was Fe, the levels of which ranged from 36 (25% percentile) to 86 μg m -3 (75% percentile) in Line C stations, while in Line B ones they varied between 8 μg m -3 (25% percentile) and 46 μg m -3 (75% percentile). As a comparison, Fe concentrations in ambient air oscillated between 0.7 μg m -3 (25% percentile) and 1.2 μg m -3 (75% percentile). Other enriched elements include Cu and Zn. With regard to their sources, Fe and Cu have been related to processes taking place inside the subway system, while Zn has been associated with outdoor vehicular traffic. Additionally, concerns about possible health implications based on comparisons to various indoor air quality limits and available toxicological information are discussed.

  2. Trace gas measurements from whole air samples collected over the Antarctic continent

    NASA Technical Reports Server (NTRS)

    Heidt, L. E.; Vedder, J. F.; Pollock, Walter H.; Henry, Bruce E.; Lueb, Richard A.

    1988-01-01

    Whole air samples collected aboard the NASA DC-8 and ER-2 aircraft as part of the Airborne Antarctic Ozone Experiment (AAOE) were analyzed in a field laboratory set up at Punta Arenas, Chile, in August and September, 1987. Mixing ratios obtained from gas chromatographic analyses of these samples are presented for N2O, CFCl3, CFCl2, C2F3Cl3, CH3CCl3, CH4, and CO. Variations in the mixing ratios of these gases along the individual flight paths of the aircraft are used as tracers to indicate the history of air masses over and near the Antarctic continent.

  3. A STRINGENT COMPARISON OF SAMPLING AND ANALYSIS METHODS FOR VOCS IN AMBIENT AIR

    EPA Science Inventory

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets we...

  4. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  5. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  6. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air... contamination following any probable failure of the turbocharger or its lubrication system. (b) The turbocharger...

  7. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air... contamination following any probable failure of the turbocharger or its lubrication system. (b) The turbocharger...

  8. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air... contamination following any probable failure of the turbocharger or its lubrication system. (b) The turbocharger...

  9. Air carrier operations system model

    DOT National Transportation Integrated Search

    2001-03-01

    Representatives from the Federal Aviation Administration (FAA) and several 14 Code of Federal Regulations (CFR) Part 121 air carriers met several times during 1999-2000 to develop a system engineering model of the generic functions of air carrier ope...

  10. Airport Information Retrieval System (AIRS) System Design

    DOT National Transportation Integrated Search

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  11. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  12. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  13. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Caldwell, Loren M. (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  14. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Bleed air system. 33.66 Section 33.66... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...

  15. Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Julia E.; Glissmeyer, John A.

    2015-03-18

    Tests were performed to evaluate a sample conditioning unit for stack monitoring at Hanford Tank Waste Treatment and Immobilization Plant (WTP) exhaust stacks with elevated air temperatures. The LV-S2, LV-S3, HV-S3A and HV-S3B exhaust stacks are expected to have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required stack monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the stack monitoring system. The method proposed for the sample conditioning is a dilutionmore » system that will introduce cooler, dry air to the air sample stream. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. An additional constraint is that the ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 μm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on estimates of particle penetration through the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.« less

  16. A BATTERY-OPERATED AIR SAMPLER FOR REMOTE AREAS

    EPA Science Inventory

    An air sampling system developed to evaluate air quality in biosphere reserves or in other remote areas is described. The equipment consists of a Dupont P-4000 pump and a specially designed battery pack containing Gates batteries. This air sampling system was tested in Southern U...

  17. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  18. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  19. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  20. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  1. 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  2. 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  3. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    NASA Astrophysics Data System (ADS)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  4. Cold air systems: Sleeping giant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, C.D.

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less

  5. Determination of polybrominated diphenyl ethers (PBDEs) in dust samples collected in air conditioning filters of different usage - method development.

    PubMed

    Śmiełowska, M; Zabiegała, B

    2018-06-19

    This study presents the results of studies aimed at the development of an analytical procedure for separation, identification, and determination of PBDEs compounds in dust samples collected from automotive cabin air filters and samples collected from filters installed as part of the air purification system in academic facilities. Ultrasound-assisted dispersive solid phase extraction (UA-dSPE) was found to perform better in terms of extract purification than the conventional SPE technique. GC-EIMS was used for final determination of analytes. The concentrations of PBDEs in car filters ranged from < LOD to 688 ng/g while from < LOD to 247 ng/g in dust from air conditioning filters. BDE-47 and BDE-100 were reported the dominating congeners. The estimated exposure to PBDEs via ingestion of dust from car filters varied from 0.00022 to 0.012 ng/day in toddlers and from 0.000036 to 0.0029 ng/day in adults; dust from air conditioning filters: from 0.017 to 0.25 ng/day in toddlers and from 0.0029 to 0.042 ng/day. In addition, an attempt was made at extracting PBDEs from a dust samples using the matrix solid-phase dispersion (MSPD) technique as a promising alternative to conventional SPE separations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  7. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph)more » phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.« less

  8. The Air Program Information Management System (APIMS)

    DTIC Science & Technology

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  9. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  10. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  11. Solar Air Sampler

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Nation's first solar-cell-powered air monitoring station was installed at Liberty State Park, New Jersey. Jointly sponsored by state agencies and the Department of Energy, system includes display which describes its operation to park visitors. Unit samples air every sixth day for a period of 24 hours. Air is forced through a glass filter, then is removed each week for examination by the New Jersey Bureau of Air Pollution. During the day, solar cells provide total power for the sampling equipment. Excess energy is stored in a bank of lead-acid batteries for use when needed.

  12. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  13. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  14. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  15. Bioassay vs. Air Sampling: Practical Guidance and Experience at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Carlson, Eric W.; Hill, Robin L.

    2004-02-08

    The Hanford Site has implemented a policy to guide in determining whether air sampling data or special fecal bioassay data are more appropriate for determining doses of record for low-level plutonium exposures. The basis for the policy and four years of experience in comparing DAC-hours exposure with bioassay-based dosimetry is discussed.

  16. Air sampling results in relation to extent of fungal colonization of building materials in some water-damaged buildings.

    PubMed

    Miller, J D; Haisley, P D; Reinhardt, J H

    2000-09-01

    We studied the extent and nature of fungal colonization of building materials in 58 naturally ventilated apartments that had suffered various kinds of water damage in relation to air sampling done before the physical inspections. The results of air samples from each apartment were compared by rank order of species with pooled data from outdoor air. Approximately 90% of the apartments that had significant amounts of fungi in wall cavities were identified by air sampling. There was no difference in the average fungal colony forming unit values per m3 between the 15 apartments with the most fungal contamination and the 15 with the least. In contrast, the prevalence of samples with fungal species significantly different than the pooled outdoor air between the more contaminated versus the less contaminated apartments was approximately 10-fold. We provide information on methods to document fungal contamination in buildings.

  17. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  18. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone

  19. [Study on emission standard system of air pollutants].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  20. Development and evaluation of a lightweight sensor system for emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area sources, such as open burning. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, and black carbon, samplers for particulate matter with ...

  1. Current Progresses of Midass: Microbial Detection in Air System for Space

    NASA Astrophysics Data System (ADS)

    Abaibou, Hafid; Lasseur, Christophe; Mabilat, Claude; Storrs-Mabilat, Michele; Guy, Michel; Raffestin, Stephanie; Sole Bosquet, Jaume

    For the long term manned missions, microbial contamination is a major risk for crew members and hardware. This risk has first been documented by Russian scientists then by other organizations as a consequence of the contamination of metabolic consumables (water, air), and also the hardware degradation. Rapid molecular biology techniques offer an attractive alternative to traditional culture-based methods. They allow fast time to results for contamination detection and quick implementation of appropriate corrective action when required. However, to date, there are no such available system due to the technical challenges required to meet the sensitivity and specificity needs of the test and the requirement for full automation, from sampling to results interpretation. In response to this, over the last decade, the European Space Agency (ESA) and bioMérieux initiated a co-development of MIDASS, the world’s first fully automated system for the monitoring of the environmental microbial load in confined spaces, including clean rooms and hospital wards. The system is based on molecular technologies (sample preparation/amplification/detection) and enables rapid and simple determination of the microbiological contamination level in less than 3 hours. It relies on NASBA-amplification for the detection of selected micro-organisms (indicators or pathogens) at determined risk-levels (200 and 1 CFU /m3 air, respectively). Successful progresses were recently made for the space-application workpackage of this project: a lab-on-a-card design for air-testing in a first scope was endorsed by a successful ESA Preliminary Design Review, paving the way to spatialization steps (phases C and D). Data will be presented with regards to system design and biological performances.

  2. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct...

  3. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system ducts and air duct systems. 25.1103 Section 25.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1103 Induction system ducts and air duct...

  4. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    USDA-ARS?s Scientific Manuscript database

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  5. Pan Air Geometry Management System (PAGMS): A data-base management system for PAN AIR geometry data

    NASA Technical Reports Server (NTRS)

    Hall, J. F.

    1981-01-01

    A data-base management system called PAGMS was developed to facilitate the data transfer in applications computer programs that create, modify, plot or otherwise manipulate PAN AIR type geometry data in preparation for input to the PAN AIR system of computer programs. PAGMS is composed of a series of FORTRAN callable subroutines which can be accessed directly from applications programs. Currently only a NOS version of PAGMS has been developed.

  6. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Air Force Integrated Personnel and Pay System (AFIPPS)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Air Force Integrated Personnel and Pay System (AFIPPS) Defense Acquisition Management...DSN Fax: 665-1207 Date Assigned: February 1, 2016 Program Information Program Name Air Force Integrated Personnel and Pay System (AFIPPS) DoD...therefore, no Original Estimate has been established. AFIPPS 2016 MAR UNCLASSIFIED 4 Program Description Air Force Integrated Personnel and Pay

  8. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    PubMed

    Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  9. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  10. Variable volume combustor with an air bypass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  11. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  12. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  13. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  14. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  15. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  16. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  17. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  18. Effects of indoor air purification by an air cleaning system (Koala technology) on semen parameters in male factor infertility: results of a pilot study.

    PubMed

    Paradisi, R; Vanella, S; Barzanti, R; Cani, C; Battaglia, C; Seracchioli, R; Venturoli, S

    2009-06-01

    A number of studies indicated a clear decline in semen quality in the past 30-50 years and there is accumulating evidence that this decline might result from exposure to high levels of air pollution. To examine the impact of environment on male reproductive ability, we undertook for the first time a pilot study on semen quality of infertile men exposed to purification of indoor air. Ten subjects with a history of unexplained male infertility and poor semen quality were exposed for at least 1 year to a cleaning indoor air system (Koala technology). The key feature of this air purifier is the unique innovative multiple filtering system. The treatment of total purification of indoor air showed neither improvements in semen parameters nor variation in reproductive hormones (P = N.S.), but induced an evident increase (P < 0.03 and more) in seminal leucocytic concentrations. Within the limits due to the small sample of subjects recruited, the sole purification of indoor air does not seem enough to improve semen quality, although the increase in leucocytic concentrations could indicate an activation of the role of immunosurveillance in a purified indoor air environment.

  19. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-102 at the Conclusion of 5A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.

  20. Airport Information Retrieval System (AIRS) System Support Manual

    DOT National Transportation Integrated Search

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  1. Breakthrough of 1,3-dichloropropene and chloropicrin from 600 mg XAD-4 air sampling tubes

    USDA-ARS?s Scientific Manuscript database

    Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitati...

