Science.gov

Sample records for air shock tube

  1. Explosively driven air blast in a conical shock tube

    SciTech Connect

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  2. Radiative cooling of shock-heated air in an explosively driven shock tube.

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Borucki, W. J.; Chien, K. Y.

    1972-01-01

    Results are presented of an experimental program to measure the effect of radiative cooling on the enthalpy distribution behind incident shock waves traveling in air. The shock velocity was nominally 16 km/sec and the preshock ambient pressure was varied from 0.4 to 1.6 torr. Shock-tube diameters of 4.7 and 9.4 cm were used to investigate the effects of varying optical depths. Radiative cooling rates were determined from spatially resolved measurements of the profile of the H sub alpha line and from absolute measurements of the continuum radiation. The measured enthalpy profiles are in good agreement with the theoretical predictions of Chien and Compton which account for both nongrey and multidimensional aspects of the radiative transport in the shock tube.

  3. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  4. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  5. Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Jones, J. J.

    1975-01-01

    Incident shock-wave velocities were measured in the Langley 6-inch expansion tube, operated as a shock tube, with air, argon, carbon dioxide, and helium as test gases. Unheated helium was used as the driver gas and most data were obtained at pressures of approximately 34 and 54 MN/sq m. A range of pressure ratio across the diaphragm was obtained by varying the quiescent test-gas pressure, for a given driver pressure, from 0.0276 to 34.5 kN/sq m. Single- and double-diaphragm modes of operation were employed and diaphragms of various materials tested. Shock velocity was determined from microwave interferometer measurements, response of pressure transducers positioned along interferometer measurements, response of pressure transducers positioned along the driven section (time-of-arrival gages), and to a lesser extent, measured tube-wall pressure. Velocities obtained from these methods are compared and limitations of the methods discussed. The present results are compared with theory and the effects of diaphragm mode (single or double diaphragm), diaphragm material, heating of the driver gas upon pressurization of the driver section, diaphragm opening time, interface mixing, and two-dimensional (nonplanar) flow are discussed.

  6. A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2008-01-01

    This paper presents a comparison between the recent EAST shock tube radiation measurements (Grinstead et al., AIAA 2008-1244) and the HARA radiation model. The equilibrium and nonequilibrium radiation measurements are studied for conditions relevant to lunar-return shock-layers; specifically shock velocities ranging from 9 to 11 kilometers per second at initial pressures of 0.1 and 0.3 Torr. The simulated shock-tube flow is assumed one-dimensional and is calculated using the LAURA code, while a detailed nonequilibrium radiation prediction is obtained in an uncoupled manner from the HARA code. The measured and predicted intensities are separated into several spectral ranges to isolate significant spectral features, mainly strong atomic line multiplets. The equations and physical data required for the prediction of these strong atomic lines are reviewed and their uncertainties identified. The 700-1020 nm wavelength range, which accounts for roughly 30% of the radiative flux to a peak-heating lunar return shock-layer, is studied in detail and the measurements and predictions are shown to agree within 15% in equilibrium. The plus or minus 1.5% uncertainty on the measured shock velocity is shown to cause up to a plus or minus 30% difference in the predicted radiation. This band of predictions contains the measured values in almost all cases. For the highly nonequilibrium 0.1 Torr cases, the nonequilibrium radiation peaks are under-predicted by about half. This under-prediction is considered acceptable when compared to the order-of-magnitude over-prediction obtained using a Boltzmann population of electronic states. The reasonable comparison in the nonequilibrium regions provides validation for both the non-Boltzmann modeling in HARA and the thermochemical nonequilibrium modeling in LAURA. The N2 (+)(1-) and N2(2+) molecular band systems are studied in the 290 480 nm wavelength range for both equilibrium and nonequilibrium regimes. The non-Boltzmann rate models for these

  7. Interpreting Shock Tube Ignition Data

    DTIC Science & Technology

    2003-10-01

    times only for high concentrations (of order 1% fuel or greater). The requirements of engine (IC, HCCI , CI and SI) modelers also present a different...Paper 03F-61 Interpreting Shock Tube Ignition Data D. F. Davidson and R. K. Hanson Mechanical Engineering ... Engineering Department Stanford University, Stanford CA 94305 Abstract Chemical kinetic modelers make extensive use of shock tube ignition data

  8. Shock shapes on blunt bodies in hypersonic-hypervelocity helium, air, and CO2 flows, and calibration results in Langley 6-inch expansion tube

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1975-01-01

    Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.

  9. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho

    1993-07-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar{mu}s/cm{sup 2}. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/{mu}s under a loading pressure rate of several Mbar/{mu}s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/{mu}s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/{mu}s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/{mu}s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  10. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho.

    1993-01-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar[mu]s/cm[sup 2]. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/[mu]s under a loading pressure rate of several Mbar/[mu]s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/[mu]s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/[mu]s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/[mu]s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  11. 25. View down launch tube, showing shock absorption system. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. View down launch tube, showing shock absorption system. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  12. 48. Bottom of shock absorber, bottom of launch tube, soda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Bottom of shock absorber, bottom of launch tube, soda bottle liter at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  13. Evolution of the air/SF6 turbulent mixing zone for different lengths of SF6: shock tube visualizations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Griffond, Jerome; Souffland, Denis; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane

    2015-11-01

    A turbulent mixing zone (TMZ) is created in a vertical shock tube (based in ISAE DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a thin nitrocellulose membrane maintained flat and parallel to the shock by two wire grids. The upper grid (SF6 side) of square mesh spacing hu 1.8 or 12.1 mm is expected to seed perturbation for the Richtmyer-Meshkov instability (RMI) while the lower grid with hl 1 mm is needed to prevent the membrane from bulging prior to the shot. The experiments were carried out for different lengths L of SF6 between the initial interface and the shock tube's end plate: 10, 15, 20, 25 and 30 cm. The time resolved Schlieren image processing based on space and frequency filtering yields similar evolution for the TMZ thickness. Before reshock, the thickness grows initially fast then slows down and reaches different values (10 to 14 mm) according to L. Soon after reshock, the TMZ thickness growths rate is 21 mm/ms independently of L and hu. Numerical Schlieren images generated from 3D numerical simulations (performed at CEA DAM IDF) are analyzed as the experimental ones for L 15 and 25 cm and for hu 1.8 and 12.1 mm. The very weak experimental dependence on hu is not obtained by simulation as expected from dimensional reasoning. This discrepancy remains paradoxical.

  14. Principles and application of shock-tubes and shock tunnels

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Clauss, H. G., Jr.

    1963-01-01

    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.

  15. Experiments of high-amplitude and shock-free oscillations of air column in a tube with array of Helmholtz resonators.

    PubMed

    Masuda, M; Sugimoto, N

    2005-07-01

    This experimental study is made to verify the weakly nonlinear theory for high-amplitude and shock-free oscillations of an air column developed in the previous paper [Sugimoto et al., J. Acoust. Soc. Am., 114, 1772-1784 (2003)]. The experiments use a new tube and resonators designed so as to not only avoid higher harmonic resonances and evanescences but also reduce the values of the coefficient of Q in the amplitude equation, and a rubber diaphragm sandwiched by circular plates to drive the air column. The steady-state pressure field in the tube and in the cavities of the resonators is measured, from which Fourier coefficients are obtained. In spite of nonlinearity, higher harmonics are suppressed significantly as designed, and the frequency response measured shows quantitatively good agreement with the one predicted up to about 170 dB (SPL). The first harmonics and the nonoscillatory component in the pressure field are well predicted, though the second harmonics show a quantitative discrepancy with the theory. In view of the good agreement of the frequency response, it is concluded that the theory is valid and useful enough to provide guidelines in designing the tube with the array of resonators.

  16. Radiative effects in radiative shocks in shock tubes

    NASA Astrophysics Data System (ADS)

    Drake, R. P.; Doss, F. W.; McClarren, R. G.; Adams, M. L.; Amato, N.; Bingham, D.; Chou, C. C.; DiStefano, C.; Fidkowski, K.; Fryxell, B.; Gombosi, T. I.; Grosskopf, M. J.; Holloway, J. P.; van der Holst, B.; Huntington, C. M.; Karni, S.; Krauland, C. M.; Kuranz, C. C.; Larsen, E.; van Leer, B.; Mallick, B.; Marion, D.; Martin, W.; Morel, J. E.; Myra, E. S.; Nair, V.; Powell, K. G.; Rauchwerger, L.; Roe, P.; Rutter, E.; Sokolov, I. V.; Stout, Q.; Torralva, B. R.; Toth, G.; Thornton, K.; Visco, A. J.

    2011-09-01

    Using modern high-energy-density facilities it is straightforward to produce radiative shock waves in which the transfer of energy by radiation controls the hydrodynamic structure of the system. Some of these experiments use shock tubes. This paper discusses such experiments, with an emphasis on the simple physical relations that determine the primary features of such shocks and on the details and impact of radiative energy transfer in such systems. Notable aspects include the creation of high-density shocked layers, the flow of radiative energy toward regions of higher energy density, and the creation of secondary shocks by ablation of the tube walls ahead of the primary shock front. Simulations of one such experimental system are also shown.

  17. Condensate Accretion in Shock Tube's Expansion Fan

    NASA Technical Reports Server (NTRS)

    Mezonlin, Ephrem-Denis; DeSilva, Upul P.; Hunte, F.; Johnson, Joseph A., III

    1997-01-01

    It has been shown that turbulence and temperature influence the droplet sizes in expansion fan induced condensation by studying the Rayleigh scattering from one port in our shock tube's test section. We have modified our set-up so as to allow, using two ports, the real time measurement of the influence of turbulence and temperature on the rate at which these droplets grow. To do this, we looked at the Rayleigh scattering from two different ports for ten Reynolds numbers at five different temperatures. We modeled the time of flight of droplets, using the equations of one-dimensional gas dynamics and the measured shock wave speed in shock tube's driven section.

  18. Transient hot-film sensor response in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  19. An explosively driven, fast shock tube

    SciTech Connect

    Tan, T.H.; Marsh, S.

    1992-01-01

    A simple, cylindrically configured fast shock tube (FST) has been employed as a tool to investigate the hydrodynamics of plate drive under a very high impulse-loading condition. The shock tube has a high-explosive outer shell and a low-density foam core. The implosion produces a well-defined Mach disk that is then subsequently used to drive a metallic plate. A thin stainless steel (SS) plate has been successfully launched to 9 km/s with this device. The experimental results from the study of material flow will be presented and compared with numerical calculation. Various interesting measurement techniques will also be discussed.

  20. An explosively driven, fast shock tube

    SciTech Connect

    Tan, T.H.; Marsh, S.

    1992-03-01

    A simple, cylindrically configured fast shock tube (FST) has been employed as a tool to investigate the hydrodynamics of plate drive under a very high impulse-loading condition. The shock tube has a high-explosive outer shell and a low-density foam core. The implosion produces a well-defined Mach disk that is then subsequently used to drive a metallic plate. A thin stainless steel (SS) plate has been successfully launched to 9 km/s with this device. The experimental results from the study of material flow will be presented and compared with numerical calculation. Various interesting measurement techniques will also be discussed.

  1. Numerical simulation of flow characteristics in micro shock tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-06-01

    Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations.

  2. Ten Years of Shock Tube Research at Marseille

    NASA Astrophysics Data System (ADS)

    Houas, L.

    The invention of the shock tube is attributed to Paul Vieille [1] in the late 19th century. The first simplest shock tube was composed of two chambers separated by a diaphragm.With the pressure increase in the first chamber causing the diaphragm rupture, a shock wave was generated and propagated with a supersonic velocity in the second chamber.

  3. Characterization of a 4-inch Portable Shock Tube

    DTIC Science & Technology

    2014-12-01

    USAARL Report No. 2015-04 Characterization of a 4-inch Portable Shock Tube By Trevor W. Jerome1, 2 Stephanie J. Karch1, 2 Joshua C. Beech1...756 recordings of 126 blasts. .................. 11 15. Shock tube impulse A-durations for various Mylar® film configurations…………………...12 vi...duration of positive phase (A- duration), and peak pressure (Kerr and Byrne, 1975). Shock tubes can produce blasts in a controlled environment

  4. Shock Tube Measurements of Ignition Processes and Spray-Shock Wave Interactions

    DTIC Science & Technology

    2008-04-06

    of species time-histories for OH radicals and alkanes; (4) ignition delay times of n-dodecane, jet fuel and diesel using the aerosol shock tube...of n-dodecane, jet fuel and diesel using the aerosol shock tube technique; and (5) improving shock tube performance and modeling. (a) Papers... Octane and n-Heptane Oxidation,” Proceedings of the Combustion Institute 31 (2007) 321-328. T. C. Hanson, D. F. Davidson, R. K. Hanson, “Shock Induced

  5. Jet-flow from shock tubes

    NASA Astrophysics Data System (ADS)

    Kingery, Charles N.; Gion, Edmund J.

    1989-07-01

    This project was designed to map the magnitude and extent of the high velocity jet flow exiting shock tubes. The flow was measured by installing stagnation probes along three blast lines and by supplementing these measurements with calibrated displacement cubes. The side-on and stagnation overpressure versus time were measured, and from that, the side-on and stagnation impulse were calculated. The stagnation impulse showed a large drop in magnitude as the blast line was moved from the zero line to a 1.5 and then to a 3-diameter offset. A helium driver was used in the 2.54-cm-diameter shock tube to simulate an explosion in a storage magazine. Results are presented in the form of stagnation impulse versus distance along the three blast lines. The significance of these findings is that the present quantity-distance criteria for munitions stored in underground magazines are based on side-on peak overpressure, but our results show that the peak stagnation pressure and impulse are much greater. At a distance where 10.3-kPa (1.5 psi) side-on pressure was measured, a 49.6-kPa (7.2 psi) stagnation pressure was measured. At the same distance, a side-on impulse was 12.6 kPa-ms (1.83 psi-ms), while the stagnation impulse was 134 kPa-ms (20.2 psi-ms)--a dramatic difference.

  6. Rupture-disk-less shock-tube with compression tube driven by free piston

    NASA Astrophysics Data System (ADS)

    Abe, T.; Ogura, E.; Sato, S.; Funabiki, K.

    A new technique is proposed for a shock tube driven by a freely moving piston. In a conventional free-piston-driven shock tube, a rupture disk is employed between the compression tube and the shock generation tube. In the present method, however, the conventional rupture disk is replaced by a newly developed fast action valve which is activated by the compressed gas generated in the compression tube. The present method enables us to generate high Mach number shock waves of arbitrary strength with good reproducibility. The performance of the new method is demonstrated experimentally. This also enables us to be carefree to scattering of fragments of the rupture disk.

  7. Note: A table-top blast driven shock tube

    NASA Astrophysics Data System (ADS)

    Courtney, Michael W.; Courtney, Amy C.

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  8. Flash photolysis-shock tube studies

    SciTech Connect

    Michael, J.V.

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  9. Shock waves from an open-ended shock tube with different shapes

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Grönig, H.

    1996-11-01

    A new method for decreasing the attenuation of a shock wave emerging from an open-ended shock tube exit into a large free space has been developed to improve the shock wave technique for cleaning deposits on the surfaces in industrial equipments by changing the tube exit geometry. Three tube exits (the simple tube exit, a tube exit with ring and a coaxial tube exit) were used to study the propagation processes of the shock waves. The detailed flow features were experimentally investigated by use of a two-dimensional color schlieren method and by pressure measurements. By comparing the results for different tube exits, it is shown that the expansion of the shock waves near the mouth can be restricted by using the tube exit with ring or the coaxial tube exit. Thus, the attenuation of the shock waves is reduced. The time histories of overpressure have illustrated that the best results are obtained for the coaxial tube exit. But the pressure signals for the tube exit with ring showed comparable results with the advantage of a relatively simple geometry. The flow structures of diffracting shock waves have also been simulated by using an upwind finite volume scheme based on a high order extension of Godunov's method as well as an adaptive unstructured triangular mesh refinement/unrefinement algorithm. The numerical results agree remarkably with the experimental ones.

  10. EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    1994-01-01

    New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow

  11. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  12. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  13. Note: An improved solenoid driver valve for miniature shock tubes.

    PubMed

    Lynch, P T

    2016-05-01

    A solenoid driver valve has been built to improve the operating performance of diaphragmless shock tubes, which are used for high pressure, high temperature chemical kinetics, and fluid mechanics studies. For shock tube driver application, the most important characteristics are those of sealing, strength, and quality of the generated shock waves and repeatability of opening characteristics and therefore subsequent post-shock conditions. The main features of the new driver valve are a face o-ring sealing design of the valve, the large internal volume, and through inserts near the solenoid core: adjustable opening characteristics of the valve.

  14. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling

    SciTech Connect

    Hartmann, M.; Fikri, M.; Schulz, C.; Gushterova, I.; Schiessl, R.; Maas, U.

    2011-01-15

    Toluene is often used as a fluorescent tracer for fuel concentration measurements, but without considering whether it affects the auto-ignition properties of the base fuel. We investigate the auto-ignition of pure toluene and its influence on the auto-ignition of n-heptane and iso-octane/air mixtures under engine-relevant conditions at typical tracer concentrations. Ignition delay times {tau}{sub ign} were measured behind reflected shock waves in mixtures with air at {phi}=1.0 and 0.5 at p=40 bar, over a temperature range of T=700-1200 K and compared to numerical results using two different mechanisms. Based on the models, information is derived about the relative influence of toluene on {tau}{sub ign} on the base fuels as function of temperature. For typical toluene tracer concentrations {<=}10%, the ignition delay time {tau}{sub ign} changes by less than 10% in the relevant pressure and temperature range. (author)

  15. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    NASA Technical Reports Server (NTRS)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  16. Performance and operating characteristics of the arc-driven Langley 6-inch shock tube

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1972-01-01

    Performance characteristics for the arc-driven Langley 6-inch shock tube were determined for driver energies from 0.62 to 5 MJ. Voltage, current and pressure histories of the arc driver were recorded, and driver efficiencies were determined from measured shock velocities. Time-resolved spectra for test gases of air, carbon monoxide, xenon, and a mixture of 80 percent helium and 20 percent hydrogen are presented.

  17. Kinetic theory and turbulent discontinuities. [shock tube flow

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.

    1981-01-01

    Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.

  18. Comparisons between Fast Shock Tube Simulations and Tests

    NASA Astrophysics Data System (ADS)

    Mehra, V.; Mishra, V.; D, Sijoy C.; Chaturvedi, S.

    2012-07-01

    The experiments of Menikoff et al on a projectile hypervelocity launcher using a fast shock tube (FST) are modelled using smooth particle hydrodynamics (SPH) technique. In a FST, the progressive detonation of a co-axial HE cylinder induces a cumulative shock in the liquid-filled core. This shock hits a thin flyer and accelerates it to hypervelocity. The comparisons are made on flyer velocity profile, peak pressure and shock speed in liquid core. The SPH reproduces the qualitative and quantitative aspects of the FST and is well-suited to the high strain-rate feature of this experiment.

  19. International Symposium on Shock Tubes and Waves (16th)

    DTIC Science & Technology

    1988-05-10

    layer in the bottom of (RWTH),currentl attended by over 35,000 students, 80 a 17-inch shock tube, along with laser Doppler percent of whom s, udy...the ptecursor and other features appear steady in the in- plosions of AgN3 triggered by laser light. When a shock cident shock frame. The precursor...hours of Cray time!) of shock-bubble inter- Bazhenova, T.V., L.G. Gvozdeva, and N. Nettleton , Progress of actions, done by Karl-Heinz Winkler and Paul

  20. Convective response of a wall-mounted hot-film sensor in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.

    1991-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.

  1. Convective response of a wall-mounted hot-film sensor in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.; Carraway, D. L.

    1990-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in a hot-film instrument model and simulation which remains under investigation.

  2. Viscous Shear Layers Formed by Non-Bifurcating Shock Waves in Shock-Tubes

    NASA Astrophysics Data System (ADS)

    Grogan, Kevin; Ihme, Matthias

    2015-11-01

    Shock-tubes are test apparatuses that are used extensively for chemical kinetic measurements. Under ideal conditions, shock-tubes provide a quiescent region behind a reflected shock wave where combustion may take place without complications arising from gas-dynamic effects. However, due to the reflected shock wave encountering a boundary layer, significant inhomogeneity may be introduced into the test region. The bifurcation of the reflected shock-wave is well-known to occur under certain conditions; however, a viscous shear layer may form behind a non-bifurcating reflected shock wave as well and may affect chemical kinetics and ignition of certain fuels. The focus of this talk is on the development of the viscous shear layer and the coupling to the ignition in the regime corresponding to the negative temperature conditions.

  3. Optical diagnostics of turbulent mixing in explosively-driven shock tube

    NASA Astrophysics Data System (ADS)

    Anderson, James; Hargather, Michael

    2016-11-01

    Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.

  4. Calibration of PCB-132 Sensors in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  5. A diaphragmless shock tube for high temperature kinetic studies

    SciTech Connect

    Tranter, Robert S.; Giri, Binod R.

    2008-09-15

    A novel, diaphragmless shock tube (DFST) has been developed for use in high temperature chemical kinetic studies. The design of the apparatus is presented along with performance data that demonstrate the range and reproducibility of reaction conditions that can be generated. The ability to obtain data in the fall off region, confined to much narrower pressure ranges than can be obtained with a conventional shock tube is shown, and results from laser schlieren densitometry experiments on the unimolecular dissociation of phenyl iodide (P{sub 2}=57{+-}9 and 122{+-}7 torr, T{sub 2}=1250-1804 K) are presented. These are compared with results similar to those that would be obtained from a classical shock tube and the implications for extrapolation by theoretical methods are discussed. Finally, the use of the DFST with an online mass spectrometer to create reproducible experiments that can be signal averaged to improve signal/noise and the quality of mass peaks is demonstrated; something that is not possible with a conventional shock tube where each experiment has to be considered unique.

  6. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    SciTech Connect

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-05-06

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  7. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  8. Dust Particle Velocity Measurement in Shock Tubes.

    DTIC Science & Technology

    1985-12-08

    00. . .. 0 . 37 21 Photography of Electronic System for CERF 6’ Shock Tubeo..o..... 38 22 Record of a Typical Doppler Burst...2.1 PRINCIPLE OF OPERATION. Direct measurement of the particle velocity was obtained using Laser Doppler Velocimetry (LDV) [Ref. 2 and 3]. The...and transforms it into an electri- cal signal, known as Doppler burst. The period of the burst (T) is a function of the fringe spacing and the

  9. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  10. Particle seeding flow system for horizontal shock tube

    SciTech Connect

    Johnston, Stephen; Garcia, Nicolas J.; Martinez, Adam A.; Orlicz, Gregory C.; Prestridge, Katherine P.

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  11. Mix experiments using a two-dimensional convergent shock-tube

    NASA Astrophysics Data System (ADS)

    Holder, D. A.; Smith, A. V.; Barton, C. J.; Youngs, D. L.

    2003-07-01

    This article reports the first Richtmyer Meshkov instability experiments using an improved version of the Atomic Weapons Establishment convergent shock tube. These investigate the shock-induced turbulent mixing across the interfaces of an air/dense gas/air region. Multipoint ignition of a detonatable gas mixture produces a cylindrically convergent shock that travels into a test cell containing the dense gas region. The mixing process is imaged with shadowgraphy. Sample results are presented from an unperturbed experiment and one with a notch perturbation imposed on one of the dense gas interfaces. The unperturbed experiment shows the mixing across the dense gas boundaries and the motion of the bulk dense gas region. Imposition of the notch perturbation produces a mushroom-shaped air void penetrating the dense gas region. Three-dimensional simulations performed using the AWE TURMOIL3D code are presented and compared with the sample experimental results. A very good agreement is demonstrated. Conducting these first turbulent mixing experiments has highlighted a number of areas for future development of the convergent shock-tube facility; these are also presented.

  12. Analysis of shock-wave propagation in aqueous foams using shock tube experiments

    NASA Astrophysics Data System (ADS)

    Jourdan, G.; Mariani, C.; Houas, L.; Chinnayya, A.; Hadjadj, A.; Del Prete, E.; Haas, J.-F.; Rambert, N.; Counilh, D.; Faure, S.

    2015-05-01

    This paper reports experimental results of planar shock waves interacting with aqueous foams in a horizontal conventional shock tube. Four incident shock wave Mach numbers are considered, ranging from 1.07 to 1.8, with two different foam columns of one meter thickness and expansion ratios of 30 and 80. High-speed flow visualizations are used along with pressure measurements to analyse the main physical mechanisms that govern shock wave mitigation in foams. During the shock/foam interaction, a precursor leading pressure jump was identified as the trace of the liquid film destruction stage in the foam fragmentation process. The corresponding pressure threshold is found to be invariant for a given foam. Regarding the mitigation effect, the results show that the speed of the shock is drastically reduced and that wetter is the foam, slower are the transmitted waves. The presence of the foam barrier attenuates the induced pressure impulse behind the transmitted shock, while the driest foam appears to be more effective, as it limits the pressure induced by the reflected shock off the foam front. Finally, it was found that the pressure histories in the two-phase gas-liquid mixture are different from those previously obtained within a cloud of droplets. The observed behavior is attributed to the process of foam fragmentation and to the modification of the flow topology past the shock. These physical phenomena occurring during the shock/foam interaction should be properly accounted for when elaborating new physical models.

  13. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  14. Shock Tube Test for Energy Absorbing Materials

    DTIC Science & Technology

    2013-09-13

    Compressed  Air  Cylinder Driver  Section Driven  Section Max Driver  Pressure: 200 PSI Diaphragm Striker Material Nylon Striker Face Diameter...part of a study of materials for an impact attenuating helmet liner project (3). Table 2. Foam materials for testing (7) (8) (9) Manufacturer...including application in helmet liners (8). Zorbium™ is the viscoelastic polyurethane foam used in military helmet suspension system pads (9). 8

  15. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  16. Shock Tube Experiments for Earth and Mars Entry Conditions

    DTIC Science & Technology

    2009-09-01

    RTO-EN-AVT-162 13 - 1 Shock Tube Experiments for Earth and Mars Entry Conditions David W. Bogdanoff ELORET Corporation 465 S. Mathilda...Ave., Suite 103 Sunnyvale, CA 94086 USA David.W.Bogdanoff@nasa.gov ABSTRACT This seminar describes how radiative heating for earth and Mars entry...data acquistion system and representative spectra are presented for earth and Mars entry conditions. 1.0 INTRODUCTION The motivations for the

  17. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    DTIC Science & Technology

    1959-12-01

    they cannot be terminated properly. The natural crystals, quartz and tourmaline , and barium titan- ate ceramics have been the most used materials for...shock tube applica- tions. Quartz and tourmaline are excellent mechanically with modulus K insensitive to temperature and about 11 gg coulombs/lb. The...the crystallographic axes may be controlled. A limitation on barium titanate is its narrow stable temperature range (about 20 to 1000C).* Tourmaline

  18. Blast Loading of Epoxy Panels Using a Shock Tube

    NASA Technical Reports Server (NTRS)

    Pankow, Mark; Waas, Anthony M.; Bednarcyk, Brett

    2010-01-01

    The high strain rate mechanical response of thin polymer plates has been studied using a modified shock tube. Diagnostics include the pressure-time history of the incident and reflected pulses and the use of digital image correlation (DIC) techniques to extract the time-history of the out-of-plane displacement distribution. Additionally, finite element models have been developed to understand the plate response and to validate and modify plate material constitutive models that have been proposed.

  19. Air flow exploration of abrasive feed tube

    NASA Astrophysics Data System (ADS)

    Zhang, Shijin; Li, Xiaohong; Gu, Yilei

    2009-12-01

    An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the chamber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recognized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi-phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.

  20. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  1. Shock-tube studies of silicon-compound vapors

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1977-01-01

    Test gas mixtures containing SiO, SiO2, Si2, and SiH were produced in a shock tube by processing shock waves through a mixture of SiCl4 + N2O + Ar, SiH4 + Ar, or SiH4 + O2 + Ar. Absorption spectra of the test gases were studied photographically in the reflected shock region using a xenon flash lamp as the light source in the range of wavelengths between 250 and 600 nm. SiO was found to be a dominant species in the vapors produced by the SiCl4 + N2O and SiH4 + O2 mixtures. Spontaneous combustion was observed in the SiH4 + O2 + Ar mixture prior to the shock arrival, and the resulting solid SiO2 particles evaporated behind the shock wave. Spectral absorption characteristics of SiO, SiO2, Si2, and SiH were determined by studying the test gases.

  2. Optimizing Facility Configurations and Operating Conditions for Improved Performance in the NASA Ames 24 Inch Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cruden, Brett A.

    2016-01-01

    The Ames Electric Arc Shock Tube (EAST) is a shock tube wherein the driver gas can be heated by an electric arc discharge. The electrical energy is stored in a 1.2 MJ capacitor bank. Four inch and 24 inch diameter driven tubes are available. The facility is described and the need for testing in the 24 inch tube to better simulate low density NASA mission profiles is discussed. Three test entries, 53, 53B and 59, are discussed. Tests are done with air or Mars gas (95.7% CO2/2.7% N2/1.6% Ar) at pressures of 0.01 to 0.14 Torr. Velocities spanned 6.3-9.2 km/s, with a nominal center of 7 km/s. Many facility configurations are studied in an effort to improve data quality. Various driver and driven tube configurations and the use of a buffer section between the driver and the driven tube are studied. Diagnostics include test times, time histories of the shock light pulses and tilts of the shock wave off the plane normal to the tube axis. The report will detail the results of the various trials, give the best configuration/operating conditions found to date and provide recommendations for further improvements. Finally, diaphragm performance is discussed.

  3. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  4. Properties of longitudinal flux tube waves. II. Limiting shock strength behavior

    NASA Astrophysics Data System (ADS)

    Cuntz, M.

    2004-06-01

    We extend our previous work on analytic evaluations of properties of longitudinal tube waves to waves propagating in gravitational atmospheres. We derive an expression for the limiting shock strength and discuss the behavior of the shock strength in tubes of different geometry. It is found that a height-independent value for the limiting strength is attained for constant cross-section tubes and exponential tubes, whereas for wine-glass tubes the limiting shock strength increases with height due to the increase of the tube cross section. The limiting shock strength is well reproduced by time-dependent simulations. The derived limiting shock strength as well as the energy dissipation rate of the waves show significant similarities to acoustic waves. The limiting shock strength allows to estimate the heating potential of waves in the absence of detailed time-dependent computations.

  5. Inlet boundary conditions for shock wave propagation problems in air ducts

    NASA Astrophysics Data System (ADS)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  6. A non-diaphragm type small shock tube for application to a molecular beam source

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yuta; Osuka, Kenichi; Miyoshi, Nobuya; Kinefuchi, Ikuya; Takagi, Shu; Matsumoto, Yoichiro

    2013-07-01

    A non-diaphragm type small shock tube was developed for application to a molecular beam source, which can generate beams in the energy range from 1 to several electron volts and beams containing dissociated species such as atomic oxygen. Since repetitive high-frequency operation is indispensable for rapid signal acquisition in beam scattering experiments, the dimensions of the shock tube were miniaturized to reduce the evacuation time between shots. The designed shock tube is 2-4 mm in diameter and can operate at 0.5 Hz. Moreover, a high shock Mach number at the tube end is required for high-energy molecular beam generation. To reduce the shock attenuation caused by the wall boundary layer, which becomes significant in small-diameter tubes, we developed a high-speed response valve employing the current-loop mechanism. The response time of this mechanism is about 100 μs, which is shorter than the rupture time of conventional diaphragms. We show that the current-loop valve generates shock waves with shorter formation distances (about 200-300 mm) than those of conventional shock tubes. In addition, the converging geometry efficiently accelerates shock wave in the small-diameter tubes. The optimal geometry of the shock tube yields shock Mach number around 7, which indicates that the translation energy of molecular beams can exceed 1 eV even in the presence of the real gas effect.

  7. Single pulse shock tube study of allyl radical recombination.

    PubMed

    Fridlyand, Aleksandr; Lynch, Patrick T; Tranter, Robert S; Brezinsky, Kenneth

    2013-06-13

    The recombination and disproportionation of allyl radicals has been studied in a single pulse shock tube with gas chromatographic measurements at 1-10 bar, 650-1300 K, and 1.4-2 ms reaction times. 1,5-Hexadiene and allyl iodide were used as precursors. Simulation of the results using derived rate expressions from a complementary diaphragmless shock tube/laser schlieren densitometry study provided excellent agreement with precursor consumption and formation of all major stable intermediates. No significant pressure dependence was observed at the present conditions. It was found that under the conditions of these experiments, reactions of allyl radicals in the cooling wave had to be accounted for to accurately simulate the experimental results, and this unusual situation is discussed. In the allyl iodide experiments, higher amounts of allene, propene, and benzene were found at lower temperatures than expected. Possible mechanisms are discussed and suggest that iodine containing species are responsible for the low temperature formation of allene, propene, and benzene.

