Science.gov

Sample records for air shower events

  1. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  2. Air Shower Simulations

    SciTech Connect

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  3. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE PAGES

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at anmore » altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  4. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    SciTech Connect

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at an altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).

  5. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  6. A new observable in extensive air showers

    NASA Astrophysics Data System (ADS)

    García Canal, C. A.; Illana, J. I.; Masip, M.; Sciutto, S. J.

    2016-12-01

    We find that the ratio rμe of the muon to the electromagnetic component of an extended air shower at the ground level provides an indirect measure of the depth Xmax of the shower maximum. This result, obtained with the air-shower code AIRES, is independent of the hadronic model used in the simulation. We show that the value of rμe in a particular shower discriminates its proton or iron nature with a 98% efficiency. We also show that the eventual production of forwardheavy quarks inside the shower may introduce anomalous values of rμe in isolated events.

  7. Strong interactions in air showers

    SciTech Connect

    Dietrich, Dennis D.

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  8. A new study of shower age distribution in near vertical showers by EAS air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Basak, D. K.; Goswami, G. C.; Ghosh, B.

    1984-01-01

    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.

  9. Search for bursts in air shower data

    NASA Technical Reports Server (NTRS)

    Bruce, T. E. G.; Clay, R. W.; Dawson, B. R.; Protheroe, R. J.; Blair, D. G.; Cinquini, P.

    1985-01-01

    There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar.

  10. Muon production in extended air shower simulations.

    PubMed

    Pierog, T; Werner, K

    2008-10-24

    Whereas air shower simulations are very valuable tools for interpreting cosmic ray data, there is a long-standing problem: it is difficult to accommodate at the same time the longitudinal development of air showers and the number of muons measured on the ground. Using a new hadronic interaction model (EPOS) in air shower simulations produces much more muons, in agreement with results from the HiRes-MIA experiment. We find that this is mainly due to a better description of (anti) baryon production in hadronic interactions. This is an aspect of air shower physics which has been neglected so far.

  11. Extensive Air Showers in the Classroom

    ERIC Educational Resources Information Center

    Badala, A.; Blanco, F.; La Rocca, P.; Pappalardo, G. S.; Pulvirenti, A.; Riggi, F.

    2007-01-01

    The basic properties of extensive air showers of particles produced in the interaction of a high-energy primary cosmic ray in the Earth's atmosphere are discussed in the context of educational cosmic ray projects involving undergraduate students and high-school teams. Simulation results produced by an air shower development code were made…

  12. Modelling of radio emission from cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  13. Microwave detection of air showers with MIDAS

    NASA Astrophysics Data System (ADS)

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Genat, J. F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I. C.; Rouille D'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.

    2012-01-01

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20°×10° region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  14. High energy hadrons in extensive air showers

    NASA Technical Reports Server (NTRS)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  15. Parton shower Monte Carlo event generators

    NASA Astrophysics Data System (ADS)

    Webber, Bryan

    2011-12-01

    A parton shower Monte Carlo event generator is a computer program designed to simulate the final states of high-energy collisions in full detail down to the level of individual stable particles. The aim is to generate a large number of simulated collision events, each consisting of a list of final-state particles and their momenta, such that the probability to produce an event with a given list is proportional (approximately) to the probability that the corresponding actual event is produced in the real world. The Monte Carlo method makes use of pseudorandom numbers to simulate the event-to-event fluctuations intrinsic to quantum processes. The simulation normally begins with a hard subprocess, shown as a black blob in Figure 1, in which constituents of the colliding particles interact at a high momentum scale to produce a few outgoing fundamental objects: Standard Model quarks, leptons and/or gauge or Higgs bosons, or hypothetical particles of some new theory. The partons (quarks and gluons) involved, as well as any new particles with colour, radiate virtual gluons, which can themselves emit further gluons or produce quark-antiquark pairs, leading to the formation of parton showers (brown). During parton showering the interaction scale falls and the strong interaction coupling rises, eventually triggering the process of hadronization (yellow), in which the partons are bound into colourless hadrons. On the same scale, the initial-state partons in hadronic collisions are confined in the incoming hadrons. In hadron-hadron collisions, the other constituent partons of the incoming hadrons undergo multiple interactions which produce the underlying event (green). Many of the produced hadrons are unstable, so the final stage of event generation is the simulation of the hadron decays.

  16. Extreme atmospheric electron densities created by extensive air showers

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Camporeale, Enrico; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    A sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent bursts of extreme electron density in our atmosphere. Predicting these electron density bursts accurately one has to take the uncertainty of the input variables into account. To this end we use uncertainty quantification methods, like in [2], to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015) [2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317 [3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  17. Energy determination of gamma-ray induced air showers observed by an extensive air shower array

    NASA Astrophysics Data System (ADS)

    Kawata, K.; Sako, T. K.; Ohnishi, M.; Takita, M.; Nakamura, Y.; Munakata, K.

    2017-03-01

    We propose a new energy estimator to determine the energies of gamma-ray induced air showers based on the lateral distribution of extensive air showers in the energy range between 10 TeV and 1000 TeV. We carry out a detailed Monte Carlo simulation assuming the Tibet air shower array located at an altitude of 4,300 m above sea level. We define S50, which denotes the particle density at 50 m from the air shower axis, as a new energy estimator. Using S50, the energy resolution is estimated to be approximately 16 % at 100 TeV in the range of the zenith angle 𝜃 < 20∘. We find S50 giving a better energy resolution than 27 % for the air shower size (N e) and 30 % for the sum of detected particles ( \\sum ρ ), which have been used so far, at 100 TeV. We also compare the reconstructed age distributions of gamma-ray induced air showers and hadronic cosmic-ray induced air showers. The age parameter may help to discriminate between primary gamma rays and hadronic cosmic rays.

  18. Slope of the lateral density function of extensive air showers around the knee region as an indicator of shower age

    NASA Astrophysics Data System (ADS)

    Dey, Rajat K.; Dam, Sandip

    2016-11-01

    Analyzing simulated extensive air shower (EAS) events generated with the Monte Carlo code CORSIKA, this paper critically studies the characteristics of lateral distribution of electrons in EAS around the knee energy region of the energy spectrum of primary cosmic rays. The study takes into account the issue of the lateral shower age parameter as an indicator of the stage of development of showers in the atmosphere. The correlation of the lateral shower age parameter with other EAS observables is examined, using simulated data in the context of its possible use in a multi-parameter study of EAS, with a view to obtaining information about the nature of the shower initiating primaries at sea level EAS experiments. It is shown that the observed slope of the lateral density function in the 3-dimensional plot, at least for the KASCADE data, supports the idea of a transition from light to heavy mass composition around the knee.

  19. Comparison of hybrid and pure Monte Carlo shower generators on an event by event basis

    NASA Astrophysics Data System (ADS)

    Allen, J.; Drescher, H.-J.; Farrar, G.

    SENECA is a hybrid air shower simulation written by H. Drescher that utilizes both Monte Carlo simulation and cascade equations. By using the cascade equations only in the high energy portion of the shower, where they are extremely accurate, SENECA is able to utilize the advantages in speed from the cascade equations yet still produce complete, three dimensional particle distributions at ground level. We present a comparison, on an event by event basis, of SENECA and CORSIKA, a well trusted MC simulation. By using the same first interaction in both SENECA and CORSIKA, the effect of the cascade equations can be studied within a single shower, rather than averages over many showers. Our study shows that for showers produced in this manner, SENECA agrees with CORSIKA to a very high accuracy as to densities, energies, and timing information for individual species of ground-level particles from both iron and proton primaries with energies between 1EeV and 100EeV. Used properly, SENECA produces ground particle distributions virtually indistinguishable from those of CORSIKA in a fraction of the time. For example, for a shower induced by a 40 EeV proton simulated with 10-6 thinning, SENECA is 10 times faster than CORSIKA.

  20. Nitrogen fluorescence in air for observing extensive air showers

    NASA Astrophysics Data System (ADS)

    Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.

    2013-06-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  1. Acoustic detection of air shower cores

    NASA Astrophysics Data System (ADS)

    Gao, X.; Liu, Y.; Du, S.

    1985-08-01

    At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made.

  2. Radio Emission in Atmospheric Air Showers Measured by LOPES-30

    SciTech Connect

    Isar, P. G.

    2008-01-24

    When Ultra High Energy Cosmic Rays (UHECR) interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating towards the ground. These relativistic particles emit synchrotron radiation in the radio frequency range when passing the Earth's magnetic field. The LOPES (LOFAR Prototype Station) experiment investigates the radio emission from these showers in detail and will pave the way to use this detection technique for large scale applications like in LOFAR (Low Frequency Array) and the Pierre Auger Observatory. The LOPES experiment is co-located and measures in coincidence with the air shower experiment KASCADE-Grande at Forschungszentrum Karlsruhe, Germany. LOPES has an absolute amplitude calibration array of 30 dipole antennas (LOPES-30). After one year of measurements of the single East-West polarization by all 30 antennas, recently, the LOPES-30 set-up was configured to perform dual-polarization measurements. Half of the antennas have been configured for measurements of the North-South polarization. Only by measuring at the same time both, the E-W and N-S polarization components of the radio emission, the geo-synchrotron effect as the dominant emission mechanism in air showers can be verified. The status of the measurements, including the absolute calibration procedure of the dual-polarized antennas as well as analysis of dual-polarized event examples are reported.

  3. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  4. Search for tachyons associated with extensive air showers in the ground level cosmic radiation

    NASA Technical Reports Server (NTRS)

    Masjed, H. F.; Ashton, F.

    1985-01-01

    Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.

  5. Circular polarization of radio emission from air showers in thunderstorm conditions

    NASA Astrophysics Data System (ADS)

    Trinh, T. N. G.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Thoudam, S.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; ter Veen, S.; Winchen, T.

    2017-03-01

    We present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by the effects of atmospheric electric fields in thunderclouds. Therefore, measuring the intensity and polarization of radio emission from cosmic ray extensive air showers during thunderstorm conditions provides a new tool to probe the atmospheric electric fields present in thunderclouds.

  6. Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Arganda, E.; Argirò, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Blümer, H.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonçalves Do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Luna García, R.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, A.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Smiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tuci, V.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-09-01

    Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ∝P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ˜10% seasonal modulation and ˜2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.

  7. A new study of muons in air showers by NBU air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Mukherjee, N.; Sarkar, S.; Basak, D. K.; Ghosh, B.

    1985-01-01

    The North Bengal University (NBU) air shower array has been in operation in conjunction with two muon magnetic spectrographs. The array incorporates 21 particle density sampling detectors around the magnetic spectrographs covering an area of 900 sq m. The layout of the array is based on the arrangement of detectors in a square symmetry. The array set up on the ground level is around a 10 m high magnetic spectrograph housing. This magnetic spectrograph housing limits the zenith angular acceptance of the incident showers to a few degrees. Three hundred muons in the fitted showers of size range 10 to the 4th power to 10 to the 5th power particles have so far been scanned and the momenta determined in the momentum range 2 - 440 GeV/c. More than 1500 recorded showers are now in the process of scanning and fitting. A lateral distribution of muons of energy greater than 300 MeV in the shower size range 10 to the 5th power to 7 x 10 to the 5th power has been obtained.

  8. Angular resolution of the Ohya air shower detector

    NASA Astrophysics Data System (ADS)

    Mitsui, K.; Aoki, T.; Okada, A.; Ohashi, Y.; Muraki, Y.; Shibata, S.; Nakamura, I.; Kojima, H.; Kitamura, T.; Minorikawa, Y.; Kato, Y.; Takahashi, T.; Higashi, S.; Kobayakawa, K.; Kamiya, Y.

    1990-05-01

    Accurate measurements of the total number of muons in an air shower are important for the discrimination of showers produced by astronomical gamma rays from those produced by protons. In order to perform this discrimination, muon detectors with a total area of about 400 m2 have been constructed in the Ohya stone mine. At ground level, scintillation detectors have been distributed for determining the total number of electrons in the air shower. The arrival direction of the air shower determined by usual timing information was examined using independent data on the arrival direction determined by muons in the shower. The angular resolution thus obtained at the shower maximum is 1.7° in the south-north plane and 2° in the east-west plane. The difference of the resolution is due to the asymmetric arrangement of scintillation detectors.

  9. First detection of extensive air showers with the EEE experiment

    NASA Astrophysics Data System (ADS)

    Moro, R.

    2011-03-01

    The Extreme Energy Events (EEE) Project is devoted to the study of extremely high energy cosmic rays by means of an array of particle detectors distributed all over the Italian territory. Each element of the array (called telescope in the following) is installed in a High School, with the further goal to introduce students to particle and astroparticle physics, and consists of three Multigap Resistive Plate Chambers (MRPC), that have excellent time resolution and good tracking capability. In this paper the first results on the detection of extensive air showers by means of time coincidences between two telescopes are presented.

  10. Small air showers and collider physics

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Gawin, J.; Grochalska, B.

    1985-01-01

    At energies lower than 2.5 X 10 to the 5 GeV (in Lab. system), more accurate information on nucleon-nucleon collision (p-p collider and on primary composition now exist. The behavior of those both basic elements in cosmic ray phenomenology from ISR energy suggests some tendencies for reasonable extrapolation in the next decade 2.0x10 to the 5 to 2.0x10 to the 6 GeV. Small showers in altitude, recorded in the decade 2 X 10 to the 4 to 2 X 10 to the 5 GeV offers a good tool to testify the validity of all the Monte-Carlo simulation analysis and appreciate how nucleon-air collision are different from nucleon-nucleon collisions.

  11. Air fluorescence detection of large air showers below the horizon

    NASA Technical Reports Server (NTRS)

    Halverson, P.; Bowen, T.

    1985-01-01

    In the interest of exploring the cosmic ray spectrum at energies greater than 10 to the 18th power eV, where flux rates at the Earth's surface drop below 100 yr(-1) km(-2) sr(-1), cosmic ray physicists have been forced to construct ever larger detectors in order to collect useful amounts of data in reasonable lengths of time. At present, the ultimate example of this trend is the Fly's Eye system in Utah, which uses the atmosphere around an array of skyward-looking photomultiplier tubes. The air acts as a scintillator to give detecting areas as large as 5000 square kilometers sr (for highest energy events). This experiment has revealed structure (and a possible cutoff) in the ultra-high energy region above 10 o the 19th power eV. The success of the Fly's Eye experiment provides impetus for continuing the development of larger detectors to make accessible even higher energies. However, due to the rapidly falling flux, a tenfold increase in observable energy would call for a hundredfold increase in the detecting area. But, the cost of expanding the Fly's Eye detecting area will approximately scale linearly with area. It is for these reasons that the authors have proposed a new approach to using the atmosphere as a scintillator; one which will require fewer photomultipliers, less hardware (thus being less extensive), yet will provide position and shower size information.

  12. AIR TOXICS EMISSIONS FROM A VINYL SHOWER CURTAIN

    EPA Science Inventory

    The paper reports results of both static and dynamic chamber tests conducted to evaluate emission characteristics of air toxics from a vinyl shower Curtain. (NOTE: Due to the relatively low price and ease of installation, vinyl shower curtains have been widely used in bathrooms i...

  13. Depth Distribution Of The Maxima Of Extensive Air Shower

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  14. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  15. Simulation of the Radiation Energy Release in Air Showers

    NASA Astrophysics Data System (ADS)

    Glaser, Christian; Erdmann, Martin; Hörandel, Jörg R.; Huege, Tim; Schulz, Johannes

    2017-03-01

    A simulation study of the energy released by extensive air showers in the form of MHz radiation is performed using the CoREAS simulation code. We develop an efficient method to extract this radiation energy from air-shower simulations. We determine the longitudinal profile of the radiation energy release and compare it to the longitudinal profile of the energy deposit by the electromagnetic component of the air shower. We find that the radiation energy corrected for the geometric dependence of the geomagnetic emission scales quadratically with the energy in the electromagnetic component of the air shower with a second order dependency on the atmospheric density at the position of the maximum of the shower development Xmax. In a measurement where Xmax is not accessible, this second order dependence can be approximated using the zenith angle of the incoming direction of the air shower with only a minor deterioration in accuracy. This method results in an intrinsic uncertainty of 4% with respect to the electromagnetic shower energy which is well below current experimental uncertainties.

  16. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  17. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  18. TANGO ARRAY I: An Air Shower Experiment in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Bauleo, P.; Bonifazi, C.; Filevich, A.; Reguera, A.

    The TANGO Array is an air shower experiment which has been recently constructed in Buenos Aires, Argentina. It became fully operational in September, 2000. The array consists of 4 water ˇCerenkov detector stations enclosing a geometrical area of ˜ 30.000 m2 and its design has been optimized for the observation of EAS produced by cosmic rays near the "knee" energy region. Three of the detectors have been constructed using 12000-liter stainless steel tanks, and the fourth has been mounted in a smaller, 400liter plastic container. The detectors are connected by cables to the data acquisition room, where a fully automatic system, which takes advantage of the features of a 4-channel digital oscilloscope, was set for data collection without the need of operator intervention. This automatic experiment control includes monitoring, data logging, and daily calibration of all stations. This paper describes the detectors and their associated electronics, and details are given on the data acquisition system, the triggering and calibration procedures, and the operation of the array. Examples of air shower traces, recorded by the array, are presented.

  19. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  20. Measurement of the Depth of Maximum of Extensive Air Showers above 1018eV

    NASA Astrophysics Data System (ADS)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    2010-03-01

    We describe the measurement of the depth of maximum, Xmax⁡, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 1018eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106-21+35)g/cm2/decade below 1018.24±0.05eV, and (24±3)g/cm2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26g/cm2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  1. Arrival directions of large air showers, low-mu showers and old-age low-mu air showers observed at St. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Hagiwara, K.; Yoshii, H.; Martinic, N.; Siles, L.; Miranda, P.; Kakimoto, F.; Obara, T.; Inoue, N.; Suga, K.

    1985-01-01

    Arrival directions of air showers with primary energies in the range 10 to the 16.5 power eV to 10 to the 18th power eV show the first harmonic in right ascension (RA) with amplitude of 2.7 + or - 1.0% and phase of 13-16h. However, the second harmonic in RA slightly seen for showers in the range 10 to the 18th power eV to 10 to the 19th power eV disappeared by accumulation of observed showers. The distribution of arrival directions of low-mu air showers with primary energies around 10 to the 15th power eV observed at Chacaltaya from 1962 to 1967 is referred to, relating to the above-mentioned first harmonic. Also presented in this paper are arrival directions of old-age low-mu air showers observed at Chacaltaya from 1962 to 1967, for recent interest in gamma-ray air showers.

  2. Extensive Air Showers: High Energy Phenomena and Astrophysical Aspects - A Tutorial, Reference Manual and Data Book

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers.

  3. A Fast Hybrid Approach to Air Shower Simulations and Applications

    NASA Astrophysics Data System (ADS)

    Drescher, H.-J.; Farrar, Glennys; Bleicher, Marcus; Reiter, Manuel; Soff, Sven; Stoecker, Horst

    2003-07-01

    The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of efficient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to repro duce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite efficient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.

  4. The wavefront of the radio signal emitted by cosmic ray air showers

    SciTech Connect

    Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Arteaga-Velázquez, J.C.; Bähren, L.; Falcke, H.; Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di; Biermann, P.L.; Brancus, I.M.; De Souza, V.; Fuchs, B.; Gemmeke, H.; Grupen, C.; and others

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  5. Detection of Extensive Cosmic Air Showers by Small Scintillation Detectors with Wavelength-Shifting Fibres

    ERIC Educational Resources Information Center

    Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2012-01-01

    A set of three small scintillation detectors was employed to measure correlated events due to the passage of cosmic muons originating from extensive air showers. The coincidence rate between (any) two detectors was extracted as a function of their relative distance. The difference between the arrival times in three non-aligned detectors was used…

  6. Analysis of extensive air showers with the hybrid code SENECA

    NASA Astrophysics Data System (ADS)

    Ortiz, Jeferson A.; de Souza, Vitor; Medina-Tanco, Gustavo

    The ultrahigh energy tail of the cosmic ray spectrum has been explored with unprecedented detail. For this reason, new experiments are exerting a severe pressure on extensive air shower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. In this sense we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultrahigh energy cosmic rays. We discuss the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers for different hadronic interaction models. We also show the comparisons of our predictions with those of CORSIKA code.

  7. A Neutron Burst Associated with an Extensive Air Shower?

    NASA Astrophysics Data System (ADS)

    Alves, Mauro; Martin, Inacio; Shkevov, Rumen; Gusev, Anatoly; De Abreu, Alessandro

    2016-07-01

    A portable and compact system based on a He-3 tube (LND, USA; model 25311) with an area of approximately 250 cm² and is used to record neutron count rates at ground level in the energy range of 0.025 eV to 10 MeV, in São José dos Campos, SP, Brazil (23° 12' 45" S, 45° 52' 00" W; altitude, 660m). The detector, power supply, digitizer and other hardware are housed in an air-conditioned room. The detector power supply and digitizer are not connected to the main electricity network; a high-capacity 12-V battery is used to power the detector and digitizer. Neutron counts are accumulated at 1-minute intervals continuously. The data are stored in a PC for further analysis. In February 8, 2015, at 12 h 22 min (local time) during a period of fair weather with minimal cloud cover (< 1 okta) the neutron detector recorded a sharp (count rate = 27 neutrons/min) and brief (< 1 min) increase in the count rate. In the days before and after this event, the neutron count rate has oscillated between 0 and 3 neutrons/min. Since the occurrence of this event is not related with spurious signals, malfunctioning equipment, oscillations in the mains voltage, etc. we are led to believe that the sharp increase was caused by a physical source such as a an extensive air shower that occurred over the detector.

  8. Extensive air showers, lightning, and thunderstorm ground enhancements

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-09-01

    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  9. Lateral distribution of radio emission and its dependence on air shower longitudinal development

    SciTech Connect

    Kalmykov, Nikolai N.; Konstantinov, Andrey A. E-mail: elan1980@mail.ru

    2012-12-01

    The lateral distribution function (LDF) of radio emission from an extensive air shower is considered as the basic signature sensitive to the shower longitudinal development and, as a consequence, to the mass of a primary cosmic ray's particle that initiated a given shower. The peculiarities in the LDF's structure as well as their sensitivity to the height of shower maximum are investigated and explained.

  10. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    SciTech Connect

    collaboration, The Pierre Augur

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  11. The search for extended air showers at the Jicamarca Radio Observatory

    SciTech Connect

    Wahl, D.; Chau, J.; Galindo, F.; Huaman, A.; Solano, C. J.

    2009-04-30

    This paper presents the status of the project to detect extended air showers at the Jicamarca Radio Observatory. We report on detected anomalous signals and present a toy model to estimate at what altitudes we might expect to see air shower signals. According to this model, a significant number of high altitude horizontal air showers could be observed by radar techniques.

  12. Muon spectrum in air showers initiated by gamma rays

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Streitmatter, R. E.

    1985-01-01

    An analytic representation for the invariant cross-section for the production of charged pions in gamma P interactions was derived by using the available cross-sections. Using this the abundance of muons in a gamma ray initiated air shower is calculated.

  13. Air shower detectors in gamma-ray astronomy

    SciTech Connect

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.

  14. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110 - 170 TeV ), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 ±0.16 (1.61 ±0.21 ) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  15. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  16. Nanosecond Enhancements of the Atmospheric Electron Density by Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Rutjes, C.; Camporeale, E.; Ebert, U.; Buitink, S.; Scholten, O.; Trinh, G. T. N.; Witteveen, J.

    2015-12-01

    As is well known a sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent sub-nanosecond enhancements of the atmospheric electron density. Predicting these electron density enhancements accurately one has to take the uncertainty of the input variables into account. For this study we use the initial energy, inclination and altitude of first interaction, which will influence the evolution of the shower significantly. To this end, we use the stochastic collocation method, [2] to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015)[2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317[3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  17. Time correlation measurements from extensive air showers detected by the EEE telescopes

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.

    2013-12-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  18. The AMY experiment: Microwave emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Blanco, M.; Boháčová, M.; Buonomo, B.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Facal San Luis, P.; Foggetta, L.; Gaïor, R.; Garcia-Fernandez, D.; Iarlori, M.; Le Coz, S.; Letessier-Selvon, A.; Louedec, K.; Maris, I. C.; Martello, D.; Mazzitelli, G.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Valente, P.; Vazquez, J. R.; Verzi, V.; Williams, C.

    2016-07-01

    You The Air Microwave Yield (AMY) experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  19. Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Barwick, S. W.; Besson, D. Z.; Burgman, A.; Chiem, E.; Hallgren, A.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Nelles, A.; Persichilli, C.; Phillips, S.; Prakash, T.; Reed, C.; Shively, S. R.; Tatar, J.; Unger, E.; Walker, J.; Yodh, G.

    2017-04-01

    The ARIANNA hexagonal radio array (HRA) is an experiment in its pilot phase designed to detect cosmogenic neutrinos of energies above 1016 eV. The most neutrino-like background stems from the radio emission of air showers. This article reports on dedicated efforts of simulating and detecting the signals of cosmic rays. A description of the fully radio self-triggered data-set, the properties of the detected air shower signals in the frequency range of 100-500 MHz and the consequences for neutrino detection are given. 38 air shower signals are identified by their distinct waveform characteristics, are in good agreement with simulations and their signals provide evidence that neutrino-induced radio signals will be distinguishable with high efficiency in ARIANNA. The cosmic ray flux at a mean energy of 6.5-1.0+1.2 ×1017 eV is measured to be 1.1-0.7+1.0 ×10-16 eV-1 km-2 sr-1 yr-1 and one five-fold coincident event is used to illustrate the capabilities of the ARIANNA detector to reconstruct arrival direction and energy of air showers.

  20. Selection and reconstruction of very inclined air showers with the Surface Detector of the Pierre Auger Observatory

    SciTech Connect

    Newton, D.; /Santiago de Compostela U.

    2007-06-01

    The water-Cherenkov tanks of the Pierre Auger Observatory can detect particles at all zenith angles and are therefore well-suited for the study of inclined and horizontal air showers (60 degrees < {theta} < 90 degrees). Such showers are characterized by a dominance of the muonic component at ground, and by a very elongated and asymmetrical footprint which can even exhibit a lobular structure due to the bending action of the geomagnetic field. Dedicated algorithms for the selection and reconstruction of such events, as well as the corresponding acceptance calculation, have been set up on basis of muon maps obtained from shower simulations.

  1. Status of air-shower measurements with sparse radio arrays

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.

  2. Construction of a cosmic ray air shower telescope

    NASA Technical Reports Server (NTRS)

    Ng, L. K.; Chan, S. K.

    1985-01-01

    The telescope under construction is mainly for the purpose of locating the arrival directions of energetic particles and quanta which generate air showers of sizes 10 to the 5th power to 10 to the 6th power. Both fast timing method and visual track method are incorporated in determining the arrival directions. The telescope is composed of four stations using scintillators and neon flash tubes as detectors. The system directional resolution is better than 1.5 deg.

  3. Acoustic detection of cosmic-ray air showers.

    PubMed

    Barrett, W L

    1978-11-17

    The signal strength, bandwidth, and detection range of acoustic pulses generated by cosmic-ray air showers striking a water surface are calculated. These signals are strong enough to be audible to a submerged swimmer. The phenomena may be useful for studying very-high-energy cosmic rays and may help answer the important question of whether the origin of cosmic rays is extragalactic or galactic.

  4. Results from the Puebla extensive air shower detector array

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.; Saavedrac, O.

    2003-07-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays ( Eo > 10 14eV). The array is located at the Campus of Puebla University and consists of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. In this report we discuss the stability and the calibration of the detector array, as derived from the 10 detectors in operation in the first stage. The main characteristics of the array allow us also to use it as an educational and training facility. First distributions of the arrival direction and the lateral shower srpead are also given.

  5. An in-premise model for Legionella exposure during showering events

    EPA Science Inventory

    An exposure model was constructed to predict the critical Legionella densities in an engineered water system that might result in infection from inhalation of aerosols containing the pathogen while showering. The model predicted the Legionella densities in the shower air, water ...

  6. Measurement of the depth of maximum of extensive air showers above 10{18} eV.

    PubMed

    Abraham, J; Abreu, P; Aglietta, M; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anticić, T; Anzalone, A; Aramo, C; Arganda, E; Arisaka, K; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Balzer, M; Barber, K B; Barbosa, A F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; Benzvi, S; Berat, C; Bergmann, T; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Bohácová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Colombo, E; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; de Mello Junior, W J M; de Mello Neto, J R T; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Díaz Castro, M L; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Dos Anjos, J C; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Facal San Luis, P; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrero, A; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; García Gámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Gomez Albarracin, F; Gómez Berisso, M; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kadija, K; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D-H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; Leigui de Oliveira, M A; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; López, R; Lopez Agüera, A; Louedec, K; Lozano Bahilo, J; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Maris, I C; Marquez Falcon, H R; Marsella, G; Martello, D; Martínez Bravo, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meurer, C; Micanović, S; Micheletti, M I; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Mueller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nozka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parlati, S; Parra, A; Parrisius, J; Parsons, R D; Pastor, S; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivière, C; Rizi, V; Robledo, C; Rodriguez, G; Rodriguez Martino, J; Rodriguez Rojo, J; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A

    2010-03-05

    We describe the measurement of the depth of maximum, X{max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10;{18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{-21}{+35}) g/cm{2}/decade below 10{18.24+/-0.05} eV, and (24+/-3) g/cm{2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  7. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    SciTech Connect

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  8. Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex

    SciTech Connect

    Bezyazeekov, P.A.; Budnev, N.M.; Gress, O.A.; Kazarina, Y.; Konstantinov, E.N.; Mirgazov, R.R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Haungs, A.; Hiller, R.; Huege, T.; Kostunin, D.; Kleifges, M.; Krömer, O.; Korosteleva, E.E.; Kuzmichev, L.A.; Lubsandorzhiev, N.; Prosin, V.V.; Rubtsov, G.I.; and others

    2016-01-01

    We reconstructed the energy and the position of the shower maximum of air showers with energies E ∼> 100 PeV applying a method using radio measurements performed with Tunka-Rex. An event-to-event comparison to air-Cherenkov measurements of the same air showers with the Tunka-133 photomultiplier array confirms that the radio reconstruction works reliably. The Tunka-Rex reconstruction methods and absolute scales have been tuned on CoREAS simulations and yield energy and X{sub max} values consistent with the Tunka-133 measurements. The results of two independent measurement seasons agree within statistical uncertainties, which gives additional confidence in the radio reconstruction. The energy precision of Tunka-Rex is comparable to the Tunka-133 precision of 15%, and exhibits a 20% uncertainty on the absolute scale dominated by the amplitude calibration of the antennas. For X{sub max}, this is the first direct experimental correlation of radio measurements with a different, established method. At the moment, the X{sub max} resolution of Tunka-Rex is approximately 40 g/cm{sup 2}. This resolution can probably be improved by deploying additional antennas and by further development of the reconstruction methods, since the present analysis does not yet reveal any principle limitations.

  9. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allen, J D; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chirinos Diaz, J C; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Dos Anjos, R C; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G R; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Suarez Durán, M; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-11-04

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170  TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  10. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    SciTech Connect

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pękala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2016-10-31

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6–16 EeV (ECM = 110–170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. As a result, the average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  11. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2016-10-31

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6–16 EeV (ECM = 110–170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. As a result, the average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  12. Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

    NASA Astrophysics Data System (ADS)

    Shtejer, K.

    2016-05-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic-ray interactions in the upper atmosphere. The large size and excellent tracking capability of the ALICE Time Projection Chamber are exploited to study the muonic component of extensive air showers. We present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. The latest version of the QGSJET hadronic interaction model was used to simulate the development of the resulting air showers. High multiplicity events containing more than 100 reconstructed muons were also studied. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP without satisfactory explanations for the frequency of the highest multiplicity events. We demonstrate that the high muon-multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range.

  13. Discovering Ultra-High-Energy Neutrinos through Horizontal and Upward τ Air Showers: Evidence in Terrestrial Gamma Flashes?

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2002-05-01

    Ultra-high-energy (UHE) neutrinos ντ, ντ, and νe at PeV and higher energies may induce τ air showers whose detectability is amplified millions to billions of times by their secondaries. We considered UHE ντ-N and UHE νe-e interactions underneath mountains as a source of such horizontal amplified τ air showers. We also consider vertical upward UHE ντ-N interactions (UPTAUs) on Earth's crust, leading to UHE τ air showers or interactions at the horizon edges (HORTAUs), and their beaming toward high mountain gamma, X-ray, and Cerenkov detectors, and we show their detectability. We notice that such rare upward τ air showers, UPTAUs and HORTAUs, may even hit nearby balloons or satellites and flash them with short diluted gamma bursts at the edge of the Compton Gamma Ray Observatory detection threshold. We suggest the possibility of identifying these events with recently discovered (BATSE) terrestrial gamma flashes (TGFs), and we argue for their probable UHE τ-UHE ντ origin. From these data, approximated UHE ντ fluxes and Δmνμντ lower bounds are derived. Known X-ray, gamma, and TeV active Galactic and extragalactic sources have been identified in most TGF arrival directions. Maximal EGRET activity in the Galactic center overlaps with the maximal TGF flux. The UHE cosmic-ray (UHECR) Akino Giant Air Shower Array anisotropy at 1018 eV also shows possible correlations with TGF events. The unique UHECR triplet in AGASA clustering, pointing toward BL Lac 1ES 0806+524, finds within its error box a corresponding TGF event, BATSE trigger 2444. Finally, a partial TGF Galactic signature, combined with the above correlations, suggests an astrophysical τ origin of TGF events.

  14. Sensitivity study of (10,100) GeV gamma-ray bursts with double shower front events from ARGO-YBJ

    NASA Astrophysics Data System (ADS)

    Zhou, Xun-Xiu; Gao, Lan-Lan; Zhang, Yu; Guo, Yi-Qing; Zhu, Qing-Qi; Jia, Huan-Yu; Huang, Dai-Hui

    2016-07-01

    ARGO-YBJ, located at the Yangbajing Cosmic Ray Observatory (4300 m a.s.l., Tibet, China), is a full coverage air shower array, with an energy threshold of ∼300 GeV for gamma-ray astronomy. Most of the recorded events are single front showers, satisfying the trigger requirement of at least 20 particles detected in a given time window. However, in ∼11.5% of the events, two randomly arriving showers may be recorded in the same time window, and the second one, generally smaller, does not need to satisfy the trigger condition. These events are called double shower front events. By using these small showers, well under the trigger threshold, the detector primary energy threshold can be lowered to a few tens of GeV. In this paper, the angular resolution that can be achieved with these events is evaluated by a full Monte Carlo simulation. The ARGO-YBJ sensitivity in detecting gamma-ray bursts (GRBs) by using double shower front events is also studied for various cutoff energies, time durations, and zenith angles of GRBs in ARGO’s field of view. Supported by National Natural Science Foundation of China (11475141) and Fundamental Research Funds for Central Universities (2682014CX091)

  15. A generalized description of the signal size in extensive air shower detectors and its applications

    NASA Astrophysics Data System (ADS)

    Ave, M.; Engel, R.; Roth, M.; Schulz, A.

    2017-01-01

    The number as well as the energy and angular distributions of particles in extensive air showers (EAS) depend on the stage of the shower development and the distance to the shower axis. In this work we derive an analytic parameterization of the particle distributions at ground from air shower simulations convolved with the response of a surface detector array. Shower particles are classified into four components according to the shower component they belong to: the muonic component, the electromagnetic component stemming from muon interactions and muon decay, the purely electromagnetic component, and the newly introduced electromagnetic component from low-energy hadrons. Using this scheme, we will show that the total signal at ground level for different surface detectors can be described with minimal fluctuations with parameterizations depending on the primary energy, position of the shower maximum, and the overall number of muons in the shower. The simulation results for different combinations of primaries and hadronic interaction models are reproduced with an accuracy better than 5-10% in the range from 100 m to 2000 m from the shower core. This parameterization is then used as a Lateral Distribution ansatz to reconstruct showers in current EAS experiments. Since this ansatz depends on physical parameters, it opens the possibility to infer them from data.

  16. Interpretation of the cosmic-ray air shower signal in Askaryan radio detectors

    NASA Astrophysics Data System (ADS)

    de Vries, Krijn D.; Buitink, Stijn; van Eijndhoven, Nick; Meures, Thomas; O'Murchadha, Aongus; Scholten, Olaf

    2017-03-01

    We discuss the radio emission from a cosmic-ray air shower propagating in air before it hits an air-ice boundary after which it completes its propagation inside the ice. The in-air emission, the in-ice emission, as well as the transition radiation from the shower crossing the boundary is considered. We discuss the interpretation of the radio signal observed by an in-ice observer.

  17. Overview of MHz air shower radio experiments and results

    NASA Astrophysics Data System (ADS)

    Revenu, Benoît

    2013-05-01

    In this paper, I present a review of the main results obtained in the last 10 years in the field of radio-detection of cosmic-ray air showers in the MHz range. All results from all experiments cannot be reported here so that I will focus on the results more than on the experiments themselves. Modern experiments started in 2003 with CODALEMA and LOPES. In 2006, small-size autonomous prototypes setup were installed at the Pierre Auger Observatory site, to help the design of the Auger Engineering Radio Array (AERA). We will discuss the principal aspects of the radio data analysis and the determination of the primary cosmic ray characteristics: the arrival direction, the lateral distribution of the electric field, the correlation with the primary energy, the emission mechanisms and the sensitivity to the composition of the cosmic rays.