  2. Testing Air-Filtering Systems

    PubMed Central

    Songer, Joseph R.; Sullivan, James F.; Hurd, James W.

    1963-01-01

    A procedure was developed for evaluating high-efficiency filters mounted in exhaust ducts at the National Animal Disease Laboratory. An aerosol of the test organism, Escherichia coli B T3 bacteriophage, was generated in a chamber attached to a ceiling exhaust register in concentrations of at least 1000 viable organisms per ft3 of air. Samples were collected from both the pre- and postfilter areas, and the number of organisms per ft3 of air was determined. The efficiency of the filter was calculated from these figures. A total of 269 high-efficiency filters were tested. Of these, 249 had efficiencies of 98% or greater. The remaining 20, with efficiencies of less than 98%, were repaired and retested. No filter was accepted with an efficiency of less than 98%. Images Fig. 2 PMID:14063779

  3. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  4. BIBLE A whole-air sampling as a window on Asian biogeochemistry

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Blake, Nicola J.; Dubey, Manvendra K.; Rowland, F. Sherwood; Sive, Barkley C.; Smith, Felisa A.

    2003-02-01

    Asian trace gas and aerosol emissions into carbon, nitrogen, and other elemental cycles will figure prominently in near term Earth system evolution. Atmospheric hydrocarbon measurements resolve numerous chemical species and can be used to investigate sourcing for key geocarriers. A recent aircraft study of biomass burning and lightning (BIBLE A) explored the East Asian atmosphere and was unique in centering on the Indonesian archipelago. Samples of volatile organics taken over/between the islands of Japan, Saipan, Java, and Borneo are here examined as a guide to whole-air-based studies of future Asian biogeochemistry. The midlatitude onshore/offshore pulse and tropical convection strongly influence concentration distributions. As species of increasing molecular weight are considered, rural, combustion, and industrial source regimes emerge. Methane-rich inputs such as waste treatment and rice cultivation are evidenced in the geostrophic outflow. The Indonesian atmosphere is rich in biomass burning markers and also those of vehicular activity. Complexity of air chemistry in the archipelago is a direct reflection of diverse topography, land use, and local economies in a rapidly developing nation. Conspicuous in its absence is the fingerprint for liquefied petroleum gas leakage, but it can be expected to appear as demand for clean fossil fuels rises along with per capita incomes. Combustion tracers indicate high nitrogen mobilization rates, linking regional terrestrial geocycles with open marine ecosystems. Sea to air fluxes are superimposed on continental and marine backgrounds for the methyl halides. However, ocean hot spots are not coordinated and suggest an intricate subsurface kinetics. Levels of long-lived anthropogenic halocarbons attest to the success of international environmental treaties while reactive chlorine containing species track industrial air masses. The dozens of hydrocarbons resolvable by gas chromatographic methods will enable monitoring of

  5. Air quality early-warning system for cities in China

    NASA Astrophysics Data System (ADS)

    Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou

    2017-01-01

    Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.

  6. Variables Related to Pre-Service Cannabis Use in a Sample of Air Force Enlistees.

    ERIC Educational Resources Information Center

    Mullins, Cecil J.; And Others

    This report is an attempt to add to the existing information about cannabis use, its correlates, and its effects. The sample population consisted of self-admitted abusers of various drugs, identified shortly after entering the Air Force. The subjects (N=4688) were located through the Drug Control Office at Lackland Air Force Base. Variables…

  7. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  8. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  9. Transportation Air Pollution Studies (TAPS) System

    DOT National Transportation Integrated Search

    1974-03-01

    This report describes the Transportation Air Pollution Studies (TAPS) Data Base and the Software System which has been developed in association with it. : The TAPS Data Base will be used to store the transportation air pollution data (including emiss...

  10. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The...

  11. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The...

  12. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  13. Air conditioning system and component therefore distributing air flow from opposite directions

    NASA Technical Reports Server (NTRS)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  14. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

    EPA Science Inventory

    This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...

  15. Air quality in passenger cars of the ground railway transit system in Beijing, China.

    PubMed

    Li, Tian-Tian; Bai, Yu-Hua; Liu, Zhao-Rong; Liu, Jin-Feng; Zhang, Guang-Shan; Li, Jin-Long

    2006-08-15

    This study examined the concentrations of carbon monoxide, carbon dioxide, TVOC, TSP, PM(10), PM(2.5), PM(1), benzene, toluene and xylene in passenger cars of the Beijing Ground Railway Transit System (Line No. 13). This system connects the northern suburb and downtown, and is equipped with air-conditioned passenger cars. In-train air quality monitoring was performed in both summer (July and August) and winter (December). To obtain representative data, the sampling design considered both rush and regular hours, urban and suburban areas, as well as the number of passengers. Meanwhile, questionnaires were distributed to the passengers. The monitoring results indicated that, overall, the air quality in the passenger cars was acceptable with a few exceptions, which is consistent with the passengers' perception. Concentrations of some air pollutants showed significant seasonal variations and had the significant difference between rush hour and regular hour. Furthermore, the in-train air quality was greatly influenced by the number of passengers. This paper describes the experimental design, and presents the preliminary results.

  16. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  17. Technology options for an enhanced air cargo system

    NASA Technical Reports Server (NTRS)

    Winston, M. M.

    1979-01-01

    A view of potential enhancements to the air cargo system through technology application is provided. NASA's role in addressing deficiencies of the current civil and military air cargo systems is outlined. The evolution of conventional airfreighter design is traced and projected through the 1990's. Also, several advanced airfreighter concepts incorporating unconventional design features are described to show their potentials benefits. A number of ongoing NASA technology programs are discussed to indicate the wide range of advanced technologies offering potential benefits to the air cargo system. The promise of advanced airfreighters is then viewed in light of the future air cargo infrastructure predicted by extensive systems studies. The derived outlook concludes that the aircraft technology benefits may be offset somewhat by adverse economic, environmental, and institutional constraints.

  18. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  19. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  20. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR

    EPA Science Inventory

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample ...

  1. DEVELOPMENT OF A SUB-SLAB AIR SAMPLING PROTOCOL TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The primary purpose of this research effort is to develop a methodology for sub-slab sampling to support the EPA guidance and vapor intrusion investigations after vapor intrusion has been established at a site. Methodologies for sub-slab air sampling are currently lacking in ref...

  2. Factors controlling air quality in different European subway systems.

    PubMed

    Martins, Vânia; Moreno, Teresa; Mendes, Luís; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Alves, Célia A; Duarte, Márcio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier; Minguillón, María Cruz

    2016-04-01

    Sampling campaigns using the same equipment and methodology were conducted to assess and compare the air quality at three South European subway systems (Barcelona, Athens and Oporto), focusing on concentrations and chemical composition of PM2.5 on subway platforms, as well as PM2.5 concentrations inside trains. Experimental results showed that the mean PM2.5 concentrations widely varied among the European subway systems, and even among different platforms within the same underground system, which might be associated to distinct station and tunnel designs and ventilation systems. In all cases PM2.5 concentrations on the platforms were higher than those in the urban ambient air, evidencing that there is generation of PM2.5 associated with the subway systems operation. Subway PM2.5 consisted of elemental iron, total carbon, crustal matter, secondary inorganic compounds, insoluble sulphate, halite and trace elements. Of all metals, Fe was the most abundant, accounting for 29-43% of the total PM2.5 mass (41-61% if Fe2O3 is considered), indicating the existence of an Fe source in the subway system, which could have its origin in mechanical friction and wear processes between rails, wheels and brakes. The trace elements with the highest enrichment in the subway PM2.5 were Ba, Cu, Mn, Zn, Cr, Sb, Sr, Ni, Sn, Co, Zr and Mo. Similar PM2.5 diurnal trends were observed on platforms from different subway systems, with higher concentrations during subway operating hours than during the transport service interruption, and lower levels on weekends than on weekdays. PM2.5 concentrations depended largely on the operation and frequency of the trains and the ventilation system, and were lower inside the trains, when air conditioning system was operating properly, than on the platforms. However, the PM2.5 concentrations increased considerably when the train windows were open. The PM2.5 levels inside the trains decreased with the trains passage in aboveground sections. Copyright © 2015

  3. Avian influenza H9N2 virus isolated from air samples in LPMs in Jiangxi, China.

    PubMed

    Zeng, Xiaoxu; Liu, Mingbin; Zhang, Heng; Wu, Jingwen; Zhao, Xiang; Chen, Wenbing; Yang, Lei; He, Fenglan; Fan, Guoyin; Wang, Dayan; Chen, Haiying; Shu, Yuelong

    2017-07-24

    Recently, avian influenza virus has caused repeated worldwide outbreaks in humans. Live Poultry Markets (LPMs) play an important role in the circulation and reassortment of novel Avian Influenza Virus (AIVs). Aerosol transmission is one of the most important pathways for influenza virus to spread among poultry, from poultry to mammals, and among mammals. In this study, air samples were collected from LPMs in Nanchang city between April 2014 and March 2015 to investigate possible aerosol transmission of AIVs. Air samples were detected for Flu A by Real-Time Reverse Transcription-Polymerase Chain Reaction (RRT-PCR). If samples were positive for Flu A, they were inoculated into 9- to 10-day-old specific-pathogen-free embryonated eggs. If the result was positive, the whole genome of the virus was sequenced by MiSeq. Phylogenetic trees of all 8 segments were constructed using MEGA 6.05 software. To investigate the possible aerosol transmission of AIVs, 807 air samples were collected from LPMs in Nanchang city between April 2014 and March 2015. Based on RRT-PCR results, 275 samples (34.1%) were Flu A positive, and one virus was successfully isolated with embryonated eggs. The virus shared high nucleotide homology with H9N2 AIVs from South China. Our study provides further evidence that the air in LPMs can be contaminated by influenza viruses and their nucleic acids, and this should be considered when choosing and evaluating disinfection strategies in LPMs, such as regular air disinfection. Aerosolized viruses such as the H9N2 virus detected in this study can increase the risk of human infection when people are exposed in LPMs.

  4. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  5. Use of alpha spectroscopy for conducting rapid surveys of transuranic activity on air sample filters and smears.

    PubMed

    Hayes, Robert B; Peña, Adan M; Goff, Thomas E

    2005-08-01

    This paper demonstrates the utility of a portable alpha Continuous Air Monitor (CAM) as a bench top scalar counter for multiple sample types. These include using the CAM to count fixed air sample filters and radiological smears. In counting radiological smears, the CAM is used very much like a gas flow proportional counter (GFPC), albeit with a lower efficiency. Due to the typically low background in this configuration, the minimum detectable activity for a 5-min count should be in the range of about 10 dpm which is acceptably below the 20 dpm limit for transuranic isotopes. When counting fixed air sample filters, the CAM algorithm along with other measurable characteristics can be used to identify and quantify the presence of transuranic isotopes in the samples. When the radiological control technician wants to take some credit from naturally occurring radioactive material contributions due to radon progeny producing higher energy peaks (as in the case with a fixed air sample filter), then more elaborate techniques are required. The techniques presented here will generate a decision level of about 43 dpm for such applications. The calibration for this application should alternatively be done using the default values of channels 92-126 for region of interest 1. This can be done within 10 to 15 min resulting in a method to rapidly evaluate air filters for transuranic activity. When compared to the 1-h count technique described by , the technique presented in the present work demonstrates a technique whereby more than two thirds of samples can be rapidly shown (within 10 to 15 min) to be within regulatory compliant limits. In both cases, however, spectral quality checks are required to insure sample self attenuation is not a significant bias in the activity estimates. This will allow the same level of confidence when using these techniques for activity quantification as is presently available for air monitoring activity quantification using CAMs.