  8. The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Mark, Herman

    1958-01-01

    Ideally, the reflection of a shock from the closed end of a shock tube provides, for laboratory study, a quantity of stationary gas at extremely high temperature. Because of the action of viscosity, however, the flow in the real case is not one-dimensional, and a boundary layer grows in the fluid following the initial shock wave. In this paper simplifying assumptions are made to allow an analysis of the interaction of the shock reflected from the closed end with the boundary layer of the initial shock afterflow. The analysis predicts that interactions of several different types will exist in different ranges of initial shock Mach number. It is shown that the cooling effect of the wall on the afterflow boundary layer accounts for the change in interaction type. An experiment is carried out which verifies the existence of the several interaction regions and shows that they are satisfactorily predicted by the theory. Along with these results, sufficient information is obtained from the experiments to make possible a model for the interaction in the most complicated case. This model is further verified by measurements made during the experiment. The case of interaction with a turbulent boundary layer is also considered. Identifying the type of interaction with the state of turbulence of the interacting boundary layer allows for an estimate of the state of turbulence of the boundary layer based on an experimental investigation of the type of interaction. A method is proposed whereby the effect of the boundary-layer interaction on the strength of the reflected shock may be calculated. The calculation indicates that the reflected shock is rapidly attenuated for a short distance after reflection, and this result compares favorably with available experimental results.

  9. High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall

    NASA Astrophysics Data System (ADS)

    Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.

    2016-03-01

    A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.

  10. A Shock Tube for Downselecting Material Concepts for Blast Protection. Part I: Description of the Shock Tube and a Comparison of Flush Mounted and Recess Mounted Pressure Sensors

    DTIC Science & Technology

    2008-12-01

    III with Mod 4, used for materials testing with a force gage V Endplate I with the recessed sensor only 0.11 mm below the endplate surface VI A ...TECHNICAL REPORT AD ________________ NATICK/TR-09/010 A SHOCK TUBE FOR...DOWNSELECTING MATERIAL CONCEPTS FOR BLAST PROTECTION PART I: DESCRIPTION OF THE SHOCK TUBE AND A COMPARISON OF FLUSH MOUNTED AND RECESS MOUNTED PRESSURE

  11. The Autoignition of iso-Cetane: Shock Tube Experiments and Kinetic Modeling

    SciTech Connect

    Oehlschlaeger, M A; Steinberg, J; Westbrook, C K; Pitz, W J

    2009-02-25

    Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {Phi} = 0.5 and 1.0 iso-cetane/air mixtures at temperatures ranging from 953 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements and detailed kinetic mechanism for isocetane presented here are the first of their kind.

  12. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  13. Towards a shock tube method for the dynamic calibration of pressure sensors

    PubMed Central

    Downes, Stephen; Knott, Andy; Robinson, Ian

    2014-01-01

    In theory, shock tubes provide a pressure change with a very fast rise time and calculable amplitude. This pressure step could provide the basis for the calibration of pressure transducers used in highly dynamic applications. However, conventional metal shock tubes can be expensive, unwieldy and difficult to modify. We describe the development of a 1.4 MPa (maximum pressure) shock tube made from unplasticized polyvinyl chloride pressure tubing which provides a low-cost, light and easily modifiable basis for establishing a method for determining the dynamic characteristics of pressure sensors. PMID:25071242

  14. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  15. Measurement of the shock front velocity produced in a T-tube

    SciTech Connect

    Djurović, S.; Mijatović, Z.; Vujičić, B.; Kobilarov, R.; Savić, I.; Gavanski, L.

    2015-01-15

    A set of shock front velocity measurements is described in this paper. The shock waves were produced in a small electromagnetically driven shock T-tube. Most of the measurements were performed in hydrogen. The shock front velocity measurements in other gases and the velocity of the gas behind the shock front were also analyzed, as well as the velocity dependence on applied input energy. Some measurements with an applied external magnetic field were also performed. The used method of shock front velocity is simple and was shown to be very reliable. Measured values were compared with the calculated ones for the incident and reflected shock waves.

  16. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  17. Quantifying Momentum Transfer Due to Blast Waves from Oxy-Acetylene Driven Shock Tubes

    DTIC Science & Technology

    2012-05-30

    Transfer Due to Blast Waves from Oxy - Acetylene Driven Shock Tubes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...and the response of materiel to blast loading. Recently, laboratory-scale shock tubes driven by oxy - acetylene were described. It was estimated that...later. In each case, most of the momentum transfer was due to the shock wave itself. The results support previous estimates that the oxy - acetylene

  18. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    PubMed

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  19. Homogeneous nucleation of ethanol and n-propanol in a shock tube

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1982-01-01

    The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.

  20. 75 FR 3160 - Commerce in Explosives-Storage of Shock Tube With Detonators (2005R-3P)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...--Storage of Shock Tube With Detonators (2005R-3P) AGENCY: Bureau of Alcohol, Tobacco, Firearms, and... tube to be stored with detonators because these materials when stored together do not pose a mass detonation hazard. Shock tube is a small diameter plastic laminate tube coated with a very thin layer...

  1. Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon

    NASA Technical Reports Server (NTRS)

    Yoshinaga, T.

    1973-01-01

    Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.

  2. Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Hu, Z. M.; Jiang, Z. L.

    2017-03-01

    Bio-shock tubes (BSTs) can approximately simulate the typical blast waves produced by nuclear or chemical charge explosions for use in biological damage studies. The profile of an ideal blast wave in air is characterized by the overpressure, the negative pressure, and the positive pressure duration, which are determined by the geometric configurations of BSTs. Numerical experiments are carried out using the Eulerian equations by the dispersion-controlled dissipative scheme to investigate the effect of different structural components on ideal blast waveforms. The results show that cylindrical and conical frustum driver sections with an appropriate length can produce typical blast wave profiles, but a flattened peak pressure may appear when using a tube of a longer length. Neither a double-expansion tube nor a shrinkage tube set in BSTs is practical for the production of an ideal blast waveform. In addition, negative pressure recovery will occur, exceeding the ambient pressure with an increase in pressure in the vacuum section.

  3. 46. Communication equipment room, shock isolator air compressor at right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Communication equipment room, shock isolator air compressor at right, looking northeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  4. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  5. Simulations of transient shock motion within a biological contoured-shock-tube system

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2008-02-01

    This study is motivated by the author’s interest in developing needle-free powdered vaccine/drug delivery systems. One system configuration is called the Contoured Shock Tube (CST). Of great importance is the behaviour of a transonic gas flow with a strongly nonlinear starting process, which accelerates powdered vaccines in micro-form to a sufficient momentum to penetrate the outer layer of human skin or mucosal tissue. In this paper, an established Modified Implicit Flux Vector Splitting (MIFVS) solver for the Navier-Stokes equations is extended to numerically study these transient transonic gas flows. A low Reynolds number k-ɛ turbulence model, with the compressibility effect considered, is integrated into the MIFVS solver to predict the turbulent structures and interactions with inherent shock systems. The MIFVS is first calibrated for NASA validation case, NPARC, and the resulting flow characteristic are compared with experimental date and simulations published. The MIFVS calculation with the modified k-ɛ model shows the best agreement. Subsequently, the MIFVS is applied to model the transient gas flow within a biolistic CST prototype. Comparison with experimental pressure traces shows the MIFVS captures gas flow mechanics with more accuracy than calculations with a commercial code (Fluent). This illustrates that the MIFVS is well-suited to model the strongly nonlinear fluid dynamics associated with the CST biolistic particle delivery system.

  6. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  7. On the formation of Friedlander waves in a compressed-gas-driven shock tube.

    PubMed

    Tasissa, Abiy F; Hautefeuille, Martin; Fitek, John H; Radovitzky, Raúl A

    2016-02-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing.

  8. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.

    PubMed

    Lynch, Patrick T; Troy, Tyler P; Ahmed, Musahid; Tranter, Robert S

    2015-02-17

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T5 < 1700 K, 3 < P5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques.

  9. Note: A high Mach number arc-driven shock tube for turbulence studies

    NASA Astrophysics Data System (ADS)

    Titus, J. B.; Alexander, A. B.; Johnson, J. A.

    2013-04-01

    A high Mach arc-driven shock tube has been built at the Center for Plasma Science and Technology of Florida A&M University to study shock waves. A larger apparatus with higher voltage was built to study more stable shock waves and subsequent plasmas. Initial measurements of the apparatus conclude that the desired Mach numbers can be reached using only two-thirds the maximum possible energy that the circuit can provide.

  10. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  11. New Design of Shock Tube for the Study of Vapour Cloud Explosion

    NASA Astrophysics Data System (ADS)

    Mataradze, Edgar; Chikhradze, Nikoloz; Akhvlediani, Irakli; Bochorishvili, Nika; Krauthammer, Ted

    2016-10-01

    Determination of blast energy suppression characteristics is key to developing new protective techniques ensuring effective blast-suppression capacity, and enabling the formation of a blast-suppression barrier. The Mining Institute of Georgia and CIPPS of the University of Florida have designed a new type of a shock tube for investigating the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for dosed supply of fuel and water, sensors, registering equipment, and a process control module. The paper describes the structural and flow characteristics of the shock tube, and the possibilities it may offer for the study of the processes of blast mitigation with water mist.

  12. Numerical study of shock-induced combustion in methane-air mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Rabinowitz, Martin J.

    1993-01-01

    The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.

  13. Vein-style air pumping tube and tire system and method of assembly

    DOEpatents

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung; Lamgaday, Robin; Losey, Robert Allen; Griffoin, Jean-Claude Patrice Philippe

    2017-01-03

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.

  14. Microscopic phenomena and a modern approach to turbulence. [using arc driven shock tubes to support the kinetic theory of turbulence

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Chen, S.; I, L.; Jones, W.; Ramaiah, R.; Santiago, J.

    1979-01-01

    The use of an arc driven shock tube as a technique in the study of turbulence and evidence to support a kinetic theory of turbulence are described. Topics covered include: (1) reaction rate distortion in turbulent flow; (2) turbulent bursts in a shock tube; (3) driver gas flow with fluctuations; (4) improving the Mach number capabilities of arc driver shock tubes; and (5) resonant absorption in an argon plasma at thermal equilibrium.

  15. Response of Clothing Materials to Air Shock Waves

    DTIC Science & Technology

    1989-09-01

    SECURITY CLASSIFICATION [1UNCLASSIFIED•JNLIMITED’ [I SAME AS RPT Q OTIC USERS UNCLASSIFIED 22a NAME OF RESPONSIBLE INDIVIOUAL 22b TELEPMONE ,,". Iude Are...measurements are applicable to-the soft body armor problem. Shock tube test data are available for many types of foams, metal felts, steel and copper wool, cloth

  16. A study of test section configuration for shock tube testing of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1978-01-01

    Two methods are investigated for alleviating wall interference effects in a shock tube test section intended for testing two-dimensional transonic airfoils. The first method involves contouring the test section walls to match approximate streamlines in the flow. Contours are matched to each airfoil tested to produce results close to those obtained in a conventional wind tunnel. Data from a previous study and the present study for two different airfoils demonstrate that useful results are obtained in a shock tube using a test section with contoured walls. The second method involves use of a fixed-geometry slotted-wall test section to provide automatic flow compensation for various airfoils. The slotted-wall test section developed exhibited the desired performance characteristics in the approximate Mach number range 0.82 to 0.89, as evidenced by good agreement obtained between shock tube and wind tunnel results for several airfoil flows.

  17. Application of shock tubes to transonic airfoil testing at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.

    1978-01-01

    Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.

  18. Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.

    NASA Technical Reports Server (NTRS)

    Glass, I. I.

    1972-01-01

    A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.

  19. Determination of explosive blast loading equivalencies with an explosively driven shock tube

    SciTech Connect

    Jackson, Scott I; Hill, Larry G; Morris, John S

    2009-01-01

    Recently there has been significant interest in evaluating the potential of many different non-ideal energetic materials to cause blast damage. We present a method intended to quantitatively compare the blast loading generated by different energetic materials through use of an explosively driven shock tube. The test explosive is placed at the closed breech end of the tube and initiated with a booster charge. The resulting shock waves are then contained and focused by the tube walls to form a quasi-one-dimensional blast wave. Pressure transducers along the tube wall measure the blast overpressure versus distance from the source and allow the use of the one-dimensional blast scaling relationship to determine the energy deposited into the blast wave per unit mass of test explosive. These values are then compared for different explosives of interest and to other methods of equivalency determination.

  20. Shock Tube/Laser Absorption Studies of Jet Fuels at Low Temperatures (600-1200K)

    DTIC Science & Technology

    2013-08-27

    Davidson, Ronald K. Hanson. A second-generation aerosol shock tube and its use in studying ignition delay times of large biodiesel surrogates, 28th... Biodiesel Surrogate behind Reflected Shock Waves,” 8th US National Combustion Meeting, Paper 070RK-0008 Park City, UT 5/2013.   These  studies provide...apply this extended diagnostic scheme to pyroly- sis and oxidation of other fuels, including jet fuel and biodiesel fuel surrogates. SUPPORTING

  1. Radiative Interaction Between Driver and Driven Gases in an Arc-Driven Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Park, Chul

    2001-01-01

    An electric-arc driven shock tube was operated with hydrogen as the driven gas and either hydrogen or helium as the driver gas. Electron density was measured behind the primary shock wave spectroscopically from the width of the Beta line of hydrogen. The measured electron density values were many times greater than the values calculated by the Rankine - Hugoniot relations. By accounting for the radiative transfer from the driver gas to the driven gas, the measured electron density values were numerically recreated.

  2. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  3. Development of an Aerosol Loading Technique for Ignition Time Measurements in Shock Tubes

    DTIC Science & Technology

    2007-08-01

    initial pressure. For the present ignition study a 21% oxygen-79% argon mixture was used. Poppet valves in the endwall are then opened as well as a...the pressure in the driven section of the tube constant. The narrow flow passage past the poppet valves serves to accelerate the flow and generate... valve near the diaphragm connected to a vacuum pump, and a steady-state flow of aerosol/carrier gas mixture is feed into the shock tube while keeping

  4. Shock Tube Simulation of Low Mach Number Blast Waves

    NASA Astrophysics Data System (ADS)

    Morgan, R. G.; Gildfind, D. E.

    The underground mining environment has always been high risk due to the presence of solid and gaseous flammables, and the potential for the creation of detonablemixtures. Following explosions in confined spaces, shock waves are generated and may propagate through the tunnel system, causing injuries and possibly initiating further combusting or detonating events. The ability to generate the conditions which exist post shock is a useful experimental tool for the study of such processes, and for the evaluation of techniques to control and limit propagation.

  5. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  6. The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: Shock tube experiments and kinetic modeling

    SciTech Connect

    Oehlschlaeger, Matthew A.; Steinberg, Justin; Westbrook, Charles K.; Pitz, William J.

    2009-11-15

    Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {phi} = 0.5, 1.0, and 1.5 iso-cetane/air mixtures at temperatures ranging from 879 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements for iso-cetane presented here are the first of their kind. (author)

  7. Elastic response of water-filled fiber composite tubes under shock wave loading

    SciTech Connect

    Perotti, Luigi E.; Deiterding, Ralf; Inaba, Kazuaki; Shepherd, Joseph E; Ortiz, Michael

    2013-01-01

    We experimentally and numerically investigate the response of fluid-filled filament-wound composite tubes subjected to axial shock wave loading in water. Our study focuses on the fluid structure interaction occurring when the shock wave in the fluid propagates parallel to the axis of the tube, creating pressure waves in the fluid coupled to flexural waves in the shell. The in-house-developed computational scheme couples an Eulerian fluid solver with a Lagrangian shell solver, which includes a new and simple material model to capture the response of fiber composites in finite kinematics. In the experiments and simulations we examine tubes with fiber winding angles equal to 45 and 60 , and we measure the precursor and primary wave speeds, hoop and longitudinal strains, and pressure. The experimental and computational results are in agreement, showing the validity of the computational scheme in complex fluid structure interaction problems involving fiber composite materials subjected to shock waves. The analyses of the measured quantities show the strong coupling of axial and hoop deformations and the significant effect of fiber winding angle on the composite tube response, which differs substantially from that of a metal tube in the same configuration.

  8. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  9. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  10. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  11. Multisorbent tubes for collecting volatile organic compounds in spacecraft air

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Beck, S. W.; Limero, T. F.; James, J. T.

    2000-01-01

    The sampling capability of Tenax-TA tubes, used in the National Aeronautics and Space Administration's solid sorbent air sampler to trap and concentrate contaminants from air aboard spacecraft, was improved by incorporating two sorbents within the tubes. Existing tubes containing only Tenax-TA allowed highly volatile compounds to "break through" during collection of a 1.5 L air sample. First the carbon molecular sieve-type sorbents Carboxen 569 and Carbosieve S-III were tested for their ability to quantitatively trap the highly volatile compounds. Breakthrough volumes were determined with the direct method, whereby low ppm levels of methanol or Freon 12 in nitrogen were flowed through the sorbent tubes at 30 mL/min, and breakthrough was detected by gas chromatography. Breakthrough volumes for methanol were about 9 L/g on Carboxen 569 and 11 L/g on Carbosieve S-III; breakthrough volumes for Freon 12 were about 7 L/g on Carboxen 569 and > 26 L/g on Carbosieve S-III. Next, dual-bed tubes containing either Tenax-TA/Carbosieve S-III, Tenax-TA/Carboxen 569, or Carbotrap/Carboxen 569 to a 10-component gas mixture were exposed, in dry and in humidified air (50% relative humidity), and percentage recoveries of each compound were determined. The Tenax-TA/Carboxen 569 combination gave the best overall recoveries (75-114% for the 10 compounds). Acetaldehyde had the lowest recovery (75%) of the 10 compounds, but this value was still an improvement over either the other two sorbent combinations or the original single-sorbent tubes.

  12. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube.

    PubMed

    Qiu, Chong; Khalizov, Alexei F; Hogan, Brian; Petersen, Eric L; Zhang, Renyi

    2014-06-03

    Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.

  13. 'GAIM' - Gas-addition, impedance-matched arc driver. [shock tube gas dynamics

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.

    1980-01-01

    A conceptual view for a GAIM energy/driver system to maximize shock-tube performance through efficient interfacing of the energy source with the gas dynamics of the arc driver is presented. Electrical and arc-chamber requirements are evaluated utilizing two new computer codes. One code calculates the shock wave generated for a selected time rate and magnitude of arc-energy input; the other computes the values of external circuit elements required to produce the selected energy input, with the driver represented as the load element of the electrical discharge circuit. Results indicate that the energy-storage capability and the driver arrangement needed to produce the highest shock Mach number can be achieved by means of driver gas addition and by impedance matching (GAIM). Design criteria are presented for arc energy requirements necessary to produce given shock-wave speeds. Shock velocities as high as the 70 km/sec required for simulating Jovian entry now seem possible in shock-tube operation. Practical implementation of a GAIM system is discussed.

  14. Temperature perturbations evolution as a possible mechanism of exothermal reaction kernels formation in shock tubes

    NASA Astrophysics Data System (ADS)

    Drakon, A. V.; Kiverin, A. D.; Yakovenko, I. S.

    2016-11-01

    The basic question raised in the paper concerns the origins of exothermal reaction kernels and the mechanisms of detonation onset behind the reflected shock wave in shock-tube experiments. Using the conventional experimental technique, it is obtained that in the certain diapason of conditions behind the reflected shocks a so-called “mild ignition” arises which is characterized by the detonation formation from the kernel distant from the end-wall. The results of 2-D and 3-D simulations of the flow evolution behind the incident and reflected shocks allow formulation of the following scenario of ignition kernels formation. Initial stage during and after the diaphragm rupture is characterized by a set of non-steady gasdynamical processes. As a result, the flow behind the incident shock occurs to be saturated with temperature perturbations. Further evolution of these perturbations provides generating of the shear stresses in the flow accompanied with intensification of velocity and temperature perturbations. After reflection the shock wave interacts with the formed kernels of higher temperature and more pronounced kernels arise on the background of reactivity profile determined by moving reflected shock. Exothermal reaction starts inside such kernels and propagates into the ambient medium as a spontaneous ignition wave with minimum initial speed equal to the reflected shock wave speed.

  15. Breakthrough of 1,3-dichloropropene and chloropicrin from 600 mg XAD-4 air sampling tubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitati...

  16. Modeling wall effects in a micro-scale shock tube using hybrid MD-DSMC algorithm

    NASA Astrophysics Data System (ADS)

    Watvisave, D. S.; Puranik, B. P.; Bhandarkar, U. V.

    2016-07-01

    Wall effects in a micro-scale shock tube are investigated using the Direct Simulation Monte Carlo method as well as a hybrid Molecular Dynamics-Direct Simulation Monte Carlo algorithm. In the Direct Simulation Monte Carlo simulations, the Cercignani-Lampis-Lord model of gas-surface interactions is employed to incorporate the wall effects, and it is shown that the shock attenuation is significantly affected by the choice of the values of tangential momentum accommodation coefficient. A loosely coupled Molecular Dynamics-Direct Simulation Monte Carlo approach is then employed to demonstrate incomplete accommodation in micro-scale shock tube flows. This approach uses fixed values of the accommodation coefficients in the gas-surface interaction model, with their values determined from a separate dynamically similar Molecular Dynamics simulation. Finally, a completely coupled Molecular Dynamics-Direct Simulation Monte Carlo algorithm is used, wherein the bulk of the flow is modeled using Direct Simulation Monte Carlo, while the interaction of gas molecules with the shock tube walls is modeled using Molecular Dynamics. The two regions are separate and coupled both ways using buffer zones and a bootstrap coupling algorithm that accounts for the mismatch of the number of molecules in both regions. It is shown that the hybrid method captures the effect of local properties that cannot be captured using a single value of accommodation coefficient for the entire domain.

  17. Cracking of Composite Modified Alloy 825 Primary Air Port Tubes

    SciTech Connect

    Kish, Joseph R.; Keiser, James R; Singbeil, Douglas; Willoughby, Adam W; Longmire, Hu Foster

    2007-04-01

    Twenty primary air ports fabricated from modified Alloy 825-based composite tubes underwent a metallurgical examination to document the mode and extent of cracking on the external fireside surface of a kraft recovery boiler. Collectively, the crack features found are most consistent with thermal fatigue, but corrosion fatigue cannot be ruled out. Regardless of the true cracking mechanism, temperature cycling is implicated as a critical factor for crack propagation. on the basis of the relative crack lengths observed, membrane welds and tube weld repairs, and their adjacent heat-affected zones, appear to be more susceptible to cracking than the cladding itself. This work suggests that mills should avoid boiler operating conditions that promote large temperature fluctuations, which can cause Alloy 825-based composite tubes to crack.

  18. An improved thin-film gauge for shock-tube thermal studies.

    NASA Technical Reports Server (NTRS)

    Willeke, K.; Bershader, D.

    1973-01-01

    An improved type of thin-film heat gauge has been developed and used to measure heat-transfer rates from a shock-heated plasma to the end wall of a shock tube. The gauge is a resistance thermometer consisting of a triple-layered sensor coated by a moderately thick film of SiO2. It was used to measure heat transfer from nonionized argon at temperatures of up to 16000 K. A marked increase in heat transfer at the onset of ionization near the wall indicates that the gauge can be used to obtain the contribution of free electrons to the thermal transport.

  19. Numerical simulation of the autoignition of hydrogen-air mixtures behind shock waves

    NASA Astrophysics Data System (ADS)

    Tereza, A. M.; Smirnov, V. N.; Vlasov, P. A.; Lyubimov, A. V.; Sokolova, I. L.; Shumova, V. V.; Ziborov, V. S.

    2015-11-01

    Problems related to the autoignition of hydrogen-air mixtures are highly important for the operation safety of nuclear reactors and for hydrogen power engineering. In spite of extensive studies in this area, there are still many problems directly concerned with the ignition delay times of H2/O2 mixtures and with the conditions under which these processes occur. This paper deals with the numerical analysis of the data available in the literature on O, H, and OH yields in order to determine the influence of the primary channels of the initiation of H2/Air mixtures. The numerical modeling of the available literature data on the ignition delays of hydrogen-air mixtures made it possible to describe the shock tube measurements of ignition delays within the framework of a unified kinetic mechanism over a temperature range of 930-2500 K at pressures from 0.1 to 8.7 MPa.

  20. Natural convection from vertical helical coiled tubes in air

    SciTech Connect

    Ali, M.E.

    1999-07-01

    Helically coiled tubes are used in many engineering applications, such as heating, refrigerating and HVAC systems. They are used also in steam generator and condenser design in power plants because of their large surface area per unit volume. In spite of their widespread use, there is very little information available in the literature on natural convection from such coils. Two experimental investigation have been reported on steady state laminar and transition natural convection from the outer surface of vertically oriented helical coiled tubes in air. Four coils at constant heat flux boundary condition have been used with coil diameter to tube diameter ratio of 16.45 and 23.94. Six more coils have been used at variable surface temperature boundary condition with coil diameter to tube diameter ratio 19.923, 15.904, and 12.798. Local average heat transfer coefficients are obtained for laminar and transition natural convection. The data are correlated with Rayleigh number using the tube diameter as a characteristic length. It has been found that the Nusselt number decreases as Rayleigh number increases for constant heat flux. Transition to turbulent natural convection regime has obtained at a critical Rayleigh number of about 5,000 and it characterizes by a waveform like relation between Nusselt number and Rayleigh number.

  1. Fundamental Kinetics Database Utilizing Shock Tube Measurements (Volumes 1, 2, 3, 4, and Volume 6)

    DOE Data Explorer

    Davidson, D. F.; Hanson, R. K

    The data from shock tube experiments generally takes three forms: ignition delay times, species concentration time-histories and reaction rate measurements. Volume 1 focuses on ignition delay time data measured and published by the Shock Tube Group in the Mechanical Engineering Department of Stanford University. The cut-off date for inclusion into this volume was January 2005. Volume 2 focuses on species concentration time-histories and was cut off December 2005. The two volumes are in PDF format and are accompanied by a zipped file of supporting data. Volume 3 was issued in 2009. Volume 4, Ignition delay times measurements came out in May, 2014, along with Reaction Rates Measurements, Vol 6. Volume 5 is not available at this time.

  2. Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-04-21

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) using a coherent light source for sensitive and rapid gaseous species time-history measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 83 with a measurement time resolution of 20 µs was demonstrated for C2H2 detection using a near-infrared transition near 1537 nm, corresponding to a noise-equivalent detection limit of 20 ppm at 296 K and 76 ppm at 906 K at 50 kHz. This substantial gain in signal, relative to conventional single-pass absorption, will enable ultra-sensitive species detection in shock tube kinetics studies, particularly useful for measurements of minor species and for studies of dilute reactive systems.

  3. The Shock Test Facility: An Explosive-Driven, Water-Filled Conical Shock Tube

    DTIC Science & Technology

    1989-11-01

    Redort Date. Full publication date availability to the public. Enter additional including day, month, and year, if available (e.g. 1 limitations or...19 Acoustic and Sonic Fatigue Environment of the C-141A Aircraft with Universal...Hunter’s Point are expensive. In addition , environmental restrictions have led to a reduction in the number of tests that can be performed. Shock

  4. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    NASA Technical Reports Server (NTRS)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  5. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  6. Dynamic calibration of pressure transducers with an improved shock tube system

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2013-04-01

    The need for reliable dynamic calibration of pressure transducers is becoming increasingly more important, especially with growing demands for improved performance, increased reliability and efficient energy generation from the aerospace, defense and energy sectors - all while being mindful of low lifecycle cost, minimizing maintenance downtime and reducing any negative impact to the environment. State of the art piezoelectric (PE) and piezoresistive (PR) silicon MEMS pressure transducers specifically designed for harsh environments are answering the call to provide the necessary measurements for applications such as high temperature gas turbine engine health monitoring (both in-flight and land/marine based aero-derivative), high pressure blast studies/ordnance explosion optimization, low profile wind tunnel testing/flight testing, etc. However, these pressure transducers are only as valuable as the dynamic calibration they possess so that more understanding of the physical measurement can be ascertained by the end-user. The shock tube is an established laboratory tool capable of imparting near instantaneous pressure stimulus for the purpose of providing quantifiable dynamic calibration of pressure transducers. From a performance perspective, a vast amount of empirical data has been collected over fifteen years and used to model more accurately the one-dimensional gas dynamics occurring within a shock tube so that the time interval of the reflected shock - the most critical parameter in determining the transfer function for the pressure transducer under test - can be optimized for the largest frequency bandwidth over varying shock amplitudes. Accordingly, an introduction of an improved shock tube system offering both increased performance and ease of user operation is presented.

  7. Numerical modeling of an experimental shock tube for traumatic brain injury studies

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Regele, Jonathan D.

    2015-11-01

    Unfortunately, Improvised Explosive Devices (IEDs) are encountered commonly by both civilians and military soldiers throughout the world. Over a decade of medical history suggests that traumatic brain injury (TBI) may result from exposure to the blast waves created by these explosions, even if the person does not experience any immediate injury or lose consciousness. Medical researchers study the exposure of mice and rats to blast waves created in specially designed shock tubes to understand the effect on brain tissue. A newly developed table-top shock tube with a short driver section has been developed for mice experiments to reduce the time necessary to administer the blast radiation and increase the amount of statistical information available. In this study, numerical simulations of this shock tube are performed to assess how the blast wave takes its shape. The pressure profiles obtained from the numerical results are compared with the pressure histories from the experimental pressure transducers. The results show differences in behavior from what was expected, but the blast wave may still be an effective means of studying TBI.

  8. The Effect of Diluent Gases In The Shock Tube and Rapid Compression Machine

    SciTech Connect

    Silke, E; W?rmel, J; O?Conaire, M; Simmie, J; Curran, H

    2007-02-09

    Studying the details of hydrocarbon chemistry in an internal combustion engine is not straightforward. A number of factors, including varying conditions of temperature and pressure, complex fluid motions, as well as variation in the composition of gasoline, render a meaningful characterization of the combusting system difficult. Some simplified experimental laboratory devices offer an alternative to complex engine environments: they remove some of the complexities that exist in real engines but retain the ability to work under engine-relevant conditions. The choice of simplified experimental devices is limited by the range of temperature and pressure at which they can operate; only the shock tube and rapid compression machine (RCM) can reach engine-relevant temperatures and pressures quickly enough and yet withstand the high pressures that occur after the ignition event. Both devices, however, suffer a common drawback: the use of inert diluent gases has been shown to affect the measured ignition delay time under some experimental conditions. Interestingly, this effect appears to be opposite in the shock tube and RCM: in the comparative study of the carrier gases argon and nitrogen, argon decreases the ignition delay time in the shock tube, but increases it in the RCM. This observation is investigated in more detail in this study.

  9. Very High Pressure Single Pulse Shock Tube Studies of Aromatic Species

    SciTech Connect

    Brezinsky, K.

    2006-11-28

    The principal focus of this research program is aimed at understanding the oxidation and pyrolysis chemistry of primary aromatic molecules and radicals with the goal of developing a comprehensive kinetic model at conditions that are relevant to practical combustion devices. A very high pressure single pulse shock tube is used to obtain experimental data over a wide pressure range in the high pressure regime, 5-1000 bars, at pre-flame temperatures for fuel pyrolysis and oxidation over a broad spectrum of equivalence ratios. Stable species sampled from the shock tube are analyzed using standard chromatographic techniques using GC/MS-PDD and GC/TCD-FID. Experimental data from the HPST (stable species profiles) and data from other laboratories (if available) are simulated using kinetic models (if available) to develop a comprehensive model that can describe aromatics oxidation and pyrolysis over a wide range of experimental conditions. The shock tube has been heated (1000C) recently to minimize effects due to condensation of aromatic, polycyclic and other heavy species. Work during this grant period has focused on 7 main areas summarized in the final technical report.

  10. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    PubMed

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  11. Air bubble-shock wave interaction adjacent to gelantine surface

    NASA Astrophysics Data System (ADS)

    Lush, P. A.; Tomita, Y.; Onodera, O.; Takayama, K.; Sanada, N.; Kuwahara, M.; Ioritani, N.; Kitayama, O.

    1990-07-01

    The interaction between a shock wave and an air bubble-adjacent to a gelatine surface is investigated in order to simulate human tissue damage resulting from extracorporeal shock wave lithotripsy. Using high speed cine photography it is found that a shock wave of strength 11 MPa causes 1-3 mm diameter bubbles to produce high velocity microjets with penetration rates of approximately 110 m/s and penetration depths approximately equal to twice the initial bubble diameter. Theoretical considerations for liquid impact on soft solid of similar density indicate that microjet velocities will be twice the penetration rate, i.e. 220 m/s in the present case. Such events are the probable cause of observed renal tissue damage.