  18. Implications of Ultrahigh Energy Air Showers for Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The primary ultrahigh energy particles which produce giant extensive air showers in the Earth atmosphere present an intriguing mystery from two points of view: (1) How are the base particles produced with such astounding energies, eight orders of magnitude higher than those produced by the best man-made terrestrial accelerators? (2) Since they are most likely extragalactic in origin, how do they reach us from extragalactic distances without suffering the severe losses expected from interactions with the 2.7 K thermal cosmic background photons, the so called GZK effect? The answers to these questions may involve new physics: violations of special relativity, grand unification theories, and quantum gravity theories involving large extra dimensions. They may involve new astrophysical sources, "zevatrons". Or some heretofore totally unknown physics or astrophysics may hold the answer. I will discuss here the mysteries involving the production and extragalactic propagation of ultrahigh energy cosmic rays and some suggested possible solutions.

  19. Akeno 20 km (2) air shower array (Akeno Branch)

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Ohoka, H.; Matsubara, Y.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.

    1985-01-01

    As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied.

  20. Development of Yangbajing air shower core detector for a new EAS hybrid experiment

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Sheng; Huang, Jing; Chen, Ding; Zhang, Ying; Zhai, Liu-Ming; Chen, Xu; Hu, Xiao-Bin; Lin, Yu-Hui; Zhang, Xue-Yao; Feng, Cun-Feng; Jia, Huan-Yu; Zhou, Xun-Xiu; Danzengluobu; Chen, Tian-Lu; Li, Hai-Jin; Liu, Mao-Yuan; Yuan, Ai-Fang

    2015-08-01

    Aiming at the observation of cosmic-ray chemical composition in the “knee” energy region, we have been developing a new type of air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522° E, 30.102° N, 4300 m above sea level, atmospheric depth: 606 g/m2) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water Cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thickness and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to 106 MIPs. The first phase of this experiment, named “YAC- I”, consists of 16 YAC detectors each with a size of 40 cm×50 cm and distributed in a grid with an effective area of 10 m2. YAC- I is used to check hadronic interaction models. The second phase of the experiment, called “YAC- II”, consists of 124 YAC detectors with coverage of about 500 m2. The inner 100 detectors of 80 cm×50 cm each are deployed in a 10×10 matrix with a 1.9 m separation; the outer 24 detectors of 100 cm×50 cm each are distributed around these to reject non-core events whose shower cores are far from the YAC- II array. YAC- II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of protons, helium and iron nuclei between 5×1013 eV and 1016 eV, covering the “knee” and also connected with direct observations at energies around 100 TeV. We present the design and performance of YAC- II in this paper. Supported by grants from the National Natural Science Foundation of China (11078002, 11275212, 11165013), the Chinese Academy of Sciences (H9291450S3, Y4293211S5) and the Knowledge Innovation Fund of Institute of High Energy Physics (IHEP), China (H95451D0U2, H8515530U1)

  1. A generalized description of the time dependent signals in extensive air shower detectors and its applications

    NASA Astrophysics Data System (ADS)

    Ave, M.; Roth, M.; Schulz, A.

    2017-02-01

    The expected signal in extensive air shower (EAS) detectors can be predicted with a 10% accuracy by a parameterization that depends on a set of global shower parameters: the energy, the depth of the electromagnetic shower maximum (Xmax) and the overall muon content. By classifying shower particles in four components (muonic, purely electromagnetic, electromagnetic stemming from muon interactions and decay and electromagnetic-from-low-energy hadrons), shower-to-shower fluctuations are minimized. We follow this scheme to propose a model to describe the arrival time distributions of secondary particles as measured with surface detectors in an EAS experiment. This model is then used to reconstruct Xmax in Monte Carlo data sets. As an example, we show that for the case of the Pierre Auger Observatory Xmax can be reconstructed with an accuracy of about 45 g/cm2 at 1019 eV.

  2. Proton-air and proton-proton cross sections from air shower data

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    Data on the fluctuations in depth of maximum development of cosmic ray air showers, corrected for the effects of mixed primary composition and shower development fluctuations, yield values of the inelastic proton-air cross section for laboratory energies in the range 10 to the 8th power to 10 to the 10th power GeV. From these values of proton-air cross section, corresponding values of the proton-proton total cross section are derived by means of Glauber theory and geometrical scaling. The resulting values of proton-proton cross section are inconsistent with a well known 1n(2)s extrapolation of ISR data which is consistent with SPS data; they indicate a less rapid rate of increase in the interval 540 sq root of s 100000 GeV.

  3. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  4. Measurement of horizontal air showers with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  5. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    NASA Technical Reports Server (NTRS)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the

  6. Development of a 12 parabola observation system to detect Molecular Bremsstrahlung Radiation from air-showers

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Ogio, S.; Akimune, H.; Fujii, T.; Sakurai, N.; Fukushima, M.; Sagawa, H.

    2013-05-01

    Two experiments for the detections of Molecular Bremsstrahlung Radiation (MBR) from air-shower are under development in West Japan. One of these systems consists of 12 parabola antennas. And the other one uses a 45 cm Broadcasting Satellite (BS) antenna in a scintillator array. Both experiments measure 12 GHz radio emission from air-showers. The setup and the status of these experiments will be reported.

  7. Energetic delayed hadrons in large air showers observed at 5200m above sea level

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Hagiwara, K.; Yoshii, H.; Martinic, N.; Siles, L.; Miranda, P.; Kakimoto, F.; Tsuchimoto, I.; Inoue, N.; Suga, K.

    1985-01-01

    Energetic delayed hadrons in air showers with electron sizes in the range 10 to the 6th power to 10 to the 9th power were studied by observing the delayed bursts produced in the shield of nine square meter scintillation detectors in the Chacaltaya air-shower array. The frequency of such delayed burst is presented as a function of electron size, core distance and sec theta.

  8. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  9. Atmospheric Effects on Cosmic Ray Air Showers Observed with HAWC

    NASA Astrophysics Data System (ADS)

    Young, Steven

    2014-01-01

    The High Altitude Water Cherenkov Gamma Ray detector (HAWC), currently under construction on the Sierra Negra volcano near Puebla, Mexico, can be used to study solar physics with its scaler data acquisition system. Increases in the scaler rates are used to observe GeV cosmic rays from solar flares while decreases in the rates show the heliospheric disturbances associated with coronal mass ejections. However, weather conditions and height-dependent state variables such as pressure and temperature affect the production of extensive particle air showers that can be detected by the scaler system. To see if these atmospheric effects can be removed, we obtained local weather data from the Global Data Assimilation System (GDAS) and the local weather station at HAWC. The scaler pulse rates were then correlated to the pressure and temperature. We present data from a Forbush decrease observed by HAWC following a significant coronal mass ejection in April 2013, and describe our efforts to remove atmospheric variations from the scaler counts. This work was partially supported by the National Science Foundation’s REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  10. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  11. New method to measure the attenuation of hadrons in extensive air showers

    SciTech Connect

    Apel, W. D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.; Oehlschlaeger, J.

    2009-07-15

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth's atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 10{sup 6} to 3x10{sup 7} GeV the attenuation length obtained increases from 170 to 210 g/cm{sup 2}. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  12. Horizontal Tau air showers from mountains in deep vally :Traces of Ultrahigh neutrino tau

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    1999-08-01

    Ultra High Energy (UHE) Tau neutrino may lead to a very peculiar imprint in future underground K m3 detectors in water and ice as well as in air: rarest secondary tau tracks and decay which may exceed the muon ones. Indeed Bremsstrahlung at high energy lead to longer tracks for heavier leptons. Radiation lenght grows nearly with the square of the lepton mass. Indeed electrons are too light and their trace in matter is negligible (decimeters) muon are much better observed, while tau are too short life time and short range to be found. However, because relativistic time expansion, UHE tau traces in matter, above 1017 eV , are relativistically boosted overcoming the corresponding muon tracks, already bounded by bremsstrahlung logaritmic regime. The tau crossing for Kms in water or ice may be confused with common muon tracks; their tau decay may be missunderstood as muonic catastrophic brehmstrallung interactions. To economize UHE tau dicovery, we suggest to look the tau decay in air into the deep valleys montains, like Canyons or deep in escavation mines where horizontal air showers induce fluoresce or Cerenkov lights. The mountain valley width screens from horizontal secondary muons. The valley height increases the solid angle view. The horizontal air Kms-size gap offer a strong discriminator to filter UHE muons against tau. Tens event a year at PeV ( W resonance peak) energies in K m3 excavation gap should be observable . Hunting air shower in the night toward high mountains in Canyons or in a deep excavation may be the best and cheapest way to discover UHE neutrinos , either born by electron antineutrino scattering on electrons at PeV energies, or by direct tau neutrino possibly relic of muonic flavour oscillation even at EeV energies.

  13. LOPES — Recent Results and Open Questions on the Radio Detection of Air Showers

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2015-08-01

    LOPES was a digital antenna array operating for approximately 10 years until spring 2013 at the Karlsruhe Institute of Technology (KIT). Triggered by the co-located KASCADE-Grande air-shower experiment, it measured the radio signal of around 1000 cosmic-ray air showers with energies E ≳ 1017 eV in an effective band of 43 - 74 MHz. Using the interferometric technique of cross-correlation beamforming, LOPES could reconstruct the shower direction with an accuracy < 0.7°, the shower energy with a precision < 20%, and the atmospheric depth of the shower maximum, Xmax, with a precision < 95g/cm2. In particular the reconstruction of the shower maximum suffers from significant measurement uncertainties due to the radio-loud environment of the site. This article summarizes our latest results on the reconstruction of the shower maximum, using two independent methods: the steepness of the hyperbolic radio wavefront and the slope of the lateral distribution of the radio amplitude. Moreover, we show vectorial measurements of the electric field with the tripole antennas of the latest LOPES setup. Finally, we discuss open questions as well as the potential impact of the lessons learned at LOPES for future antenna arrays.

  14. The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    NASA Astrophysics Data System (ADS)

    Corstanje, Arthur; Buitink, Stijn; Bonardi, Antonio; Falcke, Heino; Hörandel, Jörg R.; Mitra, Pragati; Mulrey, Katie; Nelles, Anna; Rachen, Jörg Paul; Rossetto, Laura; Schellart, Pim; Scholten, Olaf; Thoudam, Satyendra; Trinh, Gia; ter Veen, Sander; Winchen, Tobias

    2017-03-01

    The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n - 1) leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively.

  15. Radio signals from extensive air showers with the energies E 0 ≥ 1019 eV according to data from the Yakutsk extensive air shower array

    NASA Astrophysics Data System (ADS)

    Knurenko, S. P.; Petrov, I. S.

    2016-09-01

    A radio instrument and results obtained from the measurements of the 32-MHz radio signal from particles of extensive air showers (EASs) with energies E 0 ≥ 1×1019 eV are reported in brief. The data were obtained at the Yakutsk EAS array in 1987-1989 (the first series of measurements) and in 2009-2014 (new series of measurements). The radio signal from EASs with energies above 1020eV was detected at the Yakutsk EAS array for the first time, including the shower with the record energy of 2×1020 eV for the Yakutsk EAS array.

  16. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    NASA Astrophysics Data System (ADS)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Dorosti Hasankiadeh, Q.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-11-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.

  17. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    SciTech Connect

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  18. Cosmogenic neutrinos and signals of TeV gravity in air showers and neutrino telescopes.

    PubMed

    Illana, J I; Masip, M; Meloni, D

    2004-10-08

    The existence of extra dimensions allows the possibility that the fundamental scale of gravity is at the TeV. If that is the case, gravity could dominate the interactions of ultrahigh energy cosmic rays. In particular, the production of microscopic black holes by cosmogenic neutrinos has been estimated in a number of papers. We consider here gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. We show that for the expected flux of cosmogenic neutrinos these elastic processes give a stronger signal than black hole production in neutrino telescopes. Taking the bounds on the higher-dimensional Planck mass M(D) (D=4 + n) from current air shower experiments, for n=2(6) elastic collisions could produce up to 118 (34) events per year at IceCube. On the other hand, the absence of any signal would imply a bound of M(D) > or approximately 5 TeV.

  19. Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Hiller, R.; Schröder, F. G.; Lenok, V.; Levinson, E.

    2016-02-01

    We investigate features of the lateral distribution function (LDF) of the radio signal emitted by cosmic ray air-showers with primary energies Epr > 0.1 EeV and its connection to air-shower parameters such as energy and shower maximum using CoREAS simulations made for the configuration of the Tunka-Rex antenna array. Taking into account all significant contributions to the total radio emission, such as by the geomagnetic effect, the charge excess, and the atmospheric refraction we parameterize the radio LDF. This parameterization is two-dimensional and has several free parameters. The large number of free parameters is not suitable for experiments of sparse arrays operating at low SNR (signal-to-noise ratios). Thus, exploiting symmetries, we decrease the number of free parameters based on the shower geometry and reduce the LDF to a simple one-dimensional function. The remaining parameters can be fit with a small number of points, i.e. as few as the signal from three antennas above detection threshold. Finally, we present a method for the reconstruction of air-shower parameters, in particular, energy and Xmax (shower maximum), which can be reached with a theoretical accuracy of better than 15% and 30 g/cm2, respectively.

  20. The Cosmic Ray Observatory Project in Nebraska -- a education and research project to study extensive air showers

    NASA Astrophysics Data System (ADS)

    Snow, G. R.

    2005-12-01

    The Cosmic Ray Observatory Project (CROP) is a statewide education and research experiment involving Nebraska high school students, teachers, and college undergraduates in the study of extensive cosmic-ray air showers. A network of high school teams construct, install, and operate school-based detectors in coordination with University of Nebraska physics professors and graduate students. The detector system at each school is an array of scintillation counters recycled from the Chicago Air Shower Array in weather-proof enclosures on the school roof, with a GPS receiver providing a time stamp for cosmic-ray events. The detectors are connected to triggering electronics and a data-acquisition PC inside the building. Students share data via the Internet to search for time coincidences with other sites. CROP has enlisted 26 schools in its first 5 years of operation with the aim of expanding to the 314 high schools in the state over the next several years. Recent successes and prelinimary data on air shower searches will be presented. The outlook for statewise expansion will be discussed.

  1. A phenomenological model of the muon density profile on the ground of very inclined air showers

    NASA Astrophysics Data System (ADS)

    Dembinski, H. P.; Billoir, P.; Deligny, O.; Hebbeker, T.

    2010-09-01

    Ultra-high energy cosmic rays generate extensive air showers in Earth's atmosphere. A standard approach to reconstruct the energy of an ultra-high energy cosmic rays is to sample the lateral profile of the particle density on the ground of the air shower with an array of surface detectors. For cosmic rays with large inclinations, this reconstruction is based on a model of the lateral profile of the muon density observed on the ground, which is fitted to the observed muon densities in individual surface detectors. The best models for this task are derived from detailed Monte-Carlo simulations of the air shower development. We present a phenomenological parametrization scheme which allows to derive a model of the average lateral profile of the muon density directly from a fit to a set of individual Monte-Carlo simulated air showers. The model reproduces the detailed simulations with a high precision. As an example, we generate a muon density model which is valid in the energy range 10 18 eV < E < 10 20 eV and the zenith angle range 60°<θ<90°. We will further demonstrate a way to speed up the simulation of such muon profiles by three orders of magnitude, if only the muons in the shower are of interest.

  2. The Air Microwave Yield (AMY) experiment to measure the GHz emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Bohacova, M.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Engel, R.; Facal San Luis, P.; Iarlori, M.; Martello, D.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Riegel, M.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Smida, R.; Verzi, V.; Werner, F.; Williams, C.

    2013-06-01

    The AMY experiment aims to measure the Microwave Bremsstrahlung Radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories and the final purpose is to characterize the process to be used in a next generation detectors of ultra-high energy cosmic rays (up to 1020eV). We describe the experimental set-up and the first test measurement performed in November 2011.

  3. Extensive Air Showers and Cosmic Ray Physics above 1017 eV

    NASA Astrophysics Data System (ADS)

    Bertaina, Mario

    2016-07-01

    Cosmic Rays above 1017 eV allow studying hadronic interactions at energies that can not be attained at accelerators yet. At the same time hadronic interaction models have to be applied to the cosmic-ray induced air-shower cascades in atmosphere to infer the nature of cosmic rays. The reliability of air-shower simulations has become the source of one of the largest systematic uncertainty in the interpretation of cosmic-ray data due to the uncertainties in modeling the hadronic interaction driving the air-shower development. This paper summarises in the first part the recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1, 2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3-5]. Aspects interconnecting cosmic ray and particle physics are reviewed in the second part of the paper.

  4. Longitudinal development of extensive air showers: Hybrid code SENECA and full Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ortiz, Jeferson A.; Medina-Tanco, Gustavo; de Souza, Vitor

    2005-06-01

    New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air shower modelling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tri-dimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower development: the first step predicts the large fluctuations in the very first particle interactions at high energies while the second step provides a well detailed lateral distribution simulation of the final stages of the air shower. Both Monte Carlo simulation steps are connected by a cascade equation system which reproduces correctly the hadronic and electromagnetic longitudinal profile. We study the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers and compare the predictions of the well known CORSIKA code using the QGSJET hadronic interaction model.

  5. On the Possibility of Radar Detection of Ultra-high Energy Cosmic Ray- and Neutrino-induced Air Showers

    NASA Technical Reports Server (NTRS)

    Gorham, P.

    1999-01-01

    We show that cosmic rays air showers resulting from primaries with energies above 10(sup 19) eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower.

  6. Extensive Air Shower Detector Array at the Universidad Autonoma de Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Moreno, E.; Aguilar, S.; Palma, B.; Martinez, O.; Salazar, H.; Villasenor, L.

    2002-07-01

    We describe the operation of an Extensive Air Shower Array located at the campus of the FCFM-BUAP. The array consists of 8 liquid scintillation detectors with a surface of 1 m2 each and a detector spacing of 20 m in a square grid. The array was designed to measure the energy and arrival direction of primary particles that generate extensive air showers (EAS) in the region of 1013 eV - 1016 eV. The angular distribution measured with this array, Cos8(Theta) xSin(Theta), agrees very well with the literature. We also present the measured energies of a number of vertical showers in the range of 5 x1012 eV to 5 x1013 eV.

  7. Atmospheric profiles at the southern Pierre Auger Observatory and their relevance to air shower measurement

    SciTech Connect

    Keilhauer, B.; Bluemer, J.; Engel, R.; Gora, D.; Homola, P.; Klages, H.; Pekala, J.; Risse, M.; Unger, M.; Wilczynska, B.; Wilczynski, H.

    2005-07-01

    The dependence of atmospheric conditions on altitude and time have to be known at the site of an air shower experiment for accurate reconstruction of extensive air showers and their simulations. The height-profile of atmospheric depth is of particular interest as it enters directly into the reconstruction of longitudinal shower development and of the primary energy and mass of cosmic rays. For the southern part of the Auger Observatory, the atmosphere has been investigated in a number of campaigns with meteorological radio soundings and with continuous measurements of ground-based weather stations. Focusing on atmospheric depth and temperature profiles, temporal variations are described and monthly profiles are developed. Uncertainties of the monthly atmospheres that are currently applied in the Auger reconstruction are discussed.

  8. Flood basalt eruptions, comet showers, and mass extinction events

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Stothers, Richard B.

    1988-01-01

    A chronology of initiation dates of the major continental flood basalt episodes has been established from compilation of published K-Ar and Ar-Ar ages of basaltic flows and related basic intrusions. The dating is therefore independent of the biostratigraphic and paleomagnetic time scales, and the estimated errors of the inititation dates are approximately + or - 4 pct. There are 11 distinct episodes of continental flood basalts known during the past 250 Myr. The data show that flood basalt episodes are generally relatively brief geologic events, with intermittent eruptions during peak output periods lasting ony 2 to 3 Myr or less. Statistical analyses suggest that these episodes may have occurred quasi-periodically with a mean cycle time of 32 + or - 1 Myr. The initiation dates of the flood basalts are close to the estimated dates of marine mass extinctions and impact-crater clusters. Although a purely internal forcing might be argued for the flood basalt volcanism, quasi-periodic comet impacts may be the trigger for both the flood basalts and the extinctions. Impact cratering models suggest that large-body impactors lead to deep initial cratering, and therefore may cause mantle disturbances and initiate mantle plume activity. The flood basalt episodes commonly mark the initiation or jump of a mantle hotspot, and are often followed by continental rifting and separation. Evidence from dynamical studies of impacts, occurrences of craters and hotspots, and the geochemistry of boundary layers is synthesized to provide a possible model of impact-generated volcanism. Flood basalt eruptions may themselves have severe effects on climate, and possibly on life. Impacts might, as a result, have led to mass extinctions through direct atmospheric disturbances, and/or indirectly through prolonged flood basalt volcanism.

  9. Full Monte-Carlo description of the Moscow State University Extensive Air Shower experiment

    NASA Astrophysics Data System (ADS)

    Fomin, Yu. A.; Kalmykov, N. N.; Karpikov, I. S.; Kulikov, G. V.; Kuznetsov, M. Yu.; Rubtsov, G. I.; Sulakov, V. P.; Troitsky, S. V.

    2016-08-01

    The Moscow State University Extensive Air Shower (EAS-MSU) array studied high-energy cosmic rays with primary energies ~ (1-500) PeV in the Northern hemisphere. The EAS-MSU data are being revisited following recently found indications to an excess of muonless showers, which may be interpreted as the first observation of cosmic gamma rays at ~ 100 PeV. In this paper, we present a complete Monte-Carlo model of the surface detector which results in a good agreement between data and simulations. The model allows us to study the performance of the detector and will be used to obtain physical results in further studies.

  10. Ultrahigh energy cosmic ray composition from surface air shower and underground muon measurements at Soudan 2

    NASA Astrophysics Data System (ADS)

    Longley, N. P.; Bode, C. R.; Border, P. M.; Courant, H.; Demuth, D. M.; Gray, R. N.; Johns, K.; Kasahara, S. M.; Lowe, M. J.; Marshak, M. L.; Miller, W. H.; Mualem, L.; Peterson, E. A.; Roback, D. M.; Ruddick, K.; Schmid, D. J.; Schub, M. H.; Shupe, M. A.; Vassiliev, V.; Villaume, G.; Werkema, S. J.; Ayres, D. S.; Fields, T. H.; Gallagher, H. M.; Goodman, M. C.; Lopez, F. V.; May, E. N.; Price, L. E.; Seidlein, R. V.; Thron, J. L.; Trost, H.-J.; Uretsky, J. L.; Allison, W. W.; Barr, G. D.; Brooks, C. B.; Cobb, J. H.; Giller, G. L.; Stassinakis, A.; Thomson, M. A.; West, N.; Wielgosz, U.; Alner, G. J.; Cockerill, D. J.; Cotton, R. J.; Garcia-Garcia, C.; Litchfield, P. J.; Pearce, G. F.; Ewen, B.; Kafka, T.; Kochocki, J.; Leeson, W.; Mann, W. A.; Milburn, R. H.; Napier, A.; Oliver, W.; Saitta, B.; Schneps, J.; Sundaralingam, N.; Barrett, W. L.

    1995-09-01

    The Soudan 2 experiment has performed time-coincident cosmic ray air shower and underground muon measurements. Comparisons to Monte Carlo predictions show that such measurements can make statistically significant tests of the primary composition in the knee region of the cosmic ray spectrum. The results do not support any significant increase in the average primary mass with energy in the range of ~104 TeV per nucleus. Some systematic uncertainties remain, however, particularly in the Monte Carlo modeling of the cosmic ray shower.

  11. Performance of a local electron density trigger to select extensive air showers at sea level

    NASA Technical Reports Server (NTRS)

    Abbas, T.; Madani, J.; Ashton, F.

    1985-01-01

    Time coincident voltage pulses in the two closely space (1.6m) plastic scintillators were recorded. Most of the recorded events are expeted to be due to electrons in cosmic ray showers whose core fall at some distance from the detectors. This result is confirmed from a measurement of the frequency distribution of the recorded density ratios of the two scintillators.

  12. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  13. Measurement of the muon content in air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Veberič, Darko

    2016-07-01

    The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  14. The effect of the atmospheric refractive index on the radio signal of extensive air showers

    NASA Astrophysics Data System (ADS)

    Corstanje, A.; Bonardi, A.; Buitink, S.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, G.; Winchen, T.

    2017-03-01

    For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N =106(n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum Xmax. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred Xmax between 3.5 and 11 g/cm2, for proton showers with zenith angles ranging from 15 to 50°. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm2. These offsets were found to be proportional to the geometric distance to Xmax. We have compared the results to a simple model based on the Cherenkov angle. For the 120 - 250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in Xmax compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of Xmax measurements.

  15. Prospects for a radio air-shower detector at the South Pole

    NASA Astrophysics Data System (ADS)

    Böser, Sebastian; ARA Collaboration, IceCube Collaboration

    2013-05-01

    IceCube is not only the largest neutrino telescope but also one of the world's most competitive instruments for studying cosmic rays in the PeV to EeV regime where the transition from galactic to extra-galactic sources should occur. It records air showers with the ground sampling stations of IceTop and the in-ice optical modules of IceCube. Further augmenting this observatory with an array of sensors in the 10-100MHz regime that observe the radio emission from air showers will yield complementary information on the shower development. Such a triple-technology observatory should significantly improve the understanding of cosmic rays and enhance many aspects of its physics reach. Here we present first results from two exploratory radio setups deployed at the South Pole. Noise measurements from data taken in two consecutive seasons show a very good agreement of the predicted and observed response of the antennas which were designed specifically for this purpose. The radio background is found to be highly dominated by galactic noise with a prominent absence of anthropogenic radio emitters in the frequency band from 25-300MHz. Motivated by the excellent suitability of the location, we present first performance studies of a proposed Radio Air-Shower Test Array (RASTA) using detailed MonteCarlo simulation and discuss the prospects for its installation.

  16. Comparison of Air Shower and Vest Auxiliary Cooling during Simulated Tank Operations in the Heat

    DTIC Science & Technology

    1983-04-01

    would suggest that the crews’ thermal comfort was greater during vest auxiliary cooling. Despite the fact that the environmental conditions were...effective use of the turbine bleed air than is provided by an air shower. The vest approach seems to improve the thermal comfort of these tank crew members...in an environment which normally would be thermally stressful. This improved thermal comfort from vest cooling is probably associated with the reduced

  17. Electrons, muons and hadrons in extensive air showers and how do they depend on nuclear interaction model, part 1

    NASA Technical Reports Server (NTRS)

    Wrotniak, J. A.; Yodh, G. B.

    1985-01-01

    Monte Carlo simulations of extensive air showers were performed using a couple of different nuclear interaction models and obtaining a variety of shower characteristics. The discussion of these shows that the sensitivity of observables to the primary mass spectrum is significantly stronger than to the interaction model, the latter being quite weak.

  18. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-02-07

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (more » $$\\rho \\propto P/T$$), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. Lastly, we show how the energy assignment can be corrected to account for such atmospheric effects.« less

  19. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariš, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-02-01

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (ρ propto P/T), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. We show how the energy assignment can be corrected to account for such atmospheric effects.

  20. Reconstruction of air shower muon densities using segmented counters with time resolution

    NASA Astrophysics Data System (ADS)

    Ravignani, D.; Supanitsky, A. D.; Melo, D.

    2016-09-01

    Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy cosmic rays is still largely unknown. Key astrophysical information to identify where these energetic particles come from is provided by their chemical composition. It is well known that a very sensitive tracer of the primary particle type is the muon content of the showers generated by the interaction of the cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities using segmented detectors with time resolution. As an example of this general method, we fit the muon distribution at ground level using an array of counters like AMIGA, one of the Pierre Auger Observatory detectors. For this particular case we compare the reconstruction performance against a previous method. With the new technique, more events can be reconstructed than before. In addition the statistical uncertainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic ray primary mass.

  1. ELF/VLF radio from runaway breakdown and cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Roussel-Dupre, R.; Rodger, C. J.; Falcke, H.; Huege, T.

    2005-12-01

    The natural electromagnetic environment at low radio frequencies from 10 Hz to 30 kHz (ELF/VLF) is dominated by impulsive bursts from lightning discharges in the troposphere. Particularly intense positive lightning discharges can cause transient luminous events (TLEs) in the mesosphere, denoted sprites, which mainly result from the quasi-static heating of the neutral gas in the mesosphere. The most spectacular 20 % of sprites produce radio signals at extremely-low frequencies from 10 Hz to 3 kHz (ELF), which are currently believed to result mainly from conventional mesospheric breakdown. Alternatively, the observed radio signals may be dominated by relativistic runaway breakdown in the mesosphere. The respective current source functions of conventional and relativistic breakdown are connected to an ELF/VLF propagation model to calculate the electromagnetic fields of both physical processes at a distance and to determine the most appropriate method to discriminate between the two different physical processes. Extensive cosmic ray air showers from ultra-high energy extra-galactic cosmic rays >100 EeV similarly produce radio signals up to the high frequency range from 3-300 MHz (HF/VHF). The ELF/VLF radio signals from this cosmic ray current source function is calculated by using the same ELF/VLF propagation model. The prospects for the detection of the radio signals from relativistic runaway breakdown and cosmic rays are discussed in the light of reported instrumental sensitivities.

  2. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    PubMed

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-08

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  3. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    NASA Astrophysics Data System (ADS)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  4. Correlation of high energy muons with primary composition in extensive air shower

    NASA Technical Reports Server (NTRS)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  5. The Roland Maze Project school-based extensive air shower network

    NASA Astrophysics Data System (ADS)

    Feder, J.; Jȩdrzejczak, K.; Karczmarczyk, J.; Lewandowski, R.; Swarzyński, J.; Szabelska, B.; Szabelski, J.; Wibig, T.

    2006-01-01

    We plan to construct the large area network of extensive air shower detectors placed on the roofs of high school buildings in the city of Łódź. Detection points will be connected by INTERNET to the central server and their work will be synchronized by GPS. The main scientific goal of the project are studies of ultra high energy cosmic rays. Using existing town infrastructure (INTERNET, power supply, etc.) will significantly reduce the cost of the experiment. Engaging high school students in the research program should significantly increase their knowledge of science and modern technologies, and can be a very efficient way of science popularisation. We performed simulations of the projected network capabilities of registering Extensive Air Showers and reconstructing energies of primary particles. Results of the simulations and the current status of project realisation will be presented.

  6. Constraints on hadronic models in extensive air showers with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Espadanal, João

    2016-11-01

    Extensive air showers initiated by ultra-high energy cosmic rays are sensitive to the details of hadronic interactions models, so we present the main results obtained using the data of the Pierre Auger Observatory. The depth at which the maximum of the electromagnetic development takes place is the most sensitive parameter to infer the nature of the cosmic rays. However, the hadronic models cannot describe consistently the maximum and the muon measurements at energies higher than those reached at the LHC.

  7. A likelihood method to cross-calibrate air-shower detectors

    NASA Astrophysics Data System (ADS)

    Dembinski, Hans Peter; Kégl, Balázs; Mariş, Ioana C.; Roth, Markus; Veberič, Darko

    2016-01-01

    We present a detailed statistical treatment of the energy calibration of hybrid air-shower detectors, which combine a surface detector array and a fluorescence detector, to obtain an unbiased estimate of the calibration curve. The special features of calibration data from air showers prevent unbiased results, if a standard least-squares fit is applied to the problem. We develop a general maximum-likelihood approach, based on the detailed statistical model, to solve the problem. Our approach was developed for the Pierre Auger Observatory, but the applied principles are general and can be transferred to other air-shower experiments, even to the cross-calibration of other observables. Since our general likelihood function is expensive to compute, we derive two approximations with significantly smaller computational cost. In the recent years both have been used to calibrate data of the Pierre Auger Observatory. We demonstrate that these approximations introduce negligible bias when they are applied to simulated toy experiments, which mimic realistic experimental conditions.

  8. Radio detection of cosmic-ray air showers and high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    In the last fifteen years radio detection made it back to the list of promising techniques for extensive air showers, firstly, due to the installation and successful operation of digital radio experiments and, secondly, due to the quantitative understanding of the radio emission from atmospheric particle cascades. The radio technique has an energy threshold of about 100 PeV, which coincides with the energy at which a transition from the highest-energy galactic sources to the even more energetic extragalactic cosmic rays is assumed. Thus, radio detectors are particularly useful to study the highest-energy galactic particles and ultra-high-energy extragalactic particles of all types. Recent measurements by various antenna arrays like LOPES, CODALEMA, AERA, LOFAR, Tunka-Rex, and others have shown that radio measurements can compete in precision with other established techniques, in particular for the arrival direction, the energy, and the position of the shower maximum, which is one of the best estimators for the composition of the primary cosmic rays. The scientific potential of the radio technique seems to be maximum in combination with particle detectors, because this combination of complementary detectors can significantly increase the total accuracy for air-shower measurements. This increase in accuracy is crucial for a better separation of different primary particles, like gamma-ray photons, neutrinos, or different types of nuclei, because showers initiated by these particles differ in average depth of the shower maximum and in the ratio between the amplitude of the radio signal and the number of muons. In addition to air-shower measurements, the radio technique can be used to measure particle cascades in dense media, which is a promising technique for detection of ultra-high-energy neutrinos. Several pioneering experiments like ARA, ARIANNA, and ANITA are currently searching for the radio emission by neutrino-induced particle cascades in ice. In the next years

  9. Ultra-High Energy Cosmic Rays: Composition, Early Air Shower Interactions, and Xmax Skewness

    NASA Astrophysics Data System (ADS)

    Stapleton, James

    The composition of Ultra-High Energy Cosmic Rays (UHECRs) is still not completely understood, and must be inferred from Extended Air Shower (EAS), particle cascades which they initiate upon entering the atmosphere. The atmospheric depth at which the shower contains the maximum number of particles ( Xmax) is the most composition-sensitive property of the air shower, but its interpretation is hindered by intrinsic statistical fluctuations in EAS development which cause distinct compositions to produce overlapping Xmax distributions as well as our limited knowledge at these energies of hadronic physics which strongly impacts the Xmax distribution's shape. These issues ultimately necessitate a variety of complementary approaches to interpreting UHECR composition from Xmax data. The current work advances these approaches by connecting X max skewness to the uncertainties above. The study of X max has historically focused only on the mean and standard deviation of its distribution, but skewness is shown here to be strongly related to both the statistical fluctuations in EAS development as well as the least-understood hadronic cross-sections in the air shower. This leads into a treatment of the Exponentially-Modified Gaussian (EMG) distribution, whose little-known properties make it very useful for Xmax analysis and for data analysis in general. A powerful method emerges which uses only descriptive statistics in a robust check for energy-dependent changes in UHECR mass or EAS development. The application of these analyses to X max data provides tantalizing clues concerning issues of critical importance, such as the relationship between Xmax and the 'ankle' break in the UHECR energy spectrum, or the inferred properties of the UHECR mass distribution and its strong dependence on hadronic model systematics.

  10. A study of radio frequency spectrum emitted by high energy air showers with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, Laura; Bonardi, Antonio; Buitink, Stijn; Corstanje, Arthur; Enriquez, J. Emilio; Falcke, Heino; Hörandel, Jörg R.; Mitra, Pragati; Mulrey, Katie; Nelles, Anna; Rachen, Jörg P.; Schellart, Pim; Scholten, Olaf; Thoudam, Satyendra; Trinh, Gia; ter Veen, Sander; Winchen, Tobias

    2017-03-01

    The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by cosmic ray induced air showers, and to characterize the geometry of the observed cascade in a detailed way. We present here a study of the radio frequency spectrum in the 30 - 80 MHz regime, and its correlation with some geometrical parameters of the extensive air shower. An important goal of this study is to find a correlation between the frequency spectrum and the primary particle type. Preliminary results on how the frequency spectrum changes as function of distance to the shower axis, and as function of primary particles mass composition are shown. The final aim of this study is to find a method to infer information of primary cosmic rays in an independent way from the well-established fluorescence and surface detector techniques, in view of affirming the radio detection technique as reliable method for the study of high energy cosmic rays.

  11. A Search for VHE Emission from GRBs using the HAWC Observatory Air Shower Data

    NASA Astrophysics Data System (ADS)

    Sparks Woodle, Kathryne

    2014-03-01

    At an altitude of 4100 m near the peak of Sierra Negra in Mexico, the High Altitude Water Cherenkov Observatory (HAWC) is a second generation water Cherenkov detector that primarily looks for very high-energy gamma-rays from the galaxy and beyond. Due to its wide field of view (~2 sr) and high duty cycle, this extensive air shower detector can observe the beginning of the prompt phase of GRBs occurring overhead. HAWC is sensitive to showers in the sub-TeV to TeV energy range and will be able to help constrain the shape and cutoff of high-energy GRB spectra, especially in conjunction with observations from other detectors such as Fermi. With the design improvement and higher elevation than its predecessor Milagro, HAWC will be almost two orders of magnitude more sensitive to GRBs at 100 GeV when complete. Existing instruments identify about 5 GRBs within HAWC's field of view per month. The detector has been operated throughout construction, and we will present a search for high-energy emission from GRBs, triggered by existing instruments, using HAWC directional air shower data.