  6. Air-Bearing-Piston Suspension System

    NASA Technical Reports Server (NTRS)

    Mullen, Donald; Bishop, Stephen J.

    1992-01-01

    Suspension system based on air-bearing piston holds up steel ball against gravitation while allowing ball to translate vertically and rotate freely. System designed to simulate effect of microgravity on ball. Applicable to suppression of vibrations and delicate machining processes.

  7. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  8. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  9. Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and air samples.

    PubMed

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Mondaca-Fernández, Iram; Balderas-Cortés, José de Jesús; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2014-09-01

    Cryptosporidium oocysts and Giardia cysts can be transmitted by the fecal-oral route and may cause gastrointestinal parasitic zoonoses. These zoonoses are common in rural zones due to the parasites being harbored in fecally contaminated soil. This study assessed the risk of illness (giardiasis and cryptosporidiosis) from inhaling and/or ingesting soil and/or airborne dust in Potam, Mexico. To assess the risk of infection, Quantitative Microbial Risk Assessment (QMRA) was employed, with the following steps: (1) hazard identification, (2) hazard exposure, (3) dose-response, and (4) risk characterization. Cryptosporidium oocysts and Giardia cysts were observed in 52% and 57%, respectively, of total soil samples (n=21), and in 60% and 80%, respectively, of air samples (n=12). The calculated annual risks were higher than 9.9 × 10(-1) for both parasites in both types of sample. Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the microbial air quality around these parasites in rural zones. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Thermometry of the system “heat-resistant sample - incident plasma stream”

    NASA Astrophysics Data System (ADS)

    Sargsyan, M. A.; Chinnov, V. F.; Kavyrshin, D. I.; Gadzhiev, M. Kh; Khromov, M. A.; Chistolinov, A. V.; Senchenko, V. N.

    2017-11-01

    To study the interacting system “heat-resistant sample - an incident plasma stream” a setup of synchronized measurement equipment was developed and tested that recorded the main parameters of such interaction. Heat resistance tests were carried out on the samples of MPG-6 grade isotropic graphite, and samples of pyrolytic graphite that were subjected to a long (60 … 100 s) exposure to nitrogen, argon and air plasma streams at atmospheric pressure. As plasma generators a series of plasma torches with a vortex stabilization of the stream and an expanding anode channels was used. The temperature and composition of the plasma in the jet and near the sample were determined using two AvaSpec2048 and AvaSpec3648 scanning optical spectrometers and the MS5402i spectrograph with the Andor matrix at its outlet. The surface temperature of the sample was determined in real time using three independent ways: two pyrometric systems - a high-speed micro-pyrometer FMP1001 and a two-position visualization of the heated sample by high-speed Motion Pro X3 and VS-FAST cameras, and the spectral analysis of the wide-range thermal radiation of the samples. The main method for determining the rate of material loss during the action of a plasma jet on it was to analyze a two-position synchronous visualization of the “jet-sample” system. When a crater was formed on the surface of the sample under the “dagger” effect of a plasma jet, a video recording system of the crater zone was used, backlit using the “laser knife” method.

  11. High-resolution real-time optical studies of radiological air sample filtration processes in an environmental continuous air monitor

    NASA Astrophysics Data System (ADS)

    Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.

    1999-01-01

    The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.

  12. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  13. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  14. Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2,4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Andersson, K.; Lindahl, R.

    1985-05-01

    Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less

  15. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  16. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources (Abstract)

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  17. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  18. Design and demonstration of a storage assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avril, F.; Irvine, T.F.

    1982-04-01

    The report describes the design and demonstration of a storage-assisted air conditioning system for residential central air conditioning applications. The system was designed to reduce peak air conditioning loads by storing coolness to fulfill daytime air conditioning requirements. The system design analyses, as well as performance data obtained from a residential installation on Long Island, are presented, along with an economic evaluation of the system. The results of the study indicate that such a system can reduce air conditioning peak load requirements while maintaining house temperature and humidity within prescribed limits. However, further system optimization is required, as well asmore » either equipment costs reduction or increased incentives, to make this system economically attractive for use in New York State.« less

  19. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and their accessories must supply the air required by that engine and auxiliary power unit and their... cowling if the emergence of backfire flames will result in a hazard. (3) The supplying of air to the engine through the alternate air intake system may not result in a loss of excessive power in addition to...

  20. Highly integrated system solutions for air conditioning.

    PubMed

    Bartz, Horst

    2002-08-01

    Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

  1. Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Franzen, M. A.; Preble, J.; Schoenoff, M.; Halona, K.; Long, T. E.; Park, T.; Sears, D. W. G.

    2004-01-01

    The return of samples from solar system bodies is becoming an essential element of solar system exploration. The recent National Research Council Solar System Exploration Decadal Survey identified six sample return missions as high priority missions: South-Aitken Basin Sample Return, Comet Surface Sample Return, Comet Surface Sample Return-sample from selected surface sites, Asteroid Lander/Rover/Sample Return, Comet Nucleus Sample Return-cold samples from depth, and Mars Sample Return [1] and the NASA Roadmap also includes sample return missions [2] . Sample collection methods that have been flown on robotic spacecraft to date return subgram quantities, but many scientific issues (like bulk composition, particle size distributions, petrology, chronology) require tens to hundreds of grams of sample. Many complex sample collection devices have been proposed, however, small robotic missions require simplicity. We present here the results of experiments done with a simple but innovative collection system for sample return from small solar system bodies.

  2. Sample Manipulation System for Sample Analysis at Mars

    NASA Technical Reports Server (NTRS)

    Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn

    2008-01-01

    The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.

  3. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-100 at the Conclusion of 6A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-100 (6A) flight to the ISS is reported. ISS air samples were taken in March and April 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. An unplanned "first-entry" sample of the MPLM2 (multipurpose logistics module) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Endeavour using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contribution). Because of the Freon 218 (octafluoropropane, OFP) leak, its contribution to the NMVOC is indicated in brackets. When comparing the NMVOC values with the 25 mg/cubic m guideline, the OFP contributions should be subtracted. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample.

  4. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  5. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  6. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  7. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  8. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  9. Development and testing of a portable wind sensitive directional air sampler

    NASA Technical Reports Server (NTRS)

    Deyo, J.; Toma, J.; King, R. B.

    1975-01-01

    A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.

  10. Acaroid mite allergens from the filters of air-conditioning system in China.

    PubMed

    Li, Chao-Pin; Guo, Wei; Zhan, Xiao-Dong; Zhao, Bei-Bei; Diao, Ji-Dong; Li, Na; He, Lian-Ping

    2014-01-01

    Accumulation of acaroid mites in the filters of air-conditioners is harmful to human health. It is important to clarify the allergen components of mites from the filters of local air-conditioning system. The present study was to detect the allergen types in the filters of air-conditioners and assesse their allergenicity by asthmatic models. Sixty aliquots of dust samples were collected from air conditioning filters in civil houses in Wuhu area. Total protein was extracted from the dust samples using PBS and quantified by Bradford method. Allergens I and II were also detected by Western blot using primary antibody (anti-Der f1/2, Der p1/Der f2/Der p2, respectively). Ten aliquots of the positive samples were randomly selected for homogenization and sensitized the mice for developing asthmatic animal models. Total serum IgE level and IFN-γ, IL-4 and IL-5 in the bronchoalveolar lavage fluid (BALF). The allergenicity of the extraction was assessed using pathological sections developed from the mouse pulmonary tissues. The concentration of extract from the 60 samples was ranged from 4.37 μg/ml to 30.76 μg/ml. After analyzing with Western blot, 31 of 60 samples were positive for 4 allergens of acaroid mites, and yet 16 were negative. The levels of total IgE from serum IL-4 and IL-5 from the BALF in the experimental group were apparently higher than that of negative control and PBS group (P < 0.01), but there were no statistical difference compared to OVA group (P > 0.05). However,the IFN-γ level in BALF was lower compared with the negative control and PBS group (P < 0.05) but with the OVA group (P > 0.05). The pathological changes were evidently emerged in pulmonary tissues, which were similar to those of OVA group, compared with the PBS ground and negative controls. The air-conditioner filters in human dwellings of Wuhu area potentially contain the major group allergen 1 and 2 from D. farinae and D. pteronyssinus, which may be associated with seasonal prevalence of

  11. Acaroid mite allergens from the filters of air-conditioning system in China

    PubMed Central

    Li, Chao-Pin; Guo, Wei; Zhan, Xiao-Dong; Zhao, Bei-Bei; Diao, Ji-Dong; Li, Na; He, Lian-Ping

    2014-01-01

    Accumulation of acaroid mites in the filters of air-conditioners is harmful to human health. It is important to clarify the allergen components of mites from the filters of local air-conditioning system. The present study was to detect the allergen types in the filters of air-conditioners and assesse their allergenicity by asthmatic models. Sixty aliquots of dust samples were collected from air conditioning filters in civil houses in Wuhu area. Total protein was extracted from the dust samples using PBS and quantified by Bradford method. Allergens I and II were also detected by Western blot using primary antibody (anti-Der f1/2, Der p1/Der f2/Der p2, respectively). Ten aliquots of the positive samples were randomly selected for homogenization and sensitized the mice for developing asthmatic animal models. Total serum IgE level and IFN-γ, IL-4 and IL-5 in the bronchoalveolar lavage fluid (BALF). The allergenicity of the extraction was assessed using pathological sections developed from the mouse pulmonary tissues. The concentration of extract from the 60 samples was ranged from 4.37 μg/ml to 30.76 μg/ml. After analyzing with Western blot, 31 of 60 samples were positive for 4 allergens of acaroid mites, and yet 16 were negative. The levels of total IgE from serum IL-4 and IL-5 from the BALF in the experimental group were apparently higher than that of negative control and PBS group (P < 0.01), but there were no statistical difference compared to OVA group (P > 0.05). However,the IFN-γ level in BALF was lower compared with the negative control and PBS group (P < 0.05) but with the OVA group (P > 0.05). The pathological changes were evidently emerged in pulmonary tissues, which were similar to those of OVA group, compared with the PBS ground and negative controls. The air-conditioner filters in human dwellings of Wuhu area potentially contain the major group allergen 1 and 2 from D. farinae and D. pteronyssinus, which may be associated with seasonal prevalence of

  12. Small photovoltaic setup for the air conditioning system

    NASA Astrophysics Data System (ADS)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  13. Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps.