  12. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  13. Shock-tube and modeling study of methane pyrolysis and oxidation

    SciTech Connect

    Hidaka, Yoshiaki; Sato, Kazutaka; Henmi, Yusuke; Tanaka, Hiroya; Inami, Koji

    1999-08-01

    Methane pyrolysis and oxidation were studied behind reflected shock waves in the temperature range 1350--2400 K at pressures of 1.6 to 4.4 atm. Methane decay in both the pyrolysis and oxidation reactions was measured by using time-resolved infrared (IR) laser absorption at 3.39 {micro}m. CO{sub 2} production was also measured by time-resolved IR emission at 4.24 {micro}m. The production yields were also studied using a single-pulse method. The pyrolysis and oxidation of methane were modeled using a kinetic reaction mechanism including the most recent mechanism for formaldehyde, ketene, acetylene, ethylene, and ethane oxidations. The present and earlier shock tube data is reproduced by the proposed mechanism with 157 reaction steps and 48 species. The reactions and the rate constants, which were important to predict these and earlier shock tube data for methane pyrolysis and the oxidation with mixtures of wide composition from methane-rich to methane-lean, are discussed in detail.

  14. Tables and charts of equilibrium normal shock and shock tube solutions for pure CO2 with velocities to 16 km/second

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1974-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2, representative of Mars and Venus atmospheres. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 Newtons per square meter to 500 kilo Newtons per square meter. The present results are applicable to shock tube flows, and to free-flight conditions for a blunt body at high velocities. Working charts illustrating idealized shock-tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.

  15. Table and charts of equilibrium normal-shock and shock-tube properties for pure carbon dioxide with velocities from 1 to 16 km/sec

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1976-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. The present results are applicable to shock tube flows and to freeflight conditions for a blunt body at high velocities. Working charts illustrating idealized shock tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.

  16. Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube

    DOE PAGES

    Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena

    2016-04-12

    We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface.more » Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.« less

  17. Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube

    SciTech Connect

    Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena

    2016-04-12

    We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.

  18. Hyperthermal molecular beam source using a non-diaphragm-type small shock tube

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yuta; Osuka, Kenichi; Miyoshi, Nobuya; Kinefuchi, Ikuya; Takagi, Shu; Matsumoto, Yoichiro

    2016-10-01

    We have developed a hyperthermal molecular beam source employing a non-diaphragm-type small shock tube for gas-surface interaction studies. Unlike conventional shock-heated beam sources, the capability of repetitive beam generation without the need for replacing a diaphragm makes our beam source suitable for scattering experiments, which require signal accumulation for a large number of beam pulses. The short duration of shock heating alleviates the usual temperature limit due to the nozzle material, enabling the generation of a molecular beam with higher translational energy or that containing dissociated species. The shock-heated beam is substantially free from surface-contaminating impurities that are pronounced in arc-heated beams. We characterize the properties of nitrogen and oxygen molecular beams using the time-of-flight method. When both the timing of beam extraction and the supply quantity of nitrogen gas are appropriately regulated, our beam source can generate a nitrogen molecular beam with translational energy of approximately 1 eV, which corresponds to the typical activation energy of surface reactions. Furthermore, our beam source can generate an oxygen molecular beam containing dissociated oxygen atoms, which can be a useful probe for surface oxidation. The dissociation fraction along with the translational energy can be adjusted through the supply quantity of oxygen gas.

  19. Strategies for obtaining long constant-pressure test times in shock tubes

    SciTech Connect

    Campbell, Matthew Frederick; Parise, T.; Tulgestke, A. M.; Spearrin, R. M.; Davidson, D. F.; Hanson, R. K.

    2015-09-22

    Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. Here, we detail these techniques, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing a tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.

  20. Strategies for obtaining long constant-pressure test times in shock tubes

    DOE PAGES

    Campbell, Matthew Frederick; Parise, T.; Tulgestke, A. M.; ...

    2015-09-22

    Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. Here, we detail these techniques, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing amore » tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.« less

  1. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  2. Planar blast scaling with condensed-phase explosives in a shock tube

    SciTech Connect

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube

  3. Progress in Air Separation with the Vortex Tube

    NASA Technical Reports Server (NTRS)

    Balepin, V.; Rosolt, D.; Petley, D.

    1999-01-01

    The current study is characterized by two distinct phases in the development of the vortex tube (VT) technology as a primary means for in-flight air separation. The purpose of the first phase was to systematically identify parameters that influence oxygen concentration and recovery and to quantify the extent of that influence. To that end, the project team used a series of planned factorial experiments to identify statistically significant variables (factors) and their interactions. These experiments identified a best range of the operating envelope that includes nozzle diameter, orifice diameter, inlet air pressure, and liquid phase content in the inlet air. The best results observed in this envelope were an oxygen content of approximately 68% and a recovery factor of approximately 38%. The primary objectives of the second phase of the current study were to investigate the application effects of the two different air separation efficiency enhancement methods. One of these methods resulted in a concentration increase of 12% and second resulted in a concentration increase of 5%. Several aspects of these methods application are subject to optimize.

  4. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    NASA Astrophysics Data System (ADS)

    Janardhanraj, S.; Jagadeesh, G.

    2016-08-01

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  5. Table and charts of equilibrium normal shock and shock tube properties for pure argon with velocities to 18 km/sec

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1976-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure argon. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 2 to 18 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. Working charts illustrating shock tube performance with argon test gas and heated helium and hydrogen driver gases are also presented.

  6. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  7. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is

  8. Quantification of non-ideal explosion violence with a shock tube

    SciTech Connect

    Jackson, Scott I; Hill, Larry G

    2009-01-01

    There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distance from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.

  9. Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Rotavera, B.; Petersen, E. L.

    2013-07-01

    Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.

  10. Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process

    NASA Astrophysics Data System (ADS)

    Nickel, R.; Bobzin, K.; Lugscheider, E.; Parkot, D.; Varava, W.; Olivier, H.; Luo, X.

    2007-12-01

    A new method for a combustion-free spraying is studied fundamentally by modeling and simulation in comparison with first experiments. The article focuses on the numerical simulation of the gas-particle nozzle flow, which is generated by the shock reflection at the end wall section of a shock tube. To study the physical fundamentals of this process, at present only a single shot operation is considered. The particles are injected downstream of the nozzle throat into a supersonic nozzle flow. The measurements of the particle velocity made by a laser Doppler anemometry (LDA) set up show that the maximum velocity amounts to 1220 m/s for stainless steel particles of 15 μm diameter. The CFD-Code (Fluent) is first verified by a comparison with available numerical and experimental data for gas and gas-particle flow fields in a long Laval-nozzle. The good agreement implied the great potential of the new dynamic process concept for cold-gas coating applications. Then the flow fields in the short Laval nozzle designed and realized by the Shock Wave Laboratory (SWL) are investigated. The gas flow for experimentally obtained stagnation conditions is simulated. The gas-particle flow without and with the influence of the particles on the gas flow is calculated by the Surface Engineering Institute (IOT) and compared with experiments. The influence of the injection parameters on the particle velocities is investigated, as well.

  11. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  12. Nanodiamond formation via thermal radiation from an air shock

    NASA Astrophysics Data System (ADS)

    de Carli, Paul

    2013-06-01

    Nanodiamonds have recently been found in sediments of Younger Dryas age, about 12,900 years ago. Carbon isotope ratios imply that the source of carbon was terrestrial organic matter and rule out the possibility that the diamond was of cosmic origin, e.g., from an influx of meteorites. The nanodiamonds are associated with mineral spherules (and other shapes) that have compositions and textures consistent with the rapid melting and solidification of local soil. The inferred temperatures are much too high for natural events such as forest fires. Similar deposits of nanodiamond have been found in the 65 million year old K-Pg layer associated with the ca. 200 km diameter Chicxulub impact crater. Nanodiamond have also been reported in the vicinity of the Tunguska event, presumed to be the result of an air shock produced by the interaction of a rapidly moving cosmic body with the Earth's atmosphere. We infer that the nanodiamonds were formed when the thermal radiation from the air shock pyrolyzed surface organic matter. Rapid reaction locally depleted the atmosphere of oxygen and the remaining carbon could condense as nanodiamond. A similar mechanism can be invoked to account for the formation of nanodiamond as a froduct of the detonation of ozygen-deficient high explosives.

  13. Measurement of Radiative Non-Equilibrium for Air Shocks Between 7-9 Km/s

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2016-01-01

    This paper describes a recent characterization of non-equilibrium radiation for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data is spectrally resolved from 190- 1450 nm and spatially resolved behind the shock front. Comparisons are made to DPLR/NEQAIR simulations using different modeling options and recommendations for future study are made based on these comparisons.

  14. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  15. Shock tube study of the reaction H plus O2 plus Ar yields HO2 plus Ar

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Houghton, W. M.

    1972-01-01

    Rate coefficient data for the recombination reaction H + 02 + Ar yields H02 + Ar have been determined from studies of lean hydrogen-oxygen mixtures behind incident shock waves over the temperature range of 948 to 1125 K. Hydroxyl radical concentration profiles were measured by ultraviolet absorption spectroscopy, and rate data were obtained through analysis of induction time and exponential growth parameter data. Analysis of the data yielded a rate coefficient which was generally lower than most of the more recent values obtained from shock tube studies. The effect of boundary layer formation on the conditions behind the shock was also examined and found to be negligible.

  16. Application of the space-time conservation element and solution element method to shock-tube problem

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1994-01-01

    An Euler solver based on the method of space-time conservation element and solution element is in this paper to simulate shock-tube flows involving shock waves, contact discontinuities, expansion waves and their intersections. Seven test problems are considered to examine the capability of this method. The numerical results, when compared with exact solutions and/or numerical solutions by other methods, indicate that the present method can accurately resolve strong shock and contact discontinuities without using any ad hoc techniques which are used only at the neighborhood of a discontinuity.

  17. Shock-tube pyrolysis of acetylene - Sensitivity analysis of the reaction mechanism for soot formation

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Gardiner, W. C., Jr.; Stein, S. E.

    1986-01-01

    The impact of thermodynamic parameters on the sensitivity of model predictions of soot formation by shock-tube pyrolysis of acetylene were assessed analytically. The pyrolysis process was treated as having three components: initiation, the initial pyrolysis stages; cyclization, formation of larger molecules and radicals and small aromatic molecules; and polymerization, further growth of aromatic rings. Rate equations are reviewed for each component. Thermodynamic effects were assessed by varying the C2H-H and C2H3-H bond energies and the Ct-(Ct) group additivity value. Any change in the C2H-H bond energy had a significant impact on the temperature and the maximum amount of the soot yield. The findings underscore the necessity of using accurate thermodynamic data for modeling high-temperature chemical kinetics.

  18. Single-pulse shock tube pyrolysis of toluene and 1,3-butadiene

    NASA Technical Reports Server (NTRS)

    Colket, M. B.

    1983-01-01

    The objective of this research is to investigate the rate limiting chemical mechanisms leading to the formation of soot precursors. A single-pulse shock tube is being used to collect gas samples of stable intermediates and end products of hydrocarbon pyrolysis. These gas samples are analyzed quantitatively using gas chromatography and any mass imbalance is believed to be due to the formation of PAH's and soot. Experimental decomposition rates of the parent hydrocarbon are determined and compared to predictions from the literature. Detailed chemical kinetic mechanisms describing hydrocarbon pyrolysis are being developed and models of soot formation are being compared with the experimental results. Information developed from these pyrolysis studies will provide the fundamental understanding for modeling subsequent oxidation experiments.

  19. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased

  20. A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidation.

    PubMed

    Yasunaga, K; Gillespie, F; Simmie, J M; Curran, H J; Kuraguchi, Y; Hoshikawa, H; Yamane, M; Hidaka, Y

    2010-09-02

    The pyrolysis and oxidation of diethyl ether (DEE) has been studied at pressures from 1 to 4 atm and temperatures of 900-1900 K behind reflected shock waves. A variety of spectroscopic diagnostics have been used, including time-resolved infrared absorption at 3.39 mum and time-resolved ultraviolet emission at 431 nm and absorption at 306.7 nm. In addition, a single-pulse shock tube was used to measure reactant, intermediate, and product species profiles by GC samplings at different reaction times varying from 1.2 to 1.8 ms. A detailed chemical kinetic model comprising 751 reactions involving 148 species was assembled and tested against the experiments with generally good agreement. In the early stages of reaction the unimolecular decomposition and hydrogen atom abstraction of DEE and the decomposition of the ethoxy radical have the largest influence. In separate experiments at 1.9 atm and 1340 K, it is shown that DEE inhibits the reactivity of an equimolar mixture of hydrogen and oxygen (1% of each).

  1. Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-07-16

    A direct measurement for the rate constant of the acetone dissociation reaction (CH3COCH3 = CH3CO + CH3) was conducted behind reflected shock wave, utilizing a sub-ppm sensitivity CO diagnostic achieved by cavity-enhanced absorption spectroscopy (CEAS). The current experiment eliminated the influence from secondary reactions and temperature change by investigating the clean pyrolysis of <20 ppm acetone in argon. For the first time, the acetone dissociation rate constant (k1) was directly measured over 5.5 orders of magnitude with a high degree of accuracy: k1 (1004-1494 K, 1.6 atm) = 4.39 × 10(55) T(-11.394) exp(-52 140K/T) ± 24% s(-1). This result was seen to agree with most previous studies and has bridged the gap between their temperature and pressure conditions. The current work also served as an example demonstration of the potential of using the CEAS technique in shock-tube kinetics studies.

  2. Shock tube study on the thermal decomposition of fluoroethane using infrared laser absorption detection of hydrogen fluoride.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi

    2014-08-28

    Motivated by recent shock tube studies on the thermal unimolecular decomposition of fluoroethanes, in which unusual trends have been reported for collisional energy-transfer parameters, the rate constants for the thermal decomposition of fluoroethane were investigated using a shock tube/laser absorption spectroscopy technique. The rate constants were measured behind reflected shock waves by monitoring the formation of HF by IR absorption at the R(1) transition in the fundamental vibrational band near 2476 nm using a distributed-feedback diode laser. The peak absorption cross sections of this absorption line have also been determined and parametrized using the Rautian-Sobel'man line shape function. The rate constant measurements covered a wide temperature range of 1018-1710 K at pressures from 100 to 290 kPa, and the derived rate constants were successfully reproduced by the master equation calculation with an average downward energy transfer, ⟨ΔEdown⟩, of 400 cm(-1).

  3. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  4. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  5. Proceedings of the International Symposium on Shock Waves and Shock Tubes (15th) Held in Berkeley, California on July 28-August 2, 1985

    DTIC Science & Technology

    1986-09-01

    Chair) J. Jones C. Park J. Dewey J. Keefer D. Russell D. Eekstrom J. Kiefer G. Skinner R. Emnrich Y. Kim B. Sturtevant R. Fowler A. Mark C. 1Tvanor Host... Skinner Shock Tube Study of Acetaldehyde Oxidation 277 A. Koichi Hayashi and Toshi Fj4iwara Chemical Kinetics Modeing of the Influence of Molecular...produce deviations from thermal equilibrium. At the conditions considered here, however, examples of nonequilibrium behavior are difficult to identify

  6. A Nonlinear Theory for Predicting the Effects of Unsteady Laminar, Turbulent, or Transitional Boundary Layers on the Attenuation of Shock Waves in a Shock Tube with Experimental Comparison

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L.; Cohen, Nathaniel B.

    1961-01-01

    The linearized attenuation theory of NACA Technical Note 3375 is modified in the following manner: (a) an unsteady compressible local skin-friction coefficient is employed rather than the equivalent steady-flow incompressible coefficient; (b) a nonlinear approach is used to permit application of the theory to large attenuations; and (c) transition effects are considered. Curves are presented for predicting attenuation for a shock pressure ratio up to 20 and a range of shock-tube Reynolds numbers. Comparison of theory and experimental data for shock-wave strengths between 1.5 and 10 over a wide range of Reynolds numbers shows good agreement with the nonlinear theory evaluated for a transition Reynolds number of 2.5 X 10(exp 5).

  7. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    SciTech Connect

    Kim, Y.W.

    1990-01-01

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  8. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  9. Temperature measurements of explosively driven strong shock waves in gases

    NASA Astrophysics Data System (ADS)

    Nakayama, Yoshio; Yoshida, Masatake; Kakudate, Yozo; Usuba, Shu; Yamawaki, Hiroaki; Aoki, Katsutoshi; Tanaka, Katsumi; Fujiwara, Shuzo

    1992-03-01

    Two types of explosively driven shock tube; one-dimensional shock tube, and cumulative shock tube were used to generate strong shock waves in gases. Temperature measurements were made by using a spectroscope with eight-PIN photodiode system over the visible wavelength range (440-740 nm). The color temperature as well as the brightness temperature for one-dimensional shock tube with atmospheric pressure argon agreed fairly well with theoretical calculations; the brightness temperature was 18,000 K and 19,200 K for shock velocity of 4.8 km/s and 5.7 km/s respectively with an accuracy of +/- 500 K. The brightness temperature in the cumulative shock tube was 62,200 +/- 2,010 K at shock velocity of 27 km/s for atmospheric pressure air and agreed with theoretical values.

  10. Benchmark Shock Tube Experiments for Radiative Heating Relevant to Earth Re-Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Cruden, B. A.

    2017-01-01

    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube (EAST) facility for conditions relevant to high speed entry into a variety of atmospheres, including Earth, Venus, Titan, Mars and the Outer Planets. The tests that measured radiation relevant for Earth re-entry are the focus of this work and are taken from campaigns 47, 50, 52 and 57. These tests covered conditions from 8 km/s to 15.5 km/s at initial pressures ranging from 0.05 Torr to 1 Torr, of which shots at 0.1 and 0.2 Torr are analyzed in this paper. These conditions cover a range of points of interest for potential fight missions, including return from Low Earth Orbit, the Moon and Mars. The large volume of testing available from EAST is useful for statistical analysis of radiation data, but is problematic for identifying representative experiments for performing detailed analysis. Therefore, the intent of this paper is to select a subset of benchmark test data that can be considered for further detailed study. These benchmark shots are intended to provide more accessible data sets for future code validation studies and facility-to-facility comparisons. The shots that have been selected as benchmark data are the ones in closest agreement to a line of best fit through all of the EAST results, whilst also showing the best experimental characteristics, such as test time and convergence to equilibrium. The EAST data are presented in different formats for analysis. These data include the spectral radiance at equilibrium, the spatial dependence of radiance over defined wavelength ranges and the mean non-equilibrium spectral radiance (so-called 'spectral non-equilibrium metric'). All the information needed to simulate each experimental trace, including free-stream conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution functions, are provided.

  11. Shock tube study of dissociation and relaxation in 1,1-difluoroethane and vinyl fluoride.

    PubMed

    Xu, Hui; Kiefer, John H; Sivaramakrishnan, Raghu; Giri, Binod R; Tranter, Robert S

    2007-08-21

    This paper reports measurements of the thermal dissociation of 1,1-difluoroethane in the shock tube. The experiments employ laser-schlieren measurements of rate for the dominant HF elimination using 10% 1,1-difluoroethane in Kr over 1500-2000 K and 43 < P < 424 torr. The vinyl fluoride product of this process then dissociates affecting the late observations. We thus include a laser schlieren study (1717-2332 K, 75 < P < 482 torr in 10 and 4% vinyl fluoride in Kr) of this dissociation. This latter work also includes a set of experiments using shock-tube time-of-flight mass spectrometry (4% vinyl fluoride in neon, 1500-1980 K, 500 < P < 1300 torr). These time-of-flight experiments confirm the theoretical expectation that the only reaction in vinyl fluoride is HF elimination. The dissociation experiments are augmented by laser schlieren measurements of vibrational relaxation (1-20% C(2)H(3)F in Kr, 415-1975 K, 5 < P < 50 torr, and 2 and 5% C(2)H(4)F(2) in Kr, 700-1350 K, 6 < P < 22 torr). These experiments exhibit very rapid relaxation, and incubation delays should be negligible in dissociation. An RRKM model of dissociation in 1,1-difluoroethane based on a G3B3 calculation of barrier and other properties fits the experiments but requires a very large DeltaE(down) of 1600 cm(-1), similar to that found in a previous examination of 1,1,1-trifluoroethane. Dissociation of vinyl fluoride is complicated by the presence of two parallel HF eliminations, both three-center and four-center. Structure calculations find nearly equal barriers for these, and TST calculations show almost identical k(infinity). An RRKM fit to the observed falloff again requires an unusually large DeltaE(down) and the experiments actually support a slightly reduced barrier. These large energy-transfer parameters now seem routine in these large fluorinated species. It is perhaps a surprising result for which there is as yet no explanation.

  12. Numerical study of the transient flow in the driven tube and the nozzle section of a shock tunnel

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1993-01-01

    The initial flow in a shock tunnel was examined numerically using computational fluid dynamics (CFD). A finite-volume total variation diminishing (TVD) scheme was used to calculate the transient flow in a shock tunnel. Both viscous and inviscid, chemically nonreacting flows were studied. The study consisted of two parts, the first dealt with the transient flow in the driven-tube/nozzle interface region (inviscid calculations). The effects of varying the geometry in this region was examined. The second part of the study examined the transient flow in the nozzle (viscous calculations). The results were compared to experimental data.

  13. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    PubMed

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.

  14. A Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran

    PubMed Central

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A.

    2013-01-01

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300 – 1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [J. Phys. Chem. A 102 (52) (1998) 10655-10670] Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model experiment deviations of at most a factor of two, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species. PMID:23327724

  15. The dissociation of diacetyl : a shock-tube and theoretical study.

    SciTech Connect

    Yang, X.; Jasper, A. W.; Kiefer, J. H.; Tranter, R. S.

    2009-07-01

    The dissociation of diacetyl dilute in krypton has been studied in a shock tube using laser schlieren densitometry at 1200-1800 K and reaction pressures of 55 {+-} 2, 120 {+-} 3, and 225 {+-} 5 Torr. The experimentally determined rate coefficients show falloff and an ab initio/Master Equation/VRC-TST analysis was used to determine pressure-dependent rate coefficient expressions that are in good agreement with the experimental data. From the theoretical calculations k{sub {infinity}} (T) = 5.029 x 10{sup 19} (T/298 K){sup -3.40} exp(-37665/T) s{sup -1} for 300 < T < 2000 K. The laser schlieren profiles were simulated using a model for methyl recombination with appropriate additions for diacetyl. From the simulations rate coefficients were determined for CH{sub 3} + CH{sub 3} = C{sub 2}H{sub 6} and CH{sub 3} + C{sub 4}H{sub 6}O{sub 2} = CH{sub 3}CO + CH{sub 2}CO + CH{sub 4} (k(T) = 2.818T{sup 4.00} exp(-5737/T) cm{sup 3} mol{sup -1} s{sup -1}). Excellent agreement is found between the simulations and experimental profiles, and Troe type parameters have been calculated for the dissociation of diacetyl and the recombination of methyl radicals.

  16. Recurrent tense pneumoperitoneum due to air influx via abdominal wall stoma of a PEG tube.

    PubMed

    Vijayakrishnan, Rajakrishnan; Adhikari, Deep; Anand, Curuchi P

    2010-07-28

    A 70 years old male on ventilatory and circulatory support for sepsis and non ST segment elevation myocardial infarction developed abdominal distension 14 d after placement of a percutaneous endoscopic gastrostomy tube for enteral feeding. Radiography revealed free air in the abdomen and gastrograffin (G) study showed no extravasation into the peritoneum. The G tube was successfully repositioned with mechanical release of air. Imaging showed complete elimination of free air but the patient had a recurrence of pneumoperitoneum. Mechanical release of air with sealing of the abdominal wound was performed. Later, the patient was restarted on tube feeding with no complications. This case demonstrates a late complication of pneumoperitoneum with air leakage from the abdominal wall stoma.

  17. Transition boundary between regular and Mach reflections for a moving shock interacting with a wedge in inviscid and polytropic air

    NASA Astrophysics Data System (ADS)

    Hryniewicki, M. K.; Gottlieb, J. J.; Groth, C. P. T.

    2016-12-01

    The transition boundary separating the region of regular reflection from the regions of single-, transitional-, and double-Mach reflections for a planar shock wave moving in air and interacting with an inclined wedge in a shock tube is studied by both analytical methods and computational-fluid-dynamic simulations. The analytical solution for regular reflection and the corresponding solutions from the extreme-angle (detachment), sonic, and mechanical-equilibrium transition criteria by von Neumann (Oblique reflection of shocks, Explosive Research Report No. 12, Navy Department, Bureau of Ordnance, U.S. Dept. Comm. Tech. Serv. No. PB37079 (1943). Also, John von Neumann, Collected Works, Pergamon Press 6, 238-299, 1963) are first revisited and revised. The boundary between regular and Mach reflection is then determined numerically using an advanced computational-fluid-dynamics algorithm to solve Euler's inviscid equations for unsteady motion in two spatial dimensions. This numerical transition boundary is determined by post-processing many closely stationed flow-field simulations, to determine the transition point when the Mach stem of the Mach-reflection pattern just disappears and this pattern then transcends into that of regular reflection. The new numerical transition boundary is shown to agree well with von Neumann's closely spaced sonic and extreme-angle boundaries for weak incident shock Mach numbers from 1.0 to 1.6, but this new boundary trends upward and above von Neumann's sonic and extreme-angle boundaries by a couple of degrees at larger shock Mach numbers from 1.6 to 4.0. Furthermore, the new numerically determined transition boundary is shown to agree well with very few available experimental data obtained from previous experiments designed to reflect two symmetrical moving oblique shock waves along a plane without a shear or boundary layer.

  18. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  19. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure

    SciTech Connect

    Fieweger, K.; Blumenthal, R.; Adomeit, G.

    1997-06-01

    The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is a suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.

  20. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  1. Experimental Demonstration of the Use of a N2O/N2 Mixture in the Driven Tube of a Reflected Shock Tunnel in Order to Increase Test Time

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilson, Gregory J.; Sussman, Myles A.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    An experimental investigation was carried out into the replacement of air in the driven tube of a reflected shock tunnel by an N2O/N2 mixture in order to increase the test time. The incident shock velocities were between 2 and 3 km/sec. Test times were estimated from light emission histories in the driven tube (at distance of L/D = 46.5 from the main diaphragm) and in the nozzle at an area ratio of 27.9 and from pressure histories just upstream of the nozzle entrance (at L/D = 54). The test times estimated from the light emission histories in the driven tube showed that consistent increases of 60-100% were obtained upon substituting N2O/N2 for air in the driven tube. These increases were in very good agreement with theoretical estimates. The test times estimated from the light emission histories in the nozzle or pressure histories at the nozzle inlet showed significant improvements with N2O/N2 only for cases where the facility was operated at substantially overtailored conditions. It is believed that this is due to the greater stability of the driver-driven interface at overtailored operating conditions. At overtailored operating conditions, test times increases of 60-100% with N2O/N2 were observed with all three diagnostic techniques. These increases were in reasonable agreement with theoretical estimates.

  2. Experimental study of soot formation from a diesel fuel surrogate in a shock tube

    SciTech Connect

    Mathieu, Olivier; Djebaili-Chaumeix, Nabiha; Paillard, Claude-Etienne; Douce, Francoise

    2009-08-15

    The soot tendency (soot induction delay time and soot yield) of a diesel fuel surrogate and of the hydrocarbons that constitute this mixture was studied in a heated shock tube. The surrogate is composed of three hydrocarbons representative of major chemical families of diesel fuels (39% n-propylcyclohexane, 28% n-butylbenzene, and 33% 2,2,4,4,6,8,8-heptamethylnonane in mass proportion). Experiments were carried out for highly diluted mixtures in argon; in the case of pyrolysis and at two equivalence ratios: 18 and 5. The pressure range was relatively high (1090-1870 kPa) and the carbon atom concentration was kept constant at around 2 x 10{sup +18} atoms cm{sup -3}. The effects of the nature of the hydrocarbon, the oxygen addition, and the temperature on the soot induction delay time and soot yield were investigated. A second growth stage of the soot volume fraction was observed. The influence of several parameters on the existence and/or on the amplitude of this second growth seems to indicate the chemical nature of this phenomenon. Results for the soot tendency show that the soot induction delay time and soot yield depend strongly on the structure of the hydrocarbon and on the concentration of oxygen. The study of the diesel surrogate shows that the soot inception process does not depend on synergistic effects between hydrocarbons but seems to be initiated by the constituent of the surrogate that produces soot fastest, while other constituents were consumed later during the soot growth. (author)

  3. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    NASA Astrophysics Data System (ADS)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  4. Break-up of metal tube makes one-time shock absorber, bars rebound

    NASA Technical Reports Server (NTRS)

    Hathaway, M.; Mc Gehee, J. R.; Zavada, E.

    1964-01-01

    A frangible metal tube has the capability to dissipate the energy generated when a vehicle lands with excessive velocity. The tube is so placed that, at impact, it is forced against a die and, as it fragments, energy is absorbed.

  5. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  6. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  7. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  8. Shock

    MedlinePlus

    ... Many organs can be damaged as a result. Shock requires immediate treatment and can get worse very rapidly. As many 1 in 5 people who suffer shock will die from it. Considerations The main types ...

  9. Shock Tube and Theory Investigation of Cyclohexane and 1-Hexene Decomposition

    NASA Astrophysics Data System (ADS)

    Kiefer, J. H.; Gupte, K. S.; Harding, L. B.; Klippenstein, S. J.

    2009-10-01

    The decomposition of cyclohexane (c-C6H12) was studied in a shock tube using the laser-schlieren technique over the temperature range 1300-2000 K and for 25-200 Torr in mixtures of 2%, 4%, 10%, and 20% cyclohexane in Kr. Vibrational relaxation of the cyclohexane was also examined in 10 experiments covering 1100-1600 K for pressures below 20 Torr, and relaxation was found to be too fast to allow resolution of incubation times. The dissociation of 1-hexene (1- C6H12), apparently the sole initial product of cyclohexane decomposition, was also studied over 1220-1700 K for 50 and 200 Torr using 2% and 3% 1-hexene in Kr. On heating, cyclohexane simply isomerizes to 1-hexene, and this then dissociates almost entirely by a more rapid C-C scission to allyl and n-propyl radicals. This two-step reaction results in an initial small density gradient from the slight endothermicity of the isomerization. The gradient then rises strongly as the product 1-hexene dissociates. For the lower temperatures, this behavior is fully resolved here. For the higher pressures, 1-hexene decomposition generates negative gradients (exothermic reaction) as the radicals formed begin to recombine. Cyclohexane also generates such gradients, but these are now much smaller because the radical pool is depleted by abstraction from the reactant. A complete mechanism for the 1-hexene decomposition and for that of cyclohexane involving 79 reactions and 30 species is used in the final modeling of the gradients. Rate constants and RRKM fit parameters for the initial reactions are provided for the entire range of conditions. The possibility of direct reaction to allyl and n-propyl radicals, without stabilization of the intermediate 1-hexene, is examined down to pressures as low as 25 Torr, without a clear resolution of the issue. High-pressure limit rate constants from RRKM extrapolation are k∞(c-C6H12 → 1-C6H12) = (8.76 × 1017) exp((-91.94 kcal/mol)/RT) s-1 (T = 1300-2000 K) and k∞(1-C6H12 → •C3H7

  10. Hook-method measurements of gf-values for ultraviolet Fe I and Fe II lines on a shock tube

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.

    1974-01-01

    Transition probabilities for 14 lines of Fe II and 12 lines of Fe I in the wavelength region 2560-2737 A were measured by use of a shock tube and the hook method. Absolute oscillator strengths for resonance lines of Fe I reported by Banfield and Huber were used to determine the number density of neutral iron in the shock-heated gas. With the assumption of thermal equilibrium, the density of singly ionized iron atoms in this gas was then computed from the measured temperature and pressure with the aid of the Saha equation. Our results on the 12 strongest of the 13 lines belonging to the first ultraviolet multiplet of Fe II indicate that the multiplet f-value is larger by a factor of 2 than that derived from lifetime measurements by Assousa and Smith.

  11. Statistical simulation of the flow of vibrationally preexcited hydrogen in a shock tube and the possibility of physical detonation

    NASA Astrophysics Data System (ADS)

    Kulikov, S. V.; Chervonnaya, N. A.; Ternovaya, O. N.

    2016-08-01

    The direct simulation Monte Carlo method is used to numerically simulate the problem of the shock wave front in vibrationally excited hydrogen flowing in the low-pressure channel of a shock tube. It is assumed that the vibrational temperature of the hydrogen equals 3000 K. The cases of partially and completely excited hydrogen are considered. Equilibrium hydrogen is applied as a pusher gas, but its concentration is 50 times higher than the hydrogen concentration in the low-pressure channel. In addition, the strength of the shock wave is varied by heating the pusher gas. It has been shown that, if the prestored vibrational energy is weakly converted to translational energy, the shock wave slows down over time. If the energy conversion is sufficiently intense, when the pusher gas is warm and only completely vibrationally excited hydrogen is in the low-pressure channel, the wave gains speed over time (its velocity increases roughly by a factor of 1.5). This causes physical detonation, in which case the parameters of the wave become dependent on the vibrational-to-thermal energy conversion and independent of the way of its initiation.