  12. A search for sources of ultra high energy gamma rays at air shower energies with Ooty EAS array

    NASA Technical Reports Server (NTRS)

    Tonwar, S. C.; Gopalakrishnan, N. V.; Sreekantan, B. V.

    1985-01-01

    A 24 detector extensive air shower array is being operated at Ootacamund (2200 m altitude, 11.4 deg N latitude) in southern India to search for sources of Cosmic gamma rays of energies greater then 5 x 10 to the 13th power eV. The angular resolution of the array has been experimentally estimated to be better than about 2 deg. Since June '84, nearly 2.5 million showers have been collected and their arrival directions determined. These showers are being studied to search for very high energy gamma ray emission from interesting astrophysical objects such as Cygnus X-3, Crab pulsar and Geminga.

  13. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    SciTech Connect

    Aab, Alexander

    2016-01-29

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  14. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    DOE PAGES

    Aab, Alexander

    2016-01-29

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independentmore » method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.« less

  15. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NASA Astrophysics Data System (ADS)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  16. Radiation Effects Investigations Based on Atmospheric Radiation Model (ATMORAD) Considering GEANT4 Simulations of Extensive Air Showers and Solar Modulation Potential.

    PubMed

    Hubert, Guillaume; Cheminet, Adrien

    2015-07-01

    The natural radiative atmospheric environment is composed of secondary cosmic rays produced when primary cosmic rays hit the atmosphere. Understanding atmospheric radiations and their dynamics is essential for evaluating single event effects, so that radiation risks in aviation and the space environment (space weather) can be assessed. In this article, we present an atmospheric radiation model, named ATMORAD (Atmospheric Radiation), which is based on GEANT4 simulations of extensive air showers according to primary spectra that depend only on the solar modulation potential (force-field approximation). Based on neutron spectrometry, solar modulation potential can be deduced using neutron spectrometer measurements and ATMORAD. Some comparisons between our methodology and standard approaches or measurements are also discussed. This work demonstrates the potential for using simulations of extensive air showers and neutron spectroscopy to monitor solar activity.

  17. Constraining Microwave Emission from Extensive Air Showers via the MIDAS Experiment

    NASA Astrophysics Data System (ADS)

    Richardson, Matthew; Privitera, Paolo

    2017-01-01

    Ultra high energy cosmic rays (UHECRs) are accelerated by the most energetic processes in the universe. Upon entering Earth’s atmosphere they produce particle showers known as extensive air showers (EASs). Observatories like the Pierre Auger Observatory sample the particles and light produced by the EASs through large particle detector arrays or nitrogen fluorescence detectors to ascertain the fundamental properties of UHECRs. The large sample of high quality data provided by the Pierre Auger Observatory can be attributed to the hybrid technique which utilizes the two aforementioned techniques simultaneously; however, the limitation of only being able to observe nitrogen fluorescence from EASs on clear moonless nights yields a limited 10% duty cycle for the hybrid technique. One proposal for providing high quality data at increased statistics is the observation of isotropic microwave emission from EASs, as such emission would be observed with a 100% duty cycle. Measurements of microwave emission from laboratory air plasmas conducted by Gorham et al. (2008) produced promising results indicating that the microwave emission should be observable using inexpensive detectors. The Microwave Detection of Air Showers (MIDAS) experiment was built at the University of Chicago to characterize the isotropic microwave emission from EASs and has collected 359 days of observational data at the location of the Pierre Auger experiment. We have performed a time coincidence analysis between this data and data from Pierre Auger and we report a null result. This result places stringent limits on microwave emission from EASs and demonstrates that the laboratory measurements of Gorham et al. (2008) are not applicable to EASs, thus diminishing the feasibility of using isotropic microwave emission to detect EASs.

  18. Search for cosmic gamma rays with the Carpet-2 extensive air shower array

    NASA Astrophysics Data System (ADS)

    Dzhappuev, D. D.; Petkov, V. B.; Kudzhaev, A. U.; Klimenko, N. F.; Lidvansky, A. S.; Troitsky, S. V.

    2016-06-01

    The present-day status of the problem of searching for primary cosmic gamma rays at energies above 100 TeV is discussed, as well as a proposal for a new experiment in this field. It is shown that an increase of the area of the muon detector of the Carpet-2 air shower array up to 410 square meters, to be realized in 2016, will make this array quite competitive with past and existing experiments, especially at modest energies. Some preliminary results of measurements made with smaller area of the muon detector are presented together with estimates of expected results to be obtained with a coming large-area muon detector.

  19. Performance of the Extensive Air Shower Array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Martinez, O.; Medina, M.; Moreno, E.; Salazar, H.; Pérez, L.; Ponce, G.; Villaseñor, L.; Garipov, G.; Khrenov, B.

    2003-07-01

    We report on the performance of the EAS-UAP extensive air shower array after one year of operation. The array is located at 19N 90W, 800 g /cm2 ; it was designed to measure the energy and arrival direction of primary cosmic rays with energies in the range of 1014 to 1016 eV. The array consists of 12 liquid scintillation detectors of 1m2 effective area distributed in a square grid of 20m that measure the lateral distribution function of the electromagnetic component and 3 large water Cherenkov detectors to help improve the measurement of the time profile of the signals.

  20. Novel method for detecting the hadronic component of extensive air showers

    SciTech Connect

    Gromushkin, D. M.; Volchenko, V. I.; Petrukhin, A. A.; Stenkin, Yu. V.; Stepanov, V. I.; Shchegolev, O. B.; Yashin, I. I.

    2015-05-15

    A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS component were determined.

  1. Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Stenkin, Yu. V.; Alekseenko, V. V.; Aynutdinov, V.; Cai, Z. Y.; Guo, X. W.; Liu, Y.; Rulev, V.; Shchegolev, O. B.; Stepanov, V.; Volchenko, V.; Zhang, H.

    2016-08-01

    We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and 6LiF. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to estimate the number of high energy hadrons in EAS. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distributions of both components and the total number of thermal neutrons have been measured. The correlation of these data with the measurements carried out by ARGO-YBJ confirms the excellent performance of the EN-detector.

  2. The primary composition beyond 10 to the 5th power GeV as deduced from high energy hadrons and muons in air showers

    NASA Technical Reports Server (NTRS)

    Grieder, P. K. F.

    1985-01-01

    Data obtained from a large set of air shower simulation calculations with use of highly refined hadronic interaction and shower simulation model are presented, in an attempt to solve the problem of primary chemical composition beyond 100,000 GeV total energy. It is rated that high energy hadrons in air showers offer a rather unique primary mass signature and show that the interpretation of high energy muon data is much more ambiguous. Predictions are compared with experimental data.

  3. Interpretation of measurements of the number of muons in extensive air shower experiments

    NASA Astrophysics Data System (ADS)

    Prado, Raul R.; Conceição, Ruben; Pimenta, Mário; de Souza, Vitor

    2016-10-01

    In this paper we analyze the energy evolution of the muon content of air showers between 1018.4 and 1019.6 eV to be able to determine the most likely mass composition scenario from future number of muons measurements. The energy and primary mass evolution of the number of muons is studied based on the Heitler-Matthews model and Monte Carlo simulation of the air shower. A simple model to describe the evolution of the first and second moments of number of muons distributions is proposed and validated. An analysis approach based on the comparison between this model's predictions and data to discriminate among a set of composition scenarios is presented and tested with simulations. It is shown that the composition scenarios can be potentially discriminated under the conditions imposed by the method. The discrimination power of the proposed analysis is stable under systematic changes of the absolute number of muons from model predictions and on the scale of the reconstructed energy.

  4. Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Martínez, O.; Pérez, E.; Salazar, H.; Villaseñor, L.

    We describe the design of an extensive air shower detector array built in the Campus of the University of Puebla (located at 19°N, 90°W, 800 gcm -2) to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m 2 cross section and five smaller ones of 1.86 m 2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m 2. In this paper we discuss the calibration and stability of the array, and discuss the capability of hybrid arrays, such as this one consisting of water Cherenkov and liquid scintillator detectors, to allow a separation of the electromagnetic and muon components of extensive air showers. This separation plays an important role in the determination of the mass and identity of the primary cosmic ray. This facility is also used to train students interested in the field of cosmic rays.

  5. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector.

  6. Progress report on a new search for free e/3 quarks in the cores of 10(15) - 10(16) eV air showers

    NASA Technical Reports Server (NTRS)

    Hodson, A. L.; Bull, R. M.; Taylor, R. S.; Belford, C. H.

    1985-01-01

    The Leeds 3 sq m Wilson cloud chamber is being used in a new search for free e/3 quarks close to the axes of 10 to the 15th power - 10 to the 16th power eV air showers. A ratio trigger circuit is used to detect the incidence of air shower cores; the position of the shower center and the axis direction are determined from photographs of current-limited spark chambers. It is thus possible, for the first time, to know where we have looked for quarks in air showers and to select for scanning only those cloud chamber photographs where we have good evidence that the shower axis was close to the chamber. 250 g/sq cm of lead/concrete absorber above the cloud chamber serve to reduce particle densities and make a quark search possible very close to the shower axes. The current status of the search is given.

  7. A method of observing cherenkov light from extensive air shower at Yakutsk EAS array

    NASA Astrophysics Data System (ADS)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    Proposed a new method for measuring the cherenkov light from the extensive air shower (EAS) of cosmic rays (CR), which allows to determine not only the primary particle energy and angle of arrival, but also the parameters of the shower in the atmosphere - the maximum depth and "age". For measurements Cherenkov light produced by EAS is proposed to use a ground network of wide-angle telescopes which are separated from each other by a distance 100-300 m depending on the total number of telescopes operating in the coincidence signals, acting autonomously, or includes a detector of the charged components, radio waves, etc. as part of EAS. In a results such array could developed, energy measurement and CR angle of arrival data on the depth of the maximum and the associated mass of the primary particle generating by EAS. This is particularly important in the study of galactic cosmic ray in E> 10^14 eV, where currently there are no direct measurements of the maximum depth of the EAS.

  8. Temporal signatures of the Cherenkov light induced by extensive air showers of cosmic rays detected with the Yakutsk array

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Timofeev, L. V.

    2016-05-01

    We analyze temporal characteristics of signals from the wide field-of-view (WFOV) Cherenkov telescope (CT) detecting extensive air showers (EAS) of cosmic rays (CRs) in coincidence with surface detectors of the Yakutsk array. Our aim is to reveal causal relationships between measured characteristics and physical properties of EAS.

  9. Future Extensive Air Shower arrays: From Gamma-Ray Astronomy to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Di Sciascio, Giuseppe

    2016-07-01

    Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 1011 - 1018 eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.

  10. Electronics for the Extensive Air Shower Detector Array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Pérez, E.; Conde, R.; Martínez, O.; Murrieta, T.; Salazar, H.; Villaseñor, L.

    2006-09-01

    In this paper we describe in detail the electronics cards that were designed to be the basis of the data acquisition system (DAS) of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this observatory is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m2 cross section and five smaller ones of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described here uses analog to digital converters of 10 bits working at a sampling speed of 40 MS/s and field-programmable gate array (FPGA).

  11. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  12. On the extension of the sensitive area of an extensive air shower surface array

    NASA Astrophysics Data System (ADS)

    Hedayati, Kh. H.

    2017-02-01

    A large distance between true and reconstructed core locations of an extensive air shower (EAS) may result in great systematic mis-estimation of EAS parameters. The reconstruction of those EASs whose core locations are outside the boundary of a surface array (outside EAS (OEAS)) results in a large distance of the reconstructed core location from the true one, especially when the true core is far outside the array. Although it may not be mentioned, the rejection of OEASs is a necessary and important step in the reconstruction procedure of an EAS. In this paper, an existing technique is optimized for the rejection of OEASs. The simultaneous use of this technique and a recently developed approach for reconstructing the core location of an EAS can significantly increase the sensitive area of a surface array.

  13. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles.

    PubMed

    Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y

    2014-10-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure.

  14. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  15. On the extension of the sensitive area of an extensive air shower surface array

    NASA Astrophysics Data System (ADS)

    Kh., H. Hedayati

    2017-04-01

    A large distance between true and reconstructed core locations of an extensive air shower (EAS) may result in great systematic mis-estimation of EAS parameters. The reconstruction of those EASs whose core locations are outside the boundary of a surface array (outside EAS (OEAS)) results in a large distance of the reconstructed core location from the true one, especially when the true core is far outside the array. Although it may not be mentioned, the rejection of OEASs is a necessary and important step in the reconstruction procedure of an EAS. In this paper, an existing technique is optimized for the rejection of OEASs. The simultaneous use of this technique and a recently developed approach for reconstructing the core location of an EAS can significantly increase the sensitive area of a surface array.

  16. Test of a Hadronic Interaction Model by a Multidimensional Analysis of Lateral and Longitudinal Air-Shower Observables at KASCADE

    NASA Astrophysics Data System (ADS)

    Badea, F.; Antoni, T.; Apel, W. D.; Bekk, K.; Bercuci, A.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Büttner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Feßler, F.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Iwan, A.; Kampert, K-H.; Klages, H. O.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Müller, M.; Obenland, R.; Oehschläger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; van Buren, J.; Vardanyan, A.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2003-07-01

    The multi-detector experiment KASCADE enables simultaneous observations of parameters describing the lateral and longitudinal development of Extensive Air Showers. The present analysis is fo cused on Field Array and Muon Tracking detectors of KASCADE. The Field Array (FA) provides the numbers of electrons and muons in the shower and the Muon Tracking Detector (MTD) measures angles-of-incidence of muons which are related to the longitudinal development of EAS. An identical two step deconvolution method (on primary mass using a Bayesian approach and on primary energy) is performed to calculate the primary mass and energy of cosmic rays using the correlation of FA observables only and by adding MTD observables. The consistency of the CORSIKA/QGSJET simulation code in describing the correlation between lateral and longitudinal developments of the shower is studied by comparing the results obtained from the two sets of observables.

  17. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    SciTech Connect

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-09-22

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X{sub max}) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  18. The composition of cosmic rays near the Bend (10 to the 15th power eV) from a study of muons in air showers at sea level

    NASA Technical Reports Server (NTRS)

    Goodman, J. A.; Gupta, S. C.; Freudenreich, H. T.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, M. C.; Burnstein, R.

    1985-01-01

    The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV.

  19. Radio wave emitted by an extensive air showers in 10KHz to 1MHz region

    NASA Technical Reports Server (NTRS)

    Nichimura, J.

    1985-01-01

    The importance of radio waves in a frequency range of less than 1MHz in an EAS shower is discussed. Estimates of radio intensities at 10KHz, 100KHz and 1MHz in EAS showers made on the basis of the Kahn-Lerche theory. Negative charge excess in a shower is the main source of low frequency radio emission, in spite of the importance of the contribution of transverse current in the geomagnetic field in a higher frequency range. An estimate is also made for radio intensity produced when the shower hits the ground. The contribution of this process seems to be important at a large distance, i.e., beyond 1km from the shower axis.

  20. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  1. Detection of very inclined showers with the Auger Observatory

    SciTech Connect

    Nellen, Lukas; /Mexico U., ICN

    2005-07-01

    The Pierre Auger Observatory can detect air showers with high efficiency at large zenith angles with both the fluorescence and surface detectors. Since half the available solid angle corresponds to zeniths between 60 and 90 degrees, a large number of inclined events can be expected and are indeed observed. In this paper, we characterize the inclined air showers detected by the Observatory and we present the aperture for inclined showers and an outlook of the results that can be obtained in future studies of the inclined data set.

  2. The muon component in extensive air showers and new p+C data in fixed target experiments

    SciTech Connect

    Meurer, C.; Bluemer, J.; Engel, R.; Haungs, A.; Roth, M.

    2007-03-19

    One of the most promising approaches to determine the energy spectrum and composition of the cosmic rays with energies above 1015 eV is the measurement of the number of electrons and muons produced in extensive air showers (EAS). Therefore simulation of air showers using electromagnetic and hadronic interaction models are necessary. These simulations show uncertainties which come mainly from hadronic interaction models. One aim of this work is to specify the low energy hadronic interactions which are important for the muon production in EAS. Therefore we simulate extensive air showers with a modified version of the simulation package CORSIKA. In particular we investigate in detail the energy and the phase space regions of secondary particle production, which are most important for muon production. This phase space region is covered by fixed target experiments at CERN. In the second part of this work we present preliminary momentum spectra of secondary {pi}+ and {pi}- in p+C collisions at 12 GeV/c measured with the HARP spectrometer at the PS accelerator at CERN. In addition we use the new p+C NA49 data at 158 GeV/c to check the reliability of hadronic interaction models for muon production in EAS. Finally, possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.

  3. Observation of Multi-TeV Gamma Rays from the Crab Nebula using the Tibet Air Shower Array.

    PubMed

    Amenomori; Ayabe; Cao; Danzengluobu; Ding; Feng; Fu; Guo; He; Hibino; Hotta; Huang; Huo; Izu; Jia; Kajino; Kasahara; Katayose; Labaciren; Li; Lu; Lu; Luo; Meng; Mizutani; Mu; Nanjo; Nishizawa; Ohnishi; Ohta; Ouchi; Ren; Saito; Sakata; Sasaki; Shi; Shibata; Shiomi; Shirai; Sugimoto; Taira; Tan; Tateyama; Torii; Utsugi; Wang; Wang; Xu; Yamamoto; Yu; Yuan; Yuda; Zhang; Zhang; Zhang; Zhang; Zhang; Zhaxisangzhu; Zhaxiciren; Zhou; Collaboration)

    1999-11-10

    The Tibet experiment, operating at Yangbajing (4300 m above sea level), is the lowest energy air shower array, and the new high-density array constructed in 1996 is sensitive to gamma-ray air showers at energies as low as 3 TeV. With this new array, the Crab Nebula was observed in multi-TeV gamma-rays and a signal was detected at the 5.5 sigma level. We also obtained the energy spectrum of gamma-rays in the energy region above 3 TeV which partially overlaps those observed with imaging atmospheric Cerenkov telescopes. The Crab spectrum observed in this energy region can be represented by the power-law fit dJ&parl0;E&parr0;&solm0;dE=&parl0;4.61+/-0.90&parr0;x10-12&parl0;E&solm0;3 TeV&parr0;-2.62+/-0.17 cm-2 s-1 TeV-1. This is the first observation of gamma-ray signals from point sources with a conventional air shower array using scintillation detectors.

  4. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  5. Extensive Air Shower Array at the University of Puebla (EAS-BUAP)

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.

    2003-06-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays (1016 > Eo > 1014eV). The array is located at the Campus of Puebla University. It consist of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. One Auger Water Cherenkov detector is also included as part of the array. In this report we discuss the stability, the calibration, the arrival direction and lateral distribution function reconstruction capabilities of the detector array, as derived from the 10 detectors in operation in the first stage. Our results shows that the angular accuracy in arrival direction is less than 5.5° in the range from 20° to 60°. The measurements in the Water Cherenkov Detector show us the possibility to separete electromagnetic and muon component. The main characteristics of the array allow us also to use it as educational and training facility.

  6. OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY

    SciTech Connect

    Aartsen, M. G.; Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Altmann, D.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Tjus, J. Becker; Becker, K.-H.; Collaboration: IceCube Collaboration; and others

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10{sup -3} level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 Degree-Sign and an amplitude of (- 1.58 {+-} 0.46{sub stat} {+-} 0.52{sub sys}) Multiplication-Sign 10{sup -3} at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 {+-} 0.38{sub stat} {+-} 0.96{sub sys}) Multiplication-Sign 10{sup -3}.

  7. Detection and imaging of atmospheric radio flashes from cosmic ray air showers.

    PubMed

    Falcke, H; Apel, W D; Badea, A F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Buitink, S; Brüggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Daumiller, K; de Bruyn, A G; de Vos, C M; Di Pierro, F; Doll, P; Engel, R; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K-H; Kant, G W; Klein, U; Kolotaev, Y; Koopman, Y; Krömer, O; Kuijpers, J; Lafebre, S; Maier, G; Mathes, H J; Mayer, H J; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Pepping, H J; Petcu, M; Petrovic, J; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Schoonderbeek, G; Sima, O; Stümpert, M; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; van Buren, J; van Cappellen, W; Walkowiak, W; Weindl, A; Wijnholds, S; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2005-05-19

    The nature of ultrahigh-energy cosmic rays (UHECRs) at energies >10(20) eV remains a mystery. They are likely to be of extragalactic origin, but should be absorbed within approximately 50 Mpc through interactions with the cosmic microwave background. As there are no sufficiently powerful accelerators within this distance from the Galaxy, explanations for UHECRs range from unusual astrophysical sources to exotic string physics. Also unclear is whether UHECRs consist of protons, heavy nuclei, neutrinos or gamma-rays. To resolve these questions, larger detectors with higher duty cycles and which combine multiple detection techniques are needed. Radio emission from UHECRs, on the other hand, is unaffected by attenuation, has a high duty cycle, gives calorimetric measurements and provides high directional accuracy. Here we report the detection of radio flashes from cosmic-ray air showers using low-cost digital radio receivers. We show that the radiation can be understood in terms of the geosynchrotron effect. Our results show that it should be possible to determine the nature and composition of UHECRs with combined radio and particle detectors, and to detect the ultrahigh-energy neutrinos expected from flavour mixing.

  8. SEARCH FOR GAMMA RAYS ABOVE 100 TeV FROM THE CRAB NEBULA WITH THE TIBET AIR SHOWER ARRAY AND THE 100 m{sup 2} MUON DETECTOR

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J.; Chen, D.; Chen, T. L.; Danzengluobu; Hu, Haibing; Cui, S. W.; He, Z. T.; Feng, C. F.; Feng, Z. Y.; Hibino, K.; Hotta, N.; Collaboration: Tibet ASγ Collaboration; and others

    2015-11-10

    A 100 m{sup 2} muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m{sup 2} MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ∼100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  9. Search for 100 TeV gamma rays from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon detector

    NASA Astrophysics Data System (ADS)

    Sako, Takashi

    2016-07-01

    The 100 m ^{2} muon detector (MD) was constructed under the Tibet air shower (AS) array in the late autumn of 2007. By selecting muon-poor events with the MD, the sensitivity of the Tibet AS array to cosmic gamma rays can be improved. Our MC simulation of the MD response is in reasonable agreement with the experimental data, with regard to the charge distribution for one-muon events and the background rejection power. Using the data taken from 2008 March to 2010 February by the Tibet AS array and the 100 m ^{2} MD, we search for continuous 100 TeV gamma-ray emission from the Crab Nebula. No significant excess is detected, and the world's best upper limit is obtained above 140 TeV.

  10. Search for Gamma Rays above 100 TeV from the Crab Nebula with the Tibet Air Shower Array and the 100 m2 muon Detector

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yasue, S.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; Tibet ASγ Collaboration

    2015-11-01

    A 100 m2 muon detector (MD) was successfully constructed under the existing Tibet air shower (AS) array in the late fall of 2007. The sensitivity of the Tibet AS array to cosmic gamma rays can be improved by selecting muon-poor events with the MD. Our MC simulation of the MD response reasonably agrees with the experimental data in terms of the charge distribution for one-muon events and the background rejection power. Using the data collected by the Tibet AS array and the 100 m2 MD taken from 2008 March to 2010 February, we search for continuous gamma-ray emission from the Crab Nebula above ˜100 TeV. No significant excess is found, and the most stringent upper limit is obtained above 140 TeV.

  11. Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Acounis, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti&cbreve; i'c, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenir, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Charrier, D.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garçon, T.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Messina, S.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stassi, P.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyj, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-11-01

    We describe the experimental setup and the results of RAuger, a small radio-antenna array, consisting of three fully autonomous and self-triggered radio-detection stations, installed close to the center of the Surface Detector (SD) of the Pierre Auger Observatory in Argentina. The setup has been designed for the detection of the electric field strength of air showers initiated by ultra-high energy cosmic rays, without using an auxiliary trigger from another detection system. Installed in December 2006, RAuger was terminated in May 2010 after 65 registered coincidences with the SD. The sky map in local angular coordinates (i.e., zenith and azimuth angles) of these events reveals a strong azimuthal asymmetry which is in agreement with a mechanism dominated by a geomagnetic emission process. The correlation between the electric field and the energy of the primary cosmic ray is presented for the first time, in an energy range covering two orders of magnitude between 0.1 EeV and 10 EeV. It is demonstrated that this setup is relatively more sensitive to inclined showers, with respect to the SD. In addition to these results, which underline the potential of the radio-detection technique, important information about the general behavior of self-triggering radio-detection systems has been obtained. In particular, we will discuss radio self-triggering under varying local electric-field conditions.

  12. Observations of steady flux of PeV-energy extensive air showers from Cygnus X-3 during 1984-1986

    NASA Astrophysics Data System (ADS)

    Tonwar, S. C.; Gopalakrishnan, N. V.; Rajeev, M. R.; Sreekantan, B. V.

    1988-07-01

    Data taken with a 24-detector extensive-air-shower (EAS) array, operating at Ooty since June, 1984, have been used to search for excess of EASs of energy greater than 250 TeV from the direction of binary X-ray source Cyg X-3. The data show a time-averaged excess in the number of showers from this direction, over the background determined from other regions of the sky having the same declination. The excess is most prominent among older showers having a flatter lateral distribution. A part of this excess shows up significantly in the phase region, 0.6-0.8 in the 4.8-hr periodicity analysis. These observations correspond to an integral flux of (7.16 + or - 3.15) x 10 to the -13th/sq cm sec at energies greater than 250 TeV and of (1.04 + or - 0.44) x 10 to the -13th/sq cm sec at energies greater than 2.5 PeV. The observations confirm, for the first time, results reported by the Kiel group (Samorski and Stamm, 1983) of a directional excess from the direction of Cyg X-3, without requiring the 4.8-hr periodicity analysis as was necessary in many of the other experiments reporting positive signals. This emphasizes the advantage of good angular resolution for such studies.

  13. Lateral Distribution of Air Shower Signals and Initial Energy Spectrum above 1 PeV from IceTop

    NASA Astrophysics Data System (ADS)

    Klepser, S.; Kislat, F.; Kolanoski, H.; Niessen, P.; Van Overloop, A.

    With the present size of the IceTop air shower array it is possible to measure an energy spectrum in the range of 1 PeV to 100 PeV. To do so, a lateral pulse height fit was performed on all analysed showers. Therefore it is crucial to have a realistic parametrisation of the expected lateral distribution and the corresponding fluctuations of the measured tank signals. Since IceTop tanks do not measure particle numbers, but rather portions of deposited energy, the typically used lateral distribution functions like NKG do not apply. Hence, a suitable function was developed in a CORSIKA simulation study. Having two tanks separated by 10m at each detector station, it is furthermore possible to study local pulse height fluctuations directly in data. These are used to develop a parametrisation of the weights needed in the lateral fit procedure. We will present the results of these investigations and preliminary distributions of the resulting shower parameters.

  14. An analytical approach to the multiply scattered light in the optical images of the extensive air showers of ultra-high energies

    NASA Astrophysics Data System (ADS)

    Giller, Maria; Śmiałkowski, Andrzej

    2012-08-01

    One of the methods for studying the highest energy cosmic rays is to measure the fluorescence light emitted by the extensive air showers induced by them. To reconstruct a shower cascade curve from measurements of the number of photons arriving from the subsequent shower track elements it is necessary to take into account the multiple scatterings that photons undergo on their way from the shower to the detector. In contrast to the earlier Monte-Carlo work, we present here an analytical method to treat the Rayleigh and Mie scatterings in the atmosphere. The method consists in considering separately the consecutive 'generations' of the scattered light. Starting with a point light source in a uniform medium, we then examine a source in a real atmosphere and finally - a moving source (shower) in it. We calculate the angular distributions of the scattered light superimposed on the not scattered light registered from a shower at a given time. The analytical solutions (although approximate) show how the exact numerical results should be parametrised what we do for the first two generations (the contribution of the higher ones being small). Not allowing for the considered effect may lead to an overestimation of shower primary energy by ˜15% and to an underestimation of the primary particle mass (E0=1019eV with the core distance 25 km and θZ=40°).

  15. Electrons, muons and hadrons in extensive air showers and how do they depend on nuclear interaction model, part 2

    NASA Technical Reports Server (NTRS)

    Wrotniak, J. A.; Yodh, G. B.

    1985-01-01

    Some of the results of Monte Carlo simulations of extensive air showers for nuclear interactions models are presented. The most significant part of scaling violation effect is generated by the inclusion of rising cross-section. Among the models considered the lowest value for Eo/N(max) is obtained when rapidly rising cross-section and charge exchange are both included (model R-F01). The value is still 1.38 GeV/electron. Except at the highest energies, the sensitivity to atomic mass of the primary is greater than to specific assumptions about multiple production.

  16. The small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield of cosmic ray shower particles

    NASA Astrophysics Data System (ADS)

    Al Samarai, Imen; Deligny, Olivier; Rosado, Jaime

    2016-10-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu electronic level of nitrogen molecules to the B 3Πg one amounting to Y[ 337 ] =(6.05 ± 1.50) MeV-1 at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330-400]MBR = 0.10 MeV-1 in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of ≃175 photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.

  17. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Charrier, D.; Denis, L.; Hilgers, G.; Mohrmann, L.; Philipps, B.; Seeger, O.

    2012-10-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.

  18. Note on the detection of high energy primary cosmic gamma rays by air shower observation

    NASA Technical Reports Server (NTRS)

    Kasahara, K.; Torii, S.; Yuda, T.

    1985-01-01

    A mountain altitude experiment is planned at Mt. Norikura in Japan to search for point sources of astrophysical high-energy gamma rays in the 10 to the 15th power eV range. The advantages of mountain level observation of IR showers is stressed, especially in the case of high-energy gamma primaries from Cygnus X3 and other similar point sources.

  19. Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model NEXUS

    NASA Astrophysics Data System (ADS)

    Bossard, G.; Drescher, H. J.; Kalmykov, N. N.; Ostapchenko, S.; Pavlov, A. I.; Pierog, T.; Vishnevskaya, E. A.; Werner, K.

    2001-03-01

    The purpose of this paper is twofold: first we want to introduce a new type of hadronic interaction model (NEXUS), which has a much more solid theoretical basis than, for example, presently used models such as QGSJET and VENUS, and ensures therefore a much more reliable extrapolation towards high energies. Secondly, we want to promote an extensive air shower (EAS) calculation scheme, based on cascade equations rather than explicit Monte Carlo simulations, which is very accurate in calculations of main EAS characteristics and extremely fast concerning computing time. We employ the NEXUS model to provide the necessary data on particle production in hadron-air collisions and present the average EAS characteristics for energies 1014-1017 eV. The experimental data of the CASA-BLANCA group are analyzed in the framework of the new model.

  20. Meteor Showers.

    ERIC Educational Resources Information Center

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  1. Application of CORSIKA Simulation Code to Study Lateral and Longitudinal Distribution of Fluorescence Light in Cosmic Ray Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad

    2017-03-01

    In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.

  2. TeV γ-ray astronomy with ground-based air-shower arrays

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2016-07-01

    The TeV energy band is a very exciting window into the origin of high energy cosmic radiation, particle acceleration, and the annihilation of dark matter particles. Above a few hundred GeV, ground-based experiments of very large effective areas open a new domain to study extragalactic sources at intermediate redshifts, galaxy clusters, gamma ray bursts, AGN and their flaring states, extended sources and galactic diffuse emission, and to indirect searches for dark matter. In particular, ground arrays of particle detectors -that operate with high duty cycles and large fields of view- can extend to multi-TeV energies the measurements made with experiments on satellites, and complement the observations done with air Cherenkov telescopes on the ground. Key science goals of ground arrays include performing unbiased all-sky surveys, monitoring of transient events from known (and unknown) sources, and detecting extended regions of diffuse emission. In this paper, the status and most recent results from ARGO-YBJ, Tibet AS, HAWC, and LHAASO are presented.

  3. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration*

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax ), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  4. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    SciTech Connect

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  5. The All-Particle Spectrum of Primary Cosmic Rays in the Wide Energy Range from 10{sup 14} to 10{sup 17} eV Observed with the Tibet-III Air-Shower Array

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, X. H.; Guo, H. W.; Hu, Haibing; Fan, C.; Feng, C. F.; He, M.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Hibino, K.; Hotta, N.

    2008-05-10

    We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction models QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.

  6. Minor meteor shower activity

    NASA Astrophysics Data System (ADS)

    Rendtel, J.

    2016-01-01

    Video meteor observations provide us with data to analyze structures in minor meteor showers or weak features in flux profiles. Samples obtained independently by other techniques allow to calibrate the data sets and to improve the confidence of results as demonstrated with a few results. Both, the confirmation of events predicted by model calculation and the input of observational data to improve the modelling results may help to better understand meteoroid stream evolution processes. Furthermore, calibrated data series can be used for studies of the long-term evolution of meteor shower activity.

  7. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1 017.8 eV

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2014-12-01

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1 017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  8. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  9. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    SciTech Connect

    Aab, Alexander

    2016-06-14

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ± 0.7 (stat) ± 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  10. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    DOE PAGES

    Aab, Alexander

    2016-06-14

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ± 0.7 (stat) ± 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade ofmore » extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.« less

  11. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE PAGES

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations formore » different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  12. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  13. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ±0.7 (stat)±6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  14. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $10^{17.8}$ eV

    SciTech Connect

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  15. The longitudinal development of muons in cosmic ray air showers at energies 10(15) - 10(17) eV

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relationship between longitudinal development of muons and conventional equi-intensity cuts is carefully investigated. The development of muons in Extensive Air Showers (EAS) has been calculated using simulation with a scaling violation model at the highest energies and mixed primary composition. Profiles of equi-intensity cuts expected at observation altitudes of 550, 690 and 930/sq cm can fit the observed data very well.

  16. Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    NASA Technical Reports Server (NTRS)

    Muraki, Y.

    1985-01-01

    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.

  17. Studies of air showers produced by primaries 10(16) eV using a combined scintillation and water-Cerenkov array

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Perrett, J. C.; Watson, A. A.

    1986-01-01

    An array of 8 x 1.0 sq m plastic scintillation counters and 13 water-Cerenkov detectors (1 to 13.5 sq m) were operated at the center of the Haverah Park array to study some features of air showers produced by 10(16) eV primaries. Measurements of the scintillator lateral distribution function, the water-Cerenkov lateral distribution function, and of the distance dependence of the Cerenkov/scintillator ratio are described.

  18. Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Perez, E.; Salazar, H.; Villasenor, L.; Martinez, O.; Conde, R.; Murrieta, T.

    Field programmable gate arrays (FPGAs) are playing an increasing role in DAQ systems in cosmic ray experiments due to their high speed and integration and their low cost and low power comsumption. In this paper we describe in detail the new electronics and data acquisition system based on FPGA boards of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this detector array is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 10 liquid scintillator detectors and 6 water Cherenkov detectors (of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described also makes use of analog to digital converters with a resolution of 10 bits and sampling speeds of 100 MS/s to digitize the PMT signals. We also discuss the advantages of discriminating the PMT signals inside the FPGAs with respect to the conventional use of dedicated discrimination circuits.

  19. Numerical simulations of compact intracloud discharges as the Relativistic Runaway Electron Avalanche-Extensive Air Shower process

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.

    2014-01-01

    Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.

  20. Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.; The Tibet ASγ Collaboration

    2017-02-01

    We report on the analysis of the 10–1000 TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from 1995 October to 2010 February. In this analysis, we improve the energy estimate and extend the decl. range down to ‑30°. We find that the anisotropy maps above 100 TeV are distinct from that at a multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant, and a new component appears at ∼100 TeV. The spatial distribution of the GCR intensity with an excess (7.2σ pre-trial, 5.2σ post-trial) and a deficit (‑5.8σ pre-trial) are observed in the 300 TeV anisotropy map, in close agreement with IceCube’s results at 400 TeV. Combining the Tibet results in the northern sky with IceCube’s results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above ∼100 TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.

  1. Extensive Air Shower simulation and reconstruction for IACT in TAIGA experiment.

    NASA Astrophysics Data System (ADS)

    Grinyuk, Andrey

    2016-07-01

    Hybrid array of timing Cherenkov stations and imaging atmospheric Cherenkov telescopes are currently under construction in Tunka valley. They will allow to combine strengths of these 2 approaches but call for creation of specialized software to perform simulation of the whole detector. This work presents some results of such simulations including estimations of detector sensitivity and primary particle discrimination based on hybrid event reconstruction.

  2. Air Heating Associated with Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Riousset, J. A.; Pasko, V. P.; Bourdon, A.