    PubMed

    Filipiak, Wojciech; Filipiak, Anna; Ager, Clemens; Wiesenhofer, Helmut; Amann, Anton

    2012-06-01

    The approach for breath-VOCs' collection and preconcentration by applying needle traps was developed and optimized. The alveolar air was collected from only a few exhalations under visual control of expired CO(2) into a large gas-tight glass syringe and then warmed up to 45 °C for a short time to avoid condensation. Subsequently, a specially constructed sampling device equipped with Bronkhorst® electronic flow controllers was used for automated adsorption. This sampling device allows time-saving collection of expired/inspired air in parallel onto three different needle traps as well as improvement of sensitivity and reproducibility of NT-GC-MS analysis by collection of relatively large (up to 150 ml) volume of exhaled breath. It was shown that the collection of alveolar air derived from only a few exhalations into a large syringe followed by automated adsorption on needle traps yields better results than manual sorption by up/down cycles with a 1 ml syringe, mostly due to avoided condensation and electronically controlled stable sample flow rate. The optimal profile and composition of needle traps consists of 2 cm Carbopack X and 1 cm Carboxen 1000, allowing highly efficient VOCs' enrichment, while injection by a fast expansive flow technique requires no modifications in instrumentation and fully automated GC-MS analysis can be performed with a commercially available autosampler. This optimized analytical procedure considerably facilitates the collection and enrichment of alveolar air, and is therefore suitable for application at the bedside of critically ill patients in an intensive care unit. Due to its simplicity it can replace the time-consuming sampling of sufficient breath volume by numerous up/down cycles with a 1 ml syringe.

  14. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  15. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  16. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-08-01

    A stochastic model of the processes involved in the measurement of the activity of the 222 Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the 222 Rn decay products concentrations in the air are realistically evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Performance Study of Salt Cavern Air Storage Based Non-Supplementary Fired Compressed Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai

    2017-10-01

    Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.

  18. Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1974-01-01

    The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.

  19. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

    PubMed

    Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T

    2004-01-01

    Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).

  20. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  1. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  2. Residues of 2, 4-D in air samples from Saskatchewan: 1966-1975.

    PubMed

    Grover, R; Kerr, L A; Wallace, K; Yoshida, K; Maybank, J

    1976-01-01

    Residues of 2,4-D (2,4-dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966-68 and 1970-75 periods were determined by gas-liquid chromatographic techniques. Initially, individual esters of 2,4-D were characterized by retention times and confirmed further by co-injection and dual column procedures. Since 1973, however, only total 2,4-D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible. Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4-D, with butyl esters being found most frequently. The daily 24-hr mean atmospheric concentrations of 2,4-D ranged from 0.01 to 1.22 mug/m3, 0.01 to 13.50 mug/m3, and 0.05 to 0.59 mug/m3 for the iso-propyl, mixed butyl and iso-octyl esters, respectively. Even when the samples were analysed for the total 2,4-D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 mug/m3. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 mug/m3 of 2,4-D. In another 40% of the samples, the levels of 2,4-D ranged from 0.01 to 0.099 mug/m3. Only about 30% of the samples contained 2,4-D concentrations higher than 0.1 mug/m3, with only 10% or less exceeding 1 mug/m3. None of the samples, obtained with the high volume particulate sampler, showed any detectable levels of 2,4-D, indicating little or no transport of 2,4-D adsorbed on dust particles or as crystals of amine salts.

  3. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    PubMed Central

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  4. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  5. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JR Bontha; GR Golcar; N Hannigan

    2000-08-29

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systemsmore » are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.« less

  6. THE EMISSION PROCESSING SYSTEM FOR THE ETA/CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of th...

  7. Marine Technician's Handbook, Instructions for Taking Air Samples on Board Ship: Carbon Dioxide Project.

    ERIC Educational Resources Information Center

    Keeling, Charles D.

    This booklet is one of a series intended to provide explicit instructions for the collection of oceanographic data and samples at sea. The methods and procedures described have been used by the Scripps Institution of Oceanography and found reliable and up-to-date. Instructions are given for taking air samples on board ship to determine the…

  8. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototypemore » measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s -1 (12.6 km h -1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.« less

  9. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  10. Measurements of CO2 Mole Fractionand δ13C in Archived Air Samples from Cape Meares, Oregon (USA) 1977 - 1998

    NASA Astrophysics Data System (ADS)

    Clark, O.; Rice, A. L.

    2017-12-01

    Carbon dioxide (CO2) is the most abundant, anthropogenically forced greenhouse gas (GHG) in the global atmosphere. Emissions of CO2 account for approximately 75% of the world's total GHG emissions. Atmospheric concentrations of CO2 are higher now than they've been at any other time in the past 800,000 years. Currently, the global mean concentration exceeds 400 ppm. Today, global networks regularly monitor CO2 concentrations and isotopic composition (δ13C and δ18O). However, past data is sparse. Over 200 ambient air samples from Cape Meares, Oregon (45.5°N, 124.0°W), a coastal site in Western United States, were obtained by researchers at Oregon Institute of Science and Technology (OGI, now Oregon Health & Science University), between the years of 1977 and 1998 as part of a global monitoring program of six different sites in the polar, middle, and tropical latitudes of the Northern and Southern Hemispheres. Air liquefaction was used to compress approximately 1000L of air (STP) to 30bar, into 33L electropolished (SUMMA) stainless steel canisters. Select archived air samples from the original network are maintained at Portland State University (PSU) Department of Physics. These archived samples are a valuable look at changing atmospheric concentrations of CO2 and δ13C, which can contribute to a better understanding of changes in sources during this time. CO2 concentrations and δ13C of CO2 were measured at PSU, with a Picarro Cavity Ringdown Spectrometer, model G1101-i analytical system. This study presents the analytical methods used, calibration techniques, precision, and reproducibility. Measurements of select samples from the archive show rising CO2 concentrations and falling δ13C over the 1977 to 1998 period, compatible with previous observations and rising anthropogenic sources of CO2. The resulting data set was statistically analyzed in MATLAB. Results of preliminary seasonal and secular trends from the archive samples are presented.

  11. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  12. How New National Air Data System Affects ECHO Data ...

    EPA Pesticide Factsheets

    The ECHO website is displaying Clean Air Act stationary source data from the modernized national data management system, ICIS-Air. The old system, AFS was retired in October 2014. Answers to frequently asked questions about the data system transition are presented on this page.

  13. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    PubMed

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  14. Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling

    NASA Astrophysics Data System (ADS)

    Arp, Hans Peter H.; Goss, Kai-Uwe

    Due to the apparent environmental omnipresence of perfluorocarboxylic acids (PFAs), an increasing number of researchers are investigating their ambient particle- and gas-phase concentrations. Typically this is done using a high-volume air sampler equipped with Quartz Fiber Filters (QFFs) or Glass Fiber Filters (GFFs) to sample the particle-bound PFAs and downstream sorbents to sample the gas-phase PFAs. This study reports that at trace, ambient concentrations gas-phase PFAs sorb to QFFs and GFFs irreversibly and hardly pass through these filters to the downstream sorbents. As a consequence, it is not possible to distinguish between particle- and gas-phase concentrations, or to distinguish concentrations on different particle size fractions, unless precautions are taken. Failure to take such precautions could have already caused reported data to be misinterpreted. Here it is also reported that deactivating QFFs and GFFs with a silylating agent renders them suitable for sampling PFAs. Based on the presented study, a series of recommendations for air-sampling PFAs are provided.

  15. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...

  16. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...

  17. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGES

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  18. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. © The Author 2015

  19. Atmospheric CO2 Records from Sites in the Main Geophysical Observatory Air Sampling Network (1983 - 1993)

    DOE Data Explorer

    Brounshtein, A. M. [Main Geophysical Observatory, St. Petersburg, Russia; Shaskov, A. A. [Main Geophysical Observatory, St. Petersburg, Russia; Paramonova, N. N. [Main Geophysical Observatory, St. Petersburg, Russia; Privalov, V. I. [Main Geophysical Observatory, St. Petersburg, Russia; Starodubtsev, Y. A. [Main Geophysical Observatory, St. Petersburg, Russia

    1997-01-01

    Air samples were collected from five sites in the Main Geophysical Observatory air sampling network to monitor the atmospheric CO2 from 1983 - 1993. Airwas collected generally four times per month in pairs of 1.5-L stainless steel electropolished flasks with one greaseless stainless steel stopcock. Sampling was performed by opening the stopcock of the flasks, which have been evacuated at the central laboratory at the Main Geophysical Observatory (MGO). The air was not dried during sample collection. Attempts were made to obtain samples when the wind speed was >5 m/s and the wind direction corresponded to the predetermined "clean air" sector. The period of record at Bering Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Bering Island rose from approximately 346 parts per million by volume (ppmv) in 1986 to 362.6 ppmv in 1993. Measurements from this station are considered indicative of maritime air masses. The period of record at Kotelny Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Kotelny Island rose from 356.08 parts per million by volume (ppmv) in 1988 to 358.8 ppmv in 1993. Because Kotelny Island is the northernmost Russian sampling site, measurements from this site serve as a useful comparison to other northern sites (e.g., Alert, Northwest Territories). In late 1989, air sampling began at the Russian site of Kyzylcha, located in the Republic of Uzbekistan. Unfortunately, the desert site at Kyzylcha has been out of operation since mid-1991 due to financial difficulties in Russia. The annual mean value of 359.02 parts per million by volume (ppmv) for 1990, the lone full year of operation, is higher than measurements from other monitoring programs at this latitude [e.g., Niwot Ridge (354.7 ppmv in 1990) and Tae-ahn Peninsula]. Station "C," an open ocean site, in the

  20. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  1. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  2. Comparison of Passive and Active Air Sampling (PAAS) Methods for PCBs – A Pilot Study in New York City Schools

    EPA Science Inventory

    PCBs were used extensively in school building materials (caulk and lighting fixture ballasts) during the approximate period of 1950-1978. Most of the schools built nationwide during this period have not had indoor air sampling conducted for PCBs. Passive air sampling holds promi...

  3. A pilot study of bioaerosol reduction using an air cleaning system during dental procedures.

    PubMed

    Hallier, C; Williams, D W; Potts, A J C; Lewis, M A O

    2010-10-23

    Bioaerosols are defined as airborne particles of liquid or volatile compounds that contain living organisms or have been released from living organisms. The creation of bioaerosols is a recognized consequence of certain types of dental treatment and represents a potential mechanism for the spread of infection. The aims of the present study were to assess the bioaerosols generated by certain dental procedures and to evaluate the efficiency of a commercially available Air Cleaning System (ACS) designed to reduce bioaerosol levels. Bioaerosol sampling was undertaken in the absence of clinical activity (baseline) and also during treatment procedures (cavity preparation using an air rotor, history and oral examination, ultrasonic scaling and tooth extraction under local anaesthesia). For each treatment, bioaerosols were measured for two patient episodes (with and without ACS operation) and between five and nine bioaerosol samples were collected. For baseline measurements, 15 bioaerosol samples were obtained. For bioaerosol sampling, environmental air was drawn on to blood agar plates using a bioaerosol sampling pump placed in a standard position 20 cm from the dental chair. Plates were incubated aerobically at 37°C for 48 hours and resulting growth quantified as colony forming units (cfu/m³). Distinct colony types were identified using standard methods. Results were analysed statistically using SPSS 12 and Wilcoxon signed rank tests. The ACS resulted in a significant reduction (p = 0.001) in the mean bioaerosols (cfu/m³) of all three clinics compared with baseline measurements. The mean level of bioaerosols recorded during the procedures, with or without the ACS activated respectively, was 23.9 cfu/m³ and 105.1 cfu/m³ (p = 0.02) for cavity preparation, 23.9 cfu/m³ and 62.2 cfu/m³ (p = 0.04) for history and oral examination; 41.9 cfu/m³ and 70.9 cfu/m³ (p = 0.01) for ultrasonic scaling and 9.1 cfu/m³ and 66.1 cfu/m³ (p = 0.01) for extraction. The predominant

  4. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  5. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  6. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  7. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  8. Air Force Audit Agency Management Information System

    DTIC Science & Technology

    1990-11-01

    Support Directorate. AFAA/QL performs multilocation . Air Force-wide audits and issues reports to the SAF. It, however, specializes in the multibillion...USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED NOV 90 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Air Force Audit Agency...appreciated. Mail them to: CADRE/RI, Building 1400, Maxwell AFB AL 36112-5532.• Air Force Audit Agency Management Hobbs Information System C 0* 0 0

  9. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  10. Towards a Functionally-Formed Air Traffic System-of-Systems

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria C.

