Science.gov

Sample records for air sea fluxes

  1. Impact of Sea Spray on Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Mueller, James

    2013-11-01

    The contributions of sea spray drops to the total air-sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution: the number of drops formed at the ocean surface and the per-drop contribution to the fluxes. To estimate these per-droplet fluxes, we present results from a large number of drop trajectories, which are simulated with a recently developed Lagrangian Stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. Then, using commonly accepted spray generation functions we present estimates of spray fluxes which account for the mediating feedback effects from the droplets on the atmosphere. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate. We further show that the spray fluxes may be especially sensitive to the size distribution of the drops. The total effective air-sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds. Funded by grants OCE-0850663 and OCE-0748767 from the National Science Foundation.

  2. Climatic impacts of stochastic fluctuations in air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Williams, Paul D.

    2012-05-01

    Air-sea fluxes vary partly on scales that are too small or fast to be resolved explicitly by global climate models. This paper proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate. The paper then demonstrates the mechanism in climate simulations with a comprehensive coupled general circulation model. Significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  3. Observational Buoy Studies of Coastal Air-Sea Fluxes.

    NASA Astrophysics Data System (ADS)

    Frederickson, Paul A.; Davidson, Kenneth L.

    2003-02-01

    Recent advancements in measurement and analysis techniques have allowed air-sea fluxes to be measured directly from moving platforms at sea relatively easily. These advances should lead to improved surface flux parameterizations, and thus to improved coupled atmosphere-ocean modeling. The Naval Postgraduate School has developed a `flux buoy' (FB) that directly measures air-sea fluxes, mean meteorological parameters, and one-dimensional and directional wave spectra. In this study, the FB instrumentation and data analysis techniques are described, and the data collected during two U.S. east coast buoy deployments are used to examine the impact of atmospheric and surface wave properties on air-sea momentum transfer in coastal ocean regions. Data obtained off Duck, North Carolina, clearly show that, for a given wind speed, neutral drag coefficients in offshore winds are higher than those in onshore winds. Offshore wind drag coefficients observed over the wind speed range from 5 to 21 m s1 were modeled equally well by a linear regression on wind speed, and a Charnock model with a constant of 0.016. Measurements from an FB deployment off Wallops Island, Virginia, show that neutral drag coefficients in onshore winds increase as the wind-wave direction differences increase, especially beyond ±60°.

  4. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  5. Climatic Impacts of a Stochastic Parameterization of Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The atmosphere and ocean are coupled by the exchange of fluxes across the ocean surface. Air-sea fluxes vary partly on scales that are too small and fast to be resolved explicitly in numerical models of weather and climate, making them a candidate for stochastic parameterization. This presentation proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even though the mean fluctuation is zero. The mechanism relies on a fundamental asymmetry in the physics of the ocean mixed layer: positive surface buoyancy fluctuations cannot undo the vertical mixing caused by negative fluctuations. The mechanism has much in common with Stommel's mixed-layer demon. The presentation demonstrates the mechanism in climate simulations with a comprehensive coupled atmosphere-ocean general circulation model (SINTEX-G). In the SINTEX-G simulations with stochastic air-sea buoyancy fluxes, significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  6. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  7. Distributions and sea-to-air fluxes of nitrous oxide in the South China Sea and the West Philippines Sea

    NASA Astrophysics Data System (ADS)

    Tseng, Hsiao-Chun; Chen, Chen-Tung Arthur; Borges, Alberto V.; DelValls, T. Angel; Lai, Chao-Ming; Chen, Ting-Yu

    2016-09-01

    Approximately 600 water samples from the South China Sea (SCS) and 250 water samples from the West Philippines Sea (WPS) were collected during seven cruises from August 2003 to July 2007 to determine nitrous oxide (N2O) distributions between the surface and a maximum depth of 4250 m. In the SCS, the average surface N2O concentration exceeded the atmospheric equilibrium concentration (on average 132±23%); however in the WPS, the surface N2O concentration was lower than the atmospheric equilibrium concentration (on average 90±22%). The N2O concentration reached a maximum (~23 nmol L-1) in the WPS at 800-1000 m, and (~28 nmol L-1) at a shallower depth of around 600-800 m in the SCS, owing to vertical mixing and intensive upwelling in the SCS. In the SCS, the surface N2O concentration was 7.59±1.32 nmol L-1 and the calculated sea-to-air flux was 5.5±3.9 μmol m-2 d-1. The surface N2O concentration in the WPS, 5.19±1.26 nmol L-1, was lower than that in the SCS. The WPS is a sink for N2O and the calculated sea-to-air flux was -1.7±3.9 μmol m-2 d-1. The SCS emitted 19.3×106 mol d-1 N2O to the atmosphere and exported 8.5×106 mol d-1 N2O to the WPS during the wet season.

  8. Sea-air CO2 fluxes in the Southern Ocean for the period 1990-2009

    NASA Astrophysics Data System (ADS)

    Lenton, A.; Tilbrook, B.; Law, R.; Bakker, D.; Doney, S. C.; Gruber, N.; Hoppema, M.; Ishii, M.; Lovenduski, N. S.; Matear, R. J.; McNeil, B. I.; Metzl, N.; Mikaloff Fletcher, S. E.; Monteiro, P.; Rödenbeck, C.; Sweeney, C.; Takahashi, T.

    2013-01-01

    The Southern Ocean (44° S-75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990-2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of -0.42 ± 0.07 Pg C yr-1 for the 44° S-75° S region is consistent with the -0.27 ± 0.13 Pg C yr-1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: -0.04 ± 0.07 Pg C yr-1 and observations: +0.04 ± 0.02 Pg C yr-1), with most of the net annual flux located in the 44° S to 58° S circumpolar band (model and inversion median: -0.36 ± 0.09 Pg C yr-1 and observations: -0.35 ± 0.09 Pg C yr-1). Seasonally, in the 44° S-58° S region, the median of 5 ocean biogeochemical models captures the observed sea-air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea-air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux with 25% of this

  9. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990-2009

    NASA Astrophysics Data System (ADS)

    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; Landschützer, P.; Lefèvre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Rödenbeck, C.; Santana-Casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.

    2013-01-01

    The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is -0.49 ± 0.05 Pg C yr-1, and by the Arctic it is -0.12 ± 0.06 Pg C yr-1, leading to a combined sea-air flux of -0.61 ± 0.06 Pg C yr-1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.

  10. Atlantic and Arctic sea-air CO2 fluxes, 1990-2009

    NASA Astrophysics Data System (ADS)

    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; Landschützer, P.; Lefèvre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Rödenbeck, C.; Santana-Casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.

    2012-08-01

    The Atlantic and Arctic oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales, for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modelling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our best estimate of the contemporary sea-to-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is -0.49 ± 0.11 Pg C yr-1 and by the Arctic is -0.12 ± 0.06 Pg C yr-1, leading to a combined sea-to-air flux of -0.61 ± 0.12 Pg C yr-1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor; and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and South Subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and South Subtropics.

  11. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  12. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  13. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  14. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  15. An overview of sea state conditions and air-sea fluxes during RaDyO

    NASA Astrophysics Data System (ADS)

    Zappa, Christopher J.; Banner, Michael L.; Schultz, Howard; Gemmrich, Johannes R.; Morison, Russel P.; Lebel, Deborah A.; Dickey, Tommy

    2012-07-01

    Refining radiative-transfer modeling capabilities for light transmission through the sea surface requires a more detailed prescription of the sea surface roughness beyond the probability density function of the sea surface slope field. To meet this need, exciting new measurement methodologies now provide the opportunity to enhance present knowledge of sea surface roughness, especially at the microscale. In this context, two intensive field experiments using R/PFloating Instrument Platformwere staged within the Office of Naval Research's Radiance in a Dynamic Ocean (RaDyO) field program in the Santa Barbara Channel and in the central Pacific Ocean south of Hawaii. As part of this program, our team gathered and analyzed a comprehensive suite of sea surface roughness measurements designed to provide optimal coverage of fundamental optical distortion processes associated with the air-sea interface. This contribution describes the ensemble of instrumentation deployed. It provides a detailed documentation of the ambient environmental conditions that prevailed during the RaDyO field experiments. It also highlights exciting new sea surface roughness measurement capabilities that underpin a number of the scientific advances resulting from the RaDyO program. For instance, a new polarimetric imaging camera highlights the complex interplay of wind and surface currents in shaping the roughness of the sea surface that suggests the traditional Cox-Munk framework is not sufficient. In addition, the breaking crest length spectral density derived from visible and infrared imagery is shown to be modulated by the development of the wavefield (wave age) and alignment of wind and surface currents at the intermediate (dominant) scale of wave breaking.

  16. Sea-air CO2 fluxes in the Southern Ocean for the period 1990-2009

    NASA Astrophysics Data System (ADS)

    Lenton, A.; Tilbrook, B.; Law, R. M.; Bakker, D.; Doney, S. C.; Gruber, N.; Ishii, M.; Hoppema, M.; Lovenduski, N. S.; Matear, R. J.; McNeil, B. I.; Metzl, N.; Mikaloff Fletcher, S. E.; Monteiro, P. M. S.; Rödenbeck, C.; Sweeney, C.; Takahashi, T.

    2013-06-01

    The Southern Ocean (44-75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990-2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of -0.42 ± 0.07 Pg C yr-1 for the 44-75° S region, is consistent with the -0.27 ± 0.13 Pg C yr-1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: -0.04 ± 0.07 Pg C yr-1 and observations: +0.04 ± 0.02 Pg C yr-1), with most of the net annual flux located in the 44 to 58° S circumpolar band (model and inversion median: -0.36 ± 0.09 Pg C yr-1 and observations: -0.35 ± 0.09 Pg C yr-1). Seasonally, in the 44-58° S region, the median of 5 ocean biogeochemical models captures the observed sea-air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea-air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux, with 25% of this interannual

  17. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  18. Micrometeorological survey of air-sea ice CO2 fluxes in arctic coastal waters

    NASA Astrophysics Data System (ADS)

    Heinesch, Bernard; Tison, Jean-Louis; Carnat, Gauthier; Heicken, Hajo; Geilfus, Nicolas-Xavier; Goosens, Thomas; Papakyriakou, Tim; Yernaux, Michel; Delille, Bruno

    2010-05-01

    We carried out a 6 month study that aimed to robustly track CO2 exchange between land-fast sea-ice and the atmosphere during the winter and spring season. A meteorological mast equipped for eddy-covariance measurements was installed on land-fast sea-ice near Barrow (Alaska), 1 km off the coast, from the end of January 2009 to the beginning of June 2009, before ice break-up. These data were supported by continuous measurements of solar radiation, snow depth, ice thickness and temperature profile in the ice. Biogeochemical data necessary for the understanding of the CO2 dynamics in sea-ice were obtained through discrete ice coring. Two regimes were detected for the CO2 exchanges linked with the status of the sea-ice: a winter regime and a spring summer regime. From 27 of March onwards brine volume at the sea ice-snow interface was above the threshold of permeability for liquid according to Golden et al (1998). During this period, we observed some conspicuous CO2 fluxes events tightly linked to wind speed. The flux was directed from the sea-ice to the atmosphere and reached up to 0.6 umol m-2 s-1 (51.8 mmol m-2 d-1). This flux to the atmosphere is expected as sea-ice at the air interface is permeable during a large part of the period and brines are oversaturated compared to the atmosphere. CO2 may accumulate in the snow layer which thus acts as a buffer that is flushed under occurrence of high wind speeds and associated pressure pumping. During the spring-summer period i.e. from 27 of April onwards, we observed a marked increase in sea ice temperature. Temperature profiles suggest that convective events occurred within the ice cover between April 27 and May 05. Within these convective events, two regimes were observed. First, for a period of 5 days, pCO2 was still above the threshold of saturation and CO2 fluxes were still mainly positive but lower than in the winter period, ranging from 0.1 to 0.2 umol m-2 s-1. This flux was only moderately controlled by windspeed

  19. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  20. An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Chang, You-Soon; Drevillon, Marie; Ferry, Nicolas; Fujii, Yosuke; Köhl, Armin; Storto, Andrea; Toyoda, Takahiro; Wang, Xiaochun; Waters, Jennifer; Xue, Yan; Yin, Yonghong; Barnier, Bernard; Hernandez, Fabrice; Kumar, Arun; Lee, Tong; Masina, Simona; Andrew Peterson, K.

    2015-10-01

    Sixteen monthly air-sea heat flux products from global ocean/coupled reanalyses are compared over 1993-2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993-2009 of 4.2 ± 1.1 W m-2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1-2 W m-2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m-2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m-2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S-15°N) over 2007-2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001-2009, also show the ORA-IP ensemble has 16 W m-2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

  1. Influence of precipitation on the CO2 air-sea flux, an eddy covariance field study

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alexander; Steinhoff, Tobias; Marandino, Christa

    2016-04-01

    During the SPACES-OASIS cruise (July-August 2015) from Durban, SA to Male, MV direct fluxes of CO2 and dimethyl sulfide (DMS) were measured using the eddy covariance (EC) technique. The cruise covered areas of sources and sinks for atmospheric CO2, where the bulk concentration gradient measurements resembled the Takahashi (2009) climatology. Most of the time, bulk CO2 fluxes (F=k* [cwater-cair]), calculated with the parametrization (k) by Nightingale et al. 2000, were in general agreement with direct EC measurements. However, during heavy rain events, the directly measured CO2 fluxes were 4 times higher than predicted. It has been previously described that rain influences the k parametrization of air-sea gas exchange, but this alone cannot explain the measured discrepancy. There is evidence that freshwater input and a change in the carbonate chemistry causes the water side concentration of ?c=cwater-cair to decrease. Unfortunately this cannot be detected by most bulk measurement systems. Using the flux measurements of an additional gas like DMS, this rain influence can be evaluated as DMS does not react to changes in the carbonate system and has a different solubility. A pending question is if the enhanced flux of CO2 in the ocean is sequestered into the ocean mixed layer and below. This question will be tackled using the GOTM model to understand the implications for the global carbon cycle.

  2. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  3. Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lencina-Avila, J. M.; Ito, R. G.; Garcia, C. A. E.; Tavano, V. M.

    2016-09-01

    The oceans play an important role in absorbing a significant fraction of the atmospheric CO2 surplus, but there are still uncertainties concerning several open ocean regions, such as the under-sampled South Atlantic Ocean. This study assessed the net sea-air CO2 fluxes and distribution of sea-surface CO2 fugacity (f C O2sw) along the 35°S latitude in the South Atlantic, during 2011 spring and early summer periods. Underway CO2 molar fraction, temperature, salinity and dissolved oxygen measurements were taken continuously from South American to South African continental shelves. Values of both satellite and discrete in situ chlorophyll-a concentration along the ship's track were used as ancillary data. Both f C O2sw and difference in sea-air fugacity (ΔfCO2) showed high variability along the cruise track, with higher values found on the continental shelf and slope regions. All ΔfCO2 values were negative, implying that a sinking process was occurring during the cruise period, with an average net CO2 flux of -3.1±2.2 mmol CO2 m-2 day-1 (using Wanninkhof, 1992). Physical variables were the main drivers of f C O2sw variability in South American continental shelf and open ocean regions, while the biological factor dominated the South African continental shelf. Algorithms for estimating fCO2 and temperature-normalized fCO2 were developed and applied separately to the three defined sub-regions: the South American shelf, the open ocean and the South African continental shelf, with the regional temperature-normalized fCO2 models showing better results.

  4. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  5. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  6. The spatial-temporal variability of air-sea momentum fluxes observed at a tidal inlet

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Laxague, N. J. M.; Reniers, A. J. H. M.; Graber, H. C.

    2015-02-01

    Coastal waters are an aerodynamically unique environment that has been little explored from an air-sea interaction point of view. Consequently, most studies must assume that open ocean-derived parameterizations of the air-sea momentum flux are representative of the nearshore wind forcing. Observations made at the New River Inlet in North Carolina, during the Riverine and Estuarine Transport experiment (RIVET), were used to evaluate the suitability of wind speed-dependent, wind stress parameterizations in coastal waters. As part of the field campaign, a small, agile research vessel was deployed to make high-resolution wind velocity measurements in and around the tidal inlet. The eddy covariance method was employed to recover direct estimates of the 10 m neutral atmospheric drag coefficient from the three-dimensional winds. Observations of wind stress angle, near-surface currents, and heat flux were used to analyze the cross-shore variability of wind stress steering off the mean wind azimuth. In general, for onshore winds above 5 m/s, the drag coefficient was observed to be two and a half times the predicted open ocean value. Significant wind stress steering is observed within 2 km of the inlet mouth, which is observed to be correlated with the horizontal current shear. Other mechanisms such as the reduction in wave celerity or depth-limited breaking could also play a role. It was determined that outside the influence of these typical coastal processes, the open ocean parameterizations generally represent the wind stress field. The nearshore stress variability has significant implications for observations and simulations of coastal transport, circulation, mixing, and general surf-zone dynamics.

  7. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gao, Zhongyong; Chen, Liqi; Sun, Heng; Chen, Baoshan; Cai, Wei-Jun

    2012-12-01

    The uptake of carbon dioxide (CO2) by the Arctic Ocean is most likely increasing because of the rapid sea-ice retreat that lifted the barriers preventing gas exchange and light penetration for biological growth. Measurements of atmospheric and surface sea water partial pressure of CO2 (pCO2) were conducted during the Chinese National Arctic Research Expedition (CHINARE) cruises from July to September in 2003 and 2008. The latitudinal distribution of pCO2 along the 169°W transect showed a below-atmopsheric pCO2 level in most of the Western Arctic Ocean, with distinct regional differences from Bering Strait northward to the Central Acrctic Ocean. The average air-sea CO2 fluxes on the shelf and slope of the Chukchi Sea were -17.0 and -8.1 mmol m-2 d-1 respectively. In the ice-free zone, the partially ice-covered zone, and the heavily ice-covered zone of the Canada Basin, the fluxes were -4.2, -8.6, -2.5 mmol m-2 d-1 respectively. These rates are lower than other recent estimates. Our new results not only confirmed previous observations that most areas of the Western Arctic Ocean were a CO2 sink in general, but they also revealed that the previously unsampled central basins were a moderate CO2 sink. Analysis of controlling factors in different areas shows that pCO2 in Bering Strait was influenced not only by the Bering inflow waters but also by the high biological production. However, pCO2 fluctuated sharply because of strong water mixing both laterally and vertically. In the marginal ice zone (Chukchi Sea), pCO2 was controlled by ice melt and biological production, both of which would decrease pCO2 onshore of the ice edge. In the nearly ice-free southern Canada Basin, pCO2 increasd latitudinally as a result of atmospheric CO2 uptake due to intensive gas exchange, increased temperature, and decresed biological CO2 uptake due to limited nutrient supply. Finally, pCO2 was moderately lower than the atmospheric value and was relatively stable under the ice sheet of the

  8. Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    NASA Astrophysics Data System (ADS)

    Ward, B.; Wanninkhof, R.; McGillis, W. R.; Jessup, A. T.; Degrandpre, M. D.; Hare, J. E.; Edson, J. B.

    2004-08-01

    The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of -4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.

  9. Distribution and Sea-to-air Flux of Nitrous Oxide in the East China Sea during the Summer of 2013

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Zhang, Guiling; Zhu, Zhuoyi; Li, Jia; Liu, Sumei; Ye, Wangwang; Han, Yu

    2016-07-01

    Dissolved nitrous oxide (N2O) at different depths of 73 stations in the Changjiang (Yangtze River) Estuary and the East China Sea (ECS) were determined from August 4 to 31 of 2013, and the sea-to-air fluxes of N2O were also estimated in this study. N2O concentrations in the surface waters ranged from 6.33 to 44.40 nmol L-1 with an average of (9.27±4.30) nmol L-1 and the values in the bottom waters ranged from 5.19 to 26.98 nmol L-1 with an average of (11.87±3.71) nmol L-1. The concentrations of N2O decreased with distance from the Changjiang Estuary to the open sea. The vertical distributions of N2O indicated great spatial variations. A region of significant bottom-water hypoxia, with oxygen concentration less than 1.5 mg L-1, occurred at the north of the ECS, and increased bottom N2O concentrations was observed. Frequent vertical mixing may enhance the emission of N2O from this hypoxic area. N2O in the surface waters of all stations were over-saturated, and the N2O saturations ranged from 106% to 658%, with an average of (149±62)%. We estimated the sea-to-air fluxes of N2O as (30.6±59.1) μmol m-2 d-1 from the Changjiang Estuary, (9.8±8.8) μmol m-2 d-1 from the coastal and shelf, and (21.0±12.7) μmol m-2 d-1 from the continental slope using the Wanninkhof 1992 equation, (24.9±47.2) μmol m-2 d-1, (8.0±6.7) μmol m-2 d-1 and (16.5±9.6) μmol m-2 d-1 using the Nightingale 2000 equation, respectively. N2O emission from the ECS was estimated to be about (8.2-16.0)×10-2 Tg-N2O yr-1, suggesting that the ECS was a significant net source of atmospheric N2O.

  10. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-09-01

    This study reports the most comprehensive data set thus far of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS), based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability in sea surface pCO2 in the ECS except in winter, when it ranged across a narrow band of 330 to 360 μatm. We categorized the ECS into five different domains featuring with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in autumn. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in autumn (> 350 μatm). On the northern ECS shelf, pCO2 in summer and autumn was > 340 μatm in most areas, higher than in winter and spring. On the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux on the entire ECS shelf was -10.0 ± 2.0 in winter, -11.7 ± 3.6 in spring, -3.5 ± 4.6 in summer and -2.3 ± 3.1 mmol m-2 d-1 in autumn. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation in pCO2 rather than the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was 6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  11. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-04-01

    This study reports thus far a most comprehensive dataset of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS) based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability of sea surface pCO2 in the ECS except in winter when it ranged in a narrow band of 330 to 360 μatm. In this context, we categorized the ECS into five different domains featured with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in fall. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in fall (> 350 μatm). In the northern ECS shelf, pCO2 in summer and fall was > 340 μatm in most areas, higher than in winter and spring. In the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux in the entire ECS shelf was -10.0 ± 2.0 mmol m-2 d-1 in winter, -11.7 ± 3.6 mmol m-2 d-1 in spring, -3.5 ± 4.6 mmol m-2 d-1 in summer and -2.3 ± 3.1 mmol m-2 d-1 in fall. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation of pCO2, which differ from the spatial variance nor the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was -6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  12. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  13. Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California, México

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, L.; Ocampo-Torres, F. J.

    2016-05-01

    The influence of wave-associated parameters controlling turbulent CO2 fluxes through the air-sea water interface is evaluated in a coastal region. The study area, located within the Todos Santos Bay, Baja California, México, was found to be a weak sink of CO2 with a mean flux of -1.32 µmol m-2s-1. The low correlation found between flux and wind speed (r = 0.09), suggests that the influence of other forcing mechanisms, besides wind, is important for gas transfer modulation through the sea surface, at least for the conditions found in this study. In addition, the results suggest that for short periods where an intensification of the wave conditions occurs, a CO2 flux response increases the transport of gas to the ocean.

  14. A review of the sources of uncertainties when estimating global-scale turbulent air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Brodeau, Laurent; Barnier, Bernard

    2015-04-01

    Bulk formulae are used to estimate turbulent air-sea fluxes needed to provide surface boundary conditions to most of present-day OGCMs, AGCMs and coupled Earth systems. This study aims at making an inventory of the major sources of uncertainties and errors made when estimating turbulent air-sea fluxes with the bulk method, namely wind stress, evaporation (latent heat flux) and sensible heat flux. We use 6-hourly near-surface atmospheric fields and daily SST of ERA-Interim to compute global estimates of these fluxes during the last three decades. Those fluxes are computed using different bulk routines and different types of physical and numerical simplifications widely used within the GCM community. Moreover, to assess the sensitivity of these flux estimates to possible errors in the input atmospheric fields and SST, user-controlled biases are applied to each of these fields prior to bulk computation. As a result, a quantification of the potential sources of uncertainties related to the accuracy of both the parametrization and input fields is proposed. Any parametrization-related approximation can also be expressed in terms of a bias on a given input field. We find that the largest source of flux uncertainties is the choice of the bulk algorithm used to estimate the bulk transfer coefficients. The resulting disagreement in terms of globally-averaged heat flux and evaporation is 8 W/m2 and 1 Sv. In mid latitudes, this heat flux disagreement is about 10 W/m2, which independently compares to a bias of 1 m/s in surface wind speed, 3° in SST, 0.5° in surface temperature, or a modification of 5% in the surface humidity. Our study also underlies the relative importance of the accuracy of the estimate of the air density and the specific humidity at saturation.

  15. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  16. Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions

    NASA Astrophysics Data System (ADS)

    Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale

    2014-05-01

    Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between

  17. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    NASA Astrophysics Data System (ADS)

    Padin, X. A.; Vázquez-Rodríguez, M.; Castaño, M.; Velo, A.; Alonso-Pérez, F.; Gago, J.; Gilcoto, M.; Álvarez, M.; Pardo, P. C.; de La Paz, M.; Ríos, A. F.; Pérez, F. F.

    2010-05-01

    A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2) in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of -3 ± 18 μatm (Takahashi et al., 2009). The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m-2 yr-1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of -0.16 ± 0.01 yr-1 coinciding with a declination of -3.5 ± 0.9 μatm yr-1 in the air-sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of -0.09 ± 0.03 mol m-2 yr-1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m-2 y-1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr-1 and a wind speed decrease of -0.58 ± 0.14 m s-1 yr-1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño - Southern Oscillation episodes. Contrary the surface waters of the

  18. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D

  19. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  20. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  1. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N

    NASA Astrophysics Data System (ADS)

    Kelley, Cheryl A.; Jeffrey, Wade H.

    2002-07-01

    Water column samples from a transect cruise from southern Chile through the Panama Canal to the Gulf of Mexico were used to determine dissolved methane depth profiles and air-sea methane fluxes. In the Gulf of Mexico, surface concentrations were approximately 40% supersaturated with respect to the atmosphere, whereas near the equator and in the Peru upwelling region, 10-20% supersaturation generally occurred. These saturation ratios translate into an average flux of methane from the sea surface to the atmosphere of 0.38 μmol m-2 d-1. In addition, water column profiles of dissolved methane indicate that subsurface maxima in dissolved methane concentrations are a consistent feature of the open ocean, except near the equator. At the equator, the subsurface peak at the base of the mixed layer may be bowed down by the Equatorial Undercurrent. The highest methane concentration (12 nM) was observed in the Peru upwelling region.

  2. Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?

    NASA Astrophysics Data System (ADS)

    Halloran, P. R.

    2012-06-01

    The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid

  3. Biogenic Production of Reactive Bromocarbons: New Field Data and sea-air Fluxes in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Dunk, R. M.; Jones, C. E.; Hornsby, K. E.; Keely, B. J.; Poulton, A. J.; Carpenter, L. J.

    2007-12-01

    Biogenic bromine production by phytoplankton and macroalgae is thought to represent an important link between ocean biology, climate and atmospheric composition. Models of atmospheric bromine chemistry suggest that natural sources of bromocarbons such as CHBr3 and CH2Br2 may account for up to 30% of stratospheric and tropospheric O3 depletion. However, at present these models are limited by the accuracy to which the bromine source terms can be described. In particular, simultaneous measurements of ocean surface water and marine boundary layer bromocarbon concentrations are lacking, limiting the ability to estimate sea to air fluxes to a reasonable degree of accuracy. Furthermore, little is known regarding the factors that control biogenic bromine production, or the temporal and spatial variability of the bromine source term at the regional scale. We present new data from two research cruises during which we measured a range of bromocarbons, including CHBr3, CH2Br2 and CH2IBr, in both surface seawater and the marine boundary layer using two GC-MS systems. The first cruise was to the North Eastern Atlantic (latitudinal range 53-59°N) in summer 2006, while the second cruise was to the Tropical and Subtropical Atlantic and the Mauritanian Upwelling (latitudinal range 16-30°N) in spring 2007. Concentration data and resulting sea air fluxes generally decrease in the order coastal > shelf > upwelling ~ open ocean. Although a broad trend of elevated seawater concentrations in waters with high chlorophyll a (phytoplankton productivity proxy) is observed, the relationship is not simple. We explore this complex relationship between phytoplankton and bromocarbon production in more detail, examining changes in phytoplankton assemblage and health as indicated by cell counts and pigment distributions. We then use these relationships to present a revised regional estimate for the North Atlantic sea to air flux of biogenic bromine.

  4. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2016-06-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  5. Destruction of Iodocarbons in Surface Seawater - Implications for Sea-Air Flux Calculations and the Atmospheric Iodine Budget

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Dunk, R. M.; Hornsby, K. E.; McFiggans, G.; Carpenter, L. J.

    2007-12-01

    Although it is now widely accepted that CH3I is the major volatile organic source of iodine from the surface ocean to the atmosphere, CH3I emissions alone cannot balance the global iodine budget, which implies that there must be some additional source(s). Seawater and air measurements made during two cruises in the Atlantic Ocean during summer 2006 and spring 2007 suggest that other iodocarbons, in particular the dihaloalkanes CH2I2, CH2IBr and CH2ICl, may provide a combined global iodine atom source which is comparable to that of CH3I. However, deriving sea-to-air fluxes of these volatile gases is not straightforward. Established flux parameterizations are based on air and surface water concentrations, but seawater samples from ship campaigns are typically taken from at least 2-6 m depth (since there are technical difficulties associated with sampling closer to the surface). Given its relatively long lifetime in the oceans, sea-air fluxes of CH3I may be adequately approximated directly from concentrations measured a few metres below the surface, however for the dihalomethanes this is likely to give rise to considerable inaccuracies due to their short lifetimes with respect to photolysis in surface waters. Consequently, we have used a one-dimensional oceanic mixed layer model to constrain the extent of dihalomethane photodecay within the top few metres of the water column such that we can extrapolate surface seawater concentrations from sub-surface measurements, which in turn allows more accurate sea-air fluxes to be determined for these gases. A number of mono-iodinated alkanes were also detected in Atlantic seawater, including C2H5I and 1- C3H7I. Laboratory based studies have been carried out in order to parameterize the temperature- dependent chemical destruction of a number of mono-iodinated alkanes in saltwater, such that the oceanic lifetimes of these species may be predicted as a simple function of the surface seawater temperature. In light of these results

  6. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    PubMed Central

    Mayol, Eva; Jiménez, María A.; Herndl, Gerhard J.; Duarte, Carlos M.; Arrieta, Jesús M.

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 104 and 1.6 × 107 microbes per m2 of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m2 every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  7. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  8. Methane distribution and sea-to-air flux in the East China Sea during the summer of 2013: Impact of hypoxia

    NASA Astrophysics Data System (ADS)

    Ye, Wangwang; Zhang, Guiling; Zhu, Zhuoyi; Huang, Daji; Han, Yu; Wang, Lan; Sun, Mingshuang

    2016-02-01

    We measured dissolved methane (CH4) at different depths and calculated sea-to-air CH4 fluxes at 65 stations in the East China Sea (ECS) from August 4 to 31 of 2013. CH4 concentrations in surface waters ranged from 2.07 to 27.39 nM and concentrations in bottom waters ranged from 1.76 to 31.35 nM. The concentration of CH4 also decreased with distance from the Changjiang (Yangtze River) Estuary. Analysis of the depth profiles of CH4 indicated great variations among the different stations due to the influence of different water masses and variations in other factors. A region of significant bottom-water hypoxia, with an oxygen level less than 1.5 mg L-1, occurred at the northern region of the ECS. This hypoxic region also had enhanced CH4 production in the water column and sedimentary release of CH4. CH4 saturations in the surface waters ranged from 113% to 1364%, with an average of 317% (±236). We estimated the sea-to-air CH4 flux as 6.5±7.4 μmol m-2 d-1 using the LM86 equation, and as 11.5±11.9 μmol m-2 d-1 using the W92 equation. The overall estimated CH4 emission rate from the ECS was 6.4×10-2 Tg yr-1. The saturation and sea-to-air flux of CH4 varied significantly among the stations. Taken together, our data suggest that the ECS is a net source of atmospheric CH4.

  9. Model estimating the effect of marginal ice zone processes on the phytoplankton primary production and air-sea flux of CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Martjyanov, Stanislav

    2016-04-01

    This study is aimed to assess the impact of sea ice on the primary production of phytoplankton (PPP) and air-sea CO2 flux in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes: 1) a module of sea ice with 7 categories, and 2) the 11-component module of marine pelagic ecosystem developed in the St. Petersburg Branch, Institute of Oceanology. The model is driven by atmospheric forcing, prescribed from the reanalysis NCEP / NCAR, and conditions on the open sea boundary, prescribed from the regional model of the atmosphere-ocean-sea ice-ocean biogeochemistry, developed at Max Planck Institute for Meteorology, Hamburg. Comparison of the model results for the period 1998-2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll "a" concentration and PPP in the Barents Sea. Model estimates of the annual PPP for whole sea, APPmod, appeared in 1.5-2.3 times more than similar estimates, APPdata, from satellite data. The main reasons for this discrepancy are: 1) APPdata refers to the open water, while APPmod, to the whole sea area (under the pack ice and marginal ice zone (MIZ) was produced 16 - 38% of PPP); and 2) values of APPdata are underestimated because of the subsurface chlorophyll maximum. During the period 1998-2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15%. This reduction was accompanied by an increase in annual PPP of the sea at 54 and 63%, based, respectively, on satellite data and the model for the open water. According to model calculations for the whole sea area, the increase is only 19%. Using a simple 7-component model of oceanic carbon cycle incorporated into the above hydrodynamic model, the CO2 exchange between the atmosphere and sea has been estimated in different conditions. In the absence of biological

  10. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  11. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  12. Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Yan, Hongqiang; Yu, Kefu; Shi, Qi; Tan, Yehui; Liu, Guohui; Zhao, Meixia; Li, Shu; Chen, Tianran; Wang, Yinghui

    2016-01-01

    Evidence based on four field surveys conducted between July 2009 and April 2011 indicates that both sea surface partial pressures of CO2 (pCO2) and sea-air CO2 fluxes at Luhuitou fringing reef in Sanya, Hainan Island, northern South China Sea (SCS) are subject to significant seasonal variations. The diurnal variation of seawater pCO2 ranges from 264 to 579 μatm in summer, which is much larger than that in autumn (152-335 μatm), in winter (84-260 μatm), and in spring (114-228 μatm). The sea-air CO2 flux in summer (˜9.6 mmol CO2 m-2 d-1) is also larger than that in other seasons (i.e.,˜3 mmol CO2 m-2 d-1 in spring, ˜3.5 mmol CO2 m-2 d-1 in autumn, and ˜2.7 mmol CO2 m-2 d-1 in winter). The atmospheric pCO2 in this reef shows small diurnal and seasonal variations. The integration of the time-series pCO2 data shows that the reef area is a weak source of atmospheric CO2 at ˜0.54 mol CO2 m-2 yr-1. Further analyses indicate that the seasonal variations of the surface seawater pCO2 in Luhuitou fringing reef are mainly affected by seasonally-dependent biological metabolic processes (organic processe and inorganic process), and that the organic process play a more important role than the inorganic process. Seasonal sea surface temperature (SST) variations and hydrodynamic processes may also have some influence on seawater pCO2 variation.

  13. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  14. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  15. Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: concentration, spatial-temporal distribution and air/sea flux.

    PubMed

    Ci, Zhijia; Wang, Chunjie; Wang, Zhangwei; Zhang, Xiaoshan

    2015-01-01

    The Yellow Sea in East Asia receives great Hg input from regional emissions. However, Hg cycling in this marine system is poorly investigated. In late spring and late fall 2012, we determined gaseous elemental Hg (GEM or Hg(0)) in air and dissolved gaseous Hg (DGM, mainly Hg(0)) in surface waters to explore the spatial-temporal variations of Hg(0) and further to estimate the air/sea Hg(0) flux in the Yellow Sea. The results showed that the GEM concentrations in the two cruises were similar (spring: 1.86±0.40 ng m(-3); fall: 1.84±0.50 ng m(-3)) and presented similar spatial variation pattern with elevated concentrations along the coast of China and lower concentrations in the open ocean. The DGM concentrations of the two cruises were also similar with 27.0±6.8 pg L(-1) in the spring cruise and 28.2±9.0 pg L(-1) in the fall cruise and showed substantial spatial variation. The air/sea Hg(0) fluxes in the spring cruise and fall cruise were estimated to be 1.06±0.86 ng m(-2) h(-1) and 2.53±2.12 ng m(-2) h(-1), respectively. The combination of this study and our previous summer cruise showed that the summer cruise presented enhanced values of GEM, DGM and air/sea Hg(0) flux. The possible reason for this trend was that high solar radiation in summer promoted Hg(0) formation in seawater, and the high wind speed during the summer cruise significantly increased Hg(0) emission from sea surface to atmosphere and subsequently enhanced the GEM levels. PMID:24999267

  16. Eddy covariance flux of sulfur dioxide to the sea surface: Air-side resistance to deposition of a highly soluble gas

    NASA Astrophysics Data System (ADS)

    Porter, J.; De Bruyn, W. J.; Miller, S. D.; Saltzman, E. S.

    2014-12-01

    Deposition to the sea surface represents a major atmospheric removal mechanism for sulfur dioxide and many other highly soluble products of tropospheric photochemistry. Such gases include nitric acid, ammonia, organic acids, sulfur dioxide, and highly soluble organic compounds such as methanol and acetone. The deposition of highly soluble gases is controlled by turbulent and diffusive transport on the air side of the air/sea interface. In this study, air/sea fluxes of the soluble gas sulfur dioxide (SO2 ), sensible and latent heat, and momentum were measured using eddy covariance. This was a pilot study carried out in April 2014 on Scripps pier in La Jolla, California, that was designed to assess the potential for measuring SO2 fluxes over the ocean. SO2 was detected using chemical ion mass spectrometry in negative ion mode with a sensitivity of roughly 100 Hz/ppt. The ionization scheme involved addition of ozone to a dried air stream and subsequent conversion of SO2 to the SO5 - ion. The results demonstrate the feasibility of seagoing SO2 flux measurements. Such measurements can be used to constrain the depositional velocities of soluble gases and test models for air-side resistance to air/sea gas transfer.

  17. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in delta37Cl--a statistical inference.

    PubMed

    Shirodkar, P V; Xiao, Y K; Sarkar, A; Dalal, S G; Chivas, A R

    2006-02-01

    The behaviors of chlorine isotopes in relation to air-sea flux variables have been investigated through multivariate statistical analyses (MSA). The MSA technique provides an approach to reduce the data set and was applied to a set of 7 air-sea flux variables to supplement and describe the variation in chlorine isotopic compositions (delta37Cl) of ocean water. The variation in delta37Cl values of surface ocean water from 51 stations in 4 major world oceans--the Pacific, Atlantic, Indian and the Southern Ocean has been observed from -0.76 to +0.74 per thousand (av. 0.039+/-0.04 per thousand). The observed delta37Cl values show basic homogeneity and indicate that the air-sea fluxes act differently in different oceanic regions and help to maintain the balance between delta37Cl values of the world oceans. The study showed that it is possible to model the behavior of chlorine isotopes to the extent of 38-73% for different geographical regions. The models offered here are purely statistical in nature; however, the relationships uncovered by these models extend our understanding of the constancy in delta37Cl of ocean water in relation to air-sea flux variables. PMID:16214214

  18. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Feng, Xinbin; Zhang, Gan; Xu, Weihai; Li, Xiangdong; Yao, Hen; Liang, Peng; Li, Jun; Sommar, Jonas; Yin, Runsheng; Liu, Na

    2010-03-01

    Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m-3 (mean: 2.62 ng m-3, median: 2.24 ng m-3). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L-1, 0.12 ± 0.05 ng L-1, and 36.5 ± 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m-2 h-1). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.

  19. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  20. Sensitivity of modelled sulfate radiative forcing to DMS concentration and air-sea flux formulation

    NASA Astrophysics Data System (ADS)

    Tesdal, J.-E.; Christian, J. R.; Monahan, A. H.; von Salzen, K.

    2015-09-01

    In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global mean radiative forcing is approximately linearly proportional to the global mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation balance. The effect of the spatial structure, however, generates statistically significant changes in the global mean concentrations of some aerosol species. The effect of seasonality on net radiative forcing is larger than that of spatial distribution, and is significant at global scale.

  1. Model studies of the flux of CO{sub 2} over the air-sea interface in the Baltic Sea

    SciTech Connect

    Ohlson, M.

    1994-12-31

    In the discussion about the green house effect generated by the burning of fossil fuels, carbon dioxide (CO{sub 2}) has a key role. A major part of the surplus CO{sub 2} has been suggested, by the scientific community, to be withdrawn from the atmosphere and to be taken up by the growth in continental shelf areas with high primary production, and in terrestrial forests. The exact quantity and reaction ways and mechanisms of those processes are not known today. The Baltic Sea is, for several reasons, a well chosen area to study this phenomenon. It is a shallow continental Mediterranean sea, in this area almost the first measurements of the carbonate system were carried out in the end of the last century. This has resulted in long time series of measurements of the carbonate system available for use in, e.g. modelling work, a working numerical carbonate model.

  2. Reconstruction of super-resolution fields of ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the Southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.

    2015-01-01

    The knowledge of Green House Gases GHGs fluxes at the air-sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2, pCO2, and air-sea CO2 fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution of pCO2, and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO2 with respect to in-situ measurements are smaller than for CarbonTracker.

  3. Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.; González-Dávila, M.; Santana-Casiano, J. M.

    2015-09-01

    An accurate quantification of the role of the ocean as source/sink of greenhouse gases (GHGs) requires to access the high-resolution of the GHG air-sea flux at the interface. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2 ( pCO2) and air-sea CO2 fluxes at super resolution (4 km, i.e., 1/32° at these latitudes) using sea surface temperature (SST) and ocean color (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution pCO2 and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the microcanonical multifractal formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multi-resolution analysis performed on the signal of the so-called singularity exponents allows for the correct and near optimal cross-scale inference of GHG fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small-scale variability. We examine different combinations of ocean color and sea surface temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in situ measurements by means of statistical errors. We find that mean absolute and relative errors in the inferred values of pCO2 with respect to in situ measurements are smaller than for CarbonTracker.

  4. CO2 air-sea fluxes across the Portuguese estuaries Tagus and Sado

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, G.; Nogueira, M.

    2009-04-01

    Generally, estuaries and proximal shelves under the direct influence of river runoff and large inputs of organic matter are mostly heterotrophic and, therefore, act as a carbon source. In this context the CO2 dynamics in Tagus and Sado estuaries (SW Portugal) was studied under two different climate and hydrological situations. These moderately productive mesotidal coastal-plain lagoon-type estuaries, localised in the center of Portugal and distant 30-40 km apart, present quite different freshwater inflows, surface areas and water residence times. A study performed in 2001 revealed that the magnitude of CO2 fluxes in the two estuarine systems varied seasonally. CO2 emissions during the huge rainfall winter were similar in both estuaries, reaching a mean value of ~50 mmol m-2 d-1, while in spring emissions from Sado were ~6 times higher then Tagus ones, attaining a mean value of 62 mmol m-2 d-1. Nevertheless, in both sampling periods, Sado estuary showed, within the upper estuary (salinity

  5. Concentrations, size-distributions and air-to-sea fluxes of bio-active trace elements on the New Jersey coast

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Xu, G.; Xu, T.; Mukherjee, P.