  12. The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids

    NASA Astrophysics Data System (ADS)

    Mathijssen, T.; Gallo, M.; Casati, E.; Nannan, N. R.; Zamfirescu, C.; Guardone, A.; Colonna, P.

    2015-10-01

    This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime, and can operate at pressures and temperatures as high as 21 bar and 400°C, respectively. The set-up is equipped with a special fast-opening valve, separating the high-pressure charge tube from the low-pressure plenum. When the valve is opened, a wave propagates into the charge tube. The wave speed is measured using a time-of-flight technique employing four pressure transducers placed at known distances from each other. The first tests led to the following results: (1) the leakage rate of 5 × {10}^{-4} {mbar l s^{-1}} for subatmospheric and 5 × {10}^{-2} {mbar l s^{-1}} for a superatmospheric pressure is compatible with the purpose of the conceived experiments, (2) the process start-up time of the valve has been found to be between 2.1 and 9.0 ms, (3) preliminary rarefaction wave experiments in the dense vapour of siloxane {D}_6 (dodecamethylcyclohexasiloxane, an organic fluid) were successfully accomplished up to temperatures of 300°C, and (4) a method for the estimation of the speed of sound from wave propagation experiments is proposed. Results are found to be within 2.1 % of accurate model predictions for various gases. The method is then applied to estimate the speed of sound of {D}_6 in the NICFD regime.

  13. Generalized and exact solutions for oblique shock waves of real gases with application to real air

    NASA Astrophysics Data System (ADS)

    Kouremenos, D. A.; Antonopoulos, K. A.

    1989-12-01

    The present work presents a generalized method for calculating oblique shock waves of real gases, based on the Redlich-Kwong (1949) equation of state. Also described is an exact method applicable when the exact equation of state and enthalpy function of a real gas are available. Application of the generalized and the exact methods in the case of real air showed that the former is very accurate and at least twenty times faster than the latter. An additional contribution of the study is the derivation of real gas oblique shock wave equations, which are of the same algebraic form as the well known ideal gas normal shock wave relations.

  14. Acoustical model of small calibre ballistic shock waves in air for automatic sniper localization applications

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Salinas, Renato A.; Abidi, Mongi A.

    2007-04-01

    The phenomenon of ballistic shock wave emission by a small calibre projectile at supersonic speed is quite relevant in automatic sniper localization applications. When available, ballistic shock wave analysis makes possible the estimation of the main ballistic features of a gunfire event. The propagation of ballistic shock waves in air is a process which mainly involves nonlinear distortion, or steepening, and atmospheric absorption. Current ballistic shock waves propagation models used in automatic sniper localization systems only consider nonlinear distortion effects. This means that only the rates of change of shock peak pressure and the N-wave duration with distance are considered in the determination of the miss distance. In the present paper we present an improved acoustical model of small calibre ballistic shock wave propagation in air, intended to be used in acoustics-based automatic sniper localization applications. In our approach, we have considered nonlinear distortion, but additionally we have also introduced the effects of atmospheric sound absorption. Atmospheric absorption is implemented in the time domain in order to get faster calculation times than those computed in frequency domain. Furthermore, we take advantage of the fact that atmospheric absorption plays a fundamental role in the rise times of the shocks, and introduce the rate of change of the rise time with distance as a third parameter to be used in the determination of the miss distance. This lead us to a more accurate and robust estimation of the miss distance, and consequently of the projectile trajectory, and the spatial coordinates of the gunshot origin.

  15. Systemic Air Embolism Associated with Pleural Pigtail Chest Tube Insertion

    PubMed Central

    Alkhankan, Emad; Nusair, Ahmad; Mazagri, Rida

    2016-01-01

    Pleural pigtail catheter placement is associated with many complications including pneumothorax, hemorrhage, and chest pain. Air embolism is a known but rare complication of pleural pigtail catheter insertion and has a high risk of occurrence with positive pressure ventilation. In this case report, we present a 50-year-old male with bilateral pneumonia who developed a pneumothorax while on mechanical ventilation with continuous positive airway pressure mode. During the placement of the pleural pigtail catheter to correct the pneumothorax, the patient developed a sudden left sided body weakness and became unresponsive. An air embolism was identified in the right main cerebral artery, which was fatal. PMID:27630781

  16. Plasticizers, antioxidants, and other contaminants found in air delivered by PVC tubing used in respiratory therapy.

    PubMed

    Hill, Sandra S; Shaw, Brenda R; Wu, Alan H B

    2003-06-01

    Of the many compounds that leach from respiratory therapy tubing into air passing through it, we selected five compounds to analyze. The five compounds are known to be potentially carcinogenic, toxic or known to induce estrogenic activity. Parts-per-million and parts-per-billion concentrations of these species were found in the air passing through the tubing: the plasticizers di-(2-ethylhexyl) phthalate (DEHP) and di-ethyl phthalate (DEP), the antioxidants butylated hydroxy toluene (BHT) and p-nonylphenol (p-NP), and the contaminant (from commercial preparation of DEHP) 2-ethylhexanol (2-EH). These levels are high enough to cause some concern about exposure for patients who use oxygen on a long-term basis, those sensitive or allergic to these species, or those with asthma. A method was developed for analysis of solid tubing samples, showing great variability in concentrations of small, volatile molecules from sample to sample. A method was also developed for pre-concentration of small molecules onto Tenax adsorbants from air passing through the tubing. Both solid samples and adsorbant loaded with analyte were analyzed by direct dynamic thermal desorption gas chromatography mass spectrometry (GCMS). This study does not imply that adverse reactions by patients to chemical compounds leaching from respiratory medical tubing will occur but that further investigation is warranted.

  17. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  18. High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO 2 Dilution

    DOE PAGES

    Pryor, Owen; Barak, Samuel; Lopez, Joseph; ...

    2017-03-30

    For this study, ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5% -5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (GRImore » 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO2/O2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less

  19. High presure shock tube ignition delay time measurements during oxy-methane combustion with high levels of CO2 dilution

    DOE PAGES

    Pryor, Owen; Barak, Samuel; Lopez, Joseph; ...

    2017-03-16

    For this study, ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5% -5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (GRImore » 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO2/O2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less

  20. Heating rate measurements over 30 deg and 40 deg (half angle) blunt cones in air and helium in the Langley expansion tube facility

    NASA Technical Reports Server (NTRS)

    Reddy, N. M.

    1980-01-01

    Convective heat transfer measurements, made on the conical portion of spherically blunted cones (30 deg and 40 deg half angle) in an expansion tube are discussed. The test gases used were helium and air; flow velocities were about 6.8 km/sec for helium and about 5.1 km/sec for air. The measured heating rates are compared with calculated results using a viscous shock layer computer code. For air, various techniques to determine flow velocity yielded identical results, but for helium, the flow velocity varied by as much as eight percent depending on which technique was used. The measured heating rates are in satisfactory agreement with calculation for helium, assuming the lower flow velocity, the measurements are significantly greater than theory and the discrepancy increased with increasing distance along the cone.

  1. Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Johnston, Christopher O.

    2008-01-01

    By leveraging a new uncertainty markup technique, two risk analysis methods are used to compute the uncertainty of lunar-return shock layer radiation predicted by the High temperature Aerothermodynamic Radiation Algorithm (HARA). The effects of epistemic uncertainty, or uncertainty due to a lack of knowledge, is considered for the following modeling parameters: atomic line oscillator strengths, atomic line Stark broadening widths, atomic photoionization cross sections, negative ion photodetachment cross sections, molecular bands oscillator strengths, and electron impact excitation rates. First, a simplified shock layer problem consisting of two constant-property equilibrium layers is considered. The results of this simplified problem show that the atomic nitrogen oscillator strengths and Stark broadening widths in both the vacuum ultraviolet and infrared spectral regions, along with the negative ion continuum, are the dominant uncertainty contributors. Next, three variable property stagnation-line shock layer cases are analyzed: a typical lunar return case and two Fire II cases. For the near-equilibrium lunar return and Fire 1643-second cases, the resulting uncertainties are very similar to the simplified case. Conversely, the relatively nonequilibrium 1636-second case shows significantly larger influence from electron impact excitation rates of both atoms and molecules. For all cases, the total uncertainty in radiative heat flux to the wall due to epistemic uncertainty in modeling parameters is 30% as opposed to the erroneously-small uncertainty levels (plus or minus 6%) found when treating model parameter uncertainties as aleatory (due to chance) instead of epistemic (due to lack of knowledge).

  2. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-05-01

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the

  3. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J.V.

    2009-05-15

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three

  4. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  5. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  6. Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations

    DTIC Science & Technology

    2014-07-01

    tube system, (b) realistic explosive surrogate (RED) head with hybrid III neck inside 28 in. shock tube, (c) head with hybrid III neck outside 9 in...Chapter 4 describes the experiments of the blast response of a surrogate head. the pressure-acceleration response of a head- neck human surrogate RED...the neck . The loading had an initial acceleration phase followed by deceleration. During both acceleration and deceleration phases, high shear

  7. Normal- and oblique-shock flow parameters in equilibrium air including attached-shock solutions for surfaces at angles of attack, sweep, and dihedral

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Souders, S. W.

    1975-01-01

    Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.

  8. Condensation of the air-steam mixture in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2016-03-01

    This paper deals with the condensation of water vapour in the presence of non-condensable air. Experimental and theoretical solutions of this problem are presented here. A heat exchanger for the condensation of industrial waste steam containing infiltrated air was designed. The condenser consists of a bundle of vertical tubes in which the steam condenses as it flows downwards with cooling water flowing outside the tubes in the opposite direction. Experiments with pure steam and with mixtures of steam with added air were carried out to find the dependence of the condensation heat transfer coefficient (HTC) on the air concentration in the steam mixture. The experimental results were compared with the theoretical formulas describing the cases. The theoretical determination of the HTC is based on the Nusselt model of steam condensation on a vertical wall, where the analogy of heat and mass transfer is used to take into account the behaviour of air in a steam mixture during the condensation process. The resulting dependencies obtained from the experiments and obtained from the theoretical model have similar results. The significant decrease in the condensation HTC, which begins at very low air concentrations in a steam mixture, was confirmed.

  9. Shock-tube thermochemistry tables for high-temperature gases. Volume 5: Carbon dioxide

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Horton, T. E.

    1971-01-01

    Equilibrium thermodynamic properties and species concentrations for carbon dioxide are tabulated for moving, standing, and reflected shock waves. Initial pressures range from 6.665 to 6665 N/sq m (0.05 to 50.0 torr), and temperatures from 2,000 to over 80,000K. In this study, 20 molecular and atomic species were considered.

  10. Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility

    NASA Astrophysics Data System (ADS)

    Hargather, Michael John; Settles, Gary S.; Madalis, Matthew J.

    2010-02-01

    A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.

  11. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    SciTech Connect

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  12. Experimental study and two-dimensional modelling of the plasma dynamics of magnetically driven shock waves in a coaxial tube

    NASA Astrophysics Data System (ADS)

    Moreno, C.; Casanova, F.; Correa, G.; Clausse, A.

    2003-12-01

    Plasma shocks can be magnetically driven during high current discharges in low-pressure gases, induced by an external electric circuit. Radial currents between two coaxial electrodes can be accelerated to velocities of the order of 10 cm µs-1, thus being an effective method to transform potential energy in kinetic energy. A series of experiments were conducted using a low energy plasma focus device to measure the dynamics of plasma shocks in coaxial tubes. The radial position of the current sheath near the closed end of the electrodes was determined by means of a magnetic probe. The pinching time at the open end of the electrodes was measured using a Rogowski coil. Both, the movement and shaping of the plasma sheath were modelled by means of finite elements. The sheath was represented by coupled conical segments carrying current, mass, internal energy and momentum. The Lorentz force accelerates each element in its normal direction, which leads to the continuous reshaping of the sheath. The numerical results are compared against the experimental data showing good agreement.

  13. Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics

    DOE PAGES

    Vasu, Subith S.; Pryor, Owen; Barak, Samuel; ...

    2017-03-12

    Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The CO2 molemore » fraction was varied between a value of XCO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic

  14. Refraction of cylindrical converging shock wave at an air/helium gaseous interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Li, Wei; Si, Ting; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2017-01-01

    Refraction of a cylindrical converging shock wave at an inclined air/helium interface is investigated. Experimentally, based on the shock dynamics theory, a special wall profile is designed to generate a perfectly cylindrical converging shock wave. A soap film technique is developed to form an inclined discontinuous air/helium interface, and high-speed schlieren photography is adopted to capture the flow. Numerical simulations are also performed to compare with the experimental counterparts and to show details of refraction. In this work, two initial incident angles (45° and 60°) are considered. As the incident shock converges inward, the shock intensity increases while the incident angle decreases, causing possible transitions among the wave patterns. For the case of 45°, an irregular refraction of free precursor refraction (FPR) first occurs and gradually transits into regular refraction, while for the case of 60°, various irregular refractions of twin von Neumann refraction (TNR), twin regular refraction (TRR), free precursor von Neumann refraction (FNR), and FPR occur in sequence. The transition sequences do not belong to any groups described in the planar counterpart, indicating that the classification of the refraction phenomenon in the planar case is not exhaustive or cannot be applied to the converging case. It is also the first time to observe the transition from FNR to FPR, providing an experimental evidence for the previous numerical results. It is deemed that the difference between the velocities of the incident and transmitted shocks propagating along the interface is the primary factor that induces the transitions among wave patterns.

  15. Air Pollution, Neighbourhood Socioeconomic Factors and Neural Tube Defects in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Yang, Wei; Carmichael, Suzan L.; Tager, Ira B.; Lurmann, Frederick; Hammond, S. Katharine; Shaw, Gary M.

    2015-01-01

    Background Environmental pollutants and neighbourhood socioeconomic factors have been associated with neural tube defects, but the potential impact of interaction between ambient air pollution and neighbourhood socioeconomic factors on the risks of neural tube defects is not well understood. Methods We used data from the California Center of the National Birth Defects Study and the Children’s Health and Air Pollution Study to investigate whether associations between air pollutant exposure in early gestation and neural tube defects were modified by neighbourhood socioeconomic factors in the San Joaquin Valley of California, 1997–2006. Five pollutant exposures, three outcomes and 9 neighbourhood socioeconomic factors were included for a total of 135 investigated associations. Estimates were adjusted for maternal race-ethnicity, education and multivitamin use. Results We present below odds ratios that exclude 1 and a chi-square test of homogeneity p-value of <0.05. We observed increased odds of spina bifida comparing the highest to lowest quartile of particulate matter <10 micrometres (PM10) among those living in a neighbourhood with: a) median household income of less than $30,000 per year (OR 5.1, 95% CI 1.7, 15.3); b) more than 20% living below the federal poverty level (OR 2.6, 95% CI 1.1, 6.0); and c) more than 30% with less than or equal to a high school education (OR 3.2, 95% CI 1.4, 7.4). The ORs were not statistically significant among those higher SES neighbourhoods. Conclusions Our results demonstrate effect modification by neighbourhood socioeconomic factors in the association of particulate matter and neural tube defects in California. PMID:26443985

  16. High density turbulent plasma processes from a shock tube. Final performance report

    SciTech Connect

    Johnson, J.A. III

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions.

  17. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators.

    PubMed

    Sugimoto, N; Masuda, M; Hashiguchi, T

    2003-10-01

    Nonlinear cubic theory is developed to obtain a frequency response of shock-free, forced oscillations of an air column in a closed tube with an array of Helmholtz resonators connected axially. The column is assumed to be driven by a plane piston sinusoidally at a frequency close or equal to the lowest resonance frequency with its maximum displacement fixed. By applying the method of multiple scales, the equation for temporal modulation of a complex pressure amplitude of the lowest mode is derived in a case that a typical acoustic Mach number is comparable with the one-third power of the piston Mach number, while the relative detuning of a frequency is comparable with the quadratic order of the acoustic Mach number. The steady-state solution gives the asymmetric frequency response curve with bending (skew) due to nonlinear frequency upshift in addition to the linear downshift. Validity of the theory is checked against the frequency response obtained experimentally. For high amplitude of oscillations, an effect of jet loss at the throat of the resonator is taken into account, which introduces the quadratic loss to suppress the peak amplitude. It is revealed that as far as the present check is concerned, the weakly nonlinear theory can give quantitatively adequate description up to the pressure amplitude of about 3% to the equilibrium pressure.

  18. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene.

    PubMed

    Vasu, Subith S; Hong, Zekai; Davidson, David F; Hanson, Ronald K; Golden, David M

    2010-11-04

    Reaction rates of hydroxyl (OH) radicals with ethylene (C₂H₄) and propene (C₃H₆) were studied behind reflected shock waves. OH + ethylene → products (rxn 1) rate measurements were conducted in the temperature range 973-1438 K, for pressures from 2 to 10 atm, and for initial concentrations of ethylene of 500, 751, and 1000 ppm. OH + propene → products (rxn 2) rate measurements spanned temperatures of 890-1366 K, pressures near 2.3 atm, and initial propene concentrations near 300 ppm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH₃)₃-CO-OH, and monitored by laser absorption near 306.7 nm. Rate constants for the reactions of OH with ethylene and propene were extracted by matching modeled and measured OH concentration time-histories in the reflected shock region. Current data are in excellent agreement with previous studies and extend the temperature range of OH + propene data. Transition state theory calculations using recent ab initio results give excellent agreement with our measurements and other data outside our temperature range. Fits (in units of cm³/mol/s) to the abstraction channels of OH + ethylene and OH + propene are k₁ = 2.23 × 10⁴ (T)(2.745) exp(-1115 K/T) for 600-2000 K and k₂ = 1.94 × 10⁶ (T)(2.229) exp(-540 K/T) for 700-1500 K, respectively. A rate constant determination for the reaction TBHP → products (rxn 3) was also obtained in the range 745-1014 K using OH data from behind both incident and reflected shock waves. These high-temperature measurements were fit with previous low-temperature data, and the following rate expression (0.6-2.6 atm), applicable over the temperature range 400-1050 K, was obtained: k₃ (1/s) = 8.13 × 10⁻¹² (T)(7.83) exp(-14598 K/T).

  19. Three dimensional simulations of Richtmyer-Meshkov instabilities in shock-tube experiments

    SciTech Connect

    Gowardhan, Akshay A; Grinstein, Fernando F; Wachtor, Adam J

    2010-01-01

    In the large eddy simulation (LES) approach large-scale energy-containing structures are resolved, smaller (presumably) more isotropic structures are filtered out, and unresolved subgrid effects are modeled. Extensive recent work has demonstrated that predictive simulations of turbulent velocity fields are possible based on subgrid scale modeling implicitly provided by a class of high-resolution finite-volume algorithms. This strategy is called implicit LES. The extension of the approach to the substantially more difficult problem of material mixing IS addressed, and progress in representative shock-driven turbulent mixing studies is reported.

  20. Shock Separation and Dead-Zone Formation from Detonations in an Internal Air-Well Geometry

    NASA Astrophysics Data System (ADS)

    Molitoris, John; Andreski, Henry; Garza, Raul; Batteux, Jan; Vitello, Peter; Souers, Clark

    2007-06-01

    Here we report on measurements of dead-zone formation due to shock separation from detonations attempting to corner-turn in an internal air-well geometry. This geometry is also known as a ``hockey-puck'' configuration. These measurements were performed on detonations in LX-17 and PBX9502 using time sequence radiography to image the event with surface contact timing pins as an additional diagnostic. In addition to an open corner in the high-explosive component we also examined the effects of steel defining the corner. In these experiments we find a long lived dead-zone consisting of shocked explosive that persists to very late times. Data and numerical modeling will be presented in addition to a comparison with previous work using an external air well. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  1. Autonomous generation of a thermoacoustic solitary wave in an air-filled tube

    NASA Astrophysics Data System (ADS)

    Shimizu, Dai; Sugimoto, Nobumasa

    2016-10-01

    Experiments are performed to demonstrate the autonomous generation of an acoustic solitary wave in an air-filled, looped tube with an array of Helmholtz resonators. The solitary wave is generated spontaneously due to thermoacoustic instability by a pair of stacks installed in the tube and subject to a temperature gradient axially. No external drivers are used to create initial disturbances. Once the solitary wave is generated, it keeps on propagating to circulate along the loop endlessly. The stacks, which are made of ceramics and of many pores of square cross section, are placed in the tube diametrically on exactly the opposite side of the loop, and they are sandwiched by hot and cold (ambient) heat exchangers. When the temperature gradient along both stacks is appropriate, pulses of smooth profiles are generated and propagated in both directions of the tube. From good agreements of not only the pressure profile measured but also the propagation speed with the theory, the pulse is identified as the acoustic solitary wave, and it can be called thermoacoustic solitary wave or thermoacoustic soliton corresponding to the soliton solution of the K-dV equation in one limit.

  2. Gas dynamic and force effects of a solid particle in a shock wave in air

    NASA Astrophysics Data System (ADS)

    Obruchkova, L. R.; Baldina, E. G.; Efremov, V. P.

    2017-03-01

    Shock wave interaction with an adiabatic solid microparticle is numerically simulated. In the simulation, the shock wave is initiated by the Riemann problem with instantaneous removal of a diaphragm between the high- and low-pressure chambers. The calculation is performed in the two-dimensional formulation using the ideal gas equation of state. The left end of the tube is impermeable, while outflow from the right end is permitted. The particle is assumed to be motionless, impermeable, and adiabatic, and the simulation is performed for time intervals shorted than the time of velocity and temperature relaxation of the particle. The numerical grid is chosen for each particle size to ensure convergence. For each particle size, the calculated hydraulic resistance coefficient describing the particle force impact on the flow is compared with that obtained from the analytical Stokes formula. It is discovered that the Stokes formula can be used for calculation of hydraulic resistance of a motionless particle in a shock wave flow. The influence of the particle diameter on the flow perturbation behind the shock front is studied. Specific heating of the flow in front of the particle is calculated and a simple estimate is proposed. The whole heated region is divided by the acoustic line into the subsonic and supersonic regions. It is demonstrated that the main heat generated by the particle in the flow is concentrated in the subsonic region. The calculations are performed using two different 2D hydro codes. The energy release in the flow induced by the particle is compared with the maximum possible heating at complete termination of the flow. The results can be used for estimating the possibility of gas ignition in front of the particle by a shock wave whose amplitude is insufficient for initiating detonation in the absence of a particle.

  3. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  4. DERIVATIONS FOR HOOP STRESSES DUE TO SHOCK WAVES IN A TUBE

    SciTech Connect

    Leishear, R

    2007-04-30

    Equations describing the hoop stresses in a pipe due to water hammer have been presented in the literature in a series of papers, and this paper discusses the complete derivation of the pertinent equation. The derivation considers the pipe wall response to a water hammer induced shock wave moving along the inner wall of the pipe. Factors such as fluid properties, pipe wall materials, pipe dimensions, and damping are considered. These factors are combined to present a single, albeit rather complicated, equation to describe the pipe wall vibrations and hoop stresses as a function of time. This equation is also compared to another theoretical prediction for hoop stresses, which is also derived herein. Specifically, the two theories predict different maximum stresses, and the differences between these predictions are graphically displayed.

  5. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

  6. Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters

    SciTech Connect

    Shoshin, Y.L.; Goey, L.P.H. de

    2010-04-15

    Lean limit flames in methane/hydrogen/air mixtures propagating in tubes of internal diameters (ID) of 6.0, 8.9, 12.3, 18.4, 25.2, 35.0, and 50.2 mm have been experimentally studied. The flames propagated upward from the open bottom end of the tube to the closed upper end. The content of hydrogen in the fuel gas has been varied in the range 0-40 mol%. Lean flammability limits have been determined; flame shapes recorded and the visible speed of flame propagation measured. Most of the observed limit flames in tubes with diameters in the range of 8.9-18.4 mm had enclosed shape, and could be characterized as distorted or spherical flame balls. The tendency was observed for mixtures with higher hydrogen content to form smaller size, more uniform flame balls in a wider range of tube diameters. At hydrogen content of 20% or more in the fuel gas, limit flames in largest diameters (35.0 mm and 50.2 mm ID) tubes had small, compared to the tube diameter, size and were ''lens''-shaped. ''Regular'' open-front lean limit flames were observed only for the smallest diameters (6.0 mm and 8.9 mm) and largest diameters (35.0 and 50.2 mm ID), and only for methane/air and (90% CH{sub 4} + 10% H{sub 2})/air mixtures, except for 6 mm ID tube in which all limit flames had open front. In all experiments, except for the lean limit flames in methane/air and (90% CH{sub 4} + 10% H{sub 2})/air mixtures in the 8.9 mm ID tube, and all limit flames in 6.0 mm ID tube, visible flame speeds very weakly depended on the hydrogen content in the fuel gas and were close to- or below the theoretical estimate of the speed of a rising hot bubble. This observation suggests that the buoyancy is the major factor which determines the visible flame speed for studied limit flames, except that last mentioned. A decrease of the lean flammability limit value with decreasing the tube diameter was observed for methane/air and (90% CH{sub 4} + 10% H{sub 2})/air mixtures for tubes having internal diameters in the range

  7. Shock.

    PubMed

    Wacker, David A; Winters, Michael E

    2014-11-01

    Critically ill patients with undifferentiated shock are complex and challenging cases in the ED. A systematic approach to assessment and management is essential to prevent unnecessary morbidity and mortality. The simplified, systematic approach described in this article focuses on determining the presence of problems with cardiac function (the pump), intravascular volume (the tank), or systemic vascular resistance (the pipes). With this approach, the emergency physician can detect life-threatening conditions and implement time-sensitive therapy.

  8. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    DTIC Science & Technology

    2014-10-01

    conditions, recognizing that creating an injury does not constitute validation of an injury model. An explosive shockwave is unlike any other...recording was utilized to record the motion imparted by the passage of an air shockwave in the ABS to various inanimate spherical objects of...waveform. As summarized in fig 3, the aereal density (i.e. total mass/surface area) presented to the oncoming shockwave ) is considered as the

  9. Gas Chemistry Effects on Gun Barrel Erosion. A Shock Tube Gun Investigation

    DTIC Science & Technology

    1982-06-01

    microprocessor, programmed to print out time versus both temperature and total heat input for both data channels. Figure S is an example of plotted data...8.1. To delineate the effects of temperature and C02 or CO concentration ,ith erosivity,data from these four test groups were plotted as functions of CO...Tech Lib ATTN: G. Wolken White Sands Missile Range, Columbus, OH 43201 NM 88002 1 Lawrence Livermore Laboratory Commander ATTN: J. Kury US Army Air

  10. Modeling plasma glow discharges in Air near a Mach 3 bow shock with KRONOS

    NASA Astrophysics Data System (ADS)

    Rassou, Sebastien; Labaune, Julien; Packan, Denis; Elias, Paul-Quentin

    2016-09-01

    In this work, plasma glow discharge in Air is modeled near a Mach 3 bow shock. Numerical simulations are performed using the coupling KRONOS which have been developed at ONERA. The flow field is modeled using the code CFD: CEDRE from ONERA and the electrical and plasma part by the EDF open-source code CODE_SATURNE. The plasma kinetic modeling consists on a two-term Boltzmann equation solver and a chemical reaction solver depending of the electric field. The coupling KRONOS is fully parallelized and run on ONERA supercomputers. The shock wave is formed by the propagation of a supersonic flow (M = 3) through a truncated conical model mounted with a central spike. Depending on the spike's voltage value, corona, glow or arc regime could be obtained in a steady flow. The parameters for the supersonic flow and the spike configurations are chosen to be in glow discharge regime and to reproduce the experimental setup. In our simulations, 12 species and 80 reactions (ionization, electronic or vibrational excitation, attachment etc ...) are considered to properly model the glow discharge and the afterglow. In a stationary flow, glow discharge is observed only at the upstream of the shock wave near the high voltage spike. Behind the bow shock, in the afterglow, negative ions are provided by electrons attachment with O2. The negative ions flow convection ensures the electrical conduction and the establishment of the glow discharge.

  11. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1990-01-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  12. Performance of the AIRS Pulse Tube Coolers and Instrument—A First Year in Space

    NASA Astrophysics Data System (ADS)

    Ross, R. G.; Rodriguez, J. I.

    2004-06-01

    Launched on NASA's Aqua platform on May 4, 2002, JPL's Atmospheric Infrared Sounder (AIRS) instrument has completed a successful first year in space and captured a number of important lessons. AIRS is designed to make precision measurements of air temperature over the surface of the Earth and uses a redundant pair of TRW 55 K pulse tube cryocoolers to cool its sensitive IR focal plane. Soon after the instrument went cold, contamination of cryogenic surfaces led to increased cooler loads and the need for decontamination cycles. In addition, single event transients occurred while passing through the South Atlantic Anomaly (SAA) necessitating corrective actions. In November 2002 the fundamental operating strategy of the AIRS instrument was changed from the original strategy of running a single cooler and having the second cooler as a non-operating backup. Instead, based on a new system-level reliability analysis, both coolers began operation simultaneously. This change resolved the contamination and SAA driven interruptions and has enabled unprecedented levels of continuous science measurements. A review of the AIRS instrument cryogenic performance over the past year is presented including its contamination buildup and interrupt history. The reliability analysis conducted to justify two-cooler operation is also reviewed.

  13. Optimal Control of Shock Tube Flow via Water Addition with Application to Ignition Overpressure Mitigation in Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Moshman, Nathan

    2009-11-01

    Ignition Overpressure (IOP) in launch vehicles occurs at the start of ignition when a steep rise in pressure propagates outward from the rocket nozzle. It is crucial to minimize the overpressure so as to decrease risk of damage to the rocket body. Currently, CFD studies exist on this situation but there are no optimization studies of the water addition as a means to suppress the IOP. The proposed dissertation will use a numerical method to compute an approximate solution for an optimal control problem constrained by the one-dimensional Euler PDEs of fluid dynamics as well as volume fraction conservation. A model for inter-phase transport of mass momentum and energy and fluid interface quantities will be given. The control will be water addition from external nozzles. The adjoint system of equations will be derived and discretized. Necessary optimal conditions will be derived. An SQP method will solve an optimal situation. Predictions will be validated against shock tube experiments at the NPS rocket lab.

  14. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-06

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.

  15. Recurrent sinusitis and impairment of eustachian tube function in air passengers and crew.

    PubMed

    Moser, M; Wolf, G

    1990-07-01

    Chronic and recurrent sinusitis, and thus impaired tubular function, are usually caused by isolated lesions of the ethmoid cells. Purulent nasal secretions are transported over the openings of the tubes into the epipharynx. Inflammation and swelling of the mucosa of the tube openings causes stenosis or blockage. Inflammatory foci, usually hidden in the anterior ethmoid cell system, are not always apparent in a plain film of the paranasal sinuses. They appear only in a computed-tomography scan or in a conventional tomogram. Once the diagnosis has been made, a simple, guided endoscopic procedure suffices to alleviate a stenosis, open inflamed ethmoid cells, and restitute ventilation of the nasal sinuses and, thus, tubal function. Radical procedures on the maxillary and frontal sinuses, and plastic operations on deviated nasal septa (which impair the function of the nose and the nasal sinuses only in extreme cases), are thus often unnecessary. Septum deviations are irrelevant to the fitness-to-fly of air personnel as long as the tube and the ventilation of the sinuses function freely. The Valsalva maneuver with otoscopic visualization of the excursion of the eardrum is the most reliable test of tubal function. Tympanometry is used mainly for documentation.

  16. [Calculating method for the necessary lamps and sterile rate in a tube-shaped ultraviolet air washer].

    PubMed

    Xu, Z; Chen, C; Shen, J

    1998-05-01

    It has much more advantage to use the cylindric ultraviolet air washer than to use the ordinary ultraviolet lamps. There was a calculation method for determining necessary lamps in a rectangled ultraviolet air washer, but it had a limiting condition. This paper developed two calculating methods for determining necessary lamps and its sterile rate in a tube-shaped ultraviolet air washer. The sterile rate can be extracted with any parameter. Necessary lamps can also be extracted with its sterile rate.

  17. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems

    SciTech Connect

    Duerrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-15

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  18. Spectral studies of SiCl4 + N2O + Ar and SiH4 + Ar mixtures in a shock tube in 160-550 nm range

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1978-01-01

    Gases containing SiO, SiO2, SiH, and Si2 were produced in the reflected-shock region of a shock tube by heating SiCl4 + N2O + Ar and SiH4 + Ar mixtures with shock waves. Spectral absorption characteristics were measured in the 160-550 nm wavelength range and in the 2800-3600 K temperature range and compared to calculated values. The sums of the squares of electronic transition moments at equilibrium separation were derived. It was found that absorption by SiO2 and other known bands of SiO, SiH, and Si2 were too weak to be measured. The cross section of absorption by a continuum, believed due to SiH, varied from 2.5 x 10 to the -17th sq cm at 280 nm to 1.6 x 10 to the -18th sq cm at 440 nm.

  19. The application of capnography to differentiate peri-chest tube air leak from parenchymal leak following pulmonary surgery

    PubMed Central

    Walker, William S.