    2005-01-01

    Incremental improvements to the national aviation infrastructure have not resulted in sufficient increases in capacity and flexibility to meet emerging demand. Unfortunately, revolutionary changes capable of substantial and rapid increases in capacity have proven elusive. Moreover, significant changes have been difficult to implement, and the operational consequences of such change, difficult to predict due to the system s complexity. Some research suggests redistributing air traffic control functions through the system, but this work has largely been dismissed out of hand, accused of being impractical. However, the case for functionally-based reorganization of form can be made from a theoretical, systems perspective. This paper investigates Air Traffic Management functions and their intrinsic biases towards centralized/distributed operations, grounded in systems engineering and information technology theories. Application of these concepts to a small airport operations design is discussed. From this groundwork, a robust, scalable system transformation plan may be made in light of uncertain demand.

  11. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    PubMed

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  12. Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample

    PubMed Central

    Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A.; Thurston, George

    2015-01-01

    The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each µg/m3 increase in PM2.5 (both P<0.0001). PM2.5 and NO2 were associated with −3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial

  13. Design and demonstration of a storage-assisted air conditioning system

    NASA Astrophysics Data System (ADS)

    Rizzuto, J. E.

    1981-03-01

    The system is a peak-shaving system designed to provide a levelized air conditioning load. The system also requires minimum air conditioner and thermal storage capacity. The storage-assisted air conditioning system uses a Glauber's salt-based phase change material in sausage like containers called CHUBS. The CHUBS are two (2) inches in diameter and 20 inches long. They are stacked in modules of 64 CHUBS which are appropriately spaced and oriented in the storage system so that air may pass perpendicular to the long axis of the CHUBS. The phase change material, has a thermal storage capacity in the range of 45 to 50 Btu/lb and a transition temperature of approximately 55 F.

  14. The promise of air cargo-system aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    A review of the current operation of the air cargo system is presented and the prospects for the future are discussed. Attention is given to air cargo demand forecasts, the economics of air cargo transport, the development of an integrated air cargo system, and the evolution of airfreighter design. Particular emphasis is placed on the span-distributed load concept, examining the Boeing, Douglas, and Lockheed spanloaders.

  15. Evaluation of solid sorbents for the determination of fenhexamid, metalaxyl-M, pyrimethanil, malathion and myclobutanil residues in air samples: application to monitoring malathion and fenhexamid dissipation in greenhouse air using C-18 or Supelpak-2 for sampling.

    PubMed

    Tsiropoulos, Nikolaos G; Bakeas, Evangelos B; Raptis, Vasilios; Batistatou, Stavroula S

    2006-07-28

    A methodology is described for greenhouse air analysis by sampling fenhexamid, pyrimethanil, malathion, metalaxyl-M and myclobutanil in solid sorbents. Pesticides were determined by gas chromatography with NP Detector. The trapping efficiency of XAD-2, XAD-4, Supelpak-2, Florisil and C-18 at different sampling conditions (rate, time and air humidity) and pesticides concentration levels has been evaluated. No breakthrough was observed in the range of concentration studied (0.10-75 microg of each pesticide). In almost all the cases good stability results were obtained. Personal pumps have been used with selected sorbents (Supelpak-2 and C-18) in order to sample malathion and fenhexamid in air of experimental greenhouse after their application in a tomato crop. The dissipation process of the analytes in various time periods after application has been studied. Malathion concentrations varied between 20.1 microg m(-3) just after application and 1.06 microg m(-3) 3 days later. Fenhexamid concentrations, determined by high performance liquid chromatography with UV detection, fall rapidly; after 12 h post-application being below 0.50 microg m(-3).

  16. SAMPLING SYSTEM

    DOEpatents

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  17. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Ouyang, Minggao; Yi, Baolian

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control.

  18. Atmospheric Carbon Dioxide Mixing Ratios from the NOAA CMDL Carbon Cycle Cooperative Global Air Sampling Network (2009)

    DOE Data Explorer

    Conway, Thomas [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA); Tans, Pieter [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA)

    2009-01-01

    The National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) has measured CO2 in air samples collected weekly at a global network of sites since the late 1960s. Atmospheric CO2 mixing ratios reported in these files were measured by a nondispersive infrared absorption technique in air samples collected in glass flasks. All CMDL flask samples are measured relative to standards traceable to the World Meteorological Organization (WMO) CO2 mole fraction scale. These measurements constitute the most geographically extensive, carefully calibrated, internally consistent atmospheric CO2 data set available and are essential for studies aimed at better understanding the global carbon cycle budget.

  19. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    PubMed

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  20. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  1. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  2. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  3. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  4. Development of Air Supply System for Gas Turbine Combustor Test Rig

    NASA Astrophysics Data System (ADS)

    Kamarudin, Norhaimi Izlan; Hanafi, Muhammad; Mantari, Asril Rajo; Jaafar, Mohammad Nazri Mohd

    2010-06-01

    Complete combustion process occurs when the air and fuel burns at their stoichiometric ratio, which determines the appropriate amount of air needed to be supplied to the combustion chamber. Thus, designing an appropriate air supply system is important, especially for multi-fuel combustion. Each type of fuel has different molecular properties and structures which influence the stoichiometric ratio. Therefore, the designed air supply system must be operable for different types of fuels. Basically, the design of the air supply system is at atmospheric pressure. It is important that the air which enters the combustion chamber is stable and straight. From the calculation, the maximum required mass flow rate of air is 0.1468kg/s.

  5. 77 FR 59023 - Preoperational Testing of Instrument and Control Air Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0065] Preoperational Testing of Instrument and Control Air..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address... instrument and control air systems (ICAS) to meet seismic requirement, ICAS air- dryer testing to meet dew...

  6. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  7. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    PubMed

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  8. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  9. The adverse effects of air pollution on the nervous system.

    PubMed

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  10. Towards the Next Generation Air Quality Modeling System ...

    EPA Pesticide Factsheets

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis

  11. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  12. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  13. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Englebrecht; I. Kavouras; D. Campbell

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d).more » The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.« less

  14. Evaluation of Air Force and Navy Demand Forecasting Systems

    DTIC Science & Technology

    1994-01-01

    forecasting approach, the Air Force Material Command is questioning the adoption of the Navy’s Statistical Demand Forecasting System ( Gitman , 1994). The...Recoverable Item Process in the Requirements Data Bank System is to manage reparable spare parts ( Gitman , 1994). Although RDB will have the capability of...D062) ( Gitman , 1994). Since a comparison is made to address Air Force concerns, this research only limits its analysis to the range of Air Force

  15. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  16. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  17. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  18. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  19. Whole air canister sampling coupled with preconcentration GC/MS analysis of part-per-trillion levels of trimethylsilanol in semiconductor cleanroom air.

    PubMed

    Herrington, Jason S

    2013-08-20

    The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.

  20. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  1. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  2. CTEPP STANDARD OPERATING PROCEDURE FOR COLLECTION OF FIXED SITE INDOOR AND OUTDOOR AIR SAMPLES FOR PERSISTENT ORGANIC POLLUTANTS (SOP-2.12)

    EPA Science Inventory

    This SOP describes the procedures to set up, calibrate, initiate and terminate air sampling for persistent organic pollutants. This method is used to sample air, indoors and outdoors, at homes and at day care centers over a 48-hr period.

  3. Development of the Next Generation Air Quality Modeling System

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  4. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  5. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    NASA Astrophysics Data System (ADS)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  6. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  7. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  8. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  9. Airport Information Retrieval System (AIRS) User's Guide

    DOT National Transportation Integrated Search

    1973-08-01

    The handbook is a user's guide for a prototype air traffic flow control automation system developed for the FAA's System Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load predictions ...

  10. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  11. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    PubMed

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.

  12. Can Particulate Air Sampling Predict Microbial Load in Operating Theatres for Arthroplasty?

    PubMed Central

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of

  13. Can particulate air sampling predict microbial load in operating theatres for arthroplasty?

    PubMed

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m(3); the mean particle count was 4,194,569 no./m(3) for particles of diameter ≥0.5 µm and 13,519 no./m(3) for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of

  14. Applications of an NMHC isotope analysis system on trace gases from plant and CARIBIC samples

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Röckmann, T.; Brenninkmeijer, C. A. M.

    2009-04-01

    Isotope analysis can be a useful tool in constraining the budgets (sources and sinks) of atmospheric trace species and is increasingly applied for organic constituents. We present initial results from an automated system for isotope ratio measurements on atmospheric hydrocarbons. The inlet system is flexible and allows analysis of trace gases from medium size to large ambient air samples (5-300L) as well as CO2-concentrates from samples that have been extracted offline. Long-term testing has shown this system to be stable to 1.5‰ vs. VPDB (or better) across all tested C2-C6 compounds, and methyl chloride. This system has now been utilized to analyze emissions rates and isotopic fractionation of 7 NMHCs from Sequoia leaf litter under conditions of UV exposure. These experiments indicate, for example, δ13C depletion in methyl chloride (CH3Cl) In the range of -90 to -113 v. VPDB with continuously increasing emission rates reaching to 3.26 ng/h/gdw after constant UV exposure of 7 hours, in a dynamic reactor. Other experiments with variation in UV exposure were also undertaken, indicating variation in emission rates and δ13C with UV intensity. In addition, first results from analysis of samples from concentrates taken during the CARIBIC II (http://www.caribic-atmospheric.com/) campaign, beginning with flight 26 (return flight, Male, Maldives, to Dusseldorf, Germany, August 2000), which features flight path air originating from over the Atlantic Ocean and the Indian subcontinent, is presented.

  15. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    NASA Astrophysics Data System (ADS)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  16. Role of air sampling in investigation of an outbreak of legionnaires' disease associated with exposure to aerosols from an evaporative condenser.

    PubMed

    Breiman, R F; Cozen, W; Fields, B S; Mastro, T D; Carr, S J; Spika, J S; Mascola, L

    1990-06-01

    Epidemiologic studies have suggested that legionnaires' disease can be transmitted to susceptible hosts by contaminated aerosolized water from cooling towers and evaporative condensers; however, epidemic strains of Legionella have not been isolated by air sampling at such sites during epidemiologic investigations. An outbreak of legionnaires' disease occurred at a retirement hotel; Legionella pneumophila serogroup 1 was isolated from an evaporative condenser and from potable water. A case-control study showed that the only significant exposure risk was in area A. L. pneumophila serogroup 1 was isolated during air sampling near the evaporative condenser exhaust site, the air conditioning intake vent, and an air vent in area A, but not in shower stalls. Monoclonal antibody subtype patterns of L. pneumophila serogroup 1 isolates from patients matched those from the evaporative condenser but not from shower water. Air sampling and monoclonal antibody subtyping results support epidemiologic evidence that the evaporative condenser was the source of this outbreak.