    2014-12-01

    The coastal marine atmosphere adjacent to large urban and industrial centers can be strongly impacted by pollution emissions, resulting in high loading of pollutants in the ambient air. Among airborne substances are certain bioactive trace elements including Cd, Cu, and Zn from a variety of emission sources. High concentrations of these elements in coastal air could not only result in enhanced air-to-sea deposition fluxes to coastal waters, but they could also be transported over the open ocean, affecting the composition of the remote marine atmosphere. In this presentation, we will discuss the concentrations, particle-size distributions of selected trace elements in aerosols and their properties in precipitation observed on the New Jersey coast. The estimates of the air-to-water deposition fluxes of these elements will also be discussed.

  6. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  7. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  8. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  9. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-09-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.6 ± 0.3, -0.9 ± 0.3 and -0.5 ± 0.3 mol C m-2 yr-1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m-2 yr-1 in the sWEC and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of -1.11 ± 0.32 Tg C yr-1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to

  10. An Approach to Minimizing Artifacts Caused by Cross-Sensitivity in the Determination of Air-Sea CO2 Flux Using the Eddy-Covariance Technique

    NASA Astrophysics Data System (ADS)

    Duan, Ziqiang; Gao, Huiwang; Gao, Zengxiang; Wang, Renlei; Xue, Yuhuan; Yao, Xiaohong

    2013-07-01

    The air-sea CO2 flux was measured from a research vessel in the North Yellow Sea in October 2007 using an open-path eddy-covariance technique. In 11 out of 64 samples, the normalized spectra of scalars (C}2, water vapour, and temperature) showed similarities. However, in the remaining samples, the normalized CO2 spectra were observed to be greater than those of water vapour and temperature at low frequencies. In this paper, the noise due to cross-sensitivity was identified through a combination of intercomparisons among the normalized spectra of three scalars and additional analyses. Upon examination, the cross-sensitivity noise appeared to be mainly present at frequencies {<}0.8 Hz. Our analysis also suggested that the high-frequency fluctuations of CO2 concentration (frequency {>}0.8 Hz) was probably less affected by the cross-sensitivity. To circumvent the cross-sensitivity issue, the cospectrum in the high-frequency range 0.8-1.5 Hz, instead of the whole range, was used to estimate the CO2 flux by taking the contribution of the high frequency to the CO2 flux to be the same as the contribution to the water vapour flux. The estimated air-sea CO2 flux in the North Yellow Sea was -0.039 ± 0.048 mg m^{-2} s^{-1}, a value comparable to the estimates using the inertial dissipation method and Edson's method (Edson et al., J Geophys Res 116:C00F10, 2011).

  11. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  12. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  13. Interannual and seasonal variabilities in air-sea CO2 fluxes along the U.S. eastern continental shelf and their sensitivity to increasing air temperatures and variable winds

    NASA Astrophysics Data System (ADS)

    Cahill, Bronwyn; Wilkin, John; Fennel, Katja; Vandemark, Doug; Friedrichs, Marjorie A. M.

    2016-02-01

    Uncertainty in continental shelf air-sea CO2 fluxes motivated us to investigate the impact of interannual and seasonal variabilities in atmospheric forcing on the capacity of three shelf regions along the U.S. eastern continental shelf to act as a sink or source of atmospheric CO2. Our study uses a coupled biogeochemical-circulation model to simulate scenarios of "present-day" and "future-perturbed" mesoscale forcing variability. Overall, the U.S. eastern continental shelf acts as a sink for atmospheric CO2. There is a clear gradient in air-sea CO2 flux along the shelf region, with estimates ranging from -0.6 Mt C yr-1 in the South Atlantic Bight (SAB) to -1.0 Mt C yr-1 in the Mid-Atlantic Bight (MAB) and -2.5 Mt C yr-1 in the Gulf of Maine (GOM). These fluxes are associated with considerable interannual variability, with the largest interannual signal exhibited in the Gulf of Maine. Seasonal variability in the fluxes is also evident, with autumn and winter being the strongest CO2 sink periods and summer months exhibiting some outgassing. In our future-perturbed scenario spatial differences tend to cancel each other out when the fluxes are integrated over the MAB and GOM, resulting in only minor differences between future-perturbed and present-day air-sea CO2 fluxes. This is not the case in the SAB where the position of the along-shelf gradient shifts northward and the SAB becomes a source of CO2 to the atmosphere (0.7 Mt C yr-1) primarily in response to surface warming. Our results highlight the importance of temperature in regulating air-sea CO2 flux variability.

  14. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Jen; Cai, Wei-Jun; Wang, Yongchen; Lohrenz, Steven E.; Murrell, Michael C.

    2015-03-01

    River-dominated continental shelf environments are active sites of air-sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air-sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low-salinity zones (0≤S<17) to a strong CO2 sink in the middle-to-high-salinity zones (17≤S<33), and finally was a near-neutral state in the high-salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen-enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air-sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m-2 yr-1 (1.15 ± 4.4 Tg C yr-1).

  15. Dynamics of air-sea CO2 fluxes in the North-West European Shelf based on Voluntary Observing Ship (VOS) and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-04-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 dataset based on voluntary observing ship (VOS) measurements in the Western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in north-west European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), the gas transfer velocity coefficient (K), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with relative uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 dataset (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish Seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT database and obtained relatively robust results with an average precision of 4 ± 22 μatm in the seasonally stratified nWEC and the southern and northern CS (sCS and nCS), but less promising results in the permanently well-mixed sWEC, IS and Cap Lizard (CL) waters. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.4, -0.9 and -0.4 mol C m-2 year-1 in the nCS, sCS and nWEC, respectively, whereas, permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2, 0.4 and 0.4 mol C m-2 year-1 in the sWEC, CL and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over six provinces for the last decade and obtained the first annual average uptake of -0.95 Tg C year-1 for this

  16. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2014-02-01

    We quantify the CO2 source/sink nature of the California Current System (CalCS) and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2) in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-biogeochemical oceanic model on the basis of the Regional Oceanic Modeling System (ROMS). In the annual mean, the entire CalCS within 800 km of the coast and from ∼33° N to 46° N is essentially neutral with regard to atmospheric CO2: the model simulates an integrated uptake flux of -0.9 ± 3.6 Tg C yr-1, corresponding to an average flux density of -0.05 ± 0.20 mol C m-2 yr-1. This near zero flux is a consequence of an almost complete regional compensation between (i) strong outgassing in the nearshore region (first 100 km) that brings waters with high concentrations of dissolved inorganic carbon (DIC) to the surface and (ii) and a weaker, but more widespread uptake flux in the offshore region due to an intense biological reduction of this DIC, driven by the nutrients that are upwelled together with the DIC. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. Most of the variability in pCO2 is associated with the seasonal cycle, with the exception of the nearshore region, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The prevalence of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source

  17. Sea ice pCO2 dynamics and air-ice CO2 fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment - Bellingshausen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Tison, J.-L.; Ackley, S. F.; Galley, R. J.; Rysgaard, S.; Miller, L. A.; Delille, B.

    2014-12-01

    Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO2 system in the ice. During the survey, cyclical warming and cooling strongly influenced the physical, chemical, and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers reduced the amplitude of these changes: snow cover influences the sea ice carbonate system by modulating the temperature and therefore the salinity of the sea ice cover. Results indicate that pCO2 was undersaturated with respect to the atmosphere both in the in situ bulk ice (from 10 to 193 μatm) and brine (from 65 to 293 μatm), causing the sea ice to act as a sink for atmospheric CO2 (up to 2.9 mmol m-2 d-1), despite supersaturation of the underlying seawater (up to 462 μatm).

  18. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  19. Seasonal and interannual variability of sea-air CO2 fluxes in the tropical Atlantic affected by the Amazon River plume

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Diverrès, Denis; Araujo, Moacyr; Lefèvre, Nathalie

    2015-10-01

    CO2 fugacities obtained from a merchant ship sailing from France to French Guyana were used to explore the seasonal and interannual variability of the sea-air CO2 exchange in the western tropical North Atlantic (TNA; 5-14°N, 41-52°W). Two distinct oceanic water masses were identified in the area associated to the main surface currents, i.e., the North Brazil Current (NBC) and the North Equatorial Current (NEC). The NBC was characterized by permanent CO2 oversaturation throughout the studied period, contrasting with the seasonal pattern identified in the NEC. The NBC retroflection was the main contributor to the North Equatorial Counter Current (NECC), thus spreading into the central TNA, the Amazon River plume, and the CO2-rich waters probably originated from the equatorial upwelling. Strong CO2 undersaturation was associated to the Amazon River plume. Total inorganic carbon drawdown due to biological activity was estimated to be 154 µmol kg-1 within the river plume. As a consequence, the studied area acted as a net sink of atmospheric CO2 (from -72.2 ± 10.2 mmol m-2 month-1 in February to 14.3 ± 4.5 mmol m-2 month-1 in May). This contrasted with the net CO2 efflux estimated by the main global sea-air CO2 flux climatologies. Interannual sea surface temperature changes in the TNA caused by large-scale climatic events could determine the direction and intensity of the sea-air CO2 fluxes in the NEC. Positive temperature anomalies observed in the TNA led to an almost permanent CO2 outgassing in the NEC in 2010.

  20. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  1. Production flux of sea spray aerosol

    SciTech Connect

    de Leeuw, G.; Lewis, E.; Andreas, E. L.; Anguelova, M. D.; Fairall, C. W.; O’Dowd, C.; Schulz, M.; Schwartz, S. E.

    2011-05-07

    Knowledge of the size- and composition-dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r{sub 80} (equilibrium radius at 80% relative humidity) less than 1 {micro}m and as small as 0.01 {micro}m. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r{sub 80} < 0.25 {micro}m and, in locations with high biological activity, can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  2. Examination of air-sea CO2 fluxes from the low-latitude coastal Eastern Pacific: Application of predictive algorithms to new VOS observations.

    NASA Astrophysics Data System (ADS)

    Hales, B.; Alin, S.; Feely, R. A.; Hernandez-Ayon, M.; Letelier, R.; Strutton, P. G.; Cosca, C.

    2008-12-01

    Coastal oceans are regions of large and highly variable air-sea CO2 fluxes, leading to highly uncertain predictions of globally significant contributions to the atmospheric carbon budget. Estimates of net annual regional fluxes are often the balance between poorly-constrained, large-magnitude sinks and sources. This is the case for the Pacific coast of North America, where a recent synthesis (Chavez et al., 2007) predicted low total fluxes resulting from the near-cancellation of large, lightly-sampled fluxes of opposite sign. In particular, the low latitude coastal waters off Central America appeared to be a large source of CO2 to the atmosphere, but there was very low spatial and temporal observational coverage in these waters. Recently, new VOS data in this region has become available that has dramatically increased both spatial and temporal sampling density in this region. In previous work we developed a new remote sensing-based synthetic approach applied to the mid-latitude regions of the North American Pacific coast that gave strong predictive power and was subsequently validated by in-water measurements in the summer of 2007. We present the results of applying this predictive approach to the target study region, and the predictive relationship is then combined with seasonally resolved remote sensing data to generate annual net flux estimates and to evaluate the prediction of strong efflux from these low-latitude waters based on the sparse historical data.

  3. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    NASA Astrophysics Data System (ADS)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile (~ 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  4. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2013-08-01

    nutrient concentrations of the upwelled waters a primary determinant of the overall source/sink nature of the CalCS. The comparison of the standard simulation with one for preindustrial conditions show that the CalCS is taking up anthropogenic CO2 at a rate of about -1 mol C m-2 yr-1, implying that the region was a small source of CO2 to the atmosphere in preindustrial times. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. There are important differences among the subregions. Notably, the total variance of the fluxes in the central nearshore CalCS is roughly 4-5 times larger than elsewhere. Most of the variability in pCO2 is associated with the seasonal cycle, except in the nearshore, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The dominance of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source/sink nature of this region reliably.

  5. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial

  6. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  7. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  8. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  9. Dimethyl sulfide air-sea fluxes and biogenic sulfur as a source of new aerosols in the Arctic fall

    NASA Astrophysics Data System (ADS)

    Rempillo, Ofelia; Seguin, Alison Michelle; Norman, Ann-Lise; Scarratt, Michael; Michaud, Sonia; Chang, Rachel; Sjostedt, Steve; Abbatt, Jon; Else, Brent; Papakyriakou, Tim; Sharma, Sangeeta; Grasby, Steve; Levasseur, Maurice

    2011-09-01

    Dimethyl sulfide (DMS) and its oxidation products, which have been proposed to provide a climate feedback mechanism by affecting aerosol and cloud radiative properties, were measured on board the Canadian Coast Guard ship Amundsen in sampling campaigns in the Arctic in the fall of 2007 and 2008. DMS flux was calculated based on the surface water measurements and yielded 0.1-2.6 μmol m-2 d-1 along the Northwest Passage in 2007 and 0.2-1.3 μmol m-2 d-1 along Baffin Bay in 2008. DMS oxidation products, sulfur dioxide (SO2), methane sulfonic acid (MSA), and sulfate in aerosols were also measured. The amounts of biogenic SO2 and sulfate were approximated using stable isotope apportionment techniques. Calculating the threshold amount of SO2 needed for significant new particle formation from the formulation by Pirjola et al. (1999), the study suggests that instances of elevated biogenic SO2 concentrations (between 8 and 9 September 2008) derived using conservative assumptions may have been sufficient to form new aerosols in clean air conditions in the Arctic region.

  10. Two approaches to determining the sea-to-air flux of dimethyl sulfide: Satellite ocean color and a photochemical model with atmospheric measurements

    SciTech Connect

    Thompson, A.M.; Esaias, W.E. ); Iverson, R.L. )

    1990-11-20

    Two estimates of the ocean-to-atmosphere flux of dimethyl sulfide (DMS) are presented to determine the feasibility of using remotely sensed data to map the marine sources of a photoreactive trace gas. First, an empirical relationship between chlorophyll a and DMS in surface seawater is used with NASA coastal zone color scanner (CZCS) data for chlorophyll a pigment to derive a mean DMS flux for a region in the tropical North Atlantic for October 1980. This is compared with the sea-to-air flux derived from a one-dimensional photochemical model that reproduces boundary layer concentrations of O{sub 3}, CO, NO, and hydrocarbon s measured on a cruise at the same location and time (Meteor 56/1). Both evaluations of DMS fluxes are in the range (2-7) {times} 10{sup 9} molecules DMS cm{sup {minus}2} s{sup {minus}1} and agree well with fluxes based on the seawater DMS concentration given by Barnard et al. (1982) for the Meteor cruise. The applicability of the results to strategies for satellite remote sensing of the tropospheric sulfur cycle is discussed. For some species (e.g., DMS) surface sensing of sources is feasible, but only in regions and seasons where phytoplankton pigment is a meaningful marker for biogenic emissions. The general applicability of ocean color to DMS determination awaits the development of an algorithm that can extract distributions of DMS emitting species from the optical signal. For other sulfur constituents (e.g., SO{sub 2}, COS) atmospheric measurements are appropriate for determining tropospheric distribution. Wind, moisture, cloud, precipitation, and temperature data are also required for complete characterization of the marine sulfur cycle.

  11. Surface Ocean pCO2 Seasonality and Sea-Air CO2 Flux Estimates for the North American East Coast

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio; Mannino, Antonio; Najjar, Raymond G., Jr.; Friedrichs, Marjorie A. M.; Cai, Wei-Jun; Salisbury, Joe; Wang, Zhaohui Aleck; Thomas, Helmuth; Shadwick, Elizabeth

    2013-01-01

    Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010.

  12. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  13. Net sea-air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    NASA Astrophysics Data System (ADS)

    Otero, P.; Padín, X. A.; Ruiz-Villarreal, M.; García-García, L. M.; Ríos, A. F.; Pérez, F. F.

    2012-08-01

    The estimation of sea-air CO2 fluxes are largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from using different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim), one regional high-resolution forecast model (HIRLAM-AEMet) and QuikSCAT winds, in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle may differ up to 240% depending on the wind speed product and the gas exchange parameterization. The comparison of satellite and model derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In this region, QuikSCAT has the best performing, although ERA-Interim becomes the best choice in areas near the coastline or when the time resolution is the constraint.

  14. Net sea-air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    NASA Astrophysics Data System (ADS)

    Otero, P.; Padin, X. A.; Ruiz-Villarreal, M.; García-García, L. M.; Ríos, A. F.; Pérez, F. F.

    2013-05-01

    The estimation of sea-air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim), one high-resolution regional forecast model (HIRLAM-AEMet), winds derived under the Cross-Calibrated Multi-Platform (CCMP) project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002-September 2003) may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  15. Inference of super-resolution ocean pCO2 and air-sea CO2 fluxes from non-linear and multiscale processing methods

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, Ismael; Sudre, Joel; Garçon, Veronique; Yahia, Hussein; Dewitte, Boris; Garbe, Christoph; Illig, Séréna; Montes, Ivonne; Dadou, Isabelle; Paulmier, Aurélien; Butz, André

    2014-05-01

    In recent years the role of submesoscale activity is emerging as being more and more important to understand global ocean properties, for instance, for accurately estimating the sources and sinks of Greenhouse Gases (GHGs) at the air-sea interface. The scarcity of oceanographic cruises and the lack of available satellite products for GHG concentrations at high resolution prevent from obtaining a global assessment of their spatial variability at small scales. In this work we develop a novel method to reconstruct maps of CO2 fluxes at super resolution (4km) using SST and ocean colour data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). The responsible process for propagating the information between scales is related to cascading properties and multiscale organization, typical of fully developed turbulence. The methodology, based on the Microcanonical Multifractal Formalism, makes use, from the knowledge of singularity exponents, of the optimal wavelet for the determination of the energy injection mechanism between scales. We perform a validation analysis of the results of our algorithm using pCO2 ocean data from in-situ measurements in the upwelling region off Namibia.

  16. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air-sea fluxes, and ocean eddies

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian A.; Miller, Arthur J.; Seo, Hyodae

    2013-05-01

    Ocean-atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean-atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000-2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)-flux coupler is invoked in a separate run to isolate the impact of the mesoscale (˜50-200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST-wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST-wind stress and SST-heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean

  17. On the surface heat fluxes in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Launiainen, Jouko; Vihma, Timo

    Turbulent surface fluxes of sensible and latent heat in the Weddell Sea were studied using drifting marine meteorological buoys with satellite telemetry. In 1990-1992 a total of 5 buoys were deployed on the sea ice, in the open ocean, and on the edge of a floating continental ice shelf. The buoys measured, among others, wind speed, air temperature and humidity with duplicate sensors and yielded year-round time series. The heat fluxes were calculated by the gradient and bulk methods based on the Monin-Obukhov similarity theory. Over the sea ice, a downward flux of 15 to 20 W/m2 was observed in winter (with typical variations of 10 to 20 W/m2 between successive days) and 5 W/m2 in summer. For the latent heat flux, the results suggested a small evaporation of 0 to 5 W/m2 in summer and weak condensation in winter. The highest diurnal values, up to 20 W/m2, were connected with evaporation. Because of stable stratification, the transfer coefficients of heat and moisture were reduced to 80% of their neutral values, on the average. Over the leads and coastal polynyas, an upward sensible heat flux of 100 to 300 W/m2 was typical, except in summer when the air temperature was close to the sea surface temperature. Over the continental shelf ice, the sensible heat flux was predominantly downwards (15 to 20 W/m2), compensating the negative radiation balance of the snow surface. Over the snow and ice surfaces the magnitude of turbulent fluxes was smaller than that of radiative fluxes, while over the open water in winter sensible heat flux was the largest term. Modification of the continental air-mass flowing out from the shelf ice to the open sea was studied with aerological soundings made from a research vessel. Associated turbulent heat exchange was estimated on the basis of three methods: modification in the temperature profiles, surface observations, and diabatic resistance laws for the atmospheric boundary layer. If we estimate an area-averaged turbulent heat exchange

  18. Air-Sea CO2 fluxes and NEP changes in a Baja California Coastal Lagoon during the anomalous North Pacific warm condition in 2014

    NASA Astrophysics Data System (ADS)

    Ávila López, M. D. C.; Martin Hernandez-Ayon, J. M.; Camacho-Ibar, V.; Sandoval Gil, J.; Mejía-Trejo, A.; Félix-Bermudez, A.; Pacheco-Ruiz, I.

    2015-12-01

    The present study examines the temporal variability of seawater carbonate chemistry and air-sea CO2 fluxes (FCO2) in a Baja California Mediterranean-climate coastal lagoon. This study was carried out from Nov-2013 to Nov-2014, a period in which anomalous warm conditions were present in the North Pacific Ocean influenced the local oceanography in the adjacent coastal waters off Baja California. These ocean conditions resulted on a negative anomaly of upwelling index, which led to summer-like season (weak upwelling condition) that could be observed in the response of carbon dynamics and metabolic status in San Quintín Bay. Minor changes in dissolved inorganic carbon (DIC) concentration during spring months (~100 µmol kg-1) where observed and were associated to biological processes within the lagoon. High DIC (~2200 µmol kg-1), pCO2 (~800 μatm), and minimum pH (~7.8) values were observed in summer, reflecting the predominance of respiration processes apparently mostly linked to the remineralization of sedimentary organic matter supplied from macroalgal blooms. San Quintín Bay acted as a weak source of CO2 to the atmosphere during the study period, with maximum value observed in July (~10 mmol C m-2 d-1). Temporal biomass production of macroalgae contributed to about 50% of total FCO2 estimated in spring-summer seasons, that was a potencial internal source of organic matter to fuel respiration processes in San Quintín Bay. Eelgrass metabolism contributes in a lower degree in total FCO2. During the anomalous ocean conditions in 2014, the lagoon switched seasonally between net heterotrophy and net autotrophy during the study period, where photosynthesis and respiration processes in the lagoon were closer to a balance. Whole-system metabolism and FCO2 clearly indicated the strong dependence of San Quintín Bay on upwelling conditions and benthic metabolism activity, which was mainly controlled by dominant primary producer communities.

  19. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange

    NASA Astrophysics Data System (ADS)

    de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.

    2015-11-01

    The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas air-sea exchange in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating

  20. Methane fluxes from the sea to the atmosphere across the Siberian shelf seas

    NASA Astrophysics Data System (ADS)

    Thornton, Brett F.; Geibel, Marc C.; Crill, Patrick M.; Humborg, Christoph; Mörth, Carl-Magnus

    2016-06-01

    The Laptev and East Siberian Seas have been proposed as a substantial source of methane (CH4) to the atmosphere. During summer 2014, we made unique high-resolution simultaneous measurements of CH4 in the atmosphere above, and surface waters of, the Laptev and East Siberian Seas. Turbulence-driven sea-air fluxes along the ship's track were derived from these observations; an average diffusive flux of 2.99 mg m-2 d-1 was calculated for the Laptev Sea and for the ice-free portions of the western East Siberian Sea, 3.80 mg m-2 d-1. Although seafloor bubble plumes were observed at two locations in the study area, our calculations suggest that regionally, turbulence-driven diffusive flux alone accounts for the observed atmospheric CH4 enhancements, with only a local, limited role for bubble fluxes, in contrast to earlier reports. CH4 in subice seawater in certain areas suggests that a short-lived flux also occurs annually at ice-out.

  1. Particle fluxes and condensational uptake over sea ice during COBRA

    NASA Astrophysics Data System (ADS)

    Whitehead, J. D.; Dorsey, J. R.; Gallagher, M. W.; Flynn, M. J.; McFiggans, G.; Carpenter, L. J.

    2012-08-01

    Particle fluxes were measured over sea ice at Hudson Bay, Canada, during the COBRA experiment in February and March, 2008. Eddy covariance particle fluxes were measured using a condensation particle counter and an ultrasonic anemometer on a 2.5 m mast on the sea ice. After applying appropriate corrections and filtering, the mean net deposition velocity was 0.12 ± 0.11 mm s-1 for particles measured with a CPC 3776 (lower size threshold, Dp50 = 2.5 nm) and was at the detection limit of the measurement system. No evidence of nucleation events was seen. Two optical particle counters (at heights 0.2 and 1.35 m on the mast) allowed size segregated fluxes of particles in the accumulation and coarse mode diameter range 0.3-20 μm to be derived using the aerodynamic flux gradient method. Strong net emission fluxes were observed around midday, 3rd March, when winds increased to around 10 m s-1, suggesting ice particle resuspension. The fluxes during this period had a significant influence on the derived condensational loss rate to the available particle surfaces, kt. Number fluxes were greatest in the smallest size channels, while the largest sizes dominated the mass flux. Number fluxes also increased with wind speed, and this relationship was strongest for the smaller sizes. Particle mass size distributions showed an enhanced mode around 400 nm (dry size). Values of kt were well approximated by the molecular regime and were found to be much smaller and less variable than values derived for marine air.

  2. Carbon Fluxes and Ocean Acidification in the Irminger Sea

    NASA Astrophysics Data System (ADS)

    Turk, Daniela; Barkhouse, Ryan; Olafsson, Jon; Olafsdottir, Solveig; Gulev, Sergej; Wallace, Doug

    2016-04-01

    Complex horizontal and vertical circulation in the Irminger and Labrador Seas has the potential to influence global ocean circulation and climate patterns. Deep water formation coupled with strong winds, and high rates of primary productivity in spring and summer result in these regions of the North Atlantic acting as strong sinks for atmospheric carbon dioxide. An increase in surface water pCO2 over the past two decades at a rate greater than that of the atmosphere has been observed and indicates a decrease in the air-sea pCO2 difference, the driving force of the air-sea CO2 flux. In response to the increasing pCO2, the surface water pH and the aragonite saturation states (Ωar) show a decreasing trend. Much of the previous work in the region has occurred on a few repeated transects over time, or in specific regions the Irminger basin. There is therefore a need for surveys of carbon parameters with broader horizontal spatial coverage to determine the CO2 fluxes and the effect of ocean acidification (OA) in the Irminger Sea. Here, we estimate surface pCO2 and CO2 fluxes, and Ωar over a large portion of the Irminger Sea and adjacent waters in the summer of 2013. These estimates are based on measurements of total alkalinity (TA) and pH from discrete samples in the upper 100m, collected at 83 stations on two cruises during the International Redfish Survey. The present study is designed to provide a baseline of inorganic carbon parameters for future, long-term study in the region. The large spatial scope of this study, and planned future work, will provide data that will help contextualize measures from repeated transect studies, underway measures, as well as measures from fixed observatories such those deployed by Ocean Observatories Initiative (OOI).

  3. Annual sea ice. An air-sea gas exchange moderator

    SciTech Connect

    Gosink, T.A.; Kelley, J.J.

    1982-01-01

    Arctic annual sea ice, particularly when it is relatively warm (> -15/sup 0/C) permits significant gas exchange between the sea and air throughout the entire year. Sea ice, particularly annual sea ice, differs from freshwater ice with respect to its permeability to gases. The presence of brine allows for significant air-sea-ice exchange of CO/sub 2/ throughout the winter, which may significantly affect the global carbon dioxide balance. Other trace gases are also noted to be enriched in sea ice, but less is known about their importance to air-sea-interactions at this time. Both physical and biological factors cause and modify evolution of gases from the surface of sea ice. Quantitative and qualitative descriptions of the nature and physical behavior of sea ice with respect to brine and gases are discussed.

  4. Estimating Seasonal Cycles of Atmospheric CO2 and APO Resulting from Terrestrial NEE and Air-Sea O2 Fluxes using the Transcom T3L2 Pulse-Response Functions

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2011-12-01

    We present a method for translating modeled terrestrial net ecosystem exchange (NEE) fluxes of carbon into the corresponding annual mean cycles in atmospheric CO2. The method is based on the pulse-response functions from the Transcom 3 atmospheric tracer transport model (ATM) intercomparison. An oceanic version of the method is applied to air-sea O2 fluxes to estimate the corresponding annual mean cycles in atmospheric potential oxygen (APO). The estimated atmospheric seasonal cycles can be evaluated against observed atmospheric CO2 and APO data, which are measured at high precision at a wide range of monitoring sites and reflect the integrated impact of surface CO2 and O2 fluxes, respectively, across broad regions. The pulse-response function method is considerably faster than a full forward ATM simulation, allowing seasonal cycles from 13 different ATMS to be computed in minutes, rather than the days or weeks required for a single forward simulation. We evaluate the method against the results of full forward ATM simulations and examine the uncertainties associated with neglecting additional surface fluxes, e.g., from fossil fuel combustion, that may contribute to the observed seasonal cycles of CO2 and APO.

  5. Air-sea interactions during strong winter extratropical storms

    NASA Astrophysics Data System (ADS)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-09-01

    A high-resolution, regional coupled atmosphere-ocean model is used to investigate strong air-sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air-sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air-sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere-ocean modeling framework.

  6. Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec

    2014-05-01

    Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of sea surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and air-sea CO2 fluxes. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main

  7. Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air land ocean interactions and human activities

    NASA Astrophysics Data System (ADS)

    Poulos, S. E.; Chronis, G. Th; Collins, M. B.; Lykousis, V.

    2000-04-01

    zone ecosystem. Thus, the construction of dams along the routes of the main rivers has reduced dramatically the water/sediment fluxes; this caused, for example, retreat of the deltaic coastlines and seawater intrusion into the groundwater aquifers. Similarly, pollution and/or eutrophication of the nearshore marine environment have resulted from the inputs of industrial wastes, urban untreated sewage, and agricultural activities on the coastal plains. This effect is demonstrated by high levels of pollutants, nutrients, and by the increased concentrations of non-residual trace-metals within the surficial sediments. Finally, climatic changes associated with a potential rise in sea level (i.e. 30-50 cm) will threaten a substantial part of the low-lying lands of Thermaikos Gulf. Thus, systematic and thorough monitoring is needed in order to protect the coastal ecosystem; this will ensure its sustainable development and successful management, in relation to present and future socio-economic activities and climatic changes.

  8. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  9. A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Cavalieri, Donald J.

    1989-01-01

    This study examines oceanic surface heat fluxes in the Norwegian, Greenland, and Barents seas using the gridded Navy Fleet Numerical Oceanography Central surface analysis and the First GARP Global Experiment (FGGE) IIc cloudiness data bases. Monthly and annual means of net and turbulent heat fluxes are computed for the FGGE year 1979. The FGGE IIb data base consisting of individual observations provides particularly good data coverage in this region for a comparison with the gridded Navy winds and air temperatures. The standard errors of estimate between the Navy and FGGE IIb winds and air temperatures are 3.6 m/s and 2.5 C, respectively. The computations for the latent and sensible heat fluxes are based on bulk formulas with the same constant heat exchange coefficient of 0.0015. The results show extremely strong wintertime heat fluxes in the northern Greenland Sea and especially in the Barents Sea in contrast to previous studies.

  10. Surface heat flux parameterizations and tropical Pacific sea surface temperature simulations

    SciTech Connect

    Giese, B.S. University Corp. for Atmospheric Research, Boulder, CO ); Cayan, D.R. )

    1993-04-15

    The authors report on a study of the problem of getting good model results for the sea surface temperature in the tropical Pacific ocean. The tropical Pacific is particularly important because of its size, the large areas of warm surface temperature, its impact on global atmospheric circulation, and the fact that it serves as an indicator of climatic variations. To simulate sea surface temperature it is necessary to have an energy budget which fits into a general ocean circulation model. The main input, from solar flux, is not well known in the tropical Pacific. The authors use two different models to describe the latent flux and the radiative flux at the sea surface. Parameters of concern include the relative humidity, air-sea temperature difference, latent heat formulae, and radiative heat flux. They use these parameters in their models in different ways, and compare results with measurement sets from the Tropical Pacific.

  11. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  12. Heat flux through sea ice in the western Weddell Sea: Convective and conductive transfer processes

    NASA Astrophysics Data System (ADS)

    Lytle, V. I.; Ackley, S. F.

    1996-04-01

    The heat flux through the snow and sea ice cover and at the ice/ocean interface were calculated at five sites in the western Weddell Sea during autumn and early winter 1992. The ocean heat flux averaged 7 ± 2 W/m2 from late February to early June, and average ice/air heat flux in the second-year floes depended on the depth of the snow cover and ranged from 9 to 17 (±0.8) W/m2. In late February, three of the five sites had an ice surface which was depressed below sea level, resulting, at two of the sites, in a partially flooded snow cover and a slush layer at the snow/ice interface. As this slush layer froze to form snow ice, the dense brine which was rejected flowed out through brine drainage channels and was replaced by lower-salinity, nutrient-rich seawater from the ocean upper layer. We estimate that about half of the second-year ice in the region was covered with this slush layer early in the winter. As the slush layer froze, over a 2- to 3-week period, the convection within the ice transported salt from the ice to the upper ocean and increased total heat flux through the overlying ice and snow cover. On an area-wide basis, approximately 10 cm of snow ice growth occurred within second-year pack ice, primarily during a 2- to 3-week period in February and March. This ice growth, near the surface of the ice, provides a salt flux to the upper ocean equivalent to 5 cm of ice growth, despite the thick (about 1 m) ice cover, in addition to the ice growth in the small (area less than 5%), open water regions.

  13. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  14. Combined Satellite - and ULS-Derived Sea-Ice Flux in the Weddell Sea

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Liu, X.; Harms, S.

    2000-01-01

    Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume flux record at points along a flux gate across the Weddell Sea, Antarctica.

  15. Methane fluxes and their controlling processes in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Rehder, G. J.; Fossing, H.; Lapham, L.; Endler, R.; Spiess, V.; Bruchert, V.; Nguyen, T.; Gülzow, W.; Schneider von Deimling, J.; Conley, D. J.; Jorgensen, B.

    2010-12-01

    The Baltic Sea is an ideal natural laboratory to study the methane cycle in the framework of diagenetic processes. With its brackish character and a gradient from nearly marine to almost limnic conditions, a strong permanent haline stratification leading to large vertical redox gradients in the water column, and a sedimentation history which resulted in the deposition of organic-rich young post-glacial sediments over older glacial and post-glacial strata with very low organic content, the Baltic allows to study the role of a variety of key parameters for early diagenetic processes including the methane cycle. Within the BONUS + Project “Baltic Gas”, a 3.5 week scientific expedition of RV Maria S. Merian in August 2010 was dedicated to study the methane cycle in the various basins of the Baltic Sea, with strong emphasis on the metabolic reactions of early diagenesis and the occurrence of shallow gas deposits. Various subbottom profiling systems were used to map the thickness and structure of organic-rich deposits and build the base for a detailed coring program for biogeochemical analysis, including methane, sulfur compounds, iron, and other compounds. Methane gradients in connection with the information of the areal extend of organic-rich deposits are used to estimate the diffusive flux from the sediments into the water column and the rate of methane oxidation, with changing importance of sulfate as oxidant along the salinity gradient. On selected key stations, rate measurements of methanogenic and methanotrophic reactions were executed. The methane distribution in the water column was comprehensively assessed, revealing amongst other findings a drastic increase in bottom water methane concentration between the post bloom summer situation and the situation in the winter of 2009, in connection to the occurrence of a benthic nepheloid layer. Air-sea flux measurements were executed along the ship’s track comprising all major basins of the Baltic. The talk gives

  16. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Arruda, R.; Calil, P. H. R.; Bianchi, A. A.; Doney, S. C.; Gruber, N.; Lima, I.; Turi, G.

    2015-10-01

    We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the southwestern Atlantic Ocean. Overall, the region acts as a sink of atmospheric CO2 south of 30° S, and is close to equilibrium with the atmospheric CO2 to the north. On the shelves, the ocean acts as a weak source of CO2, except for the mid/outer shelves of Patagonia, which act as sinks. In contrast, the inner shelves and the low latitude open ocean of the southwestern Atlantic represent source regions. Observed nearshore-to-offshore and meridional pCO2 gradients are well represented by our simulation. A sensitivity analysis shows the importance of the counteracting effects of temperature and dissolved inorganic carbon (DIC) in controlling the seasonal variability of pCO2. Biological production and solubility are the main processes regulating pCO2, with biological production being particularly important on the shelves. The role of mixing/stratification in modulating DIC, and therefore surface pCO2, is shown in a vertical profile at the location of the Ocean Observatories Initiative (OOI) site in the Argentine Basin (42° S, 42° W).

  17. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  18. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  19. Atmospheric deposition flux estimates for chlorpyrifos and trifluralin in the chukchi sea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the 1993 U.S.-Russian BERPAC expedition, residues of agricultural pesticides were detected in seawater, ice, surface microlayer, fog, and air of the Bering and Chukchi Seas. Gas exchange, wet deposition, and dry particle deposition fluxes of trifluralin and chlorpyrifos were estimated using m...

  20. A sea spray aerosol flux parameterization encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Ovadnevaite, J.; Manders, A.; de Leeuw, G.; Ceburnis, D.; Monahan, C.; Partanen, A.-I.; Korhonen, H.; O'Dowd, C. D.

    2014-02-01

    A new sea spray source function (SSSF), termed Oceanflux Sea Spray Aerosol or OSSA, was derived based on in-situ sea spray aerosol measurements along with meteorological/physical parameters. Submicron sea spray aerosol fluxes derived from particle number concentration measurements at the Mace Head coastal station, on the west coast of Ireland, were used together with open-ocean eddy correlation flux measurements from the Eastern Atlantic Sea Spray, Gas Flux, and Whitecap (SEASAW) project cruise. In the overlapping size range, the data for Mace Head and SEASAW were found to be in a good agreement, which allowed deriving the new SSSF from the combined dataset spanning the dry diameter range from 15 nm to 6 μm. The OSSA source function has been parameterized in terms of five lognormal modes and the Reynolds number instead of the more commonly used wind speed, thereby encapsulating important influences of wave height, wind history, friction velocity, and viscosity. This formulation accounts for the different flux relationships associated with rising and waning wind speeds since these are included in the Reynolds number. Furthermore, the Reynolds number incorporates the kinematic viscosity of water, thus the SSSF inherently includes dependences on sea surface temperature and salinity. The temperature dependence of the resulting SSSF is similar to that of other in-situ derived source functions and results in lower production fluxes for cold waters and enhanced fluxes from warm waters as compared with SSSF formulations that do not include temperature effects.

  1. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume

    SciTech Connect

    John, David E.; Wang, Zhaohui A.; Liu, Xuewu; Byrne, Robert H.; Corredor, Jorge E.; López, José M.; Cabrera, Alvaro; Bronk, Deborah A.; Tabita, F. Robert; Paul, John H.

    2007-08-30

    River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO2 drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO2 dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the co-occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. Finally, our work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO2 flux

  2. A sea spray aerosol flux parameterization encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Ovadnevaite, J.; Manders, A.; de Leeuw, G.; Monahan, C.; Ceburnis, D.; O'Dowd, C. D.

    2013-09-01

    A new sea spray source function (SSSF), termed Oceanflux Sea Spray Aerosol or OSSA, was derived based on in-situ sea spray measurements along with meteorological/physical parameters. Submicron sea spray fluxes derived from particle number concentration measurements at the Mace Head coastal station, on the west coast of Ireland, were used together with open-ocean eddy correlation flux measurements from the Eastern Atlantic (SEASAW cruise). In the overlapping size range, the data for Mace Head and SEASAW were found to be in a good agreement, which allowed deriving the new SSSF from the combined dataset spanning the dry diameter range from 15 nm to 6 μm. The sea spray production was parameterized in terms of 5 log-normal modes and the Reynolds number instead of the more commonly used wind speed, thereby encapsulating important influences of wave height and history, friction velocity and viscosity. This formulation accounts for the different flux relationships associated with rising and waning wind speeds since these are included in the Reynolds number. Furthermore, the Reynolds number incorporates the kinematic viscosity of water, thus the SSSF inherently includes a sea surface temperature dependence. The temperature dependence of the resulting SSSF is similar to that of other in-situ derived source functions and results in lower production fluxes for cold waters and enhanced fluxes from warm waters as compared with SSSF formulations that do not include temperature effects.

  3. Atmospheric dry deposition flux of metallic species to the North Sea

    NASA Astrophysics Data System (ADS)

    Ottley, C. J.; Harrison, Roy M.

    Air sampling on a series of 10 research cruises on the North Sea (south of 56°N) has yielded detailed spatial distributions of atmospheric metal concentrations, Al, Ca, Cd, Cu, Fe, Mg, Na, Pb and Zn which closely parallel the results of earlier published models. Air mass back trajectory analysis demonstrates the strong influence which source region may have upon the elemental composition of the North Sea atmosphere. A cascade impactor designed to collect efficiently large as well as small aerosol has produced detailed size distributions from which mass weighted deposition velocity estimates have been produced (Al, 0.33; Cd, 0.24; Cu, 0.44; Fe, 0.30; Pb, 0.13; Zn, 0.30 cm s -1) enabling estimates for the dry deposition flux to the study area to be made. Extrapolation of these data to the whole of the North Sea yields dry deposition flux estimates (Cd, 33; Cu, 350; Pb, 370; Zn, 2640 tonnes yr -1) which are in some instances substantially lower than those previously reported, but nevertheless represent a significant pathway for metallic species to enter this marine environment. The size distributions show the clear dominance that large aerosol has upon the overall dry deposition flux. Flux estimates are thus highly sensitive to the sampling of this large aerosol component, and to assumptions made regarding the sea surface as a source of giant trace metal-enriched particles which act only as a means of recycling marine metals.

  4. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  5. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L.

    2012-04-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes from the ocean to the atmosphere, the amount of heat available to the tropical cyclone is predicated by the initial depth of the mixed layer and strength of the stratification level that set the level of entrainment mixing at the base of the oceanic mixed layer. For example in oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean (and sea surface temperatures) quickly which reduces the air-sea fluxes. This is an example of negative feedback from the ocean to the atmosphere. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture is available through the sea surface. When tropical cyclones move into favorable or neutral atmospheric conditions (low vertical shear, anticyclonic circulation aloft), tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina and Rita in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. These effects and possible impact on TC deepening and weakening underscores the necessity of having complete 3-D ocean measurements juxtaposed with atmospheric profiler measurements.

  6. Vertical material flux under seasonal sea ice in the Okhotsk Sea north of Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Hiwatari, Takehiko; Shirasawa, Kunio; Fukamachi, Yasushi; Nagata, Ryuichi; Koizumi, Tomoyoshi; Koshikawa, Hiroshi; Kohata, Kunio

    Downward material fluxes under seasonal sea ice were measured using a time-series sediment trap installed at an offshore site in the Okhotsk Sea north of Hokkaido, Japan, from 13 January to 23 March 2005. The maximum fluxes of lithogenic material (753 mg m -2 day -1) and organic matter (mainly detritus; 333 mg m -2 day -1) were recorded during the period in which sea ice drifted ashore and increased in extent, from 13 January to 9 February. Organic matter as fecal pellets (81-93 mg m -2 day -1) and opal as biosilica (51-67 mg m -2 day -1), representing diatom fluxes, were abundant in sediment trap samples obtained during the period of full sea ice coverage from 10 February to 9 March. Microscopic observations revealed that fecal pellets were largely diatom frustules, suggesting that zooplankton actively grazed on ice algae during the period of full sea ice coverage. During the period of retreating sea ice, from 10 to 23 March, the phytoplankton flux showed a rapid increase (from 9.5 to 22.5 × 10 6 cells m -2 day -1), reflecting their release into the water column as the sea ice melted. Our results demonstrate that the quantity and quality of sinking biogenic and lithogenic materials vary with the seasonal extent of sea ice in mid-winter.

