Science.gov

Sample records for air saturated water

  1. Single-bubble sonoluminescence in air-saturated water.

    PubMed

    Krefting, Dagmar; Mettin, Robert; Lauterborn, Werner

    2003-10-24

    Single bubble sonoluminescence (SBSL) is realized in air-saturated water at ambient pressure and room temperature. The behavior is similar to SBSL in degassed water, but with a higher spatial variability of the bubble position. A detailed view on the dynamics of the bubbles shows agreement between calculated shape stability borders but differs slightly in the equilibrium radii predicted by a mass diffusion model. A comparison with results in degassed water is done as well as a time resolved characterization of bubble oscillation, translation, and light emission for synchronous and recycling SBSL. The formation of streamer structures is observed in the same parameter range, when bubble nuclei are present. This may lead to a unified interpretation of SBSL and multibubble sonoluminescence.

  2. Single-Bubble Sonoluminescence in Air-Saturated Water

    NASA Astrophysics Data System (ADS)

    Krefting, Dagmar; Mettin, Robert; Lauterborn, Werner

    2003-10-01

    Single bubble sonoluminescence (SBSL) is realized in air-saturated water at ambient pressure and room temperature. The behavior is similar to SBSL in degassed water, but with a higher spatial variability of the bubble position. A detailed view on the dynamics of the bubbles shows agreement between calculated shape stability borders but differs slightly in the equilibrium radii predicted by a mass diffusion model. A comparison with results in degassed water is done as well as a time resolved characterization of bubble oscillation, translation, and light emission for synchronous and recycling SBSL. The formation of streamer structures is observed in the same parameter range, when bubble nuclei are present. This may lead to a unified interpretation of SBSL and multibubble sonoluminescence.

  3. A laboratory simulation of toluene cleanup by air sparging of water-saturated sands.

    PubMed

    Peterson, J W; DeBoer, M J; Lake, K L

    2000-02-25

    Laboratory air sparging experiments were performed in narrow acrylic tanks to evaluate the cleanup of toluene in water-saturated sands. Air flow channels in the sediment were identified by way of a colorimetric visualization technique, which allowed pore water samples to be collected at a known horizontal distance from an air channel. Pore water was sampled at periodic intervals during sparging experiments and analyzed by gas chromatography to yield toluene concentration vs. time data. Results indicate that channelized air flow is effective in reducing toluene concentrations in the range of 36-3 ppm, within 2 to 5 days, at least up to 185 mm from an active air channel. While relatively rapid, these toluene reduction times are longer than previously published data, from similar type experiments. The discrepancy is likely a function of air delivery flow rate and proximity of sampling sites to active air channels. Data from the current investigation were used to attempt an estimate of effective diffusion coefficients (D*) for toluene in clean, well-characterized sands in which the concentration gradient was imposed by sparge air. Calculated D* values range from 2. 98x10(-8) m(2)/s to 5.74x10(-9) m(2)/s, and are significantly faster than previously published values of toluene diffusion in clay soils. However, the values are also slightly greater than diffusion coefficients for toluene in aqueous solutions, indicating that the calculations more likely estimate coefficients of hydrodynamic dispersion (D(L)).

  4. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  5. Numerical simulation of air- and water-flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain, Nevada

    SciTech Connect

    Kwicklis, E.M.; Healy, R.W.; Thamir, F.; Hampson, D.

    1998-11-01

    Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined.

  6. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect

    Acomb, L.J.; McKay, D.; Currier, P.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V.

    1995-12-31

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  7. Water dimer equilibrium constant of saturated vapor

    NASA Astrophysics Data System (ADS)

    Malomuzh, N. P.; Mahlaichuk, V. N.; Khrapatyi, S. V.

    2014-08-01

    The value and temperature dependence of the dimerization constant for saturated water vapor are determined. A general expression that links the second virial coefficient and the dimerization constant is obtained. It is shown that the attraction between water monomers and dimers is fundamental, especially at T > 350 K. The range of application for the obtained results is determined.

  8. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  9. Iron Diffusivity in Water Saturated Rhyolite Melt

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Bell, A.

    2007-12-01

    We have quantified experimentally the bulk chemical diffusivity of iron and the solubility of magnetite in peraluminous, water-saturated rhyolite melt at 100 MPa and 800°C by performing experiments in which we equilibrated a single crystal of magnetite with water-saturated rhyolite melt. The oxygen fugacity of each run was buffered at nickel-nickel oxide (NNO) and the assemblage was saturated with a 1.8 wt. % NaCl eq. NaCl-KCl- FeCl2-HCl-H2O volatile phase. The experimental charge contained a cylinder of magnetite (activity Fe3O4=1), cored from a single crystal of magnetite and placed at the base of a gold capsule, synthetic rhyolite glass placed above the magnetite cylinder and aqueous vapor which occupied the remaining capsule volume. The concentration profiles of FeO (and Na2O, K2O, Al2O3, SiO2 and Cl) in the quenched melt (i.e., glass) were measured over a distance of 400 microns beginning at the magnetite-rhyolite interface and moving orthogonally away from this interface into the glass until the concentration of iron fell below the limit of detection. Diffusion profiles were fit by inverting the measured concentrations of iron in the melt through the error function and solving for the diffusion coefficient assuming a stationary planar boundary; the near-intersection of the error function regression with the origin justifies this assumption. The calculated bulk chemical diffusivity for iron in H2O- saturated rhyolite is 4 E-10 cm2 sec-1; this measured diffusivity is consistent, albeit one-half to one order of magnitude lower than data for other divalent elements (Ca, Mg, Sn) in rhyolite. The Co value used to fit the diffusion profiles is consistent with published data for the equilibrium concentration of iron in rhyolite melt and, thus, the data yield the solubility of iron in water-saturated rhyolite melt. The aluminum saturation index (ASI) of the melt, hence concentrations of Na2O, K2O and Al2O3, remains essentially constant in the melt across the entire

  10. Pore connectivity, electrical conductivity, and partial water saturation: Network simulations

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Bai, X. Y.; Zhang, L. H.

    2015-06-01

    The electrical conductivity of brine-saturated rock is predominantly dependent on the geometry and topology of the pore space. When a resistive second phase (e.g., air in the vadose zone and oil/gas in hydrocarbon reservoirs) displaces the brine, the geometry and topology of the pore space occupied by the electrically conductive phase are changed. We investigated the effect of these changes on the electrical conductivity of rock partially saturated with brine. We simulated drainage and imbibition as invasion and bond percolation processes, respectively, in pipe networks assumed to be perfectly water-wet. The simulations included the formation of a water film in the pipes invaded by the nonwetting fluid. During simulated drainage/imbibition, we measured the changes in resistivity index as well as a number of relevant microstructural parameters describing the portion of the pore space saturated with water. Except Euler topological number, all quantities considered here showed a significant level of "universality," i.e., insensitivity to the type of lattice used (simple cubic, body-centered cubic, or face-centered cubic). Hence, the coordination number of the pore network appears to be a more effective measure of connectivity than Euler number. In general, the simulated resistivity index did not obey Archie's simple power law. In log-log scale, the resistivity index curves displayed a substantial downward or upward curvature depending on the presence or absence of a water film. Our network simulations compared relatively well with experimental data sets, which were obtained using experimental conditions and procedures consistent with the simulations. Finally, we verified that the connectivity/heterogeneity model proposed by Bernabé et al. (2011) could be extended to the partial brine saturation case when water films were not present.

  11. New Relations of Water Saturation's Calculus from Well Logs

    NASA Astrophysics Data System (ADS)

    Malureanu, Ion; Boaca, Tudor; Neagu, Daniela-Doina

    2016-10-01

    The saturation in water or hydrocarbon is an important petrophysical parameter used for the evaluation of oil and gas reservoirs. It represents the amount of hydrocarbons in a reservoir. There are many relations to determine the water saturation from well logs by using the physical properties of rocks. The accurate determination of the hydrocarbon formation or the water saturation is given by the accuracy of the parameters used for calculating and by the relations used.

  12. [The water content reference material of water saturated octanol].

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  13. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  14. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C.; Jorand, R.; Klitzsch, N.

    2014-11-01

    Nuclear Magnetic Resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. These assessments are based on the proportionality of NMR signal amplitude and relaxation time to porosity (water content) and pore size, respectively. The relationship between pore size and NMR relaxation time depends on pore shape, which is usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks differs strongly from the response calculated for spherical or cylindrical pores, because these pore shapes cannot account for water menisci remaining in the corners of de-saturated angular pores. Therefore, we consider a bundle of pores with triangular cross-sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of de-saturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, NMR amplitude and NMR relaxation time at partial water saturation strongly depend on pore shape even so the NMR relaxation time at full saturation only depends on the surface to volume ratio of the pore. The pore-shape-dependence at partial saturation arises from the pore shape and capillary pressure dependent water distribution in pores with triangular cross-sections. Moreover, we show the qualitative agreement of the saturation dependent relaxation time distributions of our model with those observed for rocks and soils.

  15. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  16. Microbubble transport in water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Kong, X.-Z.; Scheuermann, A.; Galindo-Torres, S. A.; Bringemeier, D.; Li, L.

    2015-06-01

    Laboratory experiments were conducted to investigate flow of discrete microbubbles through a water-saturated porous medium. During the experiments, bubbles, released from a diffuser, moved upward through a quasi-2-D flume filled with transparent water-based gelbeads and formed a distinct plume that could be well registered by a calibrated camera. Outflowing bubbles were collected on the top of the flume using volumetric burettes for flux measurements. We quantified the scaling behaviors between the gas (bubble) release rates and various characteristic parameters of the bubble plume, including plume tip velocity, plume width, and breakthrough time of the plume front. The experiments also revealed circulations of ambient pore water induced by the bubble flow. Based on a simple momentum exchange model, we showed that the relationship between the mean pore water velocity and gas release rate is consistent with the scaling solution for the bubble plume. These findings have important implications for studies of natural gas emission and air sparging, as well as fundamental research on bubble transport in porous media.

  17. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  18. The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox.

    PubMed

    Kot, Jacek; Sicko, Zdzislaw; Doboszynski, Tadeusz

    2015-01-01

    Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window--also called inherent unsaturation or partial pressure vacancy--but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of

  19. Streaming Potential In Rocks Saturated With Water And Oil

    NASA Astrophysics Data System (ADS)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  20. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  1. Evaluation of water saturation in oil-bearing shaly sands

    SciTech Connect

    Martinovic, S.; Vojnovic, V. )

    1990-06-01

    The physical properties of shaly formations are difficult to evaluate because the shale component strongly affects geophysical well log and laboratory test data. This is particularly true in the case of water saturation. On the other hand, the accuracy of in-situ hydrocarbon estimates depends directly on the accuracy of water saturation values. The most important interpretation models for water saturation rely on double-layer models. These interpretation models compute highly probably water saturation values of oil-bearing shaly sands using sound mathematical and physical postulates. Certain disadvantages, such as the inability to evaluate some crucial parameters directly from geophysical well logs, simplifications along the system-model line, inherent deficiencies of logging techniques, etc., give rise to errors and other problems which are more or less solved at this stage of development. A simple program for water saturation of oil-bearing shaly sands was designed and tested. The program uses equations based on double layer models. Program listing and test results also are presented.

  2. Simulation of water-table aquifers using specified saturated thickness

    USGS Publications Warehouse

    Sheets, Rodney A.; Hill, Mary C.; Haitjema, Henk M.; Provost, Alden M.; Masterson, John P.

    2014-01-01

    Simulating groundwater flow in a water-table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model-calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified-thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified-thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified-thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady-state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified-thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.

  3. Simulation of water-table aquifers using specified saturated thickness.

    PubMed

    Sheets, Rodney A; Hill, Mary C; Haitjema, Henk M; Provost, Alden M; Masterson, John P

    2015-01-01

    Simulating groundwater flow in a water-table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model-calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified-thickness approximation often relies on the use of the "confined" option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified-thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified-thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady-state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified-thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.

  4. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  5. [Determination of the redox potential of water saturated with hydrogen].

    PubMed

    Piskarev, I M; Ushkanov, V A; Aristova, N A; Likhachev, P P; Myslivets, T C

    2010-01-01

    It has been shown that the redox potential of water saturated with hydrogen is -500--700 mV. The time of the establishment of the potential is 24 h. The potential somewhat increases with increasing volume of hydrogen introduced to a reservoir with water and practically does not depend on the presence of additions in water, provided these additions are not reduced by hydrogen. The pH value of water does not change after the addition of water. In a glass vessel with a metallic cover resting on the side, no decrease in potential during the 2.5-month storage was observed. In plastic bottles, the content of hydrogen decreased; on storage for more than two weeks, it disappeared almost completely, and as a result, the potential increased after storage for three to four weeks to a level near zero. In an open vessel, the potential remained negative for two days.

  6. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  7. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  8. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our

  9. Hugoniot Measurements on Dry and Water-Saturated Soils

    NASA Astrophysics Data System (ADS)

    Newman, M.; Stewart, S. T.; Kraus, R. G.

    2012-12-01

    The shock response of soils is an important component of planetary cratering events, including deposition of ejecta blankets and secondary cratering. Here, we present a series of shock Hugoniot experiments on two types of soil samples in both dry and water-saturated states. We measured the shock states induced via planar impact experiments on the Harvard 40-mm gas gun. Shock wave velocities in the soil samples were measured using both VISAR and piezoelectric pins. A Monte Carlo technique was developed to accurately propagate formal error through the impedance match calculations and generate a 1-sigma error ellipse in shock-velocity (US) vs. particle velocity (up) space and pressure vs. volume space. The two soils were composed primarily of quartz with different mass fractions of phyllosilicates and amorphous material. Using initial particle sizes ranging from 150 to 300 microns, the samples were pressed to densities ranging from 1.89 to 1.93 g~cm-3 (about 25% porous). Water-saturated samples had densities ranging from 2.2 to 2.6 g~cm-3. We find that the dry soils have a linear US-u_p relation that is similar to dry quartz sand with the same initial density. The water-saturated samples are less compressible and have much greater scatter in shock velocities. The VISAR measurement records the dispersion around the mean shock state that arises from reflections between grains, and we compare the VISAR data to meso-scale hydrocode simulations of the experiment. These data will be used to generate more accurate rheological models for hydrocode simulations of the shock response of heterogeneous granular materials in the low-pressure regime (<10~GPa). We thank Marcos Hankin and Will Steinhardt for their technical support. We acknowledge support from Army Research Office grant #W911NF-10-1-037.

  10. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  11. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  12. Seismic Evaluation of Hydorcarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-10-31

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  13. Observation of Multibubble Sonoluminescence from Water Saturated with Various Gases during Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Harada, Hisashi; Iwata, Naohiro; Shiratori, Keisuke

    2009-07-01

    Multibubble sonoluminescence (MBSL) from water saturated with various atmospheric gases was observed using an ultrasonic atomizer (2.4 MHz). The majority of sonoluminescence (SL) in the system did not originate from capillary waves but from acoustic cavitation. The dependence of MBSL intensity on the type of dissolved gas was confirmed. Atomization occurred similarly in all cases. The intensities for the dissolved gases were in the following order: Ar > Air > O2 > N2 ≫He, H2, CO2. The intensity for water saturated with air is higher than those for the O2- and N2-saturated solutions. To examine the effect of gas mixing, MBSL was measured for various ratios of O2 to N2. The maximum intensity was obtained at 40% O2/60% N2. In the regions above and below this ratio, the intensity decreased gradually. To explain this result, the possibilities of Ar rectification and chemical reactions between O2 and N2 gases were also discussed. After examination, it could not be confirmed that Ar rectification occurred. Chemical reactions of O2 with N2 proceed inside the cavitation bubble.

  14. Capillary pressure – saturation relationships for gas shales measured using a water activity meter

    SciTech Connect

    Donnelly, B.; Perfect, E.; McKay, L. D.; Lemiszki, P. J.; DiStefano, V. H.; Anovitz, L. M.; McFarlane, J.; Hale, R. E.; Cheng, C. -L.

    2016-05-10

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs airwater capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methods of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure airwater capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting

  15. Capillary pressure – saturation relationships for gas shales measured using a water activity meter

    DOE PAGES

    Donnelly, B.; Perfect, E.; McKay, L. D.; ...

    2016-05-10

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs airwater capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure airwater capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting and

  16. Does the reactive surface area of sandstone depend on water saturation?—The role of reactive-transport in water film

    NASA Astrophysics Data System (ADS)

    Nishiyama, Naoki; Yokoyama, Tadashi

    2013-12-01

    To investigate how mineral-water reactive surface area changes depending on water saturation, flow-through dissolution experiments were performed using a sandstone core at various water saturations. Fontainebleau sandstone with an open porosity of 6.3%, consisting of ∼100% quartz, was used. The water saturation of the core was adjusted to 0%, 51%, or 100%, and at each saturation, water was infiltrated into the core at a constant pressure. The experimental results showed that the total amount of dissolved Si did not change with decreasing water saturation. It can be therefore concluded that virtually all of the mineral surfaces were wetted with water film and allowed the progression of dissolution; i.e., the reactive surface area was not affected by water saturation despite the presence of air in the pores. The results also suggested that the flushing rate of dissolved Si from the interior of the water film to the exterior was fast enough to keep the Si concentration in the film sufficiently lower than the equilibrium concentration of quartz. We derived a reactive-transport model describing dissolution and diffusion in water film. The model shows that the solute concentration in a film is a function of the film thickness, diffusion length, dissolution rate of the mineral, equilibrium concentration, and roughness factor. As for the Fontainebleau sandstone, film thicknesses of 7-18 nm and diffusion lengths of 300-600 μm were estimated. The reactive-transport calculation confirmed that the overall dissolution rate of our sandstone sample was almost unaffected by water saturation, owing to the high flushing efficiency of dissolved Si in water film, which agrees with the experimental result. Application of the model allows us to evaluate whether the reactive surface area and the dissolution rate change with water saturation for a given rock of interest.

  17. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  18. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  19. Hugoniot Measurements on Dry and Water-Saturated Soils

    NASA Astrophysics Data System (ADS)

    Newman, Matthew; Stewart, Sarah; Kraus, Richard

    2015-06-01

    To better understand the shock properties of granular materials, we present a series of shock Hugoniot experiments on three types of soil in both dry and water-saturated states. We measured the shock states induced via planar impact experiments on the Harvard 40-mm gas gun. Shock wave velocities in the soils were measured using both VISAR and piezo-pins. The soils were composed primarily of quartz with different mass fractions of phyllosilicates and amorphous material. Using initial particle sizes ranging from 150 to 300 microns, the samples were pressed to densities ranging from 1.89 to 1.93 g cm-3 (about 25% porous). Water-sat samples had densities ranging from 2.2 to 2.6 g cm-3. We find that the dry soils have a linear Us -up relation that is similar to dry quartz sand with the same initial density. The water-sat samples are less compressible and have much greater scatter in shock velocities. The VISAR measurement records the dispersion around the mean shock state that arises from reflections between grains, and we compare the VISAR data to meso-scale hydrocode simulations. These data will be used to generate more accurate rheological models for hydrocode simulations of the shock response of heterogeneous granular materials in the low-pressure regime (< 10 GPa). We acknowledge support from Army Research Office Grant #W911NF-10-1-037.

  20. Modeling hydrocarbon biodegradation in tidal aquifers with water-saturation and heat inhibition effects

    NASA Astrophysics Data System (ADS)

    El-Kadi, Aly I.

    2001-09-01

    A model is developed for hydrocarbon biodegradation, which includes saturated and unsaturated flow, multi-species transport, heat transport, and bacterial growth processes. Numerical accuracy of the model was tested against analytical solutions. The model was also verified against laboratory results for a saturated-flow problem and reasonable match was obtained. Expressions are proposed for inhibition due to water content and temperature fluctuations. Bioactivities under cyclic water content variation were studied under no-flow conditions. A quantitative approach was used to reconcile some of the apparent contradictory conclusions regarding the efficiency of biodegradation of soils under wetting and drying conditions. The efficiency depends on the nature of the oxygenation process. For cases involving the presence of dissolved oxygen and the absence of O 2 vapor, subjecting the soil to constant water content close to its optimal value for degradation is most efficient. However, wetting and drying can enhance degradation if O 2 is only provided through aeration or direct contact between air and the medium. Also presented are the results of a typical field application of the model and a discussion of the effects of tides, saturation inhibition, and heat inhibition. Other inhibition factors, such as pH or salinity, can be easily incorporated in the formulation. The quantitative approach developed here can be used in assessing bioremediation not only in tidal aquifers but also in areas where water-table or temperature effects are of significance. The approach can be useful in the design of remediation strategies under water-flow or no-flow conditions involving water content and temperature fluctuations.

  1. Archaeol: an indicator of methanogenesis in water-saturated soils.

    PubMed

    Lim, Katie L H; Pancost, Richard D; Hornibrook, Edward R C; Maxfield, Peter J; Evershed, Richard P

    2012-01-01

    Oxic soils typically are a sink for methane due to the presence of high-affinity methanotrophic Bacteria capable of oxidising methane. However, soils experiencing water saturation are able to host significant methanogenic archaeal communities, potentially affecting the capacity of the soil to act as a methane sink. In order to provide insight into methanogenic populations in such soils, the distribution of archaeol in free and conjugated forms was investigated as an indicator of fossilised and living methanogenic biomass using gas chromatography-mass spectrometry with selected ion monitoring. Of three soils studied, only one organic matter-rich site contained archaeol in quantifiable amounts. Assessment of the subsurface profile revealed a dominance of archaeol bound by glycosidic headgroups over phospholipids implying derivation from fossilised biomass. Moisture content, through control of organic carbon and anoxia, seemed to govern trends in methanogen biomass. Archaeol and crenarchaeol profiles differed, implying the former was not of thaumarcheotal origin. Based on these results, we propose the use of intact archaeol as a useful biomarker for methanogen biomass in soil and to track changes in moisture status and aeration related to climate change.

  2. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  3. Inferring immobile and in-situ water saturation from laboratory and field measurements

    SciTech Connect

    Belen, Rodolfo P., Jr.

    2000-06-01

    Analysis of experimental data and numerical simulation results of dynamic boiling experiments revealed that there is an apparent correlation between the immobile water saturation and the shape of the steam saturation profile. An elbow in the steam saturation profile indicates the sudden drop in steam saturation that marks the transition from steam to two-phase conditions inside the core during boiling. The immobile water saturation can be inferred from this elbow in the steam saturation profile. Based on experimental results obtained by Satik (1997), the inferred immobile water saturation of Berea sandstone was found to be about 0.25, which is consistent with results of relative permeability experiments reported by Mahiya (1999). However, this technique may not be useful in inferring the immobile water saturation of less permeable geothermal rocks because the elbow in the steam saturation profile is less prominent. Models of vapor and liquid-dominated geothermal reservoirs that were developed based on Darcy's law and material and energy conservation equations proved to be useful in inferring the in-situ and immobile water saturations from field measurements of cumulative mass production, discharge enthalpy, and downhole temperature. Knowing rock and fluid properties, and the difference between the stable initial, T{sub o}, and dry-out, T{sub d}, downhole temperatures, the in-situ and immobile water saturations of vapor-dominated reservoirs can be estimated. On the other hand, the in-situ and immobile water saturations, and the change in mobile water content of liquid-dominated reservoirs can be inferred from the cumulative mass production, {Delta}m, and enthalpy, h{prime}, data. Comparison with two-phase, radial flow, numerical simulation results confirmed the validity and usefulness of these models.

  4. High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurements

    NASA Astrophysics Data System (ADS)

    Rogiers, B.; Winters, P.; Huysmans, M.; Beerten, K.; Mallants, D.; Gedeon, M.; Batelaan, O.; Dassargues, A.

    2014-09-01

    Saturated hydraulic conductivity ( K s) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. The hand-held air permeameter technique was investigated for high-resolution hydraulic conductivity determination on borehole cores using a spatial resolution of ˜0.05 m. The suitability of such air permeameter measurements on friable to poorly indurated sediments was tested to improve the spatial prediction of classical laboratory-based K s measurements obtained at a much lower spatial resolution (˜2 m). In total, 368 K s measurements were made on ˜350 m of borehole cores originating from the Campine basin, northern Belgium, while ˜5,230 air permeability measurements were performed on the same cores, resulting in a K s range of seven orders of magnitude. Cross-validation demonstrated that, using air permeameter data as the secondary variable for laboratory based K s measurements, the performance increased from R 2 = 0.35 for ordinary kriging (laboratory K s only) to R 2 = 0.61 for co-kriging. The separate treatment of horizontal and vertical hydraulic conductivity revealed considerable anisotropy in certain lithostratigraphical units, while others were clearly isotropic at the sample scale. Air permeameter measurements on borehole cores provide a cost-effective way to improve spatial predictions of traditional laboratory based K s.

  5. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  6. Soil water retention and maximum capillary drive from saturation to oven dryness

    USGS Publications Warehouse

    Morel-Seytoux, H. J.; Nimmo, J.R.

    1999-01-01

    This paper provides an alternative method to describe the water retention curve over a range of water contents from saturation to oven dryness. It makes two modifications to the standard Brooks and Corey [1964] (B-C) description, one at each end of the suction range. One expression proposed by Rossi and Nimmo [1994] is used in the high-suction range to a zero residual water content. (This Rossi-Nimmo modification to the Brooks-Corey model provides a more realistic description of the retention curve at low water contents.) Near zero suction the second modification eliminates the region where there is a change in suction with no change in water content. Tests on seven soil data sets, using three distinct analytical expressions for the high-, medium-, and low-suction ranges, show that the experimental water retention curves are well fitted by this composite procedure. The high-suction range of saturation contributes little to the maximum capillary drive, defined with a good approximation for a soil water and air system as H(cM) = {???)/(o) k(rw) dh(c), where k(rw) is relative permeability (or conductivity) to water and h(c) is capillary suction, a positive quantity in unsaturated soils. As a result, the modification suggested to describe the high-suction range does not significantly affect the equivalence between Brooks-Corey (B-C) and van Genuchten [1980] parameters presented earlier. However, the shape of the retention curve near 'natural saturation' has a significant impact on the value of the capillary drive. The estimate using the Brooks-Corey power law, extended to zero suction, will exceed that obtained with the new procedure by 25 to 30%. It is not possible to tell which procedure is appropriate. Tests on another data set, for which relative conductivity data are available, support the view of the authors that measurements of a retention curve coupled with a speculative curve of relative permeability as from a capillary model are not sufficient to accurately

  7. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  8. High-resolution shallow-seismic experiments in sand. Part 1: Water table, fluid flow, and saturation

    SciTech Connect

    Bachrach, R.; Nur, A.

    1998-07-01

    A high-resolution, very shallow seismic reflection and refraction experiment was conducted to investigate the seismic response of groundwater level changes in beach sand in situ. A fixed 10-m-long receiver array was used for repeated seismic profiling. Direct measurements of water level in a monitoring well and moisture content in the sand were taken as well. The water table in the well changed by about 1 m in slightly delayed response to the nearby ocean tides. In contrast, inversion of the seismic data yielded a totally different picture. The reflection from the water table at high tide appeared at a later time than the reflection at low tide. This unexpected discrepancy can be reconciled using Gassmann`s equation: a low-velocity layer must exist between the near-surface dry sand and the deeper and much faster fully saturated sand. This low-velocity layer coincides with the newly saturated zone and is caused by a combination of the sand`s high density (close to that of fully saturated sand), and its high compressibility (close to that of dry sand). This low-velocity zone causes a velocity pull-down for the high-frequency reflections, and causes a high-tide reflection to appear later in time than low-tide reflection. The calculated velocities in the dry layer show changes with time that correlate with sand dryness, as predicted by the temporal changes of the sand`s density due to changing water/air ratio. The results show that near-surface velocities in sand are sensitive to partial saturation in the transition zone between dry and saturated sand. The authors were able to extract the saturation of the first layer and the depth to the water table from the seismic velocities.

  9. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  10. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids

    PubMed Central

    Martins, Mónia A. R.; Neves, Catarina M. S. S.; Kurnia, Kiki A.; Carvalho, Pedro J.; Rocha, Marisa A. A.; Santos, Luís M. N. B. F.; Pinho, Simão P.; Freire, Mara G.

    2016-01-01

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [CnCnim][NTf2] (with n = 1-8 and 10) and asymmetric [CnC1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier. PMID:27642223

  11. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids.

    PubMed

    Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G

    2016-01-15

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf2] (with n = 1-8 and 10) and asymmetric [C n C1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

  12. Attenuation of intense sinusoidal waves in air-saturated, bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, Herbert L.; Blackstock, David T.

    1987-01-01

    As intense, initially sinusoidal waves propagate in fluids, shocks form and excess attenuation of the wave occurs. Data are presented indicating that shock formation is not necessary for the occurrence of excess attenuation in nonlinear, lossy media, i.e., air-saturated, porous materials. An empirical equation is used to describe the excess attenuation of intense sinusoids in porous materials. The acoustic nonlinearity of and the excess attenuation in porous materials may be predicted directly from dc flow resistivity data. An empirical relationship is used to relate an acoustic nonlinearity parameter to the fundamental frequency and relative dc nonlinearity of two structurally different materials.

  13. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  14. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  15. Influence of water saturation on ultrasonic P-wave velocity in weakly compacted sandstone

    NASA Astrophysics Data System (ADS)

    Fikri Niyartama, Thaqibul; Fauzi, Umar; Fatkhan

    2017-01-01

    Laboratory measurements of Ultrasonic P-wave velocities were conducted in weakly compacted sandstone with varying degree of water saturations. We used P wave transducer at frequency 63 kHz and imbibition technique in order to study the influence of water saturation on the P-wave velocity. Our experiment showed that the P-wave velocity (Vp) was reduced significantly at the beginning of the imbibition process. The variations on travel times and the amplitude changes were detected at any degree of saturation. The first and second amplitude of P wave decreased as water saturation (Sw ) increased in the range of 0.1 to 0.6 in B5 sample, the amplitude increased again afterward. The shifting peaks of the signal that indicated attenuation were also observed in the experimental.

  16. Ultrasonic properties of granular media saturated with DNAPL/water mixtures

    NASA Astrophysics Data System (ADS)

    Ajo-Franklin, J. B.; Geller, J. T.; Harris, J. M.

    2007-04-01

    We present the results of four experiments investigating the ultrasonic properties of granular materials partially saturated with trichloroethylene (TCE), a dense non-aqueous contaminant. P-wave velocity measurements were made under in situ effective stress conditions using a pulse transmission cell at ~250 kHz. Two synthetic samples and two natural aquifer cores were fully saturated with water and then subjected to an axial injection of TCE. The resulting measurements show reductions in P-wave velocity of up to 15% due to contaminant saturation. A theoretical model combining Gassmann fluid substitution and Hill's equation was used to estimate the effects of DNAPL saturation; this model underpredicted observed reductions in velocity at high TCE saturations. A linear relationship, expressed in terms of volumetric contaminant fraction, provided an excellent empirical fit to the laboratory measurements.

  17. Experimental study of the water saturation dependence of streaming potential in sandstones during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Vinogradov, Jan; Jackson, Matthew

    2010-05-01

    , as the residual nitrogen saturation is approached, the coupling coefficient remains less than the value obtained at saturation. We hypothesize that the non-zero coupling observed at low brine saturation in the undecane-brine displacement is associated with the flow of brine within thin wetting layers which are mobilised by the movement of undecane. Similar behaviour is not observed in the nitrogen-brine displacement because of the lower interfacial friction. These results are relevant to the interpretation of streaming potential measurements in oil reservoirs, contaminated aquifers and the vadose zone. They suggest that the behaviour of the multiphase streaming potential coupling coefficient depends upon the phases present, and the direction of saturation change. The results of drainage experiments cannot be applied to imbibition, and those of air-brine displacements cannot be applied to oil-brine displacements.

  18. Cracking and reformation of saturated hydrocarbons by ultrasound in the presence of water

    NASA Technical Reports Server (NTRS)

    Prudhomme, M. R. O.; Lefort, J.

    1974-01-01

    The exposure of saturated hydrocarbons to ultrasound (800 kHz, 6 W/sq cm) in the presence of water results in: (1) cleavage of the carbon chain, producing saturated and unsaturated hydrocarbons with a lower number of carbons than the initial hydrocarbon (cracking); and (2) recombination after cleavage, producing saturated and unsaturated hydrocarbons with a higher number of carbons than the initial hydrocarbon (reformation). The addition of argon facilitates these phenomena. The effects are attributed to a homolytic (radical) mechanism occurring within the cavitation bubbles under the effects of microsparks.

  19. Effect of water saturation in soil organic matter on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chlou, G.T.

    1992-01-01

    The sorption of benzene, trichloroethylene, and carbon tetrachloride at room temperature from water solution and from vapor on two high-organic-content soils (peat and muck) was determined in order to evaluate the effect of water saturation on the solute partition in soil organic matter (SOM). The uptake of water vapor was similarly determined to define the amounts of water in the saturated soil samples. In such high-organic-content soils the organic vapor sorption and the respective solute sorption from water exhibit linear isotherms over a wide range of relative concentrations. This observation, along with the low BET surface areas of the samples, suggests that partition in the SOM of the samples is the dominant process in the uptake of these liquids. A comparison of the sorption from water solution and from vapor phase shows that water saturation reduces the sorption (partition) efficiency of SOM by ?? 42%; the saturated water content is ??38% by weight of dry SOM. This reduction is relatively small when compared with the almost complete suppression by water of organic compound adsorption on soil minerals. While the effect of water saturation on solute uptake by SOM is much expected in terms of solute partition in SOM, the influence of water on the solubility behavior of polar SOM can be explained only qualitatively by regular solution theory. The results suggest that the major effect of water in a drying-wetting cycle on the organic compound uptake by normal low-organic-content soils (and the associated compound's activity) is the suppression of adsorption by minerals rather than the mitigation of the partition effect in SOM.

  20. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  1. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  2. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  3. Scaling behavior of microbubbles rising in water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Kong, X.; Ma, Y.; Scheuermann, A.; Bringemeier, D.; Galindo-Torres, S. A.; Saar, M. O.; Li, L.