  17. Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system.

    PubMed

    Lambertz, Markus; Bertozzo, Filippo; Sander, P Martin

    2018-01-01

    Air sacs are an important component of the avian respiratory system, and corresponding structures also were crucial for the evolution of sauropod dinosaur gigantism. Inferring the presence of air sacs in fossils so far is restricted to bones preserving internal pneumatic cavities and foramina as osteological correlates. We here present bone histological correlates for air sacs as a new potential identification tool for these elements of the respiratory system. The analysis of several avian and non-avian dinosaur samples revealed delicate fibres in secondary trabecular and secondary endosteal bone that in the former case (birds) is known or in the latter (non-avian dinosaurs) assumed to have been in contact with air sacs, respectively. The bone histology of this 'pneumosteal tissue' is markedly different from those regions where muscles attached presenting classical Sharpey's fibres. The pneumatized bones of several non-dinosaurian taxa do not exhibit the characteristics of this 'pneumosteum'. Our new histology-based approach thus can be instrumental in reconstructing the origin of air sacs among dinosaurs and hence for our understanding of this remarkable evolutionary novelty of the respiratory system. © 2018 The Author(s).

  18. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  19. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  20. A Sample Handling System for Mars Sample Return - Design and Status

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.

    2009-04-01

    A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture

  1. Compressed-air flow control system.

    PubMed

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  2. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  3. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  4. 40 CFR 91.327 - Sampling system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling system requirements. 91.327....327 Sampling system requirements. (a) Sample component surface temperature. For sampling systems which..., sample line section, filters, and so forth) in the heated portion of the sampling system that has a...

  5. 40 CFR 91.327 - Sampling system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling system requirements. 91.327....327 Sampling system requirements. (a) Sample component surface temperature. For sampling systems which..., sample line section, filters, and so forth) in the heated portion of the sampling system that has a...

  6. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 2: Design and development

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.

    1984-01-01

    Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.

  7. Solid sorbent air sampling and analytical procedure for methyl-, dimethyl-, ethyl-, and diethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elskamp, C.J.; Schultz, G.R.

    1986-01-01

    A sampling and analytical procedure for methyl-, dimethyl-, ethyl-, and diethylamine was developed in order to avoid problems typically encountered in the sampling and analysis of low molecular weight aliphatic amines. Samples are collected with adsorbent tubes containing Amberlite XAD-7 resin coated with the derivatizing reagent, NBD chloride (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole). Analysis is performed by high performance liquid chromatography with the use of a fluorescence and/or UV/visible detector. All four amines can be monitored simultaneously, and neither collection nor storage is affected by humidity. Samples are stable at room temperature for at least two weeks. The methodology has been tested for eachmore » of the four amines at sample loadings equivalent to air concentration ranges of 0.5 to 30 ppm for a sample volume of 10 liters. The method shows promise for determining other airborne primary and secondary low molecular weight aliphatic amines.« less

  8. Evaluation of auto incident recording system (AIRS).

    DOT National Transportation Integrated Search

    2005-05-01

    The Auto Incident Recording System (AIRS) is a sound-actuated video recording system. It automatically records potential incidents when activated by sound (horns, clashing metal, squealing tires, etc.). The purpose is to detect patterns of crashes at...

  9. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    PubMed

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  10. Planetary Sample Caching System Design Options

    NASA Technical Reports Server (NTRS)

    Collins, Curtis; Younse, Paulo; Backes, Paul

    2009-01-01

    Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.

  11. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  12. Breakthrough during air sampling with polyurethane foam: What do PUF 2/PUF 1 ratios mean?

    PubMed

    Bidleman, Terry F; Tysklind, Mats

    2018-02-01

    Frontal chromatography theory is applied to describe movement of gaseous semivolatile organic compounds (SVOCs) through a column of polyurethane foam (PUF). Collected mass fractions (F C ) are predicted for sample volume/breakthrough volume ratios (τ = V S /V B ) up to 6.0 and PUF bed theoretical plate numbers (N) from 2 to 16. The predictions assume constant air concentrations and temperatures. Extension of the calculations is done to relate the collection efficiency of a 2-PUF train (F C1+2 ) to the PUF 2/PUF 1 ratio. F C1+2 exceeds 0.9 for PUF 2/PUF 1 ≤ 0.5 and lengths of PUF commonly used in air samplers. As the PUF 2/PUF 1 ratio approaches unity, confidence in these predictions is limited by the analytical ability to distinguish residues on the two PUFs. Field data should not be arbitrarily discarded because some analytes broke through to the backup PUF trap. The fractional collection efficiencies can be used to estimate air concentrations from quantities retained on the PUF trap when sampling is not quantitative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Air cargo: An Integrated Systems View. 1978 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)

    1978-01-01

    The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.

  14. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  15. Air and Surface Sampling Method for Assessing Exposures to Quaternary Ammonium Compounds Using Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    LeBouf, Ryan F; Virji, Mohammed Abbas; Ranpara, Anand; Stefaniak, Aleksandr B

    2017-07-01

    This method was designed for sampling select quaternary ammonium (quat) compounds in air or on surfaces followed by analysis using ultraperformance liquid chromatography tandem mass spectrometry. Target quats were benzethonium chloride, didecyldimethylammonium bromide, benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, and benzyldimethylhexadecylammonium chloride. For air sampling, polytetrafluoroethylene (PTFE) filters are recommended for 15-min to 24-hour sampling. For surface sampling, Pro-wipe® 880 (PW) media was chosen. Samples were extracted in 60:40 acetonitrile:0.1% formic acid for 1 hour on an orbital shaker. Method detection limits range from 0.3 to 2 ng/ml depending on media and analyte. Matrix effects of media are minimized through the use of multiple reaction monitoring versus selected ion recording. Upper confidence limits on accuracy meet the National Institute for Occupational Safety and Health 25% criterion for PTFE and PW media for all analytes. Using PTFE and PW analyzed with multiple reaction monitoring, the method quantifies levels among the different quats compounds with high precision (<10% relative standard deviation) and low bias (<11%). The method is sensitive enough with very low method detection limits to capture quats on air sampling filters with only a 15-min sample duration with a maximum assessed storage time of 103 days before sample extraction. This method will support future exposure assessment and quantitative epidemiologic studies to explore exposure-response relationships and establish levels of quats exposures associated with adverse health effects. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  17. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  18. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  19. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  20. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  1. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    DTIC Science & Technology

    2010-06-18

    Research Laboratory (NRL) has developed a proton exchange membrane fuel cell ( PEMFC ) powered unmanned air vehicle (UAV) called the Ion Tiger. The Ion Tiger...to design a cooling system for the Ion Tiger and investigate cooling approaches that may be suitable for future PEMFC powered air vehicles. The...modifications) to other PEMFC systems utilizing a CHE for cooling. 18-06-2010 Memorandum Report Unmanned Air Vehicle UAV Fuel cell PEM Cooling Radiator January

  2. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  3. Advanced Air Traffic Management System Study Overview

    DOT National Transportation Integrated Search

    1975-06-01

    This report summarizes the U.S. Department of Transportation study and development plans for the air traffic management system of the late 1980's and beyond. The plans are presented in the framework of an evolutionary system concept of traffic manage...

  4. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air courses and trolley haulage systems. 75.327... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.327 Air courses and... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to...

  5. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air courses and trolley haulage systems. 75.327... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.327 Air courses and... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to...

  6. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air courses and trolley haulage systems. 75.327... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.327 Air courses and... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to...

  7. 21. DETAIL OF AIR HANDLER 1 (MST AIRCONDITIONING SYSTEM) INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF AIR HANDLER 1 (MST AIR-CONDITIONING SYSTEM) INTERIOR, SOUTHEAST CORNER, STATION 30, SLC-3W MST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Development of a unique multi-contaminant air sampling device for a childhood asthma cohort in an agricultural environment.

    PubMed

    Armstrong, Jenna L; Fitzpatrick, Cole F; Loftus, Christine T; Yost, Michael G; Tchong-French, Maria; Karr, Catherine J

    2013-09-01

    This research describes the design, deployment, performance, and acceptability of a novel outdoor active air sampler to provide simultaneous measurements of multiple contaminants at timed intervals for the Aggravating Factors of Asthma in Rural Environment (AFARE) study-a longitudinal cohort of 50 children in Yakima Valley, Washington. The sampler was constructed of multiple sampling media connected to individual critical orifices and a rotary vane vacuum pump. It was connected to a timed control valve system to collect 24 hours samples every six days over 18 months. We describe a spatially representative approach with both quantitative and qualitative location criteria to deploy a network of 14 devices at participant residences in a rural region (20 × 60 km). Overall the sampler performed well, as the concurrent mean sample flow rates were within or above the ranges of recommended sampling rates for each exposure metric of interest. Acceptability was high among the study population of Hispanic farmworker participant households. The sampler design may prove useful for future urban and rural community-based studies with aims at collecting multiple contaminant data during specific time periods.

  9. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Engelbrecht; I. Kavouras; D. Campbell

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al.,more » 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.« less

  10. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Engelbrecht; I. Kavouras; D Campbell

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al.,more » 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.« less

  11. Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition.

    PubMed

    Smirnoff, Anna; Savard, Martine M; Vet, Robert; Simard, Marie-Christine

    2012-12-15

    The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition. In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers. We first chemically converted NO(3)(-) and NH(4)(+) into NO(2)(-) and then into N(2)O. Subsequently, the resulting gas was decomposed into N(2) and O(2) and analyzed by isotope ratio mass spectrometry (IRMS) using a pre-concentration system equipped with a gold reduction furnace. The δ(17)O, δ(18)O and δ(15)N values of nitrate and nitrite samples were acquired simultaneously in one run using a single analytical system. Most importantly, the entire spectrum of δ(17)O, δ(18)O and/or δ(15)N values was determined from atmospheric nitrate, nitric oxide, ammonia and ammonium. The obtained isotopic values for air and precipitation samples were in good agreement with those from previous studies. We have further advanced chemical approaches to sample preparation and isotope analyses of nitrogen-bearing compounds. The proposed methods are inexpensive and easily adaptable to a wide range of laboratory conditions. This will substantially contribute to further studies on sources and pathways of nitrate, nitrite and ammonium in terrestrial nitrogen cycling. Copyright © 2012 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  12. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Incumbent commercial aviation air-ground systems. 22.859 Section 22.859 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  13. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Almond, P. M.

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function ofmore » depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this

  14. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, J.

    2001-07-09

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations--a college dormitory and a research laboratory--during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systemsmore » were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pilot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous

  15. Air, hand wipe, and surface wipe sampling for Bisphenol A (BPA) among workers in industries that manufacture and use BPA in the United States.