  7. Sea-air CO2 exchange in the western Arctic coastal ocean

    NASA Astrophysics Data System (ADS)

    Evans, Wiley; Mathis, Jeremy T.; Cross, Jessica N.; Bates, Nicholas R.; Frey, Karen E.; Else, Brent G. T.; Papkyriakou, Tim N.; DeGrandpre, Mike D.; Islam, Fakhrul; Cai, Wei-Jun; Chen, Baoshan; Yamamoto-Kawai, Michiyo; Carmack, Eddy; Williams, William. J.; Takahashi, Taro

    2015-08-01

    The biogeochemical seascape of the western Arctic coastal ocean is in rapid transition. Changes in sea ice cover will be accompanied by alterations in sea-air carbon dioxide (CO2) exchange, of which the latter has been difficult to constrain owing to sparse temporal and spatial data sets. Previous assessments of sea-air CO2 flux have targeted specific subregional areas of the western Arctic coastal ocean. Here a holistic approach is taken to determine the net sea-air CO2 flux over this broad region. We compiled and analyzed an extensive data set of nearly 600,000 surface seawater CO2 partial pressure (pCO2) measurements spanning 2003 through 2014. Using space-time colocated, reconstructed atmospheric pCO2 values coupled with the seawater pCO2 data set, monthly climatologies of sea-air pCO2 differences (ΔpCO2) were created on a 0.2° latitude × 0.5° longitude grid. Sea-air CO2 fluxes were computed using the ΔpCO2 grid and gas transfer rates calculated from climatology of wind speed second moments. Fluxes were calculated with and without the presence of sea ice, treating sea ice as an imperfect barrier to gas exchange. This allowed for carbon uptake by the western Arctic coastal ocean to be assessed under existing and reduced sea ice cover conditions, in which carbon uptake increased 30% over the current 10.9 ± 5.7 Tg C (1 Tg = 1012 g) yr-1 of sea ice-adjusted exchange in the region. This assessment extends beyond previous subregional estimates in the region in an all-inclusive manner and points to key unresolved aspects that must be targeted by future research.

  8. Sea breeze forcing of estuary turbulence and air-water CO2 exchange

    NASA Astrophysics Data System (ADS)

    Orton, Philip M.; McGillis, Wade R.; Zappa, Christopher J.

    2010-07-01

    The sea breeze is often a dominant meteorological feature at the coastline, but little is known about its estuarine impacts. Measurements at an anchored catamaran and meteorological stations along the Hudson River and New York Bay estuarine system are used to illustrate some basic characteristics and impacts of the feature. The sea breeze propagates inland, arriving in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the water-to-air CO2 flux by 1-2 orders of magnitude, and drives turbulence comparable to spring tide levels in the upper meter of the water column, where most primary productivity occurs in this highly turbid system. Modeling and observational studies often use remotely-measured winds to compute air-water fluxes (e.g., momentum, CO2), and this leads to a factor of two flux error on sea breeze days during the study.

  9. Recent changes in sea ice area flux through the Beaufort Sea during the summer

    NASA Astrophysics Data System (ADS)

    Howell, Stephen E. L.; Brady, Michael; Derksen, Chris; Kelly, Richard E. J.

    2016-04-01

    Over the annual cycle, sea ice is sequestered from the Canadian Basin and transported through the Beaufort Sea toward the Chukchi Sea. In recent years, the Beaufort Sea has experienced considerable ice loss during the summer, which may be indicative of recent changes to this process. In order to investigate this, we quantify the sea ice area flux using RADARSAT from 1997 to 2014 at three gates in Beaufort Sea: the Canadian Basin (entrance), mid-Beaufort (midpoint), and Chukchi (exit). There was a mean annual flux of 42 ± 56 × 103 km2 at the Canadian Basin gate, 94 ± 92 × 103 km2 at the mid-Beaufort gate and -83 ± 68 × 103 km2 at the Chukchi gate (positive and negative flux signs correspond to ice inflow and outflow, respectively). The majority of ice transport in Beaufort Sea was found to occur from October to May providing replenishment for ice lost during the summer months. The cross-strait gradient in sea level pressure explains ˜40% of the variance in the ice area flux at the gates. Remarkably, the mean July-October net sea ice area flux at the Chukchi gate decreased by ˜80% from 2008 to 2014 relative to 1997-2007 and became virtually ice-free every year since 2008. This reduction was associated with younger (thinner) ice that was unable to survive the summer melt season when either being sequestered from the Canadian Basin and transported through Beaufort Sea during the melt season (2008-2011) or remaining immobile and present in the vicinity of the Chukchi gate during the melt season (2012-2014).

  10. The effects of sea surface temperature gradients on surface turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  11. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea

    NASA Astrophysics Data System (ADS)

    Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.

    2001-12-01

    An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.

  12. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  13. Surface Flux Modeling for Air Quality Applications

    EPA Science Inventory

    For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic c...

  14. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  15. Direct measurements of CO2 flux in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, Siv K.; McGillis, Wade R.; Bariteau, Ludovic; Fairall, C. W.; Johannessen, Truls; Olsen, Are; Zappa, Christopher J.

    2011-06-01

    During summer 2006 eddy correlation CO2 fluxes were measured in the Greenland Sea using a novel system set-up with two shrouded LICOR-7500 detectors. One detector was used exclusively to determine, and allow the removal of, the bias on CO2 fluxes due to sensor motion. A recently published correction method for the CO2-H2O cross-correlation was applied to the data set. We show that even with shrouded sensors the data require significant correction due to this cross-correlation. This correction adjusts the average CO2 flux by an order of magnitude from -6.7 × 10-2 mol m-2 day-1 to -0.61 × 10-2 mol m-2 day-1, making the corrected fluxes comparable to those calculated using established parameterizations for transfer velocity.

  16. Fecal Pellet Flux in the Mesopelagic Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Koweek, D.; Shatova, O.; Conte, M. H.; Weber, J. C.

    2010-12-01

    The Oceanic Flux Program (OFP), located 75km SE of Bermuda, is the longest running sediment trap time-series of its kind, continually collecting deep sea particle flux since 1978. Recent application of digital microphotography to the size-fractionated OFP sediment trap material has generated a wealth of new quantitative visual information on particle flux composition, its changes with depth, and its temporal variability. We examined the fecal pellet flux at 1500m depth using image analysis of digital archives, in conjunction with data on the overlying surface ocean from the Bermuda Testbed Mooring (BTM) and the Bermuda Atlantic Time Series (BATS) programs, to investigate the role of mesoscale physical forcing on mesopelagic particle flux variability. During 2007, a productive cyclonic eddy, a mode water eddy and an anticyclonic eddy passed over the OFP site. Fecal pellet flux was enhanced during passage of both the cyclonic and mode water eddies. Total mass flux (TMF) was also enhanced during the productive cyclonic eddy, but was not influenced by the passage of the mode water eddy. No increase in fecal pellet flux or TMF was apparent during passage of the anticyclonic eddy despite indications of increased zooplankton abundance from ADCP backscatter intensity. Fecal pellet size frequency distributions indicate the presence of two, and sometimes three, distinct size classes. No seasonal trend in mean size of fecal pellets was observed for any size class, implying that the size distribution of the zooplankton populations producing the pellets is relatively constant throughout the year. We also investigated fecal pellet flux changes with depth at 500, 1500 and 3200m. Fecal pellet flux, and the fecal pellet contribution to TMF, were greatest at 500m and decreased with depth. The use of quantitative image analysis holds great potential as a powerful analytical tool in studies of marine particulate flux.

  17. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  18. Air and sea rescue via satellite systems

    NASA Astrophysics Data System (ADS)

    Scales, W. C.; Swanson, R.

    1984-03-01

    Two approaches to a satellite system for air and sea rescue to be put into use by the 1990s, one employing polar-orbiting satellites and the other using fixed geosynchronous satellites over the equator, are discussed. A battery-powered transmitter on a ship or aircraft would be activated in an accident to emit a low-power omnidirectional signal that would be relayed by a satellite to an earth station. The polar-orbiting approach, now being evaluated on a small-scale with the Cospas-Sarsat system, allows complete coverage of the earth, including the poles, and provides a fix on the origin of the distress signals by means of the Doppler shift. A parallel effort for the testing of geostationary satellites to measure system sensitivity to various interference sources, to optimize design, and to measure land and sea performance is reviewed.

  19. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  20. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  1. Internal wave driven shelf edge fluxes in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Green, Mattias; Stephenson, Gordon; Palmer, Matthew

    2013-04-01

    The internal tide and wave field dominate the dynamics of the Celtic Sea in the northeast Atlantic during the summer months. In addition to stimulating a well recognised vertical nutrient flux through shear mixing along the base of the pycnocline, the internal tide is responsible for the horizontal exchange of energy, mass, heat and salt between the deep-ocean and continental shelf. We present results from a 2012 field campaign where a series of moorings were specifically laid out to capture the generation, propagation and dissipation of the internal tide across the shelf break and onto the shelf. Our measurements reveal remarkable variability in water column structure, currents and fluxes owing to the highly corrugated and irregular shelf edge bathymetry. Our calculations are used to estimate the internal tidal contribution to fluxes and exchange for the whole Celtic Sea sector of the NW European Shelf. Understanding and quantifying the different physical exchange processes is essential if these regions are to be adequately accounted for in both physical and ecosystem models of shelf seas.

  2. Joint Air Sea Interaction (JASIN) experiment, Northwest coast of Scotland

    NASA Technical Reports Server (NTRS)

    Businger, J. A.

    1981-01-01

    The joint air sea interaction (JASIN) experiment took place off the Northwest coast of Scotland. Sea surface and boundary layer parameters were measured. The JASIN data was used as ground truth for various sensors on the SEASAT satellite.

  3. Sensitivity of Air-sea Exchange In A Regional Scale Coupled Ice/ocean/atmosphere Model

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R.

    The sub-systems ice, ocean and atmosphere are coupled on the global as well as the regional scale. However, regional coupled modeling is only in the beginning, full cou- pled models which are able to describe the interaction on the regional scale and the feedback mechanism are rare at the moment. For the North Sea and the Baltic Sea such a coupled model has been developed and exemplary integrated over a full seasonal cy- cle. By comparison of different regionalization studies the impact of the regional at- mospheric modeling and coupling on the air sea fluxes have been investigated. It was shown that the regionalization as well as the coupling show strong influence on the air/sea fluxes and thus on the oceanic conditions. Further problems in regional mod- eling like the description of storm track variability and its influence on the regional ocean model were identified.

  4. Eddy energy sources and flux in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  5. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  6. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  7. Fluxes of clay minerals in the South China Sea

    NASA Astrophysics Data System (ADS)

    Schroeder, Annette; Wiesner, Martin G.; Liu, Zhifei

    2015-11-01

    In order to assess dominant settling processes that change the composition of the detrital clay fraction during transport from neighboring estuaries to a deep sea basin, we studied relative clay mineral abundances and absolute clay mineral fluxes of clay-sized sinking particulate matter collected by eight sediment trap systems deployed from shallow to deep water depth in the South China Sea. This is the first basin-wide study on recent sedimentation processes in the western Pacific marginal seas. Annual averages of relative clay mineral abundances at the shallow traps are temporally more variable and regionally more diverse, resembling those of surrounding drainage basins. In contrast, higher fluxes of material reach the deeper traps. Their characteristics trend temporally and spatially towards uniformity and are enriched with smectite in the entire deep basin. Sinking particulate matter that reaches the shallow traps spends less time in pelagic transport and is affected by monsoonal current reversals. The enrichment in smectite in the deeper traps is a result of longer duration in transport at low velocities, which may increase the effect of differential settling during transport. The trend is caused by lateral advection driven by the cyclonic deep circulation, and this is considered as the main transport process in the northern and central deep basin. The high fluxes in the south-western deep basin could be the result of laterally advected re-suspended sediments from the neighboring shelves. The effects on the composition of the detrital clay fraction caused by oceanographic control, which indirectly include those by differential settling, mask the climatic signal from surrounding drainage basins in the deep basin sediments. This strongly affects the interpretation of the clay mineralogical record in sediments deposited under recent conditions in the South China Sea deep basin.

  8. Atmospheric variability and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Middleton, J. W.; Reiter, E. R.

    1980-01-01

    The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index.

  9. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  10. Unstable Air-Sea Interaction in the Extratropical North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1999-01-01

    The possibility of coupled modes in the extratropical North Atlantic has fascinated the climate community since 1960's. A significant aspect of such modes is an unstable air-sea interaction, also called positive feedback, where disturbances between the atmosphere and ocean grow unbound. If a delayed response exists before the negative feedback takes effect, an oscillatory behaviour will develop. Here we explore the relationship between heat flux (positive upward) and sea surface temperature (SST). Positive feedback is characterized by a cross-correlation between the two where correlation maintains a negative sign whether SST or heat flux leads. We use model results and observations to argue that in the North Atlantic there exist regions with positive feedback. The two main locations coincide with the well-known north-south SST dipole where anomalies of opposite sign occupy areas east of Florida and north-east of Newfoundland. We show that oceanic dynamics, wave propagation and advection, give rise to oceanic anomalies in these regions. Subsequently these anomalies are amplified by atmosphere- ocean interaction: thus a positive feedback.

  11. Development of an Eddy Covariance System for Air-Sea Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Marandino, C. A.; McCormick, C.; Saltzman, E. S.

    2006-12-01

    We are developing a ship-based system to measure the air-sea pCO2 gradient and air-sea turbulent flux of CO2 over the ocean. The eddy covariance flux system uses off-the-shelf instruments to measure the turbulent wind vector (Campbell Scientific CSAT3 sonic anemometer), platform motion (Systron Donner Motion Pak II), and carbon dioxide molar density (LiCor 7000 Infrared Gas Analyzer). Two major sources of uncertainty in calculated fluxes are the effect of water vapor fluctuations on air density fluctuations (the WPL effect, Webb, Pearman and Leuning. 1980), and a spurious CO2 signal due to the sensitivity of the gas analyzer to platform motion (McGillis et al., 1998). Two flux systems were deployed side-by-side on a cruise from Manzanillo, Mexico to Puntas Arenas, Chile, in January 2006. Results from the cruise are presented, with a focus on our attempts to reduce biases in the calculated air-sea CO2 flux due to the WPL effect and the motion sensitivity of the gas analyzer.

  12. Air-sea exchange of gaseous mercury in the East China Sea.

    PubMed

    Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan

    2016-05-01

    Two oceanographic cruises were carried out in the East China Sea (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in air and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the air masses with high GEM levels during fall largely originated from the land, while the air masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open sea. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open sea than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) flux (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) flux: 3.6 ± 2.8 ng m(-2) h(-1)). The emission flux of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. PMID:26975003

  13. On the level of the cosmic ray sea flux

    SciTech Connect

    Casanova, S.; Aharonian, F. A.; Gabici, S.; Torii, K.; Fukui, Y.; Onishi, T.; Yamamoto, H.; Kawamura, A.

    2009-04-08

    The study of Galactic diffuse {gamma} radiation combined with the knowledge of the distribution of the molecular hydrogen in the Galaxy offers a unique tool to probe the cosmic ray flux in the Galaxy. A methodology to study the level of the cosmic ray 'sea' and to unveil target-accelerator systems in the Galaxy, which makes use of the data from the high resolution survey of the Galactic molecular clouds performed with the NANTEN telescope and of the data from {gamma}-ray instruments, has been developed. Some predictions concerning the level of the cosmic ray 'sea' and the {gamma}-ray emission close to cosmic ray sources for instruments such as Fermi and Cherenkov Telescope Array are presented.

  14. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea.

    PubMed

    Döscher, Ralf; Meier, H E Markus

    2004-06-01

    The physical state of the Baltic Sea in possible future climates is approached by numerical model experiments with a regional coupled ocean-atmosphere model driven by different global simulations. Scenarios and recent climate simulations are compared to estimate changes. The sea surface is clearly warmer by 2.9 degrees C in the ensemble mean. The horizontal pattern of average annual mean warming can largely be explained in terms of ice-cover reduction. The transfer of heat from the atmosphere to the Baltic Sea shows a changed seasonal cycle: a reduced heat loss in fall, increased heat uptake in spring, and reduced heat uptake in summer. The interannual variability of surface temperature is generally increased. This is associated with a smoothed frequency distribution in northern basins. The overall heat budget shows increased solar radiation to the sea surface, which is balanced by changes of the other heat flux components. PMID:15264603

  15. Early diagenesis and nutrient benthic fluxes in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Spagnoli, F.; Frascari, F.; Marcaccio, M.; Bergamin, M. C.

    2003-04-01

    Early diagenesis processes and dissolved nutrient benthic fluxes of Northern and Central Adriatic Sea bottom sediments were investigate in order to know different sedimentary environmental settings. The study was carried out in 12 stations by means of an integrated analysis of pore water and solid phase composition. In each station one core, about one meter long, was collected. In the solid phase the following parameters were determined: grain size, mineralogy, Fe, Mn, Ca, Mg, Al, S, organic carbon, total nitrogen, total P. In pore waters nitrate, nitrite, ammonia, phosphate, alkalinity, sulphate, Fe, Mn and silica were analysed. Benthic fluxes were measured in situ, by benthic chamber, and calculated by modelisation of pore waters. In each station also the chemical-physical parameters of water column were measured. The area North of the Po River is characterised mainly by carbonate sediments, by low phosphate fluxes towards water column, in some cases even negative, due to authigenic apatite precipitation and by low ammonia fluxes for low reactive organic matter inputs. Near Tagliamento and Adige-Brenta river mouths sediments are higher in organic matter contents in comparison with offshore areas. In these environments pore water nutrient regeneration takes place in the uppermost centimetres of sediment by oxic and suboxic organic matter degradation (Adige-Brenta prodelta sediments) or at higher depth by organic matter degradation, mainly anoxic, via sulphate reduction (Tagliamento prodelta area). Fluxes of phosphate and TCO2 in these two areas are slowly higher than other North Po River areas. The Po River proximal prodelta area is characterised by high ammonia, phosphate and TCO2 fluxes due to high organic matter and silicate inputs, degrading mainly in anoxic conditions by sulphate reduction. When bottom water column reach anoxic conditions in these areas also Fe, Mn and phosphate fluxes increase for dissolution of Fe and Mn oxi-hydroxide surface layer. South

  16. Modes of variability of global sea surface temperature, free atmosphere temperature and oceanic surface energy flux

    SciTech Connect

    Hu, Wenjie; Newell, R.E.; Wu, Zhong-Xiang

    1994-11-01

    Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears to control this pattern of SST. The first seasonal mode of MSU is similar with, additionally, land-sea differences; MSU is apparently partly controlled by absorption of solar near-infrared radiation and partly by sensible heat from from the land surface. The second and third seasonal eigenvector of SST and solar flux exhibit semi-annual oscillations associated with a pattern of cloudiness in the subtropics accompanying the translation of the Hadley cell rising motion between the hemispheres. The second seasonal mode of MSU is dominated by an El Nino Signal. The first nonseasonal EOFs of SST and solar flux exhibit El Nino characteristics with solar pattern being governed by west-to-east translation of a Walker cell type pattern. The first non-seasonal EOF of MSU shows a tropical strip pattern for the El Nino mode, which is well correlated with the latent heat fluxes in the tropical east Pacific but not in the tropical west Pacific. Two possible explanations are: an increase in subsidence throughout the tropical strip driven by extra evaporation in the tropical east Pacific and consequent additional latent heat liberation; a decrease of meridional heat flux out of the tropics. 56 refs., 12 figs., 5 tabs.

  17. The 3He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic time series site

    NASA Astrophysics Data System (ADS)

    Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott, D. E., III

    2015-03-01

    We provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic based on a three year time-series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site. We combine the 3He data with a sophisticated noble gas calibrated air-sea gas exchange model to constrain the 3He flux across the sea-air interface, which must closely balance the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate-3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also applied the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost three-fold difference in the nitrate-3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003-2006 is estimated to be 0.65 ± 0.3 mol m-2 y-1, which is ~ 40% smaller than the calculated flux for the period from 1985 to 1988. The difference between the time periods, which is barely significant, may be due to a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by decoupling of 3He and nitrate during obduction of water masses from the main thermocline into the upper ocean.

  18. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  19. Hydrothermal iron flux variability following rapid sea level changes

    NASA Astrophysics Data System (ADS)

    Middleton, Jennifer L.; Langmuir, Charles H.; Mukhopadhyay, Sujoy; McManus, Jerry F.; Mitrovica, Jerry X.

    2016-04-01

    Sea level changes associated with Pleistocene glacial cycles have been hypothesized to modulate melt production and hydrothermal activity at ocean ridges, yet little is known about fluctuations in hydrothermal circulation on time scales longer than a few millennia. We present a high-resolution record of hydrothermal activity over the past 50 ka using elemental flux data from a new sediment core from the Mir zone of the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation. Our results, along with previous observations from Pacific and Atlantic spreading centers, indicate that rapid sea level changes influence hydrothermal output on mid-ocean ridges. Thus, climate variability may discretize volcanic processing of the solid Earth on millennial time scales and subsequently stimulate variability in biogeochemical interactions with volcanic systems.

  20. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  1. Short-term biogenic particle flux under late spring sea ice in the western Weddell Sea

    NASA Astrophysics Data System (ADS)

    Michels, Jan; Dieckmann, Gerhard S.; Thomas, David N.; Schnack-Schiel, Sigrid B.; Krell, Andreas; Assmy, Philipp; Kennedy, Hilary; Papadimitriou, Stathis; Cisewski, Boris

    2008-04-01

    In the framework of the "Ice Station POLarstern" (ISPOL) expedition in the western Weddell Sea, two sediment traps were deployed at 10 and 70 m water depth under a drifting ice floe in December 2004. The amount and composition of the vertical particle flux under sea ice were determined during a period of 30 days in order to investigate the influence of biological processes in sea ice and on its underside on the flux. The total mass flux was dominated by diatoms, faecal material, and aggregates, and ranged from 95.28 to 197.67 mg m -2 d -1 at 10 m depth and from 51.54 to 55.34 mg m -2 d -1 at 70 m depth. A strong increase with time of the flux of chlorophyll equivalents, biogenic silica, and faecal material was recorded during the observation period, coincident with the increase in the concentration of chlorophyll a in the bottom ice layer above the trap array. The latter suggests a concomitant increase in the amount of food available for grazers, such as krill, in the bottom ice layer and on the underside of the ice floe, resulting in an increased downward transport of ice-algal material into the water column. The sinking faecal material was dominated by krill faecal strings and contained large amounts of diatom frustule debris, as well as intact diatom frustules, mainly of the species Fragilariopsis curta and F. cylindrus. Single pronounced flux events of Phaeocystis antarctica and aggregates were also observed early in the study period. Low POC/PON and biogenic silica/POC ratios of the sinking particulate matter suggest that the material collected in the traps was relatively fresh.

  2. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  3. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  4. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  5. To what extent does the salinity flux influence phytoplankton blooms? - Baltic Sea modeling study

    NASA Astrophysics Data System (ADS)

    Cieszyńska, Agata; Stramska, Małgorzata

    2016-04-01

    This work is focused on numerical modeling of biological-physical interactions and their influence on phytoplankton production and vertical distribution of biomass and its variability in the surface waters of the Baltic Sea. The area of interest is an inland sea with water salinity much smaller than observed in the global ocean (about one fifth of the open ocean value). Vertical distribution of the salinity has a significant influence on water column density stratification, and therefore influences intensity of mixing and the depth of mixed layer. This, in turn, defines environmental conditions for phytoplankton growth. Vertical distribution of water salinity in the basin is controlled by processes such as evaporation/precipitation, freezing/melting of sea ice and runoff of freshwater from land. There are a lot of different phytoplankton species in the area of the Baltic Sea. Every single one has its own characteristics and is sensitive to distinct complex environmental conditions. Biological-physical interactions controlling these microorganisms' life cycles are multiplicitous and because of their complexity difficult to quantify. The best and probably only way to study presented issue is the usage of numerical modeling tool. The results presented here are based on 1D numerical simulations carried out with Princeton Ocean Model (POM, http://www.ccpo.odu.edu/POMWEB/) merged with the Ecological Regional Ecosystem Model (ERGOM, http://ergom.net/) developed for the Baltic Sea research by German scientists from the Leibniz Institute for Baltic Sea Research in Warnemünde. In model simulations surface salinity flux was determined from the difference between the precipitation and evaporation rate at the air-sea interface. Data for parameterization of atmospheric forcing were defined based on data sets from National Centers of Environmental Prediction (NCEP). We carried out systematic calculations using different values of surface fluxes encompassing the range of

  6. Lasers as probes for air and sea

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    1980-12-01

    The rapid development of quantum electronics has permitted the introduction of efficient remote-sensing techniques for air and sea, based on applied laser spectroscopy. In this paper basic interactions between laser light and molecules are discussed as a background for a description of laser probing of the atmosphere and the hydrosphere. For the atmosphere both meteorological parameters and pollution levels can be measured. Long-path absorption and lidar (laser radar) techniques yield average or range-resolved values for several environmental parameters. Tropospheric and stratospheric measurements of particles and gaseous pollutants are described. Laser light can be used for marine probing within the blue-green optical window of water. Much of the effort in this field aims at the development of airborne measuring systems. Bathymetric experiments and the detection of schools of fish are discussed. Laser-induced fluorescence can be used for airborne monitoring of pollutants like mineral oils and pulp-mill wastes. Accurate laboratory measurements of spectral 'signatures' of different materials are important.

  7. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  8. Sea Breeze Forcing of Estuary Turbulence and Air-Water Exchanges

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; McGillis, W. R.; Zappa, C. J.

    2010-12-01

    The sea breeze is often a dominant meteorological feature at the coastline, but little is known about its estuarine impacts. It arises on sunny days with weak synoptic weather forcing, due to O(100 km) scale atmospheric pressure differences that develop as a result of the different solar absorption properties of sea and land. Here, measurements at an anchored catamaran and meteorological stations along the Hudson River and New York Bay estuarine system are used to illustrate some basic characteristics and impacts of the feature. The sea breeze propagates inland, arriving in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the water-to-air CO2 flux by 1-2 orders of magnitude, and drives turbulence comparable to spring tide levels in the upper meter of the water column, where most primary productivity occurs in this highly turbid system. Modeling and observational studies often use remotely-measured winds with quadratic parameterizations to compute air-water fluxes (e.g. momentum, CO2), and this leads to a factor of two flux error on sea breeze days during the study. We conclude with a survey of how common these features are in the Hudson as well as other estuaries.

  9. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  10. Monsoon-driven vertical fluxes of organic pollutants in the western Arabian Sea

    SciTech Connect

    Dachs, J.; Bayona, J.M.; Ittekkot, V.; Albaiges, J.

    1999-11-15

    A time series of sinking particles from the western Arabian Sea was analyzed for aliphatic and polycyclic aromatic hydrocarbons, polychlorinated biphenyls, 4,4{prime}-DDT and 4,4{prime}-DDE, to assess the role of monsoons on their vertical flux in the Indian Ocean. Concurrently, molecular markers such as sterols and linear and branched alkanes were analyzed enabling the characterization of the biogenic sources and biogeochemical processes occurring during the sampling period. Hierarchical cluster analysis (HCA) of the data set of concentrations and fluxes of these compounds confirmed a seasonal variability driven by the SW and NE monsoons. Moreover, the influence of different air masses is evidenced by the occurrence of higher concentrations of DDT, PCBs, and pyrolytic PAHs during the NE monsoon and of fossil hydrocarbons during the SW monsoon. Total annual fluxes to the deep Arabian Sea represent an important removal contribution of persistent organic pollutants, thus not being available for the global distillation process (volatilization and atmospheric transport from low or mid latitudes to cold areas). Therefore, monsoons may play a significant role on the global cycle of organic pollutants.

  11. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2015-05-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to, for example, short-term temporal variability in wind speed, atmospheric mixing height and atmospheric CO2 concentration. With this study, the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2w) has been developed for this coastal area based on available data from monitoring stations and on-board pCO2w measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short-term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010, the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short-term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2w fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer

  12. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2014-12-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to e.g. short-term temporal variability in wind speed, atmospheric mixing height and the atmospheric CO2 concentration. With this study the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2) has been developed for this coastal area based on available data from monitoring stations and underway pCO2 measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010 the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish Straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2 fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer velocity

  13. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  14. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  15. Linking air-sea energy exchanges and European anchovy potential spawning ground

    NASA Astrophysics Data System (ADS)

    Grammauta, R.; Molteni, D.; Basilone, G.; Guisande, C.; Bonanno, A.; Aronica, S.; Giacalone, G.; Fontana, I.; Zora, M.; Patti, B.; Cuttitta, A.; Buscaino, G.; Sorgente, R.; Mazzola, S.

    2008-10-01

    The physical and chemical processes of the sea greatly affect the reproductive biology of fishes, mainly influencing both the numbers of spawned eggs and the survivorship of early stages up to the recruitment period. In the central Mediterranean, the European anchovy constitutes one of the most important fishery resource. Because of its short living nature and of its recruitment variability, associated to high environmental variability, this small pelagic species undergo high interannual fluctuation in the biomass levels. Despite several efforts were addressed to characterize fishes spawning habitat from the oceanographic point of view, very few studies analyze the air-sea exchanges effects. To characterize the spawning habitat of these resources a specific technique (quotient rule analysis) was applied on air-sea heat fluxes, wind stress, sea surface temperature and turbulence data, collected in three oceanographic surveys during the summer period of 2004, 2005 and 2006. The results showed the existence of preferred values in the examined physical variables, associated to anchovy spawning areas. Namely, for heat fluxes the values were around -40 W/m2, for wind stress 0.04-0.11 N/m2, for SST 23°C, and 300 - 500 m3s-3 for wind mixing. Despite the obtained results are preliminary, this is the first relevant analysis on the air-sea exchanges and their relationship with the fish biology of pelagic species.

  16. Carbon fluxes in the Arabian Sea: Export versus recycling

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani

    2016-04-01

    The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.

  17. Vertical heat fluxes through the Beaufort Sea Thermohaline staircase

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Dillon, Thomas M.

    1987-09-01

    Microstructure profiles of temperature, conductivity, and velocity shear during the Arctic Internal Wave Experiment (AIWEX) in March-April 1985 in the Beaufort Sea are used to investigate the thermodynamic processes in a diffusive thermohaline staircase. The staircase occurs between depths of about 320 and 430 m, above the core of the relatively warm, salty Atlantic water, where the mean temperature and salinity are increasing with depth. Individual isothermal layers can be tracked for at least several hours, suggesting a horizontal length scale of several hundred meters or more, assuming a typical relative velocity of 0.01 m s-1 at this time. Over the depth range 320-430 m the mean (average over several steps) density ratio = β varies between 4 and 6, while the typical temperature difference between layers decreases from 0.012° to 0.004°C. The mean thickness of the layers also varies, from 1 m at 320 m depth to 2 m at 430 m. The relationship proposed by Kelley (1984), relating layer height to , , and molecular properties of the fluid, overestimates the mean layer thickness by about a factor of 2. The variability of staircase characteristics suggests that oceanic staircases may rarely, if ever, be steady state, but in general be slowly evolving from previous perturbations. Heat fluxes estimated from laboratory-based flux laws, involving Rρ and ΔT, are in the range 0.02 fluxes through the maximum interfacial temperature gradients. There are no interfaces where the kinetic energy dissipation rate (averaged over 0.5 m) exceeds the lower limit for diapycnal mixing, 24.5νN2.

  18. Satellite estimates of ocean-air heat fluxes during cold air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.

    1982-01-01

    A method for estimating the heat and moisture fluxes of coastal waters using the cloud free path, the sea surface temperature, and the saturation water vapor mixing ratio is presented. Generalized nomograms for the surface sensible and latent heat fluxes are developed using the Stage and Businger (1981) mixed-layer model. The fluxes are found to be slightly dependent on wind speed. The results are found to be applicable to any path within the cloud-free region, with heat fluxes obtainable by multiplication of the mean heating by the mean wind speed in the boundary layer. Higher stability causes lowered heating. It is shown that the latent heat flux is linear. Applications of the method to lake-effect snowstorms and for verification of boundary-layer models are indicated.

  19. Atlantic Air-Sea Interaction Revisited

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J.

    INTRODUCTION DATA AND MODELS THE ANALYSIS METHOD ATMOSPHERIC FORCING OF NORTH ATLANTIC SEA SURFACE TEMPERATURES NORTH ATLANTIC SEA SURFACE TEMPERATURE FORCING OF THE ATMOSPHERE Observational Evidence Model Results POTENTIAL SEASONAL PREDICTABILITY BASED ON THE ATMOSPHERE GENERAL - CIRCULATION MODEL CONCLUSIONS AND DISCUSSION REFERENCES

  20. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  1. The 3He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic Time-series Site

    NASA Astrophysics Data System (ADS)

    Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott, D. E., III

    2015-09-01

    Significant rates of primary production occur in the oligotrophic ocean, without any measurable nutrients present in the mixed layer, fueling a scientific paradox that has lasted for decades. Here, we provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic. We combine a 3-year time series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site with a sophisticated noble gas calibrated air-sea gas exchange model to constrain the 3He flux across the sea-air interface, which must closely mirror the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate-3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also apply the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost 3-fold difference in the nitrate-3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003 to 2006 is estimated to be 0.65 ± 0.14 mol m-2 yr-1, which is ~40 % smaller than the calculated flux for the period from 1985 to 1988. The difference in nitrate flux between the time periods may be signifying a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for the BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by the decoupling of 3He and nitrate during the obduction of water masses from the main thermocline into the upper ocean. The upward nitrate flux is certainly large enough to support observed rates of primary production at BATS and more generally

  2. 228Ra flux in the northwestern Pacific marginal seas: Implications for disproportionally large submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghyun; Cho, Hyung-Mi; Kim, Guebuem

    2015-06-01

    To determine the fluxes of 228Ra (half life: 5.75 years) to the northwestern Pacific marginal seas, 228Ra data were compiled for the East China Sea, Yellow Sea, South Sea, and East/Japan Sea. Most of the 228Ra data in the East Sea were newly obtained through the onboard surveys in July 2012, October 2012, and March 2013. A 228Ra mass balance model was established by considering the input fluxes from the Pacific Ocean, river, atmosphere, sediments, and submarine groundwater discharge (SGD) and the output fluxes by radioactive decay and to the Pacific Ocean and the deep East Sea through vertical mixing. Using this model, the 228Ra flux through SGD was estimated to be at least 2.3 × 1015 dpm yr-1 in the entire area of these marginal seas, which is about 20% of the total 228Ra input flux to this region. This SGD-driven 228Ra flux to this region accounts for about 2% of that to the global oceans. This result implies that the magnitude of SGD in this region could be disproportionally larger than those in general oceanic margins. We suggest that SGD may play a critical role in the delivery of terrestrial materials to these large marginal seas, perhaps due to large tidal pumping.

  3. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  4. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect

    Ian MacDonald

    2011-05-31

    A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation

  5. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  6. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  7. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities.

    PubMed

    Jiongxin, Xu

    2005-05-01

    Since the 1970s, the water fluxes to the sea of the Yellow River have declined significantly. Based on data of precipitation, air temperature, the measured and "natural" river flow, the water diversion and consumption, and the areas of erosion and sediment control measures over the drainage basin, water fluxes to the sea of the Yellow River are studied in relation with the influences of changing climate and human activities. The Yellow River basin can be divided into different water source areas; multiple regression indicates that the variation in precipitation over different water source areas has different effect on water fluxes to the sea. In the period between 1970 and 1997, averaged air temperature over the whole Yellow River increased by about 1.0 degree C, from 16.5 degrees C to 17.5 degrees C, a factor that is negatively correlated with the water yield of the Yellow River. Water diversion and consumption has sharply increased and resulted in a significant decline in the water fluxes to the sea. Since the 1960s, erosion and sediment control measures have been practiced over the drainage basin. This factor, to a lesser degree, is also responsible for the decrease in water fluxes to the sea. A multiple regression equation has been established to estimate the change in water fluxes to the sea caused by the changes in precipitation, air temperature, water diversion and consumption, erosion, and sediment control measures, indicating that the contribution of water diversion and consumption to the variation in annual water flux to the sea is 41.3%, that of precipitation is 40.8%, that of temperature is 11.4%, and that of erosion and sediment control measures is 6.5%. PMID:15924206

  8. Sources and fluxes of organic nitrogen in precipitation over the southern East Sea/Sea of Japan

    NASA Astrophysics Data System (ADS)

    Yan, G.; Kim, G.

    2015-03-01

    We measured total dissolved reactive nitrogen in precipitation samples collected at Uljin, a Korean coastal site upwind of the southern East Sea/Sea of Japan (EJS), selected as a representative study site of atmospheric deposition over the northwestern Pacific margin. NO3- was found to be the most abundant nitrogen species, followed by NH4+ and dissolved organic nitrogen (DON). Air-mass back-trajectory (AMBT) analysis revealed that a significant fraction of the inorganic nitrogen (NO3- and NH4+) originated from mainland Asia, whereas the DON was primarily derived from Korea. Using varimax-rotated factor analysis in combination with major ions as tracers, agricultural activities in Korea were identified as the primary sources of DON in these samples. In addition, a positive correlation was found at Uljin between the size of organic fraction in total reactive nitrogen and nitrogen to carbon atomic ratio in organic matter. This correlation has also been observed at other locations worldwide, implying the utilization potential of atmospheric organic nitrogen might increase with its proportion in total nitrogen. Combining wet deposition measurements in this study with literature values for dry deposition observed at a remote island in the EJS, the total atmospheric depositional flux of reactive nitrogen was estimated to be 115 mmol N m-2 yr-1 over the southern EJS. Our study sheds new light on the potentially significant contribution to primary productivity of the northwestern Pacific Ocean by atmospheric deposition of nitrogen, especially the organic fraction.

  9. CO2-flux measurements above the Baltic Sea at two heights: flux gradients in the surface layer?

    NASA Astrophysics Data System (ADS)

    Lammert, A.; Ament, F.

    2015-11-01

    The estimation of CO2 exchange between the ocean and the atmosphere is essential to understand the global carbon cycle. The eddy-covariance technique offers a very direct approach to observe these fluxes. The turbulent CO2 flux is measured, as well as the sensible and latent heat flux and the momentum flux, a few meters above the ocean in the atmosphere. Assuming a constant-flux layer in the near-surface part of the atmospheric boundary layer, this flux equals the exchange flux between ocean and atmosphere. The purpose of this paper is the comparison of long-term flux measurements at two different heights above the Baltic Sea to investigate this assumption. The results are based on a 1.5-year record of quality-controlled eddy-covariance measurements. Concerning the flux of momentum and of sensible and latent heat, the constant-flux layer theory can be confirmed because flux differences between the two heights are insignificantly small more than 95 % of the time. In contrast, significant differences, which are larger than the measurement error, occur in the CO2 flux about 35 % of the time. Data used for this paper are published at http://doi.pangaea.de/10.1594/PANGAEA.808714.

  10. The influence of sea ice cover on air-sea gas exchange estimated with radon-222 profiles

    NASA Astrophysics Data System (ADS)

    Rutgers van der Loeff, Michiel M.; Cassar, Nicolas; Nicolaus, Marcel; Rabe, Benjamin; Stimac, Ingrid

    2014-05-01

    Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.

  11. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  12. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    fluxes by up to 15%, and, therefore, play important local and regional roles in regulating air-sea interactions.

  13. Air-sea interactions and precipitation over the tropical oceans

    NASA Technical Reports Server (NTRS)

    Gautier, C.

    1992-01-01

    In this lecture, the author principally discusses air-sea exchanges that are relevant to climate and global problems. The processes of interest are those acting over time scales of months to decades, which in some instances are influenced by smaller-time-scale processes, down to the diurnal time scale. The repsective influence of these processes varies with regions, seasons and scales over which they occur and, because these processes are mostly nonlinear, scale interactions can be quite complex. Owing to the breadth of the topic addressed, the discussion is mostly focused on the tropical regions where air-sea interactions and precipitation processes eventually affect the entire globe. This allows a look in more detail at some air-sea processes, such as those associated with the El Nino southern oscillation (ENSO). This oscillation, which affects the climate of the entire globe, acts over periods of a year or longer and is caused, primarily, by sea surface temperature (SST) variations in the tropical Pacific. As a result, SST variability is often used as an indicator of coupled ocean-atmosphere low-frequency variability. Global or basin scale processes can uniquely be observed from space-born instruments with the coverage required. Space based techniques have been developed during the last decade which can now be used to illustrate the scientific issues presented and the presentation concludes with an overview of some Earth Observing System (EOS) capabilities for addressing air-sea interactions and hydrology issues.

  14. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  15. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  16. Air-sea gas transfer for two gases of different solubility (CO2 and O2)

    NASA Astrophysics Data System (ADS)

    Rutgersson, A.; Andersson, A.; Sahlée, E.

    2016-05-01

    At the land-based marine measuring site Östergarnsholm in the Baltic Sea, the eddy covariance technique was used to measure air-sea fluxes of carbon dioxide and oxygen. High- frequency measurements of oxygen were taken with a Microx TX3 optode using the luminescence lifetime technique. The system gives reasonable oxygen fluxes after the limited frequency response of the sensor was corrected for. For fluxes of carbon dioxide the LICOR-7500 instrument was used. Using flux data to estimate transfer velocities indicates higher transfer velocity for oxygen compared to carbon dioxide for winds above 5 m/s. There are too few data for any extensive conclusions, but a least-square fit of the data gives a cubic wind speed dependence of oxygen corresponding to k 660 = 0.074U 3 10. The more effective transfer for oxygen compared to carbon dioxide above 5 m/s is most likely due to enhanced efficiency of oxygen exchange across the surface. Oxygen has lower solubility compared with carbon dioxide and might be more influenced by near surface processes such as microscale wave breaking or sea spray.

  17. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  18. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  19. The Gas Transfer through Polar Sea ice experiment: Insights into the rates and pathways that determine geochemical fluxes

    NASA Astrophysics Data System (ADS)

    Lovely, A.; Loose, B.; Schlosser, P.; McGillis, W.; Zappa, C.; Perovich, D.; Brown, S.; Morell, T.; Hsueh, D.; Friedrich, R.

    2015-12-01

    Sea ice is a defining feature of the polar marine environment. It is a critical domain for marine biota and it regulates ocean-atmosphere exchange, including the exchange of greenhouse gases such as CO2 and CH4. In this study, we determined the rates and pathways that govern gas transport through a mixed sea ice cover. N2O, SF6, 3He, 4He, and Ne were used as gas tracers of the exchange processes that take place at the ice-water and air-water interfaces in a laboratory sea ice experiment. Observation of the changes in gas concentrations during freezing revealed that He is indeed more soluble in ice than in water; Ne is less soluble in ice, and the larger gases (N2O and SF6) are mostly excluded during the freezing process. Model estimates of gas diffusion through ice were calibrated using measurements of bulk gas content in ice cores, yielding gas transfer velocity through ice (kice) of ˜5 × 10-4 m d-1. In comparison, the effective air-sea gas transfer velocities (keff) ranged up to 0.33 m d-1 providing further evidence that very little mixed-layer ventilation takes place via gas diffusion through columnar sea ice. However, this ventilation is distinct from air-ice gas fluxes driven by sea ice biogeochemistry. The magnitude of keff showed a clear increasing trend with wind speed and current velocity beneath the ice, as well as the combination of the two. This result indicates that gas transfer cannot be uniquely predicted by wind speed alone in the presence of sea ice.