    2015-12-01

    Gas transport in the form of discrete microbubbles in saturated porous media is of importance in a number of processes relevant to many geo-environmental and engineering systems such as bubbling of greenhouse gases in river and sea beds, hydrocarbon gas migration in coal cleats and rock fractures, and air sparging for remediation of soil contaminated with volatile organic compounds. Under the assumption of no or minor volume expansion during gravity-driven migration, the transport of a single microbubble can be well described using various drag force models. However, not enough attention has been paid to the collective behavior of microbubbles during their ascend as a plume through the saturated porous medium, involving dynamic interactions between individual bubbles, bubbles and the ambient fluid, as well as bubbles and the solid matrix. With our quasi-2D, lab-scale microbubble migration experiments, where bubbles are continuously released from a diffuser at the bottom of a porous bed of hydrated gel beads, we establish a scaling relationship between the gas (bubble) release rate and various characteristic parameters of the bubble plume, such as plume tip velocity, plume width, and breakthrough time of the plume front. We find that the characteristic width of the bubble plume varies as a power of both the gas release rate and the bed thickness, with exponents of 0.2 and 0.4, respectively. Moreover, the characteristic breakthrough time also scales with both the gas release rate and the bed thickness with power-law exponents of -0.4 and 1.2, respectively. The mean pore-water velocity of the circulating ambient water also follows a power-law relationship with the gas release rate being an exponent of 0.6 of the gas release rate. This can be quantitatively proven using a simplified momentum exchange model together with the above power-law exponents for the bubble plume. These analyses on the experimental results are carried out on the basis of non

  4. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  5. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  6. Mineral saturation states in natural waters and their sensitivity to thermodynamic and analytical errors

    USGS Publications Warehouse

    Nordstrom, D.K.; Ball, J.W.

    1989-01-01

    Saturation indices computed with WATEQ4F for chemical analyses from a groundwater in crystalline bedrock and a surface water receiving acid mine drainage are frequently at or above saturation with respect to calcite, fluorite, barite, gibbsite and ferrihydrite. A sensitivity analysis has been performed by varying the analytic and thermodynamic parameters for which the saturation indices are most sensitive. For calcite, fluorite and barite, the supersaturation effect appears to be real because it is only slightly decreased by sources of uncertainty. Apparent supersaturation for gibbsite is most likely caused by the degree of crystallinity on solubility behavior. Apparent supersaturation for ferric hydroxide is likely caused by small colloidal particles (<0.1 μm) in the water sample that cannot be removed by standard field filtration, although several other possible explanations cannot be easily excluded.

  7. Mineral saturation states in natural waters and their sensitivity to thermodynamic and analytic errors

    USGS Publications Warehouse

    Nordstrom, D.K.; Ball, J.W.

    1989-01-01

    Saturation indices computed with WATEQ4F for chemical analyses from a groundwater in crystalline bedrock and a surface water receiving acid mine drainage are frequently at or above saturation with respect to calcite, fluorite, barite, gibbsite and ferrihydrite. A sensitivity analysis has been performed by varying the analytic and thermodynamic parameters for which the saturation indices are most sensitive. For calcite, fluorite and barite, the supersaturation effect appears to be real because it is only slightly decreased by sources of uncertainty. Apparent supersaturation for gibbsite is most likely caused by the degree of crystallinity on solubility behavior. Apparent supersaturation for ferric hydroxide is likely caused by small colloidal particles (<0.1 ??m) in the water sample that cannot be removed by standard field filtration, although several other possible explanations cannot be easily excluded. -from Authors

  8. Comparative responses of speckled dace and cutthroat trout to air-supersaturated water

    SciTech Connect

    Nebeker, A.V.; Hauck, A.K.; Baker, F.D.; Weitz, S.L.

    1980-11-01

    Speckled dace (Rhinichthys osculus) are more tolerant of air-supersaturated water than adult or juvenile cutthroat trout (Salmo clarki). Speckled dace were tested in concentrations from 110 to 142% saturation and had a 96-hour median lethal concentration (LC50) of 140%, a 7-day LC50 of 137%, and 2-week LC50's of 129 and 131% saturation. The estimated mean threshold concentration, based on time to 50% death (TM50), was 123% saturation. The speckled dace also exhibited consistent external signs of gas bubble disease. Cutthroat trout were tested from 111 to 130% saturation and had 96-hour LC50's of 119 and 120% (adults) and 119 and 119% (juveniles) saturation. Estimated mean threshold concentrations (from TM50 values) were 117% (adults) and 114% (juveniles) saturation. Signs of gas bubble disease exhibited by the cutthroat trout were similar to those seen with other salmonids examined in earlier studies.

  9. Acoustical properties of air-saturated porous material with periodically distributed dead-end pores.

    PubMed

    Leclaire, P; Umnova, O; Dupont, T; Panneton, R

    2015-04-01

    A theoretical and numerical study of the sound propagation in air-saturated porous media with straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located at "nodes" periodically spaced along each main pore. The effect of periodicity in the distribution of the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is considered separately. It is shown that the absorption coefficient and transmission loss are influenced by the viscous and thermal losses in the main pores as well as their perforation rate. The presence of long or short dead-ends significantly alters the acoustical properties of the material and can increase significantly the absorption at low frequencies (a few hundred hertz). These depend strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on the periodicity along the propagation axis. These effects are primarily due to low sound speed in the main pores and to thermal losses in the dead-end pores. The model predictions are compared with experimental results. Possible designs of materials of a few cm thicknesses displaying enhanced low frequency absorption at a few hundred hertz are proposed.

  10. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  11. Multimodel and ensemble simulations of water flow in variably saturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calibration of variably saturated flow models with field monitoring data is complicated by the strong nonlinearity of the dependency of the unsaturated flow parameters on the water content. Pedotransfer functions (PTFs) are routinely utilized to relate these parameters to readily available data on s...

  12. Water saturation on Albian carbonates reservoirs—ancient Brazilian oil fields

    NASA Astrophysics Data System (ADS)

    Castillo Vincentelli, Maria Gabriela; António Caceres Contreras, Sergio

    2016-12-01

    One of the main objectives for petroleum exploration is to quantify the reservoir’s oil in place; usually this process is based on a petrophysical evaluation that, among other parameters, the reservoir water saturation (S w) must be calculated, because it represents the main factor for determining hydrocarbon saturation (S h). Classical petrophysical analysis includes the use of the water saturation’s resistivity (R w) and two main constants (for Archie saturation), as well as cementation (m) and tortuosity (a); both of which are obtained from laboratory plug/cores measurements. However, in the case of ancient Albian carbonate reservoirs (Brazil), this kind of data is not available for a fully water saturated reservoir, and as a consequence, we proposed to apply a logarithmic graphic solution of the main Archie’s equations to determine these main factors using a linear regression based on wire logs. As result, an R w was confirmed at 127 Kppm of NaCl for Quissamã Formation, m  =  1.071 and a  =  0.87. Finally, the value of ‘m’ is more affected by the pore and size configuration, and the ‘a’ value appears to be a logical answer for carbonates reservoir with high porosity.

  13. Disturbed zone effects: Two phase flow in regionally water-saturated fractured rock

    SciTech Connect

    Geller, J.T.; Doughty, C.; Long, J.C.S.

    1995-01-01

    Field evidence suggests that two-phase flow may develop near underground excavations in regionally-saturated fractured crystalline rock, resulting in lower inflow rates compared to undisturbed rock. Mechanisms for the development of two-phase flow conditions include depressurization of formation water that is supersaturated with dissolved gas and buoyancy-driven air invasion into fractures from the drift. Models that assume gas-liquid phase equilibrium indicate that for constant head boundary conditions, the build-up of pressure behind the gas phase evolving from depressurization should redissolve the gas and maintain higher flowrates, requiring unreasonably high dissolved gas concentrations to produce observed flow reductions at the Stripa Mine in Sweden. This discrepancy initiated a laboratory-scale investigation. Gas evolution following depressurization is simulated in two different 8 cm x 8 cm transparent fracture replicas for linear flow with constant head boundary conditions. Gas forms and accumulates in the large apertures and the extent of flow reduction is greater when the flow through the fracture is controlled by a large aperture channel, compared to a fracture where large aperture regions are relatively isolated. An effective continuum numerical model (TOUGH2) is used to describe the development of two-phase flow under degassing conditions. Numerical simulations were made for a homogeneous porous medium and for a heterogeneous medium using the aperture distribution of one of the fractures used in the laboratory experiments, which allows a direct comparison between laboratory and numerical results. The incorporation of kinetic expressions into the numerical model will allow the prediction of resaturation rates of a repository following closure.

  14. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  15. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  16. Prediction of the saturated hydraulic conductivity from Brooks and Corey's water retention parameters

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Vrugt, Jasper A.; Romano, Nunzio

    2013-05-01

    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this study, we derive a simple closed-form equation that predicts the saturated hydraulic conductivity, Ks from the WRF parameters of Brooks and Corey (1964). This physically based analytical expression uses an empirical tortuosity parameter (τ) and exploits the information embedded in the measured pore-size distribution. Our proposed model is compared against the current state of the art using more than 250 soil samples from the Grenoble soil catalog (GRIZZLY) and hydraulic properties of European soils (HYPRES) databases. Results demonstrate that the proposed model provides better predictions of the saturated hydraulic conductivity values with reduced size of the 90% confidence intervals of about 3 orders of magnitude.

  17. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  18. Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2013-12-01

    Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.

  19. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  20. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon

    NASA Astrophysics Data System (ADS)

    Bordes, C.; Sénéchal, P.; Barrière, J.; Brito, D.; Normandin, E.; Jougnot, D.

    2015-03-01

    Seismic waves propagating in a porous medium, under favourable conditions, generate measurable electromagnetic fields due to electrokinetic effects. It has been proposed, following experimental and numerical studies, that these so-called `seismoelectromagnetic' couplings depend on pore fluid properties. The theoretical frame describing these phenomena are based on the original Biot's theory, assuming that pores are fluid-filled. We study here the impact of a partially saturated medium on amplitudes of those seismoelectric couplings by comparing experimental data to an effective fluid model. We have built a 1-m-length-scale experiment designed for imbibition and drainage of an homogeneous silica sand; the experimental set-up includes a seismic source, accelerometers, electric dipoles and capacitance probes in order to monitor seismic and seismoelectric fields during water saturation. Apparent velocities and frequency spectra (in the kiloHertz range) are derived from seismic and electrical measurements during experiments in varying saturation conditions. Amplitudes of seismic and seismoelectric waves and their ratios (i.e. transfer functions) are discussed using a spectral analysis performed by continuous wavelet transform. The experiments reveal that amplitude ratios of seismic to coseismic electric signals remain rather constant as a function of the water saturation in the Sw = [0.2-0.9] range, consistently with theoretically predicted transfer functions.

  1. Predicting the occurrence of mixed mode failure associated with hydraulic fracturing, part 2 water saturated tests

    SciTech Connect

    Bauer, Stephen J.; Broome, Scott Thomas; Choens, Charles; Barrow, Perry Carl

    2015-09-14

    Seven water-saturated triaxial extension experiments were conducted on four sedimentary rocks. This experimental condition was hypothesized more representative of that existing for downhole hydrofracture and thus it may improve our understanding of the phenomena. In all tests the pore pressure was 10 MPa and confirming pressure was adjusted to achieve tensile and transitional failure mode conditions. Using previous work in this LDRD for comparison, the law of effective stress is demonstrated in extension using this sample geometry. In three of the four lithologies, no apparent chemo-mechanical effect of water is apparent, and in the fourth lithology test results indicate some chemo-mechanical effect of water.

  2. IMPLICATION OF LAKE WATER RESIDENCE TIME ON THE CLASSIFICATION OF NORWEGIAN SURFACE WATER SITES INTO PROGRESSIVE STAGES OF NITROGEN SATURATION

    EPA Science Inventory

    Seasonal behaviour of NO3- in surface water is often used as an indicator on a catchment's ability to retain N from atmospheric deposition. In this paper, we classify 12 pristine sites (five streams and seven lakes) in southernmost Norway according to the N saturation stage conce...

  3. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  4. Selective magnetic resonance imaging of magnetic nanoparticles by Acoustically Induced Rotary Saturation (AIRS)

    PubMed Central

    Zhu, Bo; Witzel, Thomas; Jiang, Shan; Huang, Susie Y.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Purpose We introduce a new method to selectively detect iron oxide contrast agents using an acoustic wave to perturb the spin-locked water signal in the vicinity of the magnetic particles. The acoustic drive can be externally modulated to turn the effect on and off, allowing sensitive and quantitative statistical comparison and removal of confounding image background variations. Methods We demonstrate the effect in spin-locking experiments using piezoelectric actuators to generate vibrational displacements of iron oxide samples. We observe a resonant behavior of the signal changes with respect to the acoustic frequency where iron oxide is present. We characterize the effect as a function of actuator displacement and contrast agent concentration. Results The resonant effect allows us to generate block-design “modulation response maps” indicating the contrast agent’s location, as well as positive contrast images with suppressed background signal. We show the AIRS effect stays approximately constant across acoustic frequency, and behaves monotonically over actuator displacement and contrast agent concentration. Conclusion AIRS is a promising method capable of using acoustic vibrations to modulate the contrast from iron oxide nanoparticles and thus perform selective detection of the contrast agents, potentially enabling more accurate visualization of contrast agents in clinical and research settings. PMID:25537578

  5. Modelling of deformation of underground tunnel lining, interacting with water-saturated soil

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2016-11-01

    Built finite element method of calculating the deformation of underground tunnel lining, interacting with dry and water-saturated soils. To simulate the interaction between the lining and soils environments, including physical and non-linear, a special "contact" finite element, which allows to consider all cases of interaction between the contacting surfaces. It solved a number of problems of deformation with the ground subway tunnel lining rings.

  6. Cotransport of viruses and clay particles in water saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2014-12-01

    This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦΧ174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles hindered the transport of the two viruses considered in this work. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦΧ174, and the capillary potential energy ofKGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water filmis the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO energy potential. Figure 1Schematic illustration of the various concentrations involved in the cotransport experiments for: (a) saturated and (b) unsaturated porous media.

  7. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  8. QUESPOWR MRI: QUantification of Exchange as a function of Saturation Power On the Water Resonance

    NASA Astrophysics Data System (ADS)

    Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-09-01

    QUantification of Exchange as a function of Saturation Power On the Water Resonance (QUESPOWR) MRI is a new method that can estimate chemical exchange rates. This method acquires a series of OPARACHEE MRI acquisitions with a range of RF powers for the WALTZ16∗ pulse train, which are applied on the water resonance. A QUESPOWR plot can be generated from the power dependence of the % water signal, which is similar to a QUESP plot that is generated from CEST MRI acquisition methods with RF saturation applied off-resonance from water. A QUESPOWR plot can be quantitatively analyzed using linear fitting methods to provide estimates of average chemical exchange rates. Analyses of the shapes of QUESPOWR plots can also be used to estimate relative differences in average chemical exchange rates and concentrations of biomolecules. The performance of QUESPOWR MRI was assessed via simulations, an in vitro study with iopamidol, and an in vivo study with a mouse model of mammary carcinoma. The results showed that QUESPOWR MRI is especially sensitive to chemical exchange between water and biomolecules that have intermediate to fast chemical exchange rates and chemical shifts that are close to water, which are notoriously difficult to assess with other CEST MRI methods. In addition, in vivo QUESPOWR MRI detected acidic tumor tissues relative to normal tissues that are pH-neutral, and therefore may be a new paradigm for tumor detection with MRI.

  9. Change Of Electrical Resistivity Depending On Water Saturation Of The Concrete Samples

    NASA Astrophysics Data System (ADS)

    Sabbaǧ, Nevbahar; Uyanık, Osman

    2016-04-01

    In this study, the changes of electrical apparent resistivity values depending on the water saturation of cubic concrete samples which designed according to different strength were investigated. For this purpose, 3 different concrete design as poor, middle and good strength 150x150x150mm dimensions 9 for each design cubic samples were prepared. After measuring the weight of the prepared samples, in oven were dried at 105 ° C for 24 hours and then the dry weights were measured. Then the samples were placed into the curing pool and saturated weight of the samples were measured in specific time periods during the 90 day take out from the curing pool and the water content were calculated at each stage of these processes. The water content of the samples were obtained during 90 days specific points in time and as well as electrical apparent resistivity method of the different surfaces of the samples the potential difference measurements made by electrical resistivity method and electrical apparent resistivity values of the samples were calculated. Depending on time obtained from this study with respect to time curves of the water content and the apparent resistivity values were constructed. Results showed that the electrical apparent resistivity values increased depends on the water content. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete, cubic sample, Resistivity, water content, time

  10. A STUDY ON THE MECHANISM OF DEAD SLOW PERMEATION OF WATER AND MODELING IN SATURATED CONCRETE

    NASA Astrophysics Data System (ADS)

    Okazaki, Shinichiro; Kishi, Toshiharu

    Liquid water in micro pore behaves peculiarly by wall friction. This study is aimed to build a model which takes into account the mech anism of fluid in micro pores for predicting the permeability in concrete. Yield stress model used frequently in fluid dynamics was applied to the flow of liquid water in concrete, and then the effect of kinetic and static friction on liquid water behavior from wall was expressed. Furthermore, viscosity model for liquid water in micro pore was proposed based on the result of experiments and then incorporated into thees timation scheme for liquid water flow through micro pores in concrete. The validity of these models was verified by comparing calculated data with experimental data of permeation test of saturated concrete.

  11. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.

    2004-01-01

    We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction ?? ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of ?? (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with ?? (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where ?? (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2-3 J/m2. Adding water causes ?? to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, ?? (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and ?? (wet) reflects the stresses required to shear through the water films. Copyright 2004 by the American Geophysical Union.

  12. Cibicidodes Pachyderma B/Ca as a Shalow Water Carbonate Saturation State Proxy

    NASA Astrophysics Data System (ADS)

    Wojcieszek, D. E.; Flower, B. P.; Moyer, R. P.; Byrne, R. H.

    2012-12-01

    Since the industrial revolution, the oceans have absorbed about 25% of anthropogenic CO2 emissions to the atmosphere, leading to a decrease in seawater pH (termed ocean acidification: OA) as well as many associated effects, including decreased saturation states. Assessment of the effects of OA on marine ecosystems is presently based on <50 years of observations. Reconstructions of past seawater chemistry and its impact on biota over much longer time scales can provide essential context for likely future consequences of OA. Reliable oceanic paleo-proxies for influential chemical variables such as pH and carbonate saturation state are crucial components for examining ancient environments affected by OA. Addition of CO2 to seawater leads to not only decreases in seawater pH and saturation state, but also the extent to which boron (B) is incorporated into CaCO3 during biotic calcification. Consequently, the abundance of B in calcite could reflect pH and/or saturation state of the water in which calcification occurred. Recent studies indicate a linear relationship between the ratio of boron to calcium (B/Ca) in benthic foraminifera shells ( Cibicidoides wuellerstorfi, C. mundulus) and the degree of carbonate saturation (Δ[CO32-]), defined as a difference between [CO32-]in situ and [CO32-]saturation. However, the observed relationship between B/Ca and Δ[CO32-] was only established for depths >1000m. Thus, since OA most immediately affects the upper 1000 m of the water column, a reliable shallow water (<1000 m) carbonate chemistry proxy is desirable. We are testing the utility of B/Ca in Cibicidoides pachyderma as a shallow water Δ[CO32-] proxy. C. pachyderma is an epibenthic species and therefore records the composition of bottom, rather than interstitial, waters. It usually inhabits depths between 200 and 1000 m, and is a common species in the Gulf of Mexico. The gently sloping West Florida Shelf (WFS) is an excellent setting for this kind of study as it provides a

  13. Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications

    SciTech Connect

    Crabtree, A.; Siman-Tov, M.

    1993-05-01

    The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

  14. Thermophysical properties of saturated light and heavy water for advanced neutron source applications

    SciTech Connect

    Crabtree, A.; Siman-Tov, M.

    1993-05-01

    The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

  15. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  16. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  17. Light saturation curves show competence of the water splitting complex in inactive Photosystem II reaction centers.

    PubMed

    Nedbal, L; Gibas, C; Whitmarsh, J

    1991-12-01

    Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320-330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution

  18. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    PubMed

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  19. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.

    PubMed

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  20. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  1. Phase E in a water-saturated peridotite system at 9.3 GPa

    NASA Technical Reports Server (NTRS)

    Kawamoto, Tatsuhiko; Leinenweber, Kurt; Hervig, Richard L.

    1994-01-01

    The stability of hydrous phases in a natural upper mantle system has been investigated at 9.3 GPa using a gel of KLB-1 peridotite composition with brucite which contains 14 wt. percent (30 atom. percent) water. No hydrous mineral was found at 950 (+150 -50) degree C. At 800 degree C, an assemblage of phase A, phase E, enstatite, clinohumite, and garnet is obtained. Although there is a significant thermal gradient over the sample, phase E is found to be surrounded by phase A in the lower temperature part. Electron probe analyses show that phase E has 35.5 SiO2, 4.4 Al2O3, 41.1 MgO and 8.5 wt. percent FeO* (Mg value is 90) with an oxide sum of 89.7 wt. percent, and possesses a stoichiometry similar to that proposed by Kanzaki. CaO and TiO2 are both less than 0.1 wt. percent. Coexisting phase A has 0.5 wt. percent CaO but only 0.4 wt. percent Al2O3 concentration. Phase A coexists with only enstatite in the water-saturated MgO-FeO-SiO2 system at 800 degree C and 9.3 GPa as well as the results in the water-saturated MgO-SiO2 system. Therefore it is suggested that the addition of Al2O3 expands the stability field of phase E to lower than 13 - 17 GPa in the water-saturated MgO-SiO2 system.

  2. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  3. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  4. Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Behncke, Boris; Belousova, Marina

    2011-04-01

    We describe a new type of secondary rootless phreatomagmatic explosions observed at active lava flows at volcanoes Klyuchevskoy (Russia) and Etna (Italy). The explosions occurred at considerable (up to 5 km) distances from primary volcanic vents, generally at steep (15-35°) slopes, and in places where incandescent basaltic or basaltic-andesitic lava propagated over ice/water-saturated substrate. The explosions produced high (up to 7 km) vertical ash/steam-laden clouds as well as pyroclastic flows that traveled up to 2 km downslope. Individual lobes of the pyroclastic flow deposits were up to 2 m thick, had steep lateral margins, and were composed of angular to subrounded bomb-size clasts in a poorly sorted ash-lapilli matrix. Character of the juvenile rock clasts in the pyroclastic flows (poorly vesiculated with chilled and fractured cauliflower outer surfaces) indicated their origin by explosive fragmentation of lava due to contact with external water. Non-juvenile rocks derived from the substrate of the lava flows comprised up to 75% in some of the pyroclastic flow deposits. We suggest a model where gradual heating of a water-saturated substrate under the advancing lava flow elevates pore pressure and thus reduces basal friction (in the case of frozen substrate water is initially formed by thawing of the substrate along the contact with lava). On steep slope this leads to gravitational instability and sliding of a part of the active lava flow and water-saturated substrate. The sliding lava and substrate disintegrate and intermix, triggering explosive "fuel-coolant" type interaction that produces large volume of fine-grained clastic material. Relatively cold steam-laden cloud of the phreatomagmatic explosion has limited capacity to transport upward the produced clastic material, thus part of it descends downslope in the form of pyroclastic flow. Similar explosive events were described for active lava flows of Llaima (Chile), Pavlof (Alaska), and Hekla (Iceland

  5. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman

    2016-08-01

    Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw_r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snw_r, CO2 > Snw_r, decane > Snw_r, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  6. Air-Water Gas Transfer in Coastal Waters

    DTIC Science & Technology

    2016-06-07

    water currents and turbulence, air and water temperatures , visible and infrared (IR) radiative fluxes, the visco-elastic properties of surface films, and...turbulence at the ocean interface. Measuring the spatiotemporal temperature distribution on top of the aqueous mass boundary layer, heat patterns can be...interface is obtained through quantitative analysis of infrared image sequences of the water surface temperature . Our main focus during the last year

  7. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  8. An air-water interfacial area based variable tortuosity model for unsaturated sands

    SciTech Connect

    Khaleel, Raziuddin; Saripalli, Prasad

    2006-05-01

    Based on Kozeny-Carman equation for saturated media permeability, a new model is developed for the prediction of unsaturated hydraulic conductivity, K as a function of moisture content, ?. The K(???) estimates are obtained using laboratory measurements of moisture retention and saturated hydraulic conductivity, and a saturation-dependent tortuosity based on the immiscible fluid (air-water) interfacial area. Tortuosity (?a) for unsaturated media is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of a real and the corresponding idealized porous medium). A correspondence between the real and idealized media is established by using the laboratory-measured soil moisture retention curve to calculate the interfacial area. The general trend in prediction of ?a as a function water saturation is in agreement with similar recent predictions based on diffusion theory. Unsaturated hydraulic conductivities measured for a number of coarse-textured, repacked Hanford sediments agree well with predictions based on the modified Kozeny-Carman relation. Because of the use of saturated hydraulic conductivity, a slight bias is apparent in measured and predicted K at low ?. While the modified Kozeny-Carman relation was found to be reasonably accurate in predicting K(??) for the repacked, sandy soils considered in this study, a further testing of the new model for undisturbed sediments and other soil textures would be useful.

  9. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-09-01

    Detonation experiments are conducted in a 52 {mm} square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3. Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ }) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  10. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized

  11. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    SciTech Connect

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.; Ilton, Eugene S.; Arey, Bruce W.; Tucek, Jiri; Felmy, Andrew R.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending up to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.

  12. Laser-induced hydrodynamics in water-saturated tissue: III. Optoacoustic effects

    NASA Astrophysics Data System (ADS)

    Yusupov, V. I.; Bulanov, V. V.; Chudnovskii, V. M.; Bagratashvili, V. N.

    2014-01-01

    Studied in this work are specific features of acoustic vibrations generated at the hot blackened tip of an optical fiber (the so-called hot tip) delivering moderate-power (1-10 W) CW laser radiation in contact with water or a water-saturated biotissue. Generated upon such contact is a wideband acoustic signal whose characteristics largely depend on the object exposed and treatment scheme. Placing the hot tip in an acoustic resonator is demonstrated to cause distinct amplitude modulation of the acoustic noise. The formation of laser channels in an intervertebral disc or the intramedullary cavity of a bovine thighbone gives rise to the emission of a quasiperiodic train of pulses associated with the explosive growth and collapse of steam-gas bubbles in the hot-tip-to-biotissue contact region. The resultant pressure pulses, 20 ± 15 MPa in amplitude, cause damage to the adjacent tissue and facilitate the production of a laser channel at a rate of some 0.4-5 mm s-1. During the course of laser treatment the biotissue gradually gets saturated with steam-gas bubbles, which results in the development of low-frequency pressure oscillations in the range 0.1-10 Hz and a gradual pressure rise to around 200 kPa, leading to reduction of the natural frequencies of the resonance modes of the biotissue. The possible effect of these acoustic vibrations on the biotissue is discussed.

  13. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works.

  14. Validation of as-received oil-based-core water saturations from Prudhoe Bay

    SciTech Connect

    Richardson, J.G.; Holstein, E.D.; Rathmell, J.J.; Warner, H.R. Jr.

    1997-02-01

    Determining connate-water saturations is a key factor in calculating original hydrocarbon pore volume (HCPV) for the Ivishak reservoir, the largest productive horizon in the Prudhoe Bay field. As-received water saturation, S{sub w}, measurements on oil-based-mud cores (OBC`s) from 27 wells were used as the core standard for S{sub w} determination. Measured values ranged from < 1 to > 56% PV, which raised questions as to the validity of these values as being representative of in-situ conditions. Studies of the effects of the cutting, surfacing, and handling of these cores were conducted. Some cores were recovered with centers uninvaded by mud filtrate. S{sub w} values in these sections were the same as those in mud-filtrate-invaded sections of other portions of the same core. Pressure and conventional cores had similar S{sub w} values in adjacent intervals and to nearby oil-based-mud-cored wells. Rigsite S{sub w} were measured and found to be the same as those determined routinely by Core Laboratories in Anchorage. These data offered convincing proof that, above the oil/water transition zone, water was not flushed from the core during the coring process, expelled or evaporated during surfacing, or evaporated while in transit to Anchorage for routine measurements. A large, alternative, centrifuge capillary pressure database was developed to provide an independent check of the OBC results. Development of this database required selection of samples statistically representative of rock types in the reservoir and use of laboratory techniques that produced reliable results. Comparing S{sub wPc} with S{sub wobc} values required the consideration of the burial and hydrocarbon accumulation histories and the variations in hydrocarbon properties within the reservoir.

  15. MFCI experiments on the influence of NaCl-saturated water on phreatomagmatic explosions

    NASA Astrophysics Data System (ADS)

    Grunewald, U.; Zimanowski, B.; Büttner, R.; Phillips, L. F.; Heide, K.; Büchel, G.

    2007-01-01

    Molten-Fuel-Coolant Interaction (MFCI) experiments were performed using remelted foiditic rock samples from the West Eifel volcanic field (Germany). Two experimental series were carried out with one magmatic melt and two water compositions. Bi-distilled water was used in the first series (DW-1 to DW-5). In the second series (SW-1 to SW-5), the bi-distilled water was saturated (350 g L - 1 ) with sodium chloride (NaCl). For both experimental series the fragmentation history and the energy release were recorded and compared. The smallest particles (≤ 125 μm) were studied using scanning electron microscopy (SEM). Most MFCI experiments with bi-distilled water reached higher explosion intensities than the experiments with the saline water. This was accompanied by higher particle ejection velocities as well as the formation of more fine-grained and more interactive particles of angular shape. Additionally, the smallest artificial pyroclasts were examined by evolved gas analyses (EGA). The particles from the MFCI experiments with salt solutions are found to contain more sodium hydroxide (NaOH). These observations can be explained by thermodynamic arguments. In contrast to the MFCI experiments with pure water, an additional reaction occurs with saline water that results in evolution of hydrogen chloride (HCl) gas and leaves a residue of sodium hydroxide. The MFCI process with saline water consumes more enthalpy and Gibbs free energy, so that less energy is available for the explosion. With other sodium halides dissolved in the water (NaF, NaBr or NaI) the additional reaction can be predicted to have greater or lesser effects on phreatomagmatic explosions.

  16. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.

    PubMed

    Hibi, Yoshihiko; Tomigashi, Akira; Hirose, Masafumi

    2015-12-01

    Numerical simulations that couple flow in a surface fluid with that in a porous medium are useful for examining problems of pollution that involve interactions among the atmosphere, surface water and groundwater, including, for example, saltwater intrusion along coasts. We previously developed a numerical simulation method for simulating a coupled atmospheric gas, surface water, and groundwater system (called the ASG method) that employs a saturation equation for flow in a porous medium; this equation allows both the void fraction of water in the surface system and water saturation in the porous medium to be solved simultaneously. It remained necessary, however, to evaluate how global pressure, including gas pressure, water pressure, and capillary pressure, should be specified at the boundary between the surface and the porous medium. Therefore, in this study, we derived a new equation for global pressure and integrated it into the ASG method. We then simulated water saturation in a porous medium and the void fraction of water in a surface system by the ASG method and reproduced fairly well the results of two column experiments. Next, we simulated water saturation in a porous medium (sand) with a bank, by using both the ASG method and a modified Picard (MP) method. We found only a slight difference in water saturation between the ASG and MP simulations. This result confirmed that the derived equation for global pressure was valid for a porous medium, and that the global pressure value could thus be used with the saturation equation for porous media. Finally, we used the ASG method to simulate a system coupling atmosphere, surface water, and a porous medium (110m wide and 50m high) with a trapezoidal bank. The ASG method was able to simulate the complex flow of fluids in this system and the interaction between the porous medium and the surface water or the atmosphere.

  17. Effect of Spatial Variations in Temperature, Permeability, and Water Saturation on Partitioning Gas Tracer Tests to Quantify Water in the Vadose Zone and in Landfills

    NASA Astrophysics Data System (ADS)

    Li, L.; Imhoff, P. T.

    2006-12-01

    The measurement of water saturation is important in the vadose zone and in the unsaturated porous media (refuse) in bioreactor landfills. The partitioning gas tracer test (PGTT) has been successfully used to measure water saturations in soils and landfills. However, the effectiveness of the this technique for obtaining average water saturations may depend on spatial variations in temperature (landfills), which result in spatially varying Henry's law constants, as well as spatial variability in water saturations and gas permeability. Investigations of the performance of PGTTs in heterogeneous porous media are needed to assess the utility of this measurement technique in such systems. A two dimensional modeling approach was used to investigate PGTT performance in soils and landfills with spatially varying properties. Temperature, permeability and water saturations were varied spatially to examine their effect on the accuracy of water saturation measurements. The influence of tracer diffusion on PGTT results was also examined. These simulations provide guidelines for applying PGTTs in soils and landfills where spatial variability of properties is significant. Keywords: water saturation, gas tracers, spatial heterogeneity, landfills

  18. Upward excursion limits from air saturation at 5 ATA (Atmospheres Absolute)

    NASA Astrophysics Data System (ADS)

    Parker, James W.

    1989-01-01

    Present USN submarine rescue capability makes a prolonged exposure of the submarine crew to hyperbaric air a distinct possibility. The exposure may be to pressures as great as 5 atmospheres absolute (ATA), and for periods of time of up to 72 hours. A series of experimental dives were conducted to establish the safe, upward excursion from 5 ATA (132 FSWG); that is, the maximum, immediate reduction in pressure which these individuals can safely tolerate. This specifies the required pressure in the compartment of a mother submarine to which the rescued personnel would be transferred. In order to minimize the effects of pulmonary oxygen toxicity, the limits first were established using a nitrox equivalent of air at 5 ATA. The upward limit from 4.36 ATA (111 FSWG) was found to be 2.97 ATA (65 FSWG). Once this limit had been set, a series of dives were conducted to test this up limit from standard air at 5 ATA.