    2014-01-01

    Prolonged air leak is a common complication of pulmonary resection. However, while a bubbling chest drain is commonly related to parenchymal air leakage, it may also be caused by air entering the pleural cavity via an incomplete seal of the tissues at the chest tube insertion site. Examination alone is not sufficient to guide the surgeon as to which of the above complications is responsible for drain bubbling. We describe a simple method, whereby a CO2 monitoring device is attached to the chest drain to determine whether the air loss observed is in fact due to a pulmonary air leak. PMID:24790853

  20. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-15

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  1. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  2. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  3. High-Temperature Shock Tube Measurements of Dimethyl Ether Decomposition and the Reaction of Dimethyl Ether with OH

    NASA Astrophysics Data System (ADS)

    Cook, Robert D.; Davidson, David F.; Hanson, Ronald K.

    2009-08-01

    We measured the first high-temperature rate measurements of two dimethyl ether (DME) reactions, (1) DME + Ar → CH3O + CH3 + Ar and (2) DME + OH → CH3OCH2 + H2O, in a shock tube by monitoring OH radicals. OH was measured with a narrow-line width laser absorption diagnostic using the well-known R1(5) line of the A-X(0,0) transition at 306.7 nm. The rate k1 is in the falloff regime at high temperatures, so it was measured at several pressures from 0.6 to 11.5 atm and temperatures from 1349 to 1790 K. OH radicals were formed by shock-heating mixtures of DME and O2 in Ar. These mixtures take advantage of the rapid decomposition of the product CH3O, forming H-atoms, which react with O2 to form OH. In carefully chosen mixtures, OH concentration is primarily sensitive to k1 and the well-known rate of H + O2 → OH + O. Uncertainty in the k1 measurements was estimated to be ±35%. The rate measurements were then modeled using RRKM theory, which describes the data quite well. Both the rate measurements and the RRKM model were fit from 1000 to 1800 K using the Troe falloff form: k1,∞(T) = (4.38 × 1021)T-1.57 exp(-42 220 K/T) s-1, k1,o = 7.52 × 1015 exp(-21 537 K/T) cm3 mol-1 s-1, and Fcent = 0.454 exp(-T/2510). The rate of k2 was measured at pressures near 1.6 atm and temperatures from 923 to 1423 K. OH radicals were generated by the thermal decomposition of the OH precursor tert-butyl hydroperoxide (TBHP), and k2 was inferred from the observed decay of OH with an estimated uncertainty of ±40%. The high-temperature measurements were compared with several rate evaluations and previous low-temperature measurements. The rate evaluation by Curran et al. of k2 = (6.32 × 106)T2 exp(328 K/T) (cm3 mol-1 s-1) was found to be an excellent fit to both the previous low-temperature measurements and this work.

  4. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  5. Effects of temperature, particle features and vent geometry on volcanic jet dynamics, a shock-tube investigation.

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    The lowermost part of an eruptive plume commonly shows characteristics of an underexpanded jet. The dynamics of this gas-thrust region are likely to be a direct consequence of intrinsic (magma properties, overpressure) and extrinsic (vent geometry, weather) eruption conditions. Additionally, they affect the subsequent evolution of the eruptive column and have, therefore, important hazard assessment implications for both near- and far-field. Direct observation of eruptive events is possible, but often insufficient for complete characterization. Important complementary data can be achieved using controlled and calibrated laboratory experiments. Loose natural particles were ejected from a shock-tube while controlling temperature (25° and 500°C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), density (basaltic and phonolitic), gas-particle ratio and vent geometry (nozzle, cylindrical, funnel with a flaring of 15° and 30°, respectively). For each experiment, we quantified the velocity of individual particles, the jet spreading angle, the presence of electric discharges and the production of fines and analysed their dynamic evolution. Data shows velocity of up to 296 m/s and deceleration patterns following nonlinear paths. Gas spreading angles range between 21° and 41° while the particle spreading angles between 3° and 32°. Electric discharges, in the form of lightning, are observed, quantified and described. Moreover, a variation in the production of fines is recognized during the course of single experiments. This experimental investigation, which mechanistically mimics the process of pyroclast ejection, is shown to be capable of constraining the effects of input parameters and conduit/vent geometry on pyroclastic plumes. Therefore, the results should greatly enhance the ability of numerically model explosive ejecta in nature.

  6. An air-cooled pulse tube cryocooler with 50 W cooling capacity at 77 K

    NASA Astrophysics Data System (ADS)

    Hu, Jianying; Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Luo, Ercang; Li, Haibin

    2014-01-01

    A pulse tube cryocooler with 50 W cooling capacity at 77 K is developed to cool superconducting devices mounted on automobiles. The envisioned cryocooler weight is less than 40 kg, and the input electric power is less than 1 kW. To achieve these requirements, the working frequency is increased to 75 Hz, and the dual-opposed pistons use gas bearings to reduce compressor weight and volume. The heat from the main heat exchanger is rejected by forced convective air instead of water. The compressor and the cold finger are carefully matched to improve the efficiency. The details of these will be presented in this paper. After some adjustment, a no load temperature for the pulse tube cryocooler of 40 K was achieved with 1 kW input electric power in surroundings at 298 K. At 77 K, the cooling capacity is 50 W. If the main heat exchanger is cooled by water at 293 K, the cooling capacity increases to 64 W, corresponding to a relative Carnot efficiency of 18%.

  7. H{sub 2}-air and CH{sub 4}-air detonations and combustions behind oblique shock waves

    SciTech Connect

    Viguier, C.; Guerraud, C.; Desbordes, D.

    1994-12-31

    Two stoichiometric reactive mixtures (H{sub 2}-air and CH{sub 4}-air) at initial conditions of temperature and pressure, T{sub 0} = 293 K and p{sub 0} < 1 bar, respectively, very different from the point of view of their detonability, are used in order to study the conditions of the onset of combustion and/or detonation when submitted to the action of an oblique shock wave (OSW) at Mach number M of about 6 and at various angles of inclination {theta}. Generation of an OSW in the reactive mixture at rest is obtained via lateral expansion of the detonation products of a normal CJ detonation wave propagating in a bounded gaseous detonable mixture separated from the mixture under test by a 6-{micro}m-thick mylar film. Different steady combustion regimes are observed depending on {theta} and on the reactive mixture. Based on simple polars analysis, the possibility of observing an oblique detonation wave (ODW) are checked for the two mixtures. In the case of H{sub 2}-air mixtures, ODWs are obtained with small degrees of overdrive (D/D{sub CJ}) ({approx_equal} 1) of the detonation (where D is the normal detonation velocity of the ODW) after a predetonation zone, where the OSW is followed by an oblique flame initiated at the beginning of the interaction between the two media. Minimal conditions for detonative combustion are deduced, which correspond to a postshock temperature T{sub s} {approx_equal} 1,000 K, while the minimal condition for combustion as an oblique flame behind the OSW is T{sub s} {approx_equal} 800 K. For CH{sub 4}-air mixtures, no detonation appears even when the degree of overdrive of the theoretically possible solutions of stable ODW is increased up to 1.1 and beyond for T{sub s} up to 1,480 K. Only the OSW and oblique flame configuration are observed. For T{sub s} < 1,000 K, no combustion occurs behind the shock wave. Thus, this mixture appears to be especially difficult to detonate.

  8. Step-Wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles.

    PubMed

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2017-03-21

    The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubble jets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10(-4). For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19 nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10 and 12.5 v %), and the tube diameter (0.45, 0.47, and 0.50 cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity versus bubble length for small capillary numbers less than 10(-7). This step-wise velocity increase versus the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. To elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g. the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.

  9. Method of pressure pulse cleaning a tube bundle heat exchanger

    SciTech Connect

    Scharton, T.D.; Taylor, G.B.

    1987-04-07

    A method is described of removing the products of corrosion, oxidation, sedimentation and comparable chemical reactions collectively known as sludge which settle on the bottom of a tube bundle heat exchange and form a pile of sludge. The tube bundle heat exchanger is characterized by a tube bundle heat exchanger wall and a thick metal plate known as a tube sheet near the lower portion of the tube bundle heat exchanger wall's interior surface. The tube sheet serves to support the lower ends of a multiplicity of heat exchanger tubes within the tube bundle heat exchanger. The tube bundle heat exchange wall further comprises a multiplicity of small holes known as hand holes, manways, drain lines and vents, located around its circumference and above the tube sheet. The method is described of removing the pile of sludge which settles on the tube sheet comprising: a. locating at least one air-gun type pressure pulse shock wave source outside the tube bundle heat exchanger so as to be able to introduce pressure pulse shock waves through one or more of the multiplicity of hand holes, manways, drain lines and vents; and b. filling the tube bundle heat exchanger with a liquid to a level above the pile of sludge.

  10. EMI Shock Tube Experiments.

    DTIC Science & Technology

    1991-07-01

    ASSOCIATES, INC ATN: NTE ATTN: R FRANK ATTN: NTE G BALADI ATTN: NTED G GOODFELLOW APPLIED RESEARCH ASSOCIATES, INC ATTN: NTED J RENICK ATTN: J L DRAKE...C HSIAO KAMAN SCIENCES CORP ATTN: G T PHILLIPS ATTN: F SHELTON ATTN: H WILSON ATTN: LIBRARY B KINSLOW ATTN: TECHNICAL REPORT SYSTEM KAMAN SCIENCES

  11. Influence of the angle of inclination of round-finned tubes in a staggered tube bundle on the free convective heat exchange between it and an unbounded air space

    NASA Astrophysics Data System (ADS)

    Kuntysh, V. B.; Samorodov, A. V.

    2010-05-01

    Results of experimental investigations of the average heat transfer from five-row staggered bundles of tubes with knurled spiral fins, operating in the free air-convection regime, in the case where the angel of inclination of the longitudinal axis of the tubes changed from 0 to 60° are presented. The investigations were carried out by the method of complete heat simulation. The average heat transfer was measured in the direction of a free air flow in each row of a tube bundle. The experimental data were generalized by similarity equations for calculating the average heat transfer from the tube bundles and their individual rows in the range of change in the Rayleigh number characteristic of the operating conditions of industrial heat exchangers assembled from finned tubes of the type of the above-indicated tubes.

  12. Numerical modeling of a glow discharge through a supersonic bow shock in air

    NASA Astrophysics Data System (ADS)

    Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.

    2017-03-01

    The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.

  13. Underwater Shock Response of Air-Backed Thin Aluminum Alloy Plates: An Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Wei

    2013-06-01

    Studies on dynamic response of structures subjected to underwater explosion shock loading are of interest to ship designers. Understanding the deformation and failure mechanism of simple structures plays an important role in designing of a reliable structure under this kind of loading. The objective of this combined experimental and numerical study is to analyze the deformation and failure characteristics of 5A06 aluminum alloy plates under underwater shock loading. Some non-explosive underwater blast loading experiments were carried out on air backed circular plates of 2 mm thickness. The deformation history of the clamped circular plate was recorded using a high speed camera and the deflections of specimens at different radii were measured in order to identify deformation and failure modes. In the finite element simulations, the strength model of 5A06 aluminum alloy is considered using the slightly modified Johnson-cook mode to describe structure deformation. Good agreement between the numerical simulations and the experimental results is found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanism. National Natural Science Foundation of China (NO.:11072072).

  14. Underwater shock response of air-backed thin aluminum alloy plates: An experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Wei

    2014-05-01

    Studies on dynamic response of structures subjected to underwater explosion shock loading are of interest to ship designers. Understanding the deformation and failure mechanism of simple structures plays an important role in designing of a reliable structure under this kind of loading. The objective of this combined experimental and numerical study is to analyze the deformation and failure characteristics of 5A06 aluminum alloy plates under underwater shock loading. Some non-explosive underwater blast loading experiments were carried out on air backed circular plates of 2 mm thickness. The deformation history of the clamped circular plate was recorded using a high speed camera and the deflections of specimens at different radii were measured in order to identify deformation and failure modes. In the finite element simulations, the strength model of 5A06 aluminum alloy is considered using the slightly modified Johnson-cook mode to describe structure deformation. Good agreement between the numerical simulations and the experimental results is found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanism.

  15. Shock enhancement and control of hypersonic mixing and combustion

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Zukoski, Edward E.; Jacobs, Jeffrey; Hendricks, Gavin; Waitz, Ian

    1990-01-01

    Experimental and computational analyses of the possibility that shock-enhanced mixing can substantially increase the rate of mixing between coflowing streams of hydrogen and air are discussed. Numerical computations indicate that the steady interaction between a weak shock in air with a coflowing hydrogen jet can be approximated by the two-dimensional time-dependent interaction between a weak shock and an initially circular region filled with hydrogen imbedded in air. Experimental results obtained in a shock tube and contoured wall injector are presented. It is shown that the shock impinging process causes the light gas cylinder to split into two parts; one of these mixes rapidly with air and the other forms a stably stratified vortex pair which mixes more slowly. The geometry of the flow field and the mixing process and scaling parameters are assessed.

  16. Reactions of 1-Naphthyl Radicals with Acetylene. Single-Pulse Shock Tube Experiments and Quantum Chemical Calculations. Differences and Similarities in the Reaction with Ethylene

    NASA Astrophysics Data System (ADS)

    Lifshitz, Assa; Tamburu, Carmen; Dubnikova, Faina

    2009-09-01

    The reactions of 1-naphthyl radicals with acetylene were studied behind reflected shock waves in a single-pulse shock tube, covering the temperature range 950-1200 K at overall densities behind the reflected shocks of ˜2.5 × 10-5 mol/cm3. 1-Iodonaphthalene served as the source for 1-naphthyl radicals. The [acetylene]/[1-iodonaphthalene] ratio in all of the experiments was ˜100 to channel the free radicals into reactions with acetylene rather than iodonaphthalene. Only two major products resulting from the reactions of 1-naphthyl radicals with acetylene and with hydrogen atoms were found in the post shock samples. They were acenaphthylene and naphthalene. Some low molecular weight aliphatic products at rather low concentrations, resulting from an attack of various free radicals on acetylene, were also found in the shocked samples. In view of the relatively low temperatures employed in the present experiments, the unimolecular decomposition rate of acetylene is negligible. One potential energy surface describes the production of acenaphthylene and 1-naphthyl acetylene, although the latter was not found experimentally due to the high barrier (calculated) required for its production. Using quantum chemical methods, the rate constants for three unimolecular elementary steps on the surface were calculated using transition state theory. A kinetics scheme containing 16 elementary steps was constructed, and computer modeling was performed. An excellent agreement between the experimental yields of the two major products and the calculated yields was obtained. Differences and similarities in the potential energy surfaces of 1-naphthyl radical + acetylene and those of ethylene are presented, and the kinetics mechanisms are discussed.

  17. Shock tube measurements of specific reaction rates in branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1974-01-01

    Rate constants of two elementary bimolecular reactions involved in the oxidation of methane were determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures.

  18. Shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Final report

    SciTech Connect

    Cohen, N.; Koffend, J.B.

    1998-02-01

    Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.

  19. Inflation with air via a facepiece for facilitating insertion of a nasogastric tube: a prospective, randomised, double-blind study.

    PubMed

    Gupta, D; Agarwal, A; Nath, S S; Goswami, D; Saraswat, V; Singh, P K

    2007-02-01

    Insertion of a nasogastric tube is a routine procedure but during anaesthesia it is often difficult and time consuming. One hundred and sixty adults undergoing elective surgery under general anaesthesia were randomly divided into two groups. After induction of anaesthesia, neuromuscular blockade and tracheal intubation, a nasogastric tube was inserted through the nose with the head of the patient in the neutral position, either with or without prior inflation with air via a facepiece attached to a self-inflating bag applied firmly with the face. Insertion of the nasogastric tube was successful in 75/78 (96%) following inflation compared with 54/80 (68%) without inflation (p<0.001). In four patients receiving inflation, a fibreoptic endoscope was passed as far as the upper oesophageal sphincter; this revealed opening of the upper oesophageal sphincter during inflation.

  20. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-10-06

    Cavity-enhanced absorption spectroscopy (CEAS) using a mid-infrared DFB quantum-cascade laser is reported for sensitive time-resolved (10 μs) in situ CO measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 91 was demonstrated, which enabled sub-ppm detection sensitivity for gas temperatures of 1000-2100K in a 15 cm diameter shock tube. This substantial improvement in detection sensitivity compared to conventional single-pass absorption measurements, shows great potential for the study of reaction pathways of high-temperature combustion kinetics mechanisms in shock tubes.

  1. The Development of a Detailed Chemical Kinetic Mechanism for Diisobutylene and Comparison to Shock Tube Ignition Times

    SciTech Connect

    Metcalfe, W; Curran, H J; Simmie, J M; Pitz, W J; Westbrook, C K

    2005-01-21

    skeletal structure of iso-octane. There are few previous studies on diisobutylene. Kaiser et al. [1] examined the exhaust emission from a production spark ignition engine with neat diisobutylene and with it mixed with gasoline. They found the exhaust emissions of diisobutylene to be similar to that of iso-octane. They saw a significant increase in the amount of 2-methyl-1,3-butadiene measured in the exhaust of the engine. They also found appreciable amount of propene in the exhaust, but could not explain the source of this product as they did others in terms of C-C bond beta scission of alkyl radicals. Risberg et al. [2] studied a number of fuel blends to evaluate their autoignition quality for use in a homogeneous charge compression ignition engine, using diisobutylene to represent olefins in one of their test fuels. In this study, experiments on the shock tube ignition of both isomers of diisobutylene will be described. Then, the development of a detailed chemical kinetic mechanism for the two isomers of diisobutylene will be discussed.

  2. The novel selected-ion flow tube approach to trace gas analysis of air and breath.

    PubMed

    Smith, D; Spanel, P

    1996-01-01

    We present an overview of the development and use of our selected-ion flow tube (SIFT) technique as a sensitive, quantitative method for the rapid, real-time analysis of the trace gas content of atmospheric air and human breath, presenting some pilot data from various research areas in which this method will find valuable application. We show that it is capable of detecting and quantifying trace gases, in complex mixtures such as breath, which are present at partial pressures down to about 10 parts per billion. Following discussions of the principles involved in this SIFT method of analysis, of the experiments which we have carried out to establish its quantitative validity, and of the air and breath sampling techniques involved, we present sample data on the detection and quantification of trace gases on the breath of healthy people and of patients suffering from renal failure and diabetes. We also show how breath ammonia can be accurately quantified from a single breath exhalation and used as an indicator of the presence in the stomach of the bacterium Helicobacter pylori. Health and safety applications are exemplified by analyses of the gases of the gases of cigarette smoke and on the breath of smokers. The value of this analytical method in environmental science is demonstrated by the analyses of petrol vapour, car exhaust emissions and the trace organic vapours detected in town air near a busy road. Final examples of the value of this analytical method are the detection and quantification of the gases emitted from crushed garlic and from breath following the chewing of a mint, which demonstrate its potential in food and flavour research. Throughout the paper we stress the advantages of this SIFT method compared to conventional mass spectrometry for trace gas analysis of complex mixtures, emphasizing its selectivity, sensitivity and real-time analysis capability. Finally, we note that whilst the current SIFT is strictly laboratory based, both transportable and

  3. Experimental study of limit lean methane/air flame in a standard flammability tube using particle image velocimetry method

    SciTech Connect

    Shoshin, Yuriy; Gorecki, Grzegorz; Jarosinski, Jozef; Fodemski, Tadeusz

    2010-05-15

    Lean limit methane/air flame propagating upward in a standard 50 mm diameter and 1.8 m length tube was studied experimentally using particle image velocimetry method. Local stretch rate along the flame front was determined by measured gas velocity distributions. It was found that local stretch rate is maximum at the flame leading point, which is in agreement with earlier theoretical results. Similar to earlier observations, extinction of upward propagating limit flame was observed to start from the flame top. It is stated that the observed behavior of the extinction of the lean limit methane/air flame can not be explained in terms of the coupled effect of flame stretch and preferential diffusion. To qualitatively explain the observed extinction behavior, it is suggested that the positive strain-induced flame stretch increases local radiation heat losses from the flame front. An experimental methodology for PIV measurements in a round tube is described. (author)

  4. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  5. Sound propagation in narrow tubes including effects of viscothermal and turbulent damping with application to charge air coolers

    NASA Astrophysics Data System (ADS)

    Knutsson, Magnus; Åbom, Mats

    2009-02-01

    Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are

  6. Shock tube measurements of specific reaction rates in the branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1974-01-01

    Rate constants of two elementary bimolecular reactions involved in the oxidation of methane have been determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures. The data do not support a mechanism which invokes the four center process CH3 + O2 yields CH2O + OH for the reaction of methyl with oxygen.

  7. Rate constants for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-30

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K/T) cm{sup 3

  8. Synergistic and antagonistic effects of thermal shock, air exposure, and fishing capture on the physiological stress of Squilla mantis (Stomatopoda).

    PubMed

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours.

  9. Synergistic and Antagonistic Effects of Thermal Shock, Air Exposure, and Fishing Capture on the Physiological Stress of Squilla mantis (Stomatopoda)

    PubMed Central

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593

  10. The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system

    NASA Astrophysics Data System (ADS)

    Kendall, M. A. F.

    A unique form of powdered vaccine and drug delivery has been developed. The principle behind the concept is to accelerate vaccine and drug particles, using a gas flow, so that they attain sufficient velocities to enter the skin and achieve a pharmaceutical effect. This paper presents the Contoured Shock Tube (CST), configured to deliver particles to the skin with a narrow and controlled velocity distribution and uniform spatial distribution. The gas and particle flows of a prototype CST are explored experimentally and compared with Computational Fluid Dynamics (CFD) calculations. Some key steps in converting the prototype into a practical hand-held vaccine and drug delivery system are discussed. The ability of this system to deliver particles to the skin is illustrated by sample penetration data into excised human tissue.

  11. Direct Numerical Simulation of a Shocked Helium Jet

    SciTech Connect

    Cloutman, L D

    2002-02-01

    We present direct numerical simulations of a shock tube experiment in which a cylindrical laminar jet of helium doped with biacetyl is injected into air and subjected to a weak shock wave. Computed species distributions in a planar cross section of the jet are compared to planar laser-induced fluorescence (PLIF) images produced by the experiment. The calculations are in excellent agreement with the experimental images. We find that differential diffusion of species is an important feature of this experiment.

  12. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2016-01-11

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems.

  13. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  14. Shock propagation and attenuation in high-power excimer lasers

    NASA Astrophysics Data System (ADS)

    Holzwarth, Achim; Berger, Peter; Huegel, Helmut

    1993-05-01

    Theoretical and experimental investigations on the propagation, reflection, and attenuation of shock waves as they occur in excimer lasers have been performed. The numerical simulations have been carried out using a two-dimensional, unsteady finite difference scheme. The experimental setup is a piston driven shock tube with a rectangular cross section working in air at atmospheric pressure. The shocks were detected interferometrically as well as by means of pressure transducers. This shock tube allows us to investigate basic phenomena of shock diffraction which can be used to confirm the computational results in the range of weak shock waves. In particular, the influence of the shape of the wall contour on the reflection of shock waves has been investigated theoretically. The decay time of pressure and density perturbations differs for various wall configurations in such a way that short electrodes accelerate the attenuation as well as does a strong area increase in the vicinity of them. After each laser pulse there is a shock travelling into the laser channel. Experiments have been carried out on the reflection of this shock at a specially formed bend that is able to focus the shock into a muffling element.

  15. Smooth- and enhanced-tube heat transfer and pressure drop : Part I. Effect of Prandtl number with air, water, and glycol/water mixtures.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics in laminar, transitional, and turbulent flow through one smooth tube and twenty-three enhanced tubes. The working fluids for the experiments were air, water, ethylene glycol, and ethylene glycol/water mixtures; Prandtl numbers (Pr) ranged from 0.7 to 125.3. The smooth-tube experiments were carried out with Pr values of 0.7, 6.8, 24.8, 39.1, and 125.3; Pr values of 0.7, 6.8, and 24.8 were tested with enhanced tubes. Reynolds number (Re) range (based on the maximum internal diameter of a tube) was 200 to 55,000, depending on Prandtl number and tube geometry. The results are presented and discussed in this paper.

  16. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  17. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  18. Laser schlieren, shock tube studies of high temperature hydrocarbon pyrolysis rates. Progress report, June 1, 1980-January 31, 1981

    SciTech Connect

    Kiefer, J.H.

    1981-01-01

    Progress during the period has been in five areas: completion of a rigorous physical optics study of laser-schlieren measurements, completion of a study showing that angled laser beam refraction by the shock front can give accurate values for total density change, continuation of a study of the induction time for CO/sub 2/ dissociation, improvements in equipment, and near completion of an extensive study of propane pyrolysis. The propane pyrolysis study has provided rates for the primary step C/sub 3/H/sub 8/ ..-->.. CH/sub 3/ + C/sub 2/H/sub 5/ over the range 1400 to 2400/sup 0/K.

  19. Behavior of embedded phase in shock-driven two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuehner, Garrett; Wayne, Patrick; Olmstead, Dell; Corbin, Clint; Bernard, Tennille; Vorobieff, Peter; Truman, C. Randall

    2013-11-01

    We present an experimental study of droplet acceleration in a shock-driven two-phase flow (air with embedded liquid droplets). The droplets (propylene glycol, diameter 0.5-3 μm) were pre-mixed with the air in the test section of a shock tube, then impulsively accelerated with planar shock wave with a Mach number of 1.7. A cross-section of the flow is illuminated with multiple pulses from Nd:YAG lasers, producing time-resolved visualizations of the seeded volume. The images are then analyzed to quantify droplet velocity and acceleration from the shock passage to about 1.5 ms after the shock. Based on the velocity measurements, we can resolve the droplet lag after the shock, when the massive droplets ``catch up'' with the flow of the surrounding air, as well as validate our earlier estimates of boundary layer growth. This research is supported by NNSA (US National Nuclear Security Agency).

  20. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2017-01-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  1. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  2. Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in air at Mach 5.9

    NASA Technical Reports Server (NTRS)

    Calloway, R. L.; White, N. H.

    1980-01-01

    Experimental values of shock shapes (angles of attack of 0 deg and 10 deg) and static aerodynamic coefficients (angles of attack of -4 deg to 12 deg for sharp and spherically blunted cones having cone half angles of 30 deg, 45 deg, 60 deg, and 70 deg, and nose bluntness ratios of 0, 0.25, and 0.50 are presented. Shock shapes were measured at 0 deg angle of attack by using a flat faced cylinder (90 deg cone) and a hemispherically blunted cylinder (sphere). All tests were conducted in air at a free stream Mach number of 5.9 and a unit free stream Reynolds number of 2,800,000 per meter. Comparisons between measured values and predicted values were made by using several numerical and simple engineering methods.

  3. Internal-liquid-film-cooling Experiments with Air-stream Temperatures to 2000 Degrees F. in 2- and 4-inch-diameter Horizontal Tubes

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Abramson, Andrew E; Sloop, John L

    1952-01-01

    Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.

  4. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.

    1985-01-01

    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.

  5. Shock tube study of the fuel molecular structure effects on the chemical kinetic mechanisms for soot formation

    NASA Technical Reports Server (NTRS)

    Krech, R. H.; Cowles, L. M.; Rawlins, W. T.

    1983-01-01

    The objective of this research effort is to investigate the gas-phase mechanisms which lead to soot formation in the combustion of complex hydrocarbon fuels. The fuel decomposition is studied under pyrolytic and oxidative conditions behind incident shock waves, using various optical diagnostics to monitor particle appearance and the behavior of gas phase species. In particular, we are investigating: (1) improved quantification of UV/visible soot yield measurements using infrared attenuation and emission techniques; (2) spectral characteristics of gas-phase emission and absorption in the ultraviolet, visible, and infrared; and (3) a conceptual view of the chemical pathways for fuel decomposition and the gas-phase reactions leading to soot formation.

  6. Shock tube measurements of specific reaction rates in the branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1975-01-01

    Growth constants, obtained by measuring the blue CO flame band emission behind incident shock waves, were obtained for two elementary bimolecular reactions involved in the oxidation of methane. Gas mixtures containing small amounts of CH4 with varying amounts of CO, O2, and in one case CO2, diluted with argon, were investigated, and exponential growth constants were derived from plots of the logarithm of observed light intensity versus gas time. The rate constant for the reaction O + CH4 yields CH3 + OH was found to be 1.9 times 10 to the 14th exp(-5900/T) cu cm per mole per sec in the range 1300-2000 K; for the reaction CH3 + O2 yields CH3O + O, the rate constant was determined to be 2.4 times 10 to the 13th exp(-14,500/T) cu cm per mole per sec in the range 1200 to 1900 K.

  7. Tri (2-chloroisopropyl) phosphate--an unexpected organochlorine contaminant in some charcoal air-sampling sorbent tubes.

    PubMed

    van Netten, C; Brands, R; Park, J; Deverall, R

    1991-09-01

    Air sampling in a government building was necessary in response to reports of a cancer cluster. SKC (Eighty Four, Pa.) charcoal coconut shell-based sorbent tubes (226-01 lot 120) were recommended for this procedure. A recently purchased supply was present at the University of British Columbia and consequently was used for this particular study. Analysis of the front charcoal section showed the presence of a flame retardant, tri (2-chloroisopropyl) phosphate, which was confirmed by gas liquid chromatography (GLC) and mass spectrometry analysis. In an effort to identify the source of this fire retardant in the building, it became apparent from the analysis done on unknown field blanks that tri (2-chloroisopropyl) phosphate was a contaminant of the sorbent tubes used. Analysis of additional blank tubes identified the foam separators as the most likely source of contamination. Levels of tri (2-chloroisopropyl) phosphate in the front charcoal section ranged from 1.3 to 5.9 micrograms. The foam separator contained between 11.4 and 16.5 micrograms, and the backup charcoal section contained between 14.5 and 24.0 micrograms of tri (2-chloroisopropyl) phosphate. In addition, another flame retardant, tri (1,3 dichloro-2-propyl) phosphate was also found. Because these contaminants have long column retention times in GLC, it may not be apparent that these contaminants are present and consequently are likely to have modified the sorbent characteristics of the activated charcoal. Another batch of sorbent tubes bearing the same catalog number and lot number was purchased from the supplier; no flame retardants were found in this batch.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Tri (2-chloroisopropyl) phosphate--an unexpected organochlorine contaminant in some charcoal air-sampling sorbent tubes

    SciTech Connect

    van Netten, C.; Brands, R.; Park, J.; Deverall, R. )

    1991-09-01

    Air sampling in a government building was necessary in response to reports of a cancer cluster. SKC (Eighty Four, Pa.) charcoal coconut shell-based sorbent tubes (226-01 lot 120) were recommended for this procedure. A recently purchased supply was present at the University of British Columbia and consequently was used for this particular study. Analysis of the front charcoal section showed the presence of a flame retardant, tri (2-chloroisopropyl) phosphate, which was confirmed by gas liquid chromatography (GLC) and mass spectrometry analysis. In an effort to identify the source of this fire retardant in the building, it became apparent from the analysis done on unknown field blanks that tri (2-chloroisopropyl) phosphate was a contaminant of the sorbent tubes used. Analysis of additional blank tubes identified the foam separators as the most likely source of contamination. Levels of tri (2-chloroisopropyl) phosphate in the front charcoal section ranged from 1.3 to 5.9 micrograms. The foam separator contained between 11.4 and 16.5 micrograms, and the backup charcoal section contained between 14.5 and 24.0 micrograms of tri (2-chloroisopropyl) phosphate. In addition, another flame retardant, tri (1,3 dichloro-2-propyl) phosphate was also found. Because these contaminants have long column retention times in GLC, it may not be apparent that these contaminants are present and consequently are likely to have modified the sorbent characteristics of the activated charcoal. Another batch of sorbent tubes bearing the same catalog number and lot number was purchased from the supplier; no flame retardants were found in this batch.

  9. Tracheostomy tube - speaking

    MedlinePlus

    Air passing through vocal cords (larynx) causes them to vibrate, creating sounds and speech. A tracheostomy tube blocks most of the air from passing through your vocal cords. Instead, your breath (air) goes out ...

  10. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  11. AN ASSESSMENT OF THE STATE OF THE ART, AND POTENTIAL DESIGN IMPROVEMENTS, FOR FLAT-TUBE HEAT EXCHANGERS IN AIR CONDITIONING AND REFRIGERATION APPLICATIONS - PHASE I

    SciTech Connect

    Jacobi, A.M.; Park, Y.; Tafti, D.; Zhang, X.

    2001-09-30

    Project objective is to evaluate the air-side heat transfer and pressure-drop performance of serpentine-fin, flat-tube heat exchangers. This assessment is conducted for smooth, corrugated, and interrupted fins, over a wide range of geometric and operating parameters, spanning HVAC and R applications. The performance of serpentine-fin, flat-tube exchangers is compared to that of conventional round-tube designs, which are considered the technology baseline. The research includes a literature review, a preliminary comparison of flat-tube to round-tube performance, a computational fluid dynamic study of flow through the heat exchangers, and complementary modeling to predict the performance of flat-tube designs over a wide range of conditions. Recommendations are provided for a new experimental study to provide performance data for dry, wet, and frosted-surface conditions. Specific flow visualization and naphthalene sublimation experiments are recommended to understand the flow and heat transfer interactions in the flat-tube geometry. These data could be used to evaluate condensate retention and frost-formation effects on flat-tube heat exchanger performance, and to compare this behavior to that of the conventional round-tube geometry. These findings will be highly valuable to design and development engineers as they work toward the next generation of highly compact, energy efficient HVAC and R systems.