    PubMed

    Hines, Cynthia J; Jackson, Matthew V; Christianson, Annette L; Clark, John C; Arnold, James E; Pretty, Jack R; Deddens, James A

    2017-11-01

    For decades, bisphenol A (BPA) has been used in making polycarbonate, epoxy, and phenolic resins and certain investment casting waxes, yet published exposure data are lacking for U.S. manufacturing workers. In 2013-2014, BPA air and hand exposures were quantified for 78 workers at six U.S. companies making BPA or BPA-based products. Exposure measures included an inhalable-fraction personal air sample on each of two consecutive work days (n = 146), pre- and end-shift hand wipe samples on the second day (n = 74 each), and surface wipe samples (n = 88). Potential determinants of BPA air and end-shift hand exposures (after natural log transformation) were assessed in univariate and multiple regression mixed models. The geometric mean (GM) BPA air concentration was 4.0 µg/m 3 (maximum 920 µg/m 3 ). The end-shift GM BPA hand level (26 µg/sample) was 10-times higher than the pre-shift level (2.6 µg/sample). BPA air and hand exposures differed significantly by industry and job. BPA air concentrations and end-shift hand levels were highest in the BPA-filled wax manufacturing/reclaim industry (GM Air = 48 µg/m 3 , GM Hand-End = 130 µg/sample) and in the job of working with molten BPA-filled wax (GM Air = 43 µg/m 3 , GM Hand-End = 180 µg/sample), and lowest in the phenolic resins industry (GM Air = 0.85 µg/m 3 , GM Hand-End = 0.43 µg/sample) and in the job of flaking phenolic resins (GM AIR = 0.62 µg/m 3 , GM Hand-End = 0.38 µg/sample). Determinants of increased BPA air concentration were industry, handling BPA containers, spilling BPA, and spending ≥50% of the shift in production areas; increasing age was associated with lower air concentrations. BPA hand exposure determinants were influenced by high values for two workers; for all other workers, tasks involving contact with BPA-containing materials and spending ≥50% of the shift in production areas were associated with increased BPA hand levels. Surface wipe BPA levels were significantly lower in

  16. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  17. Characterization and validation of sampling and analytical methods for mycotoxins in workplace air.

    PubMed

    Jargot, Danièle; Melin, Sandrine

    2013-03-01

    Mycotoxins are produced by certain plant or foodstuff moulds under growing, transport or storage conditions. They are toxic for humans and animals, some are carcinogenic. Methods to monitor occupational exposure to seven of the most frequently occurring airborne mycotoxins have been characterized and validated. Experimental aerosols have been generated from naturally contaminated particles for sampler evaluation. Air samples were collected on foam pads, using the CIP 10 personal aerosol sampler with its inhalable health-related aerosol fraction selector. The samples were subsequently solvent extracted from the sampling media, cleaned using immunoaffinity (IA) columns and analyzed by liquid chromatography with fluorescence detection. Ochratoxin A (OTA) or fumonisin and aflatoxin derivatives were detected and quantified. The quantification limits were 0.015 ng m(-3) OTA, 1 ng m(-3) fumonisins or 0.5 pg m(-3) aflatoxins, with a minimum dust concentration level of 1 mg m(-3) and a 4800 L air volume sampling. The methods were successfully applied to field measurements, which confirmed that workers could be exposed when handling contaminated materials. It was observed that airborne particles may be more contaminated than the bulk material itself. The validated methods have measuring ranges fully adapted to the concentrations found in the workplace. Their performance meets the general requirements laid down for chemical agent measurement procedures, with an expanded uncertainty less than 50% for most mycotoxins. The analytical uncertainty, comprised between 14 and 24%, was quite satisfactory given the low mycotoxin amounts, when compared to the food benchmarks. The methods are now user-friendly enough to be adopted for personal workplace sampling. They will later allow for mycotoxin occupational risk assessment, as only very few quantitative data have been available till now.

  18. Vein-style air pumping tube and tire system and method of assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is thenmore » cured.« less

  19. Webinar: Clean Air in the Classroom: Improve Air Quality, Extend HVAC System Life with Preventive Maintenance

    EPA Pesticide Factsheets

    A page to register to view the May 17, 2018, webinar in the IAQ Knowledge-to-Action Professional Training Webinar Series: Clean Air in the Classroom: Improve Air Quality, Extend HVAC System Life with Preventive Maintenance

  20. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  1. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  2. 40 CFR 1065.805 - Sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Sampling system. 1065.805 Section 1065... ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.805 Sampling system. (a) Dilute engine exhaust, and use batch sampling to collect proportional flow-weighted dilute samples of the applicable...

  3. 40 CFR 1065.805 - Sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Sampling system. 1065.805 Section 1065... ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.805 Sampling system. (a) Dilute engine exhaust, and use batch sampling to collect proportional flow-weighted dilute samples of the applicable...

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  5. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  6. Discussion on fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolong; Liu, Jinxiang; Wang, Yu; Yuan, Xiaolei; Jin, Hui

    2018-05-01

    The fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System(THIC) of a typical office was comfirmed, under the premise of adopting the refrigeration dehumidifying fresh air unit(7°C/12°C). By detailed calculating the space moisture load and the fresh air volume required for dehumidification in 120 selected major cities in China, it can be inferred that the minimum fresh air volume required for dehumidification in THIC is mainly determined by the local outdoor air moisture and the outdoor wind speed; Then the mathematical fitting software Matlab was used to fit the three parameters, and a simplified formula for calculating the minimum per capita fresh air volume required for dehumidification was obtained; And the indoor relative humidity was simulated by the numerical software Airpak and the results by using the formula data and the data for hygiene were compared to verify the relibility of the simplified formula.

  7. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  8. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE PAGES

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...

    2018-03-03

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  9. SAMPLE DESIGN CONSIDERATIONS FOR INDOOR AIR EXPOSURE SURVEYS

    EPA Science Inventory

    Recent studies have shown that the traditional practice of monitoring outdoor (ambient) air quality leads to little information regarding the exposures of people in indoor surroundings. Consequently, EPA has begun a series of studies to determine the air pollution exposures peopl...

  10. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to

  11. Merging Air Quality and Public Health Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Bales, C. L.

    2003-12-01

    The New Mexico Air Quality Mapper (NMAQM) is a Web-based, open source GIS prototype application that Earth Data Analysis Center is developing under a NASA Cooperative Agreement. NMAQM enhances and extends existing data and imagery delivery systems with an existing Public Health system called the Rapid Syndrome Validation Project (RSVP). RSVP is a decision support system operating in several medical and public health arenas. It is evolving to ingest remote sensing data as input to provide early warning of human health threats, especially those related to anthropogenic atmospheric pollutants and airborne pathogens. The NMAQM project applies measurements of these atmospheric pollutants, derived from both remotely sensed data as well as from in-situ air quality networks, to both forecasting and retrospective analyses that influence human respiratory health. NMAQM provides a user-friendly interface for visualizing and interpreting environmentally-linked epidemiological phenomena. The results, and the systems made to provide the information, will be applicable not only to decision-makers in the public health realm, but also to air quality organizations, demographers, community planners, and other professionals in information technology, and social and engineering sciences. As an accessible and interactive mapping and analysis application, it allows environment and health personnel to study historic data for hypothesis generation and trend analysis, and then, potentially, to predict air quality conditions from daily data acquisitions. Additional spin off benefits to such users include the identification of gaps in the distribution of in-situ monitoring stations, the dissemination of air quality data to the public, and the discrimination of local vs. more regional sources of air pollutants that may bear on decisions relating to public health and public policy.

  12. Microenvironmental air quality impact of a commercial-scale biomass heating system.

    PubMed

    Tong, Zheming; Yang, Bo; Hopke, Philip K; Zhang, K Max

    2017-01-01

    Initiatives to displace petroleum and climate change mitigation have driven a recent increase in space heating with biomass combustion. However, there is ample evidence that biomass combustion emits significant quantities of health damaging pollutants. We investigated the near-source micro-environmental air quality impact of a biomass-fueled combined heat and power system equipped with an electrostatic precipitator (ESP) in Syracuse, NY. Two rooftop sampling stations with PM 2.5 and CO 2 analyzers were established in such that one could capture the plume while the other one served as the background for comparison depending on the wind direction. Four sonic anemometers were deployed around the stack to quantify spatially and temporally resolved local wind patterns. Fuel-based emission factors were derived based on near-source measurement. The Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model was then applied to simulate the spatial variations of primary PM 2.5 without ESP. Our analysis shows that the absence of ESP could lead to an almost 7 times increase in near-source primary PM 2.5 concentrations with a maximum concentration above 100 μg m -3 at the building rooftop. The above-ground "hotspots" would pose potential health risks to building occupants since particles could penetrate indoors via infiltration, natural ventilation, and fresh air intakes on the rooftop of multiple buildings. Our results demonstrated the importance of emission control for biomass combustion systems in urban area, and the need to take above-ground pollutant "hotspots" into account when permitting distributed generation. The effects of ambient wind speed and stack temperature, the suitability of airport meteorological data on micro-environmental air quality were explored, and the implications on mitigating near-source air pollution were discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  14. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  15. Defining Human-Centered System Issues for Verifying and Validating Air Traffic Control Systems

    DOT National Transportation Integrated Search

    1993-01-01

    Over the past 40 years, the application of automation to the U.S. air traffic : control (ATC) system has grown enormously to meet significant increases in air : traffic volume. The next ten years will witness a dramatic overhaul of computer : hardwar...

  16. Laboratory investigation of air-void systems produced by air-entraining admixtures in fresh and hardened mortar.

    DOT National Transportation Integrated Search

    2006-01-01

    The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...

  17. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  18. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  19. Compressed Air System Optimization: Case Study Food Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Widayati, Endang; Nuzahar, Hasril

    2016-01-01

    Compressors and compressed air systems was one of the most important utilities in industries or factories. Approximately 10% of the cost of electricity in the industry was used to produce compressed air. Therefore the potential for energy savings in the compressors and compressed air systems had a big challenge. This field was conducted especially in Indonesia food industry or factory. Compressed air system optimization was a technique approach to determine the optimal conditions for the operation of compressors and compressed air systems that included evaluation of the energy needs, supply adjustment, eliminating or reconfiguring the use and operation of inefficient, changing and complementing some equipment and improving operating efficiencies. This technique gave the significant impact for energy saving and costs. The potential savings based on this study through measurement and optimization e.g. system that lowers the pressure of 7.5 barg to 6.8 barg would reduce energy consumption and running costs approximately 4.2%, switch off the compressor GA110 and GA75 was obtained annual savings of USD 52,947 ≈ 455 714 kWh, running GA75 light load or unloaded then obtained annual savings of USD 31,841≈ 270,685 kWh, install new compressor 2x132 kW and 1x 132 kW VSD obtained annual savings of USD 108,325≈ 928,500 kWh. Furthermore it was needed to conduct study of technical aspect of energy saving potential (Investment Grade Audit) and performed Cost Benefit Analysis. This study was one of best practice solutions how to save energy and improve energy performance in compressors and compressed air system.

  20. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 8. System Specification

    DTIC Science & Technology

    1976-03-01

    Service , CSE, Scott AFB, IL 62225. aws, usaf ltr dtd 8 jul 1976 >- a. CD SYSTEM DEVELOPMENT CORPORATION 1/ 2500 Colorado Avenue Santa Monica...Government Agen-TfAf* 17 MAR 1976 cies only. Other requests for this document ’-^ must be referred to Air Weather Service /CSi^,, Scott Air Force...Air Force Communica- tions Service must be clear’y defined. The appropriate Air Force Conmunications Service Agency should be responsible for the

  1. Cytotoxic and Inflammatory Potential of Air Samples from Occupational Settings with Exposure to Organic Dust

    PubMed Central

    Viegas, Susana; Caetano, Liliana Aranha; Korkalainen, Merja; Faria, Tiago; Pacífico, Cátia; Carolino, Elisabete; Quintal Gomes, Anita; Viegas, Carla

    2017-01-01

    Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-1β), were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers. PMID:29051440

  2. Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.