  20. Ocean Carbon Cycling and CO2 Air-Sea Exchange in Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Plattner, G.; Gruber, N.; Lachkar, Z.; Frenzel, H.; Loher, D.

    2008-12-01

    Eastern boundary current (EBC) upwelling systems are regions of intense biogeochemical transformations and transports. Strong upwelling of nutrient- and carbon-rich waters tends to lead to CO2 outgassing nearshore and biologically-driven CO2 uptake offshore. Yet, the net air-sea CO2 balance of EBCs remains unknown. High near-shore productivity coupled with filaments and other meso- and submesoscale phenomena cause a substantial lateral export of organic carbon. We investigate these coastal processes in the California Current (CalCS) and the Canary Current Systems (CanCS), on the basis of the eddy-resolving, physical-biogeochemical model ROMS. Our results confirm the onshore-offshore trends in the air-sea fluxes, with substantial spatial and temporal differences due to topography, upwelling strength, and eddy activity. The CalCS is modeled to be, on average, a very small source of CO2 to the atmosphere, consistent with a recent data-based estimate by Chavez and Takahashi, while for the CanCS this is not clear yet. Regarding offshore transport, the CalCS appears to be stronger than the CanCS. Spatio-temporal variability of all carbon fluxes is substantial, particularly nearshore, posing a tremendous challenge for observing systems targeting e.g. air-sea CO2 fluxes in these dynamic regions. Further analyses of the processes that determine the mean carbon fluxes and their spatio-temporal variability will be presented. Characteristic differences and similarities between the two EBC systems will be discussed.

  1. Enhanced sea-air CO2 exchange influenced by a tropical depression in the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Qingyang; Tang, DanLing; Legendre, Louis; Shi, Ping

    2014-10-01

    Ship measurements made 2 days after the passage of a tropical depression (TD) in the South China Sea (SCS, April 2011) showed two contrasted responses of the partial pressure of CO2 at sea surface (pCO2,sw). In low sea-surface salinity (SSS) water, pCO2,sw was low (349 ± 7 μatm), and the area was a carbon sink (-4.7 ± 1.8 mmol CO2 m-2 d-1), whereas in water with high SSS and chlorophyll a and low dissolved oxygen and sea surface temperature, pCO2,sw was higher than for normal SCS water (376 ± 8 versus 362 ± 4 μatm) and the area was a carbon source (1.2 ± 3.1 mmol CO2 m-2 d-1). Satellite data showed two large areas of low SSS before the TD, which were likely influenced by rainfall, and these areas were considered to have low pCO2,sw because of their low SSS. The high pCO2,sw after the TD is explained by the uplifting to the surface of deeper and CO2-rich water, due to winds accompanied by the TD. The difference in sea-air CO2 flux between the TD-affected area and the lower-SSS water was 1.99 + 4.70 = 6.7 mmol CO2 m-2 d-1, indicating a 100% change caused by the TD compared to the average seasonal value in spring in southern SCS (3.3 ± 0.3 mmol CO2 m-2 d-1). Undersaturation of CO2 prior to the TD due to dilution by freshwater and the preexisting cold eddy, and slow translation speed of the TD, are considered to account for the CO2 flux change.

  2. Particle fluxes in the Almeria-Oran Front: control by coastal upwelling and sea surface circulation

    NASA Astrophysics Data System (ADS)

    Sanchez-Vidal, A.; Calafat, A.; Canals, M.; Fabres, J.

    2004-12-01

    Particle flux data were obtained from one instrumented array moored under the direct influence of the Almeria-Oran Front (AOF) in the Eastern Alboran Sea, Western Mediterranean Sea, within the frame of the "Mediterranean Targeted Project II-MAss Transfer and Ecosystem Response" (MTPII-MATER) EU-funded research project. The mooring line was deployed from July 1997 to May 1998, and was equipped with three sequential sampling sediment trap-current meter pairs at 645, 1170 and 2210 m (30 m above the seafloor). The settling material was analysed to obtain total mass, organic carbon, opal, calcium carbonate and lithogenic fluxes. Qualitative analyses of SST and SeaWiFS images allowed monitoring the location and development of the Western and Eastern Alboran Sea gyres and associated frontal systems to determine their influence on particle fluxes. Particle flux time series obtained at the three depths showed a downward decrease of the time-weighed total mass flux annual means, thus illustrating the role of pelagic particle settling. The total mass flux was dominated by the lithogenic fraction followed by calcium carbonate, opal and organic carbon. The time series at the various depths were rather similar, with two strong synchronous biogenic peaks (up to 98 mg m -2 day -1 of organic carbon and 156 mg m -2 day -1 of opal) recorded in July 1997 and May 1998. Through comparing the fluctuations of the lithogenic and calcium carbonate-rich fluxes with the biogenic flux, we observed that the non-biogenic fluxes remained roughly constant, while the biogenic flux responded strongly to seasonal variations throughout the water column. Overall, the temporal variability of particle fluxes appeared to be linked to the evolution of several tens of kilometres in length sea surface hydrological structures and circulation of the Alboran Sea. Periodic southeastward advective displacements of waters from upwelling events off the southern Spanish coast were observed on SST and SeaWiFS images

  3. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  4. Air-sea interaction with multiple sensors - Seasat legacy

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2003-01-01

    By flying a number of ocean observing sensors together, Seasat demonstrated potential of not only sensor synergism, but also science synergism, which has illuminated the path of spacebased air-sea interaction studies in more than two decades since its demise.

  5. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  6. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment

    SciTech Connect

    Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M. ); Marullo, S. ); Boehm, E. )

    1993-02-15

    Measurements of radiative fluxes were carried out in the Tyrrhenian Sea in fall and winter as part of the Tyrrhenian Eddy Multi-Platform Observations Experiment (TEMPO). These measurements have supplied the first experimental radiation data set over this basin. Seasonal variation of the different components of the budget are investigated. Since data collection was carried out in an area in which a quasi-permanent eddy is present, the behavior of the radiation parameters across the frontal zone is analyzed. The most interesting result of the air-sea interaction in proximity of a marine front consists in the covariation of sea surface temperature and downwelling long-wave radiation. Contemporaneous satellite data show a clear correlation between sea surface structure and horizontal distribution of columnar atmospheric water content. Therefore this inhomogeneity clearly is one of the main factors responsible for the variation of the downwelling radiation across the front. A comparison between experimental data and results of some of the most widely used bulk formulae is carried out for both short- and long-wave radiation. The mean differnece between measured and empirical solar radiation values is less than 3%, while in the case of the net long-wave radiation budge, poor agreement is found. Indeed, a 30 W/m[sup 2] bias results from the comparison. This discrepancy is consistent with the imbalance between previous bulk calculations of total heat budget at the surface and corresponding hydrographical observations of heat exchange at Gibraltar. 30 refs., 6 figs., 9 tabs.

  7. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  8. Sinking particle flux in the sea ice zone of the Amundsen Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Minkyoung; Hwang, Jeomshik; Kim, Hyung J.; Kim, Dongseon; Yang, Eun J.; Ducklow, Hugh W.; Hyoung, S. La; Lee, Sang H.; Park, Jisoo; Lee, SangHoon

    2015-07-01

    We have examined the flux, biogenic composition, and isotopic values of sinking particles collected by a time-series sediment trap deployed in the sea ice zone (SIZ) of the Amundsen Sea from January 2011 for 1 year. The major portion of the particle flux occurred during the austral summer in January and February when sea ice concentration was reduced to <60%. Biogenic components, dominated by opal (~78% of the biogenic components), accounted for over 75% of particle flux during this high-flux period. The dominant source of sinking particles shifted from diatoms to soft-tissued organisms, evidenced by high particulate organic carbon (POC) content (>30%) and a low bio-Si/POC ratio (<0.5) during the austral winter. CaCO3 content and its contribution to total particle flux was low (~6%) throughout the study period. Aged POC likely supplied from sediment resuspension accounted for a considerable fraction only from October to December, which was evidenced by a low radiocarbon content and relatively high (30-50%) content of the non-biogenic components. When compared with POC flux inside the Amundsen Sea polynya obtained by the US Amundsen Sea Polynya International Research Expedition (ASPIRE), the POC flux integrated over the austral summer in the SIZ was virtually identical, although the maximum POC flux was approximately half that inside the Amundsen Sea polynya. This comparatively high POC flux integrated over the austral summer in the SIZ may be caused by phytoplankton blooms persisting over a longer periods and more efficient export of organic matter potentially owing to the diatom-dominant plankton community. If this observation is a general phenomenon on the Amundsen Shelf, the role of the SIZ, compared with the polynyas, need to be examined more carefully when trying to characterize the POC export in this region.

  9. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  10. An Examination of the Sea Surface Salinity - Fresh Water Flux Relationship Using Satellite Observations

    NASA Astrophysics Data System (ADS)

    Xie, P.; Kumar, A.; Xue, Y.; Liu, W. T.

    2014-12-01

    Relationship between the sea surface salinity (SSS) and the oceanic fresh water flux (E-P) is examined using the SSS retrievals derived from the passive microwave (PMW) observations aboard the SMOS and Aquarius satellites, the CMORPH integrated satellite precipitation estimates (P) and the evaporation data (E) produced by the NCEP Climate Forecast System (CFS) reanalysis. Preprocessing is performed to construct gridded fields of SSS, P, and E on a 1o lat/lon grid over the global oceans and at a 30-min time resolution for a 54-month period from January 2010 to June 2014. Relationships between the SSS observed at a point in time and the P, E, and P-E at the same grid box accumulated over various time periods ending at the SSS observation time are examined. As a first step, we focused our investigation on an oceanic area over the central equatorial Pacific (10oS-10oN; 180o-160oW) where SSS is not influenced by the river runoffs. Our preliminary results show clear linear relationship between the satellite-observed skin SSS and the fresh water flux over the region. The Aquarius observed instantaneous SSS presents a correlation of ~0.4 with the E-P accumulated over the 30-min period of the SSS observations. The correlation between the instantaneous SSS and the E-P drops with the accumulation period for E-P, down to 0.36 for 6-hourly accumulated E-P. The Correlation, however, bounces back and improves with the E-P accumulation period longer than 6 hours, reaching to ~0.7 for an accumulation time period of 30 days. The existence of the minimum correlation between the instantaneous SSS and the E-P accumulation over a 6-hour period suggests the involvement of air-sea interaction and oceanic processes on multiple time scales in the manner E-P influences to the SSS variations. Among the two primary components of the fresh water flux, precipitation dominates the influences on the SSS. Further analysis is under way to repeat the examination for different regions to examine the

  11. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2004-01-01

    The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.

  12. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  13. Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory)

    NASA Astrophysics Data System (ADS)

    Donis, Daphne; McGinnis, Daniel F.; Holtappels, Moritz; Felden, Janine; Wenzhoefer, Frank

    2016-05-01

    Benthic oxygen fluxes, an established proxy for total organic carbon mineralization, were investigated in oligotrophic deep sea sediments. We used three different in situ technologies to estimate the benthic oxygen fluxes at an Arctic deep sea site (2500 m depth, HAUSGARTEN observatory) with limiting conditions of low oxygen gradients and fluxes, low turbulence and low particle content in the benthic boundary layer. The resolved eddy covariance turbulent oxygen flux (-0.9±0.2 (SD) mmol O2 m-2 d-1) compared well with simultaneous dissolved oxygen flux measurements carried out with a microprofiler (-1.02±0.3 (SD) mmol O2 m-2 d-1) and total oxygen uptake obtained by benthic chamber incubations (-1.1±0.1 (SD) mmol O2 m-2 d-1). The agreement between these different techniques revealed that microbial-mediated oxygen consumption was dominant at this site. The average benthic flux equals a carbon mineralization rate of 4.3 g C m-2 yr-1, which exceeds the annual sedimentation of particulate organic matter measured by sediment traps. The present study represents a detailed comparison of different in situ technologies for benthic flux measurements at different spatial scales in oligotrophic deep sea sediments. The use of eddy covariance, so far rarely used for deep sea investigations, is presented in detail.

  14. Estimating sea ice area flux across the Canadian Arctic Archipelago using enhanced AMSR-E

    NASA Astrophysics Data System (ADS)

    Agnew, T.; Lambe, A.; Long, D.

    2008-10-01

    Enhanced resolution Advanced Microwave Scanning Radiometer (AMSR-E) imagery is used to estimate daily sea ice area fluxes between the Canadian Arctic Archipelago and the Arctic Ocean and Baffin Bay for the period September 2002 to June 2007. Over the period, Amundsen Gulf and M'Clure Strait exported 54 × 103 km2 of sea ice area or roughly 77 km3 of sea ice volume each year into the Arctic Ocean. Export/import into the Arctic Ocean through the Queen Elizabeth Islands is small and uncertain since no estimates for July and August could be made due to atmospheric attenuation of the microwave signal. Lancaster Sound exported 68 × 103 km2 of sea ice area or roughly 102 km3 of ice volume into Baffin Bay. This produced a net loss of sea ice area of about 122 × 103 km2 or roughly 174 km3 a-1 which is presumed to be generated from within the Archipelago itself mainly through the stationary and transient polynyas and leads that form each winter. Daily ice area fluxes for Amundsen Gulf (AG) and Lancaster Sound (LS) were as high as ±2500 km2 d-1 and were event driven depending on synoptic scale atmospheric circulation and the mobility of the sea ice. Mean sea level pressure difference across each gate is moderately correlated with daily sea ice area fluxes despite the fact that free ice drift conditions are not always met in the region. Cross-gradient and daily sea ice area flux for Lancaster Sound show a large number of counter gradient ice flux occurrences suggesting that local mesoscale winds (nongeostrophic) and perhaps ocean currents play a role in transporting sea ice through this gate. Monthly ice fluxes for the AG and MS gate were positively correlated with the AO index indicating that a strong Beaufort Sea high pressure and gyre correspond to more export into the Beaufort Sea. Monthly fluxes for the LS gate were positively correlated with the NAO index indicating that strong southerly atmospheric circulation over Baffin Bay increases ice export into Baffin Bay from

  15. Sinking Particle Flux in the Sea Ice Zone of the Amundsen Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, M.; Hwang, J.; Kim, H. J.; Kim, D.; Ducklow, H. W.; Lee, S. H.; Yang, E. J.; Lee, S.

    2014-12-01

    We have examined the flux, compositions of biogenic components, and isotopic values of sinking particles collected by a sediment trap deployed in the sea ice zone (SIZ) of the Amundsen Sea from January 2011 for one year. Major portion of the particle flux occurred during the austral summer in January and February when sea ice concentration was reduced to below 60 %. Biogenic components, dominated by opal, accounted for over 75 % during this high flux period. The dominant source of sinking particles shifted from diatoms to soft-tissued organisms, evidenced by high particulate organic carbon (POC) content (> 30 %) during the polar night. CaCO3 content and its contribution to total particle flux were low throughout the study period. Contribution of aged POC likely supplied from sediment resuspension was considerable only from October to December, evidenced by low radiocarbon content and relatively high (30-50 %) content of the non-biogenic component. When compared to POC flux inside the Amundsen Sea polynya obtained by the US Amundsen Sea Polynya International Research Expedition (ASPIRE), the POC flux integrated over the austral summer in the SIZ was virtually identical although maximum POC flux was about half that inside the Amundsen Sea polynya. This comparatively high POC flux in the SIZ may be caused by persistence of phytoplankton bloom for longer period and more efficient export of organic matter owing to the diatom-dominant plankton community. If this observation is a general phenomenon on the Amundsen shelf, the role of the SIZ compared to the polynyas need to be examined more carefully when trying to characterize the POC export in this region.

  16. Salp contributions to vertical carbon flux in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Stone, Joshua P.; Steinberg, Deborah K.

    2016-07-01

    We developed a one-dimensional model to estimate salp contributions to vertical carbon flux at the Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic subtropical gyre for a 17-yr period (April 1994 to December 2011). We based the model parameters on published rates of salp physiology and experimentally determined sinking and decomposition rates of salp carcasses. Salp grazing was low during non-bloom conditions, but routinely exceeded 100% of chlorophyll standing stock and primary production during blooms. Fecal pellet production was the largest source of salp carbon flux (78% of total), followed by respiration below 200 m (19%), sinking of carcasses (3%), and DOC excretion below 200 m (<0.1%). Thalia democratica, Salpa fusiformis, Salpa aspera, Wheelia cylindrica, and Iasis zonaria were the five highest contributors, accounting for 95% of total salp-mediated carbon flux. Seasonally, salp flux was higher during spring-summer than fall-winter, due to seasonal changes in species composition and abundance. Salp carbon export to 200 m was on average 2.3 mg C m-2 d-1 across the entire time series. This is equivalent to 11% of the mean 200 m POC flux measured by sediment traps in the region. During years with significant salp blooms, however, annually-averaged salp carbon export was the equivalent of up to 60% of trap POC flux at 200 m. Salp carbon flux attenuated slowly, and at 3200 m the average modeled carbon from salps was 109% of the POC flux measured in sediment traps at that depth. Migratory and carcass carbon export pathways should also be considered (alongside fecal pellet flux) as facilitating carbon export to sequestration depths in future studies.

  17. Seasonal variation of fluxes of dispersed sedimentary matter in the White Sea (Arctic ocean basin)

    NASA Astrophysics Data System (ADS)

    Lisitzin, A. P.; Novigatsky, A. N.; Klyuvitkin, A. A.

    2015-11-01

    The monthly and seasonal quantity estimates of vertical fluxes of sedimentary matter from the White Sea performed during studies are the basis for the direct calculations of incoming chemical components, minerals, and various pollutants to the surface layer of bottom sediments. The White Sea, one of six Russian Arctic seas, may be considered as a megapolygon for further modern research using the new regularities of arctic sedimentogenesis established. This study focuses on the development of new technologies for complex studies of marine water areas using underwater sedimentation observatories, regular observations onboard vessels, and satellite oceanological data. The first priority task is year-round monitoring along the Northern Sea Route.

  18. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  19. Measuring and modelling the frictional velocity u*, turbulence and heat fluxes above the North Sea

    NASA Astrophysics Data System (ADS)

    Tambke, Jens; Bye, John A. T.; Schmidt, Michael; Wolff, Jörg-Olaf

    2014-05-01

    In this study, we analyse the frictional velocity u*, drag coefficient, vertical wind speed and turbulence profiles observed at different met-masts in the German North and Baltic Sea. We present an analysis of different models for the frictional velocity u* in convective, neutral and stable thermal stratification of the atmosphere. Atmospheric turbulent momentum and heat flux measurements performed with ultra-sonic anemometers are compared to profile-derived values and a bulk Richardson number formulation of the atmospheric thermal stability. Modelling: An improved approach to model the vertical wind speed profile is presented and compared against meso-scale model results (WRF, COSMO): Bye-Ekman-Coupling (BEC) describes the flux of momentum from the Ekman layer of the atmosphere through the Prandtl layer down to the air-sea interface by a modified wave boundary layer with enhanced Charnock dynamics (Bye et al. 2010). The BEC model is based on the coupled pair of similarity relations for "aerodynamically rough flow" in both fluids (air and sea). The derived drag law is of Charnock form, almost independent of the wave age and consistent with the transfer of momentum to the wave spectrum - which takes place in the smaller rather than the dominant wavelengths. Measurements: It was found that the frictional velocity u* is considerably smaller than predicted by conventional approaches using the Charnock relation: For wind speeds between 10 m/s and 15 m/s at 40 m height above the sea surface, u*(observed) is 14% smaller than u*(Charnock). Most important, we found unexpected, strong and obviously artificial distortions concerning the three wind speed components in the 10Hz data of the three ultra-sonic anemometers at the offshore met-mast FINO1 at 40 m, 60 m and 80 m height. The pattern of these distortions is independent from different post-processing procedures (planar-fit etc.). We anticipate that these artefacts imply severe problems for the eddy covariance technique

  20. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  1. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  2. Measuring important parameters for air-sea heat exchange

    NASA Astrophysics Data System (ADS)

    Garbe, Christoph; Schimpf, Uwe; Jaehne, Bernd

    2002-03-01

    The heat transfer between the ocean and the atmosphere is one of the most important parameters governing the global climate. Important parameters include the heat transfer velocity and the net heat flux as well as parameters of the underlying transport model. However, the net heat flux is hard to measure since processes take place in the thermal boundary layer, that is the topmost layer of the ocean less than 1 mm thick. Current techniques rely on three independent measurements of the constituent fluxes, the sensible heat flux, latent heat flux and radiative flux. They depend on indirect measurements of meteorological parameters and rely on a combination of data from different sensors using a number of heuristic assumptions. High relative errors and the need for long temporal averaging reduce the practicability of these techniques. In this paper a novel technique is presented that circumvents these drawbacks by directly measuring the net heat flux across the air-water interface with a single low-NETD infrared camera. A newly developed digital image processing technique allows to simultaneously estimating the surface velocity field and parameters of the temporal temperature change. In particular, this technique allows estimating the total derivative of the temperature with respect to time from a sequence of infrared images, together with error bounds on the estimates. This derivative can be used to compute the heat flux density and the heat transfer velocity, as well as the probability density function of the underlying surface renewal model. It is also possible to estimate the bulk-skin temperature difference given rise to by the net heat flux. Our technique has been successfully used in both laboratory measurements in the Heidelberg Aeolotron, as well as in field measurements in the equatorial pacific during the NOAA GasExII experiment this spring. The data show that heat flux measurements to an accuracy of better than 5% on a time scale of seconds are feasible.

  3. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments

    PubMed Central

    Belley, Rénald; Snelgrove, Paul V. R.; Archambault, Philippe; Juniper, S. Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor

  4. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    PubMed

    Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor

  5. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  6. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  7. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  8. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  9. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  10. Spatial and temporal variability of air-sea CO2 exchange of alongshore waters in summer near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2014-03-01

    Alongshore water off Barrow, Alaska is a useful area for studying the carbon cycle of the Arctic coastal sea, because the different coastal characteristics extant in the area likely represent much larger regions of the coastal water of the western Arctic Ocean. Especially noteworthy is the inflow shelf water transferred northward by the Arctic Coastal Current into the Chukchi Sea from the North Pacific and turbid water in the Elson Lagoon where a significant amount of coastal erosion has been reported along the extensive coastal line and where a part of the water from the lagoon drains into the Beaufort Sea adjacent to the Chukchi Sea. To investigate spatial and temporal variations of air-sea CO2 flux (CO2 flux) of the alongshore water, partial pressure of CO2 of surface seawater (pCO2sw) was measured in summer, 2007 and 2008, and CO2 flux was directly measured by eddy covariance at a fixed point for the Beaufort Sea in summer 2008. Measured pCO2sw in the Chukchi Sea side was the lowest in the beginning of the measurement season and increased later in the season both in 2007 and 2008. The average CO2 flux estimated based on pCO2sw in the Chukchi Sea side was -0.10 μmol m-2 s-1 (±0.1 s.d.) using the sign convention of positive fluxes into the atmosphere from the ocean. pCO2sw in the Beaufort Sea and the Elson Lagoon was relatively higher in early summer and decreased in the middle of the summer. The overall average CO2 flux was -0.07 μmol m-2 s-1 (±0.1 s.d.) for the Beaufort Sea side and -0.03 μmol m-2 s-1 (±0.07 s.d.) for the Elson Lagoon respectively, indicating a sink of CO2 despite high carbon inflows from the terrestrial margin into the Elson Lagoon. A strong sink of CO2 was often observed from the Beaufort Sea by eddy covariance in the middle of the summer. This sink activity in the middle summer in the Beaufort Sea and Elson Lagoon was likely due to biological carbon uptake as inferred by low apparent oxygen utilization and high chlorophyll

  11. Preliminary intercomparison and validation of ECMWF 40-year reanalysis (ERA-40) sea-surface fluxes

    NASA Astrophysics Data System (ADS)

    Ramos Buarque, S.; Giordani, H.; Caniaux, G.; Planton, S.

    2003-04-01

    The ECMWF Re-Analysis 40-year (ERA-40) sea-surface heat fluxes has been evaluated in comparison with three major reanalysis: the ERA-15 (1979-93), the NCEP1 (from 1948) and the GEOS-1 (1980-95). The ERA-40 Project identifies four streams, which cover different periods. All streams are currently running and some discontinuities at the end of streams occur. Two discontinuities zones have being over the period overlapping the three reanalysis and consequently the intercomparison period covers only three years (1980-82). This intercomparison takes into account different forecast lengths and ranges from the forecast base time, which can biases intercomparisons. The short-range forecast of sea-surface heat fluxes from ERA-40 and ERA-15 are used to quantify its changes as a function of the range from the forecast base time. Results show that latent heat flux increases as a function of the range from the forecast base time, leveling off after 24 hours. Sensible and radiative fluxes exhibit stability after 6 hours. Accordingly, sea-surface heat fluxes from ERA-40 are compared with NCEP/NCAR following the same forecast length and range from the forecast base time for the periods 1957-67 (with no satellite observations) and 1996-2000 (with continuous satellite observations). ERA-40 assimilated data take into account a wide selection of sources, which reduces strongly the possibility of validation with independent estimates. However three experiments are used to validate ERA-40 sea-surface turbulent and momentum fluxes with in-situ flux measurements: POMME (September 2000 to October 2001, NE Atlantic), Equalant99 (July to August 1999, Tropical Atlantic) and FETCH (March to April 1998, Mediterranean sea).

  12. Interactive momentum flux forcing over sea ice in a global ocean GCM

    NASA Astrophysics Data System (ADS)

    StöSsel, Achim; Cheon, Woo-Geun; Vihma, Timo

    2008-05-01

    The sensitivity of Southern Ocean sea ice to the strength of the atmospheric momentum forcing is investigated in the framework of a global ocean general circulation model. In contrast to the usual approach of having the momentum flux just depend on the wind speed and a constant drag coefficient, the newly introduced momentum flux driving sea ice considers the local stratification and roughness over ice in one case, and the flux-aggregated stratification and roughness using the blending-height concept in the other case. While both cases thus allow for an interactive feedback, only the latter case accounts for the subgrid-scale heterogeneity of the sea-ice pack. In particular, the sea-ice feedback is in the former case only provided by the simulated ice thickness, affecting the surface temperature and local stratification, while in the latter case it is also determined by the ice concentration. Both parameterizations yield predominantly statically stable, but dynamically unstable conditions at any instant over the wintertime sea-ice pack. In the winter mean, statically and dynamically unstable conditions prevail over coastal polynyas, and lead to a positive feedback with increased momentum flux. The larger momentum flux enhances the along and offshore ice drift, leading to corresponding changes in the winter-mean ice-thickness distribution, a reduction in coastal ice concentration, and an increase of heat loss due to sensible heat flux. In the case where surface heterogeneity is accounted for, the impact of the lower coastal ice concentration leads to a larger momentum flux than in the homogeneous case. The long-term deep-ocean properties are only affected when in the heterogeneous case the form drag is raised by increasing the ice freeboard and decreasing the maximum ice concentration. Only the combination of both yields a significant increase of Antarctic Bottom Water formation, as reflected by a long-term cooling and freshening of the global deep-ocean properties.

  13. Air-Sea Exchange and Budget of Sulfur and Oxygen-Containing Volatile Organic Compounds in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Omori, Y.; Inomata, S.; Iwata, T.; Kameyama, S.

    2015-12-01

    By combining proton transfer reaction-mass spectrometry (PTR-MS) and gradient flux (GF) technique, in situ measurement of air-sea fluxes of multiple volatile organic compounds (VOCs) was developed and deployed. Starting in 2008, we made in situ observations of air-sea fluxes at 15 locations as well as underway observations of marine air/surface seawater bulk concentrations in the Pacific Ocean, during eight research cruises by R/V Hakuho-Maru. The fluxes of biogenic trace gases, DMS and isoprene, were always positive, with the magnitudes being in accordance with previously reported. In contrast, the fluxes of oxygenated VOCs including acetone and acetaldehyde varied from negative to positive, suggesting that the tropical and subtropical Pacific are a source, while the North Pacific is a sink. A basin-scale budget of VOCs were determined for 4 biogeochemical provinces in the Pacific Ocean, and the role of oceans for VOCs were discussed with respect to physical and biogeochemical processes.

  14. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    PubMed Central

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening. PMID:26796579

  15. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  16. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.

    PubMed

    Yang, Qian; Dixon, Timothy H; Myers, Paul G; Bonin, Jennifer; Chambers, Don; van den Broeke, M R

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening. PMID:26796579

  17. Using a video-corer to evaluate hydrocarbon fluxes in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hung, C. C.; Wang, C. C.; Chen, H. H.; Lin, Y. S.; Huang, K. H.

    2015-12-01

    Many natural methane seeps exist in the northern South China Sea. Researchers have often used gravity corers or piston corers to collect sediments and bottom seawater for estimating methane fluxes of these seeps. The actual sampling locations of these corers are difficult to match seeping vents detected by scientific echo sounder because of the difficulty in positioning of these corers when sampling at sea,. Thus, the hydrocarbon fluxes of the seeping vents estimated using these corers might not be representative hydrocarbon fluxes of seeping vents in the northern South China Sea. In this study, we used a real-time video multicorer to collect surface sediments and bottom seawater samples. This real-time multicorer can accurately obtain surface sediments and bottom seawater samples on hydrocarbon seeping vents. To estimate hydrocarbon diffusion fluxes of seeps in the northern South China Sea, we analyzed methane concentrations and carbon isotopes of methane in both porewater and bottom seawater. During the cruises conducted from August to December, 2014, methane fluxes in the study area ranged from 3 to 57000 μmol m-2 d-1 which are significantly higher than previously reported values (~160 μmol m-2 d-1). Besides, we have obtained some samples in the study area using real-time multicorer in 2015. These new results will be presented in the meeting. Overall, the observed result in this study suggests that the in-situ multicorer can be a suitable instrument sampling surface sediments and bottom seawater samples on hydrocarbon seeping vents.

  18. Fluxes and Stable Isotope Dynamics of N. pachyderma (sin.) and T. quinqueloba in the Irminger Sea

    NASA Astrophysics Data System (ADS)

    Jonkers, L.; Brummer, G.; Peeters, F.

    2008-12-01

    We present an almost three year long record of planktonic foraminifera fluxes, oxygen and carbon isotopes of Turburotalita quinqueloba and Neogloboquadrina pachyderma s. from moored sediment traps and surface plankton samples from the central Irminger Sea. The mooring area is characterised by a large annual sea surface temperature cycle, whereas temperatures at depth remain almost constant, resulting in a highly stratified upper water column during summer and virtually no stratification during winter as is evident from daily salinity and temperature measurements at approximately 200 m water depth, satellite derived sea surface temperature and occasional sea surface temperature and salinity measurements. Since salinity variability both at depth and at the surface is very small, the site is ideally suited to study the effects of thermal stratification on the fluxes and stable isotopic composition of T. quinqueloba and N. pachyderma s. The flux of N. pachyderma s. peaks twice a year (in spring and autumn), a typical productivity pattern for the sub-arctic setting. Both growing seasons account for >95% of the total annual flux and contribute about equally to the total flux. The shell flux of T. quinqueloba however, shows only a single broad peak (September), more resembling flux patterns of the arctic domain. The δ18O N. pachyderma s. from surface plankton is practically identical to the expected value; at the site N. pachyderma s. thus seems to calcify in equilibrium with seawater. Its apparent export calcification depth varies during the season: ~50 m during the spring bloom, but closer to the surface during the autumn bloom period; in both cases shallower than often reported. The average δ18O N. pachydermas. in the Irminger Sea thus reflects sea water temperature between 0 and 50 m depth. The δ18O of T. quinqueloba in plankton pump samples shows slightly lighter values than expected from inorganic calcite precipitates, but isotope values of trap samples are

  19. Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-series Study site)

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; McClain, Charles R.; Christian, James R.

    2001-01-01

    An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The sea-air flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso Sea by the warmest SST and lowest surface salinity of the period (1992-1998).

  20. Temporal variations in air-sea CO2 exchange near large kelp beds near San Diego, California

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2015-01-01

    study presents nearly continuous air-sea CO2 flux for 7 years using the eddy covariance method for nearshore water near San Diego, California, as well as identifying environmental processes that appear to control temporal variations in air-sea CO2 flux at different time scales using time series decomposition. Monthly variations in CO2 uptake are shown to be positively influenced by photosynthetically active photon flux density (PPFD) and negatively related to wind speeds. In contrast to the monthly scale, wind speeds often influenced CO2 uptake positively on an hourly scale. Interannual variations in CO2 flux were not correlated with any independent variables, but did reflect surface area of the adjacent kelp bed in the following year. Different environmental influences on CO2 flux at different temporal scales suggest the importance of long-term flux monitoring for accurately identifying important environmental processes for the coastal carbon cycle. Overall, the study area was a strong CO2 sink into the sea (CO2 flux of ca. -260 g C m-2 yr-1). If all coastal areas inhabited by macrophytes had a similar CO2 uptake rate, the net CO2 uptake from these areas alone would roughly equal the net CO2 sink estimated for the entire global coastal ocean to date. A similar-strength CO2 flux, ranging between -0.09 and -0.01 g C m-2 h-1, was also observed over another kelp bed from a pilot study of boat-based eddy covariance measurements.

  1. Evolution and fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea

    NASA Astrophysics Data System (ADS)

    Delfanti, R.; Özsoy, E.; Kaberi, H.; Schirone, A.; Salvi, S.; Conte, F.; Tsabaris, C.; Papucci, C.

    2014-07-01

    The vertical profiles of 137Cs were determined in the North Aegean, Marmara and Black Seas, to assess inventories and fluxes of the radionuclide in these basins. The inventory of 137Cs in the Western Black Sea integrated from the surface down to 400 m water depth is 3.4 ± 0.1 kBq m- 2, which is surprisingly close to the amount determined in 1988, decay corrected to 2007 (2.9 ± 0.1 kBq m- 2). On the other hand, based on the comparison of profiles roughly 20 years apart, it is estimated that about 1 kBq m- 2 has been transferred from above the halocline to depths below the halocline, emphasizing the effective redistribution of tracers within the same period. We estimate that about 12 TBq y- 1 of 137Cs presently leaves the Black Sea with the upper layer flow through the Bosphorus and only 2 TBq y- 1 is returned with the lower layer inflow of Mediterranean water from the Marmara Sea. Accounting for river fluxes, estimated on the order of 2 TBq y- 1 few years after the Chernobyl accident, and possibly decreased by now, we can thus estimate a net rate of loss of about 8-10 TBq y- 1. Investigating the effective redistribution in the upper water column, the supply by the inflowing Mediterranean water alone does not explain the increase of 137Cs concentration and inventory at intermediate depths in the Western Black Sea. The most important mechanism transferring 137Cs and dissolved contaminants from the surface water to the sub-pycnocline layer appears to be the turbulent entrainment of a larger quantity of Black Sea water into the inflowing plume of Mediterranean water through mixing processes on the southwestern shelf and continental slope following its exit from the Bosphorus. This process produces an extra export of some10 TBq y- 1 of 137Cs from the surface to the sub-pycnocline depths of the Black Sea, a quantity comparable in magnitude to the total export out from the basin. It is the entrainment flux resulting from the mixing, and the further advection and

  2. Impact of air-sea interaction on East Asian summer monsoon climate in WRF

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Jung; Hong, Song-You

    2010-10-01

    This study investigates the effects of air-sea interaction on the simulated East Asian summer monsoon (EASM) climate in a regional climate model. An ocean mixed layer model with a revised surface roughness length formulation that was originally designed for tropical cyclone simulation and a prognostic sea surface skin temperature scheme that considers the heat budget at the water surface are systematically evaluated on the monsoonal climate over East Asia for July 2006 in the regional Weather Research and Forecasting (WRF) model. Also, 9-year (2000-2008) June-August simulations are performed to evaluate the overall impacts of these three components on the simulated EASM climatology. The 1 month simulation for July 2006 reveals that the inclusion of the ocean mixed layer model cools the water surface due to enhanced mixing, in particular, when winds are strong. Such cooling is largely compensated by the inclusion of prognostic skin temperature since solar heating in daytime overwhelms the cooling in nighttime. The revised surface roughness length effectively reduces the surface heat flux by reducing the exchange coefficients, against the conventional Charnock formula. Consideration of the three components together results in the reduction of systemic biases of excessive precipitation and weakening of the North Pacific high in the summer climate from 2000 to 2008. It is concluded that the methodology designed in this study can be an efficient way to represent the air-sea interaction in regional atmospheric models for numerical weather prediction and climate simulation.

  3. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  4. Air-sea interaction during an extreme cold air outbreak from the eastern coast of the United States

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Betts, Alan K.

    1990-01-01

    An aircraft investigation of boundary layer mean and turbulent structure is reported, and the Lagrangian budgets of temperature and moisture in the subcloud layer following a streamline during an extreme cold air outbreak are evaluated. The maximum sea-air temperature difference was 23 K. Two aircraft were used: the NCAR Electra, which measured turbulent fluxes and investigated subcloud layer conditions, and the NASA Electra, which measured the height of cloud tops using lidar. A stratocumulus overcast was found from about 60 km offshore to the Gulf Stream core with cloud top rising downstream. East of the Gulf Stream cumulus congestus and snow showers were observed. Cloud base decreased downstream and numerous steam plumes filled the subcloud layer. Temperature cross sections show most warming, and moistening of the subcloud layer occurred before the Gulf Stream core. Windspeeds increased downstream and maxima were observed near cloud top (inversion) and in the subcloud layer. Lagrangian budgets showed most warming, and moistening of the layer between 70 m and about 100 m below mean cloud base was due to turbulent flux divergence.

  5. Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes

    NASA Astrophysics Data System (ADS)

    Krumpen, T.; Gerdes, R.; Haas, C.; Hendricks, S.; Herber, A.; Selyuzhenok, V.; Smedsrud, L.; Spreen, G.

    2016-03-01

    Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into the composition and properties of Arctic sea ice in general and how it varies over time. A data set of ground-based and airborne electromagnetic ice thickness measurements collected during summer between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The primary source of the surveyed sea ice leaving Fram Strait is the Laptev Sea and its age has decreased from 3 to 2 years between 1990 and 2012. The thickness data consistently also show a general thinning of sea ice for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease in sea ice thickness of 0.19 m degree-1 latitude south of 81° N. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. While satellite data show that monthly ice area export had positive trends since 1980 (10.9 × 103 km2 decade-1), the summer (July and August) ice area export is low with high uncertainties. The average volume export amounts to 16.78 km3. Naturally, the volume flux estimates are limited to the period when airborne thickness surveys are available. Nevertheless, we could show that the combination of satellite data and airborne observations can be used to determine volume fluxes through Fram Strait and as such, can be used to bridge the lack of satellite-based sea ice thickness information in summer.

  6. Air--Sea CO2 Cycling in the Southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Else, Brent Gordon Thomas

    During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air-sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO 2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze-up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break-up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind-driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO 2sw in Amundsen Gulf, we derived an annual budget of air-sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of airsea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes---including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates

  7. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  8. Including latent and sensible heat fluxes from sea spray in global weather and climate models

    NASA Astrophysics Data System (ADS)

    Copsey, Dan

    2016-04-01

    Most standard weather and climate models calculate interfacial latent (evaporation) and sensible heat fluxes over the ocean based on parameterisations of atmospheric turbulence, using the wave state only in the calculation of surface roughness length. They ignore latent and sensible heat fluxes generated by sea spray, which is an acceptable assumption at low wind speeds. However at high wind speeds (> 15 m/s) a significant amount of sea spray is generated from the sea surface which, while airborne, cools to an equilibrium temperature, absorbs heat and releases moisture before re-impacting the sea surface. This could impact, for example, the total heat loss from the Southern Ocean (which is anomalously warm in Met Office coupled models) or the accuracy of tropical cyclone forecasts. A modified version of the Fairall sea spray parameterisation scheme has been tested in the Met Office Unified Model including the JULES surface exchange model in both climate and NWP mode. The fast part of the scheme models the temperature change of the droplets to an equilibrium temperature and the slow part of the scheme models the evaporation and heat absorption while the droplets remain airborne. Including this scheme in the model cools and moistens the near surface layers of the atmosphere during high wind events, including tropical cyclones. Sea spray goes on to increase the convection intensity and precipitation near the high wind events in the model.

  9. Food webs and carbon flux in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Wassmann, Paul; Reigstad, Marit; Haug, Tore; Rudels, Bert; Carroll, Michael L.; Hop, Haakon; Gabrielsen, Geir Wing; Falk-Petersen, Stig; Denisenko, Stanislav G.; Arashkevich, Elena; Slagstad, Dag; Pavlova, Olga

    2006-10-01

    Within the framework of the physical forcing, we describe and quantify the key ecosystem components and basic food web structure of the Barents Sea. Emphasis is given to the energy flow through the ecosystem from an end-to-end perspective, i.e. from bacteria, through phytoplankton and zooplankton to fish, mammals and birds. Primary production in the Barents is on average 93 g C m -2 y -1, but interannually highly variable (±19%), responding to climate variability and change (e.g. variations in Atlantic Water inflow, the position of the ice edge and low-pressure pathways). The traditional focus upon large phytoplankton cells in polar regions seems less adequate in the Barents, as the cell carbon in the pelagic is most often dominated by small cells that are entangled in an efficient microbial loop that appears to be well coupled to the grazing food web. Primary production in the ice-covered waters of the Barents is clearly dominated by planktonic algae and the supply of ice biota by local production or advection is small. The pelagic-benthic coupling is strong, in particular in the marginal ice zone. In total 80% of the harvestable production is channelled through the deep-water communities and benthos. 19% of the harvestable production is grazed by the dominating copepods Calanus finmarchicus and C. glacialis in Atlantic or Arctic Water, respectively. These two species, in addition to capelin ( Mallotus villosus) and herring ( Clupea harengus), are the keystone organisms in the Barents that create the basis for the rich assemblage of higher trophic level organisms, facilitating one of the worlds largest fisheries (capelin, cod, shrimps, seals and whales). Less than 1% of the harvestable production is channelled through the most dominating higher trophic levels such as cod, harp seals, minke whales and sea birds. Atlantic cod, seals, whales, birds and man compete for harvestable energy with similar shares. Climate variability and change, differences in recruitment

  10. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  11. How storms modify baroclinic energy fluxes in a seasonally stratified shelf sea: inertial-tidal interaction

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Stephenson, Gordon, Jr.; Green, Mattias; Inall, Mark; Palmer, Matthew

    2015-04-01

    The oceans' rich internal wave field is an essential link in the energy cascade from large to small scale motions and is a major source of energy available for vertical mixing. In shallow shelf seas, vertical mixing across the thermocline maintains elevated summer time production, helping continental shelves to make a disproportionally large contribution to total ocean primary production relative to their surface area. Temperate shelf seas are therefore a significant CO2 sink and a critical link in the ocean-earth-atmosphere system. The two most energetic parts of the global internal wave spectrum are near-inertial waves with frequencies ω ˜f, and the lunar semi-diurnal frequency, M2. Using data from a mooring array, we demonstrate how wind generated near-inertial oscillations can modify baroclinic internal wave energy fluxes in the Celtic Sea, a seasonally stratified shelf. Linear fluxes of baroclinic energy are dominated by the semi-diurnal tide that outside of the complex generation zone drives a modest 28-48 W m-1 directly on-shelf. Given the complex 3-dimensional nature of the generation and propagation however spatial variability is high and net flux vectors may differ by 90° or more within an internal tidal wavelength. Horizontal energy fluxes driven independently by near-inertial motions are an order of magnitude weaker, but non-linear interaction between the vertical shear of inertial-oscillations and the vertical velocity associated with the M2 internal tide is a significant source of energy at the sum of their frequencies (M2+f). The phase relationship between M2 and f determines whether this non-linear interaction constructively enhances or destructively dampens the linear tidal component of the flux, a phasing that introduces a 2-2.3 day counter-clockwise beating to the energy transport. Relative to the M2 contribution, this beating and increase in flux magnitude explains an additional 10% of the variability of the full flux time series. Over

  12. Spatial and temporal variability of heat, water vapor, carbon dioxide, and momentum air-sea exchange in a coastal environment

    NASA Astrophysics Data System (ADS)

    Crawford, Timothy L.; McMillen, Robert T.; Meyers, Tilden P.; Hicks, Bruce B.