  12. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    NASA Technical Reports Server (NTRS)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well

  13. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    PubMed

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  14. A vacuum tube vee-trough collector for solar heating and air conditioning applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    An analysis is conducted of the performance of a vee-trough vacuum tube collector proposed for use in solar heating and cooling applications. The vee-trough reflector is a triangular sectioned, flat surfaced reflector, whose axis is laid in the East-West direction. A vacuum tube receiver placed at the bottom of the vee-trough collects solar heat most efficiently since convection is completely eliminated. Radiation losses are reduced by use of selective coatings on the absorber. Owing to its high temperature capabilities (300-400 F), the proposed scheme could also be used for power generation applications in combination with an organic Rankine conversion system. It is especially recommended for unattended pumping stations since the reflectors only require reversal once every six months.

  15. Air sampling of flame retardants based on the use of mixed-bed sorption tubes--a validation study.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Spruyt, Maarten; Maes, Frederick; Van Campenhout, Karen; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2015-11-01

    An analytical methodology using automatic thermal desorption and gas chromatography mass spectrometry analysis was optimized and validated for simultaneous determination of a set of components from three different flame retardant chemical classes: polybrominated diphenyl ethers (PBDEs) (PBDE-28, PBDE-47, PBDE-66, PBDE-85, PBDE-99, PBDE-100), organophosphate flame retardants (PFRs) (tributyl phosphate, tripropyl phosphate, tris(2-chloroethyl)phosphate-, tris(1,3-dichloro-2-propyl) phosphate, tris(2-ethylhexyl) phosphate, triphenyl phosphate, tris(2-chloro-1-methylethyl) phosphate and tricresylphosphate), and "novel" brominated flame retardants (NBFRs) (pentabromotoluene, 2,3,4,5,6-pentabromoethylbenzene, (2,3-dibromopropyl) (2,4,6-tribromophenyl) ether, hexabromobenzene, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate) in air. The methodology is based on low volume active air sampling of gaseous and particulate air fractions on mixed-bed (polydimethylsiloxane (PDMS)/Tenax TA) sorption tubes. The optimized method provides recoveries >88%; a limit of detection in the range of 6-25 pg m(-3) for PBDEs, 6-171 pg m(-3) for PFRs, and 7-41 pg m(-3) for NBFRs; a linearity greater than 0.996; and a repeatability of less than 10% for all studied compounds. The optimized method was compared with a standard method using active air sampling on XAD-2 sorbent material, followed by liquid extraction. On the one hand, the PDMS/Tenax TA method shows comparable results at longer sampling time conditions (e.g., indoor air sampling, personal air sampling). On the other hand, at shorter sampling time conditions (e.g., sampling from emission test chambers), the optimized method detects up to three times higher concentrations and identifies more flame retardant compounds compared to the standard method based on XAD-2 loading.

  16. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  17. The combined effects of sampling parameters on the sorbent tube sampling of phthalates in air

    PubMed Central

    Jo, Sang-Hee; Kim, Ki-Hyun; Kwon, Kyenghee

    2017-01-01

    The adsorption properties of various sorbent materials were investigated to assess the factors affecting biases in the sorbent tube (ST) sampling of airborne phthalates. The recovery of phthalates was assessed critically in relation to four key sampling parameters: (1) three types of sorbent materials (quartz wool (QW), glass wool (GW), and quartz wool plus Tenax TA (QWTN)), (2) the concentration level of phthalate standards, (3) purge flow rate, and (4) purge volume for analysis based on a ‘sorbent tube-thermal desorption-gas chromatography-mass spectrometry (ST-TD-GC-MS)’ system. Among these parameters, the type of ST was the most influential in determining the recovery of phthalates. For a given ST type, the recovery of phthalates tends to improve with increases in the concentration level of standards. In case of QW and QWTN tubes, the breakthrough of phthalates was not observed up to the maximum purge volume (100 L) tested in this work; however, in case of GW, the recovery decreased drastically to 60% even at a purge volume of 1 L for low molecular weight phthalates. The results of our study demonstrate that accurate analysis of airborne phthalates can be achieved through proper control of key sampling parameters, particularly the choice of sorbent material. PMID:28361993

  18. Combustion of n-heptane in a shock tube and in a stirred reactor: A detailed kinetic modeling study

    SciTech Connect

    Gaffuri, P.; Curran, H.J.; Pitz, W.J.; Westbrook, C.K.

    1995-04-13

    A detailed chemical kinetic reaction mechanism is used to study the oxidation of n-heptane under several classes of conditions. Experimental results from ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at relatively high temperatures, while data from a continuously stirred tank reactor (cstr) were used to refine the low temperature portions of the reaction mechanism. In addition to the detailed kinetic modeling, a global or lumped kinetic mechanism was used to study the same experimental results. The lumped model was able to identify key reactions and reaction paths that were most sensitive in each experimental regime and provide important guidance for the detailed modeling effort. In each set of experiments, a region of negative temperature coefficient (NTC) was observed. Variation in pressure from 5 to 40 bars were found to change the temperature range over which the NTC region occurred. Both the lumped and detailed kinetic models reproduced the measured results in each type of experiments, including the features of the NTC region, and the specific elementary reactions and reaction paths responsible for this behavior were identified and rate expressions for these reactions were determined.

  19. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    SciTech Connect

    Wei, Wenfu; Li, Xingwen Wu, Jian; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2014-08-15

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ∼600 ns in the interaction zones of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.

  20. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  1. Determination of antimony, arsenic, bismuth, selenium, tellurium and tin by low pressure atomic absorption spectrometry with a quartz tube furnace atomizer and hydride generation with air addition.

    PubMed

    Zhang, B; Wang, Y; Wang, X; Chen, X; Feng, J

    1995-08-01

    A new method has been developed for the determination of antimony, arsenic, bismuth, selenium, tellurium and tin by hydride generation-atomic absorption spectrometry in an electrically heated quartz tube furnace under sub-atmospheric pressure. The hydride generator, operating at a pressure lower than atmospheric, is used to generate and collect the hydrides of these elements. A certain volume (at atmospheric pressure) of air is then added to the generator after the formation of the volatile hydride. The gaseous mixture of the hydride and air is drawn into an evacuated, heated quartz tube by a vacuum pump. The proposed method gives improved sensitivities and detection limits.

  2. The effects of electron thermal radiation on laser ablative shock waves from aluminum plasma into ambient air

    NASA Astrophysics Data System (ADS)

    Sai Shiva, S.; Leela, Ch.; Prem Kiran, P.; Sijoy, C. D.; Chaturvedi, S.

    2016-05-01

    The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (Vsw) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 1010 to 1.4 × 1011 W/cm2. It is observed that the numerically obtained Vsw is significantly influenced by the thermal radiation effects which are found to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.

  3. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  4. Finned tube heat exchangers: state of the art for the air side

    SciTech Connect

    McQuiston, F. C.

    1980-01-01

    The findings of various investigators during the past ten years has greatly enhanced our ability to analyze, model, design, and optimize the finned tube heat exchangers so widely used in the HVAC business. The effect of rows, fin pitch, and other geometric parameters are now well understood and generalized heat transfer correlations are available. The relation between heat and mass transfer has been much better defined and good correlations have been developed. Some advances have also been made in modeling techniques especially where partially dry cooling and dehumidifying coils are involved. All of these factors are reviewed to concisely summarize what is now available to the heat exchanger analyst.

  5. Significance of High-Speed Air Temperature Measurements in the Sampling Cell of a Closed-Path Gas Analyzer with a Short Tube

    NASA Astrophysics Data System (ADS)

    Kathilankal, James; Fratini, Gerardo; Burba, George

    2015-04-01

    Eddy covariance gas analyzers measure gas content in a known volume, thus essentially measuring gas density. The fundamental flux equation, however, is based on the dry mole fraction. The relationship between dry mole fraction and density is regulated by the ideal gas law describing the processes of temperature- and pressure-related expansions and contractions, and by the law of partial pressures, describing the process of dilution. As a result, this relationship depends on water vapor content, temperature and pressure of the air sample. If the instrument is able to output precise high-speed dry mole fraction, the flux processing is significantly simplified and WPL density terms accounting for the air density fluctuations are no longer required. This should also lead to the reduction in uncertainties associated with the density terms resulting from the eddy covariance measurements of sensible and latent heat fluxes used in these terms. In this framework, three main measurement approaches may be considered: Open-path approach Outputting correct high-speed dry mole fraction from the open-path instrument is difficult because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. Classical long-tube closed-path approach For instruments utilizing traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, the fast dry mole fraction can be used successfully when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened to negligible levels, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas or the air sample is dried. Short-tube closed-path approach, the enclosed design For instruments with a short-tube enclosed design, most - but not all - of the temperature

  6. The tubular MFC with carbon tube air-cathode for power generation and N,N-dimethylacetamide treatment.

    PubMed

    Liu, Jiadong; Liu, Lifen; Gao, Bo

    2016-01-01

    A continuous flow microbial fuel cell (MFC) was assembled with carbon tube air-cathode and carbon felt anode. The organic solvent N,N-dimethylacetamide (DMAC) was used as the only carbon source for power generation. After the adaptive phase, the cell potential was gradually increased from 0.15 to 0.45 V with 200 Ω of external resistor during 150 h of operation. The calculated power density of this MFC was 100 mW L(-1) when the cell potential was 0.45 V. The reversible redox peaks of carbon tube were obtained in cyclic voltammogram between -0.5 and -0.25 V under aerobic circumstance. The removal rate of DMAC was 15-50% after treatment with hydraulic retention time of 12 min. The results indicated that it is possible to realize the power extraction from DMAC wastewater in the form of electricity by the bioconversion process of MFC.

  7. Prediction of hydrodynamics and chemistry of confined turbulent methane-air frames in a two concentric tube combustor

    NASA Technical Reports Server (NTRS)

    Markatos, N. C.; Spalding, D. B.; Srivatsa, S. K.

    1978-01-01

    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a two-concentric-tube combustor is presented. A numerical procedure for the solution of the governing differential equations is described and models for chemical-equilibrium and chemical-kinetics calculations are presented. The chemical-equilibrium model is used to characterize the hydrocarbon reactions. The chemical-kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor considered consists of two coaxial ducts. Concentric streams of gaseous fuel and air enter the inlet duct at one end; the flow then reverses and flows out through the outer duct. Two sample cases with specified inlet and boundary conditions are considered and the results are discussed.

  8. Scanning drift tube measurements of electron transport parameters in different gases: argon, synthetic air, methane and deuterium

    NASA Astrophysics Data System (ADS)

    Korolov, I.; Vass, M.; Donkó, Z.

    2016-10-01

    Measurements of transport coefficients of electrons in a scanning drift tube apparatus are reported for different gases: argon, synthetic air, methane and deuterium. The experimental system allows the spatio-temporal development of the electron swarms (‘swarm maps’) to be recorded and this information, when compared with the profiles predicted by theory, makes it possible to determine the ‘time-of-flight’ transport coefficients: the bulk drift velocity, the longitudinal diffusion coefficient and the effective ionization coefficient, in a well-defined way. From these data, the effective Townsend ionization coefficient is determined as well. The swarm maps provide, additionally, direct, unambiguous information about the hydrodynamic/non-hydrodynamic regimes of the swarms, aiding the selection of the proper regions applicable for the determination of the transport coefficients.

  9. Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment.

    PubMed

    Guo, Chunmei; Chen, Yi; Chen, Jinfu; Wang, Xiaojun; Zhang, Guangqing; Wang, Jingxiu; Cui, Wenfeng; Zhang, Zhongzhi

    2014-10-01

    This paper investigated the enhancement of the COD reduction of an oilfield wastewater treatment process by installing air-lift tubes and adding an activated carbon bioreactor (ACB) to form a combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes (HA/air-lift BCO) and an ACB. Three heat-resistant bacterial strains were cultivated and subsequently applied in above pilot plant test. Installing air-lift tubes in aerobic tanks reduced the necessary air to water ratio from 20 to 5. Continuous operation of the HA/air-lift BCO system for 2 months with a hydraulic retention time of 36 h, a volumetric load of 0.14 kg COD/(m(3)d) (hydrolysis-acidification or anaerobic tank), and 0.06 kg COD/(m(3)d) (aerobic tanks) achieved an average reduction of COD by 60%, oil and grease by 62%, total suspended solids by 75%, and sulfides by 77%. With a COD load of 0.56 kg/(m(3)d), the average COD in the ACB effluent was 58 mg/L.

  10. The Influence of Shock-Induced Air Bubble Collapse Resulting from Underwater Explosive Events

    DTIC Science & Technology

    2012-06-01

    buffering effect. To better simulate homogeneous air bubbles, additional studies were conducted using circular shapes of varying diameters. For...regions which reduced the pressure from the initial shockwave, providing a buffering effect. To better simulate homogeneous air bubbles, additional...on the shockwave propagation. B. SCOPE OF RESEARCH Previous research indicated that cavitation zones may provide a buffering effect to marine

  11. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  12. Air quality inside a tunnel tube and in the vicinity of the tunnel portals

    SciTech Connect

    Pucher, K.; Zwiener, K.

    1997-12-31

    Due to the continually growing number of motor vehicles more and more roads are reaching the limits of their capability. This has led to slowly moving traffic and longer persisting traffic blockages. In cities and conurbation centers especially this leads to complete traffic chaos. The pollutant emissions of vehicles that only move very little mostly lead to high pollutant burdens also and in some circumstances to poor air quality. Therefore in more and more cities one is attempting to get traffic moving again through efficient road tunnels and underground lines and thereby also reduce the pollutant emission. Typical examples of such developments are the Central Artery Tunnel Project in Boston, the planned Ringroad tunnel in Stockholm and the Ringtunnel projects in Paris. Tunnel constructions and underground lines in densely built-up areas are also planned in many small cities. For all these tunnel projects the following points concerning the air quality are to be observed. On the one hand, a tunnel construction can accommodate traffic and thereby reduce the traffic blockages in the vicinity of the tunnel, so long as no additional traffic is attracted. This would therefore lead to a reduction of the pollutant burden and also to an improvement in the air quality in large areas of further surroundings of the tunnel construction. On the other hand, at the portals of the tunnel, alongside mobile pollutant sources from vehicles travelling on the already existing road, a stationary pollutant source of the tunnel ventilation flowing out from the tunnel portal also results. It is then to be investigated how high the emerging pollutant concentrations will be at the portal of the planned tunnel and how these pollutants will disseminate. In this report therefore, the air quality in the tunnel as well as in the vicinity of the tunnel portals will be more closely dealt with.

  13. A new certified reference material for benzene measurement in air on a sorbent tube: development and proficiency testing.

    PubMed

    Caurant, A; Lalère, B; Schbath, M-C; Stumpf, C; Sutour, C; Mace, T; Quisefit, J-P; Doussin, J-F; Vaslin-Reimann, S

    2010-11-01

    A certified matrix reference material (CRM) for the measurement of benzene in ambient air has been developed at Laboratoire National de Métrologie et d'Essais. The production of these CRMs was conducted using a gravimetric method fully traceable to the International System of Units. The CRMs were prepared by sampling an accurate mass of a gaseous primary reference material of benzene, using a high-precision laminar flowmeter and a mass flow controller, with a PerkinElmer sampler filled with Carbopack™ X sorbent. The relative standard deviations obtained for the preparation of a batch of 20 tubes loaded with 500 ng of benzene were below 0.2%. Each CRM is considered independent from the others and with its own certified value and an expanded uncertainty estimated to be within 0.5%, lower than the uncertainties of benzene CRMs already available worldwide. The stability of these materials was also established up to 12 months. These CRMs were implemented during proficiency testing, to evaluate the analytical performances of seven French laboratories involved in benzene air monitoring.

  14. Ignition delay times of shock-heated tetraethoxysilane, hexamethyldisiloxane, and titanium tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Abdali, A.; Fikri, M.; Orthner, H.; Wiggers, H.; Schulz, C.

    2014-05-01

    Ignition delay times of tetraethoxysilane (TEOS), hexamethyldisiloxane (HMDSO) and titanium tetraisopropoxide (TTIP) were determined from the onset of chemiluminescence in shock-tube experiments behind reflected shock waves in dry as well as in humid gas mixtures. Additionally, the ignition delay times of TEOS and HMDSO have been investigated in humid air and as a function of water vapor concentration in the initial gas mixture.

  15. Apparatus Splits Glass Tubes Longitudinally

    NASA Technical Reports Server (NTRS)

    Shaw, Ernest; Manahan, Robert O'neil

    1993-01-01

    Tubes split into half cylinders by hot-wire/thermal-shock method. Tube to be cut placed on notched jig in apparatus. Nichrome wire stretched between arms of pivoted carriage and oriented parallel to notch. Wire heated by electrical current while resting on tube. After heating for about 1 minute for each millimeter of thickness of glass, tube quenched in water and split by resulting thermal shock. Apparatus used to split tubes in sizes ranging from 3/8 in. in diameter by 1 in. long to 1 1/2 in. in diameter by 4 in. long.

  16. DNA Microarray Analysis of Anaerobic Methanosarcina Barkeri Reveals Responses to Heat Shock and Air Exposure

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Nie, Lei; Brockman, Fred J.

    2006-04-08

    Summary Methanosarcina barkeri can grow only under strictly anoxic conditions because enzymes in methane formation pathways of are very oxygen sensitive. However, it has been determined that M. barkeri can survive oxidative stress. To obtain further knowledge of cellular changes in M. barkeri in responsive to oxidative and other environmental stress, a first whole-genome M. barkeri oligonucleotide microarray was constructed according to the draft genome sequence that contains 5072 open reading frames (ORFs) and was used to investigate the global transcriptomic response of M. barkeri to oxidative stress and heat shock. The result showed that 552 genes in the M. barkeri genome were responsive to oxidative stress, while 177 genes responsive to heat-shock, respectively using a cut off of 2.5 fold change. Among them, 101 genes were commonly responsive to both environmental stimuli. In addition to various house-keeping genes, large number of functionally unknown genes (38-57% of total responsive genes) was regulated by both stress conditions. The result showed that the Hsp60 (GroEL) system, which was previously thought not present in archaea, was up-regulated and may play important roles in protein biogenesis in responsive to heat shock in M. barkeri. No gene encoding superoxide dismutase, catalase, nonspecific peroxidases or thioredoxin reductase was differentially expressed when subjected to oxidative stress. Instead, significant downregulation of house-keeping genes and up-regulation of genes encoding transposase was found in responsive to oxidative stress, suggesting that M. barkeri may be adopting a passive protective mechanism by slowing down cellular activities to survive the stress rather than activating a means against oxidative stress.

  17. The Richtmyer-Meshkov instability of a "V" shaped air/helium interface subjected to a weak shock

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Dong, Ping; Si, Ting; Luo, Xisheng

    2016-08-01

    The Richtmyer-Meshkov instability of a "V" shaped air/helium gaseous interface subjected to a weak shock wave is experimentally studied. A soap film technique is adopted to create a "V" shaped interface with accurate initial conditions. Five kinds of air/helium "V" shaped interfaces with different vertex angles (60°, 90°, 120°, 140°, and 160°), i.e., different amplitude-wavelength ratios, are formed to highlight the effects of initial conditions, especially the initial amplitude, on the flow characteristics. The interface morphologies identified by the high-speed schlieren photography show that a spike is generated from the vertex after the shock impact, and grows constantly with time accompanied by the occurrence of the phase reversal. As the vertex angle increases, vortices generated on the interface become less noticeable, and the spike develops less pronouncedly. The linear growth rate of the interface mixing width of a heavy/light interface configuration after compression phase is estimated by a linear model and a revised linear model, and the latter is proven to be more effective for the interface with high initial amplitudes. It is found for the first time in a heavy/light interface configuration that the linear growth rate of interface width is a non-monotonous function of the initial perturbation amplitude-wavelength ratio. In the nonlinear stage, it is confirmed that the width growth rate of interface with high initial amplitudes can be well predicted by a model proposed by Dimonte and Ramaprabhu ["Simulations and model of the nonlinear Richtmyer-Meshkov instability," Phys. Fluids 22, 014104 (2010)].

  18. Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)

    SciTech Connect

    White, M.

    1996-01-01

    Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

  19. Non-Boltzmann Modeling for Air Shock-Layer Radiation at Lunar-Return Conditions

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2008-01-01

    This paper investigates the non-Boltzmann modeling of the radiating atomic and molecular electronic states present in lunar-return shock-layers. The Master Equation is derived for a general atom or molecule while accounting for a variety of excitation and de-excitation mechanisms. A new set of electronic-impact excitation rates is compiled for N, O, and N2+, which are the main radiating species for most lunar-return shock-layers. Based on these new rates, a novel approach of curve-fitting the non-Boltzmann populations of the radiating atomic and molecular states is developed. This new approach provides a simple and accurate method for calculating the atomic and molecular non-Boltzmann populations while avoiding the matrix inversion procedure required for the detailed solution of the Master Equation. The radiative flux values predicted by the present detailed non-Boltzmann model and the approximate curve-fitting approach are shown to agree within 5% for the Fire 1634 s case.

  20. Planar shock wave sliding over a water layer

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2016-08-01

    In this work, we conduct experiments to study the interaction between a horizontal free water layer and a planar shock wave that is sliding over it. Experiments are performed at atmospheric pressure in a shock tube with a square cross section (200× 200 mm^2) for depths of 10, 20, and 30 mm; a 1500-mm-long water layer; and two incident planar shock waves having Mach numbers of 1.11 and 1.43. We record the pressure histories and high-speed visualizations to study the flow patterns, surface waves, and spray layers behind the shock wave. We observe two different flow patterns with ripples formed at the air-water interface for the weaker shock wave and the dispersion of a droplet mist for the stronger shock wave. From the pressure signals, we extract the delay time between the arrival of the compression wave into water and the shock wave in air at the same location. We show that the delay time evolves with the distance traveled over the water layer, the depth of the water layer, and the Mach number of the shock wave.

  1. Analysis of fire and explosion hazards of some hydrocarbon-air mixtures.

    PubMed

    Lizhong, Y; Weicheng, F; Xiaodong, Z; Qing'an, W

    2001-06-29

    Hazards caused by leakage of hydrocarbons have long been a problem. In this paper, the critical initiation energy and explosion limits of some hydrocarbon-air mixtures have been measured in confined (rectangle shock tube) and unconfined (plastic bag) condition tests. Two dimensionless parameters are suggested to compare the fire and explosion hazards of different hydrocarbons. Additionally, a series of experiments was performed to determine the influence of chemical additives on the fire and explosion hazards of some hydrocarbon-air mixtures in confined (rectangle shock tube) tests. These results relate directly to flammability and reactivity of hydrocarbon air mixtures. Such measurements are very important for hydrocarbon safety.

  2. Hypersonic ionizing air viscous shock-layer flows over nonanalytic blunt bodies

    NASA Technical Reports Server (NTRS)

    Miner, E. W.; Lewis, C. H.

    1975-01-01

    The equations which govern the viscous shock-layer flow are presented and the method by which the equations are solved is discussed. The predictions of the present finite-difference method are compared with other numerical predictions as well as with experimental data. The principal emphasis is placed on predictions of the viscous flowfield for the windward plane of symmetry of the space shuttle orbiter and other axisymmetric bodies which approximate the shuttle orbiter geometry. Experimental data on two slender sphere-cones at hypersonic conditions are also considered. The present predictions agreed well with experimental data and with the past predictions. Substantial differences were found between present predictions and more approximate methods.

  3. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    NASA Technical Reports Server (NTRS)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  4. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling

    NASA Astrophysics Data System (ADS)

    Chandra, N.; Ganpule, S.; Kleinschmit, N. N.; Feng, R.; Holmberg, A. D.; Sundaramurthy, A.; Selvan, V.; Alai, A.

    2012-09-01

    Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.

  5. Impact of air and refrigerant maldistributions on the performance of finned-tube evaporators with R-22 and R-407C. Final Report

    SciTech Connect

    Lee, Jangho; Domanski, P.A.

    1997-07-01

    The report presents basic features of the evaporator model, EVAP5M, and simulation results for an evaporator operating with R-22 and R-407C at non-uniform air and refrigerant distributions. EVAP5M was developed under this project to provide a tool for simulating a finned-tube air-to refrigerant evaporator operating with single-component refrigerants and refrigerant mixtures. The tube-by-tube modeling approach allowed for one-dimensional non-uniformity in the air velocity profile and arbitrary maldistribution on the refrigerant side. The model uses the Carnahan-Starling-DeSantis equation of state for calculating refrigerant thermodynamic properties. Simulations were performed for three evaporator slabs with different refrigerant circuitry designs. For the maldistributions studied, maldistributed air caused much more significant capacity degradation than maldistributed refrigerant. In some cases capacity decreased to as low as 57 percent of the value obtained for uniform velocity profile. Simulation results showed that R-22 and R-407C have similar susceptibility to capacity degradation. Relative change of capacity varied depending on the evaporator design and maldistribution studied. 17 refs., 18 figs., 9 tabs.

  6. Modeling air-driven flow of a viscous film coating the interior of a rigid, vertical tube

    NASA Astrophysics Data System (ADS)

    Ogrosky, Reed; Camassa, Roberto; Forest, Greg; Olander, Jeffrey

    2013-11-01

    The upwards, air-driven flow of a viscous fluid film coating the interior of a rigid, vertical tube is studied theoretically and numerically. The free surface of the film develops instabilities due to the interplay between interfacial stress from the airflow and surface tension from azimuthal curvature. Simple closure models for turbulent airflow coupled to long-wave asymptotic models for the liquid film have been shown to reproduce qualitatively the dynamics of the instabilities past initial transients observed in experiments. However, quantitative agreement requires improving the turbulent airflow modeling beyond leading order theories of free surface stress. An attempt in this direction is described here; the resulting model is compared with others in the literature and with experiments, for the case where the free surface is replaced by a rigid, wavy wall. This comparison is made for both wavy pipe and wavy channel flows, and the mean stress is seen to be out of phase with the wavy wall itself by a phase shift dependent on both the Reynolds number and the amplitude of the wall modulations. The free surface model is then studied through linear stability analysis and numerical solutions, both of which show improved agreement with experiments. We gratefully acknowledge support from NSF RTG DMS-0943851 and NIEHS 534197-3411.

  7. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats.

    PubMed

    Pöhlmann, Kevin; Koenigstein, Stefan; Alter, Katharina; Abele, Doris; Held, Christoph

    2011-11-01

    Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.

  8. Mock-up tests on the combustion of hydrogen air mixture in the vertical tube simulating the CNS channel of the CARR

    NASA Astrophysics Data System (ADS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Xu, Jian

    2007-01-01

    A two-phase thermo-siphon loop for removing nuclear heating and maintaining the stable liquid level in the moderator cell was adopted for the cold neutron source (CNS) of the China advanced research reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon loop consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The main feature of the loop is that the moderator cell is covered by the helium sub-cooling system. The cold helium gas from the helium refrigerator is firstly introduced into the helium sub-cooling system and then flows up through the tube covering the moderator transfer tube into the condenser. The main part of this system is installed in the CNS vertical channel made of aluminum alloy 6061 T6 (Al-6061-T6) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS channel, the combustion tests using a tube compatible with the CNS channel were carried out using the hydrogen-air mixture under which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.14 MPa G. This condition is involved with the maximum design basis accident of the CARR-CNS. The peak pressure due to combustion was 1.09 MPa, and the design pressure of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the maximum design basis accident occurs. The pressure and stress distributions along the axial direction and the displacement of the tube were also measured.

  9. Quantification of VX vapor in ambient air by liquid chromatography isotope dilution tandem mass spectrometric analysis of glass bead filled sampling tubes.

    PubMed

    Evans, Ronald A; Smith, Wendy L; Nguyen, Nam-Phuong; Crouse, Kathy L; Crouse, Charles L; Norman, Steven D; Jakubowski, E Michael

    2011-02-15

    An analysis method has been developed for determining low parts-per-quadrillion by volume (ppqv) concentrations of nerve agent VX vapor actively sampled from ambient air. The method utilizes glass bead filled depot area air monitoring system (DAAMS) sampling tubes with isopropyl alcohol extraction and isotope dilution using liquid chromatography coupled with a triple-quadrupole mass spectrometer (LC/MS/MS) with positive ion electrospray ionization for quantitation. The dynamic range was from one-tenth of the worker population limit (WPL) to the short-term exposure limit (STEL) for a 24 L air sample taken over a 1 h period. The precision and accuracy of the method were evaluated using liquid-spiked tubes, and the collection characteristics of the DAAMS tubes were assessed by collecting trace level vapor generated in a 1000 L continuous flow chamber. The method described here has significant improvements over currently employed thermal desorption techniques that utilize a silver fluoride pad during sampling to convert VX to a higher volatility G-analogue for gas chromatographic analysis. The benefits of this method are the ability to directly analyze VX with improved selectivity and sensitivity, the injection of a fraction of the extract, quantitation using an isotopically labeled internal standard, and a short instrument cycle time.

  10. Dynamics of explosively imploded pressurized tubes

    NASA Astrophysics Data System (ADS)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  11. Detonation Initiation by Annular Jets and Shock Waves

    DTIC Science & Technology

    2007-11-02

    11,12,13,14,15,16,17,18, 19,20,21,22 to better understand the shock implosion process. The current interest in air-breathing pulse detonation engines ( PDEs ) has led...This technology has yet to be realized and, as a result, current PDEs use initiator tubes sensitized with oxygen 23 or detonate more sensitive mixtures... Detonation Initiation by Annular Jets and Shock Waves Final Report for Award ONR N00014-03 -0931 Joseph E. Shepherd Aeronautics California Institute

  12. VELOCITY-FIELD MEASUREMENTS OF A SHOCK-ACCELERATED FLUID INSTABILITY

    SciTech Connect

    K. PRESTRIDGE; C. ZOLID; ET AL

    2001-05-01

    A cylinder of heavy gas (SF{sub 6}) in air is hit by a Mach 1.2 shock. The resultant Richtmyer-Meshkov instability is observed as it propagates through the test section of the shock tube. Six images are taken after shock impact, and the velocity field at one time is measured using Particle Image Velocimetry (PIV). The images of the density field show the development of a secondary instability in the cylinder. The velocity field provides us with information about the magnitudes of the velocities as well as the magnitude of the vorticity in the flow.

  13. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  14. A single-pulse shock tube coupled with high-repetition-rate time-of-flight mass spectrometry and gas chromatography for high-temperature gas-phase kinetics studies

    NASA Astrophysics Data System (ADS)

    Sela, P.; Shu, B.; Aghsaee, M.; Herzler, J.; Welz, O.; Fikri, M.; Schulz, C.

    2016-10-01

    Shock tubes are frequently used to investigate the kinetics of chemical reactions in the gas phase at high temperatures. Conventionally, two complementary arrangements are used where either time-resolved intermediate species measurements are conducted after the initiation of the reaction or where the product composition is determined after rapid initiation and quenching of the reaction through gas-dynamic processes. This paper presents a facility that combines both approaches to determine comprehensive information. A single-pulse shock tube is combined with high-sensitivity gas chromatography/mass spectrometry for product composition and concentration measurement as well as high-repetition-rate time-of-flight mass spectrometry for time-dependent intermediate concentration determination with 10 μs time resolution. Both methods can be applied simultaneously. The arrangement is validated with investigations of the well-documented thermal unimolecular decomposition of cyclohexene towards ethylene and 1,3-butadiene at temperatures between 1000 and 1500 K and pressures ranging from 0.8 to 2.4 bars. The comparison shows that the experimental results for both detections are in very good agreement with each other and with literature data.

  15. Evaluated kinetics of terminal and non-terminal addition of hydrogen atoms to 1-alkenes: a shock tube study of H + 1-butene.