    2009-12-01

    The understanding of ambient gas heating processes initiated by needle-shaped filaments of ionization, called streamers, embedded in originally cold air (near room temperature) represents a long standing problem, which is of interest for studies of long laboratory sparks and natural lightning discharges [e.g., Gallimberti et al., C. R. Physique, 3, 1335, 2002]. The observed phenomenology of a subset of the recently observed transient luminous events in the middle atmosphere, which originate from thundercloud tops [e.g, Wescott et al., JGR, 106, 21549, 2001; Pasko et al., Nature, 416, 152, 2002; Su et al., Nature, 423, 974, 2003; Krehbiel et al., Nature Geoscience, 1, 233, 2008; Cummer et al., Nature Geoscience, 2, 617, 2009, Riousset et al., JGR, 10.1029/2009JA014286, 2009, in press], indicate that these events may be related to conventional lightning leader processes and therefore are associated with significant heating of the air in the regions of atmosphere through which they propagate [Pasko and George, JGR, 107, 1458, 2002]. Many of the small scale features observed in sprites at higher altitudes [e.g., Stenbaek-Nielsen et al., GRL, 104, L11105, 2007, and references therein] can be interpreted in terms of corona streamers, which, after appropriate scaling with air density, are fully analogous to those, which initiate spark discharges in relatively short (several cm) gaps at near ground pressure [Liu et al., JGR, 114, A00E03, 2009, and references therein] and which constitute building blocks of streamer zones of conventional lightning leaders in long gaps [Gallimberti et al., 2002]. The recent reports of infrasound bursts originating from 60-80 km altitudes in sprites, with durations consistent with the optical widths of the sprites [e.g., Farges, in Lightning: Principles, Instruments and Applications, p. 417, Betz et al., (eds.), Springer, 2009], provide an additional motivation for studies of the heating of the ambient air and associated chemical effects

  3. An upper limit of muon flux of energies above 100 TeV determined from horizontal air showers observed at Akeno

    NASA Technical Reports Server (NTRS)

    Nagano, M.; Yoshii, H.; Hara, T.; Kamata, K.; Kawaguchi, S.; Kifune, T.

    1985-01-01

    Muon energy spectrum above 100 TeV was determined by observing the extensive air showers (EAS) from the horizontal direction (HAS). No definite muon originated shower of sizes above 100,000 and zenith angles above 60 deg was observed. The upper limits of HAS intensity is 5x10/12 m/2 s/1 sn/1 above 100,000. It is indicated that the upper limit of muon flux above 100 TeV is about 1.3x10/8 m/2 s/1 sr/1 and is in agreement with that expected from the primary spectrum with a knee assuming scaling in the fragmentation region and 40% protons in the primary beam. The critical energy at which muon flux from prompt processes take over that from the conventional process is higher than 100 Tev at horizontal direction.

  4. Ice surface roughness modeling for effect on radio signals from UHE particle showers

    NASA Astrophysics Data System (ADS)

    Stockham, Jessica

    2014-03-01

    For radio antenna detectors located in or above the Antarctic ice sheet, the reconstruction of both ultra-high energy (UHE) neutrino and cosmic ray air shower events requires understanding the transmission and reflection properties of the air-ice interface. To this end, surface and volume scattering from granular materials in the microwave frequency range are measured and stereoscopic images of the ice surface, obtained by the Antarctric Geophysics Along the Vostok Expedition (AGAVE), are used to determine the 3D surface structure. This data is implemented to determine an appropriate model for use in simulation and data analysis of the shower events. ANtarctic Impulsive Transient Antenna.

  5. Underground water Cherenkov muon detector array with the Tibet air shower array for gamma-ray astronomy in the 100 TeV region

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Bi, X. J.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, B.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.

    2007-06-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10 1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  6. Simulation of gamma-initiated showers

    NASA Technical Reports Server (NTRS)

    Stamenov, Y.; Vancov, K.; Vodenicharova, T.

    1985-01-01

    The main average characteristics of muon, electron and hadron components of extensive air showers were calculate using a standard model of nuclear interaction. The obtained results are in good agreement with Tien Shan experimental data.

  7. Radio signals from very large showers

    NASA Technical Reports Server (NTRS)

    Suga, K.; Kakimoto, F.; Nishi, K.

    1985-01-01

    Radio signals from air showers with electron sizes in the range 1 x 10 to the 7th power to 2 x 10 to the 9th power were detected at 50kHz, 170kHz, and 1,647kHz at large core distances in the Akeno square kilometers air-shower array. The field strength is higher than that expected from any mechanisms hitherto proposed.

  8. Photoproduction total cross section and shower development

    NASA Astrophysics Data System (ADS)

    Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.

    2015-12-01

    The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  9. Perspective of detecting very high energy gamma-ray emission from active galactic nuclei with Large High Altitude Air Shower Observatory (LHAASO)

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Yuan, Qiang; Bi, Xiao-Jun; Zhu, Feng-Rong; Jia, Huan-Yu

    2016-10-01

    The detectability of active galactic nuclei (AGN), a major class of γ-ray emitters in the sky, by the newly planned Chinese project, Large High Altitude Air Shower Observatory (LHAASO), is investigated. The expectation is primarily based on the AGN catalog of Fermi Large Area Telescope (Fermi-LAT), with an extrapolation to the very high energy (VHE) range taking into account the absorption effect by the extragalactic background light (EBL). It is found that LHAASO may have the potential to detect more than several tens of the Fermi detected AGN, basically BL Lacertaes, with one-year sky survey. The capability of measuring the energy spectrum and light curve are also discussed.

  10. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  11. Sensitivity of the correlation between the depth of shower maximum and the muon shower size to the cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Younk, Patrick; Risse, Markus

    2012-07-01

    The composition of ultra-high energy cosmic rays is an important issue in astroparticle physics research, and additional experimental results are required for further progress. Here we investigate what can be learned from the statistical correlation factor r between the depth of shower maximum and the muon shower size, when these observables are measured simultaneously for a set of air showers. The correlation factor r contains the lowest-order moment of a two-dimensional distribution taking both observables into account, and it is independent of systematic uncertainties of the absolute scales of the two observables. We find that, assuming realistic measurement uncertainties, the value of r can provide a measure of the spread of masses in the primary beam. Particularly, one can differentiate between a well-mixed composition (i.e., a beam that contains large fractions of both light and heavy primaries) and a relatively pure composition (i.e., a beam that contains species all of a similar mass). The number of events required for a statistically significant differentiation is ˜200. This differentiation, though diluted, is maintained to a significant extent in the presence of uncertainties in the phenomenology of high energy hadronic interactions. Testing whether the beam is pure or well-mixed is well motivated by recent measurements of the depth of shower maximum.

  12. Air Quality Side Event Proposal November 2016 GEO XIII ...

    EPA Pesticide Factsheets

    The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques. It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO Participating Organizations at the Side Event. It is an opportunity to share scientific and technological advances in this area and build partnerships and collaboration. The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques.  It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO P

  13. Studying depth of shower maximum using variable interaction length

    NASA Astrophysics Data System (ADS)

    Dehghani, Hojat; Fatemi, Seyed Jalil; Davoudifar, Pantea

    2017-04-01

    Due to the high energy interactions of cosmic ray particles, progressive showers of secondary particles initiate in the atmosphere. Several models are suggested to describe the longitudinal development of extensive air showers, for example the Heitler model. The Heitler model also is written for hadronic showers. Anyhow, the predicted values of X_{max} may differ significantly with the values from detailed simulations by up to about 100 (g/cm2). In the present work, the mean depth of shower maximum is calculated using a variable interaction length. New equations for X_{max} in the electromagnetic and hadronic showers have been obtained.

  14. Detecting atmospheric cosmic ray induced muon showers with the NO νA Far Detector

    NASA Astrophysics Data System (ADS)

    Sultana, Mehreen

    2015-04-01

    The research goals of Fermilab's NuMi Off-Axis Electron Neutrino Appearance (NO νA) are to observe muon neutrino to electron neutrino oscillations, determine the ordering of neutrino masses, and explain violation of matter/anti-matter symmetry. However, NO νA can also be used to study cosmic ray induced high energy extensive air showers. This poster describes the initial characterization of NO νA as a cosmic ray detector. The detector has a combination of large size and high spatial resolution that will allow future studies of the hadronic cores of cosmic ray air showers. A large component of these showers are muons. Multiple parallel muon tracks seen in a single event with the NO νA detectors result from the same primary cosmic ray collision in the upper atmosphere. In order to use these muon bundles to probe the cosmic ray physics involved, we determine event characteristics such as the multiplicity of observed multiple muons, the effective area of the detector, the angular resolution of the detector, the scattering of individual muons, and the effectiveness of identifying and isolating these parallel muon shower events from background and noise. NuMi Off-Axis Electron Neutrino Appearance Experiment.

  15. Multidimensional analysis of data obtained in experiments with X-ray emulsion chambers and extensive air showers

    NASA Technical Reports Server (NTRS)

    Chilingaryan, A. A.; Galfayan, S. K.; Zazyan, M. Z.; Dunaevsky, A. M.

    1985-01-01

    Nonparametric statistical methods are used to carry out the quantitative comparison of the model and the experimental data. The same methods enable one to select the events initiated by the heavy nuclei and to calculate the portion of the corresponding events. For this purpose it is necessary to have the data on artificial events describing the experiment sufficiently well established. At present, the model with the small scaling violation in the fragmentation region is the closest to the experiments. Therefore, the treatment of gamma families obtained in the Pamir' experiment is being carried out at present with the application of these models.

  16. Extensive air shower Monte Carlo modeling at the ground and aircraft flight altitude in the South Atlantic Magnetic Anomaly and comparison with neutron measurements

    NASA Astrophysics Data System (ADS)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Hubert, G.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2017-02-01

    Modeling cosmic-ray-induced particle fluxes in the atmosphere is very important for developing many applications in aeronautics, space weather and on ground experimental arrangements. There is a lack of measurements and modeling at flight altitude and on ground in the South Atlantic Magnetic Anomaly. In this work we have developed an application based on the Geant4 toolkit called gPartAt that is aimed at the analysis of extensive air shower particle spectra. Another application has been developed using the MCNPX code with the same approach in order to evaluate the models and nuclear data libraries used in each application. Moreover, measurements were performed to determine the ambient dose equivalent rate of neutrons at flight altitude in different regions and dates in the Brazilian airspace; these results were also compared with the simulations. The results from simulations of the neutron spectra at ground level were also compared to data from a neutron spectrometer in operation since February 2015 at the Pico dos Dias Observatory in Brazil, at 1864 m above sea level, as part of a collaboration between the Institute for Advanced Studies (IEAv) and the French Aerospace Lab (ONERA). This measuring station is being operated with support from the National Astrophysics Laboratory (LNA). The modeling approaches were also compared to the AtmoRad computational platform, QARM, EXPACS codes and with measurements of the neutron spectrum taken in 2009 at the Pico dos Dias Observatory.

  17. Design and construction of a cosmic ray detector array for the correlation of cosmic ray extensive air showers with lightning strikes

    NASA Astrophysics Data System (ADS)

    Ruse, Aaron Nathan

    The process of lightning initiation is a poorly understood phenomenon. One contending theory suggests that galactic cosmic rays play a role in initiating lightning. This theory is referred to as runaway breakdown (RB). Currently there is no known experimental evidence to support RB. For this thesis, a cosmic ray detector array was designed, constructed, and calibrated in order to gather data to test the RB theory. The goal is to correlate cosmic ray extensive air showers (EAS) with lightning strikes measured by the Oklahoma Lightning Mapping Array (OKLMA). Such a correlation would serve as strong experimental evidence that EAS play an important role in lightning initiation. In order to accomplish this goal, the cosmic ray detectors need to have fast timing for high resolution and be able to distinguish between the secondary hard component (muons) and soft component (electrons/gamma rays) of the EAS. Preliminary data from the detector testing site suggests that the detectors are operating according to the design goals. They are able to resolve individual muon counts and they have measured common phenomena such as radon washout and EAS diurnal variation.

  18. Splitting Neutrino masses and Showering into Sky

    NASA Astrophysics Data System (ADS)

    Fargion, D.; D'Armiento, D.; Lanciano, O.; Oliva, P.; Iacobelli, M.; de Sanctis Lucentini, P. G.; Grossi, M.; de Santis, M.

    2007-06-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  19. Air Twitter: Mashing Crowdsourced Air Quality Event Identification with Scientific Earth Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, E. M.

    2010-12-01

    The ability to easily expose content through the web using social media sites like YouTube, Flickr, Blogger and Delicious have given the Earth a “skin” of photos, videos and citizen reporting that enhance our understanding ofour surroundings. Businesses are taking advantage of this constant stream of information by “listening” to the social-media chatter on the web. Social listening allows businesses to better identify their customers and provide tailored service to that group. News agencies are also using social listening techniques and have implemented sites like iReport, since it is more and more likely that citizen reporters will ‘break’ news stories and identify major events. Scientist can benefit from social listening as well. Community remote sensing can incorporate the new and evolving social media ‘sensors’ along with remotely sensed surface and satellite data to provide another dimension of contextual understanding about what is occurring in the natural environment. Air Quality (AQ) events such as fires and dust storms are highly visible and impact daily life, thus the pictures, videos, blogs and tweets are shared through web within minutes of the event occurring. Air Twitter is a social media listening tool that aggregates user generated content from around the web that are described using terms like air quality, fire and smoke. Air twitter then filters content further for outdoor air quality and then binds to the content by tagging the filtered stream with #AirQuality. This stream is retweeted through a separate twitter account for the ESIP Air Quality WG (@ESIPAQWG). A unique and unexpected outcome of this is that it has allowed a community of over 1250+ people to follow this stream. Followers include Gov. Schwarzenegger and Boris Johnson, the mayor of London, as well as many local communities AQ agencies that publish their real-time surface monitoring data through Twitter. The aggregated Air Twitter stream is also saved in a database

  20. Monte Carlo Shower Counter Studies

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1991-01-01

    Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.

  1. [Analysis of the impact of two typical air pollution events on the air quality of Nanjing].

    PubMed

    Wang, Fei; Zhu, Bin; Kang, Han-Qing; Gao, Jin-Hui; Wang, Yin; Jiang, Qi

    2012-10-01

    Nanjing and the surrounding area have experienced two consecutive serious air pollution events from late October to early November in 2009. The first event was long-lasting haze pollution, and the second event was resulted from the mixed impact of crop residue burning and local transportation. The effects of regional transport and local sources on the two events were discussed by cluster analysis, using surface meteorological observations, air pollution index, satellite remote sensing of fire hot spots data and back trajectory model. The results showed that the accumulation-mode aerosol number concentrations were higher than those of any other aerosol modes in the two pollution processes. The peak value of aerosol particle number concentrations shifted to large particle size compare with the previous studies in this area. The ratio of SO4(2-)/NO3(-) was 1.30 and 0.99, indicating that stationary sources were more important than traffic sources in the first event and the reverse in the second event. Affected by the local sources from east and south, the particle counts below 0.1 microm gradually accumulated in the first event. The second event was mainly affected by a short-distance transport from northeast and local sources from southwest, especially south, the concentration of aerosol particles was higher than those in other directions, indicating that the sources of crop residue burning were mainly in this direction.

  2. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Cherenkov telescopes

    SciTech Connect

    Naumann-Godo, Melitta; Degrange, Bernard

    2008-12-24

    Stereoscopic arrays of Imaging Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions. An analysis method based on a simple 3D-model of electromagnetic showers and implemented in the framework of the H.E.S.S. experiment was recently improved by an additional quality criterion which reduces the background contamination by a factor of about 2 in the case of extended sources, while hardly affecting gamma-ray selection efficiency. Moreover, the dramatic flares of PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations used in its calibration. An agreement at a few percent level is found between data and simulations for the distributions of all 3D shower parameters.

  3. Road traffic noise, air pollution components and cardiovascular events.

    PubMed

    de Kluizenaar, Yvonne; van Lenthe, Frank J; Visschedijk, Antoon J H; Zandveld, Peter Y J; Miedema, Henk M E; Mackenbach, Johan P

    2013-01-01

    Traffic noise and air pollution have been associated with cardiovascular health effects. Until date, only a limited amount of prospective epidemiological studies is available on long-term effects of road traffic noise and combustion related air pollution. This study investigates the relationship between road traffic noise and air pollution and hospital admissions for ischemic heart disease (IHD: International Classification of Diseases (ICD9) 410-414) or cerebrovascular disease (cerebrovascular event [CVE]: ICD9 430-438). We linked baseline questionnaire data to 13 years of follow-up on hospital admissions and road traffic noise and air pollution exposure, for a large random sample (N = 18,213) of inhabitants of the Eindhoven region, Netherlands. Subjects with cardiovascular event during follow-up on average had higher road traffic noise day, evening, night level (L den) and air pollution exposure at the home. After adjustment for confounders (age, sex, body mass index, smoking, education, exercise, marital status, alcohol use, work situation, financial difficulties), increased exposure did not exert a significant increased risk of hospital admission for IHD or cerebrovascular disease. Relative risks (RRs) for a 5 (th) to 95 (th) percentile interval increase were 1.03 (0.88-1.20) for L den; 1.04 (0.90-1.21) for particulate matter (PM 10 ); 1.05 (0.91-1.20) for elemental carbon (EC); and 1.12 (096-1.32) for nitrogen dioxide (NO 2 ) in the full model. While the risk estimate seemed highest for NO 2 , for a 5 (th) to 95 (th) percentile interval increase, expressed as RRs per 1 μg/m 3 increases, hazard ratios seemed highest for EC (RR 1.04 [0.92-1.18]). In the subgroup of study participants with a history of cardiovascular disease, RR estimates seemed highest for noise exposure (1.19 [0.87-1.64] for L den); in the subgroup of elderly RR seemed highest for air pollution exposure (RR 1.24 [0.93-1.66] for NO 2 ).

  4. Interior view of bath 1 showing original tub and shower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of bath 1 showing original tub and shower stall, facing southwest. - Albrook Air Force Station, Field Officer's Quarters, West side of Dargue Avenue Circle, Balboa, Former Panama Canal Zone, CZ

  5. Systematic Improvement of QCD Parton Showers

    SciTech Connect

    Winter, Jan; Hoeche, Stefan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Zapp, Korinna; Schumann, Steffen; Siegert, Frank; /Freiburg U.

    2012-05-17

    In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron-positron collisions and by reporting on recent developments as accomplished within the SHERPA event generation framework.

  6. Summing threshold logs in a parton shower

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Soper, Davison E.

    2016-10-01

    When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.

  7. Photoproduction models for total cross section and shower development

    NASA Astrophysics Data System (ADS)

    Cornet, Fernando; Garcia Canal, Carlos; Grau, Agnes; Pancheri, Giulia; Sciutto, Sergio

    2015-08-01

    A model for the total photoproduction cross section, based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

  8. The Upsilon Pegasid Meteor Shower

    NASA Astrophysics Data System (ADS)

    Povenmire, H.

    1995-09-01

    ]. These events showed a confirmed shower at least 20 days in length. The radiant appears to be approximately 3 degrees in diameter. Computer modeling using the D-criterion developed by Southworth and Hawkins [8] indicate that it could be much larger [3]. It is likely an old shower that is still intact, not disrupted by planetary perturbations due to its high inclination. These meteors cross the Earth's orbit while approaching the Sun. They arrive at perihelion about September 16.0 at a perihelion distance of 0.19 AU, half that of Mercury's orbit. The Earth travels through this nearly vertically inclined stream in almost the shortest possible interval. A shower duration as noted indicates a diameter of approximately 0.6 AU. References: [1] Povenmire H. (1980) Fireballs, Meteors and Meteorites, J.S.B. Enterprises Indian Harbour Beach, Florida, 215 pp. [2] Ceplecha Z. (1982) S.E.A.N. Bulletin, 7, 13-14. [3] Kronk G. (1988) Meteor Showers; A Descriptive Catalog, Enslow, Hillside, New Jersey, 281 pp. [4] Olivier C. P. (1937) Astrophys. J., 46, 41-56. [5] Simakina E. G. (1967) Solar System Res., 1, 96-121. [6] Babadzhanov P.B. (1963) Smithson. Contrib. Astrophys., 7, 287-291. [7] McCroskey R. and Posen A. (1961) Smithson. Contrib. Astrophys., 4, 15-84. [8] Southworth R. B. and Hawkins G. S. (1963) Smithson. Contrib. Astrophys., 7, 261-285.

  9. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  10. X{sub max}{sup μ} vs. N{sup μ} from extensive air showers as estimator for the mass of primary UHECR's. Application for the Pierre Auger Observatory

    SciTech Connect

    Arsene, Nicusor; Sima, Octavian

    2015-02-24

    We study the possibility of primary mass estimation for Ultra High Energy Cosmic Rays (UHECR's) using the X{sub max}{sup μ} (the height where the number of muons produced on the core of Extensive Air Showers (EAS) is maximum) and the number N{sup μ} of muons detected on ground. We use the 2D distribution - X{sub max}{sup μ} against N{sup μ} in order to find its sensitivity to the mass of the primary particle. For that, we construct a 2D Probability Function Prob(p,Fe | X{sub max}{sup μ}, N{sup μ}) which estimates the probability that a certain point from the plane (X{sub max}{sup μ}, N{sup μ}) corresponds to a shower induced by a proton, respectively an iron nucleus. To test the procedure, we analyze a set of simulated EAS induced by protons and iron nuclei at energies of 10{sup 19}eV and 20° zenith angle with CORSIKA. Using the Bayesian approach and taking into account the geometry of the infill detectors from the Pierre Auger Observatory, we observe an improvement in the accuracy of the primary mass reconstruction in comparison with the results obtained using only the X{sub max}{sup μ} distributions.

  11. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EPA's satisfaction that emissions from fireworks displays caused a specific air pollution... fireworks is significantly integral to traditional national, ethnic, or other cultural events including,...

  12. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... data influenced by exceptional events. 50.14 Section 50.14 Protection of Environment ENVIRONMENTAL....14 Treatment of air quality monitoring data influenced by exceptional events. Link to an amendment... exceptional event from use in determinations by demonstrating to EPA's satisfaction that such event caused...

  13. Basic mechanisms for adverse cardiovascular events associated with air pollution

    PubMed Central

    Chin, Michael T.

    2015-01-01

    Air pollution is a significant cause of cardiovascular morbidity and mortality worldwide. Although the epidemiologic association between air pollution exposures and exacerbation of cardiovascular disease is well established, the mechanisms by which these exposures promote cardiovascular disease are incompletely understood. In this review I will give an overview of the components of air pollution, an overview of the cardiovascular effects of air pollution exposure and a review of the basic mechanisms that are activated by exposure to promote cardiovascular disease. PMID:25552258

  14. Portable shower apparatus

    NASA Technical Reports Server (NTRS)

    Grenier, Francis E. (Inventor)

    1993-01-01

    A multipurpose, collapsible, shower apparatus for use almost anywhere but especially adapted for use in places somewhat remote from civilization such as recreational vehicles, campers, the outdoors, space vehicles and the like where there may be a limited amount of water or other liquid. The collapsible shower apparatus includes a curtain assembly having an inner wall, an outer wall and a porous element for separating the inner and outer walls; a series of spaced hollow hoops connected by one or more sets of hollow tubes (manifolds); one or more nozzles connected to and in communication with at least one of the hollow hoops; a source of fluid under pressure in communication with at least one of the hollow hoops; and a suction pump for withdrawing fluid from the interior of the curtain assembly.

  15. Saving water in showers

    NASA Astrophysics Data System (ADS)

    Alkhaddar, R. A.; Phipps, D.; Morgan, R.; Karci, B.; Hordesseux, J.

    2007-07-01

    This project is part of a programme aimed at reducing water consumption. Power showers are water inefficient, but in order to persuade the user to accept a lower water use it will be necessary to sustain the "shower experience" to maintain user satisfaction. Previous work has indicated that users' requirements include temperature stability, adequate water volume and distribution, and skin pressure, all of which are substantially controlled by the showerhead. In the present phase of the project several commercially available domestic showerheads have been examined to determine pressure-volume characteristics, radial spray distributions at different flow rates, direct and indirect measures of "skin pressure" and measurements of vertical temperature profiles. Part of the practical work at LJMU has supported extensive theoretical studies by CFD carried out by staff at Arup (consulting engineers) for the Market Transformation Programme. A future phase will study user satisfaction in their own homes where user satisfaction will be surveyed and linked to the physical performance of the shower.

  16. The midpoint between dipole and parton showers

    SciTech Connect

    Höche, Stefan; Prestel, Stefan

    2015-09-28

    We present a new parton-shower algorithm. Borrowing from the basic ideas of dipole cascades, the evolution variable is judiciously chosen as the transverse momentum in the soft limit. This leads to a very simple analytic structure of the evolution. A weighting algorithm is implemented that allows one to consistently treat potentially negative values of the splitting functions and the parton distributions. Thus, we provide two independent, publicly available implementations for the two event generators PYTHIA and SHERPA.

  17. Separation and confirmation of showers

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Hajduková, M.

    2017-01-01

    Aims: Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods: To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results: We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance. Most of the separated showers were identified as meteor showers from the IAU MDC list of all showers. Many of them were identified as several of the showers in the list. This proves that many showers have been named multiple times with different names. Conclusions: At present, a prevailing share of existing annual showers can be found in the data and confirmed when we use a combination of results from large databases. However, to gain a complete list of showers, we need more-complete meteor databases than the most extensive databases currently are. We also still need a more sophisticated method to separate showers and evaluate their statistical significance. Tables A.1 and A.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  18. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... data influenced by exceptional events. 50.14 Section 50.14 Protection of Environment ENVIRONMENTAL....14 Treatment of air quality monitoring data influenced by exceptional events. (a) Requirements. (1) A... quality standard that are directly due to an exceptional event from use in determinations by...

  19. A Simple shower and matching algorithm

    SciTech Connect

    Giele, Walter T.; Kosower, David A.; Skands, Peter Z.; /Fermilab

    2007-07-01

    We present a simple formalism for parton-shower Markov chains. As a first step towards more complete 'uncertainty bands', we incorporate a comprehensive exploration of the ambiguities inherent in such calculations. To reduce this uncertainty, we then introduce a matching formalism which allows a generated event sample to simultaneously reproduce any infrared safe distribution calculated at leading or next-to-leading order in perturbation theory, up to sub-leading corrections. To enable a more universal definition of perturbative calculations, we also propose a more general definition of the hadronization cutoff. Finally, we present an implementation of some of these ideas for final-state gluon showers, in a code dubbed VINCIA.

  20. Descriptive Analysis of Air Force Non-Fatal Suicide Events

    DTIC Science & Technology

    2006-07-01

    hospitalizations is therefore severely limited. 2 RESULTS Matched Records As described in Table 1, the Capture dataset contained 1089 NFSE and the Recapture...surveillance database. Specifically, of the 1089 NFSE in the Capture dataset, 658 (60.4%) had a corresponding entry in SADR. When suicide event-related E...SADR SESS events matched to SADR data +/- 1089 1, 2, 3 days from event date Recapture SESS, SADR/SIDR pulled by E code in E950- 1842 SADR, SIDR E959

  1. Air Mass Frequency during Precipitation Events in the United States Northern Plains

    NASA Astrophysics Data System (ADS)

    Loveless, D. M.; Sharr, N. J.; Baum, A.; Contract, J. S.; DePasquale, R.; Godek, M. L.

    2013-12-01

    Since 1980, numerous billion-dollar disasters have affected the Northern Plains of the United States, including nine droughts and four floods. Given the region's large agricultural sector, the ability to accurately forecast the frequency and quantity of precipitation events here is imperative as it has a major impact on the economy of states in the region. The atmospheric environment present during precipitation events can largely be described by the presiding air mass conditions since air masses characterize a multitude of meteorological variables at one time over a large region. Therefore, understanding the relationship between air masses and rainfall episodes can contribute to improved precipitation forecasts. The goal of this research is to add knowledge to current understandings of the factors responsible for precipitation in the Northern Plains through an assessment of synoptic air mass conditions. The Spatial Synoptic Classification is used to categorize 30 years of daily air mass types across the region and daily precipitation is acquired from the United States Historical Climatological Network at stations in close proximity. Air mass frequencies are then analyzed for all regional precipitation events and rainfall categories are developed based on precipitation quantity. Both annual and seasonal air mass frequencies are assessed at the time of precipitation events. Additionally, air mass frequencies are obtained for positive and negative phases of the Pacific/North American Pattern to examine the influence of a teleconnection forcing factor on the air mass types responsible for producing precipitation quantities. Results indicate that the Transitional (TR) air mass, associated with changing air mass conditions commonly related to passing fronts, is not the leading producer of rainfall in the region. The TR is generally responsible for only 10-20% of regional precipitation, which often is classed in a heavy rainfall category. All moist air mass varieties are

  2. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  3. Frequently Asked Questions from EPA's Community Air Monitoring Training Event, July 2015

    EPA Pesticide Factsheets

    EPA's Community Air Monitoring Training Event on July 9, 2015 in RTP, NC. Forty citizen scientists attended in person while over 500 others attended the live webinar. Several attendees posted questions, which EPA scientists have addressed here.

  4. A new approach to estimating the volatilization rates of shower water-contained volatile organic compounds during showering

    NASA Astrophysics Data System (ADS)

    Chen, M. J.; Wu, K. Y.; Chang, L.

    A mathematical hybrid-showering model was developed in order to describe the dynamic behaviour of volatile organic compounds (VOCs) contained in shower water during personal showering. The approach involves assuming a two-film theory and taking into account the dual flow patterns of "jet" and "spray" from a showerhead in order to estimate the emission of VOCs from tap water to air. The liquid-phase mass-transfer coefficients corresponding to both flow patterns and the gas-phase mass-transfer coefficient for spray droplets are estimated using the penetration theory, while the gas-phase mass-transfer coefficient for a jet-flow stream is calculated using an analogous empirical correlation. Literature-derived data were used to test the validity of the hybrid-showering model and a good correlation between literature-derived and calculated data was obtained. This study confirms the usefulness of the hybrid-showering modelling approach as regards the risk assessment of personal showering. Moreover, our simulated findings indicated that the jet-flow type showerhead should be more beneficial than the spray type showerhead as regards being associated with a lower VOC exposure risk.

  5. Future of Monte Carlo simulations of atmospheric showers

    NASA Astrophysics Data System (ADS)

    Pierog, Tanguy; Engel, Ralph; Heck, Dieter; Poghosyan, Gevorg

    2015-03-01

    In 2013, the air shower simulation model CORSIKA had a major release opening new windows in term of uncertainty due to hadronic interaction models and of simulation time. On the one hand, the two hadronic models EPOS and QGSJETII were updated taking into account new LHC data. As a consequence the uncertainties in air shower observables were reduced by about a factor of 2 at the highest energies. On the second hand, two new possibilites of running CORSIKA were introduced: either in a parallel mode on big CPU clusters allowing the simulation of unthinned showers in a reasonable time, or using cascade equations to reduce the simulation time by about of factor of 10 on a single CPU. All these improvements will be presented.

  6. Uncertainty Quantification on Entrapped Air in Droplet Impact Events

    NASA Astrophysics Data System (ADS)

    Mirjalili, Seyedshahabaddin; Iaccarino, Gianluca; Mani, Ali

    2015-11-01

    Recent investigations have revealed that entrapment of air films under liquid-liquid impacts can lead to subsequent breakup processes forming many microbubbles per impact. In this work we consider a canonical setting in which individual liquid drops impact a deep flat pool as a model representative of this phenomena. We present an investigation of the uncertainty in the entrapped air associated with the angle of impact relative to the interface-normal direction. In practice, this uncertainty can be induced by surface waves or measurement errors; understanding this sensitivity might help in incorporating impact models as subgrid scale models in large-scale calculations. We have employed the direct numerical simulations of the Navier-Stokes equations in conjunction with a diffuse interface method to track the phase interface. For UQ analysis a quadrature-based and a regression-based non-intrusive polynomial chaos approach are compared. Using the same set of simulations, quadrature-based NIPC showed better convergence than regression-based NIPC. Our results indicate that even order 10 degree variability in the incident angle can lead to significant variability in the entrapped air film. Impact on various measures such as total entrapped volume and film thickness is discussed. Supported by ONR.

  7. Air Quality Side Event Proposal November 2016 GEO XIII Plenary in St. Petersburg, Russia

    EPA Science Inventory

    The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quali...

  8. Pursuing a historical meteor shower

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; Sato, Mikiya; Kasuga, Toshihiro

    2006-11-01

    The strong outburst of the Phoenicids was witnessed by people in a Japanese expedition ship, Soya, in 1956. After that, this meteor shower has never been observed at this activity level. Although its parent comet has not been strictly identified, the possible candidate was the comet D/1819W1 (Blanpain) which appeared only once in 1819. A newly discovered asteroid 2003WY25 becomes a clue to the mystery of this meteor shower. We introduce our result on the investigation of this meteor shower on the basis of the dust trail theory.

  9. Various meteor scenes III: Recurrent showers and some minor showers

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2015-02-01

    Meteor activities vary widely from year to year. We study here the June Bootids (JBO), τ-Herculids (TAH), and Andromedids (AND) which are basic examples for the recurrent nature of meteor showers. Half a century has passed since well-known photographic or radar meteor showers were detected. It is necessary to note that some `established' IAU showers are historical ones and we cannot always see them. We find the historical trace of AND by video and four distinct activities in the area of JBC (=JBO+TAH). Meteor showers look different by different observational techniques. Many minor showers in the IAU list have been detected only by observations stored for many days and many years; visual observations in a single night cannot perceive them naturally. We studied the φ-Piscids (PPS), χ-Taurids (CTA), γ-Ursae Minorids (GUM), η-Pegasids (ETP), and α-Sextantids (ASX) as examples and found they have not been recognized by visual observers at all. It is noteworthy that some of them have possible identifications in the IAU list and in preceding observations or reports. The difference in search methods makes the situations much more complicated. The five minor showers we studied here do not have confirmations by all observational techniques. Geobased search (radiant point, time of the observation, and possibly geocentric velocity) may overlook showers which are dispersed in radiant position. A search using the D-criterion is dependent on the presumption of a spherical distribution in the orbital space and may not represent the real distribution, or may overestimate the accuracy of the observations and lead to subdividing the showers into several parts. We must use these search methods properly.

  10. Changes in the frequency of extreme air pollution events over the Eastern United States and Europe

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Fiore, A. M.; Polvani, L. M.; Lamarque, J.-F.; Fang, Y.; Staehelin, J.

    2012-04-01

    Over the past few decades, thresholds for national air quality standards, intended to protect public health and welfare, have been lowered repeatedly. At the same time observations, over Europe and the Eastern U.S., demonstrate that extreme air pollution events (high O3 and PM2.5) are typically associated with stagnation events. Recent work showed that in a changing climate high air pollution events are likely to increase in frequency and duration. Within this work we examine meteorological and surface ozone observations from CASTNet over the U.S. and EMEP over Europe. With innovative statistical tools - i.e., statistics of extremes (EVT) - we analyze the frequency distribution of extreme air pollution events over the Eastern United States and Europe. The upper tail of observed values at individual stations (e.g., within the CASTNet), i.e., the extremes (maximum daily 8-hour average (MDA8) O3>60ppb) are poorly described by a Gaussian distribution. However, further analysis showed that applying Peak-Over-Threshold-models, better capture the extremes and allows us to estimate return levels of pollution events above certain threshold values of interest. The results show that changes in national ambient air quality standards had significant effect on the occurrence frequency of high air pollution episodes.

  11. Connections Between Cold Air Pools and Mountain Valley Fog Events in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Chachere, Catherine N.; Pu, Zhaoxia

    2016-09-01

    The aim of this study is to investigate the connection between cold air pools and fog events in Salt Lake City, Utah, United States. Statistical analyses are conducted using soundings and reported automated surface observing system data from Salt Lake International Airport for the last eighteen cold seasons (October to March, during 1997-2015). A Chi-square test of independence is performed on identified cold air pool, and fog events to determine whether the two events are correlated. Conditional probabilities are then computed to investigate the occurrence of fog, given the presence of a cold pool. These probabilities are compared against that of random fog generation in the mid-winter. It is concluded that the dependence between cold air pools and fog events is statistically significant. The presence of a cold pool makes the formation of fog more likely than random generation.

  12. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  13. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-12-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  14. The Mbale meteorite shower

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Betlem, H.; Betlem, J.; Barifaijo, E.; Schluter, T.; Hampton, C.; Laubenstein, M.; Kunz, J.; Heusser, G.

    1994-03-01

    On 1992 August 14 at 12:40 UTC, an ordinary chondrite of type L5/6 entered the atmosphere over Mbale, Uganda, broke up, and caused a strewn field of size 3 x 7 km. Shortly after the fall, an expedition gathered eye witness accounts and located the position of 48 impacts of masses between 0.19 and 27.4 kg. Short-lived radionuclide data were measured for two specimens, one of which was only 12 days after the fall. Subsequent recoveries of fragements has resulted in a total of 863 mass estimates by 1993 October. The surfaces of all fragments contain fusion crust. The meteorite shower caused some minor inconveniences. Most remarkably, a young boy was hit on the head by a small specimen. The data interpreted as to indicate that the meteorite had an initial mass between 400-1000 kg (most likely approximately 1000 kg) and approached Mbale from AZ = 185 +/- 15, H = 55 +/- 15, and Vinfinity = 13.5 +/- 1.5/s. Orbital elements are given. Fragmentation of the initial mass started probably above 25 km altitude, but the final catastrophic breakup occurred at an altitude of 10-14 km. An estimated 190 +/- 40 kg reached the Earth's surface minutes after the final breakup of which 150 kg of material has been recovered.