  19. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  20. Experimental observation of water saturation effects on shear wave splitting in synthetic rock with fractures aligned at oblique angles

    NASA Astrophysics Data System (ADS)

    Amalokwu, Kelvin; Chapman, Mark; Best, Angus I.; Sothcott, Jeremy; Minshull, Timothy A.; Li, Xiang-Yang

    2015-01-01

    Fractured rocks are known to exhibit seismic anisotropy and shear wave splitting (SWS). SWS is commonly used for fractured rock characterization and has been shown to be sensitive to fluid type. The presence of partial liquid/gas saturation is also known to affect the elastic properties of rocks. The combined effect of both fractures and partial liquid/gas saturation is still unknown. Using synthetic, silica-cemented sandstones with aligned penny-shaped voids, we conducted laboratory ultrasonic experiments to investigate the effect fractures aligned at an oblique angle to wave propagation would have on SWS under partial liquid/gas saturation conditions. The result for the fractured rock shows a saturation dependence which can be explained by combining a fractured rock model and a partial saturation model. At high to full water saturation values, SWS decreases as a result of the fluid bulk modulus effect on the quasi-shear wave. This bulk modulus effect is frequency dependent as a result of wave-induced fluid flow mechanisms, which would in turn lead to frequency dependent SWS. This result suggests the possible use of SWS for discriminating between full liquid saturation and partial liquid/gas saturation.

  1. Investigation of the kinetics of water uptake into partially saturated shales

    NASA Astrophysics Data System (ADS)

    Roshan, H.; Andersen, M. S.; Rutlidge, H.; Marjo, C. E.; Acworth, R. I.

    2016-04-01

    Several processes have been proposed to describe the low recovery of hydraulic fracturing fluid in unconventional shale reservoirs which has caused both technical and environmental concerns. This study describes novel hydraulic experiments to quantitatively investigate the kinetics of water uptake into partially saturated shale through investigating the pressure response of injecting fluids (NaCl, KCl, MgCl2, and CaCl2 with different ionic concentrations) into crushed and sieved shale fragments. The results of the study indicate that the cumulative water uptake under pressure is likely to be controlled by three processes: surface hydration, capillary hydration including advective flow, and osmotic hydration. Each of these processes is a function of the differences between the in situ pore fluid and the injection fluid (solution chemistry and concentration) and the shale physicochemical properties, in particular the contact surface area, pore diameter, and the Cation Exchange Capacity (CEC). The uptake is not instantaneous, but is diffusion limited, with the rate governed by a number of kinetic processes. Uptake proceeds in three stages, each associated with a different process: (1) predominantly surface hydration, (2) predominantly capillary hydration and finally, (3) predominantly osmotic hydration. It was also shown that shale can take up a significant amount of water compared to its available solid volume. However, contrary to the conventional understanding, the increase in salinity of the injection fluid does not necessarily lead to reduced water uptake into shales, but is dependent on the type and concentration of cations within the shale and injecting fluid.

  2. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  3. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  4. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  5. Instabilities of Tropical Cyclones and their Nonlinear Saturation in Moist-Convective Rotating Shallow Water Model

    NASA Astrophysics Data System (ADS)

    Lahaye, N.; Zeitlin, V.

    2015-12-01

    Studies of stability of tropical cyclones (TC) are mostly performed either in over-simplified (2D Euler, e.g. [1]), or in over-complexified "all-inclusive", e.g. [2], models. TC have very high Rossby numbers, so Lighthill radiation is operational and instabilities are radiative. Yet, the quantitative results for radiative instabilities of vortices are available only for simplified vortex profiles, e.g. [3]. TC evolve in the essentially moist and precipitating atmosphere, yet studies of precise dynamical role of moisture in developing instability are scarce [4]. We use the moist-convective Rotating Shallow Water model of [5], the simplest possible one which includes inertia-gravity gravity waves (IGW) and the effects of moisture and precipitation. Unstable modes are investigated by means of a linear stability analysis, then the nonlinear saturation is simulated in cases with precipitation off (dry), precipitation on but evaporation off (moist-precipitating), and precipitation and evaporation on (moist-precipitating-evaporating). Our main results are: Linear stability: Main instability: ageostrophic barotropic instability Unstable modes: mixed Rossby - inertia gravity waves. Dry saturation: Axisymmetrization of the TC Intensification of winds inside the radius of maximum wind Bursts in the IGW emission Moist-precipitating saturation: Amplification of the IGW emission with respect to the dry case Amplification of the wind intensification mechanism Moist-precipitating-evaporating saturation: Appearance of convectively-coupled IGWs Net intensification of wind (even at the radius of maximum wind) References: J.P. Kossin and W.H. Schubert, J. Atmos. Sci., 58, 2196, 2001. Y.C. Kwon and W.M. Frank, J. Atmos. Sci., 65, 106, 2008. S. Le Dizes and P. Billant, Phys. Fluids, 21, 1, 2009. D.A. Schecter and M.T. Montgomery, J. Atmos. Sci., 64, 314, 2007. F. Bouchut, J. Lambaerts, G. Lapeyre, and V. Zeitlin, Phys. Fluids, 21, 126601, 2009. Figure: Nondimensional vorticity (colors

  6. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Clean Air and Water... Conditions and Certifications § 1316.5 Clean Air and Water Acts. When so indicated in TVA contract documents or actions, the following clause is included by reference in such documents or actions: Clean Air...

  7. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Clean Air and Water... Conditions and Certifications § 1316.5 Clean Air and Water Acts. When so indicated in TVA contract documents or actions, the following clause is included by reference in such documents or actions: Clean Air...

  8. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean air and water. 1260.34 Section 1260.34 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award exceeds $100,000, or a...

  9. Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams.

    PubMed

    Lee, Kang Il

    2014-02-01

    The frequency-dependent phase velocity, attenuation coefficient, and backscatter coefficient were measured from 0.8 to 1.2 MHz in 24 water-saturated nickel foams as trabecular-bone-mimicking phantoms. The power law fits to the measurements showed that the phase velocity, the attenuation coefficient, and the backscatter coefficient were proportional to the frequency with exponents n of 0.95, 1.29, and 3.18, respectively. A significant linear correlation was found between the phase velocity at 1.0 MHz and the porosity. In contrast, the best regressions for the normalized broadband ultrasound attenuation and the backscatter coefficient at 1.0 MHz were obtained with the polynomial fits of second order.

  10. Mitigating Task Saturation in Critical Care Air Transport Team Red Flag Checklist

    DTIC Science & Technology

    2015-04-14

    teamwork curriculum? Qual Saf Health Care. 2004; 13(6):417- 421. 29. Steinemann S, Berg B , Skinner A, DiTulio A, Anzelon K, et al. In situ...U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98...air transport. Crit Care Nurs Clin North Am. 2003; 15(2):221-231. 7. Davis B , Welch K, Walsh-Hart S, Hanseman D, Petro M, et al. Effective teamwork

  11. The Lawn Hill annulus: An Ordovician meteorite impact into water-saturated dolomite

    NASA Astrophysics Data System (ADS)

    Darlington, Vicki; Blenkinsop, Tom; Dirks, Paul; Salisbury, Jess; Tomkins, Andrew

    2016-12-01

    The Lawn Hill Impact Structure (LHIS) is located 250 km N of Mt Isa in NW Queensland, Australia, and is marked by a highly deformed dolomite annulus with an outer diameter of 18 km, overlying low metamorphic grade siltstone, sandstone, and shale, along the NE margin of the Georgina Basin. This study provides detailed field observations from sections of the Lawn Hill annulus and adjacent areas that demonstrate a clear link between the deformation of the dolomite and the Lawn Hill impact. 40Ar-39Ar dating of impact-related melt particles provides a time of impact in the Ordovician (472 ± 8 Ma) when the Georgina Basin was an active depocenter. The timing and stratigraphic thickness of the dolomite sequence in the annulus suggest that there was possibly up to 300 m of additional sedimentary rocks on top of the currently exposed Thorntonia Limestone at the time of impact. The exposed annulus is remarkably well preserved, with preservation attributed to postimpact sedimentation. The LHIS has an atypical crater morphology with no central uplift. The heterogeneous target materials at Lawn Hill were probably low-strength, porous, and water-saturated, with all three properties affecting the crater morphology. The water-saturated nature of the carbonate unit at the time of impact is thought to have influenced the highly brecciated nature of the annulus, and restricted melt production. The impact timing raises the possibility that the Lawn Hill structure may be a member of a group of impacts resulting from an asteroid breakup that occurred in the mid-Ordovician (470 ± 6 Ma).

  12. Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide.

    PubMed

    Mendow, G; Veizaga, N S; Sánchez, B S; Querini, C A

    2012-08-01

    Industrial production of ethyl esters is impeded by difficulties in purifying the product due to high amounts of soap formed during transesterification. A simple biodiesel wash process was developed that allows successful purification of samples containing high amounts of soap. The key step was a first washing with neutral water, which removed the soaps without increasing the acidity or affecting the process yield. Afterward, the biodiesel was washed with water saturated with CO(2), a mild acid that neutralized the remaining soaps and extracted impurities. The acidity, free-glycerine, methanol and soaps concentrations were reduced to very low levels with high efficiency, and using non-corrosive acids. Independently of the initial acidity, it was possible to obtain biodiesel within EN14214 specifications. The process included the recovery of soaps by hydrolysis and esterification, making it possible to obtain the theoretical maximum amount of biodiesel.

  13. Prevention of water-contamination of ethanol-saturated dentin and hydrophobic hybrid layers

    PubMed Central

    Sauro, Salvatore; Watson, Timothy F; Mannocci, Francesco; Tay, Franklin R; Pashley, David H

    2013-01-01

    SUMMARY Purpose This in vitro study evaluated the amount and the distribution of outward fluid flow that occurred when an experimental etch-and-rinse hydrophobic adhesive was applied to ethanol-saturated dentin before and after oxalate pretreatment. Materials and methods Measurements of dentin permeability were performed under a constant pulpal pressure of 20 cm H2O in deep and middle dentin. A lucifer yellow solution was placed in the pulp chamber to determine the distribution of the water contamination of the hybrid layers. Results The distribution of fluorescence in dentin specimens that were not pretreated with oxalate revealed that the dye permeated around the resin tags and filled the hybrid layer. Dentin specimens pretreated with oxalate prior to resin bonding, showed 80–83% less (p<0.05) water contamination compared to controls. The dentin permeability results obtained before and after oxalate pretreatment showed that oxalate decreased dentin permeability by 98% (p<0.05) compared to acid-etched controls. This prevented outward fluid movement during bonding resulting in better resin sealing of dentin due to the formation of a double seal of resin tags over calcium oxalate crystals in the tubules. Conclusion Outward dentinal fluid flow may contaminate hybrid layers during adhesive bonding procedures. Pretreatment of acid-etched dentin with 3% oxalic acid prior to bonding procedures can prevent outward fluid flow during bonding and water contamination of the hydrophobic hybrid layers. PMID:19701507

  14. Cotransport of clay colloids and viruses in water saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C.; Syngouna, V. I.

    2012-12-01

    This study is focused on the cotransport of clay colloids and viruses in saturated columns packed with glass beads. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model colloids. Virus and clay transport as well as virus-clay cotransport were examined at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The results indicated that the mass recovery of viruses and clay colloids decreased as the pore water velocity decreased; whereas, for the cotransport experiments no clear trend was observed. Temporal moments of the breakthrough concentrations suggested that, in the absence of clay colloids, both MS2 and ΦX174 traveled faster than the conservative tracer only at the highest pore water velocity tested. For the other two velocities both viruses were slightly retarded. The presence of clays significantly influenced the irreversible virus deposition onto glass beads. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b. Also, MS2 exhibited greater affinity than ΦX174 for both clays. The results suggest that Lewis acid-base interactions worked to the advantage of clay colloid attachment but did not significantly affect virus attachment onto glass beads. Schematic illustration of the six concentration components involved in cotransport experiments of this study.

  15. High-intensity sound in air saturated fibrous bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L., II

    1982-01-01

    The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.

  16. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain

    PubMed Central

    2014-01-01

    Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818

  17. Comparison of different models of water transport in variably saturated soil

    NASA Astrophysics Data System (ADS)

    Maggi, D.; Gandolfi, C.

    2003-04-01

    A non-linear, storage type model describe the water transport in the variably saturated zone in the context of a Distributed Simulation System, developed for the reproduction of all the relevant hydrological processes in a large irrigation district of the North Italian alluvional plain. The aim of the this study is to verify the correct reproduction by this model of the water fluxes, in particular the deep percolation, considered as the recharge to the underlying aquifer. In spite of the usual validation, impossible because of the lack of direct measurement of these water fluxes, the approach suggested is based on the comparison whit other existing models. The models employed in the study are: EPIC, which uses a storage type scheme for the water transport similar to the implemented model; SWAT and HYDRUS, which numerically solve the Richard's equation to reproduce the water flow. A number of data set have been prepared, representing the different conditions existing in the study area. In these are included a number of soil profiles, extracted from a regional database, a meteorological scenario, and different agricultural practices. The four models have been applied on the all data sets, producing a number of series of output variables; the different series have been compared, regarding to the results of the models based on a physical representation of the processes (SWAT and HYDRUS) as a good estimation of the actual fluxes. The comparison has been made evaluating the temporal patterns of the reproduced variables and on the basis of aggregated indexes, defined in order to assess the efficiency of the model implemented in the complex of the simulation system.

  18. 1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media

    SciTech Connect

    Yeh, G.T.

    1988-08-01

    This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples.

  19. Calculating water saturation from passive temperature measurements in near-surface sediments: Development of a semi-analytical model

    NASA Astrophysics Data System (ADS)

    Halloran, Landon J. S.; Roshan, Hamid; Rau, Gabriel C.; Andersen, Martin S.

    2016-03-01

    A novel semi-analytical model for the calculation of water saturation levels in the near subsurface using passive temperature measurements is derived. The amplitude and phase of dominant natural diel temperature variations are exploited, although the solution is general so that a cyclical temperature signal of any period could be used. The model is based on the first-principles advection-conduction-dispersion equation, which is fully general for porous media. It requires a single independent soil moisture estimate, but directly considers the spatially variable saturation dependency of thermal conductivity which has been avoided in previous studies. An established empirical model for the thermal conductivity of variably saturated porous media is incorporated and two solutions for saturation are derived. Using data from numerical models, a spatially sequential implementation of one of these solutions is shown to predict the vertical saturation profile to within 2% for a hydraulically stable case and to within the saturation range observed over a single day for percolation rates up to 10 cm/day. The developed model and methodology can aid in the analysis of archived temperature data from the vadose zone and will serve as a powerful tool in future heat-tracing experiments in variably saturated conditions.

  20. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  1. Cyclic formation and dissociation of methane hydrate within partially water saturated sand

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Nakagawa, S.

    2010-12-01

    For partially water-saturated sediments, laboratory experiments have shown that methane hydrate forms heterogeneously within a sample at the core scale. The heterogeneous distribution of hydrate in combination with grain-scale hydrate location (eg. grain cementing, load bearing, and pore filling), determines the overall mechanical properties of hydrate-bearing sediments including shear strength and seismic properties. For this reason, understanding the heterogeneity of hydrate-bearing sample is essential when the bulk properties of the sample are examined in the laboratory. We present a series of laboratory methane hydrate formation and dissociation experiments with concurrent x-ray CT imaging and low-frequency (near 1 kHz) seismic measurements. The seismic measurements were conducted using a new acoustic resonant bar technique called the Split Hopkinson Resonant Bar method, which allows using a small sediment core (3.75 cm diameter, 7.5 cm length). The experiment was conducted using a jacketed, pre-compacted, fine-grain silica sand sample with a 40% distilled water saturation. Under isotropic confining stress of 6.9 MPa and a temperature 4 oC, the hydrate was formed in the sample by injecting pure methane gas at 5.6 MPa. Once the hydrate formed, it was dissociated by reducing the pore pressure to 2.8 MPa. This cycle was repeated by three times (dissociation test for the third cycle was not done) to examine the resulting changes in the hydrate distribution and seismic signatures. The repeated formation of hydrate resulted in significant changes in its distribution, which resulted in differences in the overall elastic properties of the sample, determined from the seismic measurements. Interestingly, the time intervals between the dissociation and subsequent formation of hydrate affected the rate of hydrate formation, shorter intervals resulting in faster formation. This memory effect, possibly caused by the presence of residual “seed crystals” in the pore water

  2. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.

    PubMed

    Li, Zhen; Sahle-Demessie, Endalkachew; Hassan, Ashraf Aly; Sorial, George A

    2011-10-01

    Ceria nanoparticles are used for fuel cell, metal polishing and automobile exhaust catalyst; however, little is known about the impact of their release to the environment. The stability, transport and deposition of engineered CeO2 nanoparticles through water-saturated column packed with sand were studied by monitoring effluent CeO2 concentration. The influence of solution chemistry such as ionic strength (1-10 mM) and pH (3-9) on the mobility and deposition of CeO2 nanoparticles was investigated by using a three-phase (deposition-rinse-reentrainment) procedure in packed bed columns. The results show that water chemistry governs the transport and deposition of CeO2 nanoparticles. Transport is significantly hindered at acidic conditions (pH 3) and high ionic strengths (10 mM and above), and the deposited CeO2 particles may not be re-entrained by increasing the pH or lowering the ionic strength of water. At neutral and alkaline conditions (pH6 and 9), and lower ionic strengths (below 10 mM), partial breakthrough of CeO2 nanoparticles was observed and particles can be partially detached and re-entrained from porous media by changing the solution chemistry. A mathematical model was developed based on advection-dispersion-adsorption equations and it successfully predicts the transport, deposition and re-entrainment of CeO2 nanoparticles through a packed bed. There is strong agreement between the deposition rate coefficients calculated from experimental data and predicted by the model. The successful prediction for attachment and detachment of nanoparticles during the deposition and re-entrainment phases is unique addition in this study. This work can be applied to access the risk of CeO2 nanoparticles transport in contaminated ground water.

  3. Photodetoxification and purification of water and air

    SciTech Connect

    Anderson, M.; Blake, D.M.

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  4. Mass Transfer From Nonaqueous Phase Organic Liquids in Water-Saturated Porous Media

    PubMed Central

    Geller, J. T.; Hunt, J. R.

    2010-01-01

    Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis. The model represents the NAPL as isolated spheres that shrink with dissolution and uses a mass transfer coefficient correlation reported in the literature for dissolving spherical solids. The model accounts for the reduced permeability of a region of residual NAPL relative to the permeability of the surrounding clean media that causes the flowing water to partially bypass the residual NAPL. The dissolution experiments with toluene alone and a benzene-toluene mixture were conducted in a water-saturated column of homogeneous glass beads over a range of Darcy velocities from 0.5 to 10 m d−1. The model could represent the observed effluent concentrations as the NAPL underwent complete dissolution. The changing pressure drop across the column was predicted following an initial period of NAPL reconfiguration. The fitted NAPL sphere diameters of 0.15 to 0.40 cm are consistent with the size of NAPL ganglia observed by others and are the smallest at the largest flow velocity. PMID:20336189

  5. Water Table Dynamics and Biogeochemical Cycling in a Shallow, Variably-Saturated Floodplain.

    PubMed

    Yabusaki, Steven B; Wilkins, Michael J; Fang, Yilin; Williams, Kenneth H; Arora, Bhavna; Bargar, John; Beller, Harry R; Bouskill, Nicholas J; Brodie, Eoin L; Christensen, John N; Conrad, Mark E; Danczak, Robert E; King, Eric; Soltanian, Mohamad R; Spycher, Nicolas F; Steefel, Carl I; Tokunaga, Tetsu K; Versteeg, Roelof; Waichler, Scott R; Wainwright, Haruko M

    2017-03-07

    Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplain aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.

  6. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    PubMed

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  7. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  8. A feasible research of rock porosity and water saturation impact on audio-magnetotelluric propagation in porous media

    NASA Astrophysics Data System (ADS)

    Tian, Z.; Liu, J.

    2015-12-01

    Abstract: Although various factors have impact on the resistivity of subsurface rock formation, in depth range of general electrical prospecting, the conductive actions of rocks are basically realized relying on the aqueous solutions filled in the pores. Therefore, quantitatively studying the impact of the water level on rock resistivity is important to analyze and classify strata, investigate the underground structures. In this research, we proposed a feasible research on building electric property rock formation models with different porosity and water saturation based on theories of two-phase media. The propagation of audio-magnetotelluric (AMT) waves is simulated by using finite-difference (FD) scheme, and theoretic resistivity distribution is calculated on account of the response of AMT. According to a sequence of synthetic examples, through comparing and analyzing the simulated results with various porosity and water saturation respectively, we discuss the impact on layers resistivity while porosity and water saturation of rock stratum are changing. The results shows the extent that the mentioned factors can have impact on the propagation of AMT waves. Key words: audio-magnetotelluric modeling, two-phase media, porosity, water saturation, finite-difference

  9. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  10. Archaeogeophysical tests in water saturated and under water scenarios at the Hydrogeosite Laboratory

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Perciante, Felice; Rizzo, Enzo

    2016-04-01

    The growing interest in underwater archaeology as witnessed by numerous archaeological campaigns carried out in the Mediterranean region in marine and lacustrine environments involves a challenge of great importance for archaeogeophysical discipline. Through a careful use of geophysical techniques it is possible support archaeological research to identify and analyse the undiscovered cultural heritage placed under water located near rivers and sea. Over the past decades, geophysical methods were applied successfully in the field of archaeology: an integrated approach based on the use of electric, electromagnetic and magnetic techniques have showed the ability to individuate and reconstruct the presence of archaeological remains in the subsoil allowing to define their distribution in the space limiting the excavation activities. Moreover the capability of geophysics could be limited cause the low geophysical contrasts occurring between archaeological structures and surrounding environment; in particular problems of resolution, depth of investigation and sensitivity related to each adopted technique can result in a distorted reading of the subsurface behaviour preventing the identification of archaeological remains. This problem is amplified when geophysical approach is applied in very humid environments such as in lacustrine and marine scenarios, or in soils characterized by high clay content that make more difficult the propagation of geophysical signals. In order to improve our geophysical knowledge in lacustrine and coastal scenarios a complex and innovative research project was realized at the CNR laboratory of Hydrogeosite which permitted to perform an archaeogeophysical experiment in controlled conditions. The designed archaeological context was focused on the Roman age and various elements characterized by different shapes and materials were placed at different depths in the sub-soil. The preliminary project activities with some scenarios were presented last

  11. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is...

  12. Ground-water resources of the Holloman Air Force Base well field area, 1967, New Mexico

    USGS Publications Warehouse

    Ballance, W.C.; Mattick, Robert E.

    1976-01-01

    Water consumption at Holloman Air Force Base (HAFB), N. Mex., reached an all time high in 1964 and 1965. Further increases in withdrawal without expansion of pumping facilities will hasten the chemical deterioration of the ground water pumped from the well fields. Saline water in the well-field area is present on the north and west sides of the potable-water area and in a thin shallow zone that overlies the potable-water sands in part of the potable-water area. The latter source is affecting quality of the water produced from most wells. The saturated thickness of material underlying the Boles well field ranges from about 3 ,500 feet in the western part of the field to about 1,200 feet in the eastern part of the field. In the Douglass and San Andres well fields, the saturated thickness ranges from 3,500 feet to about 300 feet. Expansion of the Boles and San Andres well fields to the east and southeast would move the center of pumping away from the highly saline water to the north and west. This would eliminate overpumping of the present wells that has resulted from the expanded facilities at Holloman Air Force Base. (Woodard-USGS)

  13. Modeling solute transport through saturated zone ground water at 10 km scale: Example from the Yucca Mountain license application

    NASA Astrophysics Data System (ADS)

    Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce A.; Arnold, Bill; Meijer, Arend; Eddebbarh, Al-Aziz

    2010-09-01

    This paper presents a study of solute transport through ground water in the saturated zone and the resulting breakthrough curves (BTCs), using a field-scale numerical model that incorporates the processes of advection, dispersion, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. Such BTCs at compliance boundaries are often used as performance measures for a site. The example considered here is that of the saturated zone study prepared for the Yucca Mountain license application. The saturated zone at this site occurs partly in volcanic, fractured rock formations and partly in alluvial formations. This paper presents a description of the site and the ground water flow model, the development of the conceptual model of transport, model uncertainties, model validation, and the influence of uncertainty in input parameters on the downstream BTCs at the Yucca Mountain site.

  14. Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions.

    PubMed

    McLeod, Kenneth W; Ciravolo, Thomas G

    2003-12-01

    In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 microg/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.

  15. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region.

  16. Using Green and Ampt with Redistribution to Simulate Recharge for Saturated Groundwater Modeling in Support of Surface Water Applications

    NASA Astrophysics Data System (ADS)

    Downer, C. W.

    2003-12-01

    The Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) employs a one-dimensional finite difference approximation of the head based form of Richards' equation to calculate groundwater recharge for saturated groundwater simulations needed for groundwater/surface water interaction studies. When used to simulate sharp wetting fronts, solution of Richards' equation can be computationally very expensive. This computational cost may not be justified if Richards' equation is being solved merely to provide estimates of groundwater recharge for saturated groundwater simulations. For large problems, the computational cost may preclude the used of automated calibration methods which allow a more complete exploration of the parameter space but may require hundreds of simulations to do so. In addition to the Richards' equation solution the GSSHA model also includes Green and Ampt based infiltration models. These Green and Ampt approaches have historically been used to compute infiltration under Hortonian conditions, where saturated groundwater has little influence on surface water flows. It is hypothesized that the Green and Ampt based method of computing infiltration may prove adequate for computing groundwater recharge for use in saturated groundwater simulations. The GSSHA model is modified to allow the Green and Ampt with Redistribution model of infiltration to provide values of groundwater recharge for saturated groundwater simulations. The formulation results in infiltrated water immediately becoming recharge. The modified model is employed in two studies where groundwater surface water interaction is critical to the prediction of stream flow. In both cases the model is able to produce acceptable results in terms of predicting stream flow. The method appears useful for determining values of groundwater recharge for use with saturated groundwater simulations. The reduced simulation times with the method make the use of automated calibration methods possible.

  17. The Role of Water Activity and Capillarity in Partially Saturated Porous Media at Geologic CO2 Storage Sites

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Matteo, E. N.; Dewers, T. A.; Wang, Y.

    2012-12-01

    The activity of water in supercritical CO2 may affect performance of geologic CO2 storage, including CO2 injectivity, and shrink-swell properties and sealing efficiency of clayey caprocks. We present a pore-scale unit cell model of water film adsorption and capillary condensation as an explicit function of water activity in supercritical CO2. This model estimates water film configuration in slit to other pore shapes with edges and corners. With the model, we investigate water saturation in porous media in mineral-CO2-water systems under different water activities. Maximum water activities in equilibrium with an aqueous phase are significantly less than unity due to dissolution of CO2 in water (i.e., the mole fraction of water in the aqueous phase is much less than one) and variable dissolved salt concentration. The unit cell approach is used to upscale from the single pore to the core-sample-scale, giving saturation curves as a function of water activity in the supercritical phase and the texture of the porous media. We evaluate the model and the importance of water activity through ongoing small angle neutron scattering experiments and other column experiments, which investigate shrink-swell properties and capillarity under realistic in situ stresses. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.

    PubMed

    Blodau, Christian; Siems, Melanie; Beer, Julia

    2011-12-01

    A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions.

  19. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  20. Effect of gravity on Pseudomonas putida and kaolinite cotransport in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Chrysikopoulos, Constantinos V.

    2013-04-01

    Bacterial transport in porous media can be affected by several factors, such as cell concentration, water velocity, and attachment onto the solid matrix or suspended in the aqueous phase soil particles (e.g. clays). Gravity, also may significantly influence bacterial transport behavior in the subsurface. The present study aims to determine the gravity effect on transport and cotransport of bacteria species Pseudomonas (P.) putida and kaolinite colloid particles in porous media. Transport experiments were conducted under horizontal-, up- and down-flow conditions in water saturated columns packed with glass beads. These different flow modes represent different gravity effects, namely: no-, negative- and positive-gravity effect. Initial experiments were performed with bacteria and kaolinite alone in order to evaluate the effect of gravity on their individual transport characteristics. No significant gravity effect was observed on the transport of individual bacterial cells. In contrary, each different flow mode was found to differently affect kaolinite transport. Compared to the horizontal-flow mode, the kaolinite mass recovery was decreased during the up-flow mode, and increased during the down-flow mode. Finally, P. putida and kaolinite particles were injected simultaneously into the packed column in order to investigate their cotransport behavior under different flow modes. The experimental data indicated that the kaolinite-P. putida cotransport behavior was similar to that observed for the transport of individual kaolinite particles. It was observed that the P. putida mass recovery decreased during down-flow conditions. This phenomenon may be caused by the attachment of bacteria onto kaolinite particles, which were adsorbed onto the solid matrix.

  1. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems - An introduction

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.

    1987-01-01

    Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.

  2. Effect of water saturation and temperature in the range of 193 to 373 K on the thermal conductivity of sandstone

    NASA Astrophysics Data System (ADS)

    Guo, P. Y.; Zhang, N.; He, M. C.; Bai, B. H.

    2017-03-01

    The thermal conductivity of porous media is crucial for many geological and engineering projects. Although the thermal conductivity at low temperatures is often overlooked, it is of great significance to calculate the amount of heat that the ice sheet absorbs from the Earth. In this study, the thermal conductivity of dry and water-saturated sandstone was measured in the temperature range of 193 to 373 K using a transient hot wire method. All samples were collected from East China, with a sample porosity distribution of 5 to 13%. The effects of temperature, water saturation and phase transition of fluid in the pores were investigated. The results indicate that the thermal conductivity decreases with an increase in temperature and that the decrease is steeper when the temperature is below 273 K. Moreover, it is found that the thermal conductivity of the saturated sandstone is larger than that of the dry sandstone. With an increase in porosity, the thermal conductivity significantly increases in saturated sandstone but remains almost the same or even decreases in dry sandstones. Finally, it is revealed that the effect of phase transformation on the thermal conductivity is significant. When the water in pores becomes ice, the thermal conductivity increases significantly and increases further as the temperature decreases.

  3. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    SciTech Connect

    Alliss, R.J.; Raman, S.

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  4. Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: morphophysiological and growth responses

    PubMed Central

    Medina, Camilo L.; Sanches, Maria Cristina; Tucci, Maria Luiza S.; Sousa, Carlos A. F.; Cuzzuol, Geraldo Rogério F.; Joly, Carlos A.

    2009-01-01

    Background and Aims Erythrina speciosa is a Neotropical tree that grows mainly in moist habitats. To characterize the physiological, morphological and growth responses to soil water saturation, young plants of E. speciosa were subjected experimentally to soil flooding. Methods Flooding was imposed from 2 to 4 cm above the soil surface in water-filled tanks for 60 d. Non-flooded (control) plants were well watered, but never flooded. The net CO2 exchange (ACO2), stomatal conductance (gs) and intercellular CO2 concentration (Ci) were assessed for 60 d. Soluble sugar and free amino acid concentrations and the proportion of free amino acids were determined at 0, 7, 10, 21, 28 and 45 d of treatments. After 28, 45 and 60 d, dry masses of leaves, stems and roots were determined. Stem and root cross-sections were viewed using light microscopy. Key Results The ACO2 and gs were severely reduced by flooding treatment, but only for the first 10 d. The soluble sugars and free amino acids increased until the tenth day but decreased subsequently. The content of asparagine in the roots showed a drastic decrease while those of alanine and γ-aminobutyric increased sharply throughout the first 10 d after flooding. From the 20th day on, the flooded plants reached ACO2 and gs values similar to those observed for non-flooded plants. These events were coupled with the development of lenticels, adventitious roots and aerenchyma tissue of honeycomb type. Flooding reduced the growth rate and altered carbon allocation. The biomass allocated to the stem was higher and the root mass ratio was lower for flooded plants when compared with non-flooded plants. Conclusions Erythrina speciosa showed 100 % survival until the 60th day of flooding and was able to recover its metabolism. The recovery during soil flooding seems to be associated with morphological alterations, such as development of hypertrophic lenticels, adventitious roots and aerenchyma tissue, and with the maintenance of neutral amino

  5. Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Choi, J.; Seol, Y.; Rosenbaum, E. J.

    2010-12-01

    Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.

  6. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand.

    PubMed

    Yang, Xinyao; Yin, Ziyi; Chen, Fangmin; Hu, Jingjing; Yang, Yuesuo

    2015-10-01

    Mobilization of polymer-coated silver nanoparticles (AgNPs) by anionic surfactant (sodium dodecylbenzenesulphonate: SDBS), amino acid derivative (N-acetylcysteine: NAC), and chelate (ethylenediaminetetraacetic acid: EDTA) in water-saturated sand medium was explored based on carefully designed column tests. Exposure experiments monitoring the size evolution of polyvinylpyrrolidone (PVP) coated AgNPs in organic solutions confirm the capacity of SDBS, NAC and EDTA to partly displace PVP. Single Pulse Column Experiment (SPCE) results show both the PVP polymer and the silver core controlled AgNP deposition while the effect of the PVP was dominant. Results of Co-injected Pulse Column Experiments (CPCEs) where AgNP and SDBS or NAC were co-injected into the column following a very short mixing (<1 s) disprove our hypothesis that coating-alternation by particle associated organic would mobilize irreversibly deposited particles from the uncoated sand, while surface charge modification by adsorbed NAC was identified as a potential mobilizing mechanism for AgNP from the iron-oxide-coated sand. Triple Pulse Column Experiment (TPCE) results confirm that such a charging effect of the adsorbed organic molecules may enable SDBS and NAC to mobilize AgNPs from the iron-oxide-coated sands. TPCE results with five distinct levels of SDBS indicate that concentration-stimulated change in the SDBS format from an individual to a micelle significantly increased the mobilizing efficiency and site blockage of SDBS. Although being an electrolyte, EDTA did not mobilize AgNPs, as the case with SDBS or NAC, as it dissolved the iron oxides which in turn prevented EDTA adsorption on sand. The findings have implications for better understanding the behavior of polymer-coated nanoparticles in organic-presented groundwater systems, i.e., detachment-associated uncertainty in exposure prediction of the nanomaterials.