    1993-07-01

    Simultaneous eddy correlation measurements from a tower, a boat, and an aircraft platform are used to assess the spatial and temporal variability of heat, moisture, momentum, and CO2 turbulent fluxes in a coastal environment. Dissolved CO2 in the coastal waters and atmospheric CO2 concentrations were continuously measured throughout the experiment. Good agreement was found among the different sensing systems. Air-to-sea gas, momentum, and energy flux density measurements are shown to be achievable from both a boat and an aircraft. The observed 10 W/sq m sensible heat flux was time-invariant but did not vary spatially with surface temperature, which was strongly correlated with ocean depth. The 100 to 200 W/sq m evaporative moisture flux dominated energy exchange and varied both in time and space. No consistent diurnal variation was observed, but the spatial trend also followed surface temperature. CO2 exchange exhibited large spatial and temporal variance.

  13. Eutrophication in the northern Adriatic Sea: Benthic fluxes and nutrient budgets

    SciTech Connect

    Berelson, W.M.; Hammond, D.E. ); Giordani, P. )

    1990-01-09

    The northern Adriatic Sea has been plagued by problems of eutrophication. This area is relatively shallow (maximum depth = 60m), becoming stratified during the summer months which inhibits oxygen transport to bottom waters. Anthropogenic nutrient loading in rivers entering the northern Adriatic has increased nutrient input to this system and stimulated algai growth. Five stations in the western Adriatic (south of the Po River Delta) were occupied during September, 1988 and benthic flux chambers used to measure nutrient fluxes. These sites included 3 stations previously studied in 1982. Flux measurements of dissolved silica, nitrate, oxygen, ammonia, phosphate, CO[sub 2], alkalinity and radon were made during 24 hour incubations of flux chambers (area covered - 0.07 m[sup 2], volume = [approximately]81) that were continuously stirred and sampled periodically. Nutrient fluxes measured were generally consistent with the fluxes measured previously in June, 1982 except for radon fluxes which were 203 times greater in the earlier field season. There was a general trend in nutrient fluxes to decrease offshore, a pattern probably controlled by the sedimentation patterns because fine grained, organic matter-rich sediment are concentrated in a zone near shore. Average regional fluxes were (in mmol m[sup -2]d[sup -1], negative values indicate flux into sediment): Oxygen (-12), CO[sub 2] (19), Alkalinity (4), Silica (3.3), Ammonia (1.5), Phosphate (0.1) and Nitrate (0.3). The carbon/ammonia flux ratio is about twice the C/N ratio in marine phytoplankton, suggesting that large amounts of denitrification may be occuring in these sediments. Comparisons of benthic fluxes and sediment burial rates indicate that 50-90% of the carbon, silica, phosphorus and nitrogen arriving at the sediment-water interface is recycled before burial. The nutrient input to the water column from NW Adriatic sediments is about equal to the input from coastal rivers.

  14. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  15. Enhanced nutrient fluxes at the shelf sea seasonal thermocline caused by stratified flow over a bank

    NASA Astrophysics Data System (ADS)

    Tweddle, Jacqueline F.; Sharples, Jonathan; Palmer, Matthew R.; Davidson, Keith; McNeill, Sharon

    2013-10-01

    Patches of enhanced chlorophyll a (Chl) concentrations within the thermocline were observed over the slopes of several banks in the Celtic Sea. The turbulent mixing of nutrients from the bottom water into the thermocline was found to be greatly enhanced over the slope of a bank (up to 52 mmol nitrate m-2 day-1), compared to over nearby flat seafloor (˜2 mmol nitrate m-2 day-1). This increased nutrient supply, forced by locally generated lee waves and internal mixing, is greater than nitrate supplies to the productive tidal mixing fronts or to the shelf edge. We hypothesize this nutrient flux promotes an increase in phytoplankton growth in the thermocline over and downstream of shelf sea banks, contributing to the horizontal patchiness in the thermocline Chl signal. The persistence of the strong biological response to mixing at the bank, combined with the ubiquity of shelf sea banks, suggests these bathymetric features have wide importance for "new" primary production in shelf seas.

  16. Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea

    NASA Astrophysics Data System (ADS)

    Wei, Zexun; Fang, Guohong; Dwi Susanto, R.; Rameyo Adi, Tukul; Fan, Bin; Setiawan, Agus; Li, Shujiang; Wang, Yonggang; Gao, Xiumin

    2016-04-01

    The South China Sea (SCS) and the Java Sea (JS) are connected through the Karimata Strait, Gaspar Strait, and the southern Natuna Sea, where the tides are often used as open boundary condition for tidal simulation in the SCS or Indonesian seas. Tides, tidal currents, and tidal energy fluxes of the principle constituents K1, O1, Q1, M2, S2, and N2 at five stations in this area have been analyzed using in situ observational data. The results show that the diurnal tides are the dominant constituents in the entire study area. The constituent K1 has the largest amplitude, exceeding 50 cm, whereas the amplitudes of M2 are smaller than 5 cm at all stations. The amplitudes of S2 may exceed M2 in the Karimata and Gaspar straits. Tidal currents are mostly of rectilinear type in this area. The semi-major axes lengths of the diurnal tidal current ellipses are about 10 cm s-1, and those of the semidiurnal tidal currents are smaller than 5 cm s-1. The diurnal tidal energy flows from the SCS to the JS. The semidiurnal tidal energy flows from the SCS to the JS through the Karimata Strait and the eastern part of the southern Natuna Sea but flows in the opposite direction in the Gaspar Strait and the western part of the southern Natuna Sea. Harmonic analysis of sea level and current observation also suggest that the study area is located in the antinodal band of the diurnal tidal waves, and in the nodal band of the semidiurnal tidal waves. Comparisons show that the existing models are basically consistent with the observational results, but further improvements are necessary.

  17. Tidal elevation, current and energy flux in the area between the South China Sea and Java Sea

    NASA Astrophysics Data System (ADS)

    Wei, Z. X.; Fang, G. H.; Susanto, R. D.; Adi, T. R.; Fan, B.; Setiawan, A.; Li, S. J.; Wang, Y. G.; Gao, X. M.

    2015-11-01

    The South China Sea (SCS) and the Java Sea (JS) are connected through the Karimata Strait, Gaspar Strait, and the southern Natuna Sea, where the tides are often used as open boundary condition for tidal simulation in the SCS or Indonesian seas. Tides, tidal currents and tidal energy fluxes of the principle constituents K1, O1, Q1, M2, S2 and N2 at five stations in this area have been analyzed using in-situ observational data. The results show that the diurnal tides are the dominant constituents in the entire study area. The constituent K1 has the largest amplitude, exceeding 50 cm, whereas the amplitudes of M2 are smaller than 5 cm at all stations. The amplitudes of S2 may exceed M2 in Karimata and Gaspar Straits. Tidal currents are mostly of rectilinear type in this area. The major semi axis lengths of the diurnal tidal current ellipses are about 10 cm s-1, and those of the semi-diurnal tidal currents are smaller than 5 cm s-1. The diurnal tidal energy flows from the SCS to the JS. The semi-diurnal tidal energy flows from the SCS to the JS through the Karimata Strait and the eastern part of the southern Natuna Sea but flows in the opposite direction in the Gaspar Strait and the western part of the southern Natuna Sea. Harmonic analysis of sea level and current observation also suggest that the study area is located in the loop band of the diurnal tidal waves, and in the nodal band of the semi-diurnal tidal waves. Comparisons show that the existing models are basically consistent with the observational results, but further improvements are necessary.

  18. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed. PMID:26931659

  19. Seasonality of diffusive exchange of polychlorinated biphenyls and hexachlorobenzene across the air-sea interface of Kaohsiung Harbor, Taiwan.

    PubMed

    Fang, Meng-Der; Ko, Fung-Chi; Baker, Joel E; Lee, Chon-Lin

    2008-12-15

    Gaseous and dissolved concentrations of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) were measured in the ambient air and water of Kaohsiung Harbor lagoon, Taiwan, from December 2003 to January 2005. During the rainy season (April to September), gaseous PCB and HCB concentrations were low due to both scavenging by precipitation and dilution by prevailing southwesterly winds blown from the atmosphere of the South China Sea. In contrast, trace precipitation and prevailing northeasterly winds during the dry season (October to March) resulted in higher gaseous PCB and HCB concentrations. Instantaneous air-water exchange fluxes of PCB homologues and HCB were calculated from 22 pairs of air and water samples from Kaohsiung Harbor lagoon. All net fluxes of PCB homologues and HCB in this study are from water to air (net volatilization). The highest net volatile flux observed was +172 ng m(-)(2) day(-1) (dichlorobiphenyls) in December, 2003 due to the high wind speed and high dissolved concentration. The PCB homologues and HCB fluxes were significantly governed by dissolved concentrations in Kaohsiung Harbor lagoon. For low molecular weight PCBs (LMW PCBs), their fluxes were also significantly correlated with wind speed. The net PCB and HCB fluxes suggest that the annual sums of 69 PCBs and HCB measured in this study were mainly volatile (57.4 x 10(3) and 28.3 x 10(3) ng m(-2) yr(-1), respectively) and estimated yearly, 1.5 kg and 0.76 kg of PCBs and HCB were emitted from the harbor lagoon surface waters to the ambient atmosphere. The average tPCB flux in this study was about one-tenth of tPCB fluxes seen in New York Harbor and in the Delaware River, which are reported to be greatly impacted by PCBs. PMID:18977513

  20. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  1. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  2. Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea

    USGS Publications Warehouse

    Deuser, W.G.; Jickells, T.D.; Commeau, Judith A.

    1995-01-01

    Analyses of samples from a 14-year series of sediment-trap deployments in the deep Sargasso Sea reveal a significant trend in the ratio of the sinking fluxes of biogenic calcium carbonate and silica. Although there are pronounced seasonal cycles for both flux components, the overall opal/CaCO3 ratio changed by 50% from 1978 to 1991 (largely due to a decrease of opal flux), while total flux had no significant trend. These results suggest that plankton communities respond rapidly to subtle climate change, such as is evident in regional variations of wind speed, precipitation, wintertime ventilation and midwater temperatures. If the trends we observe in the makeup of sinking particulate matter occur on a large scale, they may in turn modify climate by modulating ocean-atmosphere CO2 exchange and albedo over the ocean.

  3. Carbon flux to the deep in three open sites of the Southern European Seas (SES)

    NASA Astrophysics Data System (ADS)

    Gogou, Alexandra; Sanchez-Vidal, Anna; Durrieu de Madron, Xavier; Stavrakakis, Spyros; Calafat, Antoni M.; Stabholz, Marion; Psarra, Stella; Canals, Miquel; Heussner, Serge; Stavrakaki, Ioanna; Papathanassiou, Evangelos

    2014-01-01

    In this study, we investigate the strength and efficiency of carbon sequestration in the Southern European Seas (SES), by analyzing the export of POC at three deep sites located in the Western Mediterranean Sea (WMED), the Eastern Mediterranean Sea (EMED) and the Black Sea (BS). We combine estimations of satellite and algorithm-generated primary production data, calculated POC fluxes out of the euphotic layer and POC fluxes measured by sediment traps at the mesopelagic and bathypelagic layers during a one year period, with an ultimate goal to obtain a better understanding of the functioning of the biological pump in the SES. Annual particulate primary production based on satellite estimations (SeaWiFS) at the three sites, averages 205, 145 and 225 gC m- 2 y- 1 at the WMED, EMED and BS, respectively. According to our findings, the fraction of primary production that is exported out of the euphotic zone in the SES ranges between 4.2% and 11.4%, while the fraction reaching the mesopelagic layer (1000-1400 m depth) ranges between 0.6% and 1.8%. Finally, the fraction of primary production exported at the bathypelagic layer (2000-2800 m depth) is found to be 0.6%, 0.3% and 1.4% in the WMED, EMED and BS, respectively. The role of various processes responsible for the replenishment of surface waters with nutrients, giving rise to productivity episodes and organic carbon export to depth at the three SES sites is considered.

  4. Bivariate conditional sampling of buoyancy flux during an intense cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1989-01-01

    The joint frequency distribution technique was used to analyze buoyancy fluxes in the marine atmospheric boundary layer (MABL) for the cloud street regime noted during the Genesis of Atlantic Lows Experiment. It is found that for the lower half of the MABL, the buoyancy flux is mainly generated by the rising thermals and the sinking compensating ambient air, and is mainly consumed by the entrainment and detrainment of thermals, penetrative convection, and the entrainment from the MABL top. If the buoyancy flux is primarily driven by the temperature flux, these buoyancy-flux generating processes should be the same for the lower boundary layers over land and ocean. The results of the scale analysis of the buoyancy flux agree well with those obtained for mesoscale cellular convection during the Air-Mass Transformation Experiment.

  5. Sea ice-atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, K.; Schweiger, A.; Maslanik, J.; Key, J.; Weaver, R.; Barry, R.

    1990-01-01

    The application of multi-spectral satellite data to estimate polar surface energy fluxes is addressed. To what accuracy and over which geographic areas large scale energy budgets can be estimated are investigated based upon a combination of available remote sensing and climatological data sets. The general approach was to: (1) formulate parameterization schemes for the appropriate sea ice energy budget terms based upon the remotely sensed and/or in-situ data sets; (2) conduct sensitivity analyses using as input both natural variability (observed data in regional case studies) and theoretical variability based upon energy flux model concepts; (3) assess the applicability of these parameterization schemes to both regional and basin wide energy balance estimates using remote sensing data sets; and (4) assemble multi-spectral, multi-sensor data sets for at least two regions of the Arctic Basin and possibly one region of the Antarctic. The type of data needed for a basin-wide assessment is described and the temporal coverage of these data sets are determined by data availability and need as defined by parameterization scheme. The titles of the subjects are as follows: (1) Heat flux calculations from SSM/I and LANDSAT data in the Bering Sea; (2) Energy flux estimation using passive microwave data; (3) Fetch and stability sensitivity estimates of turbulent heat flux; and (4) Surface temperature algorithm.

  6. Transpiration's inhibition of air pollution fluxes to substomatal cavities. [PRECP

    SciTech Connect

    Slinn, W.G.N.

    1987-05-01

    This report presents an estimate for the resistance to transport through stomatal openings, accounting for the counterflowing flux of water vapor associated with transpiration. The specific goal of this report is to estimate the influence of transpiration on the stomatal resistance, r/sub sto/; others have estimated the substomatal and mesophyll resistances r/sub ssc/ and r/sub mes/. It might be expected that any influence of the water-vapor flux on pollutant transport would be a maximum at the stomatal opening since, at the constricted area of the stoma, the water flux is a maximum. Transpiration through stomata appears to insigifnicantly inhibit the passage of relatively small molecules (e.g., SO/sub 2/, O/sub 3/, HNO/sub 3/, PAN, etc.) through the stomata, and therefore, by entering the substomatal cavity, such pollutants have greater potential for threatening plan survival, if their concentrations are excessive. 7 refs., 5 figs.

  7. The Aeroclipper: A new instrument for quasi-Lagrangian measurements at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Duvel, J. P.; Reverdin, G.; Pichon, T.; Vargas, A.

    The Aeroclipper is a new balloon developed by CNES. The Aeroclipper is a balloon equipped with a cable extended by a guide-rope in contact with the surface of the ocean. The balloon is vertically stabilised at a given height (currently 40 to 60m above the sea surface) and move on quasi-Lagrangian trajectories depending on the surface wind. LMD (Laboratoire de Méteorologie Dynamique), LodyC (Laboratoire d'océanographie physique et de Climatologie) and ENSTA (Ecole Nationale Supérieure de Techniques Avancées) developed an instrumentation adapted to this new measurement system. This instrumentation is distributed on one atmospheric gondola and one oceanic gondola. The aim is to measure surface physical parameters (Air and sea surface temperatures, sea surface salinity, wind, pressure and humidity) and to derive turbulent fluxes of moisture, heat and momentum. The Aeroclippers will give legs of the different parameters at a relatively high spatial resolution and thus information on the perturbation of these parameters at mesoscale. A first test of the full system will be performed from Banyuls (France) during spring 2004. The first scientific use of the Aeroclipper is planned in February 2005 in the Indian Ocean South of the Equator in link with the pilot phase of the Vasco (Variability of the Atmosphere at the intra-Seasonal time scale and Coupling with the Ocean) experiment.

  8. Infrared propagation in the air-sea boundary layer

    NASA Astrophysics Data System (ADS)

    Larsen, R.; Preedy, K. A.; Drake, G.

    1990-03-01

    Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.

  9. A new implementation of the Biogeochemical Flux Model in sea ice

    NASA Astrophysics Data System (ADS)

    Tedesco, L.; Vichi, M.

    2009-04-01

    The Biogeochemical Flux Model (BFM) is a direct descendent of the European Regional Seas Ecosystem Model (ERSEM) and it has been widely used and validated among the scientific community. The BFM view of the of the marine ecosystem is based upon the recognition that the major ecological functions of producers, decomposers and consumers and their specific trophic interactions can be expressed in terms of material flows of basic elements. The concentration and characteristics of organic and inorganic compounds are thus seen under a stoichiometrical perspective. This functional approach brings to the definition of Chemical Functional Families (CFF) and Living Functional Groups (LFG). The BFM is thus a set of biogeochemical equations describing the cycling of carbon, the macro-nutrients and oxygen through the lower trophic levels of marine ecosystems. A Sea-Ice system has now been implemented in the BFM and the new BFM-SI consists of three new LFG (sea ice algae, heterotrophic zooplankton, bacterioplankton), one new non-living organic functional group (sea ice DOM and POM) and two new inorganic functional groups: dissolved gases (sea ice CO2 and O2) and four nutrients (sea ice PO4, NH3, NO3 and SiO4). The innovative approach consists in simulating the biogeochemistry of the sea ice Biologically-Active-Layer (BAL), where the majority of the biomass (bottom communities) concentrates. The BFM-SI requires the physical properties of the BAL in order to be able to simulate the physiological and ecological response of the biological community to the physical environment. This is currently done by using an Enhanced 1-D thermo-halodynamic Sea Ice Model (ESIM2), developed to be suitable for biogeochemical studies. Since the biogeochemistry of sea ice is largely unknown, the BFM-SI is a useful tool that allow us to test hypotheses on the functioning of the sea ice ecosystem. By initially setting the sea ice community as having the same characteristics than the pelagic community

  10. Aircraft Measurements of Heat Fluxes Over Wind-Driven Coastal Polynyas in the Bering Sea

    NASA Technical Reports Server (NTRS)

    Walter, Bernard; Cavalieri, Donald J.; Thornhill, K. Lee; Gasiewski, Albin J.

    2006-01-01

    The first estimates of the average bulk heat transfer coefficient for Arctic sea ice are presented as a function of mean ice thickness. Turbulent heat flux measurements made by the NASA P-3 over the St. Lawrence Island polynya (SLIP) and Kuskokwim Bay in the Bering Sea during AMSR-Ice03 were used to estimate the values of the heat transfer coefficient CH. Estimates of ice thickness were made from the algorithm of Perovich et al. using broadband albedos obtained from Moderate Resolution Imaging Spectroradiometer data. Plots of CH as a function of ice thickness showed a nearly linear relationship for ice thicknesses in the range of 0-14 cm in the polynyas. Previous estimates of CH for different cases over the SLIP were 1.2 x 10(exp -3), but no estimates of ice thickness were available. These results will allow more accurate estimates of heat fluxes from the thin-ice areas of polynyas using satellite retrievals.

  11. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  12. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  13. Interactive Momentum Flux Forcing over Sea Ice in a Global Ocean GCM

    NASA Astrophysics Data System (ADS)

    Cheon, W.; Stoessel, A.; Vihma, T.

    2006-12-01

    The sensitivity of Southern Ocean sea ice to the strength of the atmospheric momentum forcing is investigated in the framework of a global ocean general circulation model. In contrast to the usual approach of having the momentum flux just depend on the wind speed and a constant drag coefficient (our reference case), the newly introduced momentum flux driving sea ice considers the local stratification over ice in one case, and the flux- aggregated stratification using the blending height concept in the other case. Both cases thus consider atmospheric surface layer (ASL) physics, while only the latter case accounts for the subgrid-scale heterogeneity of the sea-ice pack. I.e., sea-ice feedback is in the former case only provided by the simulated ice thickness, while in the latter case it is also influenced by the ice concentration. Neglecting surface heterogeneity leads to most wintertime sea-ice areas being statically and dynamically stable. In these areas, the momentum flux is thus suppressed, the ice velocity reduced, and the ice thickness increased relative to the reference case. Accounting for surface heterogeneity turns vast regions dynamically unstable, thus enhancing the momentum flux relative to the local ASL case. There is a positive feedback with initially thin ice becoming thinner due to the shear-driven turbulence increasing the momentum flux. The initial pattern of thinner ice is preconditioned by the ocean, in particular where warm Circumpolar Deep Water penetrates to the south. The ASL over the coastal polynyas is in general statically or dynamically unstable. The associated enhanced freezing rates tend to close the polynyas competing with enhanced offshore winds that try to keep them open. In either ASL case, the Antarctic Bottom Water formation rate is stronger than in the reference case, with the local ASL case delivering the largest formation rates. Accounting for surface heterogeneities in the coastal polynya regions tends to weaken the

  14. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas

    NASA Astrophysics Data System (ADS)

    Laruelle, Goulven G.; Lauerwald, Ronny; Pfeil, Benjamin; Regnier, Pierre

    2014-11-01

    Over the past decade, estimates of the atmospheric CO2 uptake by continental shelf seas were constrained within the 0.18-0.45 Pg C yr-1 range. However, most of those estimates are based on extrapolations from limited data sets of local flux measurements (n < 100). Here we propose to derive the CO2 air-sea exchange of the shelf seas by extracting 3 · 106 direct surface ocean CO2 measurements from the global database SOCAT (Surface Ocean CO2 Atlas), atmospheric CO2 values from GlobalVIEW and calculating gas transfer rates using readily available global temperature, salinity, and wind speed fields. We then aggregate our results using a global segmentation of the shelf in 45 units and 152 subunits to establish a consistent regionalized CO2 exchange budget at the global scale. Within each unit, the data density determines the spatial and temporal resolutions at which the air-sea CO2 fluxes are calculated and range from a 0.5° resolution in the best surveyed regions to a whole unit resolution in areas where data coverage is limited. Our approach also accounts, for the first time, for the partial sea ice cover of polar shelves. Our new regionalized global CO2 sink estimate of 0.19 ± 0.05 Pg C yr-1 falls in the low end of previous estimates. Reported to an ice-free surface area of 22 · 106 km2, this value yields a flux density of 0.7 mol C m-2 yr-1, ~40% more intense than that of the open ocean. Our results also highlight the significant contribution of Arctic shelves to this global CO2 uptake (0.07 Pg C yr-1).

  15. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  16. Recent summer sea ice thickness surveys in the Fram Strait and associated volume fluxes

    NASA Astrophysics Data System (ADS)

    Krumpen, T.; Gerdes, R.; Haas, C.; Hendricks, S.; Herber, A.; Selyuzhenok, V.; Smedsrud, L.; Spreen, G.

    2015-09-01

    Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into composition and properties of Arctic sea ice in general and how it varies over time. An extensive data set of ground-based and airborne electromagnetic ice thickness measurements collected between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The source area for the surveyed ice is primarily the Laptev Sea, and the estimated age is consistent with a decreased from 3 to 2 years between 1990 and 2012. The data consistently also show a general thinning for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease of 0.19 m degree-1 latitude south of 81° N probably driven by bottom melting from warm water of Atlantic origin. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. This shows that it is possible to determine volume fluxes through Fram Strait during summer when satellite based sea ice thickness information is missing. While the ice area export based on satellite remote sensing shows positive trends since 2001, the mean fluxes during summer (July and August) are small (18 km3), and long-term trends are uncertain due to the limited surveys available.

  17. Explorative and innovative dynamic flux bag method development and testing for mercury air-vegetation gas exchange fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Hong H.; Poissant, Laurier; Xu, Xiaohong; Pilote, Martin

    An intensive field study quantifying total gaseous mercury (TGM) and mercury speciation fluxes in a wetland ecosystem (Bay St. François wetlands, Québec, Canada) was conducted in summer 2003. This study is one of the first attempts to design and develop an innovative approach—dynamic flux bag (DFB) technique to measure in situ mercury air-vegetation exchange with a monoculture of river bulrush (S cirpus fluviatilis). Air-vegetation flux measurements were conducted under dry condition at site 1 and flood condition at site 2. TGM fluxes fluctuated from -0.91 to 0.64 ng/m 2 (leaf area)/h with an average value of -0.26±0.28 ng/m 2 (leaf area)/h at site 1 and ranged from -0.98 to 0.08 ng/m 2 (leaf area)/h with a mean flux of -0.33±0.24 ng/m 2 (leaf area)/h at site 2 (positive sign means volatilization, and negative sign indicates deposition). The data indicated that TGM air-vegetation exchange is bidirectional. However, the net flux is primarily featured by dry deposition of TGM from atmosphere to the vegetation. In mercury speciation study using the DFB approach, particulate mercury (PM) and reactive gaseous mercury (RGM) represented less than 1% of total mercury. Ambient ozone concentrations had significant influences on RGM concentrations ( r=0.54, p<0.05), implicating oxidation of gaseous elemental mercury (GEM) by ozone to form RGM. A discussion about the similarities and discrepancies between the DFB and other approaches (dynamic flux chamber and modified Bowen ratio) is presented. During the course of this study, some operational effects associated with the bag design, mainly the emergence of condensation within the bag, were encountered. Several improvements relating to the DFB design were recommended. Upon improvement, the DFB method could be one of the most promising techniques to study the role of a single plant in air-vegetation exchange of mercury.

  18. The SOLAS air-sea gas exchange experiment (SAGE) 2004

    NASA Astrophysics Data System (ADS)

    Harvey, Mike J.; Law, Cliff S.; Smith, Murray J.; Hall, Julie A.; Abraham, Edward R.; Stevens, Craig L.; Hadfield, Mark G.; Ho, David T.; Ward, Brian; Archer, Stephen D.; Cainey, Jill M.; Currie, Kim I.; Devries, Dawn; Ellwood, Michael J.; Hill, Peter; Jones, Graham B.; Katz, Dave; Kuparinen, Jorma; Macaskill, Burns; Main, William; Marriner, Andrew; McGregor, John; McNeil, Craig; Minnett, Peter J.; Nodder, Scott D.; Peloquin, Jill; Pickmere, Stuart; Pinkerton, Matthew H.; Safi, Karl A.; Thompson, Rona; Walkington, Matthew; Wright, Simon W.; Ziolkowski, Lori A.

    2011-03-01

    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX's), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO 2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF 6/ 3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence ( Fv/ Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX's, rates of net primary production and column-integrated chlorophyll a concentrations had

  19. Temporal variability of vertical export flux at the DYFAMED time-series station (Northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Heimbürger, Lars-Eric; Lavigne, Héloïse; Migon, Christophe; D'Ortenzio, Fabrizio; Estournel, Claude; Coppola, Laurent; Miquel, Juan-Carlos

    2013-12-01

    The temporal evolution of the vertical export flux at the DYFAMED time-series station (Ligurian Sea) over the last 20 years reveals a strong interannual variability. Winter convection allows particulate (and dissolved) matter to be vertically exported (“flush-down” effect). The efficiency of this process determines also the concentration of nutrients brought to surface waters and, therefore, the intensity of the subsequent phytoplankton bloom. The sequence “convection-bloom” is the main driving force of vertical export flux in this region. The present work attempts to better identify the parameters that control vertical export flux dynamics by observing a 20 year time-series in relation with the temporal variability of mixed layer depth and surface primary production. The consequences of a more stratified water column in the future on biological productivity and vertical export flux are pointed out. In winter, the cooling of surface water, combined with evaporation, increases its density and determines the vertical convection. This allows for a rapid downward transfer of dissolved and particulate matter, yielding high vertical export flux. This “flush-down effect” results from a combination of convection and gravitational flux, since the diving of dense surface waters breaks the stratification of the water column and carries all material (particulate + dissolved) accumulated in the surface layer to depth. The rapid downward transfer of dissolved and particulate matter by this “flush-down effect” yields high vertical export fluxes. The magnitude of these fluxes may vary according to the amount of atmospheric material accumulated in surface waters during the preceding stratified period. In the present data set, highest vertical export fluxes were observed in 1999, 2003 and 2004. In those years, the MLD was greater (Fig. 2), suggesting a causal relationship between the efficiency of vertical mixing and the subsequent vertical export flux. In spring

  20. Satellite observations of air-sea interaction over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Xie, S.; Nonaka, M.; Hafner, J.; Liu, W. T.

    2002-12-01

    Satellite microwave measurements are analyzed, revealing robust co-variability in sea surface temperature (SST) and wind speed over the Kuroshio and its Extension (KE). Ocean hydrodynamic instabilities cause the KE to meander and result into large SST variations. Increased (reduced) wind speeds are found to be associated with warm (cold) SST anomalies. This positive SST-wind correlation in KE is confirmed by in-situ buoy measurements and is consistent with a vertical shear adjustment mechanism. Namely, an increase in SST reduces the static stability of the near-surface atmosphere, intensifying the vertical turbulence mixing and bringing fast-moving air from aloft to the sea surface. South of Japan, the Kuroshio is known to vary between nearshore and offshore paths. Both paths seem semi-permanent and can persist months to years. As the Kuroshio shifts its path, coherent wind changes are detected. In particular, winds are high south of Tokyo when the Kuroshio takes the nearshore path while they are greatly reduced when this warm current leaves the coast in the offshore path. Further upstream in the East China Sea, on the warmer flank of the Kuroshio Front, there are a zone of high wind speed and a band of raining cloud due to the region's unstable atmospheric stratification near the surface. Surface wind convergence is roughly collocated with the Kuroshio Current. By increasing the baroclinicity and condensational heating, the Kuroshio Front aids the growth of the so-called Taiwan cyclone, an important winter weather phenomenon for Japan. The positive SST-wind correlation over the strong Kuroshio Current and its extension is opposite to the negative one often observed in regions of weak currents such as south of the Aleutian low that is considered to be indicative of atmosphere-to-ocean forcing.

  1. Air-sea coupling in the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Souza, J. M.; Powell, B.; Mattheus, D.

    2014-12-01

    A coupled numerical model is used to investigate the ocean-atmosphere interaction in the lee of the Hawaiian archipelago. The wind curl generated by the island blocking of the trade winds is known to give rise to ocean eddies; however, the impact of the sea surface temperature (SST) and velocity fronts associated with these eddies on the atmosphere is less understood. The main coupling mechanisms are: (i) changes in the near-surface stability and surface stress, (ii) vertical transfer of momentum from higher atmospheric levels to the ocean surface due to an increase of the turbulence in the boundary layer, (iii) secondary circulations associated with perturbations in the surface atmospheric pressure over the SST fronts, and (iv) the impact of the oceanic eddy currents on the net momentum transferred between the atmosphere and the ocean. To assess the relative contribution from each process, a coupled simulation between the Regional Ocean Modeling System (ROMS) and the Weather Research and Forecasting (WRF) models is conducted for the main Hawaiian Islands. The impact of the coupling, the perturbation of the mean wind pattern, and the different spatial scales involved in the air-sea exchanges of momentum and heat are explored.

  2. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  3. Air emission flux from contaminated dredged materials stored in a pilot-scale confined disposal facility.

    PubMed

    Ravikrishna, R; Valsaraj, K T; Reible, D D; Thibodeaux, L J; Price, C B; Brannon, J M; Meyers, T E; Yost, S

    2001-03-01

    A pilot-scale field simulation was conducted to estimate the air emissions from contaminated dredged material stored in a confined disposal facility (CDF). Contaminated dredged material with a variety of organic chemicals, obtained from Indiana Harbor Canal, was used in the study. It was placed in an outdoor CDF simulator (i.e., a lysimeter of dimensions 4 ft x 4 ft x 2 ft). A portable, dynamic flux chamber was used to periodically measure emissions of various polynuclear aromatic hydrocarbons (PAHs). A weather station was set up to monitor and record the meteorological conditions during the experiment. The fluxes of several PAHs were monitored over time for 6 1/2 months. Initial 6-hr average fluxes varied from 2 to 20 ng/cm2/hr for six different PAHs. The flux values declined rapidly for all compounds soon after placement of the dredged material in the CDE Chemical concentrations derived from flux values were generally of low magnitude compared with ambient standards. Data obtained from the experiment were compared against those predicted using models for air emissions. Model simulations showed that initially the flux was largely from exposed pore water from saturated (wet) sediment, whereas the long-term flux was controlled by diffusion through the pore air of the unsaturated sediment. Model predictions generally overestimated the measured emissions. A rainfall event was simulated, and the dredged material was reworked to simulate that typical of a CDF operation. Increased flux was observed upon reworking the dredged material. PMID:11266100

  4. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  5. The NEMO-AROME WMED high-resolution air-sea coupled system: impact on dense water formation

    NASA Astrophysics Data System (ADS)

    Léger, Fabien; Lebeaupin Brossier, Cindy; Giordani, Hervé; Arsouze, Thomas; Beuvier, Jonathan; Bouin, Marie-Noëlle; Ducrocq, Véronique; Fourrié, Nadia

    2016-04-01

    The North-Western Mediterranean Sea is a key location where intense air-sea exchanges occur, especially during winter when the succession of strong northerly and north-westerly wind boosts the dense water formation. The second Special Observation Period (SOP2) of the HyMeX program, which took place between 1st February and 15th March 2013, was dedicated to the observation of the dense water formation and ocean deep convection processes. During this period, several platforms sampled the area, providing a unique dataset to better identify the coupled processes leading to dense water formation. This study investigates the impacts of the fine scale ocean-atmosphere coupled processes on dense water formation during winter 2012-2013. We developed the coupling between the NEMO-WMED36 ocean model (1/36° resolution) and the AROME-WMED numerical weather prediction model (2.5 km resolution) and ran the high-resolution air-sea coupled system over SOP2. The coupled simulation is compared to an ocean-only simulation forced by AROME-WMED operational forecasts and to air-sea observations collected during the HyMeX SOP2. The results show small differences in term of surface fluxes. Dense water formation is slightly changed in the coupled simulation, whereas fine-scale ocean processes are significantly modified.

  6. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J.

    2016-07-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m‑2 d‑1 (on average ~321 μmol m‑2 d‑1) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 106 mol y‑1), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters.

  7. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea

    PubMed Central

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J.

    2016-01-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m−2 d−1 (on average ~321 μmol m−2 d−1) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 106 mol y−1), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters. PMID:27432631

  8. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea.

    PubMed

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J

    2016-01-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m(-2 )d(-1) (on average ~321 μmol m(-2 )d(-1)) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 10(6 )mol y(-1)), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters. PMID:27432631

  9. Vertical fluxes of aromatic and aliphatic hydrocarbons in the Northwestern Mediterranean Sea.

    PubMed

    Deyme, Rémi; Bouloubassi, Ioanna; Taphanel-Valt, Marie-Hélène; Miquel, Juan-Carlos; Lorre, Anne; Marty, Jean-Claude; Méjanelle, Laurence

    2011-12-01

    Aliphatic and aromatic hydrocarbon fluxes were measured in time series sediment trap samples at 200 m and at 1000 m depths in the open Northwestern Mediterranean Sea, from December 2000 to July 2002. Averaged fluxes of n-alkanes, UCM and T-PAH(35) were 2.96 ± 2.60 μg m(-2) d(-1), 64 ± 60 μg m(-2) d(-1) and 0.68 ± 0.59 μg m(-2) d(-1), respectively. Molecular compositions of both hydrocarbon classes showed a contamination in petrogenic hydrocarbons well above the background levels of such an open site, whereas pyrolytic hydrocarbons stand in the range of other open Mediterranean locations. Fluxes displayed ample interannual and seasonal variabilities, mainly related to mass flux variation while concentration evolutions trigger secondary changes in pollutant fluxes. High lithogenic flux events exported particles with a larger pollutant load than biogenic particles formed during the spring bloom and during the summer. Sinking hydrocarbons were efficiently transported from 200 m to 1000 m. PMID:21862192

  10. Natural flux of greenhouse methane from the Timor Sea to the atmosphere

    NASA Astrophysics Data System (ADS)

    Brunskill, G. J.; Burns, K. A.; Zagorskis, I.

    2011-06-01

    Methane gas bubbles from the Cornea Seep were sampled at the sea surface in the Timor Sea continental shelf area in June 2005. Total bubble gas flux was 0.076 to 0.76 L m-2 h-1 during the 6 h d-1 periods of low neap tides in June 2005. This bubble gas contained an average of 26 mmol CH4 L-1 and about 0.16 and 0.006 mmol L-1 of ethane and propane. We estimate the daily flux from the sea surface to the atmosphere to be 0.012 to 0.12 mol CH4 m-2 d-1 or 0.13 to 1.3 t CH4 d-1 from an area of about 0.7 km2. This methane flux came from a 500 × 1400 m carbonate pavement dome on the seafloor at 84 m water depth. The seep hard ground was swath mapped, and 3.5 kHz subbottom profile data indicate that the seep dome was strongly reflective with poor penetration into the subsurface, consistent with the presence of a carbonate hard ground. Carbon and deuterium isotope ratios (δ13C = -41 to -42‰, δD = -157 to -158‰) of the seep bubble gas indicate that this methane had a thermogenic origin and was in the same isotopic range as gas within the Late Cretaceous Cornea oil and gas field. We could not detect inputs of fluids containing nutrients or short-lived radium isotopes at this site, commonly associated with other cold seeps. Tens to a hundred of kilometers seaward from the Cornea seep site, water column dissolved methane concentrations in this sector of the Timor Sea shelf and slope were 100-500 times supersaturated with respect to the atmosphere, and thus the water column is expected to be degassing additional methane to the atmosphere. Perhaps there are thousands of other methane seeps (of similar magnitude to the Cornea Seep) on this shelf and slope to account for all the excess dissolved methane (˜86,000 t) measured in the water column. These measured and calculated fluxes provide evidence for the hypothesis that shallow sea seeps may be a significant source of atmospheric methane, in contrast to deep sea vents, where most of the methane is dissolved and oxidized in

  11. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Roullier, F.; Berline, L.; Guidi, L.; Durrieu De Madron, X.; Picheral, M.; Sciandra, A.; Pesant, S.; Stemmann, L.

    2014-08-01

    The goal of the Arabian Sea section of the TARA oceans expedition was to study large particulate matter (LPM > 100 μm) distributions and possible impact of associated midwater biological processes on vertical carbon export through the oxygen minimum zone (OMZ) of this region. We propose that observed spatial patterns in LPM distribution resulted from the timing and location of surface phytoplankton bloom, lateral transport, microbial processes in the core of the OMZ, and enhanced biological processes mediated by bacteria and zooplankton at the lower oxycline. Indeed, satellite-derived net primary production maps showed that the northern stations of the transect were under the influence of a previous major bloom event while the most southern stations were in a more oligotrophic situation. Lagrangian simulations of particle transport showed that deep particles of the northern stations could originate from the surface bloom while the southern stations could be considered as driven by 1-D vertical processes. In the first 200 m of the OMZ core, minima in nitrate concentrations and the intermediate nepheloid layer (INL) coincided with high concentrations of 100 μm < LPM < 200 μm. These particles could correspond to colonies of bacteria or detritus produced by anaerobic microbial activity. However, the calculated carbon flux through this layer was not affected. Vertical profiles of carbon flux indicate low flux attenuation in the OMZ, with a Martin model b exponent value of 0.22. At three stations, the lower oxycline was associated to a deep nepheloid layer, an increase of calculated carbon flux and an increase in mesozooplankton abundance. Enhanced bacterial activity and zooplankton feeding in the deep OMZ is proposed as a mechanism for the observed deep particle aggregation. Estimated lower flux attenuation in the upper OMZ and re-aggregation at the lower oxycline suggest that OMZ may be regions of enhanced carbon flux to the deep sea relative to non OMZ regions.

  12. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  13. Occurrence and air/sea-exchange of novel organic pollutants in the marine environment

    NASA Astrophysics Data System (ADS)

    Ebinghaus, R.; Xie, Z.

    2006-12-01

    A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface sea water and atmosphere of the North Sea. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North Sea is an important input pathway. The net fluxes indicate that the air sea exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.

  14. Particle flux, and composition of sedimenting matter, in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Bauerfeind, E.; Bodungen, B. V.; Arndt, K.; Koeve, W.

    1994-12-01

    Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m -2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May-June, and consistently high total flux rates of around 100 mg m -2d -1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May-June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May-June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.

  15. GRACE Mass Flux Measurements of Inland and Marginal Seas from Mascons: Analysis and Validation

    NASA Astrophysics Data System (ADS)

    Loomis, B.; Luthcke, S. B.; Sabaka, T. J.

    2015-12-01

    The latest GRACE time-variable gravity mascon solution from the NASA Goddard Space Flight Center (GSFC) applies an optimized set of models and constraints towards the direct measurement of 1-arc-degree global mass flux parameters each month. Separate mascon spatial constraint regions have been defined for the largest inland and marginal seas: Mediterranean Sea, Black Sea, Caspian Sea, Red Sea, and Hudson Bay. The mascon estimation approach, when applied with well-designed constraints, minimizes signal leakage across regional boundaries and eliminates the need for post-processing strategies. These post-processing techniques (e.g. smoothed averaging kernels) are necessary for computing regional mass change from the unconstrained spherical harmonics provided by the GRACE project to reduce the effect of noisy high degree and order terms, but introduce signal leakage into and out of the considered region. These mass signals are also difficult to obtain from altimetry measurements due to the comparatively sparse temperature and salinity data in these regions, which is needed to compute and remove the steric component of sea level variations. We provide new GSFC mascon measurements of these inland and marginal seas and compare to results obtained from kernel-averaged spherical harmonic solutions and steric-corrected altimetry measurements. The relative accuracy of the various solutions is determined by incorporating their output into the set of forward models applied in our processing of the GRACE Level-1B data and analyzing the effect on the inter-satellite range-rate residuals, where a reduction in residuals is a direct validation of improved solution quality.

  16. Storms modify baroclinic energy fluxes in a seasonally stratified shelf sea: Inertial-tidal interaction

    NASA Astrophysics Data System (ADS)

    Hopkins, Joanne E.; Stephenson, Gordon R.; Green, J. A. M.; Inall, Mark E.; Palmer, Matthew R.