  15. The Mbale meteorite shower

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Betlem, Hans; Betlem, Jan; Barifaijo, Erasmus; Schluter, Thomas; Hampton, Craig; Laubenstien, Matthias; Kunz, Joachim; Heusser, Gerd

    1994-01-01

    On 1992 August 14 at 12:40 UTC, an ordinary chondrite of type L5/6 entered the atmosphere over Mbale, Uganda, broke up, and caused a strewn field of size 3 x 7 km. Shortly after the fall, an expedition gathered eye witness accounts and located the position of 48 impacts of masses between 0.19 and 27.4 kg. Short-lived radionuclide data were measured for two specimens, one of which was only 12 days after the fall. Subsequent recoveries of fragements has resulted in a total of 863 mass estimates by 1993 October. The surfaces of all fragments contain fusion crust. The meteorite shower caused some minor inconveniences. Most remarkably, a young boy was hit on the head by a small specimen. The data interpreted as to indicate that the meteorite had an initial mass between 400-1000 kg (most likely approximately 1000 kg) and approached Mbale from AZ = 185 +/- 15, H = 55 +/- 15, and V(sub infinity) = 13.5 +/- 1.5/s. Orbital elements are given. Fragmentation of the initial mass started probably above 25 km altitude, but the final catastrophic breakup occurred at an altitude of 10-14 km. An estimated 190 +/- 40 kg reached the Earth's surface minutes after the final breakup of which 150 kg of material has been recovered.

  16. Clustering of Hadronic Showers with a Structural Algorithm

    SciTech Connect

    Charles, M.J.; /SLAC

    2005-12-13

    The internal structure of hadronic showers can be resolved in a high-granularity calorimeter. This structure is described in terms of simple components and an algorithm for reconstruction of hadronic clusters using these components is presented. Results from applying this algorithm to simulated hadronic Z-pole events in the SiD concept are discussed.

  17. Searching for slow-developing cosmic-ray showers: Looking for evidence of exotic primaries at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Mayotte, Eric William

    2016-04-01

    The central purpose of this research was to add the event propagation velocity to the list of shower parameters that the Florescence Detector of Pierre Auger Observatory is capable of measuring. This capability was then leveraged to differentiate exotic slow moving events from the rest of the cosmic ray flux. Clearly, by relativistic necessity, all known cosmic ray primaries can only cause a measurable extensive air shower at velocities indistinguishably close to the speed of light. Therefore any accurate observation of an event propagating slower than the speed of light would provide an unmistakable indicator of new physics. A particle must possess very specific characteristics in order to be capable of producing a slow shower. High mass Strangelets, macroscopic dark matter, and super-symmetric Q-Balls were identified as strong candidates. Theory supporting high mass Strangelets and macroscopic dark matter appeared too late for full inclusion in this work, however super-symmetric Q-Balls were thoroughly examined. CORSIKA simulations were used to show that the fluorescence detector of the Pierre Auger Observatory has sensitivity to Q-Balls with a mass MQ > 3.25 x 1027 GeV c--2 while the surface detector is sensitive at a mass MQ > 1.15 x 10 27GeV c--2. The Pierre Auger Observatory was shown to be capable of accurately measuring a wide range of velocities with two independent methods. These methods were applied to 7 years of data and one candidate slow event was identified. This candidate measurement proved to be due to a rare and interesting, but ultimately, non-exotic effect, which when accounted for resulted in the event being measured normally. As a result of this, no exotic candidate events were found in the search. Recommendations are made for improving the result and promising alternative search methods are presented.

  18. Extensive air showers generated by gamma-quanta from Geminga and Tycho's SNR at energy range 1 30 TeV

    NASA Astrophysics Data System (ADS)

    Sinitsyna, V. G.; Arsov, T. P.; Alaverdian, A. Y.; Borisov, S. S.; Musin, F. I.; Nikolsky, S. I.; Sinitsyna, V. Y.; Platonov, G. F.

    2006-01-01

    The gamma-quantum emitting objects in our Galaxy are supernova remnants and binary. The observed results of gamma-quantum sources Tycho Brahe and Geminga by the SHALON gamma-telescope are presented. The integral spectra of events from the source - k and background events, observing simultaneously with source's events - k, and the source image are presented. The energy spectra of Tycho's SNR and Geminga supernova remnant F(E>0.8TeV)˜E are harder than the Crab Nebula spectrum. Tycho's SNR has long been considered as a candidate cosmic ray source in Northern Hemisphere. A non-linear kinetic model of cosmic ray acceleration in supernova remnants was used for Tycho's SNR. The expected π°-decay gamma-quanta flux F˜Eγ-1 extends up to ˜30TeV, whereas the Inverse Compton gamma-ray flux has a cut-off above a few TeV. So, the detection of gamma-rays at energies of ˜10-30TeV by SHALON is evidence for hadron origin.

  19. SUMMARY OF THE 2006 HADRONIC SHOWER SIMULATION WORKSHOP

    SciTech Connect

    WATERS, LAURIE S.

    2007-01-19

    The 2006 Hadronic Shower Simulation Workshop, held September 6-8, 2006 at Fermi National Laboratory brought together an international assembly of experts in the field of hadronic shower development. The overall goal was to present the current understanding of the physics of hadronic showers, and to study examples of how this is measured in particle-physics calorimetry. The modeling of such events is critical, and the major Monte Carlo codes, FLUKA, GEANT, MARS, MCNPX, and PHTS were represented at the workshop. A wide range of physics, much of which is used by the simulation codes was also discussed, ranging from the hadronic CEM, LAQGSM, and DTUJET models, down to low energy neutronics capabilities. Special purpose codes and methodologies used for specific applications such as muon and neutrino physics were also shown. The results of a code benchmarking exercises were presented and extensively discussed. This paper summarizes the key topics presented in the workshop.

  20. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  1. Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders

    PubMed Central

    Gabler, Hampton C.; Hinch, John

    2008-01-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234

  2. Adaption of the Air Weather Service Fog Model to Forecast Radiation Fog Events in the Southeast United States

    DTIC Science & Technology

    1997-03-01

    ADAPTATION OF THE AIR WEATHER SERVICE FO MODEL TO FORECAST RADIATION FOG EVENT IN THE SOUTHEAST UNITED STATES THESIS Andrew C. Goodnite, Captain...ENP/97M-06 ADAPTATION OF THE AIR WEATHER SERVICE FOG MODEL TO FORECAST RADIATION FOG EVENTS IN THE SOUTHEAST UNITED STATES THESIS Andrew C. Goodnite...AIR WEATHER SERVICE FOG MODEL TO FORECAST RADIATION FOG EVENTS IN THE SOUTHEAST UNITED STATES THESIS Presented to the Faculty of the Graduate School of

  3. 1997 Leonid Shower from Space

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Nugent, David; Tedesco, Ed; Murthy, Jayant

    In November 1997, the Midcourse Space Experiment satellite (MSX) was deployed to observe the Leonid shower from space. The shower lived up to expectations, with abundant bright fireballs. Twenty-nine meteors were detected by a wide-angle, visible wavelength, camera near the limb of the Earth in a 48-minute interval, and three meteors by the narrow field camera. This amounts to a meteoroid influx of 5.5 +/- 0.6 10^-5 km^-2 hr^-1 for masses > 0.3 gram. The limiting magnitude for limb observations of Leonid meteors was measured at M_v = -1.5 magn. The Leonid shower magnitude population index was 1.6 +/- 0.2 down to M_v = -7 magn., with no sign of an upper mass cut-off.

  4. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EPA's satisfaction that emissions from fireworks displays caused a specific air pollution... fireworks is significantly integral to traditional national, ethnic, or other cultural events including, but... approach to ensure public health is being protected and must include consideration of development of a...

  5. Determining human exposure and sensory detection of odorous compounds released during showering.

    PubMed

    Omür-Ozbek, Pinar; Gallagher, Daniel L; Dietrich, Andrea M

    2011-01-15

    Modeling of human exposure to aqueous algal odorants geosmin (earthy), 2-methylisoborneol (musty), and (trans,cis)-2,6-nonadienal (cucumber, fishy), and the solvent trichloroethylene (sweet chemical), was investigated to improve the understanding of water-air transfer by including humans as sensors to detect contaminants. A mass-transfer model was employed to determine indoor air concentrations when water was used for showering under varying conditions (shower stall volume, water and air flow rate, temperature, aqueous odorant concentration, shower duration). Statistical application of multiple linear regression and tree regression were employed to determine critical model parameters. The model predicted that concentrations detectable to the human senses were controlled by temperature, odor threshold, and aqueous concentration for the steady-state model, whereas shower volume, air flow, and water flow are also important for the dynamic model and initial detection of the odorant immediately after the showering is started. There was excellent agreement of model predictions with literature data for human perception of algal odorants in their homes and complaints to water utilities. TCE performed differently than the algal odorants due to its higher Henry's law constant, in spite of similar gas and liquid diffusivities. The use of nontoxic odorants offers an efficient tool to calibrate indoor air/water shower models.

  6. Human respiratory uptake of chloroform and haloketones during showering.

    PubMed

    Xu, Xu; Weisel, Clifford P

    2005-01-01

    Inhalation is an important exposure route for volatile water contaminants, including disinfection by-products (DBPs). A controlled human study was conducted on six subjects to determine the respiratory uptake of haloketones (HKs) and chloroform, a reference compound, during showering. Breath and air concentrations of the DBPs were measured using gas chromatography and electron capture detector during and following the inhalation exposures. A lower percentage of the HKs (10%) is released from shower water to air than that of chloroform (56%) under the experiment conditions due to the lower volatility of the HKs. Breath concentrations of the DBPs were elevated during the inhalation exposure, while breath concentrations decreased rapidly after the exposure. Approximately 85-90% of the inhaled HKs were absorbed, whereas only 70% of the inhaled chloroform was absorbed for the experiment conditions used. The respiratory uptake of the DBPs was estimated using a linear one-compartment model coupled with a plug flow stream model for the shower system. The internal dose of chloroform normalized to its water concentration was approximately four times that of the HKs after a 30-min inhalation exposure. Approximately 0.3-0.4% of the absorbed HKs and 2-9% of the absorbed chloroform were expired through lung excretion after the 30-min exposure. The inhalation exposure from a typical 10-15 min shower contributes significantly to the total dose for chloroform in chlorinated drinking water but only to a moderate extent for HKs.

  7. Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events

    NASA Astrophysics Data System (ADS)

    Riousset, Jeremy A.; Pasko, Victor P.; Bourdon, Anne

    2010-12-01

    Blue and gigantic jets are transient luminous events in the middle atmosphere that form when conventional lightning leaders escape upward from the thundercloud. The conditions in the Earth's atmosphere (i.e., air density, reduced electric field, etc.) leading to conversion of hot leader channels driven by thermal ionization near cloud tops to nonthermal streamer forms observed at higher altitudes are not understood at present. This paper presents a formulation of a streamer-to-spark transition model that allows studies of gas dynamics and chemical kinetics involved in heating of air in streamer channels for a given air density N under assumption of constant applied electric field E. The model accounts for the dynamic expansion of the heated air in the streamer channel and resultant effects of E/N variations on plasma kinetics, the vibrational excitation of nitrogen molecules N2(v), effects of gains in electron energy in collisions with N2(v), and associative ionization processes involving N2(A3Σu+) and N2(a'1Σu-) species. The results are in excellent agreement with available experimental data at ground and near-ground air pressures and demonstrate that for the air densities corresponding to 0-70 km altitudes the kinetic effects lead to a significant acceleration of the heating, with effective heating times scaling closer to 1/N than to 1/N2 predicted on the basis of similarity laws for Joule heating. This acceleration is attributed to a strong reduction in electron losses due to three-body attachment and electron-ion recombination processes with reduction of air pressure.

  8. Hybrid shower counter for CDF

    SciTech Connect

    Nodulman, L.

    1980-01-01

    A hybrid scintillator/strip chamber electromagnetic calorimeter has been proposed for the Collider Detector Facility at Fermilab. Large modules of lead/scintillator with wavebar readout are to contain one or more bidimensional wire chambers near shower maximum. Results of the ongoing program of computer simulation and prototype testing are discussed.

  9. Results on reuse of reclaimed shower water

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Garcia, Rafael; Pierson, Duane L.; Reysa, Richard P.; Irbe, Robert

    1986-01-01

    The Waste Water Recovery System that has been used in conjunction with a microgravity whole body shower to test a closed loop shower water reclamation system applicable to the NASA Space Station employs a Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem. Attention is given to the suitability of a Space Shuttle soap for such crew showers, the effects of shower water on the entire system, and the purification qualities of the recovered water. The chemical pretreatment of the shower water for microorganism control involved activated carbon, mixed ion exchange resin beds, and iodine bactericide dispensing units. The water was recycled five times, demonstrating the feasibility of reuse.

  10. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  11. CAMS confirmation of previously reported meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  12. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.

    PubMed

    Schindler, Birgit Karin; Weiss, Tobias; Schütze, Andre; Koslitz, Stephan; Broding, Horst Christoph; Bünger, Jürgen; Brüning, Thomas

    2013-04-01

    Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.

  13. ANN based Estimation of Ultra High Energy (UHE) Shower Size using Radio Data

    NASA Astrophysics Data System (ADS)

    Sinha, Kalpana Roy; Datta, Pranayee; Sarma, Kandarpa Kumar

    2013-02-01

    Size estimation is a challenging area in the field of Ultra High Energy (UHE) showers where actual measurements are always associated with uncertainty of events and imperfections in detection mechanisms. The subtle variations resulting out of such factors incorporate certain random behaviour in the readings provided by shower detectors for subsequent processing. Field strength recorded by radio detectors may also be affected by this statistical nature. Hence there is a necessity of development of a system which can remain immune to such random behaviour and provide resilient readings to subsequent stages. Here, we propose a system based on Artificial Neural Network (ANN) which accepts radio field strength recorded by radio detectors and provides estimates of shower sizes in the UHE region. The ANN in feed-forward form is trained with a range of shower events with which it can effectively handle the randomness observed in the detector reading due to imperfections in the experimental apparatus and related set-up.

  14. QCD (&) event generators

    SciTech Connect

    Skands, Peter Z.; /Fermilab

    2005-07-01

    Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.

  15. The role of foehn in the formation of heavy air pollution events in Urumqi, China

    NASA Astrophysics Data System (ADS)

    Li, X.; Xia, X.; Wang, L.; Cai, R.; Zhao, L.; Feng, Z.; Ren, Q.; Zhao, K.

    2015-06-01

    The impact of sandwich foehn on air pollution in Urumqi, a gap town located on the northern lee side of the Tianshan Mountains of China, is analyzed. The results show that during days with high pollution, the boundary layer over the city and the down-valley area can be divided into a three-layer structure, with the southeasterly foehn sandwiched between the northwesterly winds on top and the cold air surface pool beneath. The southeasterly foehn at heights between 480 and 2100 m results in a very stable boundary layer structure. In combination with the decoupling between the foehn flow and cold air pool, such boundary layer structure prevents vertical mixing of atmospheric pollutants. In the up-valley area from the northern lee side flank to the southern urban area, the ground-based foehn confronts the thermally driven valley breeze and forms a "minifront," which moves northward in the morning and retreats southward in the afternoon. Although the minifront disappears in the early evening, the wind shear of the mountain breeze between the southern suburb and downtown areas is still remarkable, which is favorable for a convergence line to persist around the city all day long. In this case, air pollutants emitted from the up-valley and down-valley areas are transported toward the urban area. Therefore, the air pollutants accumulate daily, leading to the frequent occurrence of heavy pollution events in Urumqi. This indicates that the sandwich foehn plays a critical role in the formation of heavy air pollution events in Urumqi.

  16. Periodic cometary showers: Real or imaginary?

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Sharpton, V. L.; Goodacre, A. K.; Garvin, J. B.

    1985-01-01

    Since the initial reports in 1980, a considerable body of chemical and physical evidence has been accumulated to indicate that a major impact event occurred on earth 65 million years ago. The effects of this event were global in extent and have been suggested as the cause of the sudden demise or mass extinction of a large percentage of life, including the dinosaurs, at the end of the geologic time period known as the Cretaceous. Recent statistical analyses of extinctions in the marine faunal record for the last 250 million years have suggested that mass extinctions may occur with a periodicity of every 26 to 30 million years. Following these results, other workers have attempted to demonstrate that these extinction events, like that at the end of the Cretaceous, are temporally correlated with large impact events. A recent scenario suggests that they are the result of periodic showers of comets produced by either the passage of the solar system through the galactic plane or by perturbations of the cometary cloud in the outer solar system by a, as yet unseen, solar companion. This hypothesized solar companion has been given the name Nemesis.

  17. Changes in the frequency of extreme air pollution events over the Eastern United States and Europe

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Fiore, A. M.; Fang, Y.; Staehelin, J.

    2011-12-01

    Over the past few decades, thresholds for national air quality standards, intended to protect public health and welfare, have been lowered repeatedly. At the same time observations, over Europe and the Eastern U.S., demonstrate that extreme air pollution events (high O3 and PM2.5) are typically associated with stagnation events. Recent work showed that in a changing climate high air pollution events are likely to increase in frequency and duration. Within this work we examine meteorological and surface ozone observations from CASTNet over the U.S. and EMEP over Europe and "idealized" simulations with the GFDL AM3 chemistry-climate model, which isolate the role of climate change on air quality. Specifically, we examine an "idealized 1990s" simulation, forced with 20-year mean monthly climatologies for sea surface temperatures and sea ice from observations for 1981-2000, and an "idealized 2090s" simulation forced by the observed climatologies plus the multi-model mean changes in sea surface temperature and sea ice simulated by 19 IPCC AR-4 models under the A1B scenario for 2081-2100. With innovative statistical tools (empirical orthogonal functions (EOFs) and statistics of extremes (EVT)), we analyze the frequency distribution of past, present and future extreme air pollution events over the Eastern United States and Europe. The upper tail of observed values at individual stations (e.g., within the CASTNet), i.e., the extremes (maximum daily 8-hour average (MDA8) O3>60ppb) are poorly described by a Gaussian distribution. However, further analysis showed that applying Peak-Over-Threshold-models, better capture the extremes and allows us to estimate return levels of pollution events above certain threshold values of interest. We next apply EOF analysis to identify regions that vary coherently within the ground-based monitoring networks. Over the United States, the first EOF obtained from the model in both the 1990s and 2090s idealized simulations identifies the

  18. Study of the shower maximum depth by the method of detection of the EAS Cerenkov light pulse shape

    NASA Technical Reports Server (NTRS)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Khakimov, N.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Khristiansen, G. B.; Prosin, V. V.; Zhukov, V. Y.

    1985-01-01

    The results of processing the data on the shape of the EAS Cerenkov light pulses recorded by the extensive air showers (EAS) array are presented. The pulse FWHM is used to find the mean depth of EAS maximum.

  19. Physical Characteristics of Kazan Minor Showers as Determined by Correlations with the Arecibo UHF Radar

    NASA Astrophysics Data System (ADS)

    Meisel, David D.; Kero, Johan; Szasz, Csilla; Sidorov, Vladimir; Briczinski, Stan

    2008-06-01

    In the northern hemisphere, the month of February is characterized by a lack of major meteor shower activity yet a number of weak minor showers are present as seen by the Kazan radar. Using the Feller transformation to obtain the distribution of true meteor velocities from the distribution of radial velocities enables the angle of incidence to be obtained for the single beam AO (Arecibo Observatory) data. Thus the loci of AO radiants become beam-centered circles on the sky and one can, with simple search routines, find where these circles intersect on radiants determined by other means. Including geocentric velocity as an additional search criterion, we have examined a set of February radiants obtained at Kazan for coincidence in position and velocity. Although some may be chance associations, only those events with probabilities of association > 0.5 have been kept. Roughly 90 of the Kazan showers have been verified in this way with mass, radius and density histograms derived from the AO results. By comparing these histograms with those of the “background” in which the minor showers are found, a qualitative scale of dynamical minor shower age can be formulated. Most of the showers are found outside the usual “apex” sporadic source areas where it is easiest to detect discrete showers with less confusion from the background.

  20. Detection of air pollution events over Évora-Portugal during 2009

    NASA Astrophysics Data System (ADS)

    Filipa Domingues, Ana; Bortoli, Daniele; Silva, Ana Maria; Kulkarni, Pavan; Antón, Manuel

    2010-05-01

    All over the world pollutant industries, traffic and other natural and anthropogenic sources are responsible for air pollution affecting health and also the climate. At the moment the monitoring of air quality in urban and country regions become an urgent concern in the atmospheric studies due to the impact of global air pollution on climate and on the environment. One of the evidences of the global character of air pollution is that it not only affects industrialized countries but also reaches less developed countries with pollution gases and particles generated for elsewhere. The development and the employment of instruments and techniques for measure the variation of atmospheric trace gases and perform their monitoring are crucial for the improvement of the air quality and the control of pollutants emissions. One of the instruments able to perform the air quality monitoring is the Spectrometer for Atmospheric TRacers Measurements (SPATRAM) and it is installed at the CGÉs Observatory in Évora (38.5° N, 7.9° W, 300 m asl). This UV-VIS Spectrometer is used to carry out measurements of the zenith scattered radiation (290- 900 nm) to retrieve the vertical content of some atmospheric trace gases such as O3 and NO2 in stratosphere, using Differential Optical Absorption Spectroscopy (DOAS) methodology. Although SPATRAM, in its actual geometric and operational configuration - zenith sky looking and passive mode measurements, is not able to detect small variations of tracers in the troposphere it is possible to identify enhancements in the pollution loads due to air masses movements from polluted sites. In spite of the fact that Evora is a quite unpolluted city the deep analysis of the DOAS output, namely the quantity of gas (in this case NO2) present along the optical path of measurements (SCD - Slant Column Density) allows for the detection of unpredicted variations in the diurnal NO2 cycle. The SPATRAḾs data allows the identification of polluting events which

  1. Air quality impacts of a CicLAvia event in Downtown Los Angeles, CA.

    PubMed

    Shu, Shi; Batteate, Christina; Cole, Brian; Froines, John; Zhu, Yifang

    2016-01-01

    CicLAvia in Los Angeles, CA is the open streets program that closes streets to motorized vehicles and invites people to walk, run, play or ride their bicycles on these streets, allowing them to experience the city in a new way and get exercise at the same time. Since the events reduce the motorized traffic flow, which is a significant source of air pollution, on the streets, it is reasonable to hypothesize that the CicLAvia events can reduce the concentrations of traffic-emitted air pollutants during the road closure. This study is the first experiment to test this hypothesis. The on-road and community-wide ultrafine particle (UFP) and PM2.5 were measured on the Event-Sunday (October 5th, 2014) and the Pre- and Post- Sundays (September 28(th) and October 12(th), 2014). Data analysis results showed the on-road UFP and PM2.5 reduction was 21% and 49%, respectively, and the community-wide PM2.5 reduction was 12%.

  2. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  3. Analysis of a vortex precipitation event over Southwest China using AIRS and in situ measurements

    NASA Astrophysics Data System (ADS)

    Ni, Chengcheng; Li, Guoping; Xiong, Xiaozhen

    2017-04-01

    A strong precipitation event caused by the southwest vortex (SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10-14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS (Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS (Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that: (1) heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV; (2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV; (3) variation of the temperature of brightness blackbody (TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV's development; and (4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV's puissant phase, with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.

  4. Role of Stratospheric Air in a Severe Weather Event: Analysis of Potential Vorticity and Total Ozone

    NASA Technical Reports Server (NTRS)

    Goering, Melissa A.; Gallus, William A., Jr.; Olsen, Mark A.; Stanford, John L.

    2001-01-01

    The role of dry stratospheric air descending to low and middle tropospheric levels in a severe weather outbreak in the midwestern United States is examined using ACCEPT Eta model output, Rapid Update Cycle (RUC) analyses, and Earth probe Total Ozone Mapping Spectrometer (EP/TOMS) total ozone data. While stratospheric air was not found to play a direct role in the convection, backward trajectories show stratospheric air descended to 800 hPa just west of the convection. Damaging surface winds not associated with thunderstorms also occurred in the region of greatest stratospheric descent. Small-scale features in the high-resolution total ozone data compare favorably with geopotential heights and potential vorticity fields, supporting the notion that stratospheric air descended to near the surface. A detailed vertical structure in the potential vorticity appears to be captured by small-scale total ozone variations. The capability of the total ozone to identify mesoscale features assists model verification. The total ozone data suggest biases in the RUC analysis and Eta forecast of this event. The total ozone is also useful in determining whether potential vorticity is of stratospheric origin or is diabatically generated in the troposphere.

  5. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution

    NASA Astrophysics Data System (ADS)

    Dewi Ayu Kusumaningtyas, Sheila; Aldrian, Edvin

    2016-07-01

    Forest and land fires in Riau province of Sumatera increase along with the rapid deforestation, land clearing, and are induced by dry climate. Forest and land fires, which occur routinely every year, cause trans-boundary air pollution up to Singapore. Economic losses were felt by Indonesia and Singapore as the affected country thus creates tensions among neighboring countries. A high concentration of aerosols are emitted from fire which degrade the local air quality and reduce visibility. This study aimed to analyze the impact of the June 2013 smoke haze event on the environment and air quality both in Riau and Singapore as well as to characterize the aerosol properties in Singapore during the fire period. Air quality parameters combine with aerosols from Aerosol Robotic Network (AERONET) data and some environmental parameters, i.e. rainfall, visibility, and hotspot numbers are investigated. There are significant relationships between aerosol and environmental parameters both in Riau and Singapore. From Hysplit modeling and a day lag correlation, smoke haze in Singapore is traced back to fire locations in Riau province after propagated one day. Aerosol characterization through aerosol optical depth (AOD), Ångstrom parameter and particle size distribution indicate the presence of fine aerosols in a great number in Singapore, which is characteristic of biomass burning aerosols. Fire and smoke haze even impaired economic activity both in Riau and Singapore, thus leaving some accounted economic losses as reported by some agencies.

  6. Identifying Stratospheric Air Intrusions and Associated Hurricane-Force Wind Events over the North Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Malloy, Kelsey; Folmer, Michael J.; Phillips, Joseph; Sienkiewicz, Joseph M.; Berndt, Emily

    2017-01-01

    Motivation: Ocean data is sparse: reliance on satellite imagery for marine forecasting; Ocean Prediction Center (OPC) –“mariner’s weather lifeline”. Responsible for: Pacific, Atlantic, Pacific Alaska surface analyses –24, 48, 96 hrs.; Wind & wave analyses –24, 48, 96 hrs.; Issue warnings, make decisions, Geostationary Operational Environmental Satellite –R Series (now GOES-16), Compared to the old GOES: 3 times spectral resolution, 4 times spatial resolution, 5 times faster coverage; Comparable to Japanese Meteorological Agency’s Himawari-8, used a lot throughout this research. Research Question: How can integrating satellite data imagery and derived products help forecasters improve prognosis of rapid cyclogenesis and hurricane-force wind events? Phase I –Identifying stratospheric air intrusions: Water Vapor –6.2, 6.9, 7.3 micron channels; Airmass RGB Product; AIRS, IASI, NUCAPS total column ozone and ozone anomaly; ASCAT (A/B) and AMSR-2 wind data.

  7. Systematic study of atmosphere-induced influences and uncertainties on shower reconstruction at the Pierre Auger Observatory

    SciTech Connect

    Prouza, Michael; Collaboration, for the Pierre Auger

    2007-06-01

    A wide range of atmospheric monitoring instruments is employed at the Pierre Auger Observatory : two laser facilities, elastic lidar stations, aerosol phase function monitors, a horizontal attenuation monitor, star monitors, weather stations, and balloon soundings. We describe the impact of analyzed atmospheric data on the accuracy of shower reconstructions, and in particular study the effect of the data on the shower energy and the depth of shower maximum (X{sub max}). These effects have been studied using the subset of 'golden hybrid' events--events observed with high quality in the fluorescence and surface detector -- used in the calibration of the surface detector energy spectrum.

  8. Science in the schools - the Extreme Energy Events project

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Antolini, R.; Baldini Ferroli, R.; Bencivenni, G.; Bressan, E.; Chiavassa, A.; Cical, C.; Cifarelli, L.; Coccetti, F.; de Gruttola, D.; Depasquale, S.; Dincecco, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Scapparone, E.; Selvi, M.; Serci, S.; Siddi, E.; Williams, M. C. S.; Zichichi, A.; Zuyeuski, R.; Williams, M. C. S.

    2011-06-01

    The Extreme Energy Events (EEE) project aims to study extended air showers from high energy cosmic rays and extreme energy events by detecting the muon component of the shower. To achieve this goal, a network of muon telescopes has been installed in high schools distributed all over Italy. Each muon telescope consists of three large area (80 × 160 cm2) Multigap Resistive Plate Chambers (MRPCs). Each MRPC has 24 pickup strips read out at both ends; the hit position along the strip is thus deduced from the time difference. This design offers pointing capability, so that the muon direction can be reconstructed. The project has been conceived by Prof. A. Zichichi in order to rekindle the interest of young people in science and give them a first-hand experience of scientific research.

  9. Search for excess showers from Crab Nebula

    NASA Technical Reports Server (NTRS)

    Kirov, I. N.; Stamenov, J. N.; Ushev, S. Z.; Janminchev, V. D.; Aseikin, V. S.; Nikolsky, S. I.; Nikolskaja, N. M.; Yakovlev, V. I.; Morozov, A. E.

    1985-01-01

    The arrival directions of muon poor showers registrated in the Tien Shan experiment during an effective running time about I,8.IO(4)h were analyzed. It is shown that there is a significant excess of these showers coming the direction of Crab Nebula.

  10. Merging weak and QCD showers with matrix elements

    DOE PAGES

    Christiansen, Jesper Roy; Prestel, Stefan

    2016-01-22

    In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.

  11. Meteor Shower Identification and Characterization with Python

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  12. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  13. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    PubMed

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  14. Fog Induced Aerosol Modification Observed by AERONET, Including Occurrences During Major Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Li, Z.; Platnick, S. E.; Arnold, T.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Kim, J.; Kim, Y. J.; Sinyuk, A.; Dubovik, O.; Arola, A. T.; Schafer, J.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2015-12-01

    The modification of aerosol optical properties due to interaction with fog is examined from measurements made by sun/sky radiometers at several AERONET sites. Retrieved total column volume size distributions for cases identified as aerosol modified by fog often show very a large 'middle mode' submicron radius (~0.4 to 0.5 microns), which is typically seen as a component of a bimodal sub-micron distribution. These middle mode sized particles are often called cloud-processed or residual aerosol. This bimodal accumulation mode distribution may be due to one mode (the larger one) from fog-processed aerosol and the other from interstitial aerosol, or possibly from two different aerosol species (differing chemical composition) with differing hygroscopic growth factors. The size of the fine mode particles from AERONET retrieved for these cases exceeds the size of sub-micron sized particles retrieved for nearly all other aerosol types, suggesting significant modification of aerosols within the fog or cloud environment. In-situ measured aerosol size distributions made during other fog events are compared to the AERONET retrievals, and show close agreement in the residual mode particle size. Almucantar retrievals are analyzed from the Kanpur site in the Indo-Gangetic Plain in India (fog in January), Beijing (fog in winter), Fresno, CA in the San Joaquin Valley (fog in winter), South Korea (Yellow Sea fog in spring), Arica on the northern coast of Chile (stratocumulus), and several other sites with aerosol observations made after fog dissipated. Additionally, several major air pollution events are discussed where extremely high aerosol concentrations were measured at the surface and during which fog also occurred, resulting in the detection very large fine mode aerosols (residual mode) from AERONET retrievals in some of these events. Low wind speeds that occurred during these events were conducive to both pollutant accumulation and also fog formation. The presence of fog then

  15. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    PubMed Central

    Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    Purpose The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Methods Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were randomized (1:1:1:1) to a (hot-to-) cold shower for 30, 60, 90 seconds or a control group during 30 consecutive days followed by 60 days of showering cold at their own discretion for the intervention groups. The primary outcome was illness days and related sickness absence from work. Secondary outcomes were quality of life, work productivity, anxiety, thermal sensation and adverse reactions. Results 79% of participants in the interventions groups completed the 30 consecutive days protocol. A negative binomial regression model showed a 29% reduction in sickness absence for (hot-to-) cold shower regimen compared to the control group (incident rate ratio: 0.71, P = 0.003). For illness days there was no significant group effect. No related serious advents events were reported. Conclusion A routine (hot-to-) cold shower resulted in a statistical reduction of self-reported sickness absence but not illness days in adults without severe comorbidity. Trial Registration Netherlands National Trial Register NTR5183 PMID:27631616

  16. Using water to cool cattle: behavioral and physiological changes associated with voluntary use of cow showers.

    PubMed

    Legrand, A; Schütz, K E; Tucker, C B

    2011-07-01

    Water is commonly used to cool cattle in summer either at milking or over the feed bunk, but little research has examined how dairy cows voluntarily use water separate from these locations. The objectives were to describe how and when dairy cattle voluntarily used an overhead water source separate from other resources, such as feed, and how use of this water affected behavioral and physiological indicators of heat stress. Half of the 24 nonlactating cattle tested had access to a "cow shower" composed of 2 shower heads activated by a pressure-sensitive floor. All animals were individually housed to prevent competition for access to the shower. Over 5 d in summer (air temperature=25.3±3.3°C, mean ± standard deviation), cattle spent 3.0±2.1 h/24h in the shower, but considerable variability existed between animals (individual daily values ranged from 0.0 to 8.2 h/24h). A portion of this variation can be explained by weather; shower use increased by 0.3h for every 1°C increase in ambient temperature. Cows preferentially used the shower during the daytime, with 89±12% of the time spent in the shower between 1000 and 1900 h. Respiration rate and skin temperature did not differ between treatments [53 vs. 61 breaths/min and 35.0 vs. 35.4°C in shower and control cows, respectively; standard error of the difference (SED)=5.6 breaths/min and 0.49°C]. In contrast, body temperature of cows provided with a shower was 0.2°C lower than control cows in the evening (i.e., 1800 to 2100h; SED=0.11°C). Cows with access to a shower spent half as much time near the water trough than control animals, and this pattern became more pronounced as the temperature-humidity index increased. In addition, cattle showed other behavioral changes to increasing heat load; they spent less time lying when heat load index increased, but the time spent lying, feeding, and standing without feeding did not differ between treatments. Cows had higher respiration rate, skin temperature, and body

  17. Meteor showers of the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kerr, Steve

    2014-04-01

    We present the results of an exhaustive meteor shower search in the southern hemisphere. The underlying data set is a subset of the IMO Video Meteor Database comprising 50,000 single station meteors obtained by three Australian cameras between 2001 and 2012. The detection technique was similar to previous single station analysis. In the data set we find 4 major and 6 minor northern hemisphere meteor showers, and 12 segments of the Antihelion source (including the Northern and Southern Taurids and six streams from the MDC working list). We present details for 14 southern hemisphere showers plus the Centaurid and Puppid-Velid complex, with the η Aquariids and the Southern δ Aquariids being the strongest southern showers. Two of the showers (θ^2 Sagittariids and τ Cetids) were previously unknown and have received preliminary designations by the MDC. Overall we find that the fraction of southern meteor showers south of -30deg declination (roughly 25%) is clearly smaller than the fraction of northern meteor showers north of +30deg declination (more than 50%) obtained in our previous analysis.

  18. Particle production in very-high-energy cosmic-ray emulsion chamber events: Usual and unusual events

    NASA Astrophysics Data System (ADS)

    Costa, C. G. S.; Halzen, F.; Salles, C.

    1995-10-01

    We show that a simple scaling model of very forward particle production, consistent with accelerator and air shower data, can describe the overall features of the very-high-energy interactions recorded with emulsion chambers. The rapidity and transverse momentum distribution of the secondaries are quantitatively reproduced. This is somewhat surprising after numerous claims that the same data implied large scaling violations or new dynamics. Interestingly, we cannot describe some of the Centauro events, suggesting that these events are anomalous independently of their well-advertised unusual features such as the absence of neutral secondaries.

  19. Design, fabrication and acceptance testing of a zero gravity whole body shower, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The effort to design whole body shower for the space station prototype is reported. Clothes and dish washer/dryer concepts were formulated with consideration given to integrating such a system with the overall shower design. Water recycling methods to effect vehicle weight savings were investigated and it was concluded that reusing wash and/or rinse water resulted in weight savings which were not sufficient to outweigh the added degree of hardware complexity. The formulation of preliminary and final designs for the shower are described. A detailed comparison of the air drag vs. vacuum pickup method was prepared that indicated the air drag concept results in more severe space station weight penalties; therefore, the preliminary system design was based on utilizing the vacuum pickup method. Tests were performed to determine the optimum methods of storing, heating and sterilizing the cleansing agent utilized in the shower; it was concluded that individual packages of pre-sterilized cleansing agent should be used. Integration features with the space station prototype system were defined and incorporated into the shower design as necessary.

  20. Detection threshold energy of high energy cascade showers using thermoluminescence PTFE-sheet and hot-gas reader

    NASA Technical Reports Server (NTRS)

    Kino, S.; Nakanishi, A.; Miono, S.; Kitajima, T.; Yanagita, T.; Nakatsuka, T.; Ohmori, N.; Hazama, M.

    1985-01-01

    A new thermoluminescence (TL) sheet was developed as a detector for high energy components in air showers. For the investigation of detection threshold energy for a cascade showeer, TL sheets were exposed at Mt. Fuji with X ray films in emulsion chambers and were scanned by a hot-gas reader. It is concluded that if a gamma ray whose energy is more than 6 TeV enters vertically into lead chambers, the resulting cascade shower is readily detectable at maximum development.