  7. Thermal strain in a water-saturated limestone under hydrostatic and deviatoric stress states

    NASA Astrophysics Data System (ADS)

    Pei, Liang; Blöcher, Guido; Milsch, Harald; Deon, Fiorenza; Zimmermann, Günter; Rühaak, Wolfram; Sass, Ingo; Huenges, Ernst

    2016-10-01

    The present study is aimed at investigating the evolution of thermally induced bulk strain in a water-saturated limestone (Blaubeuren) at three different stress states. Three cylindrical rock samples are respectively loaded to a constant stress state (σ1 = σ3 = 15 MPa; σ1 = 45 MPa , σ3 = 15 MPa; σ1 = 75 MPa , σ3 = 15 MPa) at drained conditions in a conventional triaxial rock deformation apparatus before the sample temperature is cycled between 30 °C and defined levels up to 120 °C. Strain measurements are performed by one circumferential and two axial extensometers. Irreversible strain in both the lateral and axial sample directions are measured after each temperature cycle indicating permanent increases in diameter and in length. The measured bulk strain is separated into different strain components related to (1) initial stress loading, (2) reversible thermal expansion and contraction of rock matrix, and (3) some residual strain. The magnitudes of the residual strain increase with increasing deviatoric stress (σ1 - σ3) in the lateral direction but decrease with increasing deviatoric stress in the axial direction. The derived matrix thermal expansion coefficients range from 6 × 10- 6 °C- 1 to 1.8 × 10- 5 °C- 1 and from 9 × 10- 6 °C- 1 to 1.5 × 10- 5 °C- 1, respectively in the axial and lateral directions and present lower values at higher deviatoric stresses. Microstructural analyses evidence tensile cracks which are interpreted to have been induced during the temperature cycles. These cracks have the potential to offset matrix thermal expansion yielding lower matrix thermal expansion coefficients at higher deviatoric stresses.

  8. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  9. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.

    PubMed

    Lenhard, R J; Oostrom, M; Dane, J H

    2004-07-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, entrapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or entrapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  10. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.

    PubMed

    Lenhard, R J; Oostrom, M; Dane, J H

    2004-09-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, entrapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or entrapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  11. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  12. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  13. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.

    PubMed

    Loring, John S; Thompson, Christopher J; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T; Rosso, Kevin M

    2012-05-17

    In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  14. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  15. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  16. Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Mišković, Z. L.

    2014-09-01

    We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials ≲1V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials ≳1V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.

  17. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  18. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  19. Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI

    PubMed Central

    Liu, Guanshu; Qin, Qin; Chan, Kannie W.Y.; Li, Yuguo; Bulte, Jeff W.M.; McMahon, Michael T.; van Zijl, Peter C.M.; Gilad, Assaf A.

    2014-01-01

    We present a non-invasive MRI approach for assessing the water proton resonance frequency (PRF) shifts associated with changes in temperature. This method is based on Water Saturation Shift Referencing (WASSR), a method first developed for assessing B0 field inhomogeneity. Temperature-induced water PRF shifts were determined by estimating the frequency of the minimum intensity of the water direct saturation spectrum at each temperature using Lorentzian line-shape fitting. The change in temperature was then calculated from the difference in water PRF shifts between temperatures. Optimal acquisition parameters were first estimated using simulations and later confirmed experimentally. Results in vitro and in vivo showed that the temperature changes measured using the temperature-responsive WASSR (T-WASSR) were in good agreement with those obtained with MR spectroscopy or phase mapping-based water PRF measurement methods,. In addition, the feasibility of temperature mapping in fat-containing tissue is demonstrated in vitro. In conclusion, the T-WASSR approach provides an alternative for non-invasive temperature mapping by MRI, especially suitable for temperature measurements in fat-containing tissues. PMID:24395616

  20. Simulation of the interplay between resident and infiltrating water in partially saturated porous media

    SciTech Connect

    Gouet-Kaplan, Maxime; Tartakovsky, Alexandre M.; Berkowitz, Brian

    2009-05-19

    The interplay between resident water already in the subsurface environment (``old water") and infiltrating water (``new water") is examined. A smoothed particle hydrodynamics technique is used to simulate the interplay between old water and new water in a porous medium, over a cycle of drainage of old water and infiltration of new water. The effect of varying the average pore size is investigated via the Bond number, and several parameters (maximal mixing amount, minimal average size of old water pockets, mixing value for which the number of old water pockets decreases, and amount of old water remaining in the system for long times) are found to be independent of the average pore size, while the rate of change is always higher for larger pores. In particular, a certain amount of old water remains in the system within stable water pockets even after new water infiltration reaches steady state, and comprises about 2\\% of the total water at steady state.

  1. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  2. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  3. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.

    PubMed

    Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi

    2015-01-06

    CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.

  4. Evidence for correlation of ultrasonic attenuation and fluid permeability in very low porosity water-saturated rocks

    SciTech Connect

    Berryman, J.G.; Bonner, B.P.; Chin, R.C.Y.

    1983-07-01

    The measured amplitude A of ultrasonic pulses in intact and fractured samples of water-saturated gabbro and granite is observed to decrease as the permeability kappa increases according to the proportionality Aproportionalkappa/sup -1/2/. This relation is predicted by Biot's theory of elastic waves in fluid-saturated porous media and, therefore, suggests that Biot's attenuation mechanism may play a significant role in low porosity materials at ultrasonic frequencies. The evidence is not conclusive. The limited data set studied here is also consistent with correlations of the form Aproportionalkappa/sup -Epsilon/ where 0.2

  5. Thermal conductivity modeling in variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Daigle, H.

    2015-12-01

    Modeling effective thermal conductivity under variably saturated conditions is essential to study heat transfer in natural sediments, soils, and rocks. The effective thermal conductivity in completely dry and fully saturated porous media is an integrated quantity representing the complex behavior of two conducting phases, i.e., pore fluid (either air or water) and solid matrix. Under partially saturated conditions, however, the effective thermal conductivity becomes even more complicated since three phases (air, water, and solid matrix) conduct heat simultaneously. In this study, we invoke an upscaling treatment called percolation-based effective-medium approximation to model the effective thermal conductivity in fully and partially saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as air, solid matrix, and saturating fluid thermal conductivities, a percolation exponent t, and a percolation threshold. Comparing our theory with 216 porosity-dependent thermal conductivity measurements and 25 saturation-dependent thermal conductivity datasets indicate excellent match between theory and experiments. Our results show that the effective thermal conductivity under fully and partially saturated conditions follows nonuniversal behavior. This means the value of t changes from medium to medium and depends not only on topological and geometrical properties of the medium but also characteristics of the saturating fluid.

  6. Investigation of sodium carbonate, sodium bicarbonate and water systems for saturated solar ponds. Final report

    SciTech Connect

    1980-03-28

    The overall objective of this study was to gather relevant data primarily from the published literature to investigate the technical feasibility of using a Na/sub 2/CO/sub 3/-NaHCO/sub 3/ mixture for a saturated solar pond. This objective was accomplished by a literature search and review of existing chemical information and by performing simple chemistry experiments in the laboratory. Information on density, solubility, phase diagram, equilibrium compositions, reaction rate constant, equilibrium constant, diffusion coefficient, vapor pressure and potentially useful additives is compiled. It is concluded that even though both the saturation density and solubility increase with temperature for trona, it is not chemically stable either at room temperature or higher temperatures (80/sup 0/C). Therefore, as is, trona is not suitable for use in a saturated solar pond. From the literature it has been found that sugar and gum can retard the decomposition of bicarbonate to carbonate in the mixture. Nevertheless, trona is a very attractive solute for an unsaturated solar pond. A laboratory unsaturated pond with a stable density gradient has worked without any problems for about two months at InterTechnology/Solar Corporation.

  7. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Zuend, Andreas; Schilling, Katherine; Berkemeier, Thomas; Shiraiwa, Manabu; Flagan, Richard C.; Seinfeld, John H.

    2016-10-01

    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol-1 and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid-liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG-AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000-AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also

  8. Anomalous Transmission of Infrasound Through Air-Water and Air-Ground Interfaces

    NASA Astrophysics Data System (ADS)

    Godin, O. A.

    2009-05-01

    Speed of compressional waves in air is smaller than in water and in the ground, while mass density of air is much smaller than mass densities of water and the ground. This results in a very strong acoustic impedance contrast at air-water and air-ground interfaces. Sound transmission through a boundary with a strong impedance contrast is normally very weak. This paper reports theoretical studies of the power output of localized sound sources and acoustic power fluxes through plane gas-liquid and gas-solid interfaces in a layered medium. It is found that the transparency of the interfaces increases dramatically at low frequencies. For low-frequency sound, a phenomenon of anomalous transparency can occur where most of the acoustic power generated by a source in water is radiated into the atmosphere. Contrary to the conventional wisdom based on ray-theoretical predictions and observations at higher frequencies, infrasonic energy from localized waterborne sources can be effectively transmitted into air. The main physical mechanism responsible for the anomalous transparency of air-water interface is found to be an acoustic power transfer by inhomogeneous (evanescent) waves in the plane-wave decomposition of the acoustic field in water. The effects of ocean and atmosphere stratification and of guided sound propagation in water or in air on the anomalous transparency of the air-water interface are considered. In the case of air-ground interface, the increase of the acoustic power flux into atmosphere, when a compact source approaches the interface from below, proves to be even larger than for an underwater source. The physics behind the increase of the power flux into the atmosphere, when the source depth decreases, is shown to be rather different for the air-ground and air-water interfaces. Depending on attenuation of compressional and shear waves in the ground, a leaky interface wave supported by the air-ground interface can be responsible for the bulk of acoustic power

  9. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  10. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  11. Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance.

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Jia; Sun, Guohua; Li, Hongmei

    2012-10-15

    Certified reference materials (CRMs) of water content are widely used in the calibration and validation of Karl Fischer coulometry and volumetry. In this study, the water content of the water saturated 1-octanol (WSO) CRM was certified by Karl Fischer coulometry, volumetry and quantitative nuclear magnetic resonance (Q NMR). The water content recovery by coulometry was 99.76% with a diaphragm-less electrode and Coulomat AG anolyte. The relative bias between the coulometry and volumetry results was 0.06%. In Q NMR, the water content of WSO is traceable to the International System (SI) of units through the purity of internal standard. The relative bias of water content in WSO between Q NMR and volumetry was 0.50%. The consistency of results for these three independent methods improves the accuracy of the certification of the RM. The certified water content of the WSO CRM was 4.76% with an expanded uncertainty of 0.09%.

  12. Water-Level Changes, 1980 to 1997, and Saturated Thickness, 1996-97, In the High Plains Aquifer

    USGS Publications Warehouse

    McGuire, Virginia L.; Fischer, B.C.; Stanton, C.P.

    1999-01-01

    The High Plains aquifer underlies one of the major agricultural regions in the world, including parts of eight States--Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. In the area underlain by the High Plains aquifer (called the High Plains region in this report), the total number of acres irrigated with ground water expanded rapidly after 1940: 1949--2.1 million acres; 1959--6.1 million acres; 1969--9.0 million acres; and 1980--13.7 million acres (Gutentag and others, 1984; Thelin and Heimes, 1987). In 1990, about 95 percent of the water withdrawn from the High Plains aquifer (about 15.7 million acre-feet) was used for irrigation (Marilee Horn, U.S.Geological Survey, written commun., 1996). Water-level declines appeared in the High Plains aquifer soon after extensive ground-water irrigation development began. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these declines, the U.S. Geological Survey, in cooperation with numerous Federal, State, and local water resource agencies, began a ground-water monitoring program in 1988 to assess annual water-level change in the aquifer using water-level measurements from more than 7,000 wells. The purpose of this report is to present (1) water-level changes in the High Plains aquifer from 1980 to 1997 and from 1996 to 1997, (2) the precipitation pattern in the High Plains region during 1996, and (3) estimated saturated thickness of the High Plains aquifer in 1996-97. The water-level measurements used in this report were collected in winter or early spring when irrigation wells were not pumping. Map scale and density of water-level elevation data preclude showing small areas in the maps of water-level change and saturated thickness where the value may be more or less than indicated.

  13. Ferry Engine Repower to Provide Benefits for Air and Water

    EPA Pesticide Factsheets

    EPA’s Diesel Emission Reduction Act grant to the Delaware River and Bay Authority is bringing new clean air technology to the Cape May-Lewes Ferry, thereby reducing air pollution emissions and contributing to cleaner water in the Chesapeake Bay.

  14. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  15. Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation?

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Franceschi, Pastora; Hall, Chris M.

    2011-03-01

    Amphibole, while uncommon as a phenocryst in arc lavas, is increasingly recognized as a key constituent in the petrogenesis of arc magmas. Fractional crystallization of water-saturated arc magmas in the lower crust can yield substantial volumes of amphibole cumulates that, depending on the pressure of crystallization, may also contain garnet. Fractionation of this higher pressure assemblage has been invoked as a possible mechanism in the production of magmas that contain an adakitic signature. This study examines newly dated Late-Oligocene (25.37 ± 0.13 Ma) hypabyssal amphibole-rich andesites from Cerro Patacon in the Panama Canal region. These andesites contain nodules of amphibole cumulates that are ~4-6 cm in diameter and are almost entirely composed of 5-10-mm amphibole crystals (dominantly ferri-tschermakite). Geochemical variations, optical and chemical zoning of the Cerro Patacon amphiboles are consistent with their evolution in a crystal mush environment that had at least one recharge event prior to entrainment in the host andesite. Amphiboles hosted within the cumulate nodules differ from those hosted in the Cerro Patacon andesite and contain consistently higher values of Ti. We suggest these nodules represent the early stages of fractionation from a water-saturated magma. Cerro Patacon andesites have REE concentrations that plot at the most depleted end of Central American Arc magmas and exhibit a distinctive depletion in the middle REE. These geochemical and petrographic observations strongly support significant amphibole fractionation during formation of the Cerro Patacon andesite, consistent with the petrographic evidence. Fractionation of water-saturated magmas is a mechanism by which adakitic compositions may be produced, and the Cerro Patacon andesites do exhibit adakite-like geochemical characteristics (e.g., elevated Sr/Y; 28-34). However, the relatively elevated concentrations of Y and HREE indicate garnet was not stable in the fractionating

  16. Estimates of the hydrologic impact of drilling water on core samples taken from partially saturated densely welded tuff

    SciTech Connect

    Buscheck, T.A.; Nitao, J.J.

    1987-09-01

    The purpose of this work is to determine the extent to which drill water might be expected to be imbibed by core samples taken from densely welded tuff. In a related experimental study conducted in G-Tunnel, drill water imbibition by the core samples was observed to be minimal. Calculations were carried out with the TOUGH code with the intent of corroborating the imbibition observations. Due to the absence of hydrologic data pertaining directly to G-Tunnel welded tuff, it was necessary to apply data from a similar formation. Because the moisture retention curve was not available for imbibition conditions, the drainage curve was applied to the model. The poor agreement between the observed and calculated imbibition data is attributed primarily to the inappropriateness of the drainage curve. Also significant is the value of absolute permeability (k) assumed in the model. Provided that the semi-log plot of the drainage and imbibition moisture retention curves are parallel within the saturation range of interest, a simple relationship exists between the moisture retention curve, k, and porosity ({phi}) which are assumed in the model and their actual values. If k and {phi} are known, we define the hysteresis factor {lambda} to be the ratio of the imbibition and drainage suction pressures for any saturation within the range of interest. If k and {phi} are unknown, {lambda} also accounts for the uncertainties in their values. Both the experimental and modeling studies show that drill water imbibition by the core has a minimal effect on its saturation state. 22 refs., 6 figs., 2 tabs.

  17. Assessment of the menstrual cycle upon total hemoglobin, water concentration, and oxygen saturation in the female breast

    NASA Astrophysics Data System (ADS)

    Jiang, Shudong; Pogue, Brian W.; Srinivasan, Subhadra; Soho, Sandra; Poplack, Steven P.; Tosteson, Tor D.; Paulsen, Keith D.

    2003-07-01

    Near-infrared imaging can be used in humans to characterize changes in breast tumor tissue by imaging total hemoglobin and water concentrations as well as oxygen saturation. In order to improve our understanding of these changes, we need to carefully quantify the range of variation possible in normal tissues for these parameters. In this study, the effect of the subject"s menstrual cycle was examined by imaging their breast at the follicular (7-14 days of the cycle) and secretory phases (21-28 days of the cycle), using our NIR tomographic system. In this system, a three layer patient interface is used to measure 3 planes along the breast from chest wall towards the nipple at 1cm increments. Seven volunteers in their 40s were observed for 2 menstrual cycles and all of these volunteers recently had normal mammograms (ACR 1) with heterogeneously dense breast composition. The results show that average total hemoglobin in the breast increased in many subjects between 0 to 15% from the follicular phase to secretory phase. Oxygen saturation and water concentration changes between these 2 parts of the cycle were between -6.5% to 12% for saturation and between -33% to 28% for water concentration. While the data averaged between subjects showed no significant change existed between phases, it was clear that individual subjects did exhibit changes in composition which were consistent from cycle to cycle. Understanding what leads to this heterogeneity between subjects will be an important factor in utilizing these measurements in clinical practice.

  18. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  19. X-Ray Computed-Tomography Imaging of Preferential Mode of Gas Migration through Water-Saturated Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Choi, J.; Rosenbaum, E.; Boswell, R. M.; Juanes, R.

    2011-12-01

    Field observations suggest that gas transport through water-saturated soft sediment is an essential component of seafloor dynamics, and that it exerts a fundamental control on natural gas seeps, the creation of pockmarks in the ocean floor, and the growth and form of gas hydrates. In this study, we use controlled experiments and computed tomography (CT) imaging to investigate the preferential mode of gas migration in three-dimensional samples of water-saturated silica-sand, silica-silt, kaolin-clay, as well as multi-layered sediments. Our experimental system allows independent control of radial and axial confining stresses and pore pressure while performing continuous x-ray CT scanning. The CT image analysis of the gas migration provides the first experimental confirmation, in three-dimensional systems, that capillary invasion preferentially occurs in coarse-grained sediments whereas grain displacement and conduit openings are dominant in fine-grained sediments [1]. Our findings rationalize prior field observations and pore-scale modeling results which suggest the strong control of grain size and sediment mechanics on the nature of gas invasion into water-filled porous media. These data provide critical experimental evidence to explain the means by which conduits for the transit of methane gas may be established through the gas hydrate stability zone in oceanic sediments, and cause large episodic releases of carbon into the deep ocean.

  20. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    PubMed

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI.

  1. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes

    NASA Astrophysics Data System (ADS)

    Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.

    2017-01-01

    Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.

  2. Clay hydration/dehydration in dry to water-saturated supercritical CO2: Implications for caprock integrity

    SciTech Connect

    Loring, John S.; Schaef, Herbert T.; Thompson, Christopher J.; Turcu, Romulus VF; Miller, Quin R.; Chen, Jeffrey; Hu, Jian Z.; Hoyt, David W.; Martin, Paul F.; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2013-01-01

    Injection of supercritical CO2 (scCO2) for the geologic storage of carbon dioxide will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Wet scCO2 is highly reactive and capable of carbonating and hydrating certain minerals, whereas anhydrous scCO2 can dehydrate water-containing minerals. Because these geochemical processes affect solid volume and thus porosity and permeability, they have the potential to affect the long-term integrity of the caprock seal. In this study, we investigate the swelling and shrinkage of an expandable clay found in caprock formations, montmorillonite (Ca-STx-1), when exposed to variable water-content scCO2 at 50 °C and 90 bar using a combination of in situ probes, including X-ray diffraction (XRD), in situ magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), and in situ attenuated total reflection infrared spectroscopy (ATR-IR). We show that the extent of montmorillonite clay swelling/shrinkage is dependent not only on water hydration/dehydration, but also on CO2 intercalation reactions. Our results also suggest a competition between water and CO2 for interlayer residency where increasing concentrations of intercalated water lead to decreasing concentrations of intercalated CO2. Overall, this paper demonstrates the types of measurements required to develop fundamental knowledge that will enhance modeling efforts and reduce risks associated with subsurface storage of CO2.

  3. Practical deviations from Henry`s law for water/air partitioning of volatile organic compounds

    SciTech Connect

    Schabron, J.F.; Rovani, J.F. Jr.

    1997-12-31

    A study was conducted to define parameters relating to the use of a down hole submersible photoionization detector (PID) probe to measure volatile organic compounds (VOCs) in an artificial headspace. The partitioning of toluene and trichloroethylene between water and air was studied as a function of analyte concentration and water temperature. The Henry`s law constant governing this partitioning represents an ideal condition at infinite dilution for a particular temperature. The results show that in practice. this partitioning is far from ideal. Conditions resulting in apparent, practical deviations from Henry`s law include temperature and VOC concentration. Thus, a single value of Henry`s law constant for a particular VOC such as toluene can provide only an approximation of concentration in the field. Detector response in saturated humidity environments as a function of water temperature and analyte concentration was studied also.

  4. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CO2: Implications for Caprock Integrity

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2012-12-01

    The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by

  5. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    SciTech Connect

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid becomes locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicates that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 references, 3 figures, 3 tables.

  6. Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment.

    PubMed

    Costello, Elizabeth K; Schmidt, Steven K

    2006-08-01

    Cold, water-saturated soils play important biogeochemical roles, yet almost nothing is known about the identity and habitat of microbes active under such conditions. We investigated the year-round microenvironment of an alpine tundra wet meadow soil in the Colorado Rocky Mountains, focusing on the biogeochemistry and microbial diversity of spring snowmelt--a dynamic time for alpine ecosystems. In situ measurements revealed spring and autumn periods of long-term temperature stability near 0 degrees C, and that deeper soil (30 cm) was more stable than surface soil, with more moderate summers and winters, and longer isothermal phases. The soil was saturated and water availability was limited by freezing rather than drying. Analyses of bioavailable redox species showed a shift from Mn reduction to net Fe reduction at 2-3 cm depth, elevated SO4(2-) and decreased soluble Zn at spring snowmelt. Terminal restriction fragment length polymorphism profiles detected a correlated shift in bacterial community composition at the surface to subsurface transition. Bacterial and archaeal small-subunit rRNA genes were amplified from saturated spring soil DNA pooled along a depth profile. The most remarkable feature of these subsurface-biased libraries was the high relative abundance of novel, uncultivated Chloroflexi-related sequences comprising the third largest bacterial division sampled, and representing seven new Chloroflexi subdivisions, thereby dramatically expanding the known diversity of this bacterial division. We suggest that these novel Chloroflexi are active at near -0 degrees C temperatures, under likely anoxic conditions, and utilize geochemical inputs such as sulfide from upslope weathering.

  7. Air-water gas exchange of toxaphene in Lake Superior.

    PubMed

    Jantunen, Liisa M; Bidleman, Terry F

    2003-06-01

    Parallel air and water samples were collected in Lake Superior during August 1996 and May 1997, to determine the levels and air-water exchange direction of toxaphene. Concentration of toxaphene in water did not vary across Lake Superior or between seasons (averaging 918 +/- 218 pg/L) but atmospheric levels were lower in May (12 +/- 4.6 pg/m3) than in August (28 +/- 10 pg/m3). Two recalcitrant congeners, Parlar 26 and 50, also were determined. These congeners were enriched in the air samples, compared to a standard of technical toxaphene, but not in the water. Water-air fugacity ratios varied from 1.4 to 2.6 in August and 1.3 to 4.7 in May, implying volatilization of toxaphene from the lake. Estimated net fluxes ranged from 5.4 to 13 and 1.8 to 6.4 nm/m2d, respectively. The temperature dependence of toxaphene partial pressure (P) in air was log P/Pa = -3.291/T(a) + 1.67, where T(a) is air temperature. By using this relationship, the atmospheric levels of toxaphene, fugacity ratios, and net fluxes were estimated for the entire year. Fugacity ratios were highest in the winter and lowest in the summer; thus toxaphene was predicted to undergo net volatilization from the lake during all months. A net removal of approximately 220 kg/year by gas exchange was estimated.

  8. Soil Water Retention and Relative Permeability for Full Range of Saturation

    SciTech Connect

    Zhang, Z. F.

    2010-09-28

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

  9. Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation

    SciTech Connect

    Zhang, Z. F.

    2011-11-04

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to the capillary force only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which the water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified measurements. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but underestimate the conductivity. The extended models match the retention and conductivity measurements well.

  10. Minimizing the water and air impacts of unconventional energy extraction

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  11. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  12. Certification by the Karl Fischer method of the water content in SRM 2890, Water Saturated 1-Octanol, and the analysis of associated interlaboratory bias in the measurement process.

    PubMed

    Margolis, S A; Levenson, M

    2000-05-01

    The calibration of Karl Fischer instruments and reagents and the compensation for instrumental bias are essential to the accurate measurement of trace levels of water in organic and inorganic chemicals. A stable, nonhygroscopic standard, Water Saturated Octanol, which is compatible with the Karl Fischer reagents, has been prepared. This material, Standard Reference Material (SRM) 2890, is homogeneous and is certified to contain 39.24 +/- 0.85 mg water/mL (expanded uncertainty) of solution (47.3 +/- 1.0 mg water/g solution, expanded uncertainty) at 21.5 degrees C. The solubility of water in -octanol has been shown to be nearly constant between 10 degrees C and 30 degrees C (i.e., within 1% of the value at 21.5 degrees C). The results of an interlaboratory comparison exercise illustrate the utility of SRM 2890 in assessing the accuracy and bias of Karl Fischer instruments and measurements.

  13. Air-to-water heat pumps for the home

    SciTech Connect

    Bodzin, S.

    1997-07-01

    Heat pump water heaters may be on the rise again. Retrofitters have shied away from this form of water heating due to concerns about cost, moise, efficiency, and maintaenance. Recent advances have overcome some of these problems and are helping the technology find a niche in both hot and cold climates. The topics covered in this article include the following: how heat pump water heaters work; air source from where to where, including air conditioning, heat recovery ventilation, hybrid systems; nuisances; maintenance; costs; to install or not to install; performance: a trick to quantify. 2 figs.

  14. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  15. A critical evaluation of soil water retention parameterizations with respect to their behaviour near saturation and in the dry range

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit; Mai, Juliane; Mielenz, Henrike

    2016-04-01

    Flow of liquid water and movement of water vapor in the unsaturated zone affect in-soil processes (e.g., root water uptake) and exchanges of water between the soil and the groundwater (e.g., aquifer recharge) and between the soil and the atmosphere (e.g., evaporation). Evapotranspiration in particular is a key factor in the way soils moderate weather and respond to climate change. Soil physicists typically model these processes at scales of individual fields and smaller. They solve Richards' equation using soil water retention curves and hydraulic conductivity curves (soil hydraulic property curves) that are typically valid for even smaller soil volumes. Over the years, many parametric expressions have been proposed as models for the soil hydraulic property curves. Before Richards' equation and the associated soil hydraulic properties can be upscaled or modified for use on scales that are more useful for climate modeling and other applications of practical relevance, the small scale soil hydraulic property curves should at least perform well on the scale for which they were originally developed. Research over the past couple of decades revealed that the fit of soil water retention curves in the dry end is often quite poor, which is particularly risky when vapor flow is a significant factor. It also emerged that the shape of the retention curve for matric potentials very close to zero can generate physically unrealistic behavior of the hydraulic conductivity near saturation when combined with a popular class of conductivity models. We critically examined most of the existing soil water retention parameterizations with respect to these two aspects, and introduced minor modifications to a few of them to improve their performance. The presentation will highlight the results of this review, and demonstrate the effect on calculated fluxes of liquid water and water vapor in soils for illustrative hypothetical scenarios.

  16. Facts about saturated fats

    MedlinePlus

    Cholesterol - saturated fat; Atherosclerosis - saturated fat; Hardening of the arteries - saturated fat; Hyperlipidemia - saturated fat; Hypercholesterolemia - saturated fat; Coronary artery disease - saturated fat; ...

  17. Cold water aquifer storage. [air conditioning

    NASA Technical Reports Server (NTRS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  18. The effect of water saturation on methane breakthrough pressure: An experimental study on the Carboniferous shales from the eastern Qaidam Basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Yu, Qingchun

    2016-12-01

    Breakthrough pressure plays an important role in shale gas flow, mining, and caprock evaluation. A series of breakthrough experiments were conducted under different water saturation conditions for four shales taken from the Carboniferous Hoit Taria Formation in the eastern Qaidam Basin, China to investigate the influence of water saturation on breakthrough pressure. Relevant geochemical tests (mineral composition, clay content, total organic carbon, thermal maturity and vitrinite reflectance) and micro structural characteristics of micro pores were also conducted. Breakthrough pressures under at least five different water saturations (from 0 to 100%) were obtained and relationship between breakthrough pressure and water saturation was fitted for each sample. We found that breakthrough pressure increases exponentially with water saturation. The decrease in effective pore diameter caused by both the bound water films and the swelling of the clay minerals resulted in the increase in the breakthrough pressure. After water saturation reached about 60%, breakthrough pressure increased rapidly from connectivity reduction, caused by the sealing off of smaller pores and partial water saturation of the macropores. By analyzing the correlation between breakthrough pressure and pore structure characteristics, breakthrough pressure is inversely related to porosity, and is primarily affected by macropores. Because macropores consist of many microfractures with lengths up to dozens of micrometers, they determine the porosity and then affect the connectivity of the rock. Correlation analysis between the mineral compositions and breakthrough pressure showed that TOC content exhibits a positive correlation with breakthrough pressure, but neither quartz content nor the clay mineral content exhibits a correlation. By combining this information with Field Emission Scanning Electron Microscope results, we found that microfractures are easily created where the TOC (total organic carbon

  19. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  20. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 212 citations and includes a subject term index and title list.)

  1. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 225 citations and includes a subject term index and title list.)

  2. Influence of open and sealed fractures on fluid flow and water saturation in sandstone cores using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Baraka-Lokmane, S.; Teutsch, G.; Main, I. G.

    2001-11-01

    We use Magnetic Resonance Imaging (MRI) to image the imbibition of water by capillary action in a right-cylindrical sample of a porous sedimentary rock with low iron content. In the method some 55 repeat images are taken over a period of approximately two hours, covering five vertical sections. The evolution of the water flood front and the degree of water saturation can be observed by examining snapshots of proton density. The results clearly show (a) the development of a rising wetting front in the rock matrix (b) preferential flow along open fractures observed on the core surface, and (c) reduced flow associated with sealed fractures. The inferred location, orientation and connectivity of conducting and sealing fractures are confirmed by impregnating the sample after the test with an appropriate low-viscosity setting resin and taking serial thin sections in destructive mode. The results validate the utility of MRI as a non-destructive analytical tool for visualizing the distribution of water inside fractured porous media with low iron content. The technique identifies paths of high and low permeability in the sample, and quantifies the fracture location, orientation, and connectivity in sedimentary rocks. Preferential fluid flow in open fractures during capillary imbibition implies that the fractures are more water-wet than the clasts within the matrix. This may be due to due to differences in the age, morphology and mineral structure on the surface of the pores and the fractures.

  3. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  4. Microencapsulation using an oil-in-water-in-air 'dry water emulsion'.

    PubMed

    Carter, Benjamin O; Weaver, Jonathan V M; Wang, Weixing; Spiller, David G; Adams, Dave J; Cooper, Andrew I

    2011-08-07

    We describe the first example of a tri-phasic oil-in-water-in-air 'dry water emulsion'. The method combines highly stable oil-in-water emulsions prepared using branched copolymer surfactants, with aqueous droplet encapsulation using 'dry water' technology.

  5. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., U.S. Air Force. (a) The danger zones—(1) For fighter aircraft. An area approximately 30 miles... Officer, 2d Bombardment Wing, Hunter Air Force Base, Savannah, Georgia, and such agencies as he may...; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S....

  6. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., U.S. Air Force. (a) The danger zones—(1) For fighter aircraft. An area approximately 30 miles... Officer, 2d Bombardment Wing, Hunter Air Force Base, Savannah, Georgia, and such agencies as he may...; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S....

  7. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., U.S. Air Force. (a) The danger zones—(1) For fighter aircraft. An area approximately 30 miles... Officer, 2d Bombardment Wing, Hunter Air Force Base, Savannah, Georgia, and such agencies as he may...; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S....

  8. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  9. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  10. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  11. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  12. Impact of Salinity on the Air-Water Partition Coefficient of Gas Tracers

    SciTech Connect

    Zhong, Lirong; Pope, Gary A.; Evans, John C.; Cameron, Richard J.

    2005-09-01

    The use of a gas partitioning interwell tracer test (PITT) has been proposed as a standard approach to the measurement of field-scale vadose zone water saturation fractions. The accuracy of the saturation measurement is largely dependent on the determination of the air-water partitioning coefficient, K, of the tracers; however, in practice, K is also strongly influenced by the physical and chemical properties of the water. In this study, column tests were conducted to investigate the impact of salinity on tracer partitioning coefficients for two promising gas phase candidate tracers, dibromomethane and dimethylether. Sodium thiosulfate was used as a salinity surrogate. The dynamic K values of the two partitioning tracers were measured for sodium thiosulfate concentrations between 0% and 36% by weight. Methane was used as the non-partitioning tracer for all experiments. K values were found to decrease significantly with increasing sodium thiosulfate concentration. Similar correlations between K values and sodium thiosulfate concentration were found for both of the partitioning tracers tested.

  13. Separation of saturated hydrocarbons from coal by treatment with water at supercritical parameters

    SciTech Connect

    M.R. Predtechenskiy; M.V. Pukhovoy

    2008-10-15

    The treatment of coals of various degrees of metamorphism in supercritical water (SCW) over the temperature region 380-800{sup o}C was studied. The yields and compositions of liquid products obtained by treatment in SCW were determined. These data were compared with the results of the semicoking of the above coals.

  14. Laser processing of natural stones: Study of laser cutting assisted by water saturation of marble

    NASA Astrophysics Data System (ADS)

    Kamata, Hirofumi; Kaneoka, Masaru; Tanaka, Kazuya; Sugimoto, Kenji

    2000-01-01

    Some possibilities of laser processing of natural stones were evaluated and the laser irradiation parameters suited for the following materials removal and melting processes were examined. 1) Surface roughening of granite, 2) Cutting of marble after water immersion, 3) Drilling of holes in natural stones for locating metal fittings, and 4) Surface melting and glazing of soft stones.

  15. EFFECTS OF VELOCITY ON THE TRANSPORT OF TWO BACTERIA THROUGH SATURATED SAND. GROUND WATER.

    EPA Science Inventory

    Transport of the bacteria Klebsiella oxytoca and Burkholderia cepacia G4PR1 (G4PR1) was investigated in column experiments conducted under conditions that allowed us to quantify sorption under a range of ground water velocities. Column experiments (33 mm I.D. X 114 mm long colu...