    2014-10-01

    Observations made near the Celtic Sea shelf edge are used to investigate the interaction between wind-generated near-inertial oscillations and the semidiurnal internal tide. Linear, baroclinic energy fluxes within the near-inertial (f) and semidiurnal (M2) wave bands are calculated from measurements of velocity and density structure at two moorings located 40 km from the internal tidal generation zone. Over the 2 week deployment period, the semidiurnal tide drove 28-48 W m-1 of energy directly on-shelf. Little spring-neap variability could be detected. Horizontal near-inertial energy fluxes were an order of magnitude weaker, but nonlinear interaction between the vertical shear of inertial oscillations and the vertical velocity associated with the semidiurnal internal tide led to a 25-43% increase in positive on-shelf energy flux. The phase relationship between f and M2 determines whether this nonlinear interaction enhances or dampens the linear tidal component of the flux, and introduces a 2 day counter-clockwise beating to the energy transport. Two very clear contrasting regimes of (a) tidally and (b) inertially driven shear and energy flux are captured in the observations.

  17. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Technical report

    SciTech Connect

    Bacon, M.P.; Fleer, A.P.; Deuser, W.G.

    1985-01-01

    A record of radionuclide fluxes at a deep-ocean station near Bermuda (32/sup 0/ 05 min N, 64/sup 0/ 15 min W) was obtained from analysis of a 3-year collection of sediment-trap samples. The trap was placed at a depth of 3200 m, 1000 m above the sea floor, and the samples were recovered at 2-month intervals. Concentrations of U-238, -234, Th-232, -230, -228, Pa-231, Pb-210, Po-210, and Pu-239 and -240 were measured in the trapped material. Most of the radionuclide activity was found in the <37-micron sieved fraction. All radionuclide fluxes showed seasonal variations in phase with the variations in total sediment flux, which had been previously shown to be closely tied to the annual cycle of primary production in the overlying surface water. Seasonal variations are especially noteworthy for Th-230 and Pa-231, considering that most of their production occurs in the water column below the euphotic zone. Evidently the seasonal influence is transmitted downward by the varying particle flux so that radionuclide scavenging rates at depth, as well as at the surface, are affected. It is suggested that this could be brought about by seasonal variations in the flux of marine snow or in the rate of fecal-matter production in the deep-water column. Keywords: Pelagic sedimentation.

  18. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka

    NASA Astrophysics Data System (ADS)

    Pourmand, Ali; Marcantonio, Franco; Schulz, Hartmut

    2004-04-01

    High-resolution (one to two samples/ka) radionuclide proxy records from core 93KL in the northeastern Arabian Sea provide evidence for millennial climate variability over the past 110 ka. We interpret 230Th-normalized 232Th fluxes as a proxy for eolian input, and authigenic uranium concentrations as a proxy for past productivity. We attribute orbital and suborbital variations in both proxies to changes in the intensity of the southwest Indian Ocean monsoon. The highest 230Th-normalized 232Th fluxes occur at times that are consistent with the timing of the Younger Dryas, Heinrich events 1-7 and cold Dansgaard-Oeschger stadial events recorded in the GISP2 ice core. Such high dust fluxes may be due to a weakened southwest monsoon in conjunction with strengthened northwesterlies from the Arabian Peninsula and Mesopotamia. Authigenic uranium concentrations, on the other hand, are highest during warm Dansgaard-Oeschger interstadials when the southwest monsoon is intensified relative to the northwesterly winds. Our results also indicate that on orbital timescales maximum average eolian fluxes coincide with the timing of marine isotopic stage (MIS) 2 and 4, while minimum fluxes occur during MIS 1, 3 and 5. Although the forcing mechanism(s) controlling suborbital variabilities in monsoonal intensity is still debated, our findings suggest an atmospheric teleconnection between the low-latitude southwest monsoon and North Atlantic climate.

  19. Particles size distribution and carbon flux across the Arabian Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Roullier, F.; Berline, L.; Guidi, L.; Sciandra, A.; Durrieu De Madron, X.; Picheral, M.; Pesant, S.; Stemmann, L.

    2013-12-01

    The goal of the Arabian Sea section of the TARA oceans expedition was to study Large Particulate Matter (LPM > 100 μm) distributions and possible impact of associated midwater biological processes on vertical carbon export through the Oxygen Minimum Zone (OMZ) of this region. We found that spatial patterns in LPM distribution resulted from the timing and location of surface phytoplankton bloom, lateral transport, microbial processes in the core of the OMZ, and zooplankton activity at the lower oxycline. Indeed, satellite-derived net primary production maps showed that the northern stations of the transect were under the influence of a previous major bloom event while, the most southern stations were in a more oligotrophic situation. Lagrangian simulations of particle transport showed that deep particles of the northern stations could originate from the surface bloom while the southern stations could be considered as driven by 1-D vertical processes. In the first 200 m of the OMZ core, minima in nitrate concentrations and the Intermediate Nepheloid Layer (INL) coincided with high concentrations of 100 μm < LPM < 200 μm. These particles could correspond to colonies of bacteria or detritus produced by anaerobic microbial activity. However, the calculated carbon flux through this layer was not affected. Vertical profiles of carbon flux indicate low flux attenuation in the OMZ, with a Martin model b exponent value of 0.22. At the lower oxycline, a deep nepheloid layer was associated to an increase of carbon flux and an increase in mesozooplankton abundance. Zooplankton feeding on un-mineralized sinking particles in the OMZ is proposed as a mechanism for the observed deep particle aggregation. These results suggest that OMZ may be regions of enhanced carbon flux to the deep sea relative to non-OMZ regions.

  20. Episodic particle flux in the deep Sargasso Sea: an organic geochemical assessment

    NASA Astrophysics Data System (ADS)

    Conte, Maureen H.; Weber, J. C.; Ralph, Nathan

    1998-11-01

    Since 1978, the Oceanic Flux Program (OFP) time-series sediment trap study has continuously measured particle fluxes in the deep Sargasso Sea (31°50'N, 64°10'W). One feature of this 19+ year record has been the episodic occurrence of large, short-lived flux maxima that are not associated with the annual spring bloom. These maxima generally occur during the Dec.-Jan. period, but not necessarily every year. They have also occurred in other seasons. In January 1996, OFP traps located at 3200 and 3400 m depths intercepted a major flux "event" in which there was an abrupt, threefold increase in mass flux at both depths. Mass flux measured at 3200 m during the event (87 mg m -2 d -1) was the highest recorded since biweekly resolved sampling was begun in 1989. Organic biomarker analyses of material collected prior to, and during, this high flux event determined that there was an abrupt change in material composition associated with the sudden flux increase. Prior to the event, cholesterol, a single bacteriaderived C 27 hopanone (22,29,30-tris norhopan-21-one), and saturated and odd/branched fatty acids predominated: these compounds indicated that the sedimenting material was extensively degraded. During the event, organic material was greatly enriched in C 26-C 29 phytosterols, haptophyte algae-derived C 37-C 39 alkenones, labile polyunsaturated acids, degradation products such as steroidal ketones, and also in bacteria-derived compounds such as C 27-C 34 hopanoids and β and ω-1 hydroxy acids. These compounds indicated the organic fraction contained a large amount of relatively fresh phytoplankton-derived debris and tracers of bacterial biomass and metabolism, which suggested that the sinking material was undergoing active bacterial decomposition. Thus, the flux "event" appears to have resulted from a shortlived bloom in the overlying surface waters which, for reasons not currently apparent, was inefficiently remineralized in the upper ocean and rapidly settled to

  1. Wind-mixing by storms modifies baroclinic energy flux on the Celtic Sea shelf

    NASA Astrophysics Data System (ADS)

    Stephenson, Gordon, Jr.; Green, Mattias; Hopkins, Joanne; Inall, Mark; Palmer, Matthew

    2015-04-01

    The internal tide generated at the continental shelf break transfers energy from the barotropic tide to vertical mixing in shelf seas. In this study, temperature and current measurements from an array of moorings across the Celtic Sea shelf-break, a well-known hot-spot for tidal energy conversion, show the impact of passing summer storms on the baroclinic wave field. Internal waves can propagate over a seabed with a gentle slope, but are reflected when they encounter sufficiently steep bottom topography, with the critical topographic slope above which reflection occurs being determined by the water column stratification. In July 2012, wind-driven vertical mixing during two storms lowered stratification in the upper 50 meters of the water column, and baroclinic energy in the semidiurnal band appeared at the moorings 1-4 days after. The timing of the maximum in the baroclinic energy flux is consistent with the propagation of the semidiurnal internal tide from generation sites at the shelf break to the moorings 40 km away. The ~3 day duration of the peak in M2 baroclinic energy fluxes at the moorings corresponds to the restratification time scale following the first storm. These results indicate that wind-mixing can change a topographic slope from super-critical to subcritical; variations in stratification with timescales of a few days may contribute to the unpredictability of the internal tide in shelf seas.

  2. Factors contributing to seasonal variations in wet deposition fluxes of trace elements at sites along Japan Sea coast

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Asakura, Kazuo

    In this study, we measured the wet deposition fluxes of ten trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V and Zn) from December 2002 to March 2006 at three sites along the Japan Sea coast, which have been strongly affected by the long-range transport of air pollutants from the Asian continent. Also, factors, contributing to their seasonal variations were investigated. At the northern and central sites, the monthly wet deposition fluxes of all or most trace elements greatly increased during the cold season (typically, November-April), along with their monthly average (volume-weighted) concentrations in the precipitation. The cold/warm season ratios for the average concentrations of trace elements in precipitation were within the range of 2.7-5.1 at the northern site and 1.8-5.9 at the central site, which were similar to the average scavenging ratios (= concentration in precipitation/concentration in air) at each site. However, there were small differences (0.47-1.2 at the northern site and 0.73-1.7 at the central site) in the ratios of average concentrations in air between the two seasons. These suggest that the increase in the wet deposition fluxes of trace elements during the cold season is due to increases in their scavenging ratios. On the other hand, the result for the southern site was different from those at the other sites. The number of days when the daily maximum wind speed exceeded 10 m s -1 at the meteorological observatories near the study sites increased markedly during the cold season at the northern and central sites, showing that strong winds usually blow during the cold season at those sites, but not at the southern site. Higher wind speed transports larger amounts of constituents into the cloud system, which can result in their increased concentrations in precipitation. Thus, high scavenging ratios of trace elements during the cold season may be caused by the increase in their amounts of discharge into the cloud system owing to high wind speed

  3. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  4. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  5. Dead Sea seasonal stratification: metalimnion sharpening and the role of Double Diffusive diapycnal flux

    NASA Astrophysics Data System (ADS)

    Arnon, Ali; Lensky, Nadav; Selker, John

    2015-04-01

    Summer thermo-haline stratification in a hypersaline lake involves conditions favorable for double diffusion (DD) diapycnal flux and precipitation (or dissolution) of halite crystals. Quantifying these processes and their role on the stratification of the Dead Sea is the aim of this study. The thermal structure of the metalimnion of the Dead Sea was investigated in high spatial and temporal resolution by means of fiber optics temperature sensing during May-Dec 2012. This high resolution method enabled achieving very detailed and unique information of the thermal morphology: a continuous record of temperature- depth profiles allowing quantitative investigation of the thermal morphology dynamics by defining objective parameters as metalimnion's thickness, depth, slope (dT/dz max), and sharpness of the thermocline's boundaries (d2T/dz2 max and min). Along the season sharpening of the thermal profile occurs gradually with the build-up of stratification, from a relatively wide curved temperature profile in early spring to a very sharp step metalimnion (<1m, >10°C) at mid-summer-fall time. The sharpening was expressed by the thinning of the metalimnion and thermocline, increase in slope of the thermocline, and increase in sharpness of the boundaries of the thermocline. The transition from a gradual to a sharp interface initiated with the formation of a staircase of 5 sharp steps in the thermal profile, merging gradually and collapsing into a single abrupt change in temperature. This sharp single step lasted from early September until stratification diminished in early December. We calculate diapycnal flux (salinity and heat) based on measured data (rise in temperature and salinity of the hypolimnion, expected salinity increase from level measurements and water balance). The Maximum slope and sharpness of the metalimnion was achieved at the beginning of September, synchronous with the onset of heat and salinity diapycnal flux. Having the basic conditions for salt

  6. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux

    NASA Astrophysics Data System (ADS)

    Maher, D. T.; Eyre, B. D.

    2012-03-01

    Estuaries are `hot spots' in the global carbon cycle, yet data on carbon dynamics, in particular air-sea CO2 fluxes, from autotrophic systems are rare. Estuarine carbon budgets were constructed for three geomorphically distinct warm temperate Australian estuaries over an annual cycle. All three estuaries were net autotrophic, with annual net ecosystem metabolism (NEM) ranging from 8 ± 13.4 molC m-2 yr-1 to 10 ± 14 molC m-2 yr-1. There was a net flux of CO2 from the atmosphere to the estuaries of between 0.4 ± 0.6 molC m-2 yr-1 and 2 ± 0.9 molC m-2 yr-1. Loading of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) to the estuaries varied markedly within and between the estuaries, and was directly related to freshwater inflow. While NEM was similar in all three estuaries, the ratio of benthic versus pelagic contributions to NEM differed, with NEM dominated by pelagic production in the river dominated system, benthic production dominating in the intermediate estuary, and equal contributions of benthic and pelagic production in the marine dominated lagoon. All three estuaries exported more organic carbon than was imported, fueled by additional organic carbon supplied by NEM. The estuaries essentially acted as bioreactors, transforming DIC to organic carbon. Burial of organic carbon ranged from 1.2 ± 0.3 molC m-2 yr-1 to 4.4 ± 1.2 molC m-2 yr-1 and represented up to half of NEM. The annual net uptake of atmospheric CO2 in these systems, along with previous estimates of the global estuarine CO2flux being based predominantly on heterotrophic, large river dominated estuarine systems, indicates that the global estimate of the estuarine air-water CO2flux may be over-estimated due to the lack of studies from autotrophic marine dominated estuaries.

  7. Seasonal and annual dynamics of particulate carbon flux in the Barents Sea

    SciTech Connect

    Wassmann, P. ); Slagstad, D. )

    1993-08-01

    Mathematical modelling was used to explore the seasonal and annual variability of primary, new and secondary production as well as sedimentation between 72[degrees] and 80[degrees]N in the central Barents Sea during the years 1981 to 1983. 1981 and 1982 were years with extensive ice coverage while 1983 experienced little sea-ice. The phyto-plankton [open quotes]spring[close quotes] bloom started usually in April/May at about 75[degrees]N and was delayed from May/June in the south to August/September in the north as a function of thermal stratification and sea-ice dynamics. The model indicates that several, simultaneous spring bloom events, separated in space, can be found, especially during years with low ice coverage. The annual estimates of primary production, secondary production and sedimentation decreased on average from 73, 7.3 and 48 to 18, 1.8 and 9 gCm[sup [minus]2] year[sup [minus]1] between the southern and the northern part of the Barents Sea respectively. The annual estimates of particular carbon flux were much higher in 1983 compared to 1981-1982, especially in the north where up to 6 times higher rates were calculated for 1983. The number of zooplankton species present in spring in the southern Barents Sea is governed by over-wintering success, but probably also influenced by advection of Atlantic water. The model was run for Atlantic water with 10,000, 3,000 or none copepods per m[sup 2] present in March, indicating that sedimentation can vary between 38 and 61 gCm[sup [minus]2] year[sup [minus]1] due to zooplankton grazing alone. This suggests that the supply of organic carbon to the aphotic zone of the Barents Sea is only partly determined by the strength and duration of phytoplankton blooms, but strongly influenced by zooplankton dynamics. 49 refs., 6 figs., 3 tabs.

  8. Flux and seasonality of planktonic foraminifera in the Xisha Trough, South China Sea

    NASA Astrophysics Data System (ADS)

    Xiang, R.; Chen, M.; Wang, D.; Chen, Z.; Yan, W.

    2013-12-01

    The modern correlation between planktonic foraminiferal community dynamics and environmental conditions may provide a basis for establishing paleoclimatic proxies. We studied planktic foraminiferal shell fluxes and assemblages in samples collected in a time-series sediment trap deployments in the Xisha Trough, South China Sea (SCS), from June 2009 to August 2011. The general flux shows a unimodal pattern, with high planktonic foraminiferal flux (900-1000 tests m-2 day-1) occurs during the period from late September/October to February, and low flux (200-300 tests m-2 day-1)during the rest period of the year. This flux pattern is contrast to the bimodal pattern of planktonic foraminiferal flux obtained from the central and southern SCS. Ten species, Globigeroides sacculifer, Globigerinoides ruber, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globigerina calida, Globigerinella aequilateralis, Globigerina bulloides, Globigerinita glutinata, Orbulina univera and Globorotalia menardii, contributed about 96% of the total flux in each year. Among them, the monsoonal driven seasonality is most prominent for P. obliquiloculata, N. dutertrei and G. bulloides, with more than 70% of their species-specific total fluxes (93% for G. bulloides) occur from late September/October to February. This suggests G. bulloides can be used as a winter proxy-species. On the contrary, Globigeroides conglobatus, mostly appeared during June to August. G. sacculifer, G. ruber and G. aequilateralis generally follow the trend of the total flux of planktonic foraminifer, with about 50-60% of their total fluxes occur from late September/October to February. We also compared the size distribution of the dominant foraminiferal species in the > 250 micrometer fraction and 250-154 micrometer fraction, we found that most shells of G. aequilateralis, O. univera and G. menardii, and G. conglobatus mainly occur in the >250 micrometer fraction, and about 40% of G. sacculifer, 35% of P

  9. High-frequency fluxes of labile compounds in the central Ligurian Sea, northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Goutx, M.; Momzikoff, A.; Striby, L.; Andersen, V.; Marty, J. C.; Vescovali, I.

    2000-03-01

    Sinking particles were collected every 4 h with drifting sediment traps deployed at 200 m depth in May 1995 in a 1-D vertical system during the DYNAPROC observations in the northwestern Mediterranean sea. POC, proteins, glucosamine and lipid classes were used as indicators of the intensity and quality of the particle flux. The roles of day/night cycle and wind on the particle flux were examined. The transient regime of production from late spring bloom to pre-oligotrophy determined the flux intensity and quality. POC fluxes decreased from, on average, 34 to 11 mg m -2 d -1, representing 6-14% of the primary production under late spring bloom conditions to 1-2% under pre-oligotrophic conditions. Total protein and chloroplast lipid fluxes correlated with POC and reflected the input of algal biomass into the traps. As the season proceeded, changes in the biochemical composition of the exported material were observed. The C/N ratio rose from 7.8 to 12. Increases of serine (10-28% of total proteins), total lipids (7-9 to 14-28% of POC) and reserve lipids (1-5 to 5-22% of total lipids) were noticeable, whereas total protein content in POC decreased (20-27 to 18-7%). N-acetyl glucosamine, a tracer of fecal pellet flux, showed that zooplankton grazing was a major vector of downward export during the decaying bloom. Against this background pattern, episodic events specifically increased the flux, modifying the quality and the settling velocity of particles. Day/night signals in biotracers (POC, N-acetyl glucosamine, protein and chloroplast lipids) showed that zooplankton migrations were responsible for sedimentation of fresh material through fast sinking particles ( V=170-180 m d -1) at night. Periodic signatures of re-processed material (high lipolysis and bacterial biomass indices) suggested that other zooplankton fecal pellets or small aggregates, probably of lower settling velocities ( V<170 m d -1), contributed to the flux during calm periods. At the beginning of the

  10. Subglacial Lake Whillans, West Antarctica; Solute Dynamics and Fluxes to the Ross Sea

    NASA Astrophysics Data System (ADS)

    Skidmore, M. L.; Michaud, A. B.; Achberger, A.; Barbante, C.; Christner, B. C.; Mikucki, J.; Mitchell, A. C.; Priscu, J. C.; Purcell, A. M.; van Gelder, W.; Vick-Majors, T.

    2014-12-01

    Subglacial Lake Whillans is located beneath the Whillans Ice Stream in West Antarctica. The lake is situated beneath 800 m of ice and ~ 70 km upstream of the grounding line where Whillans Ice Stream terminates into the Ross Sea. Subglacial Lake Whillans is a shallow lake and a component of a complex subglacial hydrological system that may resemble a large wetland along the Siple Coast of West Antarctica. Subglacial Lake Whillans drains and refills on a sub-decadal time scale discharging water towards the Ross Sea. Water and sediment samples were recovered from the lake, using clean access drilling technologies, in January, 2013. Isotopic analysis of the lake waters indicates basal meltwater from the ice sheet as the dominant water source. Geochemical analysis of the lake water reveals it is freshwater with mineral weathering as a significant solute source, with a minor contribution from sea water likely from relict marine sediments. Subglacial hydrothermal activity upstream may also contribute solutes. Nutrients N and P are present at micromolar concentrations. Sediment porewaters from shallow cores (~ 40 cm depth) of the subglacial lake sediments indicate increasing solute concentration with depth, with up to ~ five times greater solute concentrations than in the lake water. The waters and sediment contain metabolically active organisms which are likely involved in elemental cycling within the lake system. Here we will discuss solute sources to the lake, solute dynamics within the lake waters and sediment, and the fluxes of solute and nutrients to the Ross Sea and their implications for these marine ecosystems.

  11. An Examination of the Sea Surface Salinity - Fresh Water Flux Relationship Using Satellite Observations from SMOS and Aquarius

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Kumar, Arun; Xue, Yan; Liu, Tim

    2015-04-01

    Relationship between the sea surface salinity (SSS) and the oceanic fresh water flux (E-P) is examined using the SSS retrievals derived from the passive microwave (PMW) observations aboard the SMOS and Aquarius satellites, the CMORPH integrated satellite precipitation estimates (P) and the evaporation data (E) produced by the NCEP Climate Forecast System (CFS) reanalysis. Preprocessing is performed to construct gridded fields of SSS, P, and E on a 1o lat/lon grid over the global oceans and at a 30-min time resolution for a 54-month period from January 2010 to June 2014. Relationships between the SSS observed at a point in time and the P, E, and P-E at the same grid box accumulated over various time periods ending at the SSS observation time are examined. As a first step, we focused our investigation on an oceanic area over the central equatorial Pacific (10oS-10oN; 180o-160oW) where SSS is not influenced by the river runoffs. Our preliminary results show clear linear relationship between the satellite-observed skin SSS and the fresh water flux over the region. The Aquarius observed instantaneous SSS presents a correlation of ~0.4 with the E-P accumulated over the 30-min period of the SSS observations. The correlation between the instantaneous SSS and the E-P drops with the accumulation period for E-P, down to 0.36 for 6-hourly accumulated E-P. The Correlation, however, bounces back and improves with the E-P accumulation period longer than 6 hours, reaching to ~0.7 for an accumulation time period of 30 days. The existence of the minimum correlation between the instantaneous SSS and the E-P accumulation over a 6-hour period suggests the involvement of air-sea interaction and oceanic processes on multiple time scales in the manner E-P influences to the SSS variations. Among the two primary components of the fresh water flux, precipitation dominates the influences on the SSS. Further analysis is under way to repeat the examination for different regions to examine the

  12. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models

    NASA Astrophysics Data System (ADS)

    Pleim, Jonathan E.; Bash, Jesse O.; Walker, John T.; Cooter, Ellen J.

    2013-05-01

    is an important contributor to particulate matter in the atmosphere and can significantly impact terrestrial and aquatic ecosystems. Surface exchange between the atmosphere and biosphere is a key part of the ammonia cycle. New modeling techniques are being developed for use in air quality models that replace current ammonia emissions from fertilized crops and ammonia dry deposition with a bidirectional surface flux model including linkage to a detailed biogeochemical and farm management model. Recent field studies involving surface flux measurements over crops that predominate in North America have been crucial for extending earlier bidirectional flux models toward more realistic treatment of NH3 fluxes for croplands. Comparisons of the ammonia bidirection flux algorithm to both lightly fertilized soybeans and heavily fertilized corn demonstrate that the model can capture the magnitude and dynamics of observed ammonia fluxes, both net deposition and evasion, over a range of conditions with overall biases on the order of the uncertainty of the measurements. However, successful application to the field experiment in heavily fertilized corn required substantial modification of the model to include new parameterizations for in-soil diffusion resistance, ground quasi-laminar boundary layer resistance, and revised cuticular resistance that is dependent on in-canopy NH3 concentration and RH at the leaf surface. This new bidirectional flux algorithm has been incorporated in an air quality modeling system, which also includes an implementation of a soil nitrification model.

  13. The Fecal Pellet fraction of biogeochemical particle fluxes to the deep sea

    NASA Astrophysics Data System (ADS)

    Pilskaln, Cynthia H.; Honjo, Susumu

    1987-03-01

    Fecal pellets produced by suspension-feeding crustacean zooplankton, specifically copepods and euphausids, have frequently been cited as an important mode of large particle transport in the open ocean. The objectives of the present study were to determine the various biogeochemical fluxes provided by pelagic crustacean fecal pellets, to examine such fluxes as a function of depth and variable levels of surface water productivity, and to assess the overall fecal pellet contribution to oceanic particle fluxes as measured with sediment traps. Pellet subsamples were obtained from particulate samples collected at depths between 389 and 5068 m by moored PARFLUX sediment traps deployed for up to 12 months at three tropical-subtropical open ocean localities. The sites were located over the East Hawaii Abyssal Plain (P site), over the Demerara Abyssal Plain (E site), and in the Pacific Panama Basin (PB site). Fecal pellet flux and chemical composition were found to vary significantly on a geographic scale as a function of productivity levels in the surface waters. The total carbonate, organic carbon, opaline silica, and lithogenic fluxes provided by pellets at the oligotrophic P1site were 1-2 orders of magnitude less than that measured at the eutrophic station in Panama Basin. The pellet data show that contrary to previous assumptions, these biogenic aggregates are responsible for no more than 5% of the total mass flux of oceanic particulate material. Despite the fact that at all trap depths, large numbers of intact pellets were collected which displayed minimal effects of dissolution and microbial degradation, fecal pellets contributed an average of only 1-10%, 0.5-5%, 1-3%, and 0.5-4% to the total measured mass fluxes of organic, carbonate, opaline silica, and lithogenic material, respectively. However, the pellets showed elevated C/N ratios (9-14) as well as high organic content (representing up to 50% of the individual pellet weight), suggesting that they constitute an

  14. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations. PMID:9749937

  15. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  16. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  17. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  18. Influence of Sea Ice Dynamics on Atmospheric Mercury and Ozone Concentrations and Fluxes during the BROMEX Campaign

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Steffen, A.; Obrist, D.; Staebler, R. M.

    2012-12-01

    We present results from the Bromine, Ozone, and Mercury (Hg) Experiment (BROMEX) study in Barrow, Alaska, near the Arctic Ocean where we assessed how changing sea ice dynamics may affect future Hg cycling. Atmospheric Mercury Depletion Events (AMDEs) whereby gaseous elemental Hg (GEM) is oxidized to gaseous oxidized Hg (GOM) and fine (< 2.5 μm) particulate-bound Hg (PHg) are of concern for polar ecosystems as they lead to increased Hg deposition to underlying snow and ice surfaces. From March 15 - April 4 2012, we established two measurement sites. The first was Out-On-The-Ice (OOTI), located on the frozen Arctic Ocean and considered a possible hot-spot for AMDEs due to the high saline content of sea ice, approximately 2 km from the shore. Here, measurements included atmospheric Hg speciation (i.e, GEM, GOM, and PHg), surface exchange fluxes of GEM and ozone, along with meteorological parameters. At a second site, located 5 km inland, and co-located with several atmospheric halogen measurements, we measured atmospheric Hg speciation and ozone concentrations. Atmospheric Hg and ozone concentrations at the two sites tracked each other very closely, and showed pronounced temporal changes depending on sea ice conditions. During the initial period when the sea ice surrounding Barrow was completely closed for several weeks, GEM was generally depleted below 0.75 ng m-3 and on occasion dropped below detection limits (<0.05 ng m-3), PHg concentrations ranged from 50 pg m-3 to 240 pg m-3, and GOM ranged from 15 to 100 pg m-3. Ozone during that time also was depleted (generally below 10 ppb) showing typical patterns observed during polar AMDEs with coupled mercury and ozone depletion events. During a period when a lead opened in the sea ice upwind of the two sites, GEM increased to a maximum of 2.5 ng m-3, while PHg and GOM remained at similar levels to those during closed sea ice conditions. Upon refreezing of the open sea ice, atmospheric GEM concentrations again dropped

  19. The exchange of SVOCs across the air-sea interface in Singapore's coastal environment

    NASA Astrophysics Data System (ADS)

    He, J.; Balasubramanian, R.

    2010-02-01

    Coastal areas are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs, OCPs and PCBs from atmospheric inputs. Dry particulate and wet depositions, and air-water diffusive exchange in the Singapore's south coastal area, where most of chemical and oil refinery industries are situated in, were estimated. Based on a yearly dataset, the mean annual dry particulate deposition fluxes of ∑16-PAHs, ∑7 OCPs and ∑21 PCBs were 1328.8±961.1 μg m-2 y-1, 5421.4±3426.7 ng m-2 y-1 and 811.8±578.3 ng m-2 y-1, and the wet deposition of ∑16-PAHs and ∑7 OCPs were 6667.1±1745.2 and 115.4±98.3 μg m-2 y-1, respectively. Seasonal variation of atmospheric depositions was influenced by meteorological conditions. Air-water gas exchange fluxes were shown to be negative values for PAHs, HCHs and DDXs, indicating Singapore's south coast as a sink for the above-mentioned SVOCs. The relative contribution of each depositional process to the total atmospheric input was assessed by annual fluxes. The profile of dry particulate deposition, wet deposition and gas exchange fluxes seemed to be correlated with individual pollutant's properties such as molecular weight and Henry's law constant, etc. For the water column partitioning, the organic carbon-normalized partition coefficients between particulate and dissolved phases (KOC) for both PAHs and OCPs were obtained. The relationships between KOC of PAHs and OCPs and their respective octanol-water partition coefficient (KOW) were examined. In addition, both adsorption onto combustion-derived soot carbon and absorption into natural organic matter for PAHs in marine water column were investigated. Enrichment factors in the sea-surface microlayer (SML) of the particulate phase were 1.2-7.1 and 3.0-4.9 for PAHs and OCPs, and those of dissolved phase were 1.1-4.9 and 1.6-4.2 for PAHs and OCPs, respectively. These enrichment factors are relatively higher than those reported for nearby coastal areas, which

  20. The exchange of SVOCs across the air-sea interface in Singapore's coastal environment

    NASA Astrophysics Data System (ADS)

    He, J.; Balasubramanian, R.

    2009-06-01

    Coastal areas are vulnerable to the accumulation of semi-volatile organic compounds such as PAHs, OCPs and PCBs from atmospheric inputs. Dry particulate and wet depositions, and air-water diffusive exchange in the Singapore's south coastal area, where most of chemical and oil refinery industries are situated in, were estimated. Based on a yearly dataset, the mean annual dry particulate deposition fluxes of ∑16PAHs, ∑7OCPs and ∑21PCBs were 1328.8±961.1 μg m-2 y-1, 5421.4±3426.7 ng m-2 y-1 and 811.8±578.3 ng m-2 y-1, and the wet deposition of ∑16PAHs and ∑7OCPs were 6667.1±1745.2 and 115.4±98.3 μg m-2 y-1, respectively. Seasonal variation of atmospheric depositions was influenced by meteorological conditions. Air-water gas exchange fluxes had negative values for PAHs, HCHs and DDXs, indicating Singapore's south coast as a sink for the above-mentioned SVOCs. The relative contribution of each depositional process to the total atmospheric input was assessed by annual fluxes. The profile of dry particulate deposition, wet deposition and gas exchange fluxes seemed to be correlated with individual pollutant's properties such as molecular weight and Henry's law constant, etc. For the water column partitioning, the organic carbon-normalized partition coefficients between particulate and dissolved phases (KOC) for both PAHs and OCPs were obtained. The relationships between KOC of PAHs and OCPs and their respective octanol-water partition coefficient (KOW) were examined. In addition, both adsorption onto combustion-derived soot carbon and absorption into natural organic matter for PAHs in marine water column were investigated. Enrichment factors in the sea-surface microlayer (SML) of the particulate phase were 1.2~7.1 and 3.0~4.9 for PAHs and OCPs, and those of dissolved phase were 1.1~4.9 and 1.6~4.2 for PAHs and OCPs, respectively. These enrichment factors are relatively higher than those reported for nearby coastal areas, which are most likely due

  1. pCO2 in sea ice and CO2 fluxes estimates : where do we stand today ? (Invited)

    NASA Astrophysics Data System (ADS)

    Tison, J.; Delille, B.; Papakyriakou, T. N.; Vancoppenolle, M.; Carnat, G.; Geilfus, N.

    2009-12-01

    CO2 exchanges between sea ice and the atmosphere have long been considered as negligible, because of the insulating effect of the sea ice cover. There is now growing evidence from detailed sea ice microstructure studies, sea ice permeability models and “in situ” measurements of brine pC02 in sea ice that even if this is probably the case for deep winter periods, it is not for several months along the sea ice growth and decay cycle (autumn, spring and summer). Experimental work and field observations on the growth of young sea ice and early stages of sea ice warming in Spring indicate limited periods of CO2 degassing to the atmosphere (CO2 source), mainly as the result of enhanced pCO2 in the brine network linked to the physical process of brine concentration on cooling and potential dissolved CO2 increase during calcium carbonate precipitation. However, as the ice warms up in Spring and Summer, three mechanisms concur to quickly reverse the trend towards CO2 fluxes from the atmosphere to the sea ice cover (CO2 sink): a) dilution of brines from inclusions wall melting, b) dissolution of calcium carbonate precipitates and c) photosynthetic absorption from sympagic algae. This paper describes recent progress that has been made on four main forefronts within the last two years: a) extending our antarctic sea ice brine pCO2 and CO2 fluxes data set (ARISE - Australian Sector, 2003; ISPOL - Eastern Weddell Sea, 2004) with results from the Amundsen Sea (SIMBA cruise, N.B. Palmer, 2007) in the Spring, b) building up a new original Arctic sea ice brine pCO2 data set during the year-round IPY Canadian CFL experiment and discussing similarities between the two data sets and peculiarities of the Arctic one, c) updating our estimates of potential contribution of Antarctic sea ice fluxes to the whole Southern Ocean including a 3-D modeling approach of sea ice surface temperatures to derive CO2 fluxes and d) gaining better insights on the crucial role of the snow cover and

  2. Element transformation rates and fluxes across the sediment-water interface of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lipka, Marko; Wegwerth, Antje; Dellwig, Olaf; Al-Raei, Abdul M.; Schoster, Frank; Böttcher, Michael E.

    2014-05-01

    Organic matter is mineralized in brackish-marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. This leads to a reflux of carbon dioxide into the bottom waters. Under anoxic bottom water conditions, sulfate reduction dominates. Under specific conditions, shallow methane may be oxidized. Pore water profiles reflect biogeochemical processes, transformation rates and fluxes of dissolved species across the sediment-water interface. They are controlled by different factors like microbial activity, bottom water redox conditions, and availability of electron acceptors/donors. Microbial activity in the sediment leads to changes in redox conditions, formation of metabolites and may lead to the formation of authigenic minerals. As an example, organic matter mineralization and reduction of iron oxyhydroxides both may lead to the liberation of dissolved phosphate thereby leading to a reflux into the bottom waters. Hypoxic conditions will enhance this process. We present the results of a detailed biogeochemical investigation of interstitial waters from shallow sediments to study the biogeochemical processes in recent sediments and associated element fluxes at the sediment-water-interface in different areas of the Baltic Sea. Pore water and sediment samples were retrieved from short sediment cores that were collected with multicoring devices in key regions of the Baltic Sea. Pore waters were taken in sufficient depth resolution and analyzed for main and trace element concentrations (e.g., Mn, SO4, HS, PO4, DIC) to allow a modelling of steady-state transformation volumetric rates and element fluxes. A quantitative interpretation of vertical concentration profiles in the pore waters was performed using a diffusion-based modelling approach. Element fluxes across the sediment-water interface show for the Baltic Sea a dependence from bottom water redox conditions, sedimentology, organic contents, and formation conditions

  3. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø < 1 mm), large bubbles (1 mm < Ø < 5 mm) and macro bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  4. Spatial and temporal patterns in oxygen and nutrient fluxes in sediment of German Bight (North Sea)

    NASA Astrophysics Data System (ADS)

    Neumann, Andreas; Friedrich, Jana; van Beusekom, Justus; Naderipour, Céline

    2016-04-01

    The German Bight in the southern North Sea is affected by intensive anthropogenic exploitation. Over a century of intensive use by shipping, fishery, and input by polluted rivers has pushed the coastal ecosystem far from its pristine state. The nutrient load reached a maximum in the early 1990s (Amann et al. 2012), and implementation of environmental protection policies substantially decreased the riverine nutrient load. While the riverine input of pollutants has constantly reduced since then, new forms of sea exploitation emerge. The most noticeable example is the installation of more than 600 wind turbines over the past few years in the German EEZ, and additionally 1,200 are already planned. The impact of these installations on hydrology and biogeochemical cycles is largely unclear. In a series of monitoring cruises we repeatedly sampled the sediment at a set of monitoring stations, which represent all typical habitats of the German Bight. We deployed benthic landers for in-situ chamber incubations and performed ex-situ whole-core incubations to investigate the benthic fluxes of oxygen and nutrients, and their spatial and temporal variability. Our first results indicate that benthic nutrient recycling is more intense during summer than during winter, which suggests that biological processes contribute substantially to the recycling of nutrients. The fluxes of reactive nitrogen appear lower than observations from 1992 (Lohse et al. 1993), when riverine N loads were at their maximum (Amann et al. 2012). The comparison of our recent measurements with observations from the past decades will enable us to assess the effect of decreasing nutrient discharge into the coastal North Sea. Our results will further set a baseline for elucidating the impact of the massive installation of wind turbines in the near future. This study contributes to the NOAH project (North Sea; Observation and Assessment of Habitats). References Amann T., A. Weiss, and J. Hartmann (2012): Carbon

  5. Wind farm induced changes in wind speed and surface fluxes over the North Sea

    NASA Astrophysics Data System (ADS)

    Chatterjee, Fabien; van Lipzig, Nicole; Meyers, Johan

    2016-04-01

    Offshore wind farm deployment in the North Sea is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology on the North Sea. We assess this impact by conducting a regional climate model simulation over future wind farms built near the German coast. In order to achieve this, the wind farm parameterisation of Fitch et al. 2012, where wind farms are parameterised as elevated sources of turbulent kinetic energy and sinks of momentum ( Blahak et al 2010 and Fitch et al 2012) is implemented in COSMO-CLM at a 1.5 km resolution. As a first step, COSMO-CLM's ability to reproduce wind profiles over the North Sea is evaluated using wind speed data from the FINO1 meteorological mast, toghether with QuikScat scatterometer data, for a time period of 2000-2008. Subsequently, the impact of windfarms on the regional climate over a period of ten years (1999-2008) is assessed. A large scale wind farm can create wakes which depending on the wind direction could affect the power production of a neighbouring farm. Furthermore, wind farms decelerate the flow and create a vertical circulation in the inflow region. As a result, changes in vertical fluxes of moisture are observed. This leads to enhanced low level cloud cover which may trigger changes in precipitation.

  6. Ozone flux to vegetation and its relationship to plant response and ambient air quality standards

    NASA Astrophysics Data System (ADS)

    Musselman, Robert C.; Massman, William J.

    The National Ambient Air Quality Standard (NAAQS) for ozone is based on occurrences of the maximum 8 h average ambient ozone concentration. However, biologists have recommended a cumulative ozone exposure parameter to protect vegetation. In this paper we propose a third alternative which uses quantifiable flux-based numerical parameters as a replacement for cumulative ambient parameters. Herein we discuss the concept of ozone flux as it relates to plant response and the NAAQS, and document information needed before a flux-based ozone NAAQS for vegetation can be implemented. Additional research is needed in techniques for determining plant uptake and in the quantification of plant defensive mechanisms to ozone. Models which include feedback mechanisms should be developed to relate ozone flux, loading, and detoxification with photosynthesis and plant productivity.

  7. Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea

    NASA Astrophysics Data System (ADS)

    Cook, Mea S.; Keigwin, Lloyd D.; Birgel, Daniel; Hinrichs, Kai-Uwe

    2011-06-01

    There is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the "Clathrate Gun Hypothesis" (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.

  8. An improved whitecap timescale for sea spray aerosol production flux modeling using the discrete whitecap method

    NASA Astrophysics Data System (ADS)

    Callaghan, Adrian H.

    2013-09-01

    The discrete whitecap method (DWM) to model the sea spray aerosol (SSA) production flux explicitly requires a whitecap timescale, which up to now has only considered a whitecap decay timescale, τdecay. A reevaluation of the DWM suggests that the whitecap timescale should account for the total whitecap lifetime (τwcap), which consists of both the formation timescale (τform) and the decay timescale (timescale definitions are given in the text). Here values of τform for 552 oceanic whitecaps measured at the Martha's Vineyard Coastal Observatory on the east coast of the USA are presented, and added to the corresponding values of τdecay to form 552 whitecap timescales. For the majority of whitecaps, τform makes up about 20-25% of τwcap, but this can be as large as 70% depending on the value of τdecay. Furthermore, an area-weighted mean whitecap timescale for use in the DWM (τDWM) is defined that encompasses the variable nature of individual whitecap lifetimes within a given time period, and is calculated to be 5.3 s for this entire data set. This value is combined with previously published whitecap coverage parameterizations and estimates of SSA particle production per whitecap area to form a size-resolved SSA production flux parameterization (dF(r80)/dlog10r80). This parameterization yields integrated sea-salt mass fluxes that are largely within the range of uncertainty of recent measurements over the size range 0.029 µm < r80 < 0.580 µm. Physical factors controlling whitecap lifetime such as bubble plume lifetime and surfactant stabilization are discussed in the context of SSA production from whitecaps.

  9. Improvements to TOVS retrievals over sea ice and applications to estimating Arctic energy fluxes

    NASA Technical Reports Server (NTRS)

    Francis, Jennifer A.