    PubMed

    Manion, Jeffrey A; Awan, Iftikhar A

    2015-01-22

    Single-pulse shock tube methods have been used to thermally generate hydrogen atoms and investigate the kinetics of their addition reactions with 1-butene at temperatures of 880 to 1120 K and pressures of 145 to 245 kPa. Rate parameters for the unimolecular decomposition of 1-butene are also reported. Addition of H atoms to the π bond of 1-butene results in displacement of either methyl or ethyl depending on whether addition occurs at the terminal or nonterminal position. Postshock monitoring of the initial alkene products has been used to determine the relative and absolute reaction rates. Absolute rate constants have been derived relative to the reference reaction of displacement of methyl from 1,3,5-trimethylbenzene (135TMB). With k(H + 135TMB → m-xylene + CH3) = 6.7 × 10(13) exp(-3255/T) cm(3) mol(-1) s(-1), we find the following: k(H + 1-butene → propene + CH3) = k10 = 3.93 × 10(13) exp(-1152 K/T) cm(3) mol(-1) s(-1), [880-1120 K; 145-245 kPa]; k(H + 1-butene → ethene + C2H5) = k11 = 3.44 × 10(13) exp(-1971 K/T) cm(3) mol(-1) s(-1), [971-1120 K; 145-245 kPa]; k10/k11 = 10((0.058±0.059)) exp [(818 ± 141) K/T), 971-1120 K. Uncertainties (2σ) in the absolute rate constants are about a factor of 1.5, while the relative rate constants should be accurate to within ±15%. The displacement rate constants are shown to be very close to the high pressure limiting rate constants for addition of H, and the present measurements are the first direct determination of the branching ratio for 1-olefins at high temperatures. At 1000 K, addition to the terminal site is favored over the nonterminal position by a factor of 2.59 ± 0.39, where the uncertainty is 2σ and includes possible systematic errors. Combining the present results with evaluated data from the literature pertaining to temperatures of <440 K leads us to recommend the following: k∞(H + 1-butene → 2-butyl) = 1.05 × 10(9)T(1.40) exp(-366/T) cm(3) mol(-1) s(-1), [220-2000 K]; k∞(H + 1-butene → 1

  16. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  17. Structure in Radiating Shocks

    NASA Astrophysics Data System (ADS)

    Doss, Forrest

    2010-11-01

    The basic radiative shock experiment is a shock launched into a gas of high-atomic-number material at high velocities, which fulfills the conditions for radiative losses to collapse the post-shock material to over 20 times the initial gas density. This has been accomplished using the OMEGA Laser Facility by illuminating a Be ablator for 1 ns with a total of 4 kJ, launching the requisite shock, faster than 100 km/sec, into a polyimide shock tube filled with Xe. The experiments have lateral dimensions of 600 μm and axial dimensions of 2-3 mm, and are diagnosed by x-ray backlighting. Repeatable structure beyond the one-dimensional picture of a shock as a planar discontinuity was discovered in the experimental data. One form this took was that of radial boundary effects near the tube walls, extended approximately seventy microns into the system. The cause of this effect - low density wall material which is heated by radiation transport ahead of the shock, launching a new converging shock ahead of the main shock - is apparently unique to high-energy-density experiments. Another form of structure is the appearance of small-scale perturbations in the post-shock layer, modulating the shock and material interfaces and creating regions of enhanced and diminished aerial density within the layer. The authors have applied an instability theory, a variation of the Vishniac instability of decelerating shocks, to describe the growth of these perturbations. We have also applied Bayesian statistical methods to better understand the uncertainties associated with measuring shocked layer thickness in the presence of tilt. Collaborators: R. P. Drake, H. F. Robey, C. C. Kuranz, C. M. Huntington, M. J. Grosskopf, D. C. Marion.

  18. Substantial reduction of the heat losses to ambient air by natural convection from horizontal in-tube flows: impact of an axial bundle of passive baffles

    NASA Astrophysics Data System (ADS)

    Campo, A.; Cortés, C.

    This paper is concerned with a distinct and effective technique to insulate horizontal tubes carrying hot fluids without using the variety of insulating materials traditionally utilized in industry. The tubes transport hot fluids and are exposed to a natural convection environment of air at standard atmospheric temperature and pressure. Essentially, an ``equivalent quantity of insulation'' is provided by an envelope of straight symmetric baffles made from a low conductivity material that is affixed to the outer surface of the horizontal tubes. A simple 1-D lumped model of comparable precision to the customary 2-D differential model serves to regulate the thermal interaction between the two perpendicular fluid streams, one horizontal due to internal forced convection and the other vertical due to external natural convection in air. All computations are algebraic and lead to a rapid determination of the two quantities that are indispensable to design engineers: the mean bulk temperatures of the internal hot fluid moving either laminarly or turbulently, together with the degraded levels of heat transfer rates.

  19. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.

    2011-11-01

    We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.

  20. Ear Tubes

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media interested ... throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through the ...

  1. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  2. A shock-tube determination of the CN ground state dissociation energy and electronic transition moments for the CN violet and red band systems

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Nicholls, R. W.

    1973-01-01

    The CN ground state dissociation energy and the sum of squares of the electronic transition moments of the CN violet bands have been simultaneously determined from spectral emission measurements behind incident shock waves. The unshocked test gases were composed of various CO2-CO-N2-Ar mixtures, and the temperatures behind the incident shocks ranged from 3500 to 8000 K. The variation of the electronic transition moment with internuclear separation was found to be small for both the CN violet and red band systems.

  3. First clinical experience with the air purge control and electrical remote-controlled tubing clamp in mini bypass.

    PubMed

    Huybregts, Rien M A J M; Veerman, Derk P; Vonk, Alexander B A; Nesselaar, Alfred F; Paulus, Reggie C E; Thone-Passchier, Deirdre H; Smith, Annette L; de Vroege, Roel

    2006-09-01

    Most mini bypass systems do not contain a venous and cardiotomy reservoir in the cardiopulmonary bypass (CPB) circuit and lack the capability to remove venous air. In conjunction with the manufacturer the air purge control system, a system which automatically removes air that is captured in a venous bubble trap, has been developed. This system is combined with an electrical remote clamp, which automatically clamps the arterial line in case air leaves the bubble trap. Twenty consecutive patients undergoing surgery with CPB were included in this clinical validation. Venous air was removed by the air purge control during bypass. The electrical remote clamp was never activated by the system, confirming that the air purge control adequately removed venous air during these cases. The air purge control, in conjunction with the electrical remote clamp, is a valuable safety feature in mini bypass, enhancing patient safety and user friendliness while providing a level of safety equivalent to those of conventional bypass systems.

  4. Factors influencing flow steadiness in laminar boundary layer shock interactions

    NASA Astrophysics Data System (ADS)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  5. Shock initiation of the TATB based explosive PBX 9502 heated to ~ 76∘C

    NASA Astrophysics Data System (ADS)

    Gustavsen, Richard; Gehr, Russell; Bucholtz, Scott; Pacheco, Adam; Bartram, Brian

    2015-06-01

    Recently we reported on shock initiation of PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 binder) cooled to -55°C and to 77K Shock waves were generated by gas-gun driven plate impacts and reactive flow in the cooled PBX 9502 was measured with embedded electromagnetic gauges. Here we use similar methods to warm the explosive to ~ 76°C. The explosive sample is heated by warm air flowing through channels in an aluminum sample mounting plate and a copper tubing coil surrounding the sample. Temperature in the sample is monitored using six type-E thermocouples. Results show increased shock sensitivity; time and distance to detonation onset vs. initial shock pressure are shorter than when the sample is initially at ambient temperature. Our results are consistent with those reported by Dallman & Wackerle. Particle velocity wave profiles were also obtained during the shock-to-detonation transition and will be presented.

  6. Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using time-dependent or shock-capturing methods, part 1

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Mugge, P. H.

    1974-01-01

    Simplified curve fits for the thermodynamic properties of equilibrium air were devised for use in either the time-dependent or shock-capturing computational methods. For the time-dependent method, curve fits were developed for p = p(e, rho), a = a(e, rho), and T = T(e, rho). For the shock-capturing method, curve fits were developed for h = h(p, rho) and T = T(p, rho). The ranges of validity for these curves fits were for temperatures up to 25,000 K and densities from 10 to the minus 7th power to 10 to the 3d power amagats. These approximate curve fits are considered particularly useful when employed on advanced computers such as the Burroughs ILLIAC 4 or the CDC STAR.

  7. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  8. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  9. Rate constants for the reaction, O + H sub 2 O yields OH + OH, over the temperature range, 1500--2400 K, by the flash photolysis-shock tube technique: A further consideration of the back reaction

    SciTech Connect

    Lifshitz, A.; Michael, J.V.

    1990-01-01

    Rate constants for the reaction, O + H{sub 2}O {yields} OH + OH, have been measured by the Flash Photolysis-Shock Tube (FP-ST) technique over the temperature range, 1500--2400 K. This technique combines stock heating with flash photolysis in the reflected shock wave regime, and the transient species, O-atoms in this case, are monitored by atomic resonance absorption spectroscopy (aras). Additional experiments were performed with N{sub 2}O as a thermal source of O-atoms, and the formation and depletion of (O) were followed by the aras technique. These results require that the decomposition rate behavior of N{sub 2}O be known. The results obtained by this technique are compared to those obtained by the FP-ST technique and are found to be corroborative. Hence, the combined results are used to describe the rate constants for the title reaction. The experimental results are compared to earlier work, and rate constants for the title reaction are additionally calculated from published results for the reverse reaction, OH + OH, and the well known equilibrium constant. All results are combined, and the rate behavior for the title reaction is evaluated. Lastly, the results for both forward and reverse reactions are compared to the theoretical calculations presented recently by Harding and Wagner. It is concluded that theory and experiment are in agreement within experimental error.

  10. Heat Transfer from High-Temperature Surfaces to Fluids. III - Correlation of Heat-Transfer Data for Air Flowing in Silicon Carbide Tube with Rounded Entrance, Inside Diameter of 3/4 Inch, and Effective Length of 12 Inches. Part 3; Correlation of Heat-Transfer Data for Air Flowing in Silicon Carbide Tube with Rounded Entrance, Inside Diameter of 3/4 Inch, and Effective Length of 12 Inches

    NASA Technical Reports Server (NTRS)

    Sams, Eldon W.; Desmon, Leland G.

    1949-01-01

    A heat-transfer investigation was conducted with air flowing through an electrically heated silicon carbide tube with a rounded entrance, an inside diameter of 3/4 inch, and an effective heat-transfer length of 12 inches over a range of Reynolds numbers up to 300,000 and a range of average inside-tube-wall temperature up to 2500 R. The highest corresponding local outside-tube-wall temperature was 3010 R. Correlation of the heat-transfer data using the conventional Nueselt relation wherein physical properties of the fluid were evaluated at average bulk temperature resulted in a separation of data with tube-wall-temperature level. A satisfactory correlation of the heat-transfer data was obtained, however, by the use of modified correlation parameters wherein the mass velocity G (or product of average air density and velocity evaluated at bulk temperature P(sub b)V(sub b)) in the Reynolds number was replaced by the product of average air velocity evaluated at the bulk temperature and density evaluated at either the average inside-tube-wall temperature or the average film temperature; in addition, all the physical properties of air were correspondingly evaluated at either the average inside-tube-wall temperature or the average film temperature.

  11. Proceedings of the International Symposium on Shock Tubes and Waves (12th) Held at Jerusalem on 16-19 July 1979.

    DTIC Science & Technology

    1980-02-01

    a laser transmission link from space to ground. An overall study of the Space Laser Power System has been performed by Jones et al. 35 who have...and R.L. Morse, Phys. Rev. Lett. 34, 721 (1975). 52. M.S. White , J.D. Kilkenny and A.E. Dangor, Phys. Rev. Lett. 35, 524 (1975) 53. A. Zigler, H. Zmora...examined using the scalar formulation of Huygens’ principle (Kirchoff integral), with the shock density pro- file introduced as a transmission coefficient

  12. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOEpatents

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  13. Method of making shock cells

    SciTech Connect

    Leblanc, R. F.; Cummins, W. T.

    1984-10-16

    A method of making an energy-absorbing shock cell for mounting bumper devices on legs of offshore oil rig structures having inner and outer metal tubes connected by an intervening vulcanized rubber sleeve maintained under compression adhesively bonded to the inner and outer metal tubes. The shock cell is made by a series of operations in which portions of the metal tubes are coated with adhesive material, and the rubber sleeve is bonded to the adhesive coated areas by vulcanization and post-vulcanized heating.

  14. Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-07-21

    We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 10(16) exp(-42 200 K/T) cm(3)/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data.

  15. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  16. Compressibility Effects on Heat Transfer and Pressure Drop in Smooth Cylindrical Tubes

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1944-01-01

    An analysis is made to simplify pressure-drop calculations for nonadiabatic and adiabatic friction flow of air in smooth cylindrical tubes when the density changes due to heat transfer and pressure drop are appreciable. Solutions of the equation of motion are obtained by the use of Reynolds' analogy between heat transfer and skin friction. Charts of the solutions are presented for making pressure-drop calculations. A technique of using the charts to determine the position of a normal shock in a tube is described.

  17. A comparison of measured and predicted sphere shock shapes in hypersonic flows with density ratios from 4 to 19

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1975-01-01

    Measured shock shapes are presented for sphere and hemisphere models in helium, air, CF4, C2F6, and CO2 test gases, corresponding to normal-shock density ratios (primary factor governing shock detachment distance of blunt bodies at hypersonic speeds) from 4 to 19. These shock shapes were obtained in three facilities capable of generating the high density ratios experienced during planetary entry at hypersonic conditions; namely, the 6-inch expansion tube, with hypersonic CF4 tunnel, and pilot CF4 Mach 6 tunnel (with CF4 replaced by C2F6). Measured results are compared with several inviscid perfect-gas shock shape predictions, in which an effective ratio of specific heats is used as input, and with real-gas predictions which include effects of a laminar viscous layer and thermochemical nonequilibrium.

  18. Thermal Shock Behavior of Air Plasma Sprayed CoNiCrAlY/YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Zi Wei; Wu, Wei; Hua, Jia Jie; Lin, Chu Cheng; Zheng, Xue Bin; Zeng, Yi

    2014-07-01

    The structural changes and failure mechanism of thermal barrier coatings (TBCs) during thermal shock cycling were investigated. TBCs consisting of CoNiCrAlY bond coat and partially yttria-stabilized zirconia (YSZ) top coat were deposited by atmospheric plasma spraying (APS) on a nickel-based alloy substrate and its thermal shock resistance performance was evaluated. TBCs were heated at 1100°C for 15 min followed by cold water quenching to ambient temperature. Microstructural evaluation and elemental analysis of TBCs were performed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The crack features of YSZ coatings in TBCs during thermal shock cycling, including those of horizontal (parallel to the substrate) and vertical cracks (perpendicular to the substrate), were particularly investigated by means of SEM and image analysis. Results show that horizontal and vertical cracks have different influences on the thermal shock resistance of the coatings. Horizontal cracks that occur at the interface of YSZ and thermally growth oxidation (TGO) cause partial or large-area spalling of coatings. When vertical and horizontal cracks encounter, network segments are formed which lead to partial spalling of the coatings.

  19. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  20. Experimental research on dust lifting by propagating shock wave

    NASA Astrophysics Data System (ADS)

    Żydak, P.; Oleszczak, P.; Klemens, R.

    2017-03-01

    The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.

  1. Numerical study on spontaneous ignition of pressurized hydrogen release through a length of tube

    SciTech Connect

    Wen, J.X.; Xu, B.P.; Tam, V.H.Y.

    2009-11-15

    The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern, e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme. The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube. Parametric studies were also conducted to investigate the effect of rupture time, release pressure, tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition

  2. Free compression tube. Applications

    NASA Astrophysics Data System (ADS)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  3. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  4. Preliminary study of cyclic thermal shock resistance of plasma-sprayed zirconium oxide turbine outer air seal shrouds

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1977-01-01

    Several experimental concepts representing potential high pressure turbine seal material systems were subjected to cyclic thermal shock exposures similar to those that might be encountered under severe engine start-up and shut-down sequences. All of the experimental concepts consisted of plasma-sprayed yttria stabilized ZrO2 on the high temperature side of the blade tip seal shroud. Between the ZrO2 and a cooled, dense metal backing, various intermediate layer concepts intended to mitigate thermal stresses were incorporated. Performance was judged on the basis of the number of thermal shock cycles required to cause loss of seal material through spallation. The most effective approach was to include a low modulus, sintered metal pad between the ZrO2 and the metallic backing. It was also found that reducing the density of the ZrO2 layer significantly improved the performance of specimens with plasma-sprayed metal/ceramic composite intermediate layers.

  5. [Historical vision of shock].

    PubMed

    Dosne Pasqualini, C

    1998-01-01

    The concept of shock and its close relationship with that of stress dates back to the experiments of Hans Selye initiated in 1936 at McGill University in Montreal, with whom I collaborated between 1939 and 1942. It was demonstrated that the General Adaptation Syndrome begins with an Alarm Reaction, which consists of a Stage of Shock and one of Counter-Shock, followed by a Stage of Adaptation and finally a Stage of Exhaustion. My Ph.D. thesis concluded that shock was due to an adrenal insufficiency postulating that active metabolic processes drain the body of certain essential compounds the lack of which causes shock. My interest in the role of the glucose metabolism in shock led me to work with Bernardo Houssay in 1942 at the Institute of Physiology of the University of Buenos Aires and in 1944 with C.N.H. Long at Yale University. There I developed a method for the induction of hemorrhagic shock in the guinea pig with 94% lethality; curiously, the administration of 200 mg of ascorbic acid prevented death. Upon my return to Buenos Aires, these results were confirmed and moreover, it was demonstrated that the administration of cortisone led to 40% survival of the animals while desoxycorticosterone had no effect. At the time, no explanation was available but to-day, half a century later, this Symposium should be able to explain the mechanisms leading to death by hemorrhagic shock.

  6. Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay

    1995-01-01

    The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).

  7. Hydrogen peroxide decomposition rate: a shock tube study using tunable laser absorption of H(2)O near 2.5 microm.

    PubMed

    Hong, Zekai; Farooq, Aamir; Barbour, Ethan A; Davidson, David F; Hanson, Ronald K

    2009-11-19

    The thermal decomposition of hydrogen peroxide was measured behind reflected shock waves in hydrogen peroxide/inert gas mixtures using a sensitive laser diagnostic for water vapor. In these mixtures, the formation rate of water is predominantly controlled by the decomposition rate of hydrogen peroxide. Rate determinations were made over a temperature range of 1000-1200 K and a pressure range of 0.9-3.2 atm for both argon and nitrogen carrier gases. Good detection sensitivity for water was achieved using tunable diode laser absorption of water at 2550.96 nm within its v(3) fundamental band. Hydrogen peroxide decomposition rates were found to be independent of pressure at 0.9 and 1.7 atm and showed only slight influence of pressure at 3.2 atm. The best fit of the current data to the low-pressure-limit rate for H(2)O(2) dissociation in argon bath gas is k(1,0) = 10(15.97+/-0.10) exp(-21 220 +/- 250 K/T) [cm(3) mol(-1) s(-1)] (1000-1200 K). Experiments conducted in a nitrogen bath gas show a relative collision efficiency of argon to nitrogen of 0.67.

  8. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  9. Random Choice Solutions for Weak Spherical Shock-Wave Transitions of N-Waves in Air with Vibrational Excitation.

    DTIC Science & Technology

    1983-07-01

    lit,- shol f ront. The rronsttit in- Tritlie, fill Icdis--ri-cd watc - Pci’. I JhV - Yi- ’sLi c1 iictct Itlcthat Tt risc- timc-s of wetik shock couild...FORMAT(// JH 9’KJ1:’,13,’, NMAX=1,139’, NNfl:’o 00510 3* 129𔄃 ID=’,13,𔄃 INC=’,12,’, NGQ:’, 00520 if 139’’ NPRINT:’,12,/1H ,’ESSz’,F7959’, XFAC:’, 00530 3

  10. Weak-shock reflection factors

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1993-09-07

    The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  11. Feeding Tubes

    MedlinePlus

    ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ...

  12. Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  13. A new facility for studying shock-wave passage over dust layers

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.

    2016-03-01

    Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second

  14. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit.

    PubMed

    Lin, Qiong; Jiang, Qing; Lin, Juanying; Wang, Dengliang; Li, Shaojia; Liu, Chunrong; Sun, Chongde; Chen, Kunsong

    2015-04-01

    Heat shock transcription factors (Hsfs) play a role in plant responses to stress. Citrus is an economically important fruit whose genome has been fully sequenced. So far, no detailed characterization of the Hsf gene family is available for citrus. A genome-wide analysis was carried out in Citrus clementina to identify Hsf genes, named CcHsfs. Eighteen CcHsfs were identified and classified into three main clades (clades A, B and C) according to the structural characteristics and the phylogenetic comparison with Arabidopsis and tomato. MEME motif analysis highlighted the conserved DBD and HR-A/B domains, which were similar to Hsf protein structures in other species. Gene expression analysis in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit identified 14 Hsf genes, named CrHsf, as important candidates for a role in fruit development and ripening, and showed seven genes to be expressed in response to hot air stress. CrHsfB2a and CrHsfB5 were considered to be important regulators of citrate content and showed variation in both developmentally-related and hot air-triggered citrate degradation processes. In summary, the data obtained from this investigation provides the basis for further study to dissect Hsf function during fruit development as well as in response to heat stress and also emphasizes the potential importance of CrHsfs in regulation of citrate metabolism in citrus fruit.

  15. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    SciTech Connect

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.

  16. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    NASA Astrophysics Data System (ADS)

    Shiva, S. Sai; Leela, Ch.; Chaturvedi, S.; Sijoy, C. D.; Kiran, P. Prem

    2017-01-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model was developed to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport due e-i and e-n thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The velocity of SW observed in the experiments over 0.2 µs-8 µs time scales was compared with the numerical results to understand the SW transition from planar to spherical evolution.

  17. Tracheostomy tubes.

    PubMed

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.

  18. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    SciTech Connect

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang; Luo, Xisheng

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  19. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    NASA Astrophysics Data System (ADS)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang; Luo, Xisheng

    2015-06-01

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF6 surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  20. TIMING OF SHOCK WAVES

    DOEpatents

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  1. A selected ion flow tube study of the reactions of NO + and O + 2 ions with some organic molecules: The potential for trace gas analysis of air

    NASA Astrophysics Data System (ADS)

    Španěl, Patrik; Smith, David

    1996-02-01

    A study has been carried out using our selected ion flow tube apparatus of the reactions of NO+ and O+2 ions in their vibronic ground states with ten organic species: the hydrocarbons, benzene, toluene, isoprene, cyclopropane, and n-pentane; the oxygen-containing organics, methanol, ethanol, acetaldehyde, acetone, and diethyl ether. The major objectives of this work are, on the one hand, to fully understand the processes involved in these reactions and, on the other hand, to explore the potential of NO+ and O+2 as chemical ionization agents for the analysis of trace gases in air and on human breath. Amongst the NO+ reactions, charge transfer, hydride-ion transfer, and termolecular association occur, and the measured rate coefficients, k, for the reactions vary from immeasurably small to the maximum value, collisional rate coefficient, kc. The O+2 reactions are all fast, in each case the k being equal to or an appreciable fraction of kc, and charge transfer producing the parent organic ion or dissociative charge transfer resulting in two or three fragments of the parent ion are the reaction processes that occur. We conclude from these studies, and from previous studies, that NO+ ions and O+2 ions can be used to great effect as chemical ionization agents for trace gas analysis, especially in combination with H3O+ ions which we now routinely use for this purpose.

  2. Indoor air pollution from coal combustion and the risk of neural tube defects in a rural population in Shanxi Province, China.

    PubMed

    Li, Zhiwen; Zhang, Le; Ye, Rongwei; Pei, Lijun; Liu, Jianmeng; Zheng, Xiaoying; Ren, Aiguo

    2011-08-15

    The authors evaluated indoor air pollution from coal combustion (IAPCC) as a potential risk factor for neural tube defects (NTDs) in a rural population in Shanxi Province, China. The studied rural population has both high IAPCC exposure and a high prevalence of NTDs. A population-based case-control study was used to identify 610 NTD cases and 837 normal controls between November 2002 and December 2007. Information was collected within 1 week following delivery or pregnancy termination due to prenatal NTD diagnosis. The authors derived an exposure index by integrating a series of IAPCC-related characteristics concerning dwelling and lifestyle. Compared with women with no IAPCC exposure, women with any exposure at all had a 60% increased risk of having a child with an NTD (adjusted odds ratio (OR) = 1.6, 95% confidence interval (CI): 1.1, 2.1). An increased NTD risk was linked to both residential heating (adjusted OR = 1.7, 95% CI: 1.1, 2.4) and cooking (adjusted OR = 1.5, 95% CI: 1.1, 2.1). The risk increased with increases in the exposure index, showing a dose-response trend (P < 0.001). This is the first known study to link IAPCC to NTDs. Additional studies are needed to confirm the link between IAPCC and NTDs.

  3. Wurst is essential for airway clearance and respiratory-tube size control.

    PubMed

    Behr, Matthias; Wingen, Christian; Wolf, Christian; Schuh, Reinhard; Hoch, Michael

    2007-07-01

    The Drosophila melanogaster tracheal system and the mammalian lung are branching networks of tubular epithelia that convert during late embryogenesis from liquid- to air-filling. Little is known about how respiratory-tube size and physiology are coordinated. Here, we show that the Drosophila wurst gene encodes a unique J-domain transmembrane protein highly conserved in metazoa. In wurst mutants, respiratory-tube length is increased and lumen clearance is abolished, preventing gas filling of the airways. Wurst is essential for clathrin-mediated endocytosis, which is required for size determination and lumen clearance of the airways. wurst recruits heat shock cognate protein 70-4 and clathrin to the apical membrane of epithelial cells. The sequence conservation of the single Wurst orthologues in mice and humans offer new opportunities for genetic studies of clinically relevant lung syndromes caused by the failure of liquid clearance and respiratory-tube size control.

  4. Explosive-driven shock wave and vortex ring interaction with a propane flame

    NASA Astrophysics Data System (ADS)

    Giannuzzi, P. M.; Hargather, M. J.; Doig, G. C.

    2016-11-01

    Experiments were performed to analyze the interaction of an explosively driven shock wave and a propane flame. A 30 g explosive charge was detonated at one end of a 3-m-long, 0.6-m-diameter shock tube to produce a shock wave which propagated into the atmosphere. A propane flame source was positioned at various locations outside of the shock tube to investigate the effect of different strength shock waves. High-speed retroreflective shadowgraph imaging visualized the shock wave motion and flame response, while a synchronized color camera imaged the flame directly. The explosively driven shock tube was shown to produce a repeatable shock wave and vortex ring. Digital streak images show the shock wave and vortex ring propagation and expansion. The shadowgrams show that the shock wave extinguishes the propane flame by pushing it off of the fuel source. Even a weak shock wave was found to be capable of extinguishing the flame.

  5. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    NASA Astrophysics Data System (ADS)

    Ciccarelli, G.; Cross, M.

    2016-09-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  6. Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave

    SciTech Connect

    BP Puranik; JG Oakley; MH Anderson; R Bonaazza

    2003-11-12

    OAK-B135 An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M=3.08) while its shape is still sinusoidal and before the Kelvin-Helmhotz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability.

  7. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  8. Shock Layer Radiation Measurements and Analysis for Mars Entry

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Grinstead, Jay Henderson; Bogdanoff, David W.; Wright, Michael J.

    2009-01-01

    NASA's In-Space Propulsion program is supporting the development of shock radiation transport models for aerocapture missions to Mars. A comprehensive test series in the NASA Antes Electric Arc Shock Tube facility at a representative flight condition was recently completed. The facility optical instrumentation enabled spectral measurements of shocked gas radiation from the vacuum ultraviolet to the near infrared. The instrumentation captured the nonequilibrium post-shock excitation and relaxation dynamics of dispersed spectral features. A description of the shock tube facility, optical instrumentation, and examples of the test data are presented. Comparisons of measured spectra with model predictions are also made.

  9. Shock Tubes and Shock Tunnels: Design and Experiments

    DTIC Science & Technology

    2009-09-01

    12 - 4 RTO-EN-AVT-162 2.2 Disturbing Effects Obviously, this ideal scheme of operation corresponds only roughly to reality and various...phenomena contribute to somewhat modify this scheme and have an influence on the analysed non-equilibrium phenomena. The most significant effects concern...pressure, the boundary layer is turbulent but approximate models are available [10,11]. These effects are all the more significant as the initial

  10. MINKOWSKI FUNCTIONALS FOR QUANTITATIVE ASSESSMENTS OF SHOCK-INDUCED MIXING FLOWS

    SciTech Connect

    STRELITZ, RICHARD A.; KAMM, JAMES R.

    2007-01-22

    We describe the morphological descriptors known as Minkowski Functionals (MFs) on a shock-induced mixing problem. MFs allow accurate and compact characterization of complex images. MFs characterize connectivity, size, and shape of disordered structures. They possess several desirable properties, such as additivity, smoothness, and a direct relationship to certain physical properties. The scalar MFs that we describe can be extended to a moment-based tensor form that allows more thorough image descriptions. We apply MFs to experimental data for shock-induced mixing experiments conducted at the LANL shock tube facility. Those experiments, using low Mach number shock waves in air to induce the Richtmyer-Meshkov instability on air-SF{sub 6} interfaces, provide high-resolution, quantitative planar laser-induced fluorescence (PLIF) images. We describe MFs and use them to quantify experimental PLIF images of shock-induced mixing. This method can be used as a tool fo r validation, i.e., the quantitative comparison of simulation results against experimental data.

  11. Comparative study of high-resolution shock-capturing schemes for a real gas

    NASA Technical Reports Server (NTRS)

    Montagne, J.-L.; Yee, H. C.; Vinokur, M.

    1988-01-01

    Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30 percent. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.

  12. Comparative study of high-resolution shock-capturing schemes for a real gas

    NASA Technical Reports Server (NTRS)

    Montagne, J.-L.; Yee, H. C.; Vinokur, M.

    1987-01-01

    Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30%. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.

  13. Multi-tube arrangement for combustor and method of making the multi-tube arrangement

    SciTech Connect

    Ziminsky, Willy Steve

    2012-07-31

    A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.

  14. Gastrostomy Tube (G-Tube)

    MedlinePlus

    ... warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain persistent vomiting or diarrhea trouble passing gas or having a bowel movement pink-red tissue (called granulation tissue) coming out ...

  15. Experimental measurement of unsteady drag on shock accelerated micro-particles

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  16. A numerical solution of the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders in air

    NASA Technical Reports Server (NTRS)

    Johnston, K. D.; Hendricks, W. L.

    1978-01-01

    Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased.

  17. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  18. Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Herbold, G.; Ulmschneider, P.; Spruit, H. C.; Rosner, R.

    1985-01-01

    For solar magnetic flux tubes three types of waves are compared: longitudinal MHD tube waves, acoustic tube waves propagating in the same tube geometry but with rigid walls and ordinary acoustic waves in plane geometry. It is found that the effect of the distensibility of the tube is small and that longitudinal waves are essentially acoustic tube waves. Due to the tube geometry there is considerable difference between longitudinal waves or acoustic tube waves and ordinary acoustic waves. Longitudinal waves as well as acoustic tube waves show a smaller amplitude growth, larger shock formation heights, smaller mean chromospheric temperature but a steeper dependence of the temperature gradient on wave period.

  19. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  20. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tympanostomy tube with semipermeable membrane. 874... Tympanostomy tube with semipermeable membrane. (a) Identification. A tympanostomy tube with a semipermeable... to permit a free exchange of air between the outer ear and middle ear. The tube portion of the...

  1. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tympanostomy tube with semipermeable membrane. 874... Tympanostomy tube with semipermeable membrane. (a) Identification. A tympanostomy tube with a semipermeable... to permit a free exchange of air between the outer ear and middle ear. The tube portion of the...

  2. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tympanostomy tube with semipermeable membrane. 874... Tympanostomy tube with semipermeable membrane. (a) Identification. A tympanostomy tube with a semipermeable... to permit a free exchange of air between the outer ear and middle ear. The tube portion of the...

  3. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tympanostomy tube with semipermeable membrane. 874... Tympanostomy tube with semipermeable membrane. (a) Identification. A tympanostomy tube with a semipermeable... to permit a free exchange of air between the outer ear and middle ear. The tube portion of the...

  4. 21 CFR 874.3930 - Tympanostomy tube with semipermeable membrane.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tympanostomy tube with semipermeable membrane. 874... Tympanostomy tube with semipermeable membrane. (a) Identification. A tympanostomy tube with a semipermeable... to permit a free exchange of air between the outer ear and middle ear. The tube portion of the...

  5. Propagation of Sinusoidally-Corrugated Shock Fronts of Laser-Supported Detonations

    NASA Astrophysics Data System (ADS)

    Honda, T.; Kawaguchi, A.; Hanta, Y.; Susa, A.; Namba, S.; Johzaki, T.; Endo, T.; Shiraga, H.; Shigemori, K.; Koga, M.; Nagatomo, H.

    The behavior of sinusoidally-rippled shock fronts is a fundamental research topic in the dynamics of shock waves [1]. The Whitham's ray-shock theory, which is sometimes called the geometrical-shock-dynamics (GSD) theory, is known as a simple method for analyzing the behavior of a non-planar shock front. In this theory, narrow ray tubes corresponding to the light rays in the geometrical optics are placed perpendicularly to the every portions of a non-planar shock front, and the evolution of the shock front is calculated by tracking the shock front in each ray tube sequentially. When the behavior of an inert sinusoidally-rippled shock front is analyzed by the GSD theory and the Chester-Chisnell-Whitham's (CCW's) A-M relationship [2], where A is the cross-sectional area of a ray tube and M is the propagation Mach number of the shock wave in the ray tube, the amplitude of the shock-front ripple oscillates as the shock wave propagates [3]. Actually, the behavior of an inert sinusoidally-rippled shock front is influenced by the fluid motion in the shock-compressed region, and the amplitude of the shock-front ripple shows damped oscillation as the shock wave propagates [1,3,4,5].