  16. Impulse Loading Resulting fromShallow Buried Explosives in Water-Saturated Sand

    DTIC Science & Technology

    2007-01-01

    resembles under-water explosion. Keywords: detonation, shallow buried mine, blast loading, AUTODYN 1 INTRODUCTION Recent experience of the US military... AUTODYN , a general purpose transient non-linear dynamics explicit simulation software [9], a detailed comparison was made between the experimental...impulse pendulum with their computational counterparts obtained via detailed numerical modelling of the same physical problem using AUTODYN . The objective

  17. Water Resources Investigations at Edwards Air Force Base since 1988

    USGS Publications Warehouse

    Sneed, Michelle; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Edwards Air Force Base (EAFB) in southern California (fig. 1) has relied on ground water to meet its water-supply needs. The extraction of ground water has led to two major problems that can directly affect the mission of EAFB: declining water levels (more than 120 ft since the 1920s) and land subsidence, a gradual downward movement of the land surface (more than 4 ft since the late 1920s). As water levels decline, this valuable resource becomes depleted, thus requiring mitigating measures. Land subsidence has caused cracked (fissured) runways and accelerated erosion on Rogers lakebed. In 1988, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, began investigations of the effects of declining water levels and land subsidence at EAFB and possible mitigation measures, such as the injection of imported surface water into the ground-water system. The cooperative investigations included data collection and analyses, numerical simulations of ground-water flow and land subsidence, and development of a preliminary simulation-optimization model. The results of these investigations indicate that the injection of imported water may help to control land subsidence; however, the potential ground-water-quality impacts are unknown.

  18. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Elderfield, Henry

    2007-06-01

    Boron/calcium ratios were measured in four benthic foraminiferal species (three calcitic: Cibicidoides wuellerstorfi, Cibicidoides mundulus, and Uvigerina spp., and one aragonitic: Hoeglundina elegans) from 108 core-top samples located globally. Comparison of coexisting species shows: B/Ca of C. wuellerstorfi > C. mundulus > H. elegans > Uvigerina spp., suggestive of strong "vital effects" on benthic foraminiferal B/Ca. A dissolution effect on benthic B/Ca is not observed. Core-top data show large intra-species variations (50-130 μmol/mol) in B/Ca. Within a single species, benthic foraminiferal B/Ca show a simple linear correlation with deep water Δ[CO 32-], providing a proxy for past deep water [CO 32-] reconstructions. Empirical sensitivities of Δ[CO 32-] on B/Ca have been established to be 1.14 ± 0.048 and 0.69 ± 0.072 μmol/mol per μmol/kg for C. wuellerstorfi and C. mundulus, respectively. The uncertainties associated with reconstructing bottom water Δ[CO 32-] using B/Ca in C. wuellerstorfi and C. mundulus are about ± 10 μmol/kg. A preliminary application shows that the Last Glacial Maximum (LGM) B/Ca ratios were increased by 12% at 1-2 km and decreased by 12% at 3.5-4.0 km relative to Holocene values in the North Atlantic Ocean. This implies that the LGM [CO 32-] was higher by ˜ 25-30 μmol/kg at intermediate depths and lower by ˜ 20 μmol/kg in deeper waters, consistent with glacial water mass reorganization in the North Atlantic Ocean inferred from other paleochemical proxies.

  19. Role of air on local water retention behavior in the shallow heterogeneous vadose zone

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-12-01

    simple heterogeneous column. The column was packed using two sands to form three layers where the coarser sand was sandwitched by two layers of a finer sand. In each layer, soil moisture, water pressure and air pressure were monitored. The soil was initially saturated and suction at the bottom was gradually increased to induce wetting fluid drainage, and followed by a wetting cycle. In the drainage cycle, the coarse middle layer did not drain until air front reached the bottom of the top fine layer. Once the air front reached the fine-coarse interface, air was quickly pulled into the coarse layer. The results showed that the newly developed hydrophobic material showed very small time lag and captured the abrupt air pressure change in the wet soil. In the wetting cycle, we observed positive air pressure which indicated entrapment of air and its compression as wetting proceeded. This behavior cannot be evaluated properly without the rapid measurement of air pressure. The method is currently being applied in a large 2D vertical aquifer with a structured heterogeneity to investigate how air pathways are formed under various flux/temperature conditions at the soil surface.

  20. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  1. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    PubMed

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  2. Effect of Fe2+ ions on polarization behavior of X60 steel in CO2 saturated salty water

    NASA Astrophysics Data System (ADS)

    Gu, Jincheng; Feng, Xiangzhu; Lin, Jiaxin; Shi, Weixin; Li, Wenqin

    1989-06-01

    The effects of ferrous ions on cathodic and anodic polarization behavior of the X60 steel in CO2 saturated salty water were studied by potentio-dynamic polarization method. The results show that the reducing current peak of cathodic polarization is affected significantly if FeCl2 is added to the salty solution of controlled pH, but not the anodic polarization. It is considered that the ferrous ions accelerate the formation of a protective ferrous carbonate film. Films formed by addition of ferrous ions and those formed by ferrous ions produced from steel corrosion have the same forming mechanism. The former can fully meet the formative condition of the film and can play the role of inhibitor.

  3. THE VELOCITY OF DNAPL FINGERING IN WATER-SATURATED POROUS MEDIA LABORATORY EXPERIMENTS AND A MOBILE-IMMOBILE-ZONE MODEL. (R826157)

    EPA Science Inventory

    Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...

  4. Influence of substrate water saturation on pesticide dissipation in constructed wetlands.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David

    2016-01-01

    Constructed wetlands are an effective and practical option for removing pesticide pollution from runoff or subsurface drainage water. The objective of this study was to assess the efficiencies of a ditch with a bundle of straw placed in its centre and a vegetated pond installed in grass cover bands at downstream of a drained plot. The dissipation rates of three herbicides and three fungicides were monitored on four substrates commonly found in constructed wetlands (two soils, sediment and straw). The influence of water content was determined in a sequence of three steps (flooded-unsaturated-flooded) over 120 days. The pesticide dissipation rates observed during the 120 days of incubation ranged from 1.4 to 100%. Isoproturon and 2,4-MCPA (MCPA) showed the highest dissipation rates, which ranged from 61.0 to 100% of the applied quantities during the 120 days of incubation. In contrast, boscalid and tebuconazole showed the lowest dissipation rates, which ranged from 1.4 to 43.9% of the applied quantities during the 120 days of incubation. The estimated DT50 values ranged from 20.5 days to more than 1 year and were influenced by the substrate water content. The soil and straw substrates had the lowest DT50 values during the unsaturated conditions, whereas the sediments had the lowest DT50 values during the flooded conditions. These results could be explained by an adaptation of microbial communities to their environmental conditions. Thus, the most favourable conditions of dissipation for soils and straw are observable when the drainage ceases (spring and summer). However, favourable conditions occur all year for the sediments, except when the constructed wetlands are dry. The results suggest that the dissipation of pesticides in constructed wetlands contributes to the long-term effectiveness of these buffer zones for reducing water pollution.

  5. Cotransport of clay colloids and viruses in water saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Syngouna, V. I.; Chrysikopoulos, C. V.

    2012-04-01

    This study is focused on the cotransport of clay colloids and viruses in saturatedcolumns packed with glass beads. Bacteriophages MS2 and ΦΧ174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model colloids.The effect of three pore water velocities (0.38, 0.74, and 1.21 cm/min) on virus transport and virus-clay cotransport was examined. The results indicated that the mass recovery of viruses and clay colloids decreased as the pore water velocity decreased; whereas, for the cotransport experiments no clear trend was observed. Temporal moments of the breakthrough concentrations suggested that, in the absence of clay colloids, both MS2 and ΦX174 traveled faster than the conservative tracer only at the highest pore water velocity tested. For the other two velocities both viruses were slightly retarded. The presence of clays significantly influenced the irreversible virus deposition. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b with MS2 exhibiting greater affinity than ΦX174 for both clays. The results suggest that electrostatic interactions play a vital role on virus adsorption onto both glass beads and clay colloids.

  6. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  7. Digital-model projection of saturated thickness and recoverable water in the Ogallala Aquifer, Texas County, Oklahoma

    USGS Publications Warehouse

    Morton, Robert B.

    1980-01-01

    A digital model was used to provide a quantitative description of the Ogallala aquifer in Texas County, Oklahoma, and to predict saturated thickness and water in storage from the aquifer at specified future times. The Ogallala aquifer, which consists of unconsolidated sand, gravel, and clay, is the principal source of ground water in Texas County. Saturated thickness ranged from 0 feet to over 600 feet. The estimated value used for specific yield in most of the areas was 0.15 but 0.05 was used in some places. Hydraulic conductivity ranged from 0 to more than 200 feet per day, and recharge from 0.2 to 2.2 inches per year. Irrigation pumpage was estimated using crop acreage and estimate of irrigation requirements. For projection simulations with large stress, a reasonable maximum stress using a minimum of 4 wells per square mile and 1972 pumping rate per well, if saturated thickness was more than 38 feet, was used. Four types of boundaries were used in the model. They are (1) a zero-flux (impermeable) boundary on the perimeter of the modeled area,(2) a constant-head boundary for a reach of the Cimarron River, (3) a boundary which is a constant-head boundary initially but converts to an impermeable boundary (depending on the potentiometric gradient at the boundary) for a reach of Beaver River, Palo Duro Creek, and south of Palo Duro Creek, and (4) a boundary which is a partially penetrating stream with leaky-stream bed for parts of Beaver River and Coldwater Creek. The base period for calibration was 1966. The model was calibrated by a simulation from 1966 to 1968 in which pumpage was modified until the 1968 calculated heads matched closely the 1968 observed heads. The model was verified by a simulation from 1966 to 1972, using the 1966 to 1972 pumpage stress, in order to determine the degree of conformity between 1972 calculated heads and 1972 observed heads. The agreement was acceptable.

  8. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  9. Water-saturated phase-equilibrium experiments on rhyolite and dacite obsidians: the effect of variable melt water concentration on the composition of phenocrysts

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.; Andrews, B. J.

    2012-12-01

    Results of water-saturated phase equilibrium experiments on three obsidians ranging in composition from dacite to rhyolite (67-74 wt% SiO2) are presented and demonstrate the effect of changing melt water concentrations on the composition of plagioclase and orthopyroxene phenocrysts. Experiments were conducted in a cold-seal Ni-rich pressure vessel (Waspaloy) with Ni filler rod, so that experiments were buffered at ΔNNO +1 (± 0.5) (Gershwind & Rutherford, 1992) and pressurized with H2O (where Ptotal= PH2O). Temperatures ranged from 750-900°C and pressures ranged from 100-300 MPa. Prior to the experiments, detailed petrologic studies were first conducted on the three obsidian samples, which are from Cascade and Mexican arcs. Overall phenocryst abundances in all three samples are low (<2.3%), with little to no microlite crystallization. Despite low phenocryst abundances, the obsidians are saturated in five to seven mineral phases: plagioclase + orthopyroxene + ilmenite + magnetite + apatite ± clinopyroxene ± biotite. Eruptive temperatures (±1σ), on the basis of Fe-Ti two oxide thermometry (Ghiorso & Evans, 2008), range from 760 ± 18°C to 943 ± 20°C; corresponding ΔNNO values (±1σ) range from -0.9 ± 0.1 and 0.7 ± 0.1. Plagioclase compositions span a wide range in each sample (e.g., 9-40 and 30-54 mol% An), despite low phenocryst abundances. Orthopyroxene compositions also span a wide range (≤ 15 mol% En), which correspond to Fe-MgKD(opx-liq) values that range from 0.18-0.46. Given the low crystallinity, absence of evidence for mixing of magmas, and no apparent change in oxygen fugacity recorded by iron oxides, the progressive loss of water from a melt, through degassing during rapid magma ascent, is a plausible hypothesis to explain the observed variation in phenocryst compositions. This hypothesis is evaluated with the run products from the water-saturated phase equilibrium experiments on the three obsidian samples. The experimental results indicate

  10. Stochastic microstructural modeling of fuel cell gas diffusion layers and numerical determination of transport properties in different liquid water saturation levels

    NASA Astrophysics Data System (ADS)

    Tayarani-Yoosefabadi, Z.; Harvey, D.; Bellerive, J.; Kjeang, E.

    2016-01-01

    Gas diffusion layer (GDL) materials in polymer electrolyte membrane fuel cells (PEMFCs) are commonly made hydrophobic to enhance water management by avoiding liquid water blockage of the pores and facilitating reactant gas transport to the adjacent catalyst layer. In this work, a stochastic microstructural modeling approach is developed to simulate the transport properties of a commercial carbon paper based GDL under a range of PTFE loadings and liquid water saturation levels. The proposed novel stochastic method mimics the GDL manufacturing process steps and resolves all relevant phases including fiber, binder, PTFE, liquid water, and gas. After thorough validation of the general microstructure with literature and in-house data, a comprehensive set of anisotropic transport properties is simulated for the reconstructed GDL in different PTFE loadings and liquid water saturation levels and validated through a comparison with in-house ex situ experimental data and empirical formulations. In general, the results show good agreement between simulated and measured data. Decreasing trends in porosity, gas diffusivity, and permeability is obtained by increasing the PTFE loading and liquid water content, while the thermal conductivity is found to increase with liquid water saturation. Using the validated model, new correlations for saturation dependent GDL properties are proposed.

  11. Influence of Temperature on Frictional Strength and Healing Properties of Water Saturated Granular Fault Gouges During Dynamic Slip Instabilities

    NASA Astrophysics Data System (ADS)

    Scuderi, M.; Marone, C.

    2012-12-01

    The seismic potential of faults, as well as mechanical strength and frictional instability are controlled by the evolution of the real contact area within the fault gouge. Fault gouge is characterized by granular and clay rich material, as the result of continuous wear produced by dynamic or quasi-static slip along the fault plane. In this context, water and thermally-activated physicochemical reactions play a fundamental role in controlling the evolution of friction, via asperity contact properties and processes including hydrolytic weakening, adsorption/desorption, and/or intergranular pressure-solution (IPS). To investigate the role of granular processes and temperature in faulting, we performed shear experiments in water-saturated simulated gouges. We sheared layers of synthetic fault gouge composed of soda-lime glass beads (dia. 105-149 mm) in a double direct shear configuration within a true-triaxial pressure vessel under controlled fluid pressure using DI water. Effective normal stress (σn) was kept constant during shear at 5 MPa, and layer thickness was constantly monitored via a DCDT attached to the ram. Shear stress (τ) was applied via a constant shear displacement rate at layers boundaries. We performed velocity step experiments, during which shearing velocity was increased stepwise from 0.3 to 300 μm/s, and slide-hold-slide tests, with hold times from 1 to 1000 s. During each experiment temperature was kept constant at values of 25, 50 and 75C. Our experiments were conducted in a stick-slip sliding regime. At the end of each run, simulated gouge layers were carefully collected and impregnated with epoxy resin for SEM analysis. For all experiments, stress drop (Δτ) decreases roughly linearly with the log of velocity. With increasing temperature Δτ increases and the velocity dependence varies. Frictional healing is characterized by β = 0.023 change in friction per decade at T = 25C, increasing to β = 0.037 at T = 50C. We find that maximum

  12. Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests.

    PubMed

    Brusseau, Mark L; Peng, Sheng; Schnaar, Gregory; Murao, Asami

    2007-03-15

    Air-water interfacial areas as a function of water saturation were measured for a sandy, natural porous medium using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. In addition, interfacial areas measured in a prior study with the gas-phase interfacial partitioning tracer-test method for the same porous medium were included for comparison. For all three methods, total air-water interfacial areas increased with decreasing water saturation. The interfacial areas measured with the tracer-test methods were generally larger than those obtained from microtomography, and the disparity increased as water saturation decreased. The interfacial areas measured by microtomography extrapolated to a value (147 cm(-1)) very similar to the specific solid surface area (151 cm(-1)) calculated using the smooth-sphere assumption, indicating that the method does not characterize the area associated with microscopic surface heterogeneity (surface roughness, microporosity). This is consistent with the method resolution of approximately 12 microm. In contrast, the interfacial areas measured with the gas-phase tracer tests approached the N2/BET measured specific solid surface area (56000 cm(-1)), indicating that this method does characterize the interfacial area associated with microscopic surface heterogeneity. The largest interfacial area measured with the aqueous-phase tracer tests was 224 cm(-1), while the extrapolated maximum interfacial area was approximately 1100 cm(-1). Both of these values are larger than the smooth-sphere specific solid surface area but much smaller than the N2/BET specific solid surface area, which suggests that the method measures a limited portion of the interfacial area associated with microscopic surface heterogeneity. All three methods provide measures of total (capillary + film) interfacial area, a primary difference being that the film-associated area is a smooth-surface equivalent for the

  13. Correlation of air temperature above water-air sections with the forecasted low level clouds

    NASA Astrophysics Data System (ADS)

    Huseynov, N. Sh.; Malikov, B. M.

    2009-04-01

    As a case study approach the development of low clouds forecasting methods in correlation with air temperature transformational variations on the sections "water-air" is surveyed. It was evident, that transformational variations of air temperature mainly depend on peculiarities and value of advective variations of temperature. DT is the differences of initial temperature on section water-air in started area, from contrast temperature of water surface along a trajectory of movement of air masses and from the temperature above water surface in a final point of a trajectory. Main values of transformational variations of air temperature at advection of a cold masses is 0.530C•h, and at advection of warm masses is -0.370C•h. There was dimensionless quantity K determined and implemented into practice which was characterized with difference of water temperature in forecasting point and air temperature in an initial point in the ratio of dew-points deficiency at the forecasting area. It follows, that the appropriate increasing or decreasing of K under conditions of cold and warm air masses advection, contributes decreasing of low clouds level. References: Abramovich K.G.: Conditions of development and forecasting of low level clouds. vol. #78, 124 pp., Hydrometcenter USSR 1973. Abramovich K.G.: Variations of low clouds level // Meteorology and Hydrology, vol. # 5, 30-41, Moscow, 1968. Budiko M.I.: Empirical assessment of climatic changes toward the end of XX century // Meteorology and Hydrology, vol. #12, 5-13, Moscow, 1999. Buykov M.V.: Computational modeling of daily evolutions of boundary layer of atmosphere at the presence of clouds and fog // Meteorology and Hydrology, vol. # 4, 35-44, Moscow, 1981. Huseynov N.Sh. Transformational variations of air temperature above Caspian Sea / Proceedings of Conference On Climate And Protection of Environment, 118-120, Baku, 1999. Huseynov N.Sh.: Consideration of advective and transformational variations of air temperature in

  14. Associations of autophagy with lung diffusion capacity and oxygen saturation in severe COPD: effects of particulate air pollution

    PubMed Central

    Lee, Kang-Yun; Chiang, Ling-Ling; Ho, Shu-Chuan; Liu, Wen-Te; Chen, Tzu-Tao; Feng, Po-Hao; Su, Chien-Ling; Chuang, Kai-Jen; Chang, Chih-Cheng; Chuang, Hsiao-Chi

    2016-01-01

    Although traffic exposure has been associated with the development of COPD, the role of particulate matter <10 μm in aerodynamic diameter (PM10) in the pathogenesis of COPD is not yet fully understood. We assessed the 1-year effect of exposure to PM10 on the pathogenesis of COPD in a retrospective cohort study. We recruited 53 subjects with COPD stages III and IV and 15 healthy controls in a hospital in Taiwan. We estimated the 1-year annual mean levels of PM10 at all residential addresses of the cohort participants. Changes in PM10 for the 1-year averages in quintiles were related to diffusion capacity of the lung for carbon monoxide levels (r=−0.914, P=0.029), changes in the pulse oxygen saturation (ΔSaO2; r=−0.973, P=0.005), receptor for advanced glycation end-products (r=−0.881, P=0.048), interleukin-6 (r=0.986, P=0.002), ubiquitin (r=0.940, P=0.017), and beclin 1 (r=0.923, P=0.025) in COPD. Next, we observed that ubiquitin was correlated with ΔSaO2 (r=−0.374, P=0.019). Beclin 1 was associated with diffusion capacity of the lung for carbon monoxide (r=−0.362, P=0.028), ΔSaO2 (r=−0.354, P=0.032), and receptor for advanced glycation end-products (r=−0.471, P=0.004). Autophagy may be an important regulator of the PM10-related pathogenesis of COPD, which could cause deterioration in the lung diffusion capacity and oxygen saturation. PMID:27468231

  15. Associations of autophagy with lung diffusion capacity and oxygen saturation in severe COPD: effects of particulate air pollution.

    PubMed

    Lee, Kang-Yun; Chiang, Ling-Ling; Ho, Shu-Chuan; Liu, Wen-Te; Chen, Tzu-Tao; Feng, Po-Hao; Su, Chien-Ling; Chuang, Kai-Jen; Chang, Chih-Cheng; Chuang, Hsiao-Chi

    2016-01-01

    Although traffic exposure has been associated with the development of COPD, the role of particulate matter <10 μm in aerodynamic diameter (PM10) in the pathogenesis of COPD is not yet fully understood. We assessed the 1-year effect of exposure to PM10 on the pathogenesis of COPD in a retrospective cohort study. We recruited 53 subjects with COPD stages III and IV and 15 healthy controls in a hospital in Taiwan. We estimated the 1-year annual mean levels of PM10 at all residential addresses of the cohort participants. Changes in PM10 for the 1-year averages in quintiles were related to diffusion capacity of the lung for carbon monoxide levels (r=-0.914, P=0.029), changes in the pulse oxygen saturation (ΔSaO2; r=-0.973, P=0.005), receptor for advanced glycation end-products (r=-0.881, P=0.048), interleukin-6 (r=0.986, P=0.002), ubiquitin (r=0.940, P=0.017), and beclin 1 (r=0.923, P=0.025) in COPD. Next, we observed that ubiquitin was correlated with ΔSaO2 (r=-0.374, P=0.019). Beclin 1 was associated with diffusion capacity of the lung for carbon monoxide (r=-0.362, P=0.028), ΔSaO2 (r=-0.354, P=0.032), and receptor for advanced glycation end-products (r=-0.471, P=0.004). Autophagy may be an important regulator of the PM10-related pathogenesis of COPD, which could cause deterioration in the lung diffusion capacity and oxygen saturation.

  16. Some consequences of a liquid water saturated regolith in early Martian history

    NASA Technical Reports Server (NTRS)

    Fuller, A. O.; Hargraves, R. B.

    1978-01-01

    Flooding of low-lying areas of the Martian regolith may have occurred early in the planet's history when a comparatively dense primitive atmosphere existed. If this model is valid, the following are some pedogenic and mineralogical consequences to be expected. Fluctuation of the water table in response to any seasonal or longer term causes would have resulted in precipitation of ferric oxyhydroxides with the development of a vesicular duricrust (or hardpan). Disruption of such a crust by scarp undercutting or frost heaving accompanied by wind deflation of fines could account for the boulders visible on Utopia Planitia in the vicinity of the second Viking lander site. Laboratory and field evidence on earth suggests that under weakly oxidizing conditions lepidocrocite (rather than goethite) would have preferentially formed in the Martian regolith from the weathering of ferrous silicates, accompanied by montmorillonite, nontronite, and cronstedtite. Maghemite may have formed as a low-temperature dehydrate of lepidocrocite or directly from ferrous precursors.

  17. Viscous and gravitational contributions to mixing during vertical brine transport in water-saturated porous media

    PubMed Central

    Flowers, Tracey C.; Hunt, James R.

    2010-01-01

    The transport of fluids miscible with water arises in groundwater contamination and during remediation of the subsurface environment. For concentrated salt solutions, i.e., brines, the increased density and viscosity determine mixing processes between these fluids and ambient groundwater. Under downward flow conditions, gravitational and viscous forces work against each other to determine the interfacial mixing processes. Historically, mixing has been modeled as a dispersive process, as viscous fingering, and as a combination of both using approaches that were both analytical and numerical. A compilation of previously reported experimental data on vertical miscible displacements by fluids with significant density and viscosity contrasts reveals some agreement with a stability analysis presented by Hill (1952). Additional experimental data on one-dimensional dispersion during downward displacement of concentrated salt solutions by freshwater and freshwater displacement by brines support the stability analysis and provides an empirical representation for dispersion coefficients as functions of a gravity number and a mobility ratio. PMID:20300476

  18. Numerical modeling of ground water flow and contaminant transport in a saturated porous medium

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad S.; Sadeghi, Masoomeh; Mahmoudi, Amir H.; Shahi, Mina; Gandaghi, Hadi

    2012-05-01

    In this paper, numerical modeling and experimental testing of the distribution of pollutants along the water flow in a porous medium is discussed. Governing equations including overall continuity, momentum and species continuity equations are derived for porous medium. The governing equations have been solved numerical using the Finite Volume Method based on collocated grids. The SIMPLE algorithm has been adopted for the pressure _ velocity linked equations. In order to validate the numerical results, experimental data from laboratory apparatus are applied and there is a good agreement among numerical results and experimental test. Finally, the main affecting parameters on the distribution and transport of pollutants porous medium were investigated. Results indicate that, the domain of pollution rises with increasing dispersion coefficient and the dispersion phenomenon overcomes on pollutant transfer. Reduction of porosity has decreased the pollutant transfer and increased velocity has result in the increasing pollutant transport phenomenon but has reduced the domain of the pollution.

  19. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  20. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  1. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  2. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  3. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  4. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  5. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  6. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Water Acts (a) If performance of this contract would involve the use of facilities which have given rise... which gave rise to said conviction. If no such statement is submitted, submission of an offer... facilities which have given rise to a conviction under section 113(c)(1) of the Clean Air Act or section...

  7. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Water Acts (a) If performance of this contract would involve the use of facilities which have given rise... which gave rise to said conviction. If no such statement is submitted, submission of an offer... facilities which have given rise to a conviction under section 113(c)(1) of the Clean Air Act or section...

  8. Temporal variations and trends of CFC11 and CFC12 surface-water saturations in Antarctic marginal seas: Results of a regional ocean circulation model

    NASA Astrophysics Data System (ADS)

    Rodehacke, Christian B.; Roether, Wolfgang; Hellmer, Hartmut H.; Hall, Timothy

    2010-02-01

    The knowledge of chlorofluorocarbon (CFC11, CFC12) concentrations in ocean surface waters is a prerequisite for deriving formation rates of, and water mass ages in, deep and bottom waters on the basis of CFC data. In the Antarctic coastal region, surface-layer data are sparse in time and space, primarily due to the limited accessibility of the region. To help filling this gap, we carried out CFC simulations using a regional ocean general circulation model (OGCM) for the Southern Ocean, which includes the ocean-ice shelf interaction. The simulated surface layer saturations, i.e. the actual surface concentrations relative to solubility-equilibrium values, are verified against available observations. The CFC surface saturations driven by concentration gradients between atmosphere and ocean are controlled mainly by the sea ice cover, sea surface temperature, and salinity. However, no uniform explanation exists for the controlling mechanisms. Here, we present simulated long-term trends and seasonal variations of surface-layer saturation at Southern Ocean deep and bottom water formation sites and other key regions, and we discuss differences between these regions. The amplitudes of the seasonal saturation cycle vary from 22% to 66% and their long-term trends range from 0.1%/year to 0.9%/year. The seasonal surface saturation maximum lags the ice cover minimum by two months. By utilizing observed bottle data the full seasonal CFC saturation cycle can be determined offering the possibility to predict long-term trends in the future. We show that ignoring the trends and using instead the saturations actually observed can lead to systematic errors in deduced inventory-based formation rates by up to 10% and suggest an erroneous decline with time.

  9. Water, air, Earth and cosmic radiation.

    PubMed

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc

  10. Water, Air, Earth and Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc, which

  11. Analysis of the heavy oil production technology effectiveness using natural thermal convection with heat agent recirculation method in reservoirs with varying initial water saturation

    NASA Astrophysics Data System (ADS)

    Osnos, V. B.; Kuneevsky, V. V.; Larionov, V. M.; Saifullin, E. R.; Gainetdinov, A. V.; Vankov, Yu V.; Larionova, I. V.

    2017-01-01

    The method of natural thermal convection with heat agent recirculation (NTC HAR) in oil reservoirs is described. The analysis of the effectiveness of this method for oil reservoir heating with the values of water saturation from 0 to 0.5 units is conducted. As the test element Ashalchinskoye oil field is taken. CMG STARS software was used for calculations. Dynamics of cumulative production, recovery factor and specific energy consumption per 1 m3 of crude oil produced in the application of the heat exchanger with heat agent in cases of different initial water saturation are defined and presented as graphs.

  12. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  13. Determining effective interfacial tension and predicting finger spacing for DNAPL penetration into water-saturated porous media.

    PubMed

    Smith, J E; Zhang, Z F

    2001-03-01

    The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Res. 30 (1994) 125]. We modified the method in that the macroscopic interface length was used instead of the system width. Methods to determine the macroscopic and the microscopic interface length are given. Lab experiments of dense nonaqueous phase liquid (DNAPL) penetrating into water-saturated glass beads were carried out in a two-dimensional (2-D) transparent chamber. The displacement processes were recorded using a 35-mm camera or a video camera, which was directly connected to and controlled by a computer. Unlike the method of Chang et al. (1994), the modified method used here gives a constant value of the effective interfacial tension over time. The predicted wavelengths of fingering are relatively close to those observed except for the fine beads.

  14. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  15. Carrier lifetime reduction in 1.5 μm AlGaAsSb saturable absorbers with air and AlAsSb barriers

    NASA Astrophysics Data System (ADS)

    Ostinelli, O.; Bächtold, W.; Haiml, H.; Grange, R.; Keller, U.; Gini, E.; Almuneau, G.

    2006-08-01

    The optical properties of different AlGaAsSb semiconductor saturable absorber mirrors and InP /AlGaAsSb heterostructures have been investigated by pump-probe and low temperature photoluminescence measurements. The results show that the type-II electron-hole recombination process at the InP-AlGaAsSb interface is responsible for the slow carrier decay time in the absorber. Nevertheless, this slow transition can be avoided by growing an AlAsSb barrier layer between InP and the absorber layer promoting the fast electron-hole recombination at the surface states on the absorber/air interface. This allows reducing the carrier decay time from several nanoseconds down to 20ps.

  16. Influence of Soil Management on Water Retention from Saturation to Oven Dryness and Dominant Soil Water States in a Vertisol under Crop Rotation

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Karl; Pachepsky, Yakov; Pederera, Aura; Martinez, Gonzalo; Espejo, Antonio Jesus; Giraldez, Juan Vicente

    2014-05-01

    Unique water transfer and retention properties of Vertisols strongly affect their use in rainfed agriculture in water-limited environments. Despite the agricultural importance of the hydraulic properties of those soils, water retention data dryer than the wilting point are generally scarce, mainly as a result of practical constraints of traditional water retention measurement methods. In this work we provide a detailed description of regionalized water retention data from saturation to oven dryness, obtained from 54 minimally disturbed topsoil (0-0.05m) samples collected at a 3.5-ha experimental field in SW Spain where conventional tillage (CT) and direct drilling (DD) is compared in a wheat-sunflower-legume crop rotation on a Vertisol. Water retention was measured from saturation to oven dryness using sand and sand-kaolin boxes, a pressure plate apparatus and a dew point psychrometer, respectively. A common shape of the water retention curve (WRC) was observed in both tillage systems, with a strong discontinuity in its slope near -0.4 MPa and a decreasing spread from the wet to the dry end. A continuous function, consisting of the sum of a double exponential model (Dexter et al, 2008) and the Groenevelt and Grant (2004) model could be fitted successfully to the data. Two inflection points in the WRC were interpreted as boundaries between the structural and the textural pore spaces and between the textural and the intra-clay aggregate pore spaces. Water retention was significantly higher in DD (p<0.05) for pressure heads ranging from -0.006 to -0.32 MPa, and from -1.8 to -3.3 MPa. The magnitude of these differences ranged from 0.006 to 0.015 kg kg-1. The differential water capacity and associated equivalent pore-size distribution showed that these differences could be attributed to a combined effect of tillage and compaction, increasing and decreasing the amount of the largest pores in CT and DD, respectively, but resulting in a proportionally larger pore space

  17. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  18. Oxidation of fine aluminum powders with water and air

    NASA Astrophysics Data System (ADS)

    Antipina, S. A.; Zmanovskii, S. V.; Gromov, A. A.; Konovalov, A. S.

    2017-01-01

    Fine aluminum powders (RA20-RA60 grades, SUAL-PM) with specific surface area from 0.37 to 0.73 m2/g and high aluminum contents (95-98 wt %) are studied. The powders are found to be waterwettable without additions of surfactants and characterized by high rates of gas liberation in reacting with a calcium hydroxide solution under normal conditions. All RA20-RA60 powders are shown to be highly reactive upon oxidation with air and close to aluminum nanopowders in the parameters of their activity when heated in air. Their stability in water could prevent active (metallic) aluminum losses during their storage.

  19. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  20. Automated potentiometric titrations in KCl/water-saturated octanol: method for quantifying factors influencing ion-pair partitioning.

    PubMed

    Scherrer, Robert A; Donovan, Stephen F

    2009-04-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.

  1. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  2. Effect of air on water capillary flow in silica nanochannels

    NASA Astrophysics Data System (ADS)

    Zambrano, Harvey; Walther, Jens; Oyarzua, Elton

    2013-11-01

    Capillarity is a classical topic in fluid dynamics. The fundamental relationship between capillarity and surface tension is solidly established. Nevertheless, capillarity is an active research area especially as the miniaturization of devices is reaching the molecular scale. Currently, with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads to changes in the dynamics contact angle of the water meniscus.

  3. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  4. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  5. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  6. An experimental study of air entrainment and oxygen transfer at a water jet from a nozzle with air holes.

    PubMed

    Baylar, Ahmet; Emiroglu, M Emin

    2004-01-01

    An adequate supply of dissolved oxygen is important in natural rivers and in some water treatment processes. The dissolved oxygen concentration can be enhanced by entraining air bubbles in a receiving pool. When a water jet impinges a receiving pool at rest, air bubbles may be entrained and carried away below the pool free surface. This process is called plunging water jet entrainment and aeration. This paper describes an experimental study of the air entrainment rate and oxygen transfer efficiency of circular nozzles with and without air holes. In particular, the effect of varying the number, positions, and open/close status of the air holes is investigated. A negative pressure occurred depending on the air holes opened on the circular nozzles. This phenomenon affected the water jet expansion, water jet shape, air entrainment, and bubble penetration depth and, hence, the oxygen transfer efficiency. It was demonstrated that the air entrainment rate and the oxygen transfer efficiency of the circular nozzles with air holes were better than those of the circular nozzles without air holes. Therefore, adding air holes to a simple, circular nozzle could lead to a significantly increased air entrainment rate and oxygen transfer efficiency.