    PubMed

    Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon

    2018-07-15

    Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  4. Department of Defense Air Traffic Control and Airspace Management Systems

    DTIC Science & Technology

    1989-08-08

    service. The potential near-term impacts of incompatible and non- interoperable systems on the Air Force are described in terms of safety and...impacts of incompatible and non-interoperable systems on the Air Force are described in terms of safety and operational effectiveness and probable...derogation of safety , from the standpoint of aircraft collision avoidance, is probable where service specific systems are operating in adjacent or

  5. US EPA Base Study Standard Operating Procedure for Sampling and Characterization of Viable and Non-Viable Bioaerosols in Indoor Air

    EPA Pesticide Factsheets

    The objective of the procedure is to collect a representative sample concentration of total airborne fungal spores (viable and non-viable) that may be present in indoor air and in the outdoor air supplied to the space tested.

  6. Design of a solar energy assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlet, J.L.P.; Johnson, B.R.; Vora, J.N.

    1976-03-24

    Energy consumption in air conditioning systems can be reduced by reducing the water content of air before cooling. This reduction in humidity can be accomplished by contacting the humid air with a hygroscopic solution in a spray tower. The hydroscopic solution, diluted by water from the air, can be reconcentrated in a solar evaporator. A solar evaporator for this purpose was evaluated by formulating simultaneous energy and mass balances for forced air convection through the evaporator. Temperatures in the evaporator were calculated by numerical integration of the mathematical model. The calculations indicated that the salt solution cannot be reconcentrated inmore » a forced convection evaporator because of the large energy losses associated with the air stream passing through the evaporator.« less

  7. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds.

    PubMed

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks' air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection.

  8. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds

    PubMed Central

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks’ air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection. PMID:26817981

  9. HESTIA Phase I Test Results: The Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  10. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  11. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  12. Urine sampling and collection system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Reinhardt, C. G.

    1971-01-01

    This specification defines the performance and design requirements for the urine sampling and collection system engineering model and establishes requirements for its design, development, and test. The model shall provide conceptual verification of a system applicable to manned space flight which will automatically provide for collection, volume sensing, and sampling of urine.

  13. Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores.

    PubMed

    Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A

    2007-08-01

    For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.

  14. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  15. Operational air quality forecasting system for Spain: CALIOPE

    NASA Astrophysics Data System (ADS)

    Baldasano, J. M.; Piot, M.; Jorba, O.; Goncalves, M.; Pay, M.; Pirez, C.; Lopez, E.; Gasso, S.; Martin, F.; García-Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Dieguez, J. J.; Padilla, L.

    2009-12-01

    The European Commission (EC) and the United States Environmental Protection Agency (US-EPA) have shown great concerns to understand the transport and dynamics of pollutants in the atmosphere. According to the European directives (1996/62/EC, 2002/3/EC, 2008/50/EC), air quality modeling, if accurately applied, is a useful tool to understand the dynamics of air pollutants, to analyze and forecast the air quality, and to develop programs reducing emissions and alert the population when health-related issues occur. The CALIOPE project, funded by the Spanish Ministry of the Environment, has the main objective to establish an air quality forecasting system for Spain. A partnership of four research institutions composes the CALIOPE project: the Barcelona Supercomputing Center (BSC), the center of investigation CIEMAT, the Earth Sciences Institute ‘Jaume Almera’ (IJA-CSIC) and the CEAM Foundation. CALIOPE will become the official Spanish air quality operational system. This contribution focuses on the recent developments and implementation of the integrated modelling system for the Iberian Peninsula (IP) and Canary Islands (CI) with a high spatial and temporal resolution (4x4 sq. km for IP and 2x2 sq. km for CI, 1 hour), namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM. The HERMES04 emission model has been specifically developed as a high-resolution (1x1 sq. km, 1 hour) emission model for Spain. It includes biogenic and anthropogenic emissions such as on-road and paved-road resuspension production, power plant generation, ship and plane traffic, airports and ports activities, industrial and agricultural sectors as well as domestic and commercial emissions. The qualitative and quantitative evaluation of the model was performed for a reference year (2004) using data from ground-based measurement networks. The products of the CALIOPE system will provide 24h and 48h forecasts for O3, NO2, SO2, CO, PM10 and PM2.5 at surface level. An operational evaluation system has been developed

  16. Urban air quality measurements using a sensor-based system

    NASA Astrophysics Data System (ADS)

    Ródenas, Mila; Hernández, Daniel; Gómez, Tatiana; López, Ramón; Muñoz, Amalia

    2017-04-01

    Air pollution levels in urban areas have increased the interest, not only of the scientific community but also of the general public, and both at the regional and at the European level. This interest has run in parallel to the development of miniaturized sensors, which only since very recently are suitable for air quality measurements. Certainly, their small size and price allows them to be used as a network of sensors capable of providing high temporal and spatial frequency measurements to characterize an area or city and with increasing potential, under certain considerations, as a complement of conventional methods. Within the frame of the LIFE PHOTOCITYTEX project (use of photocatalytic textiles to help reducing air pollution), CEAM has developed a system to measure gaseous compounds of importance for urban air quality characterization. This system, which allows an autonomous power supply, uses commercial NO, NO2, O3 and CO2 small sensors and incorporates measurements of temperature and humidity. A first version, using XBee boards (Radiofrequency) for communications has been installed in the urban locations defined by the project (tunnel and school), permitting the long-term air quality characterization of sites in the presence of the textiles. An improved second version of the system which also comprises a sensor for measuring particles and which uses GPRS for communications, has been developed and successfully installed in the city center of Valencia. Data are sent to a central server where they can be accessed by citizens in nearly real time and online and, in general, they can be utilized in the air quality characterization, for decision-making related to decontamination (traffic regulation, photocatalytic materials, etc.), in air quality models or in mobile applications of interest for the citizens. Within this work, temporal trends obtained with this system in different urban locations will be shown, discussing the impact of the characteristics of the

  17. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  18. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand-wash, dermal-patch, and air samples.

    PubMed

    Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B

    2001-06-01

    Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.

  19. Atmospheric CO2 Records from Sites in the Atmospheric Environment Service Air Sampling Network (1975 and 1994)

    DOE Data Explorer

    Trivett, N. B.A. [Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada

    1997-01-01

    From the mid-1970s through the mid-1990s, air samples were collected for the purposes of monitoring atmospheric CO2 from four sites in the AES air sampling network. Air samples were collected approximately once per week, between 12:00 and 16:00 local time, in a pair of evacuated 2-L thick-wall borosilicate glass flasks. Samples were collected under preferred conditions of wind speed and direction (i.e., upwind of the main station and when winds are strong and steady). The flasks were evacuated to pressures of ~1 × 10-4 mbar or 0.01 Pa prior to being sent to the stations. The airwas not dried during sample collection. The flask data from Alert show an increase in the annual atmospheric CO2 concentration from 341.35 parts per million by volume (ppmv) in 1981 to 357.21 ppmv in 1991. For Cape St. James, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.43 ppmv per year. In August 1992, the weather station at Cape St. James was automated; as a result, the flask sampling program was discontinued at this site. Estevan Point, on the West Coast of Vancouver Island, was chosen as a replacement station. Sampling at Estevan Point started in 1992; thus, the monthly and annual CO2record from Estevan Point is too short to show any long-term trends. The sampling site at Sable Island, off the coast of Nova Scotia, was established in 1975. The flask data from Sable Island show an increase in the annual atmospheric CO2 concentration from 334.49 parts per million by volume (ppmv) in 1977 (the first full year of data) to 356.02 ppmv in 1990. For Sable Island, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.48 ppmv per year.

  20. 40 CFR 90.327 - Sampling system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling system requirements. 90.327... Equipment Provisions § 90.327 Sampling system requirements. (a) Sample component surface temperature. For sampling systems which use heated components, use engineering judgment to locate the coolest portion of...

  1. 40 CFR 90.327 - Sampling system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling system requirements. 90.327... Equipment Provisions § 90.327 Sampling system requirements. (a) Sample component surface temperature. For sampling systems which use heated components, use engineering judgment to locate the coolest portion of...

  2. Contamination of dental unit water and air outlets following use of clean head system and conventional handpieces.

    PubMed

    Toomarian, Lida; Rikhtegaran, Sahand; Sadighi, Mehrnoosh; Savadi Oskoee, Siavash; Alizadeh Oskoee, Parnian

    2007-01-01

    Dental handpiece is a source of contamination because it is in constant touch with the oral cavity. Sterilization does not seem to be sufficient to prevent penetration of microorganisms into air and water lines of the unit, because negative pressure developed by valves (which are placed in water outlets) and post shut-off inertial rotation of handpiece result in water and debris being sucked into air and water outlets of dental unit. The aim of this study was to compare dental unit contamination following use of clean head system handpieces and conventional handpieces. Twenty-two dental units in the Department of Pediatric Dentistry in Shahid Beheshti Faculty of Dentistry were used for the purpose of this study. A 1.5×108 cfu/mm3 concentration of Staphylococcus epidermis (SE) was used to contaminate the air and water outlets of dental units. Ten clean head system handpieces and 10 conventional handpieces were used for 30 seconds in the above-mentioned suspension. Microbial samples were collected from the air and water lines. Culturing and colony counting procedures were carried out. Data was analyzed by t-test; a value of p<0.01 was considered significant. Results demonstrated a significantly lower SE contamination in water outlets following the use of clean head system (p<0.01). A lower tendency of clean head system handpieces to transmit SE compared to conventional system makes them a better choice for infection control.

  3. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  4. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  5. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  6. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  7. Global Positioning System: Observations on Quarterly Reports from the Air Force

    DTIC Science & Technology

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS

  8. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  9. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Englebrecht; I. Kavouras; D. Campbell

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailermore » is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.« less

  10. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Engelbrecht; I. Kavouras; D. Campbell

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailermore » is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.« less

  11. A Vision of the Future Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.

  12. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  13. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  14. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  15. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults

    PubMed Central

    Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R

    2015-01-01

    Objectives Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. Methods 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM2.5) and sulphate (SO42−) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. Results A 5.8 mg/l elevation in CRP was associated with decreases of between −8% and −33% for time and frequency domain HRV outcomes. A 5.1 μg/m3 increase in SO42− on the day before the health assessment was associated with a decrease of −6.7% in the SD of normal RR intervals (SDNN) (95% CI −11.8% to −1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM2.5. Conclusions Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation. PMID:20519749

  17. Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults.

    PubMed

    Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R

    2010-09-01

    Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM(2.5)) and sulphate (SO(4)(2-)) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. A 5.8 mg/l elevation in CRP was associated with decreases of between -8% and -33% for time and frequency domain HRV outcomes. A 5.1 microg/m(3) increase in SO(4)(2-) on the day before the health assessment was associated with a decrease of -6.7% in the SD of normal RR intervals (SDNN) (95% CI -11.8% to -1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM(2.5). Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation.

  18. 40 CFR 63.166 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Sampling connection systems...: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge... defined in 40 CFR part 261. (c) In-situ sampling systems and sampling systems without purges are exempt...

  19. 40 CFR 63.166 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Sampling connection systems...: Sampling connection systems. (a) Each sampling connection system shall be equipped with a closed-purge... defined in 40 CFR part 261. (c) In-situ sampling systems and sampling systems without purges are exempt...

  20. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.