  6. Laser measurements of bacterial endospore destruction from shock waves

    NASA Astrophysics Data System (ADS)

    Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-12-01

    The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.

  7. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  8. Intense shock waves and shock-compressed gas flows in the channels of rail accelerators

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.; Tverdokhlebov, K. V.

    2015-01-01

    Shock wave generation and shock-compressed gas flows attendant on the acceleration of an striker-free plasma piston in the channels of electromagnetic rail accelerators (railguns) are studied. Experiments are carried out in channels filled with helium or argon to an initial pressure of 25-500 Torr. At a pressure of 25 Torr, Mach numbers equal 32 in argon and 16 in helium. It is found that with the initial currents and gas initial densities in the channels being the same, the shock wave velocities in both gases almost coincide. Unlike standard shock tubes, a high electric field (up to 300 V/cm) present in the channel governs the motion of a shock-compressed layer. Once the charged particle concentration behind the shock wave becomes sufficiently high, the field causes part of the discharge current to pass through the shock-compressed layer. As a result, the glow of the layer becomes much more intense.

  9. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  10. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  11. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1972-01-01

    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  12. Investigation of shock focusing in a cavity with incident shock diffracted by an obstacle

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Chen, X.; He, L.-M.; Rong, K.; Deiterding, R.

    2017-03-01

    Experiments and numerical simulations were carried out in order to investigate the focusing of a shock wave in a test section after the incident shock has been diffracted by an obstacle. A conventional shock tube was used to generate the planar shock. Incident shock Mach numbers of 1.4 and 2.1 were tested. A high-speed camera was employed to obtain schlieren photos of the flow field in the experiments. In the numerical simulations, a weighted essentially non-oscillatory (WENO) scheme of third-order accuracy supplemented with structured dynamic mesh adaptation was adopted to simulate the shock wave interaction. Good agreement between experiments and numerical results is observed. The configurations exhibit shock reflection phenomena, shock-vortex interaction and—in particular—shock focusing. The pressure history in the cavity apex was recorded and compared with the numerical results. A quantitative analysis of the numerically observed shock reflection configurations is also performed by employing a pseudo-steady shock transition boundary calculation technique. Regular reflection, single Mach reflection and transitional Mach reflection phenomena are observed and are found to correlate well with analytic predictions from shock reflection theory.

  13. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  14. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  15. Electron tube

    DOEpatents

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  16. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  17. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... If your child has an NG tube, try to keep your child from touching or pulling on the tube. After your nurse teaches you how to flush the tube ...

  18. Kundt's Tube Experiment Using Smartphones

    ERIC Educational Resources Information Center

    Parolin, Sara Orsola; Pezzi, Giovanni

    2015-01-01

    This article deals with a modern version of Kundt's tube experiment. Using economic instruments and a couple of smartphones, it is possible to "see" nodes and antinodes of standing acoustic waves in a column of vibrating air and to measure the speed of sound.

  19. Experimental study on the interaction of planar shock wave with polygonal helium cylinders

    NASA Astrophysics Data System (ADS)

    Wang, M.; Si, T.; Luo, X.

    2015-07-01

    The evolution of a polygonal helium cylinder impacted by a planar weak shock wave is investigated experimentally. Three different polygonal interface shapes including a square, an equilateral triangle and a diamond are formed by the soap film technique, where thin pins are used as edges to connect the adjacent sides of soap films. Shock tube experiments are conducted to obtain sequences of schlieren images using a high-speed video camera. In each case, the development of the wave system and the evolution of the polygonal helium cylinder subjected to a planar shock wave with a Mach number of are obtained in a single test. For comparison, numerical simulations are also performed using the two-dimensional and axisymmetric vectorized adaptive solver (VAS2D). The variations of the interface properties including the displacement, the length and the height of the distorted interfaces in the three cases are given. For the square helium cylinder, two counter-rotating vortices connected by a thin link can be observed. The height of the distorted interface always increases, and its length first decreases and then increases. In the triangle case, an air jet is formed quickly and moves downwards within the volume and eventually encounters the downstream interface, resulting in a bulge on the downstream interface. In the diamond case, the upstream interface quickly forms a re-entrant air jet similar to that in the triangle case, and the downstream interface becomes flat. The circulation in the three cases is calculated numerically, revealing the main driving mechanism of the development of the shocked polygonal interface. This work exhibits the great potential of the experimental method in studying shock-polygonal interface interactions in the case of slow/fast (air/helium) situations.

  20. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  1. Tube Thoracostomy (Chest Tube) Removal in Traumatic Patients: What Do We Know? What Can We Do?

    PubMed Central

    Paydar, Shahram; Ghahramani, Zahra; Ghoddusi Johari, Hamed; Khezri, Samad; Ziaeian, Bizhan; Ghayyoumi, Mohammad Ali; Fallahi, Mohammad Javad; Niakan, Mohammad Hadi; Sabetian, Golnar; Abbasi, Hamid Reza; Bolandparvaz, Shahram

    2015-01-01

    Chest tube (CT) or tube thoracostomy placement is often indicated following traumatic injuries. Premature movement of the chest tube leads to increased hospital complications and costs for patients. Placement of a chest tube is indicated in drainage of blood, bile, pus, drain air, and other fluids. Although there is a general agreement for the placement of a chest tube, there is little consensus on the subsequent management. Chest tube removal in trauma patients increases morbidity and hospital expense if not done at the right time. A review of relevant literature showed that the best answers to some questions about time and decision-making have been long sought. Issues discussed in this manuscript include chest tube removal conditions, the need for chest radiography before and after chest tuberemoval, the need to clamp the chest tube prior to removal, and drainage rate and acceptability prior to removal. PMID:27162900

  2. Progressive wave tube facility with additional capabilities

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Bocksruker, Ron; Pilgram, Mark; Vallance, Charles

    1993-01-01

    The design and development of a new acoustic progressive wave tube facility was required to test the Titan IV rocket engine. Because of the large 6 feet diameter of the nozzle closure, circular shape, high over-all sound pressure level (OASPL), and high sound pressure levels (SPLs) above 1000 Hz, the acoustic environmental tests required consideration of a custom built facility. This paper describes a new oscillating supersonic shock generator (OSSG) for developing the high OASPL, for developing the high SPLs at above 1000 Hz, and for use with a conventional acoustic modulator. Also, the new OSSG permits impedance matching to the test volume annulus via the special geometry of the annular space between the elliptical containment domes upstream of the test volume annulus. A test annulus gap that is too small causes the test article to vibrate with a severe damping imposed by the pumping of trapped air in the annulus, and too large a gap reduces the OASPL. Consideration is given to tuning the axial and circumferential resonance frequencies of the annulus test space so that there is no coincidence with the principal resonant modes of the test structure. Also consideration is given to establishing the reverberant versus propagating modes of the test annulus.

  3. The influence of incident shock Mach number on radial incident shock wave focusing

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Tan, Sheng; He, Liming; Rong, Kang; Zhang, Qiang; Zhu, Xiaobin

    2016-04-01

    Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP) Runge-Kutta method, third-order weighed essential non-oscillation (WENO) scheme and adaptive mesh refinement (AMR) algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing) were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.

  4. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  5. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  6. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  7. System and method having multi-tube fuel nozzle with differential flow

    DOEpatents

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  8. Septic Shock

    PubMed Central

    Lansing, Allan M.

    1963-01-01

    Septic shock may be defined as hypotension caused by bacteremia and accompanied by decreased peripheral blood flow, evidenced by oliguria. Clinically, a shaking chill is the warning signal. The immediate cause of hypotension is pooling of blood in the periphery, leading to decreased venous return: later, peripheral resistance falls and cardiac failure may occur. Irreversible shock is comparable to massive reactive hyperemia. Reticuloendothelial failure, histamine release, and toxic hypersensitivity may be factors in the pathogenesis of septic shock. Adrenal failure does not usually occur, but large doses of corticosteroid are employed therapeutically to counteract the effect of histamine release or hypersensitivity to endotoxin. The keys to successful therapy are time, antibiotics, vasopressors, cortisone and correction of acidosis. PMID:14063936

  9. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  10. Gastrostomy Tube Placement Without Nasogastric Tube: A Retrospective Evaluation in 85 Patients

    SciTech Connect

    Heberlein, Wolf E. Goodwin, Whitney J.; Wood, Clint E.; Yousaf, Muhammad; Culp, William C.

    2012-12-15

    Purpose: Our study evaluated techniques for percutaneous gastrostomy (G)-tube placement without the use of a nasogastric (NG) tube. Instead, direct puncture of a physiologic air bubble or effervescent-enhanced gastric bubble distention was performed in patients with upper digestive tract obstruction (UDTO) or psychological objections to NG tubes. Materials and Methods: A total of 886 patients underwent G-tube placement in our department during a period of 7 years. We present our series of 85 (9.6%) consecutive patients who underwent percutaneous G-tube placement without use of an NG tube. Results: Of these 85 patients, fluoroscopic guided access was attempted by direct puncture of a physiologically present gastric air bubble in 24 (28%) cases. Puncture of an effervescent-induced large gastric air bubble was performed in 61 (72%) patients. Altogether, 82 (97%) of 85 G tubes were successfully placed in this fashion. The three failures comprised refusal of effervescent, vomiting of effervescent, and one initial tube misplacement when a deviation from our standard technique occurred. Conclusion: The described techniques compare favorably with published large series on G-tube placement with an NG tube in place. The techniques are especially suited for patients with UDTO due to head, neck, or esophageal malignancies, but they should be considered as an alternative in all patients. Direct puncture of effervescent-enhanced gastric bubble distention is a safe, patient-friendly and effective technique.

  11. Experimental Investigation of Passive Shock Wave Mitigation using Obstacle Arrangements

    NASA Astrophysics Data System (ADS)

    Nguyen, Monica; Wan, Qian; Eliasson, Veronica

    2014-11-01

    With its vast range in applications, especially in the defense industry, shock wave mitigation is an ongoing research area of interest to the shock dynamics community. Passive shock wave mitigation methods range from forcing the shock wave to abruptly change its direction to introducing barriers or obstacles of various shapes and materials in the path of the shock wave. Obstacles provide attenuation through complicated shock wave interactions and reflections. In this work, we have performed shock tube experiments to investigate shock wave mitigation due to solid obstacles placed along the curve of a logarithmic spiral. Different shapes (cylindrical and square) of obstacles with different materials (solid and foam) have been used. High-speed schlieren optics and background-oriented schlieren techniques have been used together with pressure measurements to quantify the effects of mitigation. Results have also been compared to numerical simulations and show good agreement.

  12. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  13. Shock interactions with a dense-gas wall layer

    SciTech Connect

    Kuhl, A.L.; Reichenbach, H.; Ferguson, R.E.

    1991-11-19

    Described here are experiments and calculations of the interaction of a planar shock with a dense-gas layer located on the floor of the shock tube test section. The shock front deposited vorticity in the layer by the baroclynic mechanism. The wall shear layer was unstable and rapidly evolved into a turbulent boundary layer with a wide spectrum of mixing scales. Density effects dominated the dynamics in the wall region.

  14. Detail, north end of console and pneumatic tube message port, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, north end of console and pneumatic tube message port, also showing mirror to reflect view of communications switchboard - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  15. Telephone equipment room, showing channel terminal bank with vacuum tubes. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Telephone equipment room, showing channel terminal bank with vacuum tubes. View to east - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  16. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  17. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  18. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  19. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  20. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  1. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  2. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  3. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  4. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  5. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  6. Modelling of ion-acoustic shocks with reflected ions

    NASA Astrophysics Data System (ADS)

    Hanusch, Adrian; Liseykina, Tatyana

    2016-10-01

    In the studies of electrostatic shocks a distinction is made between electrons, that freely pass the shock structure and those that get trapped into the shock potential. If the width of the trapping region in velocity space is bigger than the change of the electron velocity by collisions over the evolution time of the trapping potential, the captured electrons are better described by the adiabatic trapping model. In the opposite case electrons remain Maxwellian. Which model is suitable in the real situation depends on how the shock is generated: adiabatic trapping is used for the shock generated in the piston tube, while Boltzmannian - in the shock tube. Recently the self-regulated ion reflection and acceleration in ion-acoustic shocks for both electron models was studied analytically. Here we present the numerical study of electrostatic shocks generated by reflection of a high-speed plasma off a conducting wall and by the decay of plasma density discontinuity. Different assumptions for the electron distribution are compared to the fully kinetic simulations. Special attention is given to the shock reflected ions. The finite ion temperature effect on the shock electrostatic structure and ion reflection efficiency is analyzed. The work was supported by DFG Grant Number 278305671 ``Plasma hybrid modelling of supernova remnants shock precursors''.

  7. Review of the PDWA Concept for Combustion Enhancement in a Supersonic Air-Breathing Combustor Environment

    NASA Technical Reports Server (NTRS)

    Canbier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This paper reviews the design of the Pulsed Detonation Wave Augmentor (PDWA) concept and the preliminary computational fluid dynamics studies that supported it. The PDWA relies on the rapid generation of detonation waves in a small tube, which are then injected into the supersonic stream of the main combustor. The blast waves thus generated are used to stimulate the mixing and combustion inside the main combustor. The mixing enhancement relies on various forms of the baroclinic interaction, where misaligned pressure and density gradients combine to produce vortical flow. By using unsteady shock waves, the concept also uses the Richtmyer-Meshkov effect to further increase the rate of mixing. By carefully designing the respective configurations of the combustor and the detonation tubes, one can also increase the penetration of the fuel into the supersonic air stream. The unsteady shocks produce lower stagnation pressure losses than steady shocks. Combustion enhancement can also be obtained through the transient shock-heating of the fuel-air interface, and the lowering of the ignition delay in these regions. The numerical simulations identify these processes, and show which configurations give the best results. Engineering considerations are also presented, and discuss the feasibility of the concept. Of primary importance are the enhancements in performance, the design simplicity, the minimization of the power, cost, and weight, and the methods to achieve very rapid cycling.

  8. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  9. Tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  10. Shock Refraction at Semi-Rigid Interfaces

    NASA Astrophysics Data System (ADS)

    Miller, Gabrielle; Reynolds, James

    2016-11-01

    We consider a strong spherical air shock encountering a planar interface separating the air from a medium of significantly higher impedance, with the goal of obtaining an approximate analytic description. Before encountering the interface, the incident air shock is well described by the Taylor-Sedov solution for a point blast. The behavior of the reflected and transmitted shocks differs depending upon the height of burst. For moderate heights, despite the relatively small amount of energy transferred, the pressure in the second medium may be much higher than that behind the air shock due to the strong impedance mismatch. Near-surface blasts may be further complicated by the entrainment of material from the second medium and/or the deflection of the interface caused by the strong air shock. For the present study, we ignore the effects of entrainment and assume that the deformation of the interface is small compared to the height of burst. We then investigate the relationship between energy loss into the second medium and the reflected air shock.

  11. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  12. Characterization of Magnetohydrodynamic (MHD) Shock Sensor using Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Rockwell, Owen; Hargather, Michael

    2013-11-01

    Schlieren imaging is used to quantitatively determine the speed and pressure duration of a shock wave traveling through air. The high-speed quantitative schlieren images are then used to characterize a new magnetohydrodynamic (MHD) shock sensor. This device uses the air density and particle velocity changes across a shock wave to determine the shock velocity via the distortion of a magnetic field. Using Faraday's law of electromagnetic induction, the shock velocity and pressure can be interpreted from a change in potential across the electrodes within the device. This principle along with the assumption that the shock wave is traveling through the undisturbed air allows for the calculation of shock velocity. Piezoelectric pressure gauges are used for comparison to measure the pressure pulse magnitude and duration.

  13. On the method of indirectly measuring gas and particulate phase velocities in shock induced dusty-gas flows

    NASA Astrophysics Data System (ADS)

    Lock, G. D.

    A method of indirectly measuring the temporally varying velocities of the gas and particulate phases in the nonequilibrium region of a shock wave moving at constant speed in a dusty-gas flow is described, and this method is assessed by using experimental data from shock-induced air flows containing 40-micron-diameter glass beads in a dusty-gas shock-tube facility featuring a large horizontal channel (19.7-cm by 7.6-cm in cross section). Simultaneous measurements of the shock-front speed with time-of-arrival gauges, particle concentration by light extinctiometry, and gas-particle mixture density by beta-ray absorption are used in conjunction with two mass conservation laws to obtain the indirect velocity measurements of both phases. A second indirect measurement of the gas-phase velocity is obtained when the gas pressure is simultaneously recorded along with the particle concentration and shock-front speed when used in conjunction with the conservation of mixture momentum. Direct measurements of the particulate-phase velocity by laser-Doppler velocimetry are also presented as a means of assessing the indirect velocity measurement method.

  14. Feeding tube - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  15. Tracheostomy tube - eating

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on this ... you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or trach, ...

  16. Eustachian tube patency

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001630.htm Eustachian tube patency To use the sharing features on this page, please enable JavaScript. Eustachian tube patency refers to how much the eustachian tube ...

  17. Investigations of Internal Flow Fields of Constant-Area Mixing-Tubes under Starting-Limit Conditions

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Tomioka, Sadatake; Sakuranaka, Noboru; Watanabe, Syuichi; Masuya, Goro

    Flow fields in the constant-area mixing tubes of ejector jets were investigated under the starting-limit conditions of an aerodynamic choking mode by performing numerical simulations and cold flow experiments. Pressure recovery was almost completed in the shock-train region. The length of the shock-train region (Lst) was measured under various conditions. Lst was proportional to the mass flow rate ratio of the secondary flow to the primary flow when this ratio was less than 0.15. On the other hand, Lst became almost constant when the mass flow rate ratio exceeded 0.15. Numerical studies showed that this change was caused by the difference in the mechanism of the flow fields. In the cases with low air mass flow rates, the primary and secondary flows almost mixed in a region between the inlets of the mixing tubes and the choking points. The pressure was recovered by a pseudo-shock-wave generated downstream of the choking point. On the other hand, when the mass flow rate ratio was higher than 0.15, the primary and secondary flows were clearly separated at the choking point. The pressure recovery was achieved by the mixing between the primary and secondary flows downstream of the choking point.

  18. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  19. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

  20. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    SciTech Connect

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  1. Effects of initial condition spectral content on shock-driven turbulent mixing.

    PubMed

    Nelson, Nicholas J; Grinstein, Fernando F

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  2. Effects of initial condition spectral content on shock-driven turbulent mixing

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas J.; Grinstein, Fernando F.

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  3. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    DOE PAGES

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band ofmore » high density gas (SF6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.« less

  4. Shock wave interactions with liquid sheets

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  5. Ballistic Range Measurements of Stagnation-Point Heat Transfer in Air and in Carbon Dioxide at Velocities up to 18,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Yee, Layton; Bailey, Harry E.; Woodward, Henry T.

    1961-01-01

    A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.

  6. Tube vibration in a half-scale sector model of a helical tube steam generator

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1983-12-01

    This paper presents the experimental technique and results of tests on a half-scale sector model of a steam generator helical coil tube bank. A series of tests was performed: (1) bench tests of a single helical tube in air; (2) tests of the sector model in air; (3) tests of the sector model in stationary water to determine natural frequencies and damping; (4) tests in flow. The experimental results reveal the general characteristics of the sector model and provide the information for the design evaluation of a helical tube array to avoid detrimental fluidelastic instability.

  7. An Evaluation of the Compressive Properties of Helmet Pads Pre- and Post-Shock Wave Overpressure Exposure

    DTIC Science & Technology

    2015-08-14

    HELMET PADS HEAD (ANATOMY) TRAUMATIC BRAIN INJURY HELMETS SHOCK TUBES ACH(ADVANCED COMBAT HELMET) U.S...4 Figure 5. RED Head , manufactured by Humanetics and modified by UNL. ................................ 5 Figure 6...Surface pressure sensor locations on the RED Head . ..................................................... 5 Figure 7. External shock tube exit with RED

  8. Statistical inference in the presence of an inclination effect in laboratory radiative shock experiments

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Drake, R. P.; Kuranz, C. C.

    2011-11-01

    A laser-driven experiment produces images of dense shocked material by x-ray transmission. The post-shock material is sufficiently dense that no significant signal passes through the dense layer, and therefore the shock compression cannot be directly measured by comparing transmitted intensities. One could try to determine the shock compression ratio by observing the ratio of the total distance travelled by the shock to the dense post-shock layer width, but small deviations of the angle of the shock with respect to the angle of imaging create large asymmetric errors in observation. A statistical approach to recovering shock compression by appropriately combining data from several experiments is developed, using fits to a simple model for the shock and shock tube geometry.

  9. Multiple shocks

    NASA Astrophysics Data System (ADS)

    Shenker, Stephen H.; Stanford, Douglas

    2014-12-01

    Using gauge/gravity duality, we explore a class of states of two CFTs with a large degree of entanglement, but with very weak local two-sided correlation. These states are constructed by perturbing the thermofield double state with thermal-scale operators that are local at different times. Acting on the dual black hole geometry, these perturbations create an intersecting network of shock waves, supporting a very long wormhole. Chaotic CFT dynamics and the associated fast scrambling time play an essential role in determining the qualitative features of the resulting geometries.

  10. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Sung, Chih-Jen

    2003-01-01

    A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform Hz/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under conditions investigated.

  11. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  12. Oscillations of a standing shock in the Richtmyer-Meshkov instability (II)

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig

    2016-11-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing shock undergoes well known damped oscillations. We present the conditions required for producing such a standing shock wave which greatly facilitates the measurement of the oscillations and their rate of damping. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Shock compression of simulated adobe

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  14. Shock compression of liquid hydrazine

    SciTech Connect

    Garcia, B.O.; Chavez, D.J.

    1995-01-01

    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  15. Shock Prevention

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  16. Cytoplasmic molecular delivery with shock waves: importance of impulse.

    PubMed Central

    Kodama, T; Hamblin, M R; Doukas, A G

    2000-01-01

    Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus. PMID:11023888

  17. A shock tube study of OH + H(2)O(2) --> H(2)O + HO(2) and H(2)O(2) + M --> 2OH + M using laser absorption of H(2)O and OH.

    PubMed

    Hong, Zekai; Cook, Robert D; Davidson, David F; Hanson, Ronald K

    2010-05-13

    The rate constants of the reactions: (1) H2O2+M-->2OH+M, (2) OH+H2O2-->H2O+HO2 were measured in shock-heated H(2)O(2)/Ar mixtures using laser absorption diagnostics for H(2)O and OH. Time-histories of H(2)O were monitored using tunable diode laser absorption at 2550.96 nm, and time-histories of OH were achieved using ring dye laser absorption at 306 nm. Initial H(2)O(2) concentrations were also determined utilizing the H(2)O diagnostic. On the basis of simultaneous time-history measurements of OH and H(2)O, k(2) was found to be 4.6 x 10(13) exp(-2630 K/T) [cm(3) mol(-1) s(-1)] over the temperature range 1020-1460 K at 1.8 atm; additional measurements of k(2) near 1 atm showed no significant pressure dependence. Similarly, k(1) was found to be 9.5 x 10(15) exp(-21 250 K/T) [cm(3) mol(-1) s(-1)] over the same temperature and pressure range.

  18. Richtmyer-Meshkov induced turbulent mixing of air-SF6 multimode discontinuous interfaces

    NASA Astrophysics Data System (ADS)

    Haas, Jean-François; Lassis, Alexandre; Montlaurent, Philippe; Rayer, Claude; Schwaederlé, Laurent

    2002-11-01

    We measure the Rayleigh-Taylor instability (RTI)-induced turbulent mixing initiated by the interaction of an incident shock wave (typically Mach 1.2 in air at atmospheric condition) with a discontinuous multimode air-SF6 interface and amplified by the subsequent shock and rarefaction waves reverberating between the mixing zone and the end plate. This experiment is carried out in a shock tube (square internal cross section 13 cm by 13 cm) and the length of the downstream section filled with SF6 is about 30 cm. Initially, the gases are separated by a nitrocellulose microfilm (0,5 µm thick) in sandwich between two fine wire grids imposing a non-linear three-dimensional perturbation of fundamental wave length 1 mm but of unknown amplitude (we estimate 0.1 to 0.3 mm). We visualize the flow with conventional schlieren and shadow systems and aim at obtaining instantaneous concentration maps using a 0,5 mm thick laser sheet (from a single pulse ruby laser providing 1 Joule during 50 ns) shining through the transparent endplate. We seed either the SF6 with olive oil droplets or the air with smoke from the combustion of incense. As previouly for a SF6-air interface, the evolution of the axial and transversal components of the velocity field will be obtained with a laser doppler velocimeter, in which case both gases are seeded. We may also present the final results of constant temperature hot wire anemometer measurements on the same flows in a Marseille shock tube which provide the evolution of the concentration. The experimental results may be compared to the calculations using turbulent modelling or two or three dimensional simulations.

  19. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  20. Residual Strain Distribution in Bent Composite Boiler Tubes

    SciTech Connect

    Hubbard, Camden R; Gorti, Sarma B; Tang, Fei; Keiser, James R

    2006-01-01

    Kraft recovery boilers are typically constructed of carbon steel boiler tubes clad with a corrosion resistant layer, and these composite tubes are bent and welded together to form air port panels which enable the combustion air to enter the boiler. In this paper, the through-thickness residual strain in the carbon steel layer of non-heat-treated and heat-treated composite bent tubes were measured by neutron diffraction techniques and modeled by finite element modeling. The results can be used to optimize material selection and manufacturing processes to prevent stress corrosion and corrosion fatigue cracking in the boiler tubes.

  1. Experimental study of shock-wave reflection from a thermally accommodating wall.

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    1973-01-01

    Shock-tube experiments have been conducted to study the nonequilibrium gas-surface interaction which occurs when a thick shock wave in argon reflects from a coplanar, heat-conducting wall. Fast-response instrumentation was used to monitor variations in temperature and normal stress on the surface of the shock-tube end wall during and immediately following reflection of the incident shock wave. The laboratory observations are compared with computer predictions obtained by Deiwert using the direct-simulation Monte Carlo method, and excellent agreement is obtained when a suitable average thermal accommodation coefficient is chosen for the wall surface.

  2. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  3. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-10-21

    The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

  4. Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghai, S.

    2008-01-01

    This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).

  5. An indirect method of measuring gas- and particulate-phase velocities of shock-induced dusty-gas flows

    NASA Astrophysics Data System (ADS)

    Gottlieb, James J.

    1992-03-01

    A method of indirectly measuring the temporally varying velocities of both the particulate and gas phases in the nonequilibrium region of a shock wave moving at constant speed in a dusty-gas mixture is described. This method is implemented by using experimental data from shock-induced air flows containing glass beads 40 microns in diameter in a dusty-gas shock-tube facility featuring a large horizontal channel 197 mm high by 76 mm wide with a special dust-injection device. Simultaneous measurements of the shock-front speed with time-of-arrival gauges, particulate concentration by light extinctiometry, and combined particulate concentration and gas density by beta-ray absorption are used in conjunction with two mass conservation laws to provide these indirect two-phase velocity measurements. Direct measurements of the particulate-phase velocity by laser-Doppler velocimetry are also presented for comparison, and the capability of the indirect velocity-measurement method is assessed.

  6. Shock-induced activation of acrylamide polymerization

    SciTech Connect

    Dodson, B.W.; Arnold, C. Jr.

    1983-08-04

    We have subjected polycrystalline acrylamide to planar impact loading to peak pressures of 4.8 and 6.7 GPa using an air-driven projectile. In contrast to previous experiments involving explosive loading, postshock chemical analysis shows no formation of polyacrylamide associated with the shock loading. However, the impact shocked acrylamide spontaneously polymerizes when dissolved in tetrahydrofuran. This result implies that the stress history produced by the impact experiment results in the formation of a large density of stable active centers, which become mobile in solution. ESR measurements of the shocked acrylamide samples confirms the presence of substantial densities of free radicals. 2 figures.

  7. Aerothermodynamic heating due to shock wave/laminar boundary-layer interactions in high-enthalpy hypersonic flow

    NASA Technical Reports Server (NTRS)

    Hackett, Charles M.

    1993-01-01

    The interaction between a swept shock wave and a laminar boundary layer was investigated experimentally in high-enthalpy hypersonic flow. The effect of high-temperature, real gas physics on the interaction was examined by conducting tests in air and helium. Heat transfer measurements were made on the surface of a flat plate and a shock-generating fin using thin-film resistance sensors for fin incidence angles of 0, 5, and 10 deg at Mach numbers of 6.9 in air and 7.2 in helium. The experiments were conducted in the NASA HYPULSE expansion tube, an impulse-type facility capable of generating high-enthalpy, high-velocity flow with freestream levels of dissociated species that are particularly low. The measurements indicate that the swept shock wave creates high local heat transfer levels in the interaction region, with the highest heating found in the strongest interaction. The maximum measured heating rates in the interaction are order of magnitude greater than laminar flat plate boundary layer heating levels at the same location.

  8. Toxic Shock Syndrome

    MedlinePlus

    ... burn to avoid getting a staph infection. Toxic shock syndrome treatment Because toxic shock syndrome gets worse quickly, you may be seriously ... toxic shock syndrome in a wound? Resources Toxic Shock Syndrome ... treatment, women's health Family Health, Women January 2017 Copyright © ...

  9. Experimental study of a shock accelerated thin gas layer

    SciTech Connect

    Jacobs, J.W.; Jenkins, D.G.; Klein, D.L.; Benjamin, R.F.

    1993-08-01

    Planar laser-induced fluorescence imaging is utilized in shock-tube experiments to visualize the development of a shock-accelerated thin gas layer. The Richtmyer-Meshkov instability of both sides of the heavy gas layer causes perturbations initially imposed on the two interfaces to develop into one of three distinct flow patterns. Two of the patterns exhibit vortex pairs which travel either upstream or downstream in the shock tube, while the third is a sinuous pattern that shows no vortex development until late in its evolution. The development of the observed patterns as well as the growth in the layer thickness is modeled by considering the dynamics of vorticity deposited in the layer by the shock interaction process. This model yields an expression for the layer growth which is in good agreement with measurements.

  10. PEG tube insertion -- discharge

    MedlinePlus

    ... shower or bathe. Keeping the PEG-tube in Place If the feeding tube comes out, the stoma ... eds. Pfenninger and Fowler's Procedures for Primary Care . 3rd ed. Philadelphia, PA: Elsevier Mosby; 2011:chap 100. ...

  11. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  12. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  13. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  14. Global Aeroheating Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Berry, Scott A.

    2015-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. The cylindrical leading-edge fin models, with radii varied from 0.25 to 0.75 inches, represent wings or struts on hypersonic vehicles. A 9deg wedge generated a planar oblique shock at 16.7deg. to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin sweep angle was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. These cases were chosen to explore three characterized shock-shock interaction types. Global temperature data were obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and any temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using a one-dimensional semi-infinite method, as well as one- and two-dimensional finite-volume methods. These results were compared to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for each explored shock-shock interaction type regardless of the leading-edge radius. However, the dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  15. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  16. Shock synthesis of amino acids in simulated primitive environments.

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Bar-Nun, N.; Bauer, S. H.; Sagan, C.

    1971-01-01

    A single pulse shock tube of a uniform bore was used in the experiments. The reaction mixture consisted of 3.3 per cent methane, 11 per cent ethane, and 5.6 per cent ammonia, diluted with ultra-pure argon. The formation of glycine, alanine, valine, and leucine under conditions of shock heating was observed. Thermodynamic relations are discussed together with questions of conversion efficiency.

  17. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  18. 1992 tubing tables

    SciTech Connect

    Not Available

    1992-01-01

    This paper is helpful to those designing oil well completions or purchasing tubing with proprietary or premium connections. Tables contain specifications and application data for over 100 different tubing joints, including those used with fiberglass pipe. The tables this year contain dimensional and performance data for coiled tubing.

  19. Standing Shocks in the Inner Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Li, Bo; Chen, Yan-Jun; Li, Xing

    2011-05-01

    We examine whether the now tube along the edge of a coronal streamer supports standing shocks in the inner slow wind by solving an isothermal wind model in terms of the Lambert W function. It is shown that solutions with standing shocks do exist and they exist in a broad area in the parameter space characterizing the wind temperature and now tube. In particular, streamers with cusps located at a heliocentric distance ≳ 3.2Rodot can readily support discontinuous slow winds with temperatures barely higher than 1 MK.

  20. Shock tunnel studies of scramjet phenomena, supplement 5

    NASA Technical Reports Server (NTRS)

    Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.

    1990-01-01

    A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.