  7. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    USGS Publications Warehouse

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  8. Probing porous media with first and second sound. II. Acoustic properties of water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Johnson, David Linton; Plona, Thomas J.; Kojima, Haruo

    1994-07-01

    The ultrasonic properties (reflection/transmission and bulk attenuation/speed) of porous and permeable media saturated with a Newtonian fluid, namely water, are considered. The frequency dependence of the transmission amplitudes of pulses is measured through a slab of thickness d1, repeated for another slab of thickness d2 for a given material. With these two measurements on two different thicknesses, it is possible in principle to separate bulk losses from reflection/transmission losses for compressional waves in these materials. The bulk properties are calculated from the Biot theory for which all of the input parameters have been measured separately; the attenuations are particularly sensitive to the values of Λ, determined from second-sound attenuation measurements reported in the companion article. There is excellent quantitative agreement between the theoretical and experimental values in the cases considered; there are no adjustable parameters involved. The reflection and transmission coefficients are reported for some of the multiply reflected pulses and their amplitudes are compared with those calculated from the Deresiewicz-Skalak and Rosenbaum boundary conditions appropriate to either the open-pore or sealed-pore surfaces, as the case may be. Again, there is excellent quantitative agreement between theory and experiment. Compared with the open-pore boundary conditions, it is noted that there is a large reduction, both theoretically and experimentally, in the efficiency with which the slow compressional wave is generated when the sealed-pore boundary conditions apply, but this efficiency is not reduced to zero.

  9. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    PubMed

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.

  10. Βiocolloid and colloid transport through water-saturated columns packed with glass beads: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2013-12-01

    The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

  11. Hydrophobic organic compound partitioning from bulk water to the water/air interface

    NASA Astrophysics Data System (ADS)

    Gustafsson, Örjan; Gschwend, Philip M.

    Partitioning of hydrophobic organic compounds to the interface between water and air may significantly affect the distribution and transfer of many xenobiotic chemicals between vapor and aqueous phases. The fluorescent probe, 1-methylperylene, was used to investigate the affinity of hydrophobic compounds for the water-air interface by varying the ratio of interfacial surface area to water volume in a fused-quartz cuvette. We found that the water-air/water interface partitioning coefficient [ Kw-awi =1.2 mol cm -2awi/(mol ml -1w)] for this polycyclic aromatic hydrocarbon (PAH) was quantitatively consistent with partitioning to the same interface but from the airside, recently reported in the literature for less hydrophobic PAHs. Our results demonstrate significant partitioning from bulk water to the water/air interface for a hydrophobicity range relevant to many xenobiotic compounds. Anticipated implications of this process for the environmental chemistry of hydrophobic compounds include retarded gas-phase transport in unsaturated soils, bubble-mediated transport in water, droplet-mediated transport in the atmosphere, and photochemical reactions.

  12. Resin bond strength to water versus ethanol-saturated human dentin pretreated with three different cross-linking agents

    PubMed Central

    Venigalla, Bhuvan Shome; Jyothi, Pinnamreddy; Kamishetty, Shekhar; Reddy, Smitha; Cherukupalli, Ravi Chandra; Reddy, Depa Arun

    2016-01-01

    Context: Resin-dentin bonds are unstable owing to hydrolytic and enzymatic degradation. Several approaches such as collagen cross-linking and ethanol-wet bonding (EWB) have been developed to overcome this problem. Collagen cross-linking improves the intrinsic properties of the collagen matrix. However, it leaves a water-rich collagen matrix with incomplete resin infiltration making it susceptible to fatigue degradation. Since EWB is expected to overcome the drawbacks of water-wet bonding (WWB), a combination of collagen cross-linking with EWB was tested. Aim: The aim of this study was to compare the effect of pretreatment with different cross-linking agents such as ultraviolet A (UVA)-activated 0.1% riboflavin, 1 M carbodiimide, and 6.5 wt% proanthocyanidin on the immediate and long-term bond strengths of an etch and rinse adhesive system to water- versus ethanol-saturated dentin within clinically relevant application time periods. Settings and Design: Long-term in vitro study evaluating the microtensile bond strength of adhesive-dentin interface after different surface pretreatments. Subjects and Methods: Eighty freshly extracted human molars were prepared to expose dentin, etched with 37% phosphoric acid for 15 s rinsed, and grouped randomly. They were blot-dried and pretreated with different cross-linkers: 0.1% riboflavin for 2 min followed by UVA activation for 2 min; 1 M carbodiimide for 2 min; 6.5 wt% proanthocyanidin for 2 min and rinsed. They were then bonded with Adper Single Bond Adhesive (3M ESPE), by either WWB or EWB, followed by resin composite build-ups (Filtek Z350, 3M ESPE). Bonded specimens in each group were then sectioned and divided into two halves. Microtensile bond strength was tested in one half after 24 h and the other after 6 months storage in artificial saliva. Statistical Analysis Used: Analysis was done using SPSS version 18 software (SPSS Inc., Chicago, IL, USA). Intergroup comparison of bond strength was done using ANOVA with post hoc

  13. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  14. Materials issues in solar detoxification of air and water

    NASA Astrophysics Data System (ADS)

    Blake, Daniel M.; Magrini-Bair, Kim; Wolfrum, Edward; May, E. K.

    1997-10-01

    The technical feasibility of photocatalytic oxidation and reduction technology for the removal of hazardous chemicals or micro-organisms from contaminated water and air is well established. The heterogeneous process based on titanium dioxide photocatalysts is the most developed but homogeneous systems are also under development. Treatment equipment using fluorescent lamps as the photon source and supported heterogeneous photocatalysts are commercially available and one-sun and parabolic solar reactor designs have been demonstrated. Cost and performance of the solar processes have not yet reached levels that make them attractive relative to conventional alternatives. Cost reductions and increased performance require improvements in optical materials for reactors, reactor/collector design and materials of construction, durable catalyst materials and support structures, and significant improvement in the utilization of the solar spectrum in the photochemical processes. The current state of the art for solar reactors for treatment of contaminated air and water are presented and the opportunities for improvement are identified.

  15. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  16. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  17. Instrumentation design and installation for monitoring air injection ground water remediation technologies

    SciTech Connect

    Hall, B.L.; Baldwin, C.K.; Lachmar, T.E.; Dupont, R.R.

    2000-03-31

    An in situ instrumentation bundle was designed for inclusion in monitoring wells that were installed at the Wasatch Trailer Sales site in Layton, Utah, to evaluate in situ air sparging (IAS) and in-well aeration (IWA). Sensors for the bundle were selected based on laboratory evaluation of accuracy and precision, as well as consideration of size and cost. SenSym pressure transducers, Campbell Scientific, Inc. (CSI) T-type thermocouples, and dissolved oxygen (DO) probes manufactured by Technalithics Inc. (Waco, Texas), were selected for each of the 27 saturated zone bundles. Each saturated zone bundle also included a stirring blade to mix water near the DO probe. A Figaro oxygen sensor was included in the vadose zone bundle. The monitoring wells were installed by direct push technique to minimize soil disruption and to ensure intimate contact between the 18 inch (46 cm) long screens and the soil. A data acquisition system, comprised of a CSI 21X data logger and four CSI AM416 multiplexers, was used to control the stirring blades and record signals from more than 70 in situ sensors. The instrumentation performed well during evaluation of IAS and IWA at the site. However, the SenSym pressure transducers were not adequately temperature compensated and will need to be replaced.

  18. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  19. Polydopamine Films from the Forgotten Air/Water Interface.

    PubMed

    Ponzio, Florian; Payamyar, Payam; Schneider, Anne; Winterhalter, Mathias; Bour, Jérôme; Addiego, Frédéric; Krafft, Marie-Pierre; Hemmerle, Joseph; Ball, Vincent

    2014-10-02

    The formation of polydopamine under mild oxidation conditions from dopamine solutions with mechanical agitation leads to the formation of films that can functionalize all kinds of materials. In the absence of stirring of the solution, we report the formation of polydopamine films at the air/water interface (PDA A/W) and suggest that it arises from an homogeneous nucleation process. These films grow two times faster than in solution and can be deposited on hydrophilic or hydrophobic substrates by the Langmuir-Schaeffer technique. Thanks to this new method, porous and hydrophobic materials like polytetrafluoroethylene (PTFE) membranes can be completely covered with a 35 nm thick PDA A/W film after only 3h of reaction. Finally the oxidation of a monomer followed by a polymerization in water is not exclusive to polydopamine since we also transferred polyaniline functional films from the air/water interface to solid substrates. These findings suggest that self-assembly from a solution containing hydrophilic monomers undergoing a chemical transformation (here oxidation and oligomerization) could be a general method to produce films at the liquid/air interface.

  20. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  1. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  2. Sensitivity of air-sea CO2-exchange and calcite saturation depth to the remineralization depth of marine particulate organic and inorganic carbon

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Bopp, L.; Gehlen, M.

    2009-04-01

    The present study addresses the question of what would happen to air-sea CO2 exchange and the depth of the calcite saturation horizon (CSH) if the remineralization depth of particulate organic and inorganic carbon (POC, PIC) was changing. Therefore, a biogeochemical ocean circulation model (PISCES) was run with four different parameterizations for vertical particle fluxes, starting from the same initial conditions. Particle fluxes undergo strong changes induced by a combination of the respective mechanistic formulation of the vertical particle flux and the resulting ecosystem response. Reorganizations in dissolved properties are caused by (i) changed fluxes of POC and PIC; (ii) advection; (iii) air-sea CO2 exchange (DIC). The results show that the more (less) efficient the vertical transport of POC (PIC) from the surface toward depth, the lower the surface ocean pCO2, the higher the air-sea CO2 flux, and the stronger the increase in the oceanic inventory of DIC, and vice versa. Consequently, in one experiment the ocean is turning into a CO2 source to the atmosphere, in two cases it becomes a weak sink and in one simulation it turns into a strong sink. Surprisingly, results for changes in the CSH are more similar among the simulations at larger scale with a general deepening in the North Pacific and a shoaling elsewhere. In most areas the readjustment of the CSH is controlled by DIC and alkalinity acting both towards the simulated CSH shifts, however, in some cases DIC (alkalinity) is overcompensating for an effect that would occur due to changes in alkalinity (DIC), alone. In detail, the differences found between the experiments can be well explained by the respective particle flux responses. The current study shows that reorganizations in the vertical flux of particulate matter in the ocean may have immediate and longer-term effects on the marine carbon cycle which could potentially feedback on the climate system.

  3. AirSWOT: An Airborne Platform for Surface Water Monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  4. 78 FR 37713 - Safety Zone; Chicago Air and Water Show; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Chicago Air and Water Show; Lake Michigan; Chicago, IL... enforce the safety zone on Lake Michigan near Chicago, Illinois for the Chicago Air and Water Show. This... Chicago Air and Water Show. During the aforementioned periods, the Coast Guard will enforce...

  5. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... CFR Part 165 RIN 1625-AA00 Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY... deviation to the Chicago Air and Water Show safety zone on Lake Michigan near Lincoln Park. This action is... during the Chicago Air and Water Show. This safety zone is necessary to protect spectators and...

  6. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or...

  7. Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPA and temperatures to partial melting

    SciTech Connect

    Bauer, S.J.; Friedman, M.; Handin, J.

    1981-01-01

    The short-term failure strengths and strains at failure of room-dry and water-saturated, cylindrical specimens (2 by 4 cm) of Charcoal Granodiorite (CG), Mt. Hood Andesite (MHA), and Cuerbio Basalt (CB) at a strain rate of 10/sup -4/s/sup -1/, at effective confining pressures of 0, 50, and 100 MPa and at temperatures to partial melting were investigated. Data from water-saturated specimens of the granodiorite and andesite, compared to room-dry counterparts, indicate (1) the pore pressures are essentially communicated throughout each test specimen so that they are fully effective; (2) at P/sub e/ = 0 and 50 MPa the granodiorite does not water-weaken; (3) at these same effective pressures the more porous and finer-grained andesite begins to exhibit water-weakening at about 600/sup 0/C; (4) at P/sub e/ = 0 and 870 to 900/sup 0/C the andesite's strength averages 20 MPa while the strength of dry specimens at the same P and T exhibit a strength of 100 MPa; (5) at P/sub e/ = 50 MPa compared to 160 MPa dry; (6) the basalt at P/sub e/ = 0, appears to be water-weakened at 800/sup 0/C; (7) water saturated specimens deformed at temperatures less than that of melting exhibit ultimate strengths at less than 2% shortening and then work-soften along faults; (8) again as do the dry counterparts, the wet specimens deform primarily by microscopic fracturing that coalesces into one or more macroscopic faults; and (9) the temperature for incipient melting of the andesite is decreased >150/sup 0/C in the water-saturated tests.

  8. The existence of longitudinal vortices in the flow of air above an air/water interface

    NASA Astrophysics Data System (ADS)

    Kou, J.; Saylor, J. R.

    2009-11-01

    Many researchers have observed the formation of longitudinal vortices in boundary layers developing over heated solid surfaces. In the present work, such vortices were observed in an air boundary layer developing over a heated water surface. The existence of these vortices was documented via infrared imaging of the water surface, which showed a consistent pattern of hot and cold streaks, coinciding with the vortex position. These vortices were also visualized through smoke injected into the air-side flow. The onset position Xc and lateral vortex spacing λ were investigated for a range of wind speeds (0.1 - 1 m/s) and air/water temperature differences (26 - 42 ^oC). Plots of Xc/λ versus the Reynolds number exhibit power-law behavior similar to that of prior work on boundary layers over heated solid surfaces. However, plots of Xc/λ versus the Grashof number show significant differences from the power-law behavior observed for heated solid plates. A theory explaining the similarity and difference between the present results and those for heated solid plates is discussed which is based on differences in the thermal boundary conditions.

  9. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength

    SciTech Connect

    Bourg, I.C.; Sposito, G.; Bourg, A.C.M.

    2008-08-15

    Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of {sup 22}Na{sup +} in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (D{sub a}) of Na{sup +}, whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers.

  10. Effect of adhesive hydrophilicity and curing-time on the permeability of resins bonded to water vs. ethanol-saturated acid-etched dentin

    PubMed Central

    Cadenaro, Milena; Breschi, Lorenzo; Rueggeberg, Frederick A.; Agee, Kelli; Di Lenarda, Roberto; Carrilho, Marcela; Tay, Franklin R.; Pashley, David H.

    2009-01-01

    Objective This study examined the ability of five comonomer blends (R1-R5) of methacrylate-based experimental dental adhesives solvated with 10 mass% ethanol, at reducing the permeability of acid-etched dentin. The resins were light-cured for 20, 40 or 60 s. The acid-etched dentin was saturated with water or 100% ethanol. Method Human unerupted third molars were converted into crown segments by removing the occlusal enamel and roots. The resulting crown segments were attached to plastic plates connected to a fluid-filled system for quantifying fluid flow across smear layer-covered dentin, acid-etched dentin and resin-bonded dentin. The degree of conversion of the resins was measured using Fourier transform infrared spectroscopy. Result Application of the most hydrophobic comonomer blend (R1) to water-saturated dentin produced the smallest reductions in dentin permeability (31.9, 44.1 and 61.1% after light-curing for 20, 40 or 60 s respectively). Application of the same blend to ethanol-saturated dentin reduced permeability of 74.1, 78.4 and 81.2%, respectively (p<0.05). Although more hydrophilic resins produced larger reductions in permeability, the same trend of significantly greater reductions in ethanol-saturated dentin over that of water-saturated dentin remained. This result can be explained by the higher solubility of resins in ethanol vs. water. Significance The largest reductions in permeability produced by resins were equivalent but not superior, to those produced by smear layers. Resin sealing of dentin remains a technique-sensitive step in bonding etch-and-rinse adhesives to dentin. PMID:18571228

  11. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  12. Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Zhi; Hu, Mary; Todd Schaef, H.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O-saturated supercritical CO2 (scCO2) at 35 °C and 50 °C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3·3H2O) and magnesite (MgCO3) at short reaction times (˜3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 °C) than previously thought needed to overcome its well-known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 °C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  13. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Z.; Hu, Mary Y.; Schaef, Herbert T.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O saturated supercritical CO2 (scCO2) at 35 C and 50 C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray Spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3.3H2O) and magnesite (MgCO3) at short reaction times ({approx}3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 C) than previously thought needed to overcome its well known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  14. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-07

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry.

  15. A Comprehensive Strategy for the Assessment of Stability Conditions in Porous Media at Varying Levels of Water Saturation

    NASA Astrophysics Data System (ADS)

    Mihalache, Constance

    Assessing the potential for instability in non-saturated geomaterials is of critical importance for the prevention of disastrous failures that occur through these materials, from natural hazards such as rainfall-induced flow slides, to underwater sediment collapse due to methane hydrate dissociation, to the failure of key infrastructure components. In particular, the gaseous and liquid phases present within the pores of a geomaterial play a vital role in its overall behavior, and consequently must be considered in stability analyses. In this work, analytical techniques are presented to evaluate material stability for the different saturation states that occur during a wetting process, where soils progress from unsaturated conditions in the funicular regime, to quasi-saturated conditions in the insular regime, to complete saturation. Each of these different saturation states involves different interactions between the pore fluids and the solid skeleton hosting them. For example, while unsaturated soil behavior is characterized by the capillary effects from the interface between the gaseous and liquid phases, the dominant effect of isolated bubbles within the quasi-saturated regime is to increase the compressibility of the interstitial fluid mixture. By considering the different characteristics of these saturation states, energy-based work input expressions are developed and then used to derive criteria for loss of controllability of the material response. These criteria are then used to assess the stability of geomaterials under various loading configurations. Then, to unite the funicular and insular saturation regimes, the same methodology is adapted to the derivation of comprehensive three-phase criteria for non-saturated soils. An alternative interpretation of such constitutive singularities is also derived, with reference to the ill-posedness of the mass balance equations that control the transient flow of the fluid constituents of a deformable multiphase porous

  16. Tomographic investigation of the influence of initial wetting saturation, wettability and geometry of porous media on residual NAPL/water interfacial area

    NASA Astrophysics Data System (ADS)

    Al-Raoush, R. I.

    2010-12-01

    While fluid-fluid interfacial area is a key parameter governing many flow and transport processes in porous media, it is usually not accounted for in standard continuum-based models. In particular, fluid-fluid interfacial area is critical to such processes as dissolution, volatilization, biodegradation and to such constitutive relations as pressure-saturation and saturation-permeability. We present in this paper a pore-scale quantification of residual NAPL/water interfacial areas from high-resolution three-dimensional images at different experimental conditions. Experimental parameters of interest include geometry and wettability of porous media surfaces and initial saturation of the wetting phase. The synchrotron microtomography facility at the Advanced Photon Source, Argonne National Laboratory, was used to obtain three-dimensional images of the systems. Silica and quartz sands of different shape indices and different grain size distributions (median diameter ranged from 200 µm to 500 µm) were used to represent the porous media. Grain sizes were selected to achieve the minimum representative elementary volume of the samples. Residual NAPL in each sand system was obtained following cycles of drainage and imbibition of water and NAPL. Initial wetting saturations of the samples ranged from partial to complete saturation conditions. Five different fractionally wet sand systems (comprised of 100%, 75%, 50%, 25% and 0% hydrophobic mass fraction) were imaged and analyzed. Findings indicate that geometry and spatial variation in wettability of porous media surfaces have a significant impact on pore-scale characteristics of residual NAPL/water interfacial areas in porous media systems.

  17. Effect of automated red cell exchanges on oxygen saturation on-air, blood parameters and length of hospitalization in sickle cell disease patients with acute chest syndrome

    PubMed Central

    Aneke, John C.; Huntley, Nancy; Porter, John; Eleftheriou, Perla

    2016-01-01

    Background: Red cell exchanges (RCEs) lead to improvement in tissue oxygenation and reduction in inflammatory markers in sickle cell disease (SCD) patients who present with acute chest syndrome (ACS). The aim of this study is to evaluate the effects of automated-RCE (auto-RCE) on oxygen saturation (SpO2) on-air, blood counts, the time to correct the parameters and length of hospitalization after the exchange in SCD patients presenting with ACS. Subjects and Methods: This was 2 years study involving five SCD patients; the time for SpO2 on air to increase to ≥95% and chest symptoms to resolve, postprocedure, as well as the length of in-patient hospitalization was recorded. All data were entered into Statistical Package for Social Sciences Version 20.0 (SPSS Inc., Chicago, IL, USA) computer software for analyses. Results: The study involved 4 (80%) hemoglobin (Hb) SS and 1 (20%) HbSC patients. The median time of SpO2 recovery was 24 h, ranging from 6 to 96 h. About 60% (3/5) of patients achieved optimal SpO2 within 24 h post-RCE, while discharge from intensive care unit was 24 h after auto-RCE in one patient. The Hb concentration was significantly higher, while the total white cell and absolute neutrophil counts were significantly lower at the time of resolution of symptoms, compared to before auto-RCE (P < 0.05). The average post auto-red cell transfusion symptoms duration was 105.6 (24–240) h while mean inpatient stay was 244.8 (144–456) h. Conclusion: Auto-RCE could reverse hypoxia in ACS within 24 h. PMID:27397962

  18. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  19. Effects of Solution Chemistry on the Retention and Dissolution of Silver Nanoparticles in Water-Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Mittelman, A.; Wang, Y.; Pennell, K. D.

    2011-12-01

    Potential health and environmental effects have been attributed to both silver nanoparticles (nAg) and the silver ion (Ag+), necessitating a thorough understanding of mechanisms governing the fate and transport of nAg in natural systems. Batch and column experiments were conducted to assess nAg transport, retention and dissolution kinetics as a function of pH, electrolyte and dissolved oxygen (DO) content. Batch experiments were performed at pH 4, 5.5 and 7, DO levels of <0.15 mg/L, 2mg/L and 8.9 mg/L, and with 10mM nitrate, acetate or borate as the background electrolyte. Batch solutions containing ca. 2 mg/L nanosilver were monitored regularly for 48 hours and analyzed for mean particle diameter, zeta potential, nanoparticle concentration and silver ion concentration. Silver nanoparticle dissolution increased with decreasing pH and with dissolved oxygen content. Increased aggregation and less negative zeta potential values (tending closer to the point of zero charge) indicate that acetate causes greater instability in nAg suspensions as compared with nitrate at the same ionic strength. Column experiments were performed in glass columns (11 cm length x 2.7 cm diameter) packed with washed 40-50 mesh Ottawa sand and saturated with a background electrolyte solution. Following a non-reactive tracer test, a three pore volume pulse of nAg suspension (ca. 3 mg/L silver) was introduced at a flow rate of 1.0 ml/min (pore water velocity of ca. 7.0 m/d), followed by three pore volumes of nanoparticle-free solution. Column experiments were conducted with 10mM sodium nitrate at pH 4 and 7 and under oxygen rich (DO = 8.9 mg/L) and lean (DO < 0.15 mg/L) conditions. Hyper-exponential retention profiles were observed, with the highest attachment measured at the column inlet. Under oxygen rich conditions, approximately 85% of the input nAg was retained in sand at pH 4, compared with 25% at pH 7. Consistent with batch experimental results, dissolution of retained nanoparticles

  20. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  1. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  2. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  3. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  4. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  5. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  6. Nano- and microstructure of air/oil/water interfaces.

    PubMed

    McGillivray, Duncan J; Mata, Jitendra P; White, John W; Zank, Johann

    2009-04-07

    We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions.

  7. Powder wettability at a static air-water interface.

    PubMed

    Dupas, Julien; Forny, Laurent; Ramaioli, Marco

    2015-06-15

    The reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application. We highlight theoretically the determinant role of the contact angle and of the particle size distribution. We validate experimentally the model for single spheres and use it to predict the wettability performance of commercial food powders for different contact angles and particles sizes. A good agreement is obtained when comparing the predictions and the wettability of the tested powders.

  8. Simulating water flow, heat and solute transport and biogeochemistry in variably-saturated porous media using HP1

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Simunek, Jirka; Mallants, Dirk; van Genuchten, Rien

    2010-05-01

    Coupling physical and biogeochemical processes within one integrated numerical simulator provides a process-based tool for investigating the fate of contaminants as affected by changing hydrologic regimes and geochemical conditions. The numerical simulator HP1 attempts to bridge these two interactive processes. The code is especially geared for variably-saturated conditions, thus serving as a powerful tool for vadose zone research and engineering applications. HP1 extends the capabilities of HYDRUS-1D to simulate physical soil processes by including the capabilities of PHREEQC to account for biogeochemical processes, all embedded in a user-friendly windows interface. The HP1 reactive transport simulator was obtained by weak, non-iterative coupling of HYDRUS-1D and PHREEQC-2. HP1 is free software and can be obtained at http://www.pc-progress.com as part of HYDRUS-1D. A detailed account is given of the new features and processes that were recently incorporated in HP1: (i) full implementation of HP1 into the graphical user interface of HYDRUS-1D, (ii) dynamic changes in porosity, permeability and tortuosity when minerals dissolve or precipitate, and (iii) diffusion of gas components in the gaseous phase. The implementation of the porosity-permeability-tortuosity changes was benchmarked against results from the MIN3P code. HP1 users can implement their own porosity-permeability and porosity-tortuosity relationships using BASIC statements in the input file. Additionally, hydraulic conductivity and pressure head scaling factors can now also vary with time depending upon the geochemical state variables. An example is further presented in which HP1 is coupled with the model-independent optimization tool UCODE_2005 (Poeter et al., 2005) . The resulting software allows thermodynamic, kinetic and geochemical parameters to be estimated from experimental data. The optimization features are illustrated for an experimental data set involving transient water flow, solute transport

  9. 3D Anisotropic Velocity Tomography of a Water Saturated Rock under True-Triaxial Stress in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.

    2013-12-01

    A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or

  10. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  11. 77 FR 47282 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    .... The Captain of the Port, Sector Lake Michigan, has determined that an air show with associated... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Milwaukee Air and Water Show, Lake Michigan... temporary deviation to the established Milwaukee Air and Water Show safety zone on Lake Michigan...

  12. Simulation model finned water-air-coil withoutcondensation

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its

  13. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  14. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  15. Distributed Saturation

    NASA Technical Reports Server (NTRS)

    Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.

    2007-01-01

    The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.

  16. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  17. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau.

    PubMed

    Fu, Rong; Hu, Yuanlong; Wright, Jonathon S; Jiang, Jonathan H; Dickinson, Robert E; Chen, Mingxuan; Filipiak, Mark; Read, William G; Waters, Joe W; Wu, Dong L

    2006-04-11

    During boreal summer, much of the water vapor and CO entering the global tropical stratosphere is transported over the Asian monsoon/Tibetan Plateau (TP) region. Studies have suggested that most of this transport is carried out either by tropical convection over the South Asian monsoon region or by extratropical convection over southern China. By using measurements from the newly available National Aeronautics and Space Administration Aura Microwave Limb Sounder, along with observations from the Aqua and Tropical Rainfall-Measuring Mission satellites, we establish that the TP provides the main pathway for cross-tropopause transport in this region. Tropospheric moist convection driven by elevated surface heating over the TP is deeper and detrains more water vapor, CO, and ice at the tropopause than over the monsoon area. Warmer tropopause temperatures and slower-falling, smaller cirrus cloud particles in less saturated ambient air at the tropopause also allow more water vapor to travel into the lower stratosphere over the TP, effectively short-circuiting the slower ascent of water vapor across the cold tropical tropopause over the monsoon area. Air that is high in water vapor and CO over the Asian monsoon/TP region enters the lower stratosphere primarily over the TP, and it is then transported toward the Asian monsoon area and disperses into the large-scale upward motion of the global stratospheric circulation. Thus, hydration of the global stratosphere could be especially sensitive to changes of convection over the TP.

  18. Design of phosphonium-type zwitterion as an additive to improve saturated water content of phase-separated ionic liquid from aqueous phase toward reversible extraction of proteins.

    PubMed

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-09-05

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution.

  19. Impact of recharge variations on water quality as indicated by excess air in groundwater of the Kalahari, Botswana

    NASA Astrophysics Data System (ADS)

    Osenbrück, Karsten; Stadler, Susanne; Sültenfuß, Jürgen; Suckow, Axel O.; Weise, Stephan M.

    2009-02-01

    Groundwater is an important and often exclusive water resource in arid and semi-arid regions. The aim of the present paper was to gain insight into the processes and conditions that control the deterioration of groundwater quality in the semi-arid Kalahari of Botswana. Measurements of 3He, 4He, 20Ne, 22Ne, and of 14C of dissolved inorganic carbon (DIC) were combined with existing isotopic and hydrochemical data to investigate groundwater from the Ntane Sandstone Aquifer, which is affected by high nitrate concentrations of non-anthropogenic origin. All groundwater samples revealed neon concentrations in excess to air-saturated water, which we attributed to the addition of excess air during recharge. Neon concentrations ranged from values close to air saturation for 14C DIC rich samples (up to 80.5%MC) up to values of 90% in excess to air-saturated water for lower 14C DIC contents (2.6-61.3%MC). A strong linear correlation of excess Ne with nitrate concentrations suggests an intimate connection between groundwater quality and the processes and conditions during groundwater recharge. Low groundwater recharge rates under present-day semi-arid conditions are associated with low amounts of excess Ne and elevated nitrate concentrations. In contrast to this, higher excess Ne values in groundwater of lower 14C DIC and nitrate contents indicate that the high quality groundwater end-member presumably is related to higher groundwater table fluctuations during wetter climatic conditions in the past. We attribute the decline in groundwater quality with respect to nitrate to a decreasing rate and temporal variability of groundwater recharge, and to concurrent changes in biogeochemical activities following a transition to a drier climate during the Holocene. Under such conditions, a much stronger decrease in groundwater recharge compared to the release of nitrate from soil organic matter may result in elevated nitrate concentrations in the vadose zone and groundwater. This implies

  20. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    NASA Astrophysics Data System (ADS)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  1. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  2. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  3. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  4. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  5. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  6. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  7. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  8. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  9. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  10. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  11. Environmental Assessment: Maintenance of the Bear Lake Storm Water Retention Pond Whiteman Air Force Base, Missouri

    DTIC Science & Technology

    2010-10-01

    hazardous materials and waste . The proposed action includes performing needed maintenance on the Bear Lake Storm Water Retention Pond. The EA...biological resources, water resources, air quality, safety, and hazardous materials and waste . The proposed action includes performing needed...traffic, noise, hazardous materials and wastes , water resources, biological resources, air quality, socioeconomics, and safety. This EA also considers

  12. Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Chu, Fu-Sui; Liou, Jia-Jiunn

    The single equilibration technique was used to determine the equilibrium partitioning coefficients ( pc) of an air-water interface for target aromatic volatile organic compounds (VOCs), including benzene, toluene and ethylbenzene. The tested liquid concentrations ( CL) of VOC ranged from 0.5 to 20 mg/l, and the temperatures ( Tw) of the solutions were 300, 305, 310 and 315 K, respectively. The pc values were calculated using the gaseous concentrations ( Cg*) of aromatic hydrocarbons in equilibrium with the aqueous phase and the formula pc=( Cg*/ CL). The heats of VOC of liquid and gaseous phase transfer (Δ Htr) in pure water, and the highly linear regression relationship (with squared correlation coefficients, R2, from 0.900 to 0.999) between ( ln C g*) and (1/ Tw) are also evaluated. Experimental results indicated that the pc values of the target VOC components increase with Tw but, in contrast, are not significantly affected by CL in pure water. However, pc of more soluble compounds, like iso-propanol and methyl ethyl ketone, have been evaluated to be significant with CL in the earlier investigation. Finally, the co-solute effect on pc is also evaluated in this work, as determining pc of the aromatic hydrocarbons by using aqueous ethanol (in a volume ration of 1-15%) as solutes.

  13. Effects of cooling rate, saturation temperature, and agitation on the metastable zone width of DL-malic acid-water system

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Leng, Yixin; Huang, Chunxiang; Yue, Mingxuan; Tan, Qian

    2015-09-01

    A study of metastable zone width (MSZW) and nucleation parameters for a cooling crystallization of DL-malic acid-water system is described in this paper. Experimental determination of the MSZW was performed using a laser method in order to carry out the estimation of nucleation parameters. Measured MSZWs can be affected by a variety of parameters, such as cooling rate, saturation temperature, agitation rate, and so on. In this work, the MSZWs were found to decrease with an increase of saturation temperature, and levels of agitation, while it increased with an increase of cooling rate. Two classical theoretical approaches, Nyvlt's approach and self-consistent Nyvlt-like approach were used to analyze the experimental data on MSZWs.

  14. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  15. Reacting chemistry at the air-water interface

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Morgan, Thomas; Huwel, Lutz; Graham, William

    2016-09-01

    Plasma interaction with gas-liquid interfaces is becoming increasingly important in biological applications, chemical analysis and medicine. It introduces electrons, new ionic species and reactive species and contributes to chemical and electrical self-organization at the interface. To provide insight into the associated physics and chemistry at work in the evolution of the plasma in the air-water interface (AWI), a time-dependent one-dimensional modelling has been developed. The numerical simulation is used to solve the kinetic equations and help identify the important reaction mechanisms and describe the phenomena associated with hundreds of reacting pathways in gas-phase and liquid-phase AWI chemistry. This work was partly supported by JSPS KAKENHI Grant Number 16K04998.

  16. Air and water stable ionic liquids in physical chemistry.

    PubMed

    Endres, Frank; Zein El Abedin, Sherif

    2006-05-14

    Ionic liquids are defined today as liquids which solely consist of cations and anions and which by definition must have a melting point of 100 degrees C or below. Originating from electrochemistry in AlCl(3) based liquids an enormous progress was made during the recent 10 years to synthesize ionic liquids that can be handled under ambient conditions, and today about 300 ionic liquids are already commercially available. Whereas the main interest is still focussed on organic and technical chemistry, various aspects of physical chemistry in ionic liquids are discussed now in literature. In this review article we give a short overview on physicochemical aspects of ionic liquids, such as physical properties of ionic liquids, nanoparticles, nanotubes, batteries, spectroscopy, thermodynamics and catalysis of/in ionic liquids. The focus is set on air and water stable ionic liquids as they will presumably dominate various fields of chemistry in future.

  17. Molecular structure and dynamics of water at the water-air interface studied with surface-specific vibrational spectroscopy.