  1. Meteor showers on Earth from sungrazing comets

    NASA Astrophysics Data System (ADS)

    Sekhar, A.; Asher, D. J.

    2014-01-01

    Sungrazing comets have always captured a lot of interest and curiosity among the general public as well as scientists since ancient times. The perihelion passage of comet C/2012 S1 (ISON) at the end of this year (on 2013 November 28) is an eagerly awaited event. In this work, we do a mathematical study to check whether meteoroids ejected from this comet during its journey around the Sun can produce spectacular meteor phenomena on Earth. Our calculations show that although the orbital elements of this comet are much more favourable than for most sungrazers to have its descending node near the Earth's orbit, even ejection velocities as high as 1 km s-1 do not induce sufficient nodal dispersion to bring meteoroids to Earth intersection during present times. A similar result applies to Newton's comet C/1680 V1 which has surprisingly similar orbital elements, although it is known to be a distinct comet from C/2012 S1. Our analysis also shows that for meteoroids ejected from all known sungrazing groups during recent epochs, only the Marsden family (with required ejection velocities of some hundreds of m s-1) can produce meteor phenomena during present times. In a broader sense, we indicate why we do not observe visually brilliant meteor showers from frequently observed sungrazers.

  2. Impact of the 2015 El Nino event on winter air quality in China

    NASA Astrophysics Data System (ADS)

    Chang, Luyu; Xu, Jianming; Tie, Xuexi; Wu, Jianbin

    2016-09-01

    During the winter of 2015, there was a strong El Nino (ENSO) event, resulting in significant anomalies for meteorological conditions in China. Analysis shows that the meteorological conditions in December 2015 (compared to December 2014) had several important anomalies, including the following: (1) the surface southeasterly winds were significantly enhanced in the North China Plain (NCP); (2) the precipitation was increased in the south of eastern China; and (3) the wind speeds were decreased in the middle-north of eastern China, while slightly increased in the south of eastern China. These meteorological anomalies produced important impacts on the aerosol pollution in eastern China. In the NCP region, the PM2.5 concentrations were significantly increased, with a maximum increase of 80–100 μg m‑3. A global chemical/transport model (MOZART-4) was applied to study the individual contribution of the changes in winds and precipitation to PM2.5 concentrations. This study suggests that the 2015El Nino event had significant effects on air pollution in eastern China, especially in the NCP region, including the capital city of Beijing, in which aerosol pollution was significantly enhanced in the already heavily polluted capital city of China.

  3. Impact of the 2015 El Nino event on winter air quality in China.

    PubMed

    Chang, Luyu; Xu, Jianming; Tie, Xuexi; Wu, Jianbin

    2016-09-27

    During the winter of 2015, there was a strong El Nino (ENSO) event, resulting in significant anomalies for meteorological conditions in China. Analysis shows that the meteorological conditions in December 2015 (compared to December 2014) had several important anomalies, including the following: (1) the surface southeasterly winds were significantly enhanced in the North China Plain (NCP); (2) the precipitation was increased in the south of eastern China; and (3) the wind speeds were decreased in the middle-north of eastern China, while slightly increased in the south of eastern China. These meteorological anomalies produced important impacts on the aerosol pollution in eastern China. In the NCP region, the PM2.5 concentrations were significantly increased, with a maximum increase of 80-100 μg m(-3). A global chemical/transport model (MOZART-4) was applied to study the individual contribution of the changes in winds and precipitation to PM2.5 concentrations. This study suggests that the 2015El Nino event had significant effects on air pollution in eastern China, especially in the NCP region, including the capital city of Beijing, in which aerosol pollution was significantly enhanced in the already heavily polluted capital city of China.

  4. Impact of the 2015 El Nino event on winter air quality in China

    PubMed Central

    Chang, Luyu; Xu, Jianming; Tie, Xuexi; Wu, Jianbin

    2016-01-01

    During the winter of 2015, there was a strong El Nino (ENSO) event, resulting in significant anomalies for meteorological conditions in China. Analysis shows that the meteorological conditions in December 2015 (compared to December 2014) had several important anomalies, including the following: (1) the surface southeasterly winds were significantly enhanced in the North China Plain (NCP); (2) the precipitation was increased in the south of eastern China; and (3) the wind speeds were decreased in the middle-north of eastern China, while slightly increased in the south of eastern China. These meteorological anomalies produced important impacts on the aerosol pollution in eastern China. In the NCP region, the PM2.5 concentrations were significantly increased, with a maximum increase of 80–100 μg m−3. A global chemical/transport model (MOZART-4) was applied to study the individual contribution of the changes in winds and precipitation to PM2.5 concentrations. This study suggests that the 2015El Nino event had significant effects on air pollution in eastern China, especially in the NCP region, including the capital city of Beijing, in which aerosol pollution was significantly enhanced in the already heavily polluted capital city of China. PMID:27671839

  5. Ozone sensitivity to industrial ethene emissions events in regulatory air quality modeling simulations for Houston, Texas

    NASA Astrophysics Data System (ADS)

    Couzo, E.; Olatosi, A. O.; Vizuete, W.

    2010-12-01

    The Houston-Galveston-Brazoria (HGB) area has had multiple decades of persistent high ozone (O3) values. We have analyzed ten years of ground-level measurements at 25 monitors in Houston and found that peak 1-hr O3 concentrations were often associated with large hourly O3 increases. A non-typical O3 change (NTOC) - defined here as an increase of at least 40 ppb/hr or 60 ppb/2hrs - was measured 25% of the time when concentrations recorded at a monitor exceeded the 8-hr O3 standard. We found that regulatory air quality model simulations (120 total days in 2005 and 2006) used to support the 2010 State Implementation Plan for the HGB non-attainment area were limited in their ability to simulate observed NTOCs, and under predicted the maximum observed rate of change by more than 50 ppb/hr. We show that the regulatory model, using "average" emissions in accordance with current EPA methodology, does not predict the spatially isolated, high O3 events measured at monitors. Even when day-specific emissions inventories are used, the model makes 1-hr O3 predictions nearly identical to simulations using the "average" emissions inventory and increases hourly O3 concentrations and changes by only 8 ppb and 3 ppb/hr. Observed NTOCs have been linked to stochastic industrial releases of some volatile organic compounds, specifically ethene and propene. We also examined whether short-term ethene releases in the regulatory air quality model are producing rapid hourly changes in ozone concentrations. Ethene emissions events are known to have been included in a day specific emissions inventory, but were removed for regulatory purposes to comport with EPA modeling guidance providing a natural sensitivity study. These results will show whether the regulatory model is able to respond to these emission events and produce the observed increases in ozone concentrations. The model’s ability to replicate an important observed phenomenon is critical in the selection of effective control

  6. 33 CFR 165.151 - Safety Zones; Fireworks Displays, Air Shows and Swim Events in the Captain of the Port Long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Air Shows and Swim Events in the Captain of the Port Long Island Sound Zone. 165.151 Section 165.151... Swim Events in the Captain of the Port Long Island Sound Zone. (a) Regulations. (1) The general..., air shows, and swim events listed in Tables 1 and 2 to § 165.151. (2) These regulations will...

  7. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  8. Artificial Neural Network as the FPGA Trigger in the Cyclone V based Front-End for a Detection of Neutrino-Origin Showers

    SciTech Connect

    Szadkowski, Zbigniew; Glas, Dariusz; Pytel, Krzysztof

    2015-07-01

    Neutrinos play a fundamental role in the understanding of the origin of ultra-high-energy cosmic rays. They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, their a very low rate of events potentially generated by neutrinos is a significant challenge for a detection technique and requires both sophisticated algorithms and high-resolution hardware. A trigger based on a artificial neural network was implemented into the Cyclone{sup R} V E FPGA 5CEFA9F31I7 - the heart of the prototype Front-End boards developed for tests of new algorithms in the Pierre Auger surface detectors. Showers for muon and tau neutrino initiating particles on various altitudes, angles and energies were simulated in CORSICA and Offline platforms giving pattern of ADC traces in Auger water Cherenkov detectors. The 3-layer 12-8-1 neural network was taught in MATLAB by simulated ADC traces according the Levenberg-Marquardt algorithm. Results show that a probability of a ADC traces generation is very low due to a small neutrino cross-section. Nevertheless, ADC traces, if occur, for 1-10 EeV showers are relatively short and can be analyzed by 16-point input algorithm. We optimized the coefficients from MATLAB to get a maximal range of potentially registered events and for fixed-point FPGA processing to minimize calculation errors. New sophisticated triggers implemented in Cyclone{sup R} V E FPGAs with large amount of DSP blocks, embedded memory running with 120 - 160 MHz sampling may support a discovery of neutrino events in the Pierre Auger Observatory. (authors)

  9. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a... and cold running potable water must be provided for showering purposes. The water supplied to a...

  10. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a... and cold running potable water must be provided for showering purposes. The water supplied to a...

  11. Structural peculiarities of the Quadrantid meteor shower

    NASA Technical Reports Server (NTRS)

    Isamutdinov, Sh. O.; Chebotarev, R. P.

    1987-01-01

    Systematic radio observations to investigate the Quadrantid meteor shower structure are regularly carried out. They have now been conducted annually in the period of its maximum activity, January 1 to 6, since 1966. The latest results of these investigations are presented, on the basis of 1981 to 1984 data obtained using new equipment with a limiting sensitivity of +7.7 sup m which make it possible to draw some conclusions on the Quadrantids shower structure both for transverse and lengthwise directions.

  12. Note on the 1972 Giacobinid meteor shower.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    It is shown that the 1972 Giacobinid meteor shower was extremely weak with a peak activity of two to three visual meteors per hour. Only two meteor spectra were obtained from the 17 slitless spectrograph systems operated by the Langley Research Center. The largely unexpected, essentially null results of the 1972 Giacobinid meteor shower observations are indicative of the present limited understanding and predictability of cosmic dust storms.

  13. WEB based online event displays for KASCADE-grande

    NASA Astrophysics Data System (ADS)

    Schieler, H.; Weindl, A.

    2008-07-01

    For three detector components of the KASCADE-Grande experiment, WEB based online event displays have been implemented. They provide, in a fast and simplified way, actual information about energy deposits and arrival times of measured events, and the overall detector status. Besides the aspect of being able to show air shower events to interested people wherever there is an internet access available, these event displays are an easy and highly useful tool for controlling and maintaining tasks from remote places. The event displays are designed as client-server applications, with the server running as independent part of the local data acquisition. Simplified event data are distributed via socket connections directly to the java applets acting as clients. These clients can run in any common browser on any computer anywhere on the planet.

  14. Flash flood events recorded by air temperature changes in caves: A case study in Covadura Cave (SE Spain)

    NASA Astrophysics Data System (ADS)

    Gázquez, Fernando; Calaforra, José María; Fernández-Cortés, Ángel

    2016-10-01

    On 28th September 2012, more than 150 mm rain fell in just two hours in some points of southeastern Spain, triggering intense flash floods that resulted in the death of ten people and widespread material damage. In the gypsum karst of Sorbas, rainfall intensity reached 33 mm/h. Air temperature monitoring in different levels of Covadura Cave, down to 85 m depth, enabled the effect of this extreme episode on the cave microclimate to be evaluated in real time. The cave air temperature increased by between 0.9 and 4.1 °C as a result of water flow into the cavity and intense mixing of air masses, in addition to the displacement of deeper air masses toward shallower levels produced by fast recharge of the surrounding karst aquifer. The lag between peak rainfall intensity and the highest cave air temperature was 5-6 h, indicating the response time of the karst to this rainfall event. No trends with depth were observed, suggesting that water not only flowed in through the main cave entrance but also through secondary accesses and fractures. Furthermore, the size of the cave passages and the intensity of air turbulence generated by waterfalls in the cave played an important role in producing these temperature differences. Even though the rainfall event lasted 10 h, cave air temperature did not return to pre-flash flood values until more than 20 days later. This indicates that, while waterflow through the cave might stop a few hours after the rainfall event, cave air temperature can be affected over a longer period. This can be explained by slow groundwater level decreasing of the surrounding karst aquifer and latent heat liberation produced by moisture condensation on the cave walls. Our results show how continuous monitoring of air temperature in caves can be a useful tool for evaluating the short-term effects of flash floods in subterranean karst systems.

  15. Periodic Comet Showers, Mass Extinctions, and the Galaxy

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Stothers, R. B.

    2000-01-01

    Geologic data on mass extinctions of life and evidence of large impacts on the Earth are thus far consistent with a quasi-periodic modulation of the flux of Oort cloud comets. Impacts of large comets and asteroids are capable of causing mass extinction of species, and the records of large impact craters and mass show a correlation. Impacts and extinctions display periods in the range of approximately 31 +/- 5 m.y., depending on dating methods, published time scales, length of record, and number of events analyzed. Statistical studies show that observed differences in the formal periodicity of extinctions and craters are to be expected, taking into consideration problems in dating and the likelihood that both records would be mixtures of periodic and random events. These results could be explained by quasi-periodic showers of Oort Cloud comets with a similar cycle. The best candidate for a pacemaker for comet showers is the Sun's vertical oscillation through the plane of the Galaxy, with a half-period over the last 250 million years in the same range. We originally suggested that the probability of encounters with molecular clouds that could perturb the Oort comet cloud and cause comet showers is modulated by the Sun's vertical motion through the galactic disk. Tidal forces produced by the overall gravitational field of the Galaxy can also cause perturbations of cometary orbits. Since these forces vary with the changing position of the solar system in the Galaxy, they provide a mechanism for the periodic variation in the flux of Oort cloud comets into the inner solar system. The cycle time and degree of modulation depend critically on the mass distribution in the galactic disk. Additional information is contained in the original extended abstract.

  16. Zero liquid carryover whole-body shower vortex liquid/gas separator

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and evaluation of a liquid/gas vortex type separator design eliminating liquid and semi-liquid (suds) carryover into air recirculating system were described. Consideration was given to a number of soaps other than the "Miranol JEM" which was the low sudsing soap used in previous test runs of the space shower. Analysis of test parameters and prototype testing resulted in a revised separator configuration and a better understanding of the suds generating mechanism in the wastewater collection system. The final design of the new separator provides for a wider choice of soaps without leading to the problem of "carryover". Furthermore, no changes in separator-to-shower interfaces were required. The new separator was retrofitted on the "space shower" and satisfactorily demonstrated in one-g testing.

  17. Lateral distribution and the energy determination of showers along the ankle

    NASA Astrophysics Data System (ADS)

    Ros, G.; Medina-Tanco, G.A.; De Donato, C.; del Peral, L.; Rodríguez-Frías, D.; D'Olivo, J.C.; Valdés-Galicia, J.F.; Arqueros, F.

    The normalization constant of the lateral distribution function (LDF) of an extensive air shower is a monotonous (almost linear) increasing function of the energy of the primary, as well as a monotonous decreasing function of the distance from the shower core. Therefore, the interpolated signal at some fixed distance from the core can be calibrated to estimate the energy of the shower. There is, somehow surprisingly, a reconstructed optimal distance, r_opt, at which the effects on the inferred signal, S(r_opt), of the uncertainties on true core location, LDF functional form and shower-to-shower fluctuations are minimized. We calculate the value of r_opt and study the robustness of the method as a function of surface detector separation (400 m to 1500 m), energy (0.1 EeV to 10 EeV) and zenith angle (0 to 60 deg) for a realistic distribution of core determination errors along the space parameter used. We also investigate the effects of silent and saturated stations and give a rough estimate of the systematic errors introduced by varying cosmic ray composition inside the considered energy range.

  18. An O({alpha}{sub s}) Monte Carlo for W production with parton showering

    SciTech Connect

    Baer, H.A.

    1991-12-31

    We construct an event generator for p{bar p}{yields}W{sup +}X{yields}e{sup +}{nu}X including complete O({alpha}{sub s}) corrections, and interface with initial and final state parton showers. Problems with negative weights and with double counting higher order parton radiation are averted. We present results for W+n-jet production, and compare with results from complete tree-level calculations, and shower calculations off of the lowest order 2{yields}2 sub-process. We also compute the {sub qT}(W) distribution, and compare with data.

  19. An O([alpha][sub s]) Monte Carlo for W production with parton showering

    SciTech Connect

    Baer, H.A.

    1991-01-01

    We construct an event generator for p[bar p][yields]W[sup +]X[yields]e[sup +][nu]X including complete O([alpha][sub s]) corrections, and interface with initial and final state parton showers. Problems with negative weights and with double counting higher order parton radiation are averted. We present results for W+n-jet production, and compare with results from complete tree-level calculations, and shower calculations off of the lowest order 2[yields]2 sub-process. We also compute the [sub qT](W) distribution, and compare with data.

  20. MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Deighan, J. I.; Stewart, A. I. F.; McClintock, W. E.; Jain, S. K.; Chaffin, M. S.; Stiepen, A.; Crismani, M.; Plane, J. M. C.; Carrillo-Sánchez, J. D.; Evans, J. S.; Stevens, M. H.; Yelle, R. V.; Clarke, J. T.; Holsclaw, G. M.; Montmessin, F.; Jakosky, B. M.

    2015-06-01

    We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1-100 µm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect.

  1. Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming

    2016-12-01

    We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.

  2. Observed characteristics of dust storm events over the western United States using meteorological, satellite, and air quality measurements

    NASA Astrophysics Data System (ADS)

    Lei, H.; Wang, J. X. L.

    2014-08-01

    To improve dust storm identification over the western United States, historical dust events measured by air quality and satellite observations are analyzed based on their characteristics in data sets of regular meteorology, satellite-based aerosol optical depth (AOD), and air quality measurements. Based on the prevailing weather conditions associated with dust emission, dust storm events are classified into the following four typical types: (1) The key feature of cold front-induced dust storms is their rapid process with strong dust emissions. (2) Events caused by meso- to small-scale weather systems have the highest levels of emissions. (3) Dust storms caused by tropical disturbances show a stronger air concentration of dust and last longer than those in (1) and (2). (4) Dust storms triggered by cyclogenesis last the longest. In this paper, sample events of each type are selected and examined to explore characteristics observed from in situ and remote-sensing measurements. These characteristics include the lasting period, surface wind speeds, areas affected, average loading on ground-based optical and/or air quality measurements, peak loading on ground-based optical and/or air quality measurements, and loading on satellite-based aerosol optical depth. Based on these analyses, we compare the characteristics of the same dust events captured in different data sets in order to define the dust identification criteria. The analyses show that the variability in mass concentrations captured by in situ measurements is consistent with the variability in AOD from stationary and satellite observations. Our analyses also find that different data sets are capable of identifying certain common characteristics, while each data set also provides specific information about a dust storm event. For example, the meteorological data are good at identifying the lasting period and area impacted by a dust event; the ground-based air quality and optical measurements can capture the peak

  3. Effects of room temperature on physiological and subjective responses during whole-body bathing, half-body bathing and showering.

    PubMed

    Hashiguchi, Nobuko; Ni, Furong; Tochihara, Yutaka

    2002-11-01

    The effects of bathroom thermal conditions on physiological and subjective responses were evaluated before, during, and after whole-body bath (W-bath), half-body bath (H-bath) and showering. The air temperature of the dressing room and bathroom was controlled at 10 degrees C, 17.5 degrees C, and 25 degrees C. Eight healthy males bathed for 10 min under nine conditions on separate days. The water temperature of the bathtub and shower was controlled at 40 degrees C and 41 degrees C, respectively. Rectal temperature (Tre), mean skin temperature (Tsk), blood pressure (BP), heart rate (HR), body weight loss and blood characteristics (hematocrit: Hct, hemoglobin: Hb) were evaluated. Also, thermal sensation (TS), thermal comfort (TC) and thermal acceptability (TA) were recorded. BP decreased rapidly during W-bath and H-bath compared to showering. HR during W-bath was significantly higher than for H-bath and showering (p < 0.01). The double products due to W-bath during bathing were also greater than for H-bath and showering (p < 0.05). There were no distinct differences in Hct and Hb among the nine conditions. However, significant differences in body weight loss were observed among the bathing methods: W-bath > H-bath > showering (p < 0.001). W-bath showed the largest increase in Tre and Tsk, followed by H-bath, and showering. Significant differences in Tre after bathing among the room temperatures were found only at H-bath. The changes in Tre after bathing for H-bath at 25 degrees C were similar to those for W-bath at 17.5 degrees C and 10 degrees C. TS and TC after bathing significantly differed for the three bathing methods at 17.5 degrees C and 10 degrees C (TS: p < 0.01 TC: p < 0.001). Especially, for showering, the largest number of subjects felt "cold" and "uncomfortable". Even though all of the subjects could accept the 10 degrees C condition after W-bath, such conditions were intolerable to half of them after showering. These results suggested that the

  4. More frequent showers and thunderstorm days under a warming climate: evidence observed over Northern Eurasia from 1966 to 2000

    NASA Astrophysics Data System (ADS)

    Ye, Hengchun; Fetzer, Eric J.; Wong, Sun; Lambrigtsen, Bjorn H.; Wong, Tao; Chen, Luke; Dang, Van

    2016-11-01

    This study uses 3-hourly synoptic observations at 547 stations to examine changes in convective and non-convective precipitation days and their associations with surface air temperature and specific humidity over Northern Eurasia. We found that convective days (showers and those associated with thunder and lightning) have become more frequent possibly at the expense of non-convective ones for all seasons during the study period of 1966-2000. The mean trends for convective day fraction (total convective precipitation events divided by all precipitation events for each season) are very similar among all four seasons at around 0.61-0.76% per year averaged over the study region. The temperature and humidity associated with convective events are on average 2.4-5.6 °C and 0.4-0.9 g/kg higher than those of non-convective events, respectively. This study suggests that surface warming and moistening lead to increased tropospheric static instability, contributing to the observed trends.

  5. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    SciTech Connect

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going

  6. Theater-Level Stochastic Air-to-Air Engagement Modeling via Event Occurrence Networks Using Piecewise Polynomial Approximation

    DTIC Science & Technology

    2001-09-01

    light weight low recoil machine gun developed by Samuel Neal McClean with later improvement by Colonel USA Issac In reality air combat is far from...Forecast International Radar Forecast Forecast International Newton Conn Fowler Bruce W De Physica Belli An Introduction to

  7. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  8. Fingerprints of disoriented chiral condensates in cosmic ray showers

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M.; de Mello Neto, J. R. T.; Fraga, E. S.; Santos, E. M.

    2012-09-01

    Although the generation of disoriented chiral condensates (DCCs), where the order parameter for chiral symmetry breaking is misaligned with respect to the vacuum direction in isospin state, is quite natural in the theory of strong interactions, they have so far eluded experiments in accelerators and cosmic rays. If DCCs are formed in high-energy nuclear collisions, the relevant outcome are very large event-by-event fluctuations in the neutral-to-charged pion fraction. In this note we search for fingerprints of DCC formation in observables of ultra-high energy cosmic ray showers. We present simulation results for the depth of the maximum (Xmax) and number of muons on the ground, evaluating their sensitivity to the neutral-to-charged pion fraction asymmetry produced in the primary interaction.

  9. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    USGS Publications Warehouse

    Morrissey, M.M.; Savage, W.Z.; Wieczorek, G.F.

    1999-01-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt % dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ???220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (???220 m/s versus ???110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations. Copyright 1999 by the American Geophysical Union.

  10. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Morrissey, M. M.; Savage, W. Z.; Wieczorek, G. F.

    1999-10-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt% dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ˜220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (˜220 m/s versus ˜110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations.

  11. Assessing risk from dangerous meteoroids in main meteor showers

    NASA Astrophysics Data System (ADS)

    Murtazov, A.

    2015-01-01

    The risk from dangerous meteoroids in main meteor showers is calculated. The showers were: Quadrantids-2014; Eta Aquariids-2013, Perseids-2014 and Geminids-2014. The computed results for the risks during the shower periods of activity and near the maximum are provided.

  12. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    NASA Technical Reports Server (NTRS)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  13. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    NASA Astrophysics Data System (ADS)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-10-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the UV-visible and IR spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and IR. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson measuring the atmospheric chemistry

  14. The Influence of Shock-Induced Air Bubble Collapse Resulting from Underwater Explosive Events

    DTIC Science & Technology

    2012-06-01

    buffering effect. To better simulate homogeneous air bubbles, additional studies were conducted using circular shapes of varying diameters. For...regions which reduced the pressure from the initial shockwave, providing a buffering effect. To better simulate homogeneous air bubbles, additional...on the shockwave propagation. B. SCOPE OF RESEARCH Previous research indicated that cavitation zones may provide a buffering effect to marine

  15. The new July meteor shower

    NASA Astrophysics Data System (ADS)

    Zoladek, Przemyslaw; Wisniewski, Mariusz

    2012-12-01

    A new meteor stream was found after an activity outburst observed on 2005 July 15. The radiant was located five degrees west of the possible early Perseid radiant, close to the star Zeta Cassiopeiae. Numerous bright meteors and fireballs were observed during this maximum. Analysis of the IMO Video Database and the SonotaCo orbital database revealed an annual stream which is active just before the appearance of the first Perseids, with a clearly visible maximum at solar longitude 113°1. Activity of the stream was estimated as two times higher than activity of the Alpha Capricornids at the same time. The activity period extends from July 12 to 17, during maximum the radiant is visible at coordinates alpha = 5°9, delta = +50°5, and observed meteors are fast, with Vg = 57.4 km/s. The shower was reported to the IAU Meteor Data Center and recognized as a new discovery. According to IAU nomenclature the new stream should be named the Zeta Cassiopeiids (ZCS). %z Arlt R. (1992). WGN, Journal of the IMO, 20:2, 62-69. Drummond J. D. (1981). Icarus, 45, 545-553. Kiraga M. and Olech A. (2001). In Arlt R., Triglav M., and Trayner C., editors, Proceedings of the International Meteor Conference, Pucioasa, Romania, 21-24 September 2000, pages 45-51. IMO. Molau S. (2007). In Bettonvil F. and Kac J., editors, Proceedings of the International Meteor Conference, Roden, The Netherlands, 14-17 September 2006, pages 38-55. IMO. Molau S. and Rendtel J. (2009). WGN, Journal of the IMO, 37:4, 98-121. Olech A., Zoladek P., Wisniewski M., Krasnowski M., Kwinta M., Fajfer T., Fietkiewicz K., Dorosz D., Kowalski L., Olejnik J., Mularczyk K., and Zloczewski K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor Conference, Oostmalle, Belgium, 15-18 September 2005, pages 53-62. IMO. Poleski R. and Szaruga K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor

  16. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  17. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.321 Showering facilities. (a) Number. Each individual camp car that provides sleeping facilities must contain...

  18. Ionospheric effects of the Leonid meteor shower in November 2001 as observed by rapid run ionosondes

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Kato, Hisao; Nakamura, Maho

    2003-08-01

    We operated ionosondes at four stations in a rapid-run mode to obtain ionograms every minute for 102 hours during the period of the Leonid meteor shower in November 2001. Plenty of radio echoes that looked like echo traces produced by sporadic E reflection were seen in the ionograms, and this allowed statistical analysis in a single meteor shower event, including discrimination of the backscattering by meteor trails from reflection by a horizontally stratified sporadic E layer. The radio echoes seen in the ionograms were categorized into three types. The first were spontaneous echoes, which were distributed across a wide range of virtual heights; at times during the period of maximum meteor activity, there was a statistically good correlation among the echoes seen at the four stations. The echoes of this type appear to be produced by Fresnel backscattering from meteor trails. The second were also spontaneous echoes observed during the shower period but persisted for several tens of minutes at the same virtual height as the typical sporadic E layer, and the top frequency of these echoes decayed with time. Echoes of this type are thus attributed to the reflection from a meteor-induced sporadic E patch. Echoes of the last type appeared outside the period of maximum activity of the meteor shower in the same range of virtual heights as the conventional sporadic E layer, and there was no time correlation between the events observed at the four stations. These events are attributed to a periodical increase in fOEs, which is modulated by planetary-wave activity, and have no relation with the meteor shower.

  19. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    NASA Technical Reports Server (NTRS)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; Kapitzke, M.; Moes, T.; Steel, D.; Williams, T.; Gearheart, D.

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  20. The Clean Air and Clean Water Acts: The "Fifth" and "Eighth" Most Significant Events.

    ERIC Educational Resources Information Center

    Knight, Laurel A.

    1991-01-01

    The history and impact of this federal legislation are discussed. An assessment of the progress of federal legislation in these areas is presented. Key issues for federal legislation regarding water and air quality are identified. (CW)

  1. Investigating Team Collaboration of an Air Force Research Event October 2008

    DTIC Science & Technology

    2009-06-01

    Joint Force Commander MARLO Marine Liaison Officer MIO Maritime Interdiction Operations MURI Multidisciplinary University Research...maritime interdiction operations ( MIO ) chat logs from three MIO exercises and air warfare audio transcripts from four different teams. A MIO is an...State University: Team Training Paradigm for Better CID . Retrieved on May 19, 2009 from Hwww.cerici.org Sirak, M. (2006). Air Force to Pick Contractor

  2. The impact of communicating information about air pollution events on public health.

    PubMed

    McLaren, J; Williams, I D

    2015-12-15

    Short-term exposure to air pollution has been associated with exacerbation of asthma and chronic obstructive pulmonary disease (COPD). This study investigated the relationship between emergency hospital admissions for asthma, COPD and episodes of poor air quality in an English city (Southampton) from 2008-2013. The city's council provides a forecasting service for poor air quality to individuals with respiratory disease to reduce preventable admissions to hospital and this has been evaluated. Trends in nitrogen dioxide, ozone and particulate matter concentrations were related to hospital admissions data using regression analysis. The impacts of air quality on emergency admissions were quantified using the relative risks associated with each pollutant. Seasonal and weekly trends were apparent for both air pollution and hospital admissions, although there was a weak relationship between the two. The air quality forecasting service proved ineffective at reducing hospital admissions. Improvements to the health forecasting service are necessary to protect the health of susceptible individuals, as there is likely to be an increasing need for such services in the future.

  3. Ground detectors for the study of cosmic ray showers

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Villasenor, L.

    2008-06-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the detection of decaying and crossing muons in a water Cherenkov detector and discuss an application of these results to calibrate water Cherenkov detectors. We also describe a technique to separate isolated isolated muons and electrons in water Cherenkov detector. Next we describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla (19°N, 90°W, 800 g/cm2) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1 PeV.

  4. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  5. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    PubMed

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  6. Geochemical evidence for a comet shower in the late Eocene.

    PubMed

    Farley, K A; Montanari, A; Shoemaker, E M; Shoemaker, C S

    1998-05-22

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began approximately 1 My before and ended approximately 1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters approximately 36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.

  7. Geochemical evidence for a comet shower in the late Eocene

    USGS Publications Warehouse

    Farley, K.A.; Montanari, A.; Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began ~1 My before and ended ~1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters ~36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.

  8. Simulation of Regional-scale Nucleation Events and Prediction of Aerosol Number Concentration in a Regional Air Quality Model

    NASA Astrophysics Data System (ADS)

    Jung, J.; Adams, P.; Pandis, S.

    2006-12-01

    Nanoparticles can perturb Earth's climate by growing to cloud condensation nuclei sizes and also may be harmful to human health. Accurate simulation of the nucleation, growth, and removal of multicomponent nanoparticles demands enormous computational resources. Most regional-scale three-dimensional chemical transport models do not include nanoparticles and do not conserve number concentrations. A major challenge associated with the simulation of nucleation events is the uncertainty regarding the controlling nucleation mechanism under typical atmospheric conditions. Previous work indicates that nucleation events in the Pittsburgh area are well predicted using ternary (H2O-H2SO4-NH3) nucleation theory, which was successful in predicting on which days nucleation events occurred during summer and winter, as well as the beginning and end of the events. To predict the composition and growth of nanoparticles, we have developed a computationally efficient new approach based on the Two-Moment Aerosol Sectional (TOMAS) microphysics module. This model simulates inorganic and organic components of the nanoparticles describing both the number and the mass distribution of the particulate matter from approximately 1 nm to 10 micrometers. The model explains why nanoparticles were observed to be acidic during nucleation events that appear to involve ammonia. The simulation suggests that nanoparticles produced by ternary nucleation can be acidic due to depletion of ammonia vapor during the growth of the particles out of the nucleation sizes. The low CPU time requirements of the model using TOMAS make it suitable for incorporation in three- dimensional chemical transport models. The nucleation/coagulation/growth model has been added to the PMCAMx regional air quality model and is used for the investigation of nucleation events in the Eastern U.S. We can estimate number budget in the Eastern U.S. and predict frequency/size of nucleation events.

  9. Creating an integrated historical record of extreme particulate air pollution events in Australian cities from 1994 to 2007.

    PubMed

    Johnston, Fay H; Hanigan, Ivan C; Henderson, Sarah B; Morgan, Geoffrey G; Portner, Talia; Williamson, Grant J; Bowman, David M J S

    2011-04-01

    Epidemiological studies of exposure to vegetation fire smoke are often limited by the availability of accurate exposure data. This paper describes a systematic framework for retrospectively identifying the cause of air pollution events to facilitate a long, multicenter analysis of the public health effects of vegetation fire smoke pollution in Australia. Pollution events were statistically defined as any day at or above the 95th percentile of the 24-hr average concentration of particulate matter (PM). These were identified for six cities from three distinct ecoclimatic regions of Australia. The dates of each event were then crosschecked against a range of information sources, including online newspaper archives, government and research agency records, satellite imagery, and aerosol optical thickness measures to identify the cause for the excess particulate pollution. Pollution events occurred most frequently during summer for cities in subtropical and arid regions and during winter for cities in temperate regions. A cause for high PM on 67% of days examined in the city of Sydney was found, and 94% of these could be attributed to landscape fire smoke. Results were similar for cities in other subtropical and arid locations. Identification of the cause of pollution events was much lower in colder temperate regions where fire activity is less frequent. Bushfires were the most frequent cause of extreme pollution events in cities located in subtropical and arid regions of Australia. Although identification of pollution episodes was greatly improved by the use of multiple sources of information, satellite imagery was the most useful tool for identifying bushfire smoke pollution events.

  10. Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.

    2013-01-01

    Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.

  11. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    NASA Technical Reports Server (NTRS)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  12. Radar observations of the Volantids meteor shower

    NASA Astrophysics Data System (ADS)

    Younger, J.; Reid, I.; Murphy, D.

    2016-01-01

    A new meteor shower occurring for the first time on 31 December 2015 in the constellation Volans was identified by the CAMS meteor video network in New Zealand. Data from two VHF meteor radars located in Australia and Antarctica have been analyzed using the great circle method to search for Volantids activity. The new shower was found to be active for at least three days over the period 31 December 2015 - 2 January 2016, peaking at an apparent radiant of R.A. = 119.3 ± 3.7, dec. = -74.5 ± 1.9 on January 1st. Measurements of meteoroid velocity were made using the Fresnel transform technique, yielding a geocentric shower velocity of 28.1 ± 1.8 km s-1. The orbital parameters for the parent stream are estimated to be a = 2.11 AU, e = 0.568, i = 47.2°, with a perihelion distance of q = 0.970 AU.

  13. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fireworks is significantly integral to traditional national, ethnic, or other cultural events including, but... from prescribed fires that EPA determines meets the definition in § 50.1(j), and provided that the... forth in 40 CFR 50.1(j); (B) There is a clear causal relationship between the measurement...

  14. An Evaluation of the Accuracy of Meteor Shower Forecasts

    NASA Technical Reports Server (NTRS)

    Cooke, W.; Moser, D.

    2004-01-01

    Brought into being by the recent Leonid meteor storms, meteor shower forecasts are now regarded by many spacecraft projects as necessary inputs into the planning of spacecraft operations. We compare the shower forecasts made by various researchers over the past six years to actual shower observations in an attempt to create an overall picture of forecast accuracy, specifically focusing on the three aspects most important to space vehicles: 1) the time of shower maximum, 2) the half-width (duration), and 3) the maximum Zenith Hourly Rate (ZHR). It will be noted that, while the times of maxima are generally predicted to within several minutes, the peak ZHRs are often overestimated and shower half-widths are frequently not even calculated. The difficulties involved in converting shower ZHRs into the meteoroid fluxes needed to assess spacecraft risk are also discussed.

  15. Air quality at outdoor community events: findings from fine particulate (PM2.5) sampling at festivals in Edmonton, Alberta.

    PubMed

    Collins, Damian; Parsons, Marc; Zinyemba, Chaka

    2014-01-01

    Exposure to fine particulate matter (PM2.5) is associated with a broad range of health risks. This study assessed the impacts of cooking smoke and environmental tobacco smoke on air quality at outdoor community events in Edmonton, Alberta (Canada). Data were collected at three festivals in July-August 2011 using a portable real-time airborne particle monitor. The pooled mean PM2.5 level was 12.41 μg/m(3). Peak readings varied from 52 to 1877 μg/m(3). Mean PM2.5 near food stalls was 35.42 μg/m(3), which exceeds the WHO limit for 24 h exposure. Mean PM2.5 levels with smokers present were 16.39 μg/m(3) (all points) and 9.64 μg/m(3) (excluding points near food stalls). Although some smokers withdrew from common spaces, on average 20 smokers/hour were observed within 3 m. Extending smoking bans would improve air quality and address related concerns. However, food preparation is a more pressing area for policy action to reduce PM2.5 exposure at these community events.