    1994-01-01

    Modeling studies suggest that polar regions play a major role in modulating the Earth's climate and that they may be more sensitive than lower latitudes to climate change. Until recently, however, data from meteorological stations poleward of 70 degs have been sparse, and consequently, our understanding of air-sea-ice interaction processes is relatively poor. Satellite-borne sensors now offer a promising opportunity to observe polar regions and ultimately to improve parameterizations of energy transfer processes in climate models. This study focuses on the application of the TIROS-N operational vertical sounder (TOVS) to sea-ice-covered regions in the nonmelt season. TOVS radiances are processed with the improved initialization inversion ('3I') algorithm, providng estimates of layer-average temperature and moisture, cloud conditions, and surface characteristics at a horizontal resolution of approximately 100 km x 100 km. Although TOVS has flown continuously on polar-orbiting satellites since 1978, its potential has not been realized in high latitudes because the quality of retrievals is often significantly lower over sea ice and snow than over the surfaces. The recent availability of three Arctic data sets has provided an opportunity to validate TOVS retrievals: the first from the Coordinated Eastern Arctic Experiment (CEAREX) in winter 1988/1989, the second from the LeadEx field program in spring 1992, and the third from Russian drifting ice stations. Comparisons with these data reveal deficiencies in TOVS retrievals over sea ice during the cold season; e.g., ice surface temperature is often 5 to 15 K too warm, microwave emissivity is approximately 15% too low at large view angles, clear/cloudy scenes are sometimes misidentified, and low-level inversions are often not captured. In this study, methods to reduce these errors are investigated. Improvements to the ice surface temperature retrieval have reduced rms errors from approximately 7 K to 3 K; correction of

  10. Transition from downward to upward air-sea momentum transfer in swell-dominated light wind condition

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Högström, Ulf; Rutgersson, Anna

    2016-04-01

    Atmospheric and surface wave data from two oceanic experiments carried out on FLIP and ASIS platforms are analysed in order to identify swell-related effects on the momentum exchange during low wind speed conditions. The RED experiment was carried out on board an R/P Floating Instrument Platform, FLIP, anchored north east of the Hawaiian island Oahu with sonic anemometers at four levels: 5.1 m, 6.9 m, 9.9 m and 13.8 m respectively. The meteorological conditions were characterized by north- easterly trade wind and with swell present during most of the time. During swell the momentum flux was directed downwards meaning a positive contribution to the stress. The FETCH experiment was carried out in the Gulf of Lion in the north-western Mediterranean Sea. On the ASIS (air-sea interaction spar) buoy a sonic anemometer was mounted at 7 m above the mean surface level. During strong swell conditions the momentum flux was directed upwards meaning a negative contribution to the stress in this case. The downward momentum flux is shown to be a function of the orbital circulation while the upward momentum flux is a function of wave height. The dividing wind speed is found to be 3.5 m/s Conclusion: Wind speed > 3.5 m/s creates waves (ripples) and thus roughness. Combination of orbital motion and asymmetric structure of ripples lead to flow perturbation and downward transport of negative momentum. With low wind speed (no ripples but viscosity) circulations will form above the crest and the trough with opposite direction which will cause a pressure drop in the vertical direction and an upward momentum transport from the water to the air.

  11. Present-day fluxes of coccolithophores and diatoms in the pelagic Ionian Sea

    NASA Astrophysics Data System (ADS)

    Malinverno, Elisa; Maffioli, Paola; Corselli, Cesare; De Lange, Gert J.

    2014-04-01

    Biogenic fluxes from two sediment traps in the Ionian sea (35°13‧N, 21°30‧E) at 500 and 2800 m water depth are discussed in relation with the main oceanographic and external forcing and compared with previous data from a nearby location. This study is part of a multi-year sediment trap deployment, aimed at assessing seasonality and interannual variability of biogenic and abiogenic fluxes. Here, we focus on fluxes related to two main phytoplankton groups: coccolithophores and diatoms. At our mooring site, high-coccolithophore and low-diatom fluxes confirm the oligotrophic character of the pelagic eastern Mediterranean year-round. Coccolithophore assemblages are dominated by the cosmopolitan species Emiliania huxleyi, followed by the deep-dwelling Florisphaera profunda and by several minor species. Diatom assemblages are dominated by Thalassionema bacillare and Nitzschia interruptestriata, with ~ 100 common and minor species. Overall, the combined flux pattern of coccolithophores and diatoms shows a clear seasonality throughout the study period, which can be related to changing oceanographic conditions and a different depth of production within the photic zone. Worth to note is the extremely high abundance, with respect to previous pelagic records, of species indicative of an intense deep chlorophyll maximum (DCM), which could indicate a shoaling of the nutricline. This feature can be related to the variability that affects surface hydrography and the deep water masses. Additionally, the occurrence of neritic, benthic and brackish to fresh-water diatom species, mainly in the deeper trap, could be linked to either lateral transport within the water column or the atmospheric input of Saharan dust, which is known to be common over the eastern Mediterranean especially during spring time. Finally, correlation of the flux pattern at different depths allowed sinking speeds for total and biogenic particles to be calculated, which ranged from 70 to > 200 m day- 1. Three

  12. Particulate matter fluxes in the southern and central Kara Sea compared to sediments: Bulk fluxes, amino acids, stable carbon and nitrogen isotopes, sterols and fatty acids

    NASA Astrophysics Data System (ADS)

    Gaye, Birgit; Fahl, Kirsten; Kodina, Lyudmila A.; Lahajnar, Niko; Nagel, Birgit; Unger, Daniela; Gebhardt, A. Catalina

    2007-12-01

    The Kara Sea is one of the arctic marginal seas strongly influenced by fresh water and river suspension. The highly seasonal discharge by the two major rivers Yenisei and Ob induces seasonal changes in hydrography, sea surface temperature, ice cover, primary production and sedimentation. In order to obtain a seasonal pattern of sedimentation in the Kara Sea, sediment traps were deployed near the river mouth of the Yenisei (Yen) as well as in the central Kara Sea (Kara) within the framework of the German-Russian project "Siberian River run-off; SIRRO". Two and a half years of time-series flux data were obtained between September 2000 and April 2003 and were analyzed for bulk components, amino acids, stable carbon and nitrogen isotopes as well as sterols and fatty acids. Sediment trap data show that much of the annual deposition occurred under ice cover, possibly enhanced by zooplanktonic activity and sediment resuspension. An early bloom of ice-associated algae in April/May occurred in the polynya area and may have been very important to sustain the life cycles of higher organisms after the light limitation of the winter months due to no/low insolation and ice cover. The strong river input dominated the months June-August in the southern part of the Kara Sea. The central Kara Sea had a much shorter productive period starting in August and was less affected by the river plumes. Despite different time-scales of sampling and trapping biases, total annual fluxes from traps were in the same order of magnitude as accumulation rates in surface sediments. Terrestrial organic carbon accumulation decreased from 10.7 to 0.3 g C m -2 a -1 from the riverine source to the central Kara Sea. Parallel to this, preservation of marine organic matter decreased from 10% to 2% of primary productivity which was probably related to decreasing rates of sedimentation.

  13. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  14. Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.

    2002-01-01

    The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.

  15. Air-sea interaction and spatial variability of the surface evaporation duct in a coastal environment

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.

    Aircraft observations are presented of the horizontal variability in the depth of the surface evaporation duct and the relationship with the mesoscale structure of air-sea interaction processes. The 2-dimensional fields of near-surface wind, stress, wind-stress curl, air and sea-surface temperature are measured directly for flow around a headland. The sea surface temperature field indicates cold upwelling driven by the wind-stress curl. Boundary-layer stability responds rapidly to the spatial changes in surface temperature. These changes result in modification of the evaporation duct, which decreases significantly in depth over the cooler upwelling water.

  16. Temporal variability of CO₂ fluxes at the sediment-air interface in mangroves (New Caledonia).

    PubMed

    Leopold, Audrey; Marchand, Cyril; Deborde, Jonathan; Allenbach, Michel

    2015-01-01

    Carbon budgets in mangrove forests are uncertain mainly due to the lack of data concerning carbon export in dissolved and gaseous forms. Temporal variability of in situ CO2 fluxes was investigated at the sediment-air interface in different seasons in different mangrove stands in a semi-arid climate. Fluxes were measured using dynamic closed incubation chambers (transparent and opaque) connected to an infra-red gas analyzer. Microclimatic conditions and chl-a contents of surface sediments were determined. Over all mangrove stands, CO2 fluxes on intact sediments were relatively low, ranging from -3.93 to 8.85 mmolCO₂·m(-2)·h(-1) in the light and in the dark, respectively. Changes in the fluxes over time appeared to depend to a great extent on the development of the biofilm at the sediment surface. We suggest that in intact sediments and in the dark, CO2 fluxes measured at the sediment-air interface rather reflect the metabolism of benthic organisms than sediment respiration (heterotrophic and autotrophic). However, without the biofilm, sediment water content and air temperature were main drivers of seasonal differences in CO2 fluxes, and their influence differed depending on the intertidal location of the stand. After removal of the biofilm, Q10 values in the Avicennia and the Rhizophora stands were 1.84 and 2.1, respectively, revealing the sensitivity of mangrove sediments to an increase in temperature. This study provides evidence that, if the influence of the biofilm is not taken into account, the in situ CO2 emission data currently used to calculate the budget will lead to underestimation of CO2 production linked to heterotrophic respiration fueled by organic matter detritus from the mangrove. PMID:25302449

  17. Air-water exchange fluxes of polycyclic aromatic hydrocarbons in the tropical coast, Taiwan.

    PubMed

    Cheng, Jing-O; Ko, Fung-Chi; Lee, Chon-Lin; Fang, Meng-Der

    2013-03-01

    Air-water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29±0.59 ng m(-3) and 2.17±1.19 ng L(-1) respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m(-2) d(-1) volatilization of phenanthrene during the rainy season with storm-water discharges raising dissolved phase concentration, to 67 ng m(-2) d(-1) absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air-water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m(-2) yr(-1) for pyrene to 50 μg m(-2) yr(-1) for phenanthrene and the absorption fluxes ranged from -2.6 μg m(-2) yr(-1) for chrysene to -3.5 μg m(-2) yr(-1) for fluoranthene. PMID:23260251

  18. Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.; Meon, Benedikt; Ducklow, Hugh W.; Carlson, Craig A.; Hansell, Dennis A.; Steward, Grieg F.

    We hypothesized that dissolved carbohydrates would be large components of the labile dissolved organic carbon (DOC) pool and would support much bacterial growth in Antarctic waters, especially the Ross Sea, since previous work had observed extensive phytoplankton blooms with potentially high production rates of carbohydrates in Antarctic seas. These hypotheses were tested on cruises in the Ross Sea and Antarctic Polar Front Zone as part of the US JGOFS program. Concentrations and fluxes of free glucose (the only free sugar detected) were very low, but dissolved polysaccharides appeared to be important components of the DOC pool. Concentrations of dissolved combined neutral sugars increased >3-fold during the phytoplankton bloom in the Ross Sea and were a large fraction (ca. 50%) of the semi-labile fraction of DOC. The relatively high concentrations of dissolved combined neutral sugars, which are thought to be quite labile, appear to explain why DOC accumulated during the phytoplankton bloom was degraded so quickly once the bloom ended. Some of the polysaccharides appeared to be more refractory, however, since dissolved combined neutral sugars were observed in deep waters (>550 m) and in early spring (October) in the Ross Sea, apparently having survived degradation for >8 months. The molecular composition of these refractory polysaccharides differed from that of polysaccharides sampled during the phytoplankton bloom. Fluxes of DOC were low in the Ross Sea compared to standing stocks and fluxes of particulate material, but the DOC that did accumulate during the phytoplankton bloom appeared to be sugar-rich and relatively labile.

  19. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-08-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted between 28 and 50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap data set from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depths below 100 m, where they represented up to 25 % of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily

  20. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the Malina experiment

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-01-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted for 28-50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap dataset from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depth where they represented up to 25% of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a

  1. A study of the evolution of the surface heat flux off the southeast coast of the United States during a cold air outbreak using satellite remote sensing data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Dunn, J. W.; Crissman, Bobby W.

    1990-01-01

    Attention is given to the contribution of the marine boundary layer to storm development via a study of the evolution of the spatial distribution of the heat flux during a cold-air outburst (CAO) which occurred during the GALE Field Program period in a 550,000-sq-km area off the southeast coast of the United States. The study focuses on a CAO that occurred in the period February 24-26, 1986. During the CAO, the area averaged total surface heat flux ranged from 190 W/sq m to 1114 W/sq m. The high value was characterized by a lower average surface air and dew-point temperatures and a higher average surface wind speed. In general, the surface heat flux increased as the sea-surface temperatures on the continental shelf increased. It reached the maximum over the Gulf Stream, and then decreased over the eastern portions of the Gulf Stream and over the Sargasso Sea. The configuration conforms with some of the earlier findings of Bane and Osgoode (1989) and Blanton et al. (1989).

  2. The impact of sea breeze under different synoptic patterns on air pollution within Athens basin.

    PubMed

    Mavrakou, Thaleia; Philippopoulos, Kostas; Deligiorgi, Despina

    2012-09-01

    Air quality in densely populated urban coastal areas is directly related to the coupling of the synoptic and the local scale flows. The dispersion conditions within Athens basin, under the influence of different meteorological forcings, lead to distinct spatio-temporal air pollution patterns. The aim of the current observational research is to identify and examine the effect of sea breeze under different atmospheric circulation patterns on air pollution levels for a one-year study period (2007). The study employs surface pressure maps, routine meteorological observations at two coastal sites and nitrogen monoxide (NO), nitrogen dioxide (NO(2)) and ozone (O(3)) concentrations from a network of four air quality stations within the Athens basin. A three-step methodology is applied that incorporates a set of criteria for classifying atmospheric circulation and identifying sea breeze events under each circulation pattern. Two types of sea breeze development are identified (pure sea breeze-PSB and modified sea breeze-MSB) with distinct characteristics. Sea breeze is found to develop more frequently under offshore compared to onshore and parallel to the shoreline background flows. Poor dispersion conditions (high nitrogen oxides-NO(x) and O(3) concentrations) are connected to the pure sea breeze cases and to those cases where sea breeze interacts with a moderate northerly flow during the warm period. The levels of NO(x) and O(3) for the northern Athens basin area are found to be significantly higher during the sea breeze days compared to the Etesian days. Regarding the diurnal variation of ozone for the sea breeze days, peak concentrations and higher intra-daily ranges are observed. Day-to-day pollution accumulation (build-up effect) is measured for O(3) at the northern stations in the Athens basin. PMID:22766425

  3. Sea-air of CO2 in the North Pacific using shipboard and satellite data

    NASA Technical Reports Server (NTRS)

    Stephens, Mark P.; Samuels, Geoffrey; Olson, Donald B.; Fine, Rana A.; Takahashi, Taro

    1995-01-01

    A method has been developed to produce high-resolution maps of pCO2 in surface water for the North Pacific using satellite sea surface temperature (SST) data and statistical relationships between measured pCO2 and temperature. In the subtropical North Pacific the pCO in seawater is controlled primarily by temperature. Accordingly, pCO2 values that are calculated from the satellite SST data have good agreement with the measured values (rms deviation of +/- microatm). In the northwestern subpolar region the pCO2 is controlled not only by temperature, but also by significant seasonal changes in the total CO2 concentration, which are caused by seasonal changes in primary production, mixing with subsurface waters and sea-air exchange. Consequently, the parameterization of oceanic p CO2 based on SST data alone is not totally successful in the northwestern region (rms deviation of +/- 40 microatm). The use of additional satellite products, such as wind and ocean color data, as planned for a future study, is considered necessary to account for the pCO2 variability caused by seasonal changes in the total CO2 concentration. The net CO2 flux for the area of the North Pacific included in this study (north of 10 deg N) has been calculated using the monthly pCO2 distributions computed, and monthly wind speeds from the European Centre for Medium-Range Weather Forecasts. The region is found to be a net source to the atmosphere of 1.9 x 10(exp 12) to 5.8 x 10(exp 12) moles of CO2 per year (or 0.02-0.07 Gt C/yr), most of the outflux occurring in the subtropics.

  4. Sources and fluxes of organic nitrogen in precipitation over the southern East/Japan Sea: potential impacts on marine productivity

    NASA Astrophysics Data System (ADS)

    Yan, G.; Kim, G.

    2014-12-01

    We measured total dissolved reactive nitrogen in precipitation samples collected at Uljin, a Korean coastal site upwind of the southern East/Japan Sea (EJS), selected as a representative study site of atmospheric deposition over the northwestern Pacific margin. NO3- was found to be the most abundant nitrogen species, followed by NH4+ and dissolved organic nitrogen (DON). Air mass back trajectory analysis revealed that a significant fraction of the inorganic nitrogen (NO3- and NH4+) originated from mainland Asia, whereas the DON was primarily derived from Korea. Using varimax-rotated factor analysis in combination with major ions as tracers, agricultural activities in Korea were identified as the primary sources of DON in these samples. In addition, a positive correlation was found at Uljin between the size of organic fraction in total reactive nitrogen and nitrogen to carbon atomic ratio in organic matter. This correlation has also been observed at other locations worldwide, implying the utilization potential of atmospheric organic nitrogen might increase with its proportion in total nitrogen. Combining wet deposition measurements in this study with literature values for dry deposition observed at a remote island in the EJS, the total atmospheric depositional flux of reactive nitrogen was estimated to be 115 mmol N m-2 yr-1 over the southern EJS. Our study sheds new light on the potentially significant contribution to primary productivity of the northwestern Pacific Ocean by atmospheric deposition of nitrogen, especially the organic fraction.

  5. Low benthic respiration and nutrient flux at the highly productive Amundsen Sea Polynya, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Han; Choi, Ayeon; Jin Yang, Eun; Lee, SangHoon; Hyun, Jung-Ho

    2016-01-01

    We investigated rates of total oxygen uptake (TOU) sulfate reduction (SRR), and benthic nutrient flux (BNF) in sediments of polynya (730-825 m water depth), ice shelf (1064 m water depth), and marginal sea-ice zone (530 m water depth) to evaluate the role of benthic mineralization in degrading organic material produced by primary production in the Amundsen Sea polynya (ASP), Antarctica. Despite high primary production (110 mmol C m-2 d-1) in the water column, benthic carbon mineralization in the ASP (average, 2.1±0.3 mmol C m-2 d-1) was strikingly lower than in other less productive polar regions, accounting for only 1.9% of primary production. Low sediment accumulation rates (0.18-0.20 cm yr-1) and sinking fluxes of organic matter likely caused the low oxygen consumption rates (2.44-3.11 mmol m-2 d-1) and low effluxes of dissolved inorganic nitrogen (0.12-0.13 mmol m-2 d-1) and phosphate (0.017-0.018 mmol m-2 d-1) in the ASP. Carbon oxidation by sulfate reduction (0.11-0.19 mmol C m-2 d-1) comprised only 10% of total benthic mineralization, indicating that anaerobic C oxidation plays a minor role in total C oxidation. Our results, including low sediment accumulation rates and benthic metabolic rates, suggest that most organic carbon produced by Phaeocystis blooms would be respired to CO2 in the water column, and thus the organic carbon reaching the sediment is not adequate to stimulate benthic metabolism in the ASP.

  6. Riverine nutrients fluxes to the North Sea and harmful algal blooms, what changed since 1984 ?

    NASA Astrophysics Data System (ADS)

    Passy, Paul; Gypens, Nathalie; Billen, Gilles; Garnier, Josette; Thieu, Vincent; Rousseau, Véronique; Callens, Julie; Parent, Jean-Yves; Lancelot, Christiane

    2013-04-01

    Nutrients fluxes delivered to the coastal zones reflect human activities taking place within watersheds. Silica (Si) fluxes mainly originate from soils and rocks weathering, so they are few impacted by human activities. On the contrary, nitrogen (N) and phosphorus (P) fluxes are dramatically impacted by human activities. N originates from urban waste water but mainly from agricultural activities. P originates mostly from urban and industrial waste waters. The enrichment of the hydrosystems in N and P leads to an imbalance between N and P in one hand and Si in the other hand. This imbalance leads to harmful algal blooms, which are damaging aquatic ecosystems, fishing activities and touristic activities. In 1992, the OSPAR convention was signed by 15 European States and targets to decrease the N and P fluxes delivered to the European coastal zones by 50 % with respect to the reference year of 1985. Focusing on the Seine, Somme and Scheldt watersheds (France and Belgium) and the adjacent coastal zone of the North Sea, we developed a retrospective modelling from 1984 to 2007 calculating nutrients fluxes from watersheds and Phaeocystis blooms occurring in the coastal zone. We coupled the biogeochemical deterministic model Seneque/Riverstrahler depicting processes occurring within hydrological networks with the marine model MIRO simulating Phaeocystis blooms in the coastal zone. The evolution of N and P fluxes were highly dissimilar. Indeed, P mainly originates from point sources. Thereby the banishment of P from the washing powders during the nineties, the development of sewage and the improvement of WWTP in terms of waste water treatment lead to a decrease of P fluxes delivered to the coastal zone. This decrease can be observed for the three watersheds. The P OSPAR objective is achieved since the middle of the 2000's years. On the other side, N, mostly originating from agricultural diffuse sources, did not decrease over the period. The fluxes even increased at the

  7. An universal description of the particle flux distributions in extended air showers

    SciTech Connect

    Chou, Aaron S.; Arisaka, Katsushi; Pernas, Maximo David Ave; Barnhill, David; Billoir, Pierre; Tripathi, Arun; Yamamoto, Tokonatsu; /Fermilab /UCLA /KICP, Chicago /Paris U., VI-VII

    2005-08-01

    It is shown that the electromagnetic and muonic fluxes in extended air showers (EAS) can be described using a simple model incorporating attenuation and geometrical dispersion. The model uses a reduced set of parameters including the primary energy E, the position of shower maximum X{sub max} relative to the ground, and a muon flux normalization N{sub {mu}}. To a good approximation, this set of three physical parameters is sufficient to predict the variability of the particle fluxes due to systematic differences between different models of composition and hadronic interactions, and due to statistical event-by-event differences in shower development. Measurements of these three physical observables are therefore unbiased and very nearly model-independent, in contrast with standard measurement techniques. The theoretical problem of determining primary composition is thus deconvolved from the measurement procedure, and may be approached in a subsequent analysis of the measured distributions of (E, X{sub max}, N{sub {mu}}).

  8. Re-examining the roles of surface heat flux and latent heat release in a "hurricane-like" polar low over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kolstad, Erik W.; Bracegirdle, Thomas J.; Zahn, Matthias

    2016-07-01

    Polar lows are intense mesoscale cyclones that occur at high latitudes in both hemispheres during winter. Their sometimes evidently convective nature, fueled by strong surface fluxes and with cloud-free centers, have led to some polar lows being referred to as "arctic hurricanes." Idealized studies have shown that intensification by hurricane development mechanisms is theoretically possible in polar winter atmospheres, but the lack of observations and realistic simulations of actual polar lows have made it difficult to ascertain if this occurs in reality. Here the roles of surface heat fluxes and latent heat release in the development of a Barents Sea polar low, which in its cloud structures showed some similarities to hurricanes, are studied with an ensemble of sensitivity experiments, where latent heating and/or surface fluxes of sensible and latent heat were switched off before the polar low peaked in intensity. To ensure that the polar lows in the sensitivity runs did not track too far away from the actual environmental conditions, a technique known as spectral nudging was applied. This was shown to be crucial for enabling comparisons between the different model runs. The results presented here show that (1) no intensification occurred during the mature, postbaroclinic stage of the simulated polar low; (2) surface heat fluxes, i.e., air-sea interaction, were crucial processes both in order to attain the polar low's peak intensity during the baroclinic stage and to maintain its strength in the mature stage; and (3) latent heat release played a less important role than surface fluxes in both stages.

  9. Sea ice-atmosphere interaction. Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, Jeff; Maslanik, Jim; Haefliger, Marcel; Fowler, Chuck

    1992-01-01

    Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic, an area where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin.

  10. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  11. Thermocline mixing and vertical oxygen fluxes in the stratified central North Sea

    NASA Astrophysics Data System (ADS)

    Rovelli, Lorenzo; Dengler, Marcus; Schmidt, Mark; Sommer, Stefan; Linke, Peter; McGinnis, Daniel F.

    2016-03-01

    In recent decades, the central North Sea has been experiencing a general trend of decreasing dissolved oxygen (O2) levels during summer. To understand potential causes driving lower O2, we investigated a 3-day period of summertime turbulence and O2 dynamics in the thermocline and bottom boundary layer (BBL). The study focuses on coupling biogeochemical with physical transport processes to identify key drivers of the O2 and organic carbon turnover within the BBL. Combining our flux observations with an analytical process-oriented approach, we resolve drivers that ultimately contribute to determining the BBL O2 levels. We report substantial turbulent O2 fluxes from the thermocline into the otherwise isolated bottom water attributed to the presence of a baroclinic near-inertial wave. This contribution to the local bottom water O2 and carbon budgets has been largely overlooked and is shown to play a role in promoting high carbon turnover in the bottom water while simultaneously maintaining high O2 concentrations. This process may become suppressed with warming climate and stronger stratification, conditions which could promote migrating algal species that potentially shift the O2 production zone higher up within the thermocline.

  12. Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidirectional Ammonia Flux in CMAQ

    EPA Science Inventory

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  13. "Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidrectional Ammonia Flux in CMAQ"

    EPA Science Inventory

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  14. Carbon fluxes and export in the northern and middle Atlantic Sea measured with drifting sediment traps

    SciTech Connect

    Miquel, J-C; Fowler, S; Hamilton, T; Heilmann, J P; LaRosa, J; Carroll, M

    2000-07-26

    In July 1993 and June 1995 drifting sediment traps were deployed near the Po outflow, in the coastal zone and in the Jabuka Pit in order to obtain quantitative information on the vertical flux of particulate material and export of organic carbon in the Northern and Middle Adriatic Sea. During these periods and in July 1994, the standing stock of carbon and nitrogen in the water column were also estimated. Carbon and nitrogen concentrations were higher in the north with a mean of 266 {micro}g C l{sup -1} in surface waters as compared to 92 {micro}g C l{sup -1} in Middle Adriatic; maximum concentrations were associated to the less-saline surface-subsurface waters in the north and to the chlorophyll a maximum in the Middle Adriatic. Organic carbon flux was roughly five times higher near the Po than in the more oligotrophic waters of the central region, with overall values (0.8 to 11.5 mg m{sup -2} d{sup -1}) being low compared to the open Northwestern Mediterranean. Comparison with primary production measurements yielded estimates of carbon export (f-ratio) of 4.7 and 3.4% in the Po and Pit stations, respectively, in 1993 and of 1.6 and 3.6% in the central part of the Adriatic in 1995. These consistently low values suggest enhanced carbon recycling in the upper water column, even in regions characterized by different production and organic flux regimes. Zooplankton fecal pellets were important conveyors of organic carbon in this region; particularly those produced by fishes in the North and coastal sites.

  15. A study of the Merritt Island, Florida sea breeze flow regimes and their effect on surface heat and moisture fluxes

    NASA Technical Reports Server (NTRS)

    Rubes, M. T.; Cooper, H. J.; Smith, E. A.

    1993-01-01

    Data collected during the Convective and Precipitation/Electrification Experiment were analyzed as part of an investigation of the sea breeze in the vicinity of Merritt Island, Florida. Analysis of near-surface divergence fields shows that the classical 24-hour oscillation in divergence over the island due to the direct sea breeze circulation is frequently disrupted and exhibits two distinct modes: the classical sea breeze pattern and deviations from that pattern. A comparison of clear day surface energy fluxes with fluxes on other days indicates that changes in magnitudes were dominated by the presence or absence of clouds. Non-classical sea breeze days tended to lose more available energy in the morning than classical sea breeze days due to earlier development of small cumulus over the island. A composite storm of surface winds, surface energy fluxes, rainfall, and satellite visible data was constructed. A spectral transmittance over the visible wavelengths for the cloud cover resulting from the composite storm was calculated. It is shown that pre-storm transmittances of 0.8 fall to values near 0.1 as the downdraft moves directly over the site. It is also found that under post-composite storm conditions of continuous clear sky days, 3.5 days are required to evaporate back into the atmosphere the latent heat energy lost to the surface by rainfall.

  16. Decadal trends in air-sea CO2 exchange in the Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Arrigo, Kevin R.

    2016-05-01

    Highly productive Antarctic shelf systems, like the Ross Sea, play important roles in regional carbon budgets, but the drivers of local variations are poorly quantified. We assess the variability in the Ross Sea carbon cycle using a regional physical-biogeochemical model. Regionally, total partial pressure of CO2 (pCO2) increases are largely controlled by the biological pump and broadly similar to those in the offshore Southern Ocean. However, this masks substantial local variability within the Ross Sea, where interannual fluctuations in total pCO2 are driven by the biological pump and alkalinity, whereas those for anthropogenic pCO2 are related to physical processes. Overall, the high degree of spatial variability in the Ross Sea carbon cycle causes extremes in aragonite saturation that can be as large as long-term trends. Therefore, Antarctic shelf polynya systems like the Ross Sea will be strongly affected by local processes in addition to larger-scale phenomena.

  17. Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content

    NASA Astrophysics Data System (ADS)

    Saenko, Oleg A.; Yang, Duo; Gregory, Jonathan M.; Spence, Paul; Myers, Paul G.

    2015-08-01

    We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the "thermal" (near-surface air temperature) and "wind" (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the "thermal" forcing, whereas it is more due to the "wind" forcing in the North Pacific; in the Southern Ocean, the "thermal" and "wind" forcing have a comparable influence. In the ocean adjacent to Antarctica the "thermal" forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the "wind" forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the "thermal" and "wind" forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the "thermal" forcing.

  18. A semianalytical algorithm for quantitatively estimating sediment and atmospheric deposition flux from MODIS-derived sea ice albedo in the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Zhantang; Hu, Shuibo; Wang, Guifen; Zhao, Jun; Yang, Yuezhong; Cao, Wenxi; Lu, Peng

    2016-05-01

    Quantitative estimates of particulate matter [PM) concentration in sea ice using remote sensing data is helpful for studies of sediment transport and atmospheric dust deposition flux. In this study, the difference between the measured dirty and estimated clean albedo of sea ice was calculated and a relationship between the albedo difference and PM concentration was found using field and laboratory measurements. A semianalytical algorithm for estimating PM concentration in sea ice was established. The algorithm was then applied to MODIS data over the Bohai Sea, China. Comparisons between MODIS derived and in situ measured PM concentration showed good agreement, with a mean absolute percentage difference of 31.2%. From 2005 to 2010, the MODIS-derived annual average PM concentration was approximately 0.025 g/L at the beginning of January. After a month of atmospheric dust deposition, it increased to 0.038 g/L. Atmospheric dust deposition flux was estimated to be 2.50 t/km2/month, similar to 2.20 t/km2/month reported in a previous study. The result was compared with on-site measurements at a nearby ground station. The ground station was close to industrial and residential areas, where larger dust depositions occurred than in the sea, but although there were discrepancies between the absolute magnitudes of the two data sets, they demonstrated similar trends.

  19. Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes

    NASA Astrophysics Data System (ADS)

    Ayarzagüena, Blanca; Screen, James A.

    2016-03-01

    The effects of Arctic sea ice loss on cold air outbreaks (CAOs) in midlatitudes remain unclear. Previous studies have defined CAOs relative to the present-day climate, but changes in CAOs, defined in such a way, may reflect changes in mean climate and not in weather variability, and society is more sensitive to the latter. Here we revisit this topic but applying changing temperature thresholds relating to climate conditions of the time. CAOs do not change in frequency or duration in response to projected sea ice loss. However, they become less severe, mainly due to advection of warmed polar air, since the dynamics associated with the occurrence of CAOs are largely not affected. CAOs weaken even in midlatitude regions where the winter mean temperature decreases in response to Arctic sea ice loss. These results are robustly simulated by two atmospheric models prescribed with differing future sea ice states and in transient runs where external forcings are included.

  20. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets

    NASA Astrophysics Data System (ADS)

    Cavan, E. L.; Le Moigne, F. A. C.; Poulton, A. J.; Tarling, G. A.; Ward, P.; Daniels, C. J.; Fragoso, G. M.; Sanders, R. J.

    2015-02-01

    The Southern Ocean (SO) is an important CO2 reservoir, some of which enters via the production, sinking, and remineralization of organic matter. Recent work suggests that the fraction of production that sinks is inversely related to production in the SO, a suggestion that we confirm from 20 stations in the Scotia Sea. The efficiency with which exported material is transferred to depth (transfer efficiency) is believed to be low in high-latitude systems. However, our estimates of transfer efficiency are bimodal, with stations in the seasonal ice zone showing intense losses and others displaying increases in flux with depth. Zooplankton fecal pellets dominated the organic carbon flux and at stations with transfer efficiency >100% fecal pellets were brown, indicative of fresh phytodetritus. We suggest that active flux mediated by zooplankton vertical migration and the presence of sea ice regulates the transfer of organic carbon into the oceans interior in the Southern Ocean.

  1. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  2. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  3. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Steinman, Byron A.; Stolpe, Martin B.; Way, Robert G.

    2015-08-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.

  4. Robust Comparison of Climate Models with Observations Using Blended Land Air and Ocean Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Jacobs, P.; Cowtan, K.; Hawkins, E.; Mann, M. E.; Miller, S. K.; Steinman, B. A.; Way, R. G.; Stolpe, M.

    2015-12-01

    Model-observation comparisons provide an important test of climate models' ability to realistically simulate the transient evolution of the system. A great deal of attention has recently focused on the so-called "hiatus" period of the past ~15 years, when estimates of recent surface temperature evolution fall at the lower end of climate model projections. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. We discuss the magnitude of these biases, and their implications for the evaluation of climate model performance over the "hiatus" period and the full instrumental record.

  5. Influence of Land-sea Breeze on Air Quality Over Taiwan Coastal Environment

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Chiang, C.

    2008-12-01

    Taiwan is is an island nation in western Pacific close to Mainland China. As such Land-sea breeze is a natural processes. Many major cities and industrial developments naturally developed near coastal area. As air quality in urban and industrial centers worsened impact on coastal areas increases. Land-sea breeze naturally plays an important role in transport of pollutants to and from polluted regions to the coastal environment. In this study we analyzed a full year of Taiwan EPA monitored hourly data on O3, NOx, CO, CO2, temperature, wind direction and speed to group and identify time and place with significant land-sea breeze phenomenon. We first compare coastal air quality condition with and without land-sea breeze and then use a 3-D regional-scale transport and chemistry model to provide detailed diagnostic interpretations of the coupling of pollution source regions and coastal areas. From this we can clarify when and how land-sea breeze may play a role in determining coastal air quality. Two different subregions of Taiwan are of interest in this study, Taipei and Kaoshiung environments, in the north and south of Taiwan respectively. Taipei is about 30-50 km away from its impacted coastal area while Kaoshiung is directly at and inland of its coastal shore. For Taipei region daytime upper air pollutants can be transported out to sea and then subside and return to the coastal area at night. But under summer severely polluted condition surface Taipei urban pollutants actually extend beyond the coastal area hence at night the return flow only brings back the same air mass. In contrast, Kaoshiung area is almost always under high pollution status. Its domain of influence always extends far beyond the coastal shore. Therefore, with and without land-sea breeze, coastal pollution remains about the same. We shall present detailed 2-D and 3-D data and station by station analyses in support of these findings.

  6. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes. PMID:25377990

  7. Climatology and Real-Data Simulations of Snow Bands over the English Channel and Irish Sea during Cold-Air Outbreaks

    NASA Astrophysics Data System (ADS)

    Norris, J.; Vaughan, G.; Schultz, D. M.

    2012-04-01

    During the winters of 2009—2010 and 2010—2011, anti-cyclonic blocking over the north Atlantic led to cold, dry air being advected over the UK from the north and east, generating widespread snow depths not seen since the early 1980s. The societal and economical impacts of this snow were severe and diverse, including those on transport, industry, commerce, emergency services, and retail. The most distinctive precipitation features during these winters formed over the English Channel and Irish Sea, where convection frequently organised into bands, as diagnosed from Met Office NIMROD precipitation radar images, forming along the major axis of each body of water (hereafter, sea) when the boundary-layer flow was roughly parallel to each of those axes (hereafter, along-sea). In this study, we address the atmospheric conditions, diagnosed from soundings from suitable locations, at times when bands were observed and at times that they were not, during the cold-air outbreaks in these winters. We find that, for both seas, a band was present the majority of times that the 850-hPa flow was along-sea. We subsequently find that, of these times of along-sea flow, for both seas, 850-hPa wind speed and surface-to-850-hPa temperature difference were significantly greater when bands were present than when they were not. Real-data simulations using the Weather Research and Forecasting (WRF) model are then presented for a typical band over each sea and the model is found to be accurate in reproducing the structures observed on radar. Output from control runs for each band is compared to that in which topography, surface heat fluxes, and land-sea borders are each removed in turn in order to investigate how the low-level flow evolves to generate the observed bands.

  8. Interannual variability of the air-sea heat exchange in the western Mediterranean in relation to the deep-water formation processes

    NASA Astrophysics Data System (ADS)

    Soto, J.; Criado Aldeanueva, F.; García Lafuente, J.; Sanchez Román, A.; Carracedo, L.

    2009-04-01

    A 60-year long time series of heat fluxes (long and short wave radiation, sensible and latent contributions) from NCEP reanalysis dataset and a 22-year long time series of Sea Surface Temperature (SST) from JPL AVHRR Oceans Pathfinder dataset have been combined to study the seasonal and interannual variability of air-sea heat exchanges over the Mediterranean Sea and correlate them with the characteristics of the Mediterranean outflow through the Strait of Gibraltar collected in the frame of the INGRES projects in the last years. Special attention has been devoted to the historically reported deep-water formation basin of the Western Mediterranean (Gulf of Lions) during the pre-conditioning (November and December) and winter seasons. Until around 1970, no clear trend is found in the net heat flux winter series since positive and negative anomalies are observed alternatively. From then onwards, negative anomalies are frequently observed until the 2003-2006 positive events. A net heat loss of about 150 W/m2 is observed in 2005, the highest value since 1956, especially due to evaporation losses towards the atmosphere. The anomalously cold air and sea surface temperature in the area help to increase this contribution that reflects in a higher fraction of Western Mediterranean Deep Water (WMDW) in the outflow through the Strait.

  9. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  10. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  11. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary.

    PubMed

    Yan, Shu; Rodenburg, Lisa A; Dachs, Jordi; Eisenreich, Steven J

    2008-03-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase SigmaPCB concentrations averaged 1100 pg/m3 and varied with temperature. Dissolved-phase SigmaPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of SigmaPCBs ranged from +0.2 to +630 ng m(-2) d(-1). Annual fluxes of SigmaPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 microg m(-2) yr(-1), corresponding to an annual loss of +28 kg/yr of SigmaPCBs from the Hudson River Estuary for the year of 2000. PMID:17854962

  12. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h-1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m-2 d-1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  13. Experimental sea slicks: Their practical applications and utilization for basic studies of air-sea interactions

    NASA Astrophysics Data System (ADS)

    Hühnerfuss, Heinrich; Garrett, W. D.

    1981-01-01

    Practical applications of organic surface films added to the sea surface date back to ancient times. Aristotle, Plutarch, and Pliny the Elder describe the seaman's practice of calming waves in a storm by pouring oil onto the sea [Scott, 1977]. It was also noted that divers released oil beneath the water surface so that it could rise and spread over the sea surface, thereby suppressing the irritating flicker associated with the passage of light through a rippled surface. From a scientific point of view, Benjamin Franklin was the first to perform experiments with oils on natural waters. His experiment with a `teaspoonful of oil' on Clapham pond in 1773 inspired many investigators to consider sea surface phenomena or to conduct experiments with oil films. This early research has been reviewed by Giles [1969], Giles and Forrester [1970], and Scott [1977]. Franklin's studies with experimental slicks can be regarded as the beginning of surface film chemistry. His speculations on the wave damping influence of oil induced him to perform the first qualitative experiment with artificial sea slicks at Portsmouth (England) in October of 1773. Although the sea was calmed and very few white caps appeared in the oil-covered area, the swell continued through the oiled area to Franklin's great disappointment.

  14. [Diurnal variations of greenhouse gas fluxes at the water-air interface of aquaculture ponds in the Min River estuary].

    PubMed

    Yang, Ping; Tong, Chuan; He, Qing-Hua; Huang, Jia-Fang

    2012-12-01

    Wetland reclamation and aquaculture is one of the main disturbance types in coastal wetlands. Diurnal variations of CO2, CH4 and N2O fluxes at the water-air interface were determined using a floating chambers + gas chromatography method in a shrimp pond, and a mixed culture pond of fish and shrimp in October in the Shanyutan Wetland of the Min River estuary, southeast China. Meanwhile, the meteorological indicators in ground surface and physical, chemical and biological indicators of surface water were also measured. CO2, CH4 and N2O fluxes at the water-air interface all demonstrated distinct diurnal variations. Both shrimp pond and mixed culture pond of fish and shrimp functioned as a sink of CO2 [the diurnal averaged CO2 fluxes were -48.79 and -105.25 mg x (m2 x h)(-1), respectively], and a source of CH4 [the diurnal averaged CH4 fluxes were 1.00 and 5.74 mg x (m2 x h)(-1), respectively]; the diurnal averaged CO2 and CH4 fluxes at the water-air interface of the mixed culture of fish and shrimp pond were higher than that of the shrimp pond. Greenhouse gas fluxes at the water-air interface from the aquaculture ponds were influenced by many factors. Multiple stepwise regression analysis showed that the concentration of Chlorophyll was the major factor affecting the CO2 fluxes, and the concentrations of SO4(2-) and PO4(3-) were the major factors affecting the CH4 fluxes at the water-air interface of the shrimp pond; whereas water temperature and Chlorophyll were the major factors affecting the CO2 fluxes, and dissolved oxygen, PO4(3-) and pH were the major factors affecting the CH4 fluxes at the water-air interface of the mixed culture pond of fish and shrimp. PMID:23379142

  15. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    NASA Astrophysics Data System (ADS)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2016-07-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  16. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets.

    PubMed

    Miller, M F; Kessler, W J; Allen, M G

    1996-08-20

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O(2) density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1-2% of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm/s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages. PMID:21102916

  17. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  18. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  19. Reprint of: Carbon flux to the deep in three open sites of the Southern European Seas (SES)

    NASA Astrophysics Data System (ADS)

    Gogou, Alexandra; Sanchez-Vidal, Anna; Durrieu de Madron, Xavier; Stavrakakis, Spyros; Calafat, Antoni M.; Stabholz, Marion; Psarra, Stella; Canals, Miquel; Heussner, Serge; Stavrakaki, Ioanna; Papathanassiou, Evangelos

    2014-07-01

    In this study, we investigate the strength and efficiency of carbon sequestration in the Southern European Seas (SES), by analyzing the export of POC at three deep sites located in the Western Mediterranean Sea (WMED), the Eastern Mediterranean Sea (EMED) and the Black Sea (BS). We combine estimations of satellite and algorithm-generated primary production data, calculated POC fluxes out of the euphotic layer and POC fluxes measured by sediment traps at the mesopelagic and bathypelagic layers during a one year period, with an ultimate goal to obtain a better understanding of the functioning of the biological pump in the SES. Annual particulate primary production based on satellite estimations (SeaWiFS) at the three sites, averages 205, 145 and 225 gC m- 2 y- 1 at the WMED, EMED and BS, respectively. According to our findings, the fraction of primary production that is exported out of the euphotic zone in the SES ranges between 4.2% and 11.4%, while the fraction reaching the mesopelagic layer (1000-1400 m depth) ranges between 0.6% and 1.8%. Finally, the fraction of primary production exported at the bathypelagic layer (2000-2800 m depth) is found to be 0.6%, 0.3% and 1.4% in the WMED, EMED and BS, respectively. The role of various processes responsible for the replenishment of surface waters with nutrients, giving rise to productivity episodes and organic carbon export to depth at the three SES sites is considered.

  20. Carbon dioxide partial pressure and carbon fluxes of air-water interface in Taihu Lake, China

    NASA Astrophysics Data System (ADS)

    Fan, Chengxin; Hu, Weiping; Ford, Phillip W.; Chen, Yuwei; Qu, Wenchuan; Zhang, Lu

    2005-03-01

    To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake, Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4 (mean±standard deviation) μatm (1atm=1.013 25×105Pa), 416.3±217.0 μatm, 576.5±758.8 μatm, 304.2±243.5 μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6 μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7 μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (-0.58±12.9 mmol/m2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×104 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.