    PubMed

    Bonn, Mischa; Nagata, Yuki; Backus, Ellen H G

    2015-05-04

    Water interfaces provide the platform for many important biological, chemical, and physical processes. The water-air interface is the most common and simple aqueous interface and serves as a model system for water at a hydrophobic surface. Unveiling the microscopic (<1 nm) structure and dynamics of interfacial water at the water-vapor interface is essential for understanding the processes occurring on the water surface. At the water interface the network of very strong intermolecular interactions, hydrogen-bonds, is interrupted and the density of water is reduced. A central question regarding water at interfaces is the extent to which the structure and dynamics of water molecules are influenced by the interruption of the hydrogen-bonded network and thus differ from those of bulk water. Herein, we discuss recent advances in the study of interfacial water at the water-air interface using laser-based surface-specific vibrational spectroscopy.

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapor equilibration laser spectroscopy method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-06-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapor equilibration and laser spectroscopy (DVE-LS) was first described in 2008, and has since been widely adopted by others. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement and accuracy is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g., water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g., clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g., sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents < 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas sampling bags were determined to be as good as, if not better, than other, more expensive bags. Sample storage in gas tight sample bags provides acceptable results for up to 10 days of storage; however, measureable water loss and evaporitic isotopic enrichment occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high resolution pore water

  20. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-11-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapour equilibration and laser spectrometry (DVE-LS) was first described in 2008, and has since been rapidly adopted. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement, as well as accuracy, is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g. water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g. clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g. sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents > 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas-sampling bags were determined to be as good as, if not better than, other, more expensive specialty bags. Sample storage in sample bags provides acceptable results for up to 10 days of storage; however, measurable water loss, as well as evaporitic isotopic enrichment, occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high-resolution pore water

  1. Reactivity of Forsterite, Lizardite, and Antigorite in Dry to Water-Saturated Supercritical CO2 - An In Situ Infrared Spectroscopic Investigation

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Felmy, A. R.; Rosso, K. M.

    2010-12-01

    Geologic carbon sequestration (GCS) is a promising technology for reducing anthropogenic emissions of CO2 into the atmosphere. Olivines and serpentines are potentially important mineral phases in GCS because they are widespread in basalt formations and caprocks, are rich in Ca, Mg, and Fe, and react exothermically with CO2 to form carbonate solids. Previous work in aqueous systems has shown that carbonation rates of serpentines are lower than those of olivines, unless heat or acid pretreatments are applied. To the best of our knowledge, the comparative reactivities of olivines and serpentines have not yet been explored in dry to water saturated supercritical CO2 (scCO2) under conditions relevant to geologic sequestration. In this study, we used in situ infrared spectroscopy to investigate the carbonation of forsterite (Mg2SiO4), a representative of the olivine group and two serpentine polymorphs, antigorite and lizardite (Mg3Si2O5(OH)4). Experiments were carried out at 35 °C and 100 bar using a flow-through system equipped with a high-pressure mid-infrared cell. One ZnSe window of the transmission cell was coated with a thin overlayer of the mineral under investigation. Absorbance spectra were recorded as a function of time for 24 hours after exposing the overlayer to scCO2 containing water at concentrations corresponding to 0%, 50% and 95% saturation. Experiments were also performed with an approximately 2-fold excess concentration of water. In these latter experiments, a controlled temperature gradient was used to intentionally condense a liquid water film on the mineral surfaces. Little reaction was observed for the minerals exposed to dry scCO2. At water concentrations of 50% and 95% saturation, a very thin, liquid-like water film was detected on the mineral surface. A relatively minor extent of reaction occurred, and most of the transformation was observed during the first three hours of the experiments. Much greater reactivity was evident when a thicker

  2. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  3. Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes.

    PubMed

    Sarraute, S; Delepine, H; Costa Gomes, M F; Majer, V

    2004-12-01

    New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.

  4. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface.

  5. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  6. -Saturated Solutions

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2014-11-01

    This paper presents an electrochemical study on the corrosion behavior of API-X100 steel, heat-treated to have microstructures similar to those of the heat-affected zones (HAZs) of pipeline welding, in bicarbonate-CO2 saturated solutions. The corrosion reactions, onto the surface and through the passive films, are simulated by cyclic voltammetry. The interrelation between bicarbonate concentration and CO2 hydration is analyzed during the filming process at the open-circuit potentials. In dilute bicarbonate solutions, H2CO3 drives more dominantly the cathodic reduction and the passive films form slowly. In the concentrated solutions, bicarbonate catalyzes both the anodic and cathodic reactions, only initially, after which it drives a fast-forming thick passivation that inhibits the underlying dissolution and impedes the cathodic reduction. The significance of the substrate is as critical as that of passivation in controlling the course of the corrosion reactions in the dilute solutions. For fast-cooled (heat treatment) HAZs, its metallurgical significance becomes more comparable to that of slower-cooled HAZs as the bicarbonate concentration is higher.

  7. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered.

  8. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food label, pay ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food label, pay ...

  9. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.

  10. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  11. Advances in simulating radiance signatures for dynamic air/water interfaces

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.; Gerace, Aaron

    2015-05-01

    The air-water interface poses a number of problems for both collecting and simulating imagery. At the surface, the magnitude of observed radiance can change by multiple orders of magnitude at high spatiotemporal frequency due to glinting effects. In the volume, similarly high frequency focusing of photons by a dynamic wave surface significantly changes the reflected radiance of in-water objects and the scattered return of the volume itself. These phenomena are often manifest as saturated pixels and artifacts in collected imagery (often enhanced by time delays between neighboring pixels or interpolation between adjacent filters) and as noise and greater required computation times in simulated imagery. This paper describes recent advances made to the Digital Image and Remote Sensing Image Generation (DIRSIG) model to address the simulation issues to better facilitate an understanding of a multi/hyper-spectral collection. Glint effects are simulated using a dynamic height field that can be driven by wave frequency models and generates a sea state at arbitrary time scales. The volume scattering problem is handled by coupling the geometry representing the surface (facetization by the height field) with the single scattering contribution at any point in the water. The problem is constrained somewhat by assuming that contributions come from a Snell's window above the scattering point and by assuming a direct source (sun). Diffuse single scattered and multiple scattered energy contributions are handled by Monte Carlo techniques employed previously. The model is compared to existing radiative transfer codes where possible, with the objective of providing a robust movel of time-dependent absolute radiance at many wavelengths.

  12. Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films

    PubMed Central

    Korenbrot, J. I.; Hwang, S. B.

    1980-01-01

    Bacteriorhodopsin, in known amounts and controlled orientation, is incorporated into planar membrane films. These films are formed by the sequential transfer of two air-water interface films onto a thin, hydrophilic, electrically conductive support cast from nitrocellulose. The films are easily accessible to electrical measurements and to control of the ionic milieu on either side of the membrane. The area of the assembled membrane films can be varied between 2.3 x 10(-2) cm2 and 0.7 cm2. Illumination of these films produces photocurrents, photovoltages, and changes in the pH of the surrounding medium. The peak amplitude of the photocurrent increases linearly with light intensity for dim lights, and it approaches a saturating value for brighter lights. In the linear range, the stoichiometry of transport is 0.65 +/- 0.06 protons/absorbed photon. The rate of transport is linearly proportional to light at all intensities tested. The amplitude and kinetics of the photovoltage measured are accurately predicted by the photocurrent generated and the passive electrical features of the film. Parallel measurements of pH and photocurrent reveal that the light-induced changes in pH are fully accounted for by the rate and amount of charge transport across the membrane. Preceding the transport of protons, a transient photovoltage is detected that exhibits no detectable latency, reaches peak in about 80 microseconds, and probably arises from light-induced intramolecular charge displacements. PMID:10822498

  13. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-01-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  14. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-10-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  15. Exterior Distribution of Utility Steam, High Temperature Water (HTW), Chilled Water (CHW), Fuel Gas, and Compressed Air.

    DTIC Science & Technology

    1981-07-01

    A~r-AIIO 408 NAVAL FACILITIES ENGINEERING COMMAND ALEXANDRIA VA FIG 13/11 EXTERIOR DISTRIBUTION OF UTILITY STEAM. HIGH TEMPERATURE WATER -ETC(U...PUBUC RELEASE JOF EXTERIOR DISTRIBUTION OF O UTILITY STEAM, HIGH 0 TEMPERATURE WATER (HTW), , CHILLED WATER (CHW), FUEL GAS, AND COMPRESSED AIR DESIGN...distribution piping system for supplying utility steam, high temperature water (HTW), chilled water (CRW), cooling or condensing water, fuel gas, and

  16. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  17. Depth to Water, Saturated Thickness, and Other Geospatial Datasets Used in the Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado

    USGS Publications Warehouse

    Flynn, Jennifer L.; Arnold, L. Rick; Paschke, Suzanne S.

    2009-01-01

    These datasets were compiled in support of U.S. Geological Survey Data Series 456, Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado. These datasets were developed as part of a cooperative project between the U.S. Geological Survey and the Colorado Department of Agriculture. The purpose of the project was to design a 30-well network and install 20 of the 30 wells to characterize water quality in the High Plains aquifer in areas of irrigated agriculture in Colorado. The five datasets are described as follows and are further described in Data Series 456: (1) ds472_dtw: This dataset represents the depth to groundwater in the High Plains Aquifer in Colorado in 2000. This grid was used to determine areas where the depth to water was less than 200 feet below land surface. (2) Ds472_sat: This dataset represents the saturated thickness of the High Plains aquifer within Colorado in 2000. This grid was used to determine areas where the saturated thickness was greater than 50 feet. (3) Ds472_equalareas: This dataset includes 30 equal-area polygons overlying the High Plains Aquifer in Colorado having a depth to water less than 200 feet, a saturated thickness greater than 50 feet, and underlying irrigated agricultural lands. (4) Ds472_randomsites: This dataset includes 90 randomly-generated potential groundwater sampling sites. This dataset provides a first, second, and third choice placed within the 30 equal area polygons of dataset dsXX_equalareas. (5) Ds472_welldata: This dataset includes point locations and well completion data for the 20 wells installed as part of this project. The datasets that pertain to this report can be found on the U.S. Geological Survey's NSDI (National Spatial Data Infrastructure) Node, the links are provided on the sidebar.

  18. Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPa and temperatures to partial melting

    SciTech Connect

    Bauer, S.J.; Friedman, M.; Handin, J.

    1981-01-01

    Instantaneous-failure strengths and ductilities of water-saturated cylindrical specimens of Charcoal Granodiorite, Mount Hood Andesite, and Cuerbio Basalt are determined at a strain rate of 10{sup -4}s{sup -1} and at effective confining pressures (Pe) of 0 and 50 MPa and at temperatures to partial melting. The data indicate: (1) at Pe = 0 and 50 MPa (Pc and Pp of 50 MPa and of 100 and 50 MPa, respectively) the granodiorite does not water-weaken; (2) at these same Pe the more porous and finer-grained andesite begins to exhibit water-weakening at about 600/sup 0/C; (3) at Pe = 0 and 870-900{sup 0}C the andesite's wet strength averages 20 MPa compared to 100 MPa, dry; (4) at Pe = 50 MPa and 920{sup 0}C its wet strength is 45 MPa compared to 160 MPa dry; (5) at Pe = 0, the basalt appears to be water-weakened above 800{sup 0}C; (6) water-saturated specimens deformed at temperatures less than T{sub m} exhibit ultimate strengths at less than 2 percent shortening and then work-soften along faults; and (7) both dry and wet specimens deform primarily by brittle fracture. Extrapolations indicate: (1) crystalline rocks should be drillable because they remain brittle until partial melting occurs, and penetration rates should increase with temperature because there is a corresponding decrease in brittle fracture strength; (2) boreholes in ''water-filled'' holes will be stable to >10 km at temperatures 10 km; and (4) open boreholes in the andesite are apt to be much less stable, and at similar temperatures would fail at 2 to 5-km depth.

  19. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.

    PubMed

    Pérez-Mosqueda, Luis M; Maldonado-Valderrama, Julia; Ramírez, Pablo; Cabrerizo-Vílchez, Miguel A; Muñoz, José

    2013-11-01

    In this work, we provide an accurate characterization of non-ionic triblock copolymer Pluronic PE9400 at the air-water and limonene-water interfaces, comprising a systematic analysis of surface tension isotherms, dynamic curves, dilatational rheology and desorption profiles. The surface pressure isotherms display two different slopes of the Π-c plot suggesting the existence of two adsorption regimes for PE9400 at both interfaces. Application of a theoretical model, which assumes the coexistence of different adsorbed states characterized by their molar areas, allows quantification of the conformational changes occurring at the adsorbed layer, indentifying differences between the conformations adopted at the air-water and the limonene-water interface. The presence of two maxima in the dilatational modulus vs. interfacial pressure importantly corroborates this conformational change from a 2D flat conformation to 3D brush one. Moreover, the dilatational response provides mechanical diferences between the interfacial layers formed at the two interfaces analyzed. Dynamic surface pressure data were transformed into a dimensionless form and fitted to another model which considers the influence of the reorganization process on the adsorption dynamics. Finally, the desorption profiles reveal that Pluronic PE9400 is irreversibly adsorbed at both interfaces regardless of the interfacial conformation and nature of the interface. The systematic characterization presented in this work provides important new findings on the interfacial properties of pluronics which can be applied in the rational development of new products, such as biocompatible limonene-based emulsions and/or microemulsions.

  20. Amphiphilic derivatives of dextran: adsorption at air/water and oil/water interfaces.

    PubMed

    Rotureau, E; Leonard, M; Dellacherie, E; Durand, A

    2004-11-01

    Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.

  1. Two-phase lattice Boltzmann modelling of streaming potentials : influence of the air-water interface on the electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2016-11-01

    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen (1993). The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi (2008). The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5 to 30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  2. Two-phase Lattice Boltzmann modelling of streaming potentials: influence of the air-water interface on the electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2017-02-01

    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen. The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi. The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5-30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  3. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact.

  4. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  5. An Experimental Study of CO2 Exsolution and Relative Permeability Measurements during CO2 Saturated Water Depressurization Relevant to Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zuo, L.; Krevor, S. C.; Falta, R. W.; Benson, S. M.

    2011-12-01

    Saline aquifers and depleted oil and gas fields have been considered as preferred geological sequestration options for carbon dioxide to reduce greenhouse gas emissions. Given the high solubility of CO2 in water, over time, the fraction of CO2 in the subsurface may be dominated by dissolved CO2. CO2 laden brine may permeate cap rocks and carry dissolved CO2 to shallower depths, if there is an upward pressure gradient from the reservoir to the overlying groundwater aquifers. This kind of non-hydrostatic pressure gradients can be caused by gas injection in deeper formations, or groundwater depletion. Such upward flows will depressurize the brine and the dissolved CO2 will come out of solution as pressure drops. We present the results of an experimental investigation into the effects of CO2 exsolution on multiphase flow properties in a CO2-water system with various reservoir rocks and a risk assessment of CO2 leakage due to exsolution in carbon sequestration. The relative permeability of exsolved CO2 and water was measured in a core-flooding apparatus during depressurization with X-ray computed tomography. Very low relative permeabilities of CO2 and water are measured in the exsolution experiments, compared to the relative permeabilities derived from steady-state drainage measurements in the same cores, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the CO2 and water phases is hypothesized to result from the presence of a disconnected exsolution gas phase in this flow system. After the CO2 was exsolved, a CO2-saturated water flooding experiment demonstrated the durability and the stability of the low water mobility in the presence of the exsolution gas phase, while the water mobility returned to normal after all of the exsolved CO2 dissolved by a fresh water. A large pressure drop across the core, which is 4~5 times higher than the pressure drop predicted by the drainage relative permeability, was maintained over 120

  6. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  7. Ground-Water Hydrology and Water Quality of the Southern High Plains Aquifer, Cannon Air Force Base, Curry County, New Mexico, 1994-2005

    USGS Publications Warehouse

    Langman, Jeff B.; Falk, Sarah E.; Gebhardt, Fredrick E.; Blanchard, Paul J.

    2006-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey has collected hydrologic data about the Southern High Plains aquifer at Cannon Air Force Base in east-central New Mexico since 1994. Under the guidance of the State of New Mexico, ground-water quality of the aquifer has been analyzed as part of annual monitoring at regulated sites at the base. This report provides a summary and interpretation of all available hydrologic data collected by the U.S. Geological Survey for Cannon Air Force Base environmental managers for the regulated sites of Landfill 5 and the Sewage Lagoons between 1994 and 2005. Cannon Air Force Base is in the Southern High Plains physiographic region, and saturated deposits of the Ogallala Formation underlying the base are within the western boundary of the Southern High Plains aquifer. The general direction of ground-water flow in the Southern High Plains aquifer at Cannon Air Force Base is from northwest to southeast. In 1962, ground water predominantly flowed northwest to southeast with minimal change in direction. Ground-water altitudes declined from 1962 to 1997, and a pronounced water-level recession (area of receding water level) developed northwest of the base, altering flow direction in this area. The recession northwest of the base and the subsequent change in direction of ground-water flow are indicative of local ground-water withdrawals upgradient from Cannon Air Force Base. Historical water levels in wells within a 3-mile radius of Cannon Air Force Base declined in 52 of 56 wells for various periods of record between 1962 and 2004. Forty-three of the wells indicated strong linear decreases with time, and the largest decline was 91.80 feet, an average annual decline of about 2.13 feet per year. Water levels in monitoring wells at Cannon Air Force Base reflected the regional decline; water levels declined for all wells with periods of record greater than 1 year, and the decreases were strongly linear. From 1994 to 2005

  8. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems; an introduction

    USGS Publications Warehouse

    Franke, O.L.; Reilly, T.E.; Bennett, G.D.

    1984-01-01

    Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report explains the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water system models. (USGS)

  9. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  10. The Importance of Moving Air-Water Interfaces for Colloid Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Flury, M.

    2015-12-01

    In the vadose zone, or in unsaturated porous media in general, transport of colloids is usually less pronounced than in groundwater. An important retention mechanism for colloids in unsaturated porous media is attachment to air-water interfaces. However, air-water interfaces can also lead to colloid mobilization and enhanced transport if air-water interfaces are moving, such as during infiltration, imbibition, and drainage. Colloid attachment to air-water interfaces is caused by surface tension forces, and these forces usually exceed other interactions forces; therefore, surface tension forces play a dominant role for colloid transport in unsaturated porous media. In this presentation, experimental and theoretical evidence of surface tension forces acting on colloids will be presented, and the role of moving air-water interfaces will be discussed.

  11. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  12. Modelling the spectral induced polarization response of water-saturated sands in the intermediate frequency range (102-105 Hz) using mechanistic and empirical approaches

    NASA Astrophysics Data System (ADS)

    Kremer, Thomas; Schmutz, Myriam; Leroy, Philippe; Agrinier, Pierre; Maineult, Alexis

    2016-11-01

    The intermediate frequency range 102-105 Hz forms the transition range between the spectral induced polarization frequency domain and the dielectric spectroscopy frequency domain. Available experimental data showed that the spectral induced polarization response of sands fully saturated with water was particularly sensitive to variations of the saturating water electrical conductivity value in the intermediate frequency range. An empirical and a mechanistic model have been developed and confronted to this experimental data. This confrontation showed that the Maxwell Wagner polarization alone is not sufficient to explain the observed signal in the intermediate frequency range. The SIP response of the media was modelled by assigning relatively high dielectric permittivity values to the sand particle or high effective permittivity values to the media. Such high values are commonly observed in the dielectric spectroscopy literature when entering the intermediate frequency range. The physical origin of these high dielectric permittivity values is discussed (grain shape, electromagnetic coupling), and a preliminary study is presented which suggests that the high impedance values of the non-polarizable electrodes might play a significant role in the observed behaviour.

  13. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.

    PubMed

    Georgi, Anett; Schierz, Ariette; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2015-08-01

    Colloidal activated carbon can be considered as a versatile adsorbent and carrier material for in-situ groundwater remediation. In analogy to other nanoremediation approaches, activated carbon colloids (ACC) can be injected into the subsurface as aqueous suspensions. Deposition of ACC on the sediment creates a sorption barrier against further spreading of hydrophobic pollutants. This study deals with the optimization of ACC and their suspensions with a focus on suspension stability, ACC mobility in saturated porous media and sorption efficiency towards organic contaminants. ACC with an appropriate particle size range (d50=0.8μm) were obtained from a commercial powdered activated carbon product by means of wet-grinding. Among the various methods tested for stabilization of ACC suspensions, addition of humic acid (HA) and carboxymethyl cellulose (CMC) showed the best results. Due to electrosteric stabilization by adsorption of CMC, suspensions remained stable even at high ACC concentrations (11gL(-1)) and conditions typical of very hard water (5mM divalent cations). Furthermore, CMC-stabilized ACC showed high mobility in a water-saturated sandy sediment column (filter coefficient λ=0.2m(-1)). Such mobility is a pre-requisite for in-situ installation of sorption or reaction barriers by simple injection-well or direct-push application of ACC suspensions. Column experiments with organic model compounds proved the efficacy of ACC deposits on sediment for contaminant adsorption and retardation under flow-through conditions.

  14. Carbonate saturation state of surface waters in the Ross Sea and Southern Ocean: controls and implications for the onset of aragonite undersaturation

    NASA Astrophysics Data System (ADS)

    DeJong, H. B.; Dunbar, R. B.; Mucciarone, D.; Koweek, D. A.

    2015-12-01

    Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high-resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February-March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (Ω Ca) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity-salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.

  15. Carbonate saturation state of surface waters in the Ross Sea and Southern Ocean: controls and implications for the onset of aragonite undersaturation

    NASA Astrophysics Data System (ADS)

    DeJong, H. B.; Dunbar, R. B.; Mucciarone, D. A.; Koweek, D. A.

    2015-06-01

    Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February-March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity-salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.

  16. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  17. 48 CFR 52.247-52 - Clearance and Documentation Requirements-Shipments to DOD Air or Water Terminal Transshipment...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Documentation Requirements-Shipments to DOD Air or Water Terminal Transshipment Points. 52.247-52 Section 52.247... and Documentation Requirements—Shipments to DOD Air or Water Terminal Transshipment Points. As... Requirements—Shipments to DOD Air or Water Terminal Transshipment Points (FEB 2006) All shipments to water...

  18. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  19. Environmental monitoring of chromium in air, soil, and water.

    PubMed

    Vitale, R J; Mussoline, G R; Rinehimer, K A

    1997-08-01

    Historical uses of chromium have resulted in its widespread release into the environment. In recent years, a significant amount of research has evaluated the impact of chromium on human health and the environment. Additionally, numerous analytical methods have been developed to identify and quantitate chromium in environmental media in response to various state and federal mandates such as CERCLA, RCRA, CWA, CAA, and SWDA. Due to the significant toxicity differences between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium, it is essential that chromium be quantified in these two distinct valence states to assess the potential risks to exposure to each in environmental media. Speciation is equally important because of their marked differences in environmental behavior. As the knowledge of risks associated with each valence state has grown and regulatory requirements have evolved, methods to accurately quantitate these species at ever-decreasing concentrations within environmental media have also evolved. This paper addresses the challenges of chromium species quantitation and some of the most relevant current methods used for environmental monitoring, including ASTM Method D5281 for air, SW-846 Methods 3060A, 7196A and 7199 for soils, sediments, and waste, and U.S. EPA Method 218.6 for water.

  20. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  1. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovar, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2004-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. During his six month stay on the ISS, astronaut Donald R Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and the container was secured in place for several hours while motion of the bubbles were recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System. Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on Shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  2. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    PubMed

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  3. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  4. Safe drinking water and clean air: an experimental study evaluating the concept of combining household water treatment and indoor air improvement using the Water Disinfection Stove (WADIS).

    PubMed

    Christen, Andri; Navarro, Carlos Morante; Mäusezahl, Daniel

    2009-09-01

    Indoor air pollution and unsafe water remain two of the most important environmental risk factors for the global burden of infectious diseases. Improved stoves and household water treatment (HWT) methods represent two of the most effective interventions to fight respiratory and diarrhoeal illnesses at household level. Since new improved stoves are highly accepted and HWT methods have their drawbacks regarding sustained use, combining the two interventions in one technical solution could result in notable positive convenience and health benefits. A WAter DIsinfection Stove (WADIS) based on a Lorena-stove design with a simple flow-through boiling water-treatment system was developed and tested by a pilot experimental study in rural Bolivia. The results of a post-implementation evaluation of two WADIS and 27 Lorena-stoves indicate high social acceptance rather due to convenience gains of the stove than to perceived health improvements. The high efficacy of the WADIS-water treatment system, with a reduction of microbiological contamination load in the treated water from 87600 thermotolerant coliform colony forming units per 100mL (CFU/100mL) to zero is indicative. The WADIS concept unifies two interventions addressing two important global burdens of disease. WADIS' simple design, relying on locally available materials and low manufacturing costs (approx. 6 US) indicates potential for spontaneous diffusion and scaling up.

  5. Water saturation of hydrothermal smectite-rich clay might have promoted slope instability prior to the 1998 debris avalanche at Casita volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Delmelle, P.; Opfergelt, S.; Boivin, P.; Delvaux, B.

    2006-12-01

    In October 1998, a relatively small collapse (1 600 000 cubic meters) of a pre-existing scarp occurred on the southern flank of the dormant Casita volcano, Nicaragua. It resulted in a debris avalanche, which quickly transformed into a disastrous debris flow that destroyed two towns and killed more than 2500 people. The failure was shown to be triggered by an excess pore water pressure within highly fractured rocks, following prolonged seasonal rains and precipitations from Hurricane Mitch. This pressure was linked to the water saturation of a hydrothermally-altered clay bedrock impeding in-depth infiltration. Yet, the nature and amounts of the clay material involved in the slope failure were still unknown. Here we report on physical, chemical and mineralogical investigations aimed at quantifying the clay content, and identifying the layer silicates of the hydrothermally-altered clays uncovered by the 1998 debris avalanche. The fine clay material was exceptionally rich in smectite (up to 50 wt. percent), which swells upon wetting and shrinks during dry conditions (Opfergelt et al., 2006, Geophys. Res. Lett., 33 (15), L15305). The smectite belonged to the beidellite-montmorillonite series. The pervasive presence of water-saturated smectitic clay strongly reduced the permeability in depth, and also altered the rheological and mechanical properties of both the pre-failure rock mass and flow materials. The shrink-swell behavior progressively decreased the rock's shear strength, and gradually destabilized the overlying rock mass in the decades and centuries before the landslide, thereby contributing to slope instability. Prolonged intense rainfall led to the formation of incipient weak failure surfaces in the superficial rock mass. As provoked by water saturation, this process was likely favored by the rapid change of the mechanical properties of smectite-rich clays deposited in fracture, joint and gouge interfaces. We suggest that hazard assessments associated with

  6. Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling.

    PubMed

    Canal, J; Delgado, J; Falcón, I; Yang, Q; Juncosa, R; Barrientos, V

    2013-01-02

    Massive chemical reactions are not expected when injecting CO(2) in siliceous sandstone reservoirs, but their performance can be challenged by small-scale reactions and other processes affecting their transport properties. We have conducted a core flooding test with a quartzarenite plug of Lower Cretaceous age representative of the secondary reservoir of the Hontomín test site. The sample, confined at high pressure, was successively injected with DIW and CO(2)-saturated DIW for 49 days while monitoring geophysical, chemical, and hydrodynamic parameters. The plug experienced little change, without evidence of secondary carbonation. However, permeability increased by a factor of 4 (0.022-0.085 mD), and the V(P)/V(S) ratio, whose change is related with microcracking, rose from ~1.68 to ~1.8. Porosity also increased (7.33-8.1%) from the beginning to the end of the experiment. Fluid/rock reactions were modeled with PHREEQC-2, and they are dominated by the dissolution of Mg-calcite. Mass balances show that ~4% of the initial carbonate was consumed. The results suggest that mineral dissolution and microcracking may have acted in a synergistic way at the beginning of the acidic flooding. However, dissolution processes concentrated in pore throats can better explain the permeability enhancement observed over longer periods of time.

  7. A SAXS study on nanostructure evolution in water free membranes containing ionic liquid: from dry membrane to saturation.

    PubMed

    Sekhon, Satpal Singh; Park, Jin-Soo; Choi, Young-Woo

    2010-11-07

    Small-angle X-ray scattering (SAXS) technique has been used to study the evolution of ionomer peak in the recast Nafion membranes containing the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF(4)). To the best of our knowledge, this is the first report dealing with the study of membranes containing different concentrations of the ionic liquid (EMIBF(4)), from the dry (no ionic liquid) to the saturation (containing 70 wt% ionic liquid) state to understand the evolution of the ionomer peak and the formation of ionic aggregates in these anhydrous membranes. The small-angle scattering maximum (ionomer peak) has been observed to shift continuously toward lower scattering vector (q) values as the ionic liquid content increases. The ionic conductivity behavior for the membranes containing ionic liquid has been found to be closely related with the change of slope of the double logarithmic plot between the reciprocal of the position of the ionomer peak and the polymer weight fraction. The q region over which Porod's law has been obeyed in different membranes was initially narrow and has been observed to widen with an increase in the content of the ionic liquid.

  8. Halocarbons, alkyl nitrates, and nonmethane hydrocarbons quantified from surface air and water samples in the Gulf of Maine during NEAQS

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Harlow, A.; Sive, B. C.; Wingenter, O. W.

    2003-12-01

    During the New England Air Quality Study (NEAQS) campaign, July-August 2002, natural and anthropogenic halocarbons, alkyl nitrates, and nonmethane hydrocarbons (NMHCs) in surface air and water samples were quantified in situ using gas chromatography with flame ionization and electron capture detection aboard the NOAA R/V Ronald H. Brown. The cruise focused on an area in the Gulf of Maine, south of Portsmouth Harbor, near the Isle of Shoals, and in the Boston Harbor area. Between Cape Ann and Newburyport, saturation anomalies for anthropogenic halocarbons of 100% for CFC-113, 140% for H-1211, 40% for methyl chloroform, and 15% for carbon tetrachloride were observed. Throughout the cruise, subsequent high levels of these compounds were found in the area. The findings suggest that there are local anthropogenic sources of these gases, which are draining into the Gulf of Maine from local rivers, harbors, or estuaries. Elevated level of methyl bromide, methyl iodide, bromoform, and chloroform were measured near the coast, and decreased with increasing distance. The distributions of the NMHCs were similar to the naturally produced marine halocarbons, suggesting similar sources. Supersaturation of alkyl nitrates were observed indicating an oceanic source of methyl nitrate, i-propyl nitrate, n-propyl nitrate, and 2-butyl nitrate, with the later three compounds reported here in ocean water samples for the first time.

  9. Sediment-air equilibrium partitioning of semi-volatile hydrophobic organic compounds. Part 1. Method development and water vapor sorption isotherm.

    PubMed

    de Seze, G; Valsaraj, K T; Reible, D D; Thibodeaux, L J

    2000-05-15

    Contaminated sediments that become exposed to air as a result of dredging and disposal in confined disposal facilities are potential sources of air pollution. A critical parameter to develop emission estimation models is the equilibrium partition coefficient of contaminants, between sediment and air. In this first of two articles, we present a method, based on gas saturation in a flowing stream, to study both the adsorption of water and semi-volatile organic compounds on a sediment from the Campus Lake, Baton Rouge, LA, USA. The experimental set-up was used to determine the adsorption isotherm for water partitioning between sediment and pore-air. A detailed characterization of the sediment surface area and pore volume was used to develop an adsorption-condensation model for predicting water sorption on sediment. The model was used to estimate the importance of water adsorption on mineral surfaces and condensation in pores. This information serves, in the accompanying second article in the series, as the basis for the modeling of the partitioning of phenanthrene, and dibenzofuran.

  10. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... be enforced by the Commanding General, Tactical Air Command, Langley Air Force Base, Virginia,...

  11. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... be enforced by the Commanding General, Tactical Air Command, Langley Air Force Base, Virginia,...

  12. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... be enforced by the Commanding General, Tactical Air Command, Langley Air Force Base, Virginia,...

  13. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... be enforced by the Commanding General, Tactical Air Command, Langley Air Force Base, Virginia,...

  14. Non-linear behaviour of electrical parameters in porous, water-saturated rocks: a model to predict pore size distribution

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser

    2015-08-01

    In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.

  15. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality.

    PubMed

    Di Lorenzo, Mirella; Thomson, Alexander R; Schneider, Kenneth; Cameron, Petra J; Ieropoulos, Ioannis

    2014-12-15

    The heavy use of chemicals for agricultural, industrial and domestic purposes has increased the risk of freshwater contamination worldwide. Consequently, the demand for efficient new analytical tools for on-line and on-site water quality monitoring has become particularly urgent. In this study, a small-scale single chamber air-cathode microbial fuel cell (SCMFC), fabricated by rapid prototyping layer-by-layer 3D printing, was tested as a biosensor for continuous water quality monitoring. When acetate was fed as the rate-limiting substrate, the SCMFC acted as a sensor for chemical oxygen demand (COD) in water. The linear detection range was 3-164 ppm, with a sensitivity of 0.05 μA mM(-1) cm(-2) with respect to the anode total surface area. The response time was as fast as 2.8 min. At saturating acetate concentrations (COD>164 ppm), the miniature SCMFC could rapidly detect the presence of cadmium in water with high sensitivity (0.2 μg l(-1) cm(-2)) and a lower detection limit of only 1 μg l(-1). The biosensor dynamic range was 1-25 μg l(-1). Within this range of concentrations, cadmium affected only temporarily the electroactive biofilm at the anode. When the SCMFCs were again fed with fresh wastewater and no pollutant, the initial steady-state current was recovered within 12 min.

  16. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water.

    PubMed

    Fahlman, A; Schmidt, A; Handrich, Y; Woakes, A J; Butler, P J

    2005-09-01

    We measured oxygen consumption rate (Vo(2)) and body temperatures in 10 king penguins in air and water. Vo(2) was measured during rest and at submaximal and maximal exercise before (fed) and after (fasted) an average fasting duration of 14.4 +/- 2.3 days (mean +/- 1 SD, range 10-19 days) in air and water. Concurrently, we measured subcutaneous temperature and temperature of the upper (heart and liver), middle (stomach) and lower (intestine) abdomen. The mean body mass (M(b)) was 13.8 +/- 1.2 kg in fed and 11.0 +/- 0.6 kg in fasted birds. After fasting, resting Vo(2) was 93% higher in water than in air (air: 86.9 +/- 8.8 ml/min; water: 167.3 +/- 36.7 ml/min, P < 0.01), while there was no difference in resting Vo(2) between air and water in fed animals (air: 117.1 +/- 20.0 ml O(2)/min; water: 114.8 +/- 32.7 ml O(2)/min, P > 0.6). In air, Vo(2) decreased with M(b), while it increased with M(b) in water. Body temperature did not change with fasting in air, whereas in water, there were complex changes in the peripheral body temperatures. These latter changes may, therefore, be indicative of a loss in body insulation and of variations in peripheral perfusion. Four animals were given a single meal after fasting and the temperature changes were partly reversed 24 h after refeeding in all body regions except the subcutaneous, indicating a rapid reversal to a prefasting state where body heat loss is minimal. The data emphasize the importance in considering nutritional status when studying king penguins and that the fasting-related physiological changes diverge in air and water.