  16. Density and Porosity of Shower Meteorites as Indicators of Meter-scale Asteroid Homogeneity

    NASA Astrophysics Data System (ADS)

    Macke, Robert; Britt, D.; Consolmagno, G.

    2008-09-01

    Meteorite showers containing multiple stones from the same event provide clues to the homogeneity of meteorite parent bodies over decimeter to meter scales. Small bodies that have been studied in detail show a high degree of surface mineralogical homogeneity in reflectance spectra (Abe et al., 2006a; Veverka et al., 2001) and no detectable large scale density variations (Abe et al., 2006b; Thomas et al., 2002). Large meteorite showers provide a direct sample of the possible variations in physical properties of small bodies. We present the results of density, porosity, and magnetic susceptibility measurements of at least ten stones each from seven meteorite showers in the collection at the Smithsonian Institution's National Museum of Natural History. This includes three carbonaceous chondrites (Allende, Murchison and Murray) and four ordinary chondrites. We find strong homogeneity within showers. For example, the mass-weighted average grain density of Allende we measured as 3.60 g/cm3, with individual stones ranging from 3.59 to 3.62 g/cm3 and typical uncertainties 0.03 or 0.04 g/cm3. Allende porosities averaged 18.8% and ranged from 17.8% to 19.5% with typical uncertainties of about 1.2%. We also studied one weathered find (Gold Basin) for clues regarding the uniformity of chondrite weathering. For five showers, we compare results with measurements made on additional stones at the Vatican Observatory and the American Museum of Natural History. This work was supported in part by a Smithsonian Institution Graduate Student Fellowship. Veverka, J. et al., 2001. Science 289, 2088. Abe S. et al., 2006b. Science 312, 1344. Abe M. et al., 2006a. Science 312, 1334. Thomas P. et al., 2002. Icarus 155, 18.

  17. Initial simulation study on high-precision radio measurements of the depth of shower maximum with SKAI-low

    NASA Astrophysics Data System (ADS)

    Zilles, Anne; Buitink, Stijn; Huege, Tim

    2017-03-01

    As LOFAR has shown, using a dense array of radio antennas for detecting extensive air showers initiated by cosmic rays in the Earth's atmosphere makes it possible to measure the depth of shower maximum for individual showers with a statistical uncertainty less than 20g/cm2. This allows detailed studies of the mass composition in the energy region around 1017 eV where the transition from a Galactic to an Extragalactic origin could occur. Since SKA1-low will provide a much denser and very homogeneous antenna array with a large bandwidth of 50 - 350 MHz it is expected to reach an uncertainty on the Xmax reconstruction of less than 10g/cm2. We present first results of a simulation study with focus on the potential to reconstruct the depth of shower maximum for individual showers to be measured with SKA1-low. In addition, possible influences of various parameters such as the numbers of antennas included in the analysis or the considered frequency bandwidth will be discussed.

  18. Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production

    SciTech Connect

    Höche, Stefan; Schönherr, Marek

    2012-11-01

    We quantify uncertainties in the Monte Carlo simulation of inclusive and dijet final states, which arise from using the MC@NLO technique for matching next-to-leading order parton-level calculations and parton showers. We analyse a large variety of data from early measurements at the LHC. In regions of phase space where Sudakov logarithms dominate over high-energy effects, we observe that the main uncertainty can be ascribed to the free parameters of the parton shower. In complementary regions, the main uncertainty stems from the considerable freedom in the simulation of underlying events.

  19. Evaluating the aerosol indirect effect in WRF-Chem simulations of the January 2013 Beijing air pollution event.

    NASA Astrophysics Data System (ADS)

    Peckham, Steven; Grell, Georg; Xie, Ying; Wu, Jian-Bin

    2015-04-01

    In January 2013, an unusual weather pattern over Northern China produced unusually cool, moist conditions for the region. Recent peer-reviewed scientific manuscripts report that during this time period, Beijing experienced a historically severe haze and smog event with observed monthly average fine particulate matter (PM2.5) concentrations exceeding 225 micrograms per cubic meter. MODIS satellite observations produced AOD values of approximately 1.5 to 2 for the same time. In addition, over eastern and northern China record-breaking hourly average PM2.5 concentrations of more than 700 μg m-3 were observed. Clearly, the severity and persistence of this air pollution episode has raised the interest of the scientific community as well as widespread public attention. Despite the significance of this and similar air pollution events, several questions regarding the ability of numerical weather prediction models to forecast such events remain. Some of these questions are: • What is the importance of including aerosols in the weather prediction models? • What is the current capability of weather prediction models to simulate aerosol impacts upon the weather? • How important is it to include the aerosol feedbacks (direct and indirect effect) in the numerical model forecasts? In an attempt to address these and other questions, a Joint Working Group of the Commission for Atmospheric Sciences and the World Climate Research Programme has been convened. This Working Group on Numerical Experimentation (WGNE), has set aside several events of interest and has asked its members to generate numerical simulations of the events and examine the results. As part of this project, weather and pollution simulations were produced at the NOAA Earth System Research Laboratory using the Weather Research and Forecasting (WRF) chemistry model. These particular simulations include the aerosol indirect effect and are being done in collaboration with a group in China that will produce

  20. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  1. Stand Alone Sensor for Air Bag and Restraint System Activation in an Underbody Blast Event

    DTIC Science & Technology

    2014-03-07

    Figure 5-1 – Varying B field with Velocity held constant Theory, not developed until the 60’s, holds that a phase reversal occurs at MACH1. That is...below: A ballistic pendulum model was used where the center of pressure of the event is defined as a longitudinal radius arm of 8’ from the rotation...point. This rotation point was defined as the front axial Figures 2-3 Ballistic Pendulum with Center of Pressure at 8’Longitudinally from the

  2. The Sigma-Capricornids fireball shower

    NASA Astrophysics Data System (ADS)

    Kokhirova, G.; Babadzhanov, P.; Khamroev, U.

    2014-07-01

    During 2010-2011 three fireballs belonging to the σ-Capricornids (00179 SCA) meteor shower were photographed by the Tajikistan fireball network. As a result of astrometric and photometric reductions of the obtained images, the atmospheric trajectories, radiants, velocities, orbits, and lightcurves of the fireballs, as well as the photometric masses of meteoroids produced these fireballs were determined. Taking into account the observations of six fireballs of this shower by the Prairie network (USA) (McCrosky et al. 1978) and the MORP (Canada) (Halliday et al. 1996), the period of the σ-Capricornids activity 5-24 July was determined as well as, the mean daily radiant drift was found to be Δα=0.6° for the right ascension and Δδ=0.3° for the declination. The coordinates of mean radiant are equal to α=300.4° and δ=-12.4° at the Solar longitude L=115.6°, which corresponds to 18 July. Further to the empirical PE criterion (Ceplecha, McCrosky 1976), the mean value of bulk density of the majority of fireball producing meteoroids is 0.4 g cm^{-3} that corresponds to bodies of cometary nature. This is supported also by the lightcurves of the fireballs detected in Tajikistan as well as by the fireballs' height scales that are typical for the cometary meteoroids. Two PN fireballs were classified as I and II types, and were produced, probably, by a stone meteoroid and carbonaceous chondrite, respectively. As a rule, the meteoroids of these types have an asteroidal origin. Since the cometary source of the σ-Capricornids fireballs does not cause doubts, the presence of all types among them suggests a non-homogeneous compound of the comet-progenitor of the σ-Capricornids shower.

  3. The history of meteors and meteor showers

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    The history of meteors and meteor showers can effectively start with the work of Edmond Halley who overcome the Aristotelean view of meteors as being an upper atmospheric phenomenon and introduced their extraterrestrial nature. Halley also estimated their height and velocity. The observations of the Leonids in 1799, 1833 and 1866 established meteoroids as cometary debris. Two red herrings were caught — fixed radiants and hyperbolic velocities. But the 1890 to 1950 period with two-station meteor photography, meteor spectroscopy and the radar detection of meteors saw the subject well established.

  4. The 2014 May Camelopardalid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  5. Calibration Studies and the Investigation of Track Segments within Showers with an Imaging Hadronic Calorimeter

    NASA Astrophysics Data System (ADS)

    Lu, Shaojun

    2010-04-01

    The CALICE collaboration has constructed a highly granular hadronic sampling calorimeter prototype with small scintillator tiles individually read out by silicon photomultipliers (SiPM) to evaluate technologies for the ILC. The imaging capability of the detector allows detailed studies of the substructure of hadronic events, such as the identification of minimum ionizing track segments within the hadronic shower. These track segments are of high quality, so that they can be used for calibration, as an additional tool to Muons and to the built-in LED system used to monitor the SiPMs. These track segments also help to constrain hadronic shower models used in Geant4. Detailed MC studies with a realistic model of an ILC detector were performed to study the calibration requirements of a complete calorimeter system. The calibration strategy was tested on real data by transporting calibration constants from a Fermilab beam test to data recorded at CERN under different conditions.

  6. A multigap resistive plate chamber array for the Extreme Energy Events project

    NASA Astrophysics Data System (ADS)

    De Gruttola, D.; Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.

    2014-10-01

    The Extreme Energy Events (EEE) Project is a Centro Fermi - CERN - INFN - MIUR Collaboration Project for the study of extremely high energy cosmic rays, which exploits the Multigap Resistive Plate Chamber (MRPC) technology. The excellent time resolution and good tracking capability of this kind of detector allows us to study Extensive Air Showers (EAS) with an array of MRPC telescopes distributed across the Italian territory. Each telescope is installed in a high school, with the further goal to introduce students to particle and astroparticle Physics. The status of the experiment and the results obtained are reported.

  7. Cosmic rays Monte Carlo simulations for the Extreme Energy Events Project

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yánez, G.; Zichichi, A.; Zuyeuski, R.

    2014-08-01

    The Extreme Energy Events Project (EEE Project) is an innovative experiment to study very high energy cosmic rays by means of the detection of the associated air shower muon component. It consists of a network of tracking detectors installed inside Italian High Schools. Each tracking detector, called EEE telescope, is composed of three Multigap Resistive Plate Chambers (MRPCs). At present, 43 telescopes are installed and taking data, opening the way for the detection of far away coincidences over a total area of about 3 × 105 km2. In this paper we present the Monte Carlo simulations that have been performed to predict the expected coincidence rate between distant EEE telescopes.

  8. Measure Guideline. Water Management at Tub and Shower Assemblies

    SciTech Connect

    Dickson, Bruce

    2011-12-01

    Due to the high concentrations of water and the consequential risk of water damage to the home’s structure a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. This guide shows how to install fundamental waterproofing strategies to prevent water related issues at shower and tub areas.

  9. Meteor Showers of the Earth-crossing Asteroids

    NASA Astrophysics Data System (ADS)

    Pulat, Babadzhanov; Gulchekhra, Kokhirova

    2015-03-01

    The results of search for meteor showers associated with the asteroids crossing the Earthfs orbit and moving on comet-like orbits are given. It was shown that among 2872 asteroids discovered till 1.01.2005 and belonging to the Apollo and Amor groups, 130 asteroids have associated meteor showers and, therefore, are the extinct cometary nuclei.

  10. More frequent showers and thunderstorms under a warming climate: evidence observed in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Wong, S.; Lambrigtsen, B.; Wang, T.; Chen, L. L.; Von, D.

    2015-12-01

    This study uses historical records of synoptic observations over northern Eurasia to examine changing frequency of precipitation associated with large synoptic events versus convective and thunderstorm activities. We found days associated with showers and precipitation accompanied by thunderstorms have been increasing in general during the study period of 1966-2000 while the total wet day frequency has been decreasing in all seasons. This study suggests increasing convective and severe weather-related precipitation events may be a significant contributor to higher intensity and more extreme precipitation under a warming climate.

  11. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    SciTech Connect

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-02-03

    We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  12. Energy Sources for Yotta-TeV Iceberg Showers

    SciTech Connect

    MacAyeal, Douglas

    2013-05-01

    In late February of 2002, warming climate along the Antarctic Peninsula triggered a macroscopic particle acceleration event that smashed a 350 Gkg floating ice shelf, called the Larsen B. The particle shower released by the acceleration involved on the order of >10^6 iceberg particles accelerated to an aggregate total kinetic energy of ~10^17 J (100 Mt TNT equivalent). The explosion was so extreme that it caught glaciological science by surprise (an injury to the egos of glaciologists worldwide) and caused glaciers of the Antarctic Peninsula formerly buttressed by the missing ice shelf to surge (yielding a small increment to sea level rise). In this presentation, I shall describe research, both experimental and field oriented, that has revealed the energy source for this explosive event. I shall also describe how climate warming has the capacity to trigger this type of ice-shelf collapse. A review of the geologic record of ice-rafted debris on the ocean floor suggests that extreme, explosive ice-shelf collapse may be a ubiquitous catastrophe that has happened regularly in the past as part of glacial/interglacial climate cycles.

  13. On sampling fractions and electron shower shapes

    SciTech Connect

    Peryshkin, Alexander; Raja, Rajendran; /Fermilab

    2011-12-01

    We study the usage of various definitions of sampling fractions in understanding electron shower shapes in a sampling multilayer electromagnetic calorimeter. We show that the sampling fractions obtained by the conventional definition (I) of (average observed energy in layer)/(average deposited energy in layer) will not give the best energy resolution for the calorimeter. The reason for this is shown to be the presence of layer by layer correlations in an electromagnetic shower. The best resolution is obtained by minimizing the deviation from the total input energy using a least squares algorithm. The 'sampling fractions' obtained by this method (II) are shown to give the best resolution for overall energy. We further show that the method (II) sampling fractions are obtained by summing the columns of a non-local {lambda} tensor that incorporates the correlations. We establish that the sampling fractions (II) cannot be used to predict the layer by layer energies and that one needs to employ the full {lambda} tensor for this purpose. This effect is again a result of the correlations.

  14. Optical fluxes and meteor properties of the camelopardalid meteor shower

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, M. D.; Blaauw, R.; Kingery, A.

    2016-10-01

    Observations of the Camelopardalid meteor shower in May 2014 were obtained with six different sets of cameras, with limiting meteor magnitudes varying from -2M to +7M. Shower fluxes were calculated for each of the systems, from which the mass index of the shower was found to be 2.17 ± 0.04. Faint meteors in the shower were found to be stronger than average, ablating at lower altitudes than meteors at the same speed recorded with the same system, while the brightest meteors had higher ablation heights and were therefore weaker than typical meteors. These findings can be explained if large Camelopardalids are weak agglomerations of more refractory grains, which are easily disrupted in space and keep the shower supplied with small material and depleted in large material.

  15. Ion Composition of Fog Water and Its Relation to Air Pollutants during Winter Fog Events in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Xie, Yu-Jing; Shi, Chun-E.; Liu, Duan-Yang; Niu, Sheng-Jie; Li, Zi-Hua

    2012-05-01

    Intensive field experiments focused on fog chemistry were carried out in the northern suburb of Nanjing during the winters of 2006 and 2007. Thirty-seven fog water samples were collected in nine fog events. Based on the chemical analysis results of those samples and the simultaneous measurements of air pollution gases and atmospheric aerosols, the chemical characteristics of fog water and their relations with air pollutants during fog evolution were investigated. The results revealed an average total inorganic ionic concentration TIC = 21.18 meq/L, and the top three ion concentrations were those of SO4 2-, NH4 + and Ca2+ (average concentrations 6.99, 5.95, 3.77 meq/L, respectively). However, the average pH value of fog water was 5.85, which is attributable to neutralization by basic ions (NH4 + and Ca2+). The average TIC value of fog water measured in advection-radiation fog was around 2.2 times that in radiation fog, and the most abundant cation was NH4 + in advection-radiation fog and Ca2+ in radiation fog. In dense fog episodes, the concentration variations of primary inorganic pollution gases showed a "V"-shaped pattern, while those of volatile organic compounds (VOCs) displayed a "Λ"-shaped pattern. The dense fog acted as both the source and sink of atmospheric aerosol particles; fog processes enhanced particle formation, leading to the phenomenon that the aerosol concentration after fog dissipation was higher than that before the fog, and at the same time, mass concentration of PM10 reached the lowest value in the late stage of extremely dense fog episodes because of the progressive accumulated effect of wet deposition of large fog droplets. Both air pollution gases and aerosols loading controlled the ion compositions of fog water. The Ca2+ in fog water originated from airborne particles, while SO4 2- and NH4 + were from both heterogeneous production and soluble particulate species.

  16. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  17. Can transition radiation explain the ANITA event 3985267?

    NASA Astrophysics Data System (ADS)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2017-02-01

    We investigate whether transition radiation from a particle shower crossing the interface between Earth and air and induced by an Earth-skimming neutrino can explain the upward event announced recently by the ANITA Collaboration. While the properties of the observed signal can in principle be explained with transition radiation, a conservative upper limit on the experiment's aperture for this kind of signal shows that the flux necessary for a successful explanation is in tension with the current best limits from the Pierre Auger Observatory, the IceCube neutrino detector, and the ANITA balloon. We also show that in this scenario, the direction of the incoming neutrino is determined precisely to within a few degrees, combining the polarization properties of the observed events with the Earth opacity to ultrahigh energy neutrinos.

  18. A Monte Carlo template based analysis for air-Cherenkov arrays

    NASA Astrophysics Data System (ADS)

    Parsons, R. D.; Hinton, J. A.

    2014-04-01

    We present a high-performance event reconstruction algorithm: an Image Pixel-wise fit for Atmospheric Cherenkov Telescopes (ImPACT). The reconstruction algorithm is based around the likelihood fitting of camera pixel amplitudes to an expected image template. A maximum likelihood fit is performed to find the best-fit shower parameters. A related reconstruction algorithm has already been shown to provide significant improvements over traditional reconstruction for both the CAT and H.E.S.S. experiments. We demonstrate a significant improvement to the template generation step of the procedure, by the use of a full Monte Carlo air shower simulation in combination with a ray-tracing optics simulation to more accurately model the expected camera images. This reconstruction step is combined with an MVA-based background rejection.

  19. Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA

    NASA Astrophysics Data System (ADS)

    Gorham, P. W.; Nam, J.; Romero-Wolf, A.; Hoover, S.; Allison, P.; Banerjee, O.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dailey, B.; Deaconu, C.; Cremonesi, L.; Dowkontt, P. F.; Duvernois, M. A.; Field, R. C.; Fox, B. D.; Goldstein, D.; Gordon, J.; Hast, C.; Hebert, C. L.; Hill, B.; Hughes, K.; Hupe, R.; Israel, M. H.; Javaid, A.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Link, J. T.; Lusczek, E.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Miočinović, P.; Mottram, M.; Mulrey, K.; Naudet, C. J.; Ng, J.; Nichol, R. J.; Palladino, K.; Rauch, B. F.; Reil, K.; Roberts, J.; Rosen, M.; Rotter, B.; Russell, J.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Schoorlemmer, H.; Stafford, S.; Stockham, J.; Stockham, M.; Strutt, B.; Tatem, K.; Varner, G. S.; Vieregg, A. G.; Walz, D.; Wissel, S. A.; Wu, F.; Anita Collaboration

    2016-08-01

    We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ -lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ -neutrino cross section.

  20. Milagro: A low energy threshold extensive air shower array

    SciTech Connect

    Sinnis, C.

    1994-12-31

    Observations of high-energy gamma rays from astronomical sources have revolutionized our view of the cosmos. Gamma rays with energies up to {approximately}10 GeV can be observed directly with space-based instruments. Above 100 GeV the low flux of gamma rays requires one to utilize ground-based instruments. Milagro is a new type of gamma-ray detector based on water Cerenkov technology. This new design will enable to continuously observe the entire overhead sky, and be sensitive to cosmic rays with energies above {approximately}250 GeV. These attributes make Milagro an ideal detector for the study of high-energy transient phenomenon.

  1. The prediction of meteor showers from all potential parent comets

    NASA Astrophysics Data System (ADS)

    Neslušan, Luboš; Hajduková, Mária; Tomko, Dušan; Kaňuchová, Zuzana; Jakubík, Marián

    2014-02-01

    The objectives of this project are to predict new meteor showers associated with as many as possible known periodic comets and to find a generic relationship of some already known showers with these comets. For a potential parent comet, we model a theoretical stream at the moment of its perihelion passage in a far past, and follow its dynamical evolution until the present. Subsequently, we analyze the orbital characteristics of the parts of the stream that approach the Earth's orbit. Modelled orbits of the stream particles are compared with the orbits of actual photographic, video, and radar meteors from several catalogues. The whole procedure is repeated for several past perihelion passages of the parent comet. To keep our description compact but detailed, we usually present only either a single or a few parent comets with their associated showers in one paper. Here, an overview of the results from the modelling of the meteor-shower complexes of more than ten parent bodies will be presented. This enables their diversities to be shown. Some parent bodies may associate meteor showers which exhibit a symmetry of their radiant areas with respect to the ecliptic (ecliptical, toroidal, or showers of an ecliptic-toroidal structure), and there are showers which have no counterpart with a similar ecliptical longitude on the opposite hemisphere. However, symmetry of the radiant areas of the pair filaments with respect to the Earth's apex is visible in almost all the complexes which we examined.

  2. Hadronic Showers in a Highly Granular Imaging Calorimeter

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; The Calice Collaboration

    The CALICE collaboration develops highly granular calorimeter prototypes to evaluate technologies for experiments at a future lepton collider. The analogue hadronic calorimeter prototype consists of steel absorber plates interleaved with 38 active plastic scintillator layers which are sub-divided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers. The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. Since 2006, the calorimeter has been operated in combined test beam setups at DESY, CERN and FNAL. The high-resolution 3D image data with analogue energy information are used to study properties and composition of hadronic showers at a new level of detail. This helps to constrain hadronic shower models through comparisons with model calculations. The spatial shower development and the substructure of the showers, compared to a variety of different Geant 4 shower models including decompositions into individual shower components are presented. Aspects of the energy reconstruction of hadronic showers, such as Particle Flow, are discussed.

  3. CAMS newly detected meteor showers and the sporadic background

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.

  4. COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS

    SciTech Connect

    Morris, D.E.

    1985-11-01

    Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.

  5. Drell-Yan production at NNLL'+NNLO matched to parton showers

    NASA Astrophysics Data System (ADS)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Tackmann, Frank J.; Walsh, Jonathan R.

    2015-11-01

    We present results for Drell-Yan production from the geneva Monte-Carlo framework. We combine the fully differential next-to-next-to leading order (NNLO) calculation with higher-order resummation in the 0-jettiness resolution variable. The resulting parton-level events are further combined with parton showering and hadronization provided by pythia8. The 0-jettiness resummation is carried out to NNLL' , which consistently incorporates all singular virtual and real NNLO corrections. It thus provides a natural perturbative connection between the NNLO calculation and the parton shower regime, including a systematic assessment of perturbative uncertainties. In this way, inclusive observables are correct to NNLO, up to small power corrections in the resolution cutoff. Furthermore, the perturbative accuracy of zero-jet-like resummation variables is significantly improved beyond the parton shower approximation. We provide comparisons with LHC measurements of Drell-Yan production at 7 TeV from ATLAS, CMS, and LHCb. As already observed in e+e- collisions, for resummation-sensitive observables, the agreement with data is noticeably improved by using a lower value of αs(MZ)=0.1135 .

  6. Analysis of historical meteor and meteor shower records: Korea, China, and Japan

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Park, Changbom; Park, Myeong-Gu

    2005-05-01

    We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C.-A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918-1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392-1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.

  7. Assessing human exposure and odor detection during showering with crude 4-(methylcyclohexyl)methanol (MCHM) contaminated drinking water.

    PubMed

    Sain, Amanda E; Dietrich, Andrea M; Smiley, Elizabeth; Gallagher, Daniel L

    2015-12-15

    In 2014, crude (4-methylcyclohexyl)methanol (MCHM) spilled, contaminating the drinking water of 300,000 West Virginians and requiring "do not use" orders to protect human health. When the spill occurred, known crude MCHM physicochemical properties were insufficient to predict human inhalation and ingestion exposures. Objectives are (1) determine Henry's Law Constants (HLCs) for 4-MCHM isomers at 7, 25, 40, and 80°C using gas chromatography; (2) predict air concentrations of 4-MCHM and methyl-4-methylcyclohexanecarboxylate (MMCHC) during showering using an established shower model; (3) estimate human ingestion and inhalation exposure to 4-MCHM and MMCHC; and (4) determine if predicted air 4-MCHM exceeded odor threshold concentrations. Dimensionless HLCs of crude cis- and trans-4-MCHM were measured to be 1.42×10(-4)±6% and 3.08×10(-4)±3% at 25°C, respectively, and increase exponentially with temperature as predicted by the van't Hoff equation. Shower air concentrations for cis- and trans-4-MCHM are predicted to be 0.089 and 0.390ppm-v respectively after 10min, exceeding the US EPA's 0.01ppm-v air screening level during initial spill conditions. Human exposure doses were predicted using measured drinking water and predicted shower air concentrations and found to greatly exceed available guidance levels in the days directly following the spill. Odors would be rapidly detected by 50% of individuals at aqueous concentrations below analytical gas chromatographic detection limits. MMCHC, a minor odorous component (0.935%) of crude MCHM, is also highly volatile and therefore is predicted to contribute to inhalation exposures and odors experienced by consumers.

  8. Radiation damage due to electromagnetic showers

    SciTech Connect

    Rakhno, Igor; Mokhov, Nikolai; Striganov, Sergei; /Fermilab

    2008-05-01

    Radiation-induced damage due to atomic displacements is essential to correctly predict the behavior of materials in nuclear reactors and at charged-particle accelerators. Traditionally the damage due to hadrons was of major interest. The recent increased interest in high-energy lepton colliders gave rise to the problem of prediction of radiation damage due to electromagnetic showers in a wide energy range--from a few hundred keV and up to a few hundred GeV. The report describes results of an electron- and positron-induced displacement cross section evaluation. It is based on detailed lepton-nucleus cross sections, realistic nuclear form-factors and a modified Kinchin-Pease damage model. Numerical data on displacement cross sections for various target nuclei is presented.

  9. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  10. Meteor showers on the Earth from sungrazers

    NASA Astrophysics Data System (ADS)

    Sekhar, A.; Asher, D.

    2014-07-01

    1. C/2012 S1 (ISON) and C/1680 V1 (Newton's comet): Only very few past works [1,2,3] have looked into the aspects of meteor phenomena from sungrazing comets. Here we study whether feasible meteoroid ejection velocities in ISON and Newton's comet could bring the nodes close to the Earth's orbit so as to cause a visually spectacular meteor shower. Detailed analysis using Lagrange's planetary equations [4] shows that even at very high ejection velocities (˜ 1 km/s), the descending nodes of the meteoroids reach only 0.91 au (quite close to the Earth's orbit; which in itself is very rare for sungrazing orbits) in the case of ISON. For Newton's comet, the required ejection velocities are about 800 m/s for the descending node to reach 1 au. Such high ejection velocities are practically rare for big meteoroids (˜ 1 mm in diameter) which encounter Earth and hence spectacular visual meteor activity can be ruled out completely [5]. 2. Marsden Group versus other Sungrazing Families: A similar analysis using Lagrange's equations [6,7] was done on all the known sungrazing families [8]. We find that, only in the Marsden family, it could lead to substantial nodal dispersion in meteoroids so that the descending nodes can encounter Earth at ejection velocities of the order of few 100 m/s. This matches with the earlier significant works [1,2,9] which linked the Daytime Arietids (ARI) to the Marsden group. The fact that only a very small number of sungrazing orbits favour Earth intersection at low ejection velocities (out of the observed families so far) stands as the primary reason for the absence of regular meteor showers from them although sungrazers in itself are very frequent.

  11. Inhalation exposure to haloacetic acids and haloketones during showering.

    PubMed

    Xu, Xu; Weisel, Clifford P

    2003-02-01

    Inhalation exposure to haloacetic acids (HAAs) and haloketones (HKs) in contaminated drinking water occurs during showering. The size distribution of the aerosols generated by a shower was determined using an eight size-range particle counter, which measured particles from 0.1 to >2 microm. An exponential increase in aerosol numbers was observed while the shower water was on, while the aerosol numbers declined exponentially once the water was turned off. The half-lives of the shower aerosols were longer than 5 min after the shower water was turned off. Although the majority of the shower-generated aerosols were smaller than 0.3 microm, these aerosols only contributed approximately 2% to the measured total aerosol mass. The total shower-generated particulate HAA and HK concentrations collected on an open face filter were approximately 6.3 and 0.13 microg/m3, respectively, for shower water HAA and HK concentrations of 250 and 25 microg/L, respectively. The vapor-phase HK concentrations were 25-50 microg/m3. The estimate of the dose from inhalation exposure of disinfection byproducts (DBPs) in the particulate phase indicate that they represent less than 1% of the ingestion dose, so inhalation is not expected to be an important exposure route to nonvolatile water contaminants or the portion of volatile DBPs that stay in the particulate phase, unless the lung is the target organ. The vapor-phase levels of volatile HKs, though, are significantly higher and can contribute greater than 10% of the ingestion dose during a shower. Thus, risk assessment to the these DBPs needs to consider the inhalation route.

  12. Fire risk and air pollution assessment during the 2007 wildfire events in Greece using the COSMO-ART atmospheric model

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, E.; Giannakopoulos, C.; Vogel, H.; Rieger, D.; Knote, C.; Hatzaki, M.; Vogel, B.; Karali, A.

    2012-04-01

    al. 2011), while biogenic emissions are calculated online (Vogel et al. 1995). The FWI is calculated from air temperature, relative humidity, wind speed, and precipitation data obtained from the Hellenic National Meteorological Service for several sites in proximity to the fire event areas. In parallel, these data serve as evaluation for the respective model predictions. The satisfactory comparison results enable the FWI calculation using the model data over the burnt areas, where observations are missing. The effect of these fire events on atmospheric chemistry is estimated by analyzing the predictions not only for the mainly affected primary species (carbon monoxide, methane, non-methane hydrocarbons, nitrogen oxides and elemental carbon), but also for the secondary pollutants (ozone, organic and nitrate aerosol). The competence of COSMO-ART mass predictions is evaluated by comparing PM10 outputs with published literature results. The weather conditions during the 2007 wildfire events have already been assessed as a typical summertime meteorological regime during the latter part of the century (Founda and Gianakopoulos, 2009). Therefore, the results presented here can be viewed as representative of a fire event likely to occur by then. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010-265192.

  13. The 2017 Meteor Shower Activity Forecast for Earth Orbit

    NASA Technical Reports Server (NTRS)

    Moorehead, Althea; Cooke, Bill; Moser, Danielle

    2017-01-01

    Most meteor showers will display typical activity levels in 2017. Perseid activity is expected to be higher than normal but less than in 2016; rates may reach 80% of the peak ZHR in 2016. Despite this enhancement, the Perseids rank 4th in flux for 0.04-cm-equivalent meteoroids: the Geminids (GEM), Daytime Arietids (ARI), and Southern delta Aquariids (SDA) all produce higher fluxes. Aside from heightened Perseid activity, the 2017 forecast includes a number of changes. In 2016, the Meteoroid Environment Office used 14 years of shower flux data to revisit the activity profiles of meteor showers included in the annual forecast. Both the list of showers and the shape of certain major showers have been revised. The names and three-letter shower codes were updated to match those in the International Astronomical Union (IAU) Meteor Data Center, and a number of defunct or insignificant showers were removed. The most significant of these changes are the increased durations of the Daytime Arietid (ARI) and Geminid (GEM) meteor showers. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteor models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Perseids (PER), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that meteor shower fluxes drop dramatically with increasing particle size. As an example, the Arietids contribute a flux of about 5x10(exp -6) meteoroids m(exp -2) hr-1 in the 0.04-cm-equivalent range, but only 1x10(exp -8) meteoroids m(sub -2) hr-1 for the 0

  14. Phytoplankton chlorophyte structure as related to ENSO events in a saline lowland river (Salado River, Buenos Aires, Argentina).

    PubMed

    Solari, Lía C; Gabellone, Néstor A; Claps, María C; Casco, María A; Quaíni, Karina P; Neschuk, Nancy C

    2014-04-01

    We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995-2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998-1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño-La Niña-Southern Oscillation (ENSO) periods - El Niño (March 1997-January 1998) and La Niña (May 1998-May 1999) - to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient-enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K(+), dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage-channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.

  15. Phytoplankton chlorophyte structure as related to ENSO events in a saline lowland river (Salado River, Buenos Aires, Argentina)

    PubMed Central

    Solari, Lía C; Gabellone, Néstor A; Claps, María C; Casco, María A; Quaíni, Karina P; Neschuk, Nancy C

    2014-01-01

    We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient-enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage-channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of

  16. Meteorites from meteor showers: A case study of the Taurids

    NASA Astrophysics Data System (ADS)

    Brown, Peter; Marchenko, Valerie; Moser, Danielle E.; Weryk, Robert; Cooke, William

    2013-02-01

    We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite-producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s-1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite-producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite-producing characteristics, despite a very high entry velocity (33 km s-1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s-1), further suggesting that survival of meteorites at Taurid-like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid-like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.

  17. First Observations of SO2 from the Satellite Suomi NPP OMPS: Widespread Air Pollution Events Over China

    NASA Technical Reports Server (NTRS)

    Yang, Kai; Dickerson, Russell R.; Carn, Simon A.; Ge, Cui; Wang, Jun

    2013-01-01

    Severe smog episodes over China in January 2013 received worldwide attention. This air pollution was distinguished by heavy loadings of fine particulate matter and SO2. To characterize these episodes, we employed the Ozone Mapping and Profiler Suite, Nadir Mapper (OMPS NM), an ultraviolet (UV) spectrometer flying on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft since October 2011. We developed an advanced algorithm to quantify SO2 in the lower troposphere and achieved high-quality retrievals from OMPS NM, which are characterized by high precision, approx. 0.2 Dobson Units (DU; 1 DU = 2.69 x 10(exp 16) molecules/sq cm) for instantaneous field of view SO2 data and low biases (within +/-0.2 DU). Here we report SO2 retrievals and UV aerosol index data for these pollution events. The SO2 columns and the areas covered by high pollutant concentrations are quantified; the results reveal for the first time the full extent (an area of approx. 10(exp 6) sq km containing up to 60 kt of SO2) of these episodes.

  18. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  19. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice

    NASA Astrophysics Data System (ADS)

    Tueros, Matías; Sciutto, Sergio

    2010-02-01

    In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of

  20. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2016-09-01

    Methane plumes in the martian atmosphere were previously reported, but their source remains a mystery. We hypothesize a meteor shower source, as we find a correlation between Mars/cometary orbit encounters and detections of plumes.

  1. 28. SHOWER AND URINALS, OVERHEAD TOILET STRUCTURE ABOVE ROOF PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SHOWER AND URINALS, OVERHEAD TOILET STRUCTURE ABOVE ROOF PANEL STORAGE AREA. VIEW TO SOUTH-SOUTHWEST. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  2. 27. OVERHEAD TOILET, SHOWER, CHANGE ROOM STRUCTURE. VIEW TO NORTHNORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. OVERHEAD TOILET, SHOWER, CHANGE ROOM STRUCTURE. VIEW TO NORTH-NORTHEAST. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  3. "Shower head" water connection for servicing railroad locomotives, perspective view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Shower head" water connection for servicing railroad locomotives, perspective view looking NW across ATSF railyard. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  4. FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW FACING WEST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  5. 10. NEEDLE SHOWER IN COOLING ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. NEEDLE SHOWER IN COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. 9. NEEDLE SHOWER IN MEN'S PACK ROOM. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NEEDLE SHOWER IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. Test results of a shower water recovery system

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Price, Donald F.; Garcia, Rafael; Pierson, Duane L.; Sauer, Richard L.

    1987-01-01

    A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.

  8. Men's shower room at east end of the building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Men's shower room at east end of the building - Fitzsimons General Hospital, Swimming Pool, Southeast corner of East Nineteenth Place (formerly East McAfee Avenue) & Wheeling Street (formerly South Van Valzah Street), Aurora, Adams County, CO

  9. E.M. and Hadronic Shower Simulation with FLUKA

    SciTech Connect

    Battistoni, G.; Fasso, A.; Ferrari, A.; Ranft, J.; Rubbia, A.; Sala, P.R.; /INFN, Milan /SLAC /CERN /Siegen U. /Zurich, ETH

    2005-10-03

    A description of the main features of e.m. and hadronic shower simulation models used in the FLUKA code is summarized and some recent applications are discussed. The general status of the FLUKA project is also reported.

  10. Interior view of shower room 216 with original marble surround ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of shower room 2-16 with original marble surround and double sash windows, facing east. - Marine Barracks, Panama Canal, Barracks Building, 100' North of Thatcher Highway, Balboa, Former Panama Canal Zone, CZ

  11. 61. SOUTH PLANT ETHYLENE GENERATOR BUILDING, WITH EMERGENCY SHOWER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. SOUTH PLANT ETHYLENE GENERATOR BUILDING, WITH EMERGENCY SHOWER AT LEFT FOREGROUND. VIEW TO WEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  12. Multi-Year CMOR Observations of the Geminid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  13. Exposure to inhaled THM: comparison of continuous and event-specific exposure assessment for epidemiologic purposes.