  1. Controls, budgets and variability of riverine sediment fluxes to the Gulf of Lions (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Sadaoui, Mahrez; Ludwig, Wolfgang; Bourrin, François; Raimbault, Patrick

    2016-09-01

    The present study investigates the spatio-temporal variability of riverine sediment fluxes to the Gulf of Lions, one of the most extensive shelf regions in the Mediterranean Sea. Small coastal rivers compete here with the Rhone River, nowadays the largest Mediterranean river in terms of water discharge. Our scientific objectives were to investigate the major controls of riverine sediment yields (SY) in this area and to quantify the role of the small coastal rivers, largely ignored in previous studies, in the total sediment budgets. Another objective concerned the source identification of the Rhone sediments with regard to the major tributary contributions, and to test whether the sediment fluxes are in equilibrium in the basin. For the calculation of representative long-term fluxes, we used a Simplified Rating Curve Approach (SiRCA) which could be validated by high resolution monitoring and existing literature data. An overall of 13 drainage basins could be distinguished, covering about 86% of the study area (6 coastal rivers, the Rhone River, and 6 of its tributaries). Representative SY range from 19 to 151 t km-2 yr-1 in the investigated drainage basins. Despite their smaller basin areas and more torrential discharge regimes, SY of the coastal rivers were generally lower compared to SY of the Rhone River and its tributaries. Confrontation with the lithological, morphological and hydroclimatic basin characteristics indicate that lithology exerts the dominant control on SY in the study region. In particular, the existence of erodible sedimentary rocks in the headwater regions yields high SY. Peak values of 135 and 151 t km-2 yr-1 were observed for the Isere and Durance tributaries of the Rhone River, where badlands exist. The coastal rivers contribute on average only to slightly more than 5% of the long-term sediment inputs to the Gulf of Lions. During individual years however, their contribution can strongly increase (up to 27% in 2011). Their contribution is

  2. High-flux Gas Seepage fuels Shallow Gas Hydrate Deposits in the Eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Pape, T.; Bahr, A.; Klapp, S. A.; Kessler, J. D.; Bohrmann, G.

    2009-12-01

    In order to quantify gas hydrates and to elucidate their dynamics, we investigated a high-flux seepage site in the anoxic Eastern Black Sea. Pressure and non-pressure near-surface sediment cores, CH4-derived carbonates, ROV-based seafloor images, and gas venting from the seafloor were collected at the Batumi seep area (BSA) in about 845 mbsl. Late glacial to Holocene sediments were recovered with the Dynamic Autoclave Piston Corer (DAPC) and with gravity corers. In gravity cores, hydrates were absent in the uppermost Black Sea Unit 1, but occurred as layers of massive aggregates in deeper sections of Unit 2. In Unit 3, disseminated gas hydrates occurred throughout the entire section recovered. Gas from degassing DAPC cores and from dissociated hydrates as well as vent gas collected with our Gas Bubble Sampler were strongly dominated by CH4 (> 99.9 mol-% of light hydrocarbons, LHC). LHC ratios (C1/[C2 + C3] >1000) and stable isotopic compositions of CH4 (δ13C = -53.5‰; D/H around -175‰) indicated a predominant microbial LHC origin. CH4 in vent gas was virtually devoid of 14C, suggesting that the contribution of CH4 from degradation of fresh organic matter is minimal. Of all gas types collected, vent gas seemed to be least affected by molecular fractionation during sediment migration and hydrate precipitation. Thus, its properties might resemble that of gas in deep reservoirs. LHCs in DAPC cores restricted to top sediments (Units 1 and 2) were characterized by relative CH4 depletion most probably due to the anaerobic oxidation of methane. Gas in DAPC cores additionally comprising Unit 3 material and from dissociated hydrates contained highest CH4 portions due to preferential incorporation in hydrates. X-ray diffraction showed structure I hydrates to prevail at the BSA. Similar crystal sizes of shallow hydrates both at BSA (mean 405 µm) and Hydrate Ridge (412 µm) in contrast to larger grain sizes of deeply buried hydrates at Hydrate Ridge (510 µm) suggest that

  3. Impacts of South East Biomass Burning on local air quality in South China Sea

    NASA Astrophysics Data System (ADS)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  4. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  5. Heat flux measurements in stagnation point methane/air flames with thermographic phosphors

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed; Staude, Susanne; Bergmann, Ulf; Atakan, Burak

    2010-10-01

    Light-induced phosphorescence from thermographic phosphors was used to study the wall temperatures and heat fluxes from nearly one-dimensional flat premixed flames. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with equivalence ratios of φ = 1, φ = 0.75 and φ = 1.25 at ambient pressure. The flames were burning in a stagnation point arrangement against a water-cooled plate. The central part of this plate was an alumina ceramic plate coated from both sides with chromium-doped alumina (ruby) and excited with a Nd:YAG laser or a green light-emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 to 1.2 m/s. The burner to plate distance (H) ranged from 0.5 to 2 times the burner exit diameter ( d = 30 mm). The measured heat flux rates indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one-dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, gas phase temperatures were measured by OH-LIF for a stoichiometric stagnation point flame. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high mass fluxes. This geometry may be well suited for further studies of the elementary flame wall interaction.

  6. Observation of oceanic heat flux to the sea ice using ice-tethered moorings: Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ha, Ho Kyung; Yae Son, Eun; Park, Jae Hun; Cole, Sylvia; Park, Keyhong; Sul La, Hyoung

    2016-04-01

    It is important to figure out the physical mechanisms (e.g. shear, turbulence) below the sea ice, because of its direct influence on oceanic heat flux that is closely related to sea ice melt. A short-term (3.5 days) mooring was conducted in August 2014 to measure the vertical profiles of velocity, salinity and temperature within the sea-ice boundary layer. The mooring package consisted of an acoustic Doppler current profiler (ADCP) and 3 MicroCats. A long-term mooring of an ice-tethered profiler with modular acoustic velocity sensor (MAVS) was conducted to acquire vertical profiles of salinity, temperature, pressure and velocity in the marginal ice zone. The mooring data was analyzed to examine the role of the Pacific Summer Water (PSW) as a heat source, which can provide oceanic heat to the overlying layer. The ADCP data showed distinctive upper-velocity fields induced by entrainment of the sea ice. It appeared up to about 15 m depth during the entire observation period. Periodical components of MAVS data were extracted through wavelet transform. Since sea ice extent is relatively low in summer, the wind forcing could be effectively delivered in the form of a near 12 hours period oscillation to the 60 m depth where the PSW was occupying. Even in winter, while the sea surface was fully covered with the sea ice, near 12 hours period oscillation was appeared at 60 m depth. In September and January, strong 12 hours period oscillation appeared up to a deeper layer, which is deeper than 150 m depth where the wind forcing is hard to reach. The relationship between the heat flux and the oscillation strength will be discussed during the presentation.

  7. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  8. Variational iteration method for solving sea-air oscillator of the ENSO model

    NASA Astrophysics Data System (ADS)

    Noor, N. F. M.

    2015-10-01

    A class of sea-air oscillator of the El Nino-Southern Oscillation (ENSO) mechanism is considered. Variational iteration method (VIM) is applied to generate approximate solution to the system. Numerical VIM solutions obtained are then compared with results from the analytical solution and the Runge-Kutta-Fehlberg method of fourth-fifth order (RKF45).

  9. A multi-model ensemble view of winter heat flux dynamics and the dipole mode in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William

    2016-04-01

    Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics

  10. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables.

    PubMed

    Eckley, Chris S; Tate, Mike T; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A; Wickland, Kimberly P; Wang, Bronwen; Gray, John E; Edwards, Grant C; Krabbenhoft, Dave P; Smith, David B

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux+vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. PMID:26936663

  11. On the Potential Impact of Daytime Surface Sensible Heat Flux on the Dissipation of Martian Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.; Tillman, J. E.

    1997-01-01

    The Martian daytime soil surface temperature is governed primarily by the net irradiance balance and surface soil heat flux. Thus the outbreak of a cold air mass generates increased sensible heat flux that is conducive to daytime dissipation of the cold air mass thermal characteristics. Conceptual and scaling evaluations of this dissipation are provided while comparison is made with similar situations on Earth. It is estimated that sensible heat flux contribution to the dissipation of the original thermal structure of the cold air could be three times larger than the corresponding situation on Earth. Illustrative numerical model simulations provide scaling of the potential impact on the dissipation of cold air masses for various combinations of background wind speed and latitudes.

  12. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  13. Air-sea exchange of dimethylsulfide in the Southern Ocean: Measurements from SO GasEx compared to temperate and tropical regions

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B. W.; Fairall, C. W.; Archer, S. D.; Huebert, B. J.

    2011-04-01

    In the Southern Ocean Gas Exchange Experiment (SO GasEx), we measured an atmospheric dimethylsulfide (DMS) concentration of 118 ± 54 pptv (1σ), a DMS sea-to-air flux of 2.9 ± 2.1 μmol m-2 d-1 by eddy covariance, and a seawater DMS concentration of 1.6 ± 0.7 nM. Dividing flux by the concurrent air-sea concentration difference yields the transfer velocity of DMS (kDMS). The kDMS in the Southern Ocean was significantly lower than previous measurements in the equatorial east Pacific, Sargasso Sea, northeast Atlantic, and southeast Pacific. Normalizing kDMS for the temperature dependence in waterside diffusivity and solubility results in better agreement among various field studies and suggests that the low kDMS in the Southern Ocean is primarily due to colder temperatures. The higher solubility of DMS at a lower temperature results in greater airside control and less transfer of the gas by bubbles formed from breaking waves. The final normalized DMS transfer velocity is similar to k of less soluble gases such as carbon dioxide in low-to-moderate winds; in high winds, DMS transfer velocity is significantly lower because of the reduced bubble-mediated transfer.

  14. Low-frequency variability of surface air temperature over the Barents Sea: causes and mechanisms

    NASA Astrophysics Data System (ADS)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, Rune G.

    2016-08-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations in the sea-ice cover, which then cause massive changes in the ocean-atmosphere heat exchanges. Here we describe the mechanism driving surface temperatures and heat fluxes in the Barents Sea based primarily on analyzes of one global coupled climate model. It is found that the ocean drives the low-frequency changes in surface temperature, whereas the atmosphere compensates the oceanic transport anomalies. The seasonal dependence and the role of individual components of the ocean-atmosphere energy budget are analyzed in detail, showing that seasonally-varying climate mechanisms play an important role. Herein, sea ice is governing the seasonal response, by acting as a lid that opens and closes during warm and cold periods, respectively, thereby modulating the surface heat fluxes.

  15. Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Q. P.; Dong, Y.; Wang, Y.

    2016-01-01

    A field survey from the coastal ocean zones to the offshore pelagic zones of the northeastern South China Sea (nSCS) was conducted during the inter-monsoon period of May 2014 when the region was characterized by prevailing low-nutrient conditions. Comprehensive field measurements were made for not only hydrographic and biogeochemical properties but also phytoplankton growth and microzooplankton grazing rates. We also performed estimations of the vertical turbulent diffusivity and diffusive nutrient fluxes using a Thorpe-scale method and the upwelling nutrient fluxes by Ekman pumping using satellite-derived wind stress curl. Our results indicated a positive correlation between the integrated phytoplankton chlorophyll a and vertical nutrient fluxes in the offshore region of the nSCS during the study period. We generally found an increasing role of turbulent diffusion but a decreasing role of curl-driven upwelling in vertical transport of nutrients from the coastal ocean zones to the offshore pelagic zones. Elevated nutrient fluxes near Dongsha Islands supported high new production leading to net growth of the phytoplankton community, whereas the low fluxes near the southwest of Taiwan had resulted in a negative net community growth leading to decline of a surface phytoplankton bloom. Overall, phytoplankton dynamics in the large part of the nSCS could be largely driven by vertical nutrient fluxes including turbulent diffusion and curl-driven upwelling during the spring inter-monsoon period.

  16. Variability of Heat Flux and Diffusivity Within the Weakly Stratified Pycnocline in the Vicinity of Maud Rise, Weddell Sea

    NASA Astrophysics Data System (ADS)

    Shaw, W. J.; Stanton, T. P.

    2006-12-01

    During the 2005 Maud Rise Nonlinear Equation of State Study (MaudNESS) field program, more than 1300 profiles of temperature, conductivity and fast-response micro-conductivity were made in the vicinity of Maud Rise, Weddell Sea over a series of 13 drift stations. Stratification is particularly weak on the flanks of Maud Rise and the water column is likely susceptible to cabbeling, thermobaric, and/or double diffusive instabilities. A record of heat flux and turbulent diffusivity within the pycnocline was generated from the micro-conductivity measurements. Although the pycnocline is very unstable to double diffusive instability, the measured fluxes are larger than those predicted based on established double diffusive flux laws. Much of the variability in pycnocline heat flux is related to the stability of the water column with respect to diapycnal cabbeling. Excluding two drifts closest to the summit of Maud Rise, the average heat flux in areas that were stable with respect to cabbeling was ~3 W/m2 and the average heat flux in areas that were unstable was ~30 W/m2.

  17. On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Ricchi, Antonio; Miglietta, Mario Marcello; Falco, Pier Paolo; Benetazzo, Alvise; Bonaldo, Davide; Bergamasco, Andrea; Sclavo, Mauro; Carniel, Sandro

    2016-05-01

    An intense cold air outbreak affected the northern Adriatic Sea during winter 2012, determining an exceptional persistence of northeasterly Bora wind over the basin, which lasted for about 3 weeks. The cold air coming from the Balkans produced icing in the Venice lagoon and very intense snowfall in the Apennines Mountains and even near the coasts. In order to understand the importance and role of air-sea interactions for the evolution of the atmospheric fields, simulations with the Weather Research and Forecasting (WRF) model encompassing the whole period have been performed using sea surface temperature (SST) fields with an increasing level of complexity. Starting from a large-scale static sea temperature, the SST in the initial and boundary conditions has been progressively made more realistic. First, a more refined field, retrieved from a satellite radiometer was used; then, the same field was updated every 6 h. Next, the effect of including a simplified 1D ocean model reproducing the Oceanic Mixed Layer (OML) evolution has been tested. Finally, the potential improvements coming from a coupled description of atmosphere-ocean and atmosphere-ocean-waves interactions have been explored within the Coupled Ocean-Atmosphere-Wave Sediment Transport (COAWST) modeling system. Results highlight that the energy exchange between air and sea does not significantly impact the atmospheric fields, in particular 10 m wind and 2 m temperature, also because of the geography of the basin and the predominance of synoptic-scale flow in intense events of Bora, in the northern Adriatic. However, when sensible and latent heat fluxes, which are dependent on atmospheric and oceanic variables, are analyzed, the more realistic representation of SST drastically improves the model performances.

  18. Air-sea interaction in the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  19. BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team collected pass-by-pass fluxes (and many other statistics) for a large number of level (constant altitude), straight-line passes used in a variety of flight patterns. The data were collected by the University of Wyoming King Air in 1994 BOREAS IFCs 1-3. Most of these data were collected at 60-70 m above ground level, but a significant number of passes were also flown at various levels in the planetary boundary layer, up to about the inversion height. This documentation concerns only the data from the straight and level passes that are presented as original (over the NSA and SSA) and moving window values (over the Transect). Another archive of King Air data is also available, containing data from all the soundings flown by the King Air 1994 IFCs 1-3. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Davolio, S.

    2016-02-01

    Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.

  1. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  2. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  3. Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions

    NASA Astrophysics Data System (ADS)

    Fang, Yin; Chen, Yingjun; Tian, Chongguo; Lin, Tian; Hu, Limin; Huang, Guopei; Tang, Jianhui; Li, Jun; Zhang, Gan

    2015-07-01

    This study conducted the first comprehensive investigation of sedimentary black carbon (BC) concentration, flux, and budget in the continental shelves of "Bohai Sea (BS) and Yellow Sea (YS)," based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported data set of the atmospheric samples from seven coastal cities in the Bohai Rim. BC concentrations in these matrices were measured using the method of thermal/optical reflectance. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas where fine-grained particles (median diameters > 6 Φ (i.e., <0.0156 mm)) were deposited. The BC burial flux in the BS and YS ranged from 4 to 1100 µg/cm2 yr, and averaged 166 ± 200 µg/cm2 yr, which was within the range of burial fluxes reported in other continental shelf regimes. The area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr, and the BS alone contributed ~50% (~157 Gg/yr). The BC budget calculated in the BS showed that atmospheric deposition, riverine discharge, and import from the Northern Yellow Sea (NYS) each contributed ~51%, ~47%, and ~2%. Therefore, atmospheric deposition and riverine discharge dominated the total BC influx (~98%). Sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the input BC. Water exchange between the BS and the NYS was also an important BC transport route, with net BC transport from the BS to the NYS.

  4. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  5. Seasonal cycle of oceanic mixed layer and upper-ocean heat fluxes in the Mediterranean Sea from in-situ observations.

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio

    2013-04-01

    Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account

  6. Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Ho; Deiwert, George S.

    1989-01-01

    Two methods, fully- and loosely-coupled, are developed to incorporate nonequilibrium hydrogen-air chemistry into the fluid dynamic implicit flux vector splitting code (F3D). The new code (F3D/Chem) is validated against other existing codes for two cases: nozzle expansion, and shock-induced combustion around a blunt body. The shock-induced combustion case is compared also with an experimental data. The reaction rate constants are varied in an effort to reproduce the experimental data. The fully- and loosely-coupled methods are found to yield comparable results, but the computation time is shorter using the loosely-coupled method. The present method is found to reproduce results obtained using different existing codes. The experimental data was not reproduced with any selected rate coefficients set.

  7. Carbon dioxide fluxes across the atmosphere-water-coastal eroded ice complex in the Arctic Ocean: Laptev and Kara seas

    NASA Astrophysics Data System (ADS)

    Semiletov, I. P.; Pipko, I. I.; Kosmach, D.; Salyuk, A.; Dudarev, O. V.; Repina, I.; Shakhova, N. E.

    2007-12-01

    Despite the significant progress that has been made in Arctic biogeochemical studies, large discrepancies still exist between recent estimations of the carbon balance and cycling in the Arctic seas [Romankevich and Vetrov, 2001; Stein and Macdonald, 2003; Macdonald et al., 2006] because reliable data are lacking. The Arctic Ocean has been suggested to be a net sink for atmospheric CO2, favoured by cold, relatively low salinity surface layers). Unfortunately, estimates of annual CO2 uptake from the atmosphere vary widely from 1700 × billions moles (Anderson, et al., 1998) up to 11000 billions moles (Lyakhin and Rusanov, 1983), due to high spatial variability and a difficulty of establishing representative values. To fill this gap with a substantial quantity of good-quality data is one of the primary purposes of this study. During the September 2006 expedition in the Laptev Sea and along the Northern Sea Route five research platforms were used to accomplish field work: the ice-strengthened commercial vessel Kapitan Danilkin, two small vessels, the TB 0012 and the Neptun, an Mi-8 helicopter, and diesel icebreaker Kapitan Dranitsyn. CO2 and CH4 fluxes were measured using micrometeorological methods, enclosure methods, or both. In our CO2 and CH4 exchange study setup, momentum and the fluxes of sensible and latent heat were measured using the eddy-correlation technique, which is the most direct micrometeorological method. Dynamics of the carbonate system was studied using pH- TALK technique. Preliminary results: 1. The coastal area of the Laptev Sea, strongly influenced by coastal erosion and river input of terrestrial carbon (suspended and dissolved), acts as a strong source of CO2 into the atmosphere. CO2 flux from the sea surface/nearshore zone ranged between 0.31 - 0.4 μM/?/sec (for comparison, ? release from the tundra soil ranged between 0.03 - 0.18 μM/?/sec). The highest rates of ? emission were measured in the freshly-exposed eroded depressions. 2. CO2 fluxes

  8. Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Q. P.; Dong, Y.; Wang, Y.

    2015-05-01

    A field survey from the coastal upwelling zones to the offshore pelagic zones of the northeastern South China Sea (SCS) was conducted during the inter-monsoon period of May 2014 when the region was characterized by prevailing low-nutrient conditions. Comprehensive field measurements were made for not only hydrographic and biogeochemical properties but also phytoplankton growth and microzooplankton grazing rates. We also performed estimations of the vertical turbulent diffusivity and diffusive nutrient fluxes using a Thorpe-scale method and the upwelling nutrient fluxes by Ekman pumping using satellite-derived wind stress curl. Our results suggest that phytoplankton patchiness in the northeastern SCS during the study period could be largely controlled by vertical nutrient fluxes with combined contributions from both turbulent diffusion and curl-driven upwelling. Our results also reveal the generally increasing role of turbulent diffusion but decreasing role of curl-driven upwelling on vertical transport of nutrients from the coastal upwelling zones to the offshore pelagic zones in the northeastern SCS. Elevated nutrient fluxes observed near Dongsha Island were found to support high new production leading to net growth of a diatom-rich phytoplankton community, whereas the low nutrient fluxes near southwest Taiwan resulted in a negative net community growth leading to a decline of a picoplankton-dominant phytoplankton bloom.

  9. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    SciTech Connect

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H.; Fauth, A. C.; Kemp, E.; Manganote, E. J. T.; Leigui de Oliveira, M. A.; Miranda, P.; Ticona, R.; Velarde, A.

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  10. Mueller matrix imaging of targets under an air-sea interface.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2009-01-10

    The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air-sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air-sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images. PMID:19137035

  11. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  12. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lei, Ruibo; Li, Na; Heil, Petra; Cheng, Bin; Zhang, Zhanhai; Sun, Bo

    2014-01-01

    The conductive and oceanic heat fluxes and the mass balance of sea ice were investigated utilizing an ice mass balance buoy (IMB) deployed in the Arctic Ocean. After IMB deployment, the ice thinned from 1.95 m in late August to 1.46 m by mid-October 2008. From then on, ice growth until mid-June 2009 increased the ice thickness to 3.12 m. The ice temperature and consequently the conductive heat flux at the ice surface exhibited persistent high-frequency variations due to diurnal and synoptic-scale atmospheric forcing. These signals propagated downward with damped magnitude and temporal lag. The competition of oceanic and conductive heat flux dominated the low-frequency variations of ice growth. However, high-frequency variations in ice growth were controlled largely by the oceanic heat flux. From mid-November 2008 to mid-June 2009, the average oceanic heat flux along a track from 86.2°N, 115.2°W to 84.6°N, 33.9°W was 7.1 W/m2. This was in agreement with that derived from an IMB deployed in 2005, about 1.5° to the north of our buoy. We attributed the relatively high oceanic heat flux (10-15 W/m2) observed during autumn and early winter to summer warming of the surface ocean. Upward mixing of warm deep water, as observed when our buoy drifted over the shallow region of the Lomonosov Ridge (85.4°-85.9°N, 52.2°-66.4°W), demonstrated the impact of bathymetry on the oceanic heat flux under ice cover, and consequently on the basal ice mass balance.

  13. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  14. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  15. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  16. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  17. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  18. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  19. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    NASA Technical Reports Server (NTRS)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  20. Impacts of air-sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example

    NASA Astrophysics Data System (ADS)

    He, J.; He, R.; Zhang, Y.

    2015-11-01

    Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere-ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results show that different cumulus parameterization schemes can result in an 85 m difference in the domain averaged planetary boundary layer height (PBLH), and 4.8 mm difference in the domain averaged daily precipitation. Comparing to WRF/Chem without air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface temperature of 0.1 and 1.0 °C, respectively. The simulated differences in the surface concentrations of ozone (O3) and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 μg m-3, respectively. The largest changes simulated from WRF/Chem-ROMS in surface concentrations of O3 and particulate matter with diameter less than and equal to 2.5 μm (PM2.5) occur not only along coast and remote ocean, but also over some inland areas. Extensive validations against observations, show that WRF/Chem-ROMS improves the predictions of most cloud and radiative variables, and surface concentrations of some chemical species such as sulfur dioxide, nitric acid, maximum 1 h and 8 h O3, sulfate, ammonium, nitrate, and particulate matter with diameter less than and equal to 10 μm (PM10). This illustrates the benefits and needs of using coupled atmospheric-ocean model with advanced model representations of air-sea interactions for

  1. Assessment of 137Cs and 90Sr Fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Matishov, Gennady; Usiagina, Irina; Kasatkina, Nadezhda; Ilin, Gennadii

    2014-05-01

    On the basis of published and own data the annual balance of radionuclide income/outcome was assessed for 137Cs and 90Sr in the Barents Sea for the period from 1950s to the presnt. The scheme of the isotope balance calculation in the Barents Sea included the following processes:atmospheric fallout; river run-off; liquid radioactive wastes releases, income from the Norwegian and the White Seas; outflow to the adjacent areas through the Novaya Zemlya straits and the transects Svalbard-Franz Josef Land and Franz Josef Land-Novaya Zemlya; radioactive decay. According to the multiyear dynamics, the inflow of 137Cs and 90Sr to the Barents Sea was significantly preconditioned by currents from the Norwegian Sea. Three peaks of 137Cs and 90Sr isotope concentrations were registered for the surface waters on the western border of the Barents Sea. The first one was observed in the mid-1960s and was conditioned by testing of nuclear weapons. The increase of isotope concentrations in 1975 and 1980 was preconditioned by the discharge of atomic waste by the Sellafield nuclear reprocessing plant. Nowadays, after the sewage disposal plant was built, the annual discharge of nuclear waste from Sellafield plant is low. The Norwegian Sea was a major source of 137Cs and 90Sr isotope income into the Barents Sea for the period of 1960-2014. Currently, the transborder transfer of 90Sr and 137Cs from the Norwegian Sea into the Barents Sea constitutes about 99% of income for each element. Atmospheric precipitation had a major impact in the 1950-1960s after the testing of the nuclear weapons, and in 1986 after the accident at Chernobyl Nuclear Power Station. In 1963, the atmospheric precipitation of 137Cs reached 1050 TBq; and that of 90Sr, 630 TBq. In 1986, a significant amount of 137Cs inflow (up to 1010 TBq/year) was registered. The 137Cs isotope income exceeded the 90Sr income in the 1960s-1980s, and equal amounts penetrated into the Barents Sea from the Norwegian Sea in the 1990s. Before

  2. An Assessment of the Effect of Sea-Surface Surfactants on Global Atmosphere-Ocean CO2 Flux

    NASA Astrophysics Data System (ADS)

    Tsai, W.; Liu, K.

    2001-05-01

    \\def\\ea{et al.} \\def\\CO2{CO2} \\def\\dpCO2{Δ pCO2} We assess the possible impact of the distribution of naturally occurring surfactants on the direct integration of the global atmosphere-ocean \\CO2 flux across the ocean surface. The global atmosphere-ocean \\CO2 flux is calculated using the monthly mean \\dpCO2 climatology compiled by Takahashi \\ea\\ [1997] as well as satellite wind speed and sea-surface temperature data. In the absence of any global map of surfactant coverage, and as it is known that phytoplankton exudates and degradation products are the major sources of marine surfactants, ocean primary productivity, which can be derived from the satellite-based estimate of chlorophyll concentration, is used as an indicator of the presence of surfactants. From the calculated results, it is found that suppression of the upward and downward \\CO2 fluxes by marine surfactants exhibits an asymmetric effect. For almost half of the year (between January and May), the presence of surfactants does not affect \\CO2 outgassing from global oceans. In contrast, throughout the entire year, the presence of surfactants suppresses \\CO2 absorption by the oceans. The average percent reduction of absorption flux by surfactants is about twice that of outgassing, which results in an overall decrease in the net global \\CO2 uptake by the oceans. The major reduction in absorption fluxes occurs in the northern Pacific and Atlantic (10oN to 70oN) in all seasons and in the Southern Ocean (south of 40oS) in austral spring and summer. However, the most significant decrease in outgassing fluxes occurs in the equatorial and southern Pacific Ocean (40oS to 10oN), particularly in the eastern equatorial and subtropical waters off the southern American coast, in the period of austral spring and summer.

  3. External forcings, oceanographic processes and particle flux dynamics in Cap de Creus submarine canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rumín-Caparrós, A.; Sanchez-Vidal, A.; Calafat, A.; Canals, M.; Martín, J.; Puig, P.; Pedrosa-Pàmies, R.

    2013-06-01

    Particle fluxes (including major components and grain size), and oceanographic parameters (near-bottom water temperature, current speed and suspended sediment concentration) were measured along the Cap de Creus submarine canyon in the Gulf of Lions (GoL; NW Mediterranean Sea) during two consecutive winter-spring periods (2009-2010 and 2010-2011). The comparison of data obtained with the measurements of meteorological and hydrological parameters (wind speed, turbulent heat flux, river discharge) have shown the important role of atmospheric forcings in transporting particulate matter through the submarine canyon and towards the deep sea. Indeed, atmospheric forcing during 2009-2010 and 2010-2011 winter months showed differences in both intensity and persistence that led to distinct oceanographic responses. Persistent dry northern winds caused strong heat losses (14.2 × 103 W m-2) in winter 2009-2010 that triggered a pronounced sea surface cooling compared to winter 2010-2011 (1.6 × 103 W m-2 lower). As a consequence, a large volume of dense shelf water formed in winter 2009-2010, which cascaded at high speed (up to ∼1 m s-1) down Cap de Creus Canyon as measured by a current-meter in the head of the canyon. The lower heat losses recorded in winter 2010-2011, together with an increased river discharge, resulted in lowered density waters over the shelf, thus preventing the formation and downslope transport of dense shelf water. High total mass fluxes (up to 84.9 g m-2 d-1) recorded in winter-spring 2009-2010 indicate that dense shelf water cascading resuspended and transported sediments at least down to the middle canyon. Sediment fluxes were lower (28.9 g m-2 d-1) under the quieter conditions of winter 2010-2011. The dominance of the lithogenic fraction in mass fluxes during the two winter-spring periods points to a resuspension origin for most of the particles transported down canyon. The variability in organic matter and opal contents relates to seasonally

  4. Sea-air partitioning of mercury in the equatorial Pacific Ocean

    SciTech Connect

    Kim, J.P.; Fitzgerald, W.F.

    1986-03-07

    The partitioning of gaseous mercury between the atmosphere and surface waters was determined in the equatorial Pacific Ocean. The highest concentrations of dissolved gaseous mercury occurred in cooler, nutrient-rich waters that characterize equatorial upwelling and increased biological productivity at the sea surface. The surface waters were supersaturated with respect to elemental mercury; a significant flux of elemental mercury to the atmosphere is predicted for the equatorial Pacific. When normalized to primary production on a global basis, the ocean effluxes of mercury may rival anthropogenic emissions of mercury to the atmosphere. 23 references, 2 figures.

  5. Air-sea interactions and oceanic processes in the development of different Atlantic Niño patterns

    NASA Astrophysics Data System (ADS)

    Martin-Rey, Marta; Polo, Irene; Rodríguez-Fonseca, Belén; Lazar, Alban

    2016-04-01

    Atlantic Niño is the leading mode of inter-annual variability of the tropical Atlantic basin at inter-annual time scales. A recent study has put forward that two different Atlantic Niño patterns co-exist in the tropical Atlantic basin during negative phases of the Atlantic Multidecadal Oscillation. The leading mode, Basin-Wide (BW) Atlantic Niño is characterized by an anomalous warming extended along the whole tropical basin. The second mode, the Dipolar (D) Atlantic Niño presents positive Sea Surface Temperature (SST) anomalies in the central-eastern equatorial band, surrounded by negative ones in the North and South tropical Atlantic. The BW Atlantic Niño is associated with a weakening of both Azores and Sta Helena High, which reduces the tropical trades during previous autumn-winter. On the other hand, the D-Atlantic Niño is related to a strengthening of the Azores and a weakening of Helena High given rise to a meridional Sea Level Pressure (SLP) gradient that originates an intensification of the subtropical trades and anomalous westerlies along the equatorial band. This different wind forcing suggests that different oceanic processes could act in the development of the BW and D Atlantic Niño patterns. For this reason, an inter-annual simulation with the ocean NEMO model has been performed and the heat budget analysis has been analysed for each Atlantic Niño mode. The results suggest that the two Atlantic Nino configurations have different timing. The heat budget analysis reveals that BW Atlantic Nino SST pattern is due to anomalous air-sea heat fluxes in the south tropical and western equatorial Atlantic during the autumn-winter, while vertical processes are responsible of the warming in the central and eastern part of the basin during late-winter and spring. For the D-Atlantic Nino, the subtropical cooling is attributed to turbulent heat fluxes, the equatorial SST signal is mainly forced by vertical entrainment. The role of the oceanic waves in the

  6. Skyshine analysis using energy and angular dependent dose-contribution fluxes obtained from air-over-ground adjoint calculation.

    PubMed

    Uematsu, Mikio; Kurosawa, Masahiko

    2005-01-01

    A generalised and convenient skyshine dose analysis method has been developed based on forward-adjoint folding technique. In the method, the air penetration data were prepared by performing an adjoint DOT3.5 calculation with cylindrical air-over-ground geometry having an adjoint point source (importance of unit flux to dose rate at detection point) in the centre. The accuracy of the present method was certified by comparing with DOT3.5 forward calculation. The adjoint flux data can be used as generalised radiation skyshine data for all sorts of nuclear facilities. Moreover, the present method supplies plenty of energy-angular dependent contribution flux data, which will be useful for detailed shielding design of facilities. PMID:16604693

  7. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  8. Modelling approach to the assessment of biogenic fluxes at a selected Ross Sea site, Antarctica

    NASA Astrophysics Data System (ADS)

    Vichi, M.; Coluccelli, A.; Ravaioli, M.; Giglio, F.; Langone, L.; Azzaro, M.; Azzaro, F.; La Ferla, R.; Catalano, G.; Cozzi, S.

    2009-07-01

    Several biogeochemical data have been collected in the last 10 years of Italian activity in Antarctica (ABIOCLEAR, ROSSMIZE, BIOSESO-I/II). A comprehensive 1-D biogeochemical model was implemented as a tool to link observations with processes and to investigate the mechanisms that regulate the flux of biogenic material through the water column. The model is ideally located at station B (175° E-74° S) and was set up to reproduce the seasonal cycle of phytoplankton and organic matter fluxes as forced by the dominant water column physics over the period 1990-2001. Austral spring-summer bloom conditions are assessed by comparing simulated nutrient drawdown, primary production rates, bacterial respiration and biomass with the available observations. The simulated biogenic fluxes of carbon, nitrogen and silica have been compared with the fluxes derived from sediment traps data. The model reproduces the observed magnitude of the biogenic fluxes, especially those found in the bottom sediment trap, but the peaks are markedly delayed in time. Sensitivity experiments have shown that the characterization of detritus, the choice of the sinking velocity and the degradation rates are crucial for the timing and magnitude of the vertical fluxes. An increase of velocity leads to a shift towards observation but also to an overestimation of the deposition flux which can be counteracted by higher bacterial remineralization rates. Model results suggest that the timing of the observed fluxes depends first and foremost on the timing of surface production and on a combination of size-distribution and quality of the autochtonous biogenic material. It is hypothesized that the bottom sediment trap collects material originated from the rapid sinking of freshly-produced particles and also from the previous year's production period.

  9. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic

    NASA Astrophysics Data System (ADS)

    Cai, Minghong; Ma, Yuxin; Xie, Zhiyong; Zhong, Guangcai; MöLler, Axel; Yang, Haizhen; Sturm, Renate; He, Jianfeng; Ebinghaus, Ralf; Meng, Xiang-Zhou

    2012-03-01

    Surface seawater and boundary layer air samples were collected on the icebreaker Xuelong (Snow Dragon) during the Fourth Chinese Arctic Research Expedition (CHINARE2010) cruise in the North Pacific and Arctic Oceans during 2010. Samples were analyzed for organochlorine pesticides (OCPs), including three isomers of hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), and two isomers of heptachlor epoxide. The gaseous total HCH (ΣHCHs) concentrations were approximately four times lower (average 12.0 pg m-3) than those measured during CHINARE2008 (average 51.4 pg m-3), but were comparable to those measured during CHINARE2003 (average 13.4 pg m-3) in the same study area. These changes are consistent with the evident retreat of sea ice coverage from 2003 to 2008 and increase of sea ice coverage from 2008 to 2009 and 2010. Gaseous β-HCH concentrations in the atmosphere were typically below the method detection limit, consistent with the expectation that ocean currents provide the main transport pathway for β-HCH into the Arctic. The concentrations of all dissolved HCH isomers in seawater increase with increasing latitude, and levels of dissolved HCB also increase (from 5.7 to 7.1 pg L-1) at high latitudes (above 73°N). These results illustrate the role of cold condensation processes in the transport of OCPs. The observed air-sea gas exchange gradients in the Arctic Ocean mainly favored net deposition of OCPs, with the exception of those for β-HCH, which favored volatilization.

  10. Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface

    NASA Astrophysics Data System (ADS)

    Cunliffe, Michael; Engel, Anja; Frka, Sanja; Gašparović, Blaženka; Guitart, Carlos; Murrell, J. Colin; Salter, Matthew; Stolle, Christian; Upstill-Goddard, Robert; Wurl, Oliver

    2013-02-01

    The sea surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air-sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air-sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.

  11. Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Schweiger, A.; Maslanik, J.; Key, J.; Haefliger, M.; Weaver, R.

    1991-01-01

    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started.

  12. Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Ferguson, Michael P.

    1991-01-01

    Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for three aircraft stacks near the western Gulf Stream front, observed during the Genesis of Atlantic Lows Experiment (GALE) January 28, 1986 cold-air outbreak, has been studied using mixed-layer scaling. The GOES image and stability parameter indicates that these three stacks were in the roll vortex regime. The turbulence structure in the MABL is studied for this case, as well as the significance of roll vortices to heat fluxes. The roll circulations are shown to contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. The results suggest that the entrainment at the MABL top might affect the the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.

  13. Dynamics of Arctic sea ice discussed at workshop

    NASA Astrophysics Data System (ADS)

    Overland, James; Ukita, Jinro

    Sea ice is an interesting geophysical material: it behaves as a large-scale hardening plastic. Consider the impact of the sea-ice covers mechanical behavior on the energy and momentum exchange within the complex atmosphere-ice-ocean system. Sea ice acts as an insulator between the relatively warm ocean water and the cold polar atmosphere. Sea ice cover interacts with the atmosphere by regulating air-sea fluxes, changing surface albedo, and influencing the long-wave radiative balance.

  14. Sea level oscillations in coastal waters of the Buenos Aires province, Argentina

    NASA Astrophysics Data System (ADS)

    Dragani, W. C.; Mazio, C. A.; Nuñez, M. N.

    2002-03-01

    Sea level oscillations, with periods ranging from a few minutes to almost 2 h, have been observed at various tide stations located on the coast of Buenos Aires. Simultaneous records of sea level elevation measured in Mar de Ajó, Pinamar and Mar del Plata during 1982 have been spectrally analyzed. Significant spectral energy has been detected between 0.85 and 4.69 cycles per hour (cph) and the most energetic peaks have frequencies between 1.17 and 1.49 cph. Spectra, coherence, and phase difference have been analyzed for the most energetic event of the year. During that event, the most intensive spectral peak is at 1.17 cph for Mar de Ajó and Pinamar, and at 1.49 cph for Mar del Plata. Simultaneous total energy peaks at Mar de Ajó, Pinamar and Mar del Plata, and the coherence function estimated between Mar de Ajó and Pinamar suggests that sea level oscillations could be a regional phenomenon. The analyzed data suggest that sea level oscillations could be forced by atmospheric gravity waves associated with frontal passages.

  15. Plankton ecosystem functioning and nitrogen fluxes in the most oligotrophic waters of the Beaufort Sea, Arctic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M.

    2012-10-01

    The Arctic Ocean (AO) undergoes profound changes of its physical and biotic environments due to climate change. The greater light exposure and stratification alter its plankton ecosystem structure, functioning and productivity promoting oligotrophy in some areas as the Beaufort Sea. A one-dimension (1-D) physical-biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i) to infer the functioning and nitrogen fluxes within the summer plankton ecosystem and (ii) to assess the model sensitivity to key light-associated processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e. photoammonification process) was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. It contributed to ca. two-thirds and one-third of the simulated surface (0-10 m) and depth-integrated primary and bacterial production, respectively. The model also suggested that carbon to chlorophyll ratios for small (< 5 μm) phytoplankton (ca. 15-45 g g-1) lower than those commonly used in biogeochemical models applied to the AO were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional groups competition, nutrient recycling and primary production in poorly productive waters of the AO as they are expected to expand rapidly.

  16. Carbon dioxide production in surface sediments of temporarily anoxic basins (Baltic Sea) and resulting sediment-water interface fluxes

    NASA Astrophysics Data System (ADS)

    Böttcher, M. E.; Al-Raei, A. M.; Winde, V.; Lenz, C.; Dellwig, O.; Leipe, T.; Segl, M.; Struck, U.

    2009-04-01

    Organic matter is mineralized in marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. Modern euxinic basins as found in the Baltic Sea or the Black Sea are of particular importance because they may serve as type systems for anoxia in Earth's history. We present here results from biogeochemical investigations carried out in the Baltic deeps (Gotland Basin, Landsort Deep) during the first scientific cruise of RV M.S. MERIAN in 2006, additionally during RV Prof. Penck cruises in 2006 and 2007. Short sediment cores were obtained with a multi-corer and analyzed for particulate and dissolved main, minor and trace elements, pH, DIC, methane alkalinity, besides the stable carbon isotopes of dissolved inorganic carbon (DIC). Microsensors were applied to analyze steep gradients of oxygen, sulphide and sulphate. Pore water profiles are evaluated in terms of process rates and associated element fluxes using the PROFILE software (Berg et al., 1998, L&O). Gross and net anaerobic mineralization rates were additionally obtained from core incubations with 35S. Steep gradients in DIC are associated with a strong enrichment of the light stable isotope resulting in the Gotland basin from oxidized OM. Element fluxes across the sediment-water interface are compared with literature data and show for the Baltic Sea a dependence from bottom water redox conditions, and sediment compositions and formation conditions (e.g., accumulation rates). DIC in the anoxic part of the water column in the Landsort Deep and the Gotland Deep show relatively similar isotope values, close to the bottom water value, but steep gradients towards heavier values above the pelagic redoxcline. Acknowledgements: The research was supported by Leibniz IO Warnemünde, DFG (Cruise RV MSM MERIAN 01), and MPG. Thanks to B. Schneider and F. Pollehne stimulating discussions, and S. Lage and A. Schipper for technical support.

  17. Scaling relationships for diffusive boundary layer thickness and diffusive flux based on in situ measurements in coastal seas

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Zhao, Liang; Fan, Renfu; Wei, Hao

    2016-05-01

    In situ measurements of the diffusive boundary layer (DBL) and bottom boundary layer (BBL) under different dynamic and oxygen environments in three coastal seas are analyzed. Previous scaling methods for the DBL thickness (δDBL) are summarized. Three methods that lead to consistent dimensions at both sides of the derived relationships have all been rooted in the Batchelor length scale. The method representing the Batchelor length scale as a function of flow speed (U) is found to be the most appropriate for scaling δDBL when the law of wall applies. Diffusive flux is controlled by the dynamic-forced δDBL and