  17. Orientation of functional groups of soil organic matter on the surface of water repellent soils determined by pulse saturation magic angle spinning (PSTMAS) nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Hiradate, Syuntaro; Kawamoto, Ken; Senani Wijewardana, Nadeeka; Müller, Karin; Møldrup, Per; Clothier, Brent; Komatsu, Toshiko

    2014-05-01

    Orientation of functional groups of soil organic matter on soil particles plays a crucial role in the occurrence of soil water repellency. In addition to a general method to characterize soil organic matter using cross polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) technique, we determined the surface orientation of functional groups in water repellent soils by using pulse saturation magic angle spinning (PSTMAS) NMR technique. A preliminary experiment confirmed that the PSTMAS NMR spectrum successfully determined the high mobility of methyl group of octadecylsilylated silica gels when a comparison was made with that of CPMAS NMR. This means that the methyl group oriented towards the outside of the silica gel particle. Similarly, for an experimental system consisting of mixtures of octadecylsilylated silica gel and dimethyl sulfoxide (DMSO), the extremely high mobility of methyl group derived from DMSO was detected using the same methodology. For water repellent soils from Japan and New Zealand, it was found that the methyl and methylene groups were highly mobile. In contrast, the NMR signals of aromatic moiety, another hydrophobic moiety of soil organic matter, were not as intense in PSTMAS compared with CPMAS. From these results, we conclude that alkyl moiety (methyl and methylene groups) would be oriented towards the outside of the soil particle and would play an important role in the appearance of water repellency of soils.

  18. Seasonal variation of CaCO3 saturation state in bottom water of a biological hotspot in the Chukchi Sea, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Yamamoto-Kawai, Michiyo; Mifune, Takahisa; Kikuchi, Takashi; Nishino, Shigeto

    2016-11-01

    Distribution of calcium carbonate saturation state (Ω) was observed in the Chukchi Sea in autumn 2012 and early summer 2013. Ω in bottom water ranged from 0.3 to 2.0 for aragonite and from 0.5 to 3.2 for calcite in 2012. In 2013, Ω in bottom water was 1.1-2.8 for aragonite and 1.7-4.4 for calcite. Aragonite and calcite undersaturation was found in high productivity regions in autumn 2012 but not in early summer 2013. Comparison with other parameters has indicated that biological processes - respiration and photosynthesis - are major factors controlling the regional and temporal variability of Ω. From these ship-based observations, we have obtained empirical equations to reconstruct Ω from temperature, salinity and apparent oxygen utilization. Using 2-year-round mooring data and these equations, we have reconstructed seasonal variation of Ω in bottom water in Hope Valley, a biological hotspot in the southern Chukchi Sea. Estimated Ω was high in spring and early summer, decreased in later summer, and remained relatively low in winter. Calculations indicated a possibility that bottom water could have been undersaturated for aragonite on an intermittent basis even in the pre-industrial period, and that anthropogenic CO2 has extended the period of aragonite undersaturation to more than 2-fold longer by now.

  19. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  20. An analysis of water-to-air heat pump systems for use in government facilities

    NASA Astrophysics Data System (ADS)

    Fretzs, R. G.

    1980-09-01

    Energy consumption is an important issue for government managers. Examined in this thesis is one source of potential energy savings: a method of heating and cooling buildings. Water-to-air heat pumps are analyzed and cost comparisons to conventional heating/cooling systems (gas, fuel oil, electric resistance, and air-to-air heat pumps) are made. The theory of heat pump technology is presented to show how water source heat pumps achieve improved efficiencies over conventional systems. Sources of and disposal of water to support the systems are discussed. Cost comparisons are presented based on computer simulations and fuel cost graphs. Twenty-one percent of U.S. energy consumption is used to heat and cool buildings. Water-to-air heat pumps provide a 30-50 percent savings over other systems. Therefore, a potential 10 percent savings in total energy consumption exists through the use of water source heat pumps.

  1. DETERMINING EFFECTIVE INTERFACIAL TENSION AND PREDICTING FINGER SPACING FOR DNAPL PENETRATION INTO WATER-SATURATED POROUS MEDIA. (R826157)

    EPA Science Inventory

    The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Re...

  2. Investigation of Ground Water Pollution at Air Force Plant Number 4, Fort Worth Texas

    DTIC Science & Technology

    1986-10-01

    INVESTIGATION L UNWaACTIPEWS OKMOMAM OF WILL U . E FAILING 1500 • , o. i. i8A-96 T, o , - MARKor TOTAL IMPR CORK OEU C Ra.V IL UATtOW GOUND WATER * 13...SSArm op US Army Corps ’ofS Enginee rs of Engineers Fort Worth District Kansas City District INVESTIGATION OF GROUND WATER POLLUTION AT AIR FORCE...Dbtibz~o Ud~mxtm!UCTtq! - INVESTIGATION OF GROUND WATER POLLUTION AT - AIR FORCE PLANT NO. 4 FORT WORTH, TEXAS REPORT TO - UNITED STATES AIR FORCE

  3. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  4. Air-water gas exchange of organochlorine compounds in Lake Baikal, Russia

    SciTech Connect

    McConnell, L.L.; Kucklick, J.R.; Bidleman, T.F.; Ivanov, G.P.; Chernyak, S.M.

    1996-10-01

    Air and surface water samples were collected at Lake Baikal, Russia, during June 1991 to determine concentrations of organochlorine pesticides and polychlorinated biphenyl (PCB) congeners. These data were combined with Henry`s law constants to estimate the gas flux rate across the air-water interface of each compound class. Air samples were collected at Lake Baikal and from nearby Irkutsk. Water samples were collected from three mid-lake stations and at the mouth of two major tributaries. Average air concentrations of chlorinated bornanes (14 pg m{sup -3}), chlordanes (4.9 pg m{sup -3}), and hexachlorobenzene (HCB) (194 pg m{sup -3}) were similar to global backgound of Arctic levels. However, air concentrations of hexachlorocyclohexanes (HCHs), DDTs, and PCBs were closer to those observed in the Great Lakes region. Significantly higher levels of these three compound classes in air over Irkutsk suggests that regional atmospheric transport and deposition may be an important source of these persistent compounds to Lake Baikal. Air-water gas exchange calculations resulted in net depositional flux values for {alpha}-HCH, {gamma}-HCH, DDTs, and chlorinated bornanes at 112, 23, 3.6, and 2.4 ng m{sup -2} d{sup -1}, respectively. The total net flux of 22 PCB congeners, chlordanes, and HCB was from water to air (volatilization) at 47, 1.8, and 32 ng m{sup -2} d{sup -1}, respectively. 50 refs., 7 figs., 5 tabs.

  5. Changes In Arterial Hemoglobin Oxygen Saturation During Transport From the Operating Room to the Postanesthesia Care Unit In Healthy Patients Breathing Room Air

    DTIC Science & Technology

    1998-12-16

    This occurs because nitrous oxide is 31 times more soluble in blood than nitrogen. If nitrogen was more soluble in blood than nitrous oxide this would...lack of data on pat i ent oxygenation during postoperative transfer, explainable in part by the difficulty of measuring blood gases under s uch...noninvasively measure the oxygen saturation of hemoglobin in arterial blood . The two types of oximeters are transmissive pulse oximeters and

  6. 75 FR 11560 - Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act Notice is hereby given that... violations of the Clean Water Act, 33 U.S.C. 1251 et seq., and the Clean Air Act, 42 U.S.C. 7401 et seq. at... of water effluent controls, the rerouting of air emissions through control devices, and...

  7. Surfactant-Induced Flow in Unsaturated Porous Media: Implications for Air-Water Interfacial Area Determination

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Zheng, Z.; Estabrook, B.; Henry, E. J.; Littlefield, M. H.

    2011-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer. Interfacial-partitioning tracer (IPT) tests are a common technique for measuring AI at a given moisture saturation (SW), where AI is calculated based on the ratio of arrival times of a surfactant and a non-reactive tracer. At surfactant concentrations often used, the aqueous surface tension of the interfacial tracer solution is ~30% lower than that of the resident porewater in the system, creating transient surface tension gradients during the IPT measurement. Because surface tension gradients create capillary pressure gradients, surfactant-induced unsaturated flow may occur during IPT tests, a process that would violate fundamental assumptions of constant SW, of steady-state flow, and of nonreactive and surfactant tracers experiencing the same transport conditions. To examine the occurrence and magnitude of surfactant-induced flow, we conducted IPT tests for unsaturated systems at ~84% initial SW using surfactant input concentrations that bracket concentrations commonly used. Despite constant boundary conditions (constant inlet flux and outlet pressure), the introduction of the surfactant solution induced considerable transience in column effluent flowrate and SW. Real-time system mass measurements revealed drainage of 20-40% SW, with the amount of drainage and the maximum rate of drainage proportional to the influent surfactant concentration, as would be expected. Because AI is inversely related to SW, the use of higher surfactant concentrations should yield larger AI estimates. Measured AI values, however, showed no clear relationship to surfactant concentration or the time-averaged SW of the system. These findings cast doubt on the reliability of IPT for AI determination.

  8. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  9. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  10. Effect of optimizing supply water temperature and air volume on a VAV system

    SciTech Connect

    Karino, Naoki; Shiba, Takashi; Ito, Koichi; Yokoyama, Ryohei

    1999-07-01

    An optimal planning method is proposed for an air conditioning system composed of heat pump chillers and variable air volume (VAV) units. Supply water temperature, supply air volume, and thickness of heat insulation material are determined optimally so as to minimize the annual total cost of the system in consideration of equipment capacities and annual operation for the cooling load varying through a year. Through a numerical study on the system planned for an office building, influences of supply water/air temperatures and air volume on the system are investigated from the viewpoint of long-term economics. As a result, it is shown that the annual energy charge of the optimal VAV system can be reduced considerably in comparison with that of the optimal constant air volume (CAV) system, and that the effect of the energy conservation of the former system is large enough.

  11. Cationic Gemini surfactant at the air/water interface.

    PubMed

    Qibin, Chen; Xiaodong, Liang; Shaolei, Wang; Shouhong, Xu; Honglai, Liu; Ying, Hu

    2007-10-15

    The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the

  12. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    DTIC Science & Technology

    2007-12-03

    swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating...lethality and cavity generation concerns, with minimizing drag in air being a tertiary consideration. The overall goal of the presented work is to develop...compacted at the nose of the projectile to a voidage of around 0.825 in both cases, and a large cavity filled with air is formed as the granular

  13. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  14. 3DFEMWATER: A three-dimensional finite element model of water flow through saturated-unsaturated media

    SciTech Connect

    Yeh, G.T.

    1987-08-01

    The 3DFEMWATER model is designed to treat heterogeneous and anisotropic media consisting of as many geologic formations as desired, consider both distributed and point sources/sinks that are spatially and temporally dependent, accept the prescribed initial conditions or obtain them by simulating a steady state version of the system under consideration, deal with a transient head distributed over the Dirichlet boundary, handle time-dependent fluxes due to pressure gradient varying along the Neumann boundary, treat time-dependent total fluxes distributed over the Cauchy boundary, automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface, include the off-diagonal hydraulic conductivity components in the modified Richards equation for dealing with cases when the coordinate system does not coincide with the principal directions of the hydraulic conductivity tensor, give three options for estimating the nonlinear matrix, include two options (successive subregion block iterations and successive point interactions) for solving the linearized matrix equations, automatically reset time step size when boundary conditions or source/sinks change abruptly, and check the mass balance computation over the entire region for every time step. The model is verified with analytical solutions or other numerical models for three examples.

  15. Driving Students and Parents to Cleaner Air: An Interview with Michelle Waters

    ERIC Educational Resources Information Center

    Curriculum Review, 2006

    2006-01-01

    After spending three years as a kindergarten teacher and one as a reading specialist, Michelle Waters recently became the education outreach coordinator for the Georgia-based Clean Air Campaign. In that role, she has helped roll out a comprehensive Better Air Schools initiative to 20 Atlanta-area elementary schools. The program includes a…

  16. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  17. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.

    1979-01-01

    The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.

  18. Method and apparatus for extracting water from air using a desiccant

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  19. Moisture content, processing yield, and surface color of broiler carcasses chilled by water, air, or evaporative air.

    PubMed

    Jeong, J Y; Janardhanan, K K; Booren, A M; Karcher, D M; Kang, I

    2011-03-01

    This study was conducted to investigate the effects of water chilling (WC), air chilling (AC), and evaporative air chilling (EAC) on the moisture content, processing yield, surface color, and visual appearance of broiler carcasses. For the WC treatment, 1 group of birds was hard scalded and submersed into ice slush, whereas for AC, 1 group of birds was soft scalded and exposed to blowing air (1.0 m/s at 0°C) and for EAC, or 1 group of birds was soft scalded and exposed to blowing air and a cold water spray (every 5 min). During chilling, carcass temperature was reduced most effectively by WC (55 min), followed by EAC (120 min) and AC (155 min). After chilling, both WC and EAC carcasses picked up moisture at 4.6 and 1.0% of their weights, respectively, whereas AC carcasses lost 1.5% of their weight. On cutting at 5 h postmortem, WC carcasses showed the highest (2.5%), EAC showed the second highest (0.4%), and AC showed the least (0.3%) moisture loss. After 24 h of storage, almost 83% of the absorbed water in the WC carcass parts was released as purge, whereas EAC and AC carcasses maintained weights close to the prechilled weights. In an instrumental color evaluation and a visual evaluation by panelists, AC carcasses showed a darker appearance, a more yellow color, and more surface discoloration compared with WC or EAC carcasses.

  20. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  1. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    NASA Astrophysics Data System (ADS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-02-01

    In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  3. The Clean Air and Clean Water Acts: The "Fifth" and "Eighth" Most Significant Events.

    ERIC Educational Resources Information Center

    Knight, Laurel A.

    1991-01-01

    The history and impact of this federal legislation are discussed. An assessment of the progress of federal legislation in these areas is presented. Key issues for federal legislation regarding water and air quality are identified. (CW)

  4. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    NASA Astrophysics Data System (ADS)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  5. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    NASA Astrophysics Data System (ADS)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  6. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying.

  7. Ground performance of air conditioning and water recycle system for a Space Plant Box.

    PubMed

    Tani, A; Okuma, T; Goto, E; Kitaya, Y; Saito, T; Takahashi, H

    2001-01-01

    Researchers from 5 Japanese universities have developed a plant growth facility (Space Plant Box) for seed to seed experiments under microgravity. The breadboard model of the Space Plant Box was fabricated by assembling subsystems developed for microgravity. The subsystems include air conditioning and water recycle system, air circulation system, water and nutrient delivery system, lighting system and plant monitoring system. The air conditioning and water recycle system is simply composed of a single heat exchanger, two fans and hydrophilic fibrous strings. The strings allow water movement from the cooler fin in the Cooling Box to root supporting materials in the Plant Growth Chamber driven by water potential deficit. Relative humidity in the Plant Growth Chamber can be changed over a wide range by controlling the ratio of latent heat exchange to sensible heat exchange on the cooling fin of the heat exchanger. The transpiration rate was successfully measured by circulating air inside the Plant Growth Chamber only. Most water was recycled and a small amount of water needed to be added from the outside. The simple, air conditioning and water recycle system for the Space Plant Box showed good performance through a barley (Hordeum vulgare L.) growth experiment.

  8. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  9. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  10. Experimental investigation of human adenovirus cotransport with clay colloids and TiO2 nanoparticles in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Kokkinos, Petros; Tselepi, Maria A.; Kartoudis, Alexis; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V.

    2016-04-01

    Particles such as clay colloids (e.g. kaolinite and montmorillonite) and metal oxides (e.g. TiO2) have great potential for controlling the fate and transport of viruses in the subsurface. Although human adenoviruses (hAdVs) are used worldwide to indicate human fecal pollution in groundwater, their transport behavior in the subsurface environment is not fully understood. This study focuses on the effects of both clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b), and TiO2 nanoparticles (NPs), on hAdV transport and retention in porous media. Laboratory-scale cotransport experiments were conducted in columns packed with glass beads, at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The experimental results suggested that the presence of KGa-1b, STx-1b, and TiO2 NPs increased the attachment and inactivation of hAdVs, mainly due to the contribution of additional attachment sites. Retention of hAdVs by the packed column was shown to be highest in the presence of TiO2 NPs and lowest in the presence of KGa-1b. Moreover, the mass recovery values of both clay colloids and TiO2 NPs were affected by the presence of hAdVs, under all of the experimental conditions examined in this study. However, no distinct relationship between mass recovery and water velocity could be established from the present experimental cotransport results.

  11. Capillary forces between sediment particles and an air-water interface.

    PubMed

    Chatterjee, Nirmalya; Lapin, Sergey; Flury, Markus

    2012-04-17

    In the vadose zone, air-water interfaces play an important role in particle fate and transport, as particles can attach to the air-water interfaces by action of capillary forces. This attachment can either retard or enhance the movement of particles, depending on whether the air-water interfaces are stationary or mobile. Here we use three standard PTFE particles (sphere, circular cylinder, and tent) and seven natural mineral particles (basalt, granite, hematite, magnetite, mica, milky quartz, and clear quartz) to quantify the capillary forces between an air-water interface and the different particles. Capillary forces were determined experimentally using tensiometry, and theoretically assuming volume-equivalent spherical, ellipsoidal, and circular cylinder shapes. We experimentally distinguished between the maximum capillary force and the snap-off force when the air-water interface detaches from the particle. Theoretical and experimental values of capillary forces were of similar order of magnitude. The sphere gave the smallest theoretical capillary force, and the circular cylinder had the largest force due to pinning of the air-water interface. Pinning was less pronounced for natural particles when compared to the circular cylinder. Ellipsoids gave the best agreement with measured forces, suggesting that this shape can provide a reasonable estimation of capillary forces for many natural particles.

  12. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    USGS Publications Warehouse

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water

  13. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  14. Integrating air quality, water and climate concerns into China's energy strategy

    NASA Astrophysics Data System (ADS)

    Peng, Wei

    As the world's top carbon emitter, China also suffers from serious air pollution and increasingly severe water stress. My dissertation focuses on a variety of energy strategies in China and examines potential synergies and tradeoffs between air quality, water conservation and carbon mitigation objectives. It includes four analytical chapters. Chapter 2 and 3 examines the air quality and climate implications of a variety policy options in the near term and at the 2030 time horizon, respectively. Based on an integrated assessment using regional air pollution model and epidemiological evidence, I find that improving industrial energy efficiency is the most effective near-term strategy to curb air pollution and carbon emissions, while electrifying end-use sectors (e.g. vehicles and residential stoves) with decarbonized electricity will likely become the favorable co-control strategy in 2030. These two chapters hence provide a scientific basis for policymakers in China to coordinate air pollution and carbon mitigation strategies. Chapter 4 and 5 then examines the role of electricity transmission, as a critical element of the electrification strategy, in the nexus of air pollution, water stress and carbon emissions. Chapter 4 evaluates the potential air quality and climate benefits of long-distance electricity transmission in China in the near term. I find that transmitting a hybrid mix of renewable and coal power can be a cost-effective energy transfer strategy to curb air pollution impacts and carbon emissions, because it not only utilizes zero-carbon renewable resources in the west, but also displaces coal power generation and associated air pollution impacts in highly populated eastern regions. Chapter 5 studies the potential tradeoffs in the transmission system designs to achieve air quality or water conservation benefits from a decarbonized generation system. Since air pollution and water stress are severe in eastern and northern China respectively, I find that an

  15. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  16. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  17. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  18. Water treatment: Air stripping. December 1981-July 1989 (Citations from the Selected Water Resources Abstracts data base). Report for December 1981-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations concerning the application of air stripping techniques to water treatment, including ground-water decontamination and waste-water purification. The advantages and disadvantages of air stripping over other water-treatment processes are discussed. Cleanup of the organic emissions generated by air stripping is also considered. The primary applications of air stripping are in ground-water and soil cleanup. Other water treatment processes are discussed in separate bibliographies. (Contains 74 citations fully indexed and including a title list.)

  19. Infiltration of CO2 into Water-Saturated Two-Dimensional Porous Micromodels: New Insight from Microscopic Particle Image Velocimetry (μPIV) Experiments

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2013-12-01

    A novel experimental apparatus has been developed to study the interaction between liquid/supercritical CO2 and water in a two-dimensional porous micro-model. This flow process is very similar to what is encountered in many engineering applications such as sequestration of CO2 in geological formations (Carbon Capture and Sequestration, CCS) as well as enhanced oil recovery operations (EOR). Saline aquifers have very high potential for geological sequestration of CO2 based on several factors, including high capacity, economics and minimum environmental impact. Several CO2 injection and sequestration projects are currently in operation (e.g. Sleipner project in Norway), and numerous other projects are planned for the near future. While several studies exist on the large temporal- and spatial- scale effects of CO2 injection, the fluid-dynamic mechanisms at the pore-scale are largely unknown. In fact, recent studies suggest that such processes may be far more complex than previously addressed. CO2 and water/brine are immiscible, thus during the injection process of CO2 into a liquid-saturated porous structure, CO2 must displace the resident fluid. The lower viscosity and density of CO2 compared to water results in complex mechanisms of water displacement. While early studies focused on qualitative observations of fluid-fluid interactions, in this study, the microscopic particle image velocimetry (μPIV) technique is employed to quantify the flow fields within each fluid phase. The interface dynamics, migration and trapping mechanisms are of particular interest. In such flows, viscosity and interfacial tension are known as the main controlling parameters. In this regard, a challenging aspect of this work is that, in the vicinity of the critical point, these properties become very sensitive to changes in pressure and temperature. Additionally, despite the low Reynolds number of the flow, inertial effects are found to control the dynamics of flow patterns at the fluid

  20. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    PubMed

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.

  1. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    PubMed Central

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  2. Critical air/water blow-down in safety valves at low qualities.

    PubMed

    Moncalvo, D; Friedel, L

    2011-02-28

    Critical air/water blow-downs in safety valves for qualities from 0.01 to 0.113 and mass flow rates from 1.5 up to 4.3 kg/s have been observed in our test facility. These critical blow-downs are characterized by a large void fraction and by an intense mixing of the phases both in the valve body and in the outlet pipe. A qualitative estimation of the flow pattern in the outlet pipe using the map of Taitel and Dukler suggests that these air/water flows are intermittent flows--presumably slug flows--evolving to annular flows for qualities above 0.1. Intermittent flows are also predicted for critical air/water and air/glycerine flows taken from the literature for the same safety valve at slightly larger relieving pressures.

  3. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  4. Ensemble kalman filtering to perform data assimilation with soil water content probes and pedotransfer functions in modeling water flow in variably saturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...

  5. Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces.

    PubMed

    Balmert, Alexander; Florian Bohn, Holger; Ditsche-Kuru, Petra; Barthlott, Wilhelm

    2011-04-01

    Superhydrophobic surfaces prevent certain body parts of semiaquatic and aquatic insects from getting wet while submerged in water. The air layer on these surfaces can serve the insects as a physical gill. Using scanning electron microscopy, we investigated the morphology of air-retaining surfaces in five insect species with different levels of adaptation to aquatic habitats. We found surfaces with either large and sparse hairs (setae), small and dense hairs (microtrichia), or hierarchically structured surfaces with both types of hairs. The structural parameters and air-film persistence of these surfaces were compared. Air-film persistence varied between 2 days in the beetle Galerucella nymphaea possessing only sparse setae and more than 120 days in the bugs Notonecta glauca and Ilyocoris cimicoides possessing dense microtrichia (up to 6.6 × 10(6) microtrichia per millimeter square). From our results, we conclude that the density of the surface structures is the most important factor that affects the persistence of air films. Combinations of setae and microtrichia are not decisive for the overall persistence of the air film but might provide a thick air store for a short time and a thin but mechanically more stable air film for a long time. Thus, we assume that a dense cover of microtrichia acts as a "backup system" preventing wetting of the body surface in case the air-water interface is pressed toward the surface. Our findings might be beneficial for the development of biomimetic surfaces for long-term air retention and drag reduction under water. In addition, the biological functions of the different air retention capabilities are discussed.

  6. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  7. Percolation-Continuum Model of Evaporative Drying: Homogeneous or Patchy Saturation?

    SciTech Connect

    Wang, H F; Strand, T E; Berryman, J G

    2005-02-18

    Porous rock on the earth's surface often contains more than one fluid phase, and an important case is partial saturation with air and water. We implemented a pore-scale, percolation model coupled with a continuum model for water vapor diffusion in order to create a simulated tomographic image of water distribution within a rock core during drying. As drying proceeds, the initial, continuous water cluster breaks up into smaller and smaller clusters with an increasing surface-area-to-volume ratio. Drying times are a function of the number and location of boundary surfaces, but the surface-area-to-volume ratio is approximately the same for a given saturation. By applying a Voigt volume average of the elastic properties of water-filled and air-filled cells, and by introducing the ad hoc rule that water-filled pores on the air-water interface of a cluster behave in a drained manner, we find elastic moduli as a function of saturation that mimic laboratory experimental data.

  8. Utilizing Temperature and Resistivity Data as a Way to Characterize Water and Solute Movement and Groundwater-Surface Water Interaction in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Scotch, C.; Murgulet, D.; Hay, R.

    2012-12-01

    This study utilizes a multidisciplinary approach to better analyze the extent to which groundwater and surface water interact in the Oso Creek water shed of South Texas using temperature data, electrical resistivity and numerical modeling methods. The three primary objectives of this study are to: (1) identify primary areas of streambed groundwater-surface water interaction using temperature time series and resistivity soundings; (2) improve understanding of solute flow and groundwater, surface water, and sediment interaction in a semiarid, urban coastal area; (3) improve our understanding of groundwater contribution to contaminant transport and discharge to the bays and estuaries and ultimately the Gulf of Mexico. Temperature data was acquired over a one year period, using temperature loggers, from June 11, 2009 to May 18, 2010 at 15-minute intervals from 17 monitoring sites along Oso Creek and its tributaries. Each monitoring site consisted of 4 temperature loggers equally vertically spaced from the stream surface down to a depth of one meter. Furthermore, groundwater temperatures and water levels were collected from wells adjacent to the temperature monitoring sites. In order to fulfill the objectives of this study, existing hydrogeologic, stratigraphic, and other ancillary data are being integrated into a finite difference model developed using the USGS VS2DT software for the Oso Creek Watershed. The model will be calibrated using existing temperature and water level data and a resistivity component will also be added to assure accuracy of the model and temperature data by helping to identify varying lithologies and water conductivities. Compiling a time-series of temperature data and incorporating available hydrostratigraphic, geomorphologic and water level data will enable the development of a comprehensive database. This database is necessary to develop the detailed flow model that will enable an understanding of the extent of groundwater surface water

  9. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  10. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  11. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    SciTech Connect

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  12. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states

    NASA Astrophysics Data System (ADS)

    Mathis, Jeremy T.; Pickart, Robert S.; Byrne, Robert H.; McNeil, Craig L.; Moore, G. W. K.; Juranek, Laurie W.; Liu, Xuewu; Ma, Jian; Easley, Regina A.; Elliot, Matthew M.; Cross, Jessica N.; Reisdorph, Stacey C.; Bahr, Frank; Morison, Jamie; Lichendorf, Trina; Feely, Richard A.

    2012-04-01

    The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (<-1.2°C), salty (>32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 > 550 μatm) and undersaturated in aragonite (Ωaragonite < 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18-0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72-2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.

  13. Comparison of Upper Tropospheric Water Vapor from AIRS and Cryogenic Frostpoint Hygrometers

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Vomel, Holger

    2004-01-01

    Upper tropospheric water vapor (UTWV) from the Atmospheric Infrared Sounder (AIRS) experiment on NASA's Aqua spacecraft has the potential of addressing several important climate questions. The specified AIRS system measurement uncertainty for water vapor is 20 percent absolute averaged over 2 km layers. Cryogenic frostpoint hygrometers (CFH) are balloon-borne water vapor sensors responsive from the surface into the lower stratosphere. Several dozen coincident, collocated CFH profiles have been obtained for AlRS validation. The combination of CFH sensitivity and sample size offers a statistically compelling picture of AIRS UTWV measurement capability. We present a comparison between CFH observations and AlRS retrievals. We focus on the altitude range from the middle troposphere up to heights at the limits of AlRS sensitivity to water vapor, believed to be around 100-1 50 hPa.

  14. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  15. Surface behavior of malonic acid adsorption at the air/water interface.

    PubMed

    Blower, Patrick G; Shamay, Eric; Kringle, Loni; Ota, Stephanie T; Richmond, Geraldine L

    2013-03-28

    The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

  16. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  17. Numerical study of coupled transfer of heat and mass between air and water inside a geothermal water cooling tower

    NASA Astrophysics Data System (ADS)

    Bassem, Mohamed Mehdi; Bourouni, Karim; Thameur Chaibi, Mohamed

    2006-11-01

    In the south of Tunisia, geothermal water is used to irrigate cultures. Since its temperature is very high (70 C), geothermal water is cooled by cooling towers. These towers are sized empirically and present many operating problems such as excessive energy consumption, big loss of vapour and low cooling efficiency. The aim of our work is modelling the coupled heat and mass transfer between air and water inside the cooling tower. The most important results obtained are that the evaporative potential is dominating the convective one in the cooling process. That's why the cooling is more efficient in summer than in hibernal period when humidity of ambient air reaches high values. In other hand, the negative convective phenomenon is illustrated. In fact, at the bottom of the tower, water temperature reaches the air one; the two fluids begin to cooling simultaneously. Air is cooled by convection and water by evaporation. We demonstrate also that there is no point in putting fans in working during cold weather. We studied also the effect of the variation of heat transfer coefficient on the efficiency of cooling.

  18. A Potential Cost Effective Liquefaction Mitigation Countermeasure: Induced Partial Saturation

    SciTech Connect

    Bian Hanbing; Jia Yun; Shahrour, Isam

    2008-07-08

    This work is devoted to illustrate the potential liquefaction mitigation countermeasure: Induced Partial Saturation. Firstly the potential liquefaction mitigation method is briefly introduced. Then the numerical model for partially saturated sandy soil is presented. At last the dynamic responses of liquefiable free filed with different water saturation is given. It shows that the induced partial saturation is efficiency for preventing the liquefaction.

  19. Air-water interfacial areas in unsaturated soils: Evaluation of interfacial domains

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, Molly S.; Brusseau, Mark L.

    2002-10-01

    A gas-phase miscible-displacement method, using decane as an interfacial tracer, was used to measure air-water interfacial areas for a sand with water contents ranging from ˜2% to 20%. The expected trend of decreasing interfacial areas with increasing water contents was observed. The maximum estimated interfacial area of 19,500 cm-1 appears reasonable given it is smaller than the measured surface area of the porous medium (60,888 cm-1). Comparison of the experimental data presented herein with literature data provided further insight into the characterization of the air-water interface in unsaturated porous media. Specifically, comparison of interfacial areas measured using gas-phase versus aqueous-phase methods indicates that the gas-phase method generally yields larger interfacial areas than the aqueous-phase methods, even when accounting for differences in water content and physical properties of the porous media. The observations are consistent with proposed differences in interfacial accessibility of the aqueous- and gas-phase tracers. Evaluation of the data in light of functional interfacial domains, described herein, yields the hypothesis that aqueous interfacial tracers measure primarily air-water interfaces formed by "capillary water," while gas-phase tracers measure air-water interfaces formed by both capillary and surface-adsorbed (film) water. The gas- and aqueous-phase methods may each provide interfacial area information that is more relevant to specific problems of interest. For example, gas-phase interfacial area measurements may be most relevant to contaminant transport in unsaturated systems, where retention at the air-water interface may be significant. Conversely, the aqueous-phase methods may yield information with direct bearing on multiphase flow processes that are dominated by capillary-phase behavior.

  20. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  1. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  2. Does soil water saturation mobilize metals from riparian soils to adjacent surface water? A field monitoring study in a metal contaminated region.

    PubMed

    Van Laer, Liesbeth; Smolders, Erik

    2013-06-01

    In the Noorderkempen (NW Belgium), a large area (about 280 km(2)) is contaminated with cadmium (Cd) and zinc (Zn) due to historical pollution by the Zn smelters. Direct aquatic emissions of metals have diminished over time, however the surface water metal concentration largely exceeds quality standards, mainly during winter periods. Monitoring data were analyzed to reveal whether these fluctuations are related to seasonal redox reactions in associated contaminated riparian soils that drain into the rivers. A field survey was set up with soil pore-water and groundwater monitored for three years in transects of soil monitoring points perpendicular to rivers at contaminated and non-contaminated sites. Site averaged surface water concentrations of a 15 year dataset exceeded local quality standards 4 to 200-fold. Winter averaged metal concentrations significantly exceeded the corresponding summer values 1.3-1.8 (Zn) and 1.5-2.4 fold (Cd). Zinc and Cd concentrations in water were positively related to Fe and Mn but not to Ca, K or Na suggesting that redox reactions and not dilution processes are involved. In ground- and pore-water of the associated riparian soils, the concentrations of Zn fluctuate by the same order of magnitude as in surface water but were generally smaller than in the corresponding contaminated rivers. In addition, correlations of dissolved Zn with Fe and Mn were lacking. This analysis suggests that redox reactions in streams, and not in riparian soils, explain the seasonal trends of Zn and Cd in surface water. Hence, river sediments and not riparian soils may be the cause of the winter peaks of Zn and Cd in these rivers.

  3. Saturated fats (image)

    MedlinePlus

    Saturated fats are found predominantly in animal products such as meat and dairy products, and are strongly associated with higher cholesterol levels. Tropical oils such as palm, coconut, and coconut butter, are also high in saturated fats.

  4. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An