    PubMed

    Thiriat, N; Paulus, H; Le Bot, B; Glorennec, P

    2009-10-01

    Trihalomethanes (THMs) (chloroform, bromoform, dibromochloromethane, and bromodichloromethane) are the most abundant by-products of chlorination. People are exposed to THMs through ingestion, dermal contact and inhalation. The objective of this study was to compare two methods for assessing THM inhalation: a direct method with personal monitors assessing continuous exposure and an indirect one with microenvironmental sampling and collection of time-activity data during the main event exposures: bathing, showering and swimming. This comparison was conducted to help plan a future epidemiologic study of the effects of THMs on the upper airways of children. 30 children aged from 4 to 10 years were included. They wore a 3M 3520 organic vapor monitor for 7 days. We sampled air in their bathrooms (during baths or showers) and in the indoor swimming pools they visited and recorded their time-activity patterns. We used stainless steel tubes full of Tenax to collect air samples. All analyses were performed with Gas Chromatography and Mass Spectrometry (GC-MS). Chloroform was the THM with the highest concentrations in the air of both bathrooms and indoor swimming pools. Its continuous and event exposure measurements were significantly correlated (r(s)=0.69 p<0.001). Continuous exposures were higher than event exposures, suggesting that the event exposure method does not take into account some influential microenvironments. In an epidemiologic study, this might lead to random exposure misclassification, thus underestimation of the risk, and reduced statistical power. The continuous exposure method was difficult to implement because of its poor acceptability and the fragility of the personal monitors. These two points may also reduce the statistical power of an epidemiologic study. It would be useful to test the advantages and disadvantages of a second sample in the home or of modeling the baseline concentration of THM in the home to improve the event exposure method.

  14. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  15. Investigation of meteor shower parent bodies using various metrics

    NASA Astrophysics Data System (ADS)

    Dumitru, B. A.; Birlan, M.; Nedelcu, A.; Popescu, M.

    2016-01-01

    The present knowledge of meteor showers identifies the small bodies of our Solar System as supply sources for meteor streams. Both comets and asteroids are considered as the origin of meteor showers. The new paradigm of "active asteroids" opens up a large field of investigation regarding the relationships between asteroids and meteors. Processes like ejection and disaggregation at impacts, rotational instabilities, electrostatic repulsion, radiation pressure, dehydration stress followed by thermal fractures, sublimation of ices are sources of matter loss from asteroids. Our objective is to find genetic relationships between asteroids and meteor showers using metrics based on orbital elements. For this objective we selected three metrics (Southworth and Hawkins, 1963; Asher et al. 1993, and Jopek, 1993, respectively), the recent MPC database and the more recent IAU meteor shower database. From our analysis, 41 of the meteor showers have probabilities of being produced (or to be fueled) by asteroids. Our sample of asteroids contains more than 1000 objects, all of them belonging to the Near-Earth Asteroid population. The systematic approach performed, based on the physical properties of our sample, reinforced the link between asteroids and their associated meteor shower.

  16. SMQIE: The shower max QIE chip

    SciTech Connect

    James R. Hoff

    1999-06-02

    A QIE-like full-custom chip has been designed by members of the Fermilab PPD/ETT/ES Group as well as members of the CDF/Shower Max Group. This chip contains two channels each with an eight range QIE front end capable of handling charges from roughly 12 fC to roughly 100 pC. Each channel also contains a five-bit flash A-to-D converter, a 38 stage deep FIFO for level 1 trigger delay and storage for holding selected time slices. It communicates with the outside world via LVDS-like differential signals. This chip utilizes a 1.2mm double-metal, double-polysilicon process with a vertical NPN transistor option. It has been prototyped using ORBIT Semiconductor�s Foresight program. As of this writing, it has been submitted to Super Tex (new owner of the ORBIT fabrication facility) for fabrication. However, it has not yet returned from fabrication.

  17. Meteorite Shower in Park Forest, Illinois

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2004-08-01

    Steven Simon (University of Chicago) and seven colleagues from the University of Chicago, the Planetary Studies Foundation, Harper College, Pacific Northwest National Lab, and the Field Museum in Chicago have classified the meteorite fragments that fell on Chicago's southern suburbs on the night of March 26, 2003. Described as ".. the most densely populated region to be hit by a meteorite shower in modern times," the village of Park Forest is at the center of the strewnfield and fortuitously also happens to be home to the Simon family, who answered scores of phone calls from neighboring meteorite finders. No injuries were reported though plenty of roofs, windows, walls, and cars were hit, and the police department took individual fusion-crusted fragments into custody as evidence. Its chemical and mineralogical compositions establish the Park Forest meteorite as an L5 chondrite, one of the most primitive groups of known meteorites. It is a strongly shocked monomict breccia (a term applied to a breccia made of one kind of rock) with light-colored clasts in a very dark matrix. The team measured cosmic radionuclides in Park Forest and found nearly zero cobalt-56 and high cobalt-60, values that indicate a large preatmospheric mass. They estimate the meteoroid was at least 900 kilograms and possibly as large as 7000 kilograms before it broke apart in the atmosphere, of which only about 30 kilograms of fragments have been recovered.

  18. Biofilms on Hospital Shower Hoses: Characterization and ...

    EPA Pesticide Factsheets

    Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communities remain poorly characterized by culture-independent approaches that circumvent the limitations of conventional monitoring efforts. Hence, the frequency of pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative, but directly impact public health. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both culture-dependent and culture-independent techniques. Two different sequence-based methods were used to characterize the bacterial fractions: 16S rRNA gene sequencing of bacterial cultures and next generation sequencing of metagenomes. Based on the metagenomic data, we found that Mycobacterium-like species was the abundant bacterial taxa that overlapped among the five samples. We also recovered the draft genome of a novel Mycobacterium species, closely related to opportunistic pathogenic nontuberculous mycobacteria, M. rhodesiae and M. tusciae, in addition to other, less abundant species. In contrast, the cultured fraction was mostly affiliated to Proteobacteria, such as members of the Sphingomonas, Blastomonas and Porph

  19. Quantifying stability influences on air pollution in Lanzhou, China, using a radon-based "stability monitor": Seasonality and extreme events

    NASA Astrophysics Data System (ADS)

    Wang, Fenjuan; Chambers, Scott D.; Zhang, Zhenyi; Williams, Alastair G.; Deng, Xiaodong; Zhang, Hua; Lonati, Giovanni; Crawford, Jagoda; Griffiths, Alan D.; Ianniello, Antonietta; Allegrini, Ivo

    2016-11-01

    A recently-developed radon-based technique is modified to quantify the seasonal influences of atmospheric stability on urban emissions in Lanzhou, China, based on 11 months of observations at three sites with contrasting pollution characteristics. Near-surface concentrations of primary (CO, SO2, NOx) and secondary (O3) gas phase pollutants responded to changing atmospheric stability in markedly different ways in winter and summer, primarily because monsoonal fetch changes strongly influenced the distance between measurement sites and their nearest upwind pollutant sources, but also due to mean diurnal changes in mixing depth. Typically, morning peak primary pollution concentrations increased by a factor of 2-5 from the most well-mixed to stable conditions, whereas nocturnal ozone concentrations reduced with increasing stability due to surface loss processes and the progressively reduced coupling between the nocturnal boundary layer and overlying free atmosphere. The majority of pollution exceedance events (cf. China National Air Quality Standard guideline values) occurred in winter, when all measurement stations were downwind of the city's main pollution sources, and were directly attributed to morning periods and stable atmospheric conditions. In the sheltered valley region of Lanzhou, extremes of winter nocturnal stability states represented a change in mean nocturnal wind speed of only 0.25 m s-1 (from 0.6 to 0.85 m s-1). Daily-integrated PM10 concentrations increased by a factor of 2 in winter from the most well-mixed to stable conditions, and were usually above guideline values at the industrial and residential sites for all atmospheric stability conditions. In summer, however, daily mean PM10 exceedances usually only occurred at the industrial site, under stable conditions. Finally, a simple model - based on mean radon concentrations between 1900 and 0400 h - is proposed to predict haze conditions in the city prior to commencement of the peak morning

  20. MultiPixel Balloon-borne Air CHerenkov: Detecting Silicon to Iron from 30 TeV to 3PeV

    NASA Astrophysics Data System (ADS)

    Evenson, Paul; Clem, John; Holder, Jamie; Seckel, David; Mulrey, Katherine

    2012-07-01

    A balloon borne high resolution optical camera array (MP BACH) would enable observation of the elemental composition from Si through Fe at energies from roughly 30 TeV - 3 PeV. This would provide an observational link between direct detection techniques and ground-based air-shower detectors. The method exploits direct Cherenkov light produced in the atmosphere as the particle is deflected by the geomagnetic field at altitudes of 40-100km. The amplitude and distortion of the Cherenkov light pool provide event by event estimates of the nuclear charge and rigidity.

  1. The Working Group on Meteor Showers Nomenclature: a History, Current Status and a Call for Contributions

    NASA Technical Reports Server (NTRS)

    Jopek, T. J.; Jenniskens, P. M.

    2011-01-01

    During the IAU General Assembly in Rio de Janeiro in 2009, the members of Commission 22 established the Working Group on Meteor Shower Nomenclature, from what was formerly the Task Group on Meteor Shower Nomenclature. The Task Group had completed its mission to propose a first list of established meteor showers that could receive officially names. At the business meeting of Commission 22 the list of 64 established showers was approved and consequently officially accepted by the IAU. A two-step process is adopted for showers to receive an official name from the IAU: i) before publication, all new showers discussed in the literature are first added to the Working List of Meteor Showers, thereby receiving a unique name, IAU number and three-letter code; ii) all showers which come up to the verification criterion are selected for inclusion in the List of Established Meteor Showers, before being officially named at the next IAU General Assembly.

  2. VizieR Online Data Catalog: Separation and confirmation of showers (Neslusan+, 2017)

    NASA Astrophysics Data System (ADS)

    Neslusan, L.; Hajdukova, M. Jr.

    2016-11-01

    To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance. Most of the separated showers were identified as meteor showers from the IAU MDC list of all showers. Many of them were identified as several of the showers in the list. This proves that many showers have been named multiple times with different names. (2 data files).

  3. Associations between showering behaviours following physical education, physical activity and fitness in English schoolchildren.

    PubMed

    Sandercock, Gavin R H; Ogunleye, Ayodele; Voss, Christine

    2016-01-01

    We aimed to describe the frequency of showering after physical education (PE) in English high-school pupils. We examined differences in physical activity (PA) and cardiorespiratory fitness according to showering behaviours and examined predictors of showering. We measured PA and cardiorespiratory fitness of n = 3921 pupils (11-16 years, 53.5% males) from eight high schools. Pupils self-reported showering behaviour and parental PA levels. We calculated deprivation and distance travelled to school from their home postcode. Overall, 53% of boys and 68% of girls said they never shower after PE. Pupils who did not shower after PE were less physically active and engaged in fewer team sports. Girls who did not shower also had lower cardiorespiratory fitness than those who did. Showering behaviour varied greatly by school, so we adjusted for clustering at the school level. Pupils were more likely to shower if they were active with their parents [odds ratio (OR) = 1.72; 95% CI: 1.43, 2.07] and less likely to shower if they were from deprived areas (OR = 0.68; 95% CI: 0.52, 0.88). Showering after PE is relatively rare in English schoolchildren, particularly girls. While we cannot infer causality regarding the relationships found here, the low rates of showering and the lower PA and cardiorespiratory fitness (in girls) observed in schoolchildren who do not shower suggest research is needed to determine whether showering is a barrier to being physically active during PE.

  4. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH).

    PubMed

    Deloge-Abarkan, Magali; Ha, Thi-Lan; Robine, Enric; Zmirou-Navier, Denis; Mathieu, Laurence

    2007-01-01

    Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.

  5. Shower approach in the simulation of ion scattering from solids

    NASA Astrophysics Data System (ADS)

    Khodyrev, V. A.; Andrzejewski, R.; Rivera, A.; Boerma, D. O.; Prieto, J. E.

    2011-05-01

    An efficient approach for the simulation of ion scattering from solids is proposed. For every encountered atom, we take multiple samples of its thermal displacements among those which result in scattering with high probability to finally reach the detector. As a result, the detector is illuminated by intensive “showers,” where each event of detection must be weighted according to the actual probability of the atom displacement. The computational cost of such simulation is orders of magnitude lower than in the direct approach, and a comprehensive analysis of multiple and plural scattering effects becomes possible. We use this method for two purposes. First, the accuracy of the approximate approaches, developed mainly for ion-beam structural analysis, is verified. Second, the possibility to reproduce a wide class of experimental conditions is used to analyze some basic features of ion-solid collisions: the role of double violent collisions in low-energy ion scattering; the origin of the “surface peak” in scattering from amorphous samples; the low-energy tail in the energy spectra of scattered medium-energy ions due to plural scattering; and the degradation of blocking patterns in two-dimensional angular distributions with increasing depth of scattering. As an example of simulation for ions of MeV energies, we verify the time reversibility for channeling and blocking of 1-MeV protons in a W crystal. The possibilities of analysis that our approach offers may be very useful for various applications, in particular, for structural analysis with atomic resolution.

  6. Space-time development of electromagnetic and hadronic showers and perspectives for novel calorimetric techniques

    SciTech Connect

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; Wenzel, Hans; Para, Adam

    2016-04-20

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time development of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.

  7. Space-time development of electromagnetic and hadronic showers and perspectives for novel calorimetric techniques

    DOE PAGES

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; ...

    2016-04-20

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time developmentmore » of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.« less

  8. Prevention of intraoperative wound contamination with chlorhexidine shower and scrub.

    PubMed

    Garibaldi, R A

    1988-04-01

    In a prospective, controlled, clinical trial, we found that preoperative showering and scrubbing with 4% chlorhexidine gluconate was more effective than povidone-iodine or triclocarban medicated soap in reducing skin colonization at the site of surgical incision. Mean log colony counts of the incision site were one half to one log lower for patients who showered with chlorhexidine compared to those who showered with the other regimens. No growth was observed on 43% of the post shower skin cultures from patients in the chlorhexidine group compared with 16% of the cultures from patients who had povidone-iodine showers and 5% of those from patients who used medicated soap and water. The frequency of positive intraoperative wound cultures was 4% with chlorhexidine, 9% with povidone-iodine and 14% with medicated soap and water. This study demonstrates that chlorhexidine gluconate is a more effective skin disinfectant than either povidone-iodine or triclocarban soap and water and that its use is associated with lower rates of intraoperative wound contamination.

  9. Alternative energy estimation from the shower lateral distribution function

    NASA Astrophysics Data System (ADS)

    de Souza, Vitor; Escobar, Carlos; Brito, Joel; Dobrigkeit, Carola; Medina-Tanco, Gustavo

    The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new estimator proposed here is shown to be a good and robust alternative to the standard single point procedure.

  10. Comparative analysis of showering protocols for mass-casualty decontamination.

    PubMed

    Amlot, Richard; Larner, Joanne; Matar, Hazem; Jones, David R; Carter, Holly; Turner, Elizabeth A; Price, Shirley C; Chilcott, Robert P

    2010-01-01

    A well-established provision for mass-casualty decontamination that incorporates the use of mobile showering units has been developed in the UK. The effectiveness of such decontamination procedures will be critical in minimizing or preventing the contamination of emergency responders and hospital infrastructure. The purpose of this study was to evaluate three empirical strategies designed to optimize existing decontamination procedures: (1) instructions in the form of a pictorial aid prior to decontamination; (2) provision of a washcloth within the showering facility; and (3) an extended showering period. The study was a three-factor, between-participants (or "independent") design with 90 volunteers. The three factors each had two levels: use of washcloths (washcloth/no washcloth), washing instructions (instructions/no instructions), and shower cycle duration (three minutes/six minutes). The effectiveness of these strategies was quantified by whole-body fluorescence imaging following application of a red fluorophore to multiple, discrete areas of the skin. All five showering procedures were relatively effective in removing the fluorophore "contaminant", but the use of a cloth (in the absence of instructions) led to a significant ( appox. 20%) improvement in the effectiveness of decontamination over the standard protocol (p <0.05). Current mass-casualty decontamination effectiveness, especially in children, can be optimized by the provision of a washcloth. This simple but effective approach indicates the value of performing controlled volunteer trials for optimizing existing decontamination procedures.

  11. Geospatial relationships of air pollution and acute asthma events across the Detroit–Windsor international border: Study design and preliminary results

    PubMed Central

    Lemke, Lawrence D; Lamerato, Lois E; Xu, Xiaohong; Booza, Jason C; Reiners, John J; Raymond III, Delbert M; Villeneuve, Paul J; Lavigne, Eric; Larkin, Dana; Krouse, Helene J

    2014-01-01

    The Geospatial Determinants of Health Outcomes Consortium (GeoDHOC) study investigated ambient air quality across the international border between Detroit, Michigan, USA and Windsor, Ontario, Canada and its association with acute asthma events in 5- to 89-year-old residents of these cities. NO2, SO2, and volatile organic compounds (VOCs) were measured at 100 sites, and particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at 50 sites during two 2-week sampling periods in 2008 and 2009. Acute asthma event rates across neighborhoods in each city were calculated using emergency room visits and hospitalizations and standardized to the overall age and gender distribution of the population in the two cities combined. Results demonstrate that intra-urban air quality variations are related to adverse respiratory events in both cities. Annual 2008 asthma rates exhibited statistically significant positive correlations with total VOCs and total benzene, toluene, ethylbenzene and xylene (BTEX) at 5-digit zip code scale spatial resolution in Detroit. In Windsor, NO2, VOCs, and PM10 concentrations correlated positively with 2008 asthma rates at a similar 3-digit postal forward sortation area scale. The study is limited by its coarse temporal resolution (comparing relatively short term air quality measurements to annual asthma health data) and interpretation of findings is complicated by contrasts in population demographics and health-care delivery systems in Detroit and Windsor. PMID:24220215

  12. Leonid Shower Probe of Aerothermochemistry in Meteoric Plasmas and Implication for the Origin of Life

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter S. I.; Packan, D.; Laux, C.; Wilson, Mike; Boyd, I. D.; Kruger, C. H.; Popova, O.; Fonda, M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.

  13. Comet showers as a cause of mass extinction

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Alvarez, Walter; Elder, William P.; Kauffman, Erle G.; Hansen, Thor; Keller, Gerta; Shoemaker, Eugene M.; Weissman, Paul R.

    1987-01-01

    Three independent pieces of evidence supporting a connection between comet showers and clustering in terrestrial cratering and mass extinctions are presented. The temporal profile of a comet shower triggered by a star passing through the Oort cloud is calculated. Four weak peaks are found in the age of distribution of impact craters over the past 100 Myr, as well as two compact clusters of ages of impact glass broadly coincident with crater-age peaks. Recent paleontological observations are reviewed that indicate a stepwise character for some well-documented mass extinctions in the past 100 Myr which roughly coincide with three of the four peaks in crater ages and which have a duration compatible with comet shower predictions.

  14. Longitudinal shower development and its signature at observation level

    NASA Astrophysics Data System (ADS)

    Chitnis, V. R.; Bhat, P. N.

    2002-03-01

    From a study of Cverenkov photon arrival times at various core distances at the observation level it has already been established that the photon front is well fitted with a spherical surface traveling at the speed of light and originating from a fixed point on the shower axis. The radius of curvature as measured at the observation level has been found to be roughly equal to the height of shower maximum from the observation level. In the present work we study the relationship between the radius of curvature of the shower fromt (R), the height of electron maximum (he), the Cverenkov photon maximum (hCv) and the average production height of Cverenkov photons (h-). Cverenkov pulse width (w) has always ben used as a parameter to study cascade development especially at tens of PeV energies. We discuss the relation between the w and he at TeV energies for gamma-ray and proton primaries.

  15. Test beam results of micro channel plates in 'ionisation mode' for the detection of single charged particle and electromagnetic showers

    SciTech Connect

    Barnyakov, A.; Barnyakov, M.; Brianza, L.; Ghezzi, A.; Gotti, C.; Govoni, P.; Martelli, A.; Marzocchi, B.; Pigazzini, S.; Tabarelli de Fatis, T.; Trevisani, N.; Cavallari, F.; Del Re, D.; Gelli, S.; Jorda Lope, C.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pernie, L.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.

    2015-07-01

    IMCP is an R and D project aimed at the exploitation of secondary emission of electrons from the surface of microchannel plates (MCP) for fast timing of showers in high rate environments. The usage of MCPs in 'ionisation' mode has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The fast time resolution of MCPs exceeds anything that has been previously used in calorimeters, and, if exploited effectively, could aid in the event reconstruction at high luminosities. Results from tests with electrons with energies up to 150 GeV of MCP devices with different characteristics will be presented, in particular detection efficiency and time resolution. (authors)

  16. Spallation backgrounds in Super-Kamiokande are made in muon-induced showers

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-05-01

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by ≃ 90 % (at a cost of ≃ 20 % deadtime), but its rate at 6-18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper by Bays et al. [Phys. Rev. D 85, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  17. Aging comets and their meteor showers

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi

    2016-10-01

    Comets are thought to be responsible for the terrestrial accretion of water and organic materials. The aging of comets is one of the most critical yet poorly understood problems in planetary astronomy. Here we attack this problem by examining different parts of the cometary aging spectrum of Jupiter-family comets (JFCs), a group of comets that dominates the cometary influx in the near-Earth space, using both telescopic and meteor observations.We examine two representative JFCs and the population of dormant comets. At the younger end of the aging spectrum, we examine a moderately active JFC, 15P/Finlay, and review the puzzle of the non-detection of the associated Finlayid meteor shower. We find that, although having been behaved like a dying comet in the past several 102 years, 15P/Finlay does possess ability for energetic outbursts without a clear reason. Towards the more aged end of the spectrum, we examine a weakly active JFC, 209P/LINEAR. By bridging telescopic observations at visible and infrared wavelength, meteor observations and dynamical investigations, we find that 209P/LINEAR is indeed likely an aged yet long-lived comet. At the other end of the spectrum, we examine the population of dormant near-Earth comets, by conducting a comprehensive meteor-based survey looking for dormant comets that have recently been active. We find the lower limit of the dormant comet fraction in the near-Earth object (NEO) population to be 2.0 ± 1.7%. This number is at the lower end of the numbers found using dynamical and telescopic techniques, which may imply that a significant fraction of comets in the true JFC population are weakly active and are not yet detected.These results have revealed interesting diversities in dying or dead comets, both in their behaviors as well as their natures. An immediate quest in the understanding of cometary aging would be to examine a large number of dying or dead comets and understand their general characteristics.

  18. Renovation of Waste Shower Water by Membrane Filtration.

    DTIC Science & Technology

    1976-11-01

    Formulation of Synthetic Shower Wastewater Item Quantity mg/I g/ 180 gal g/7000 gal Soap 33 22.5 875 NaCl 40 27.1 1054 U ret! 0.5 0.33 12.8 Kaolin 9.1...6.21 242 Talc 9.4 6.42 250 Shower Cleaner 48 32.6 1268 Hair 4.8 3.3 128 Hair Oil 75 51 1983 Hair Gel 18 12.1 471 Shampoo 2.4 1.64 64 Toothpaste 18

  19. Test results on reuse of reclaimed shower water - A summary

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.

    1989-01-01

    Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.

  20. MAPPING DISSEMINATION OF CHEMICAL AFTER DISPERSIVE EVENTS USING AN AMBIENT-AIR, SURFACE SAMPLING TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    Chemicals are dispersed by numerous accidental, deliberate, or weather-related events. Often, rapid analyses are desired to identify dispersed chemicals and to delineate areas of contamination. Hundreds of wipe samples might be collected from outdoor surfaces or building interi...

  1. Development of cosmic ray simulation program: Earth cosmic ray shower (ECRS)

    NASA Astrophysics Data System (ADS)

    Hakmana Witharana, Sampath

    ECRS is a program for the detailed simulation of extensive air shower initiated by high energy cosmic ray particles. In this dissertation work, a Geant4 based ECRS simulation was designed and developed to study secondary cosmic ray particle showers in the full range of Earth's atmosphere. A proper atmospheric air density and geomagnetic field are implemented in order to correctly simulate the charged particles interactions in the Earth's atmosphere. The initial simulation was done for the Atlanta (33.46° N , 84.25° W) region. Four different types of primary proton energies (10^9 , 10^10 , 10^11 and 10 12 eV) were considered to determine the secondary particle distribution at the Earth's surface. The geomagnetic field and atmospheric air density have considerable effects on the muon particle distribution at the Earth's surface. The muon charge ratio at the Earth's surface was studied with ECRS simulation for two different geomagnetic locations: Atlanta, Georgia, USA and Lynn Lake, Manitoba, Canada. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake. At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 ± 0.05 (without geomagnetic field), 1.12 ± 0.05 (with geomagnetic field) for Atlanta and 1.22 ± 0.04 (with geomagnetic field) for Lynn Lake. These types of studies are very important for analyzing secondary cosmic ray muon flux distribution at the Earth's surface and can be used to study the atmospheric neutrino oscillations.

  2. Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the US/Mexico border

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.

    High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.

  3. Applicability of a ``shower`` passive cooling tower in a hot dry climate

    SciTech Connect

    Givoni, B.; Al-Hemiddi, N.

    1995-11-01

    This cooling system has originally been developed by Givoni for cooling outdoor rest areas for the EXPO`92 in Seville, Spain. However, it can also be applied, and has been tested, as a cooling system for building and enclosed and shaded courtyards. It consists of an open shaft with showers at the top and a collecting ``pond`` at the bottom. Water is recirculated by a pump. The falling water entrain a large volume of air, creating a flow of cooled air down the shaft and into a building. A wind catcher can be installed above the shaft to enhance the air flow rate. The paper presents data on the performance of the system, tested by Al Hemiddi, including experimental data obtained first in a ``patio`` test cell at UCLA in Los Angeles, and later in a full size room in Riyadh, Saudi Arabia. The testing in Riyadh has demonstrated that with outdoor air maximum temperature of about 45 C the indoor air maximum of the cooled room was bout 29 C. This system can use brackish and sea water, in addition to fresh water. Thus it is applicable and capable of providing indoor comfort even in very hot desert regions, where any kind of water, even sea water, is available.

  4. Visual data of minor meteor showers limits of the method

    NASA Technical Reports Server (NTRS)

    Rendtel, Jurgen; Koschack, R.

    1992-01-01

    Visual meteor observations are carried out on a regular basis by many experienced observers worldwide, thus supplying information about activity of meteor showers. The limits of the method are determined by the accuracy of the detection of the meteor trail. This study shows that visual meteor observations provide reliable data for an observable hourly rate of greater than or equal to 3.

  5. A (revised) confidence index for the forecasting of meteor showers

    NASA Astrophysics Data System (ADS)

    Vaubaillon, J.

    2016-01-01

    A confidence index for the forecasting of meteor showers is presented. The goal is to provide users with information regarding the way the forecasting is performed, so several degrees of confidence is achieved. This paper presents the meaning of the index coding system.

  6. Large Deviation Analysis of Rapid Onset of Rain Showers

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael

    2016-01-01

    Rainfall from ice-free cumulus clouds requires collisions of large numbers of microscopic droplets to create every raindrop. The onset of rain showers can be surprisingly rapid, much faster than the mean time required for a single collision. Large-deviation theory is used to explain this observation.

  7. Simulating Meteor Shower Observations In The Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    McAuliffe, J. P.; Christou, A. A.

    2005-08-01

    It is known that fast meteoroids entering the martian atmosphere give rise to bright, detectable meteors (Adolfsson et al, Icarus 119, 144, 1996). Although single meteors have already been detected at Mars (Selsis et al., Nature 435, 581, 2005), the characterisation of the martian meteor year will require a large number of detections. Experience at the Earth suggests that data storage and bandwidth resources to conduct such surveys will be substantial, and may be prohibitive. In an attempt to quantify the problem in detail, we have simulated meteor shower detection in the martian and terrestrial atmospheres. For a given shower, we assume a meteoroid stream flux, size distribution and velocity based on current knowledge of Earth streams as well as the proximity of certain comets' orbits to that of Mars. A numerical code is used to simulate meteoroid ablation in a model martian and terrestrial atmosphere. Finally, using the same baseline detector characteristics (limiting magnitude, sky coverage) we generate detection statistics for the two planets. We will present results for different types of showers, including strong annual activity and episodic outbursts from Halley-type and Jupiter family comets. We will show how detection efficiency at Mars compares to the Earth for these showers and discuss optimum strategies for monitoring the martian atmosphere for meteor activity. Astronomy research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  8. Don Quixote --- a possible parent body of a meteor shower

    NASA Astrophysics Data System (ADS)

    Rudawska, R.; Vaubaillon, J.

    2014-07-01

    This talk addresses the topic of meteoroid stream parent body in relation to meteor showers observed on the Earth. We carry out a further search to investigate the possibility of meteor shower observations caused by particles ejected from (3552) Don Quixote. The (3552) Don Quixote asteroid was discovered in 1983 as an Amor asteroid. The Tisserand parameter for the orbit has a value of 2.315 with respect to Jupiter, which indicates a comet-like orbit. The diameter of the object calculated from the absolute magnitude, is in the range of 12.3--24.5 km. It all makes Don Quixote a good candidate for a short-period comet among known near-Earth objects, which the recently observed cometary activity confirms [1]. We have investigated the orbital evolution of the meteoroid stream originated from Don Quixote. If the object was active in the past, it might be a parent body for a meteor shower observed on the Earth. The model for the generation and evolution of the meteoroid stream in the Solar System is taken from [2]. The asteroid's orbital elements and physical properties are taken from the JPL horizons website. The ejections of meteoroids from the asteroid surface took place when the asteroid was passing its perihelion between 5000 B.C. and 2013 A.D. Next, the orbits of ejected meteoroids were integrated to the year 2050. If a meteoroid is sufficiently close to the Earth, its orbital parameters are saved and compared with known showers.

  9. BATH 1 SHOWING THE SHOWER ENCLOSURE AND FLUSH DOOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BATH 1 SHOWING THE SHOWER ENCLOSURE AND FLUSH DOOR OF LINEN CLOSET. VIEW FACING SOUTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Three-Bedroom Duplex Type 4, Acacia Road, Birch Circle, Cedar Drive and Elm Drive, Pearl City, Honolulu County, HI

  10. Measure Guideline: Water Management at Tub and Shower Assemblies

    SciTech Connect

    Dickson, B.

    2011-12-01

    Due to the high concentrations of water and the consequential risk of water damage to the home's structure a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. This guide shows how to install fundamental waterproofing strategies to prevent water related issues at shower and tub areas. When conducting a total gut rehab of a structure or constructing a new home, best practice installation and detailing for effective waterproofing are critically important at bathtub and shower assemblies. Water management issues in a structure may go unrecognized for long periods, so that when they are finally observed, the damage from long-term water exposure is extensive. A gut rehab is often undertaken when a home has experienced a natural disaster or when the homeowners are interested in converting an old, high-energy-use building into a high-quality, efficient structure that meets or exceeds one of the national energy standards, such as ENERGY STAR or LEED for homes. During a gut rehab, bath areas need to be replaced with diligent attention to detail. Employing effective water management practices in the installation and detailing of tub and shower assemblies will minimize or eliminate water issues within the building cavities and on the finished surfaces. A residential tub-and-shower surround or shower-stall assembly is designed to handle a high volume of water - 2.5 gallons per minute, with multiple baths occurring during a typical day. Transitions between dissimilar materials and connections between multiple planes must be installed with care to avoid creating a pathway for water to enter the building assemblies. Due to the high volume of water and the consequential risk of water damage to the home's structure, a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. At each stage of construction

  11. A numerical investigation of East Coast cyclogenesis during the cold-air damming event of 27-28 February 1982. I - Dynamic and thermodynamic structure

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Seaman, Nelson L.

    1990-01-01

    A cyclogenesis event combined with strong cold-air damming, coastal frontogenesis, and extensive mixed precipitation, which occurred on February 27-28, 1982 at the South Carolina coast is investigated numerically. The prestorm environment and subsequent cyclogenesis was simulated using a nested version of the Penn State/NCAR mesoscale model with 35-km fine-mesh resolution. The model was found to successfully reproduce most principal synoptic and mesoscale features associated with this cyclogenesis case, including the storm path and intensification, the coastal front structure, cold-air damming, circulations induced by a polar jet streak, low-level jets, and precipitation. The results of this study reveal the existence of two moist airstreams fed by an onshore flow from the marine boundary layer east of the coastal front.

  12. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  13. Estimation of the SO2 source term for the Holuhraun event and its influence on central Europe air quality

    NASA Astrophysics Data System (ADS)

    Arnold, Delia; Iren Kristiansen, Nina; Theys, Nicolas; Brenot, Hugues; Maurer, Christian; Wotawa, Gerhard; Stebel, Kerstin; Holla, Robert; Gilge, Stefan; Flemming, Johannes; Stohl, Andreas; Hirtl, Marcus

    2015-04-01

    On 29 August 2014 a fissure eruption began in Holuhraun, Northeastern Iceland, associated with increased volcanic activity in the Bárdarbunga system. For more than 150 days, the eruption released large quantities of SO2 into the atmosphere affecting not only the local Icelandic air quality, but also leading to periods of increased ambient SO2 concentrations in parts of mainland Europe. During the second half of September, significant amounts of SO2 were rapidly transported southward by favourable meteorological conditions and several countries in Central Europe experienced high ground-level SO2 concentrations. The measured concentrations reached and even exceeded the EC directive health thresholds. In this work, we evaluate the air quality effects in Europe during this targeted period using both ground-based and satellite observations (GOME2B and OMI) as well as dispersion modelling with the Lagrangian particle model FLEXPART. We estimate the volcanic SO2 source emissions by comparing the satellite observations with atmospheric transport model simulations in an inverse modelling approach. The estimated source term is evaluated against independent ground-based observational data (e.g. MAX-DOAS, Brewer) and used as emission term in dispersion model forecasts for evaluating the air quality effects in Europe. In addition, the potential use of air quality data to perform the source term estimation by inversion with ground-based data will also be investigated.

  14. Phenomenological characteristic of the electron component in gamma-quanta initiated showers

    NASA Technical Reports Server (NTRS)

    Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.

    1985-01-01

    The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.

  15. The Late Eocene Impactor Shower Was Likely Produced by the Breakup of a Mars-Crossing Asteroid

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Morbidelli, A.; Nesvorny, D.

    2005-08-01

    The largest impacts on Earth since the K/T event both occurred in the Late Eocene: the Popigai crater in Siberia (D = 100 km; 35.7 ± 0.2 Ma) and the Chesapeake Bay crater off the eastern US seaboard (D = 40 km; 35.5± 0.6 Ma). At the same time, an unusually high flux of interplanetary dust particles was recorded by 3He measurements in well-dated marine sediments from the Indian/Atlantic Oceans. Farley et al. (1998) argued a comet shower produced these events. The impact melt at Popagai, however, was produced by an L-chondrite impactor (Tagle and Claeys 2004). Thus, the so-called Late Eocene event was likely produced by an ``asteroid shower". Note that asteroid showers were originally thought to be byproducts of main belt family-forming events, with the ejecta directly injected into nearby resonances (Zappala et al. 1998). A search by our team, however, indicates no known family can produce this event. We postulate here a related but alternative mechanism to produce asteroid showers. Most large terrestrial impactors (D > 5 km) escape the main belt onto Mars-crossing orbits via tiny resonances in the inner main belt. Here they reside until close encounters push them into a powerful resonance (usually the v6 secular resonance) that quickly takes them to an Earth-crossing orbit. At the same time, these objects continue to pass through the main belt, where they are ``sitting ducks" for main belt projectiles. Using collision evolution model results, we find a D > 5 km asteroid in the v6 resonance should disrupt once every 70 My. The fragments, which often have low inclination orbits and thus high collision probabilities with Earth, have an impact probability distribution that is spiky; ˜ 50% of those striking the Earth hit within 2 My. Finally, the dust produced by this event has a high likelihood of hitting Earth, consistent with the observed 3He spike.

  16. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project

    PubMed Central

    Forastiere, Francesco; Stafoggia, Massimo; Andersen, Zorana J; Badaloni, Chiara; Beelen, Rob; Caracciolo, Barbara; de Faire, Ulf; Erbel, Raimund; Eriksen, Kirsten T; Fratiglioni, Laura; Galassi, Claudia; Hampel, Regina; Heier, Margit; Hennig, Frauke; Hilding, Agneta; Hoffmann, Barbara; Houthuijs, Danny; Jöckel, Karl-Heinz; Korek, Michal; Lanki, Timo; Leander, Karin; Magnusson, Patrik K E; Migliore, Enrica; Ostenson, Caes-Göran; Overvad, Kim; Pedersen, Nancy L; J, Juha Pekkanen; Penell, Johanna; Pershagen, Göran; Pyko, Andrei; Raaschou-Nielsen, Ole; Ranzi, Andrea; Ricceri, Fulvio; Sacerdote, Carlotta; Salomaa, Veikko; Swart, Wim; Turunen, Anu W; Vineis, Paolo; Weinmayr, Gudrun; Wolf, Kathrin; de Hoogh, Kees; Hoek, Gerard; Brunekreef, Bert; Peters, Annette

    2014-01-01

    Objectives To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Design Prospective cohort studies and meta-analysis of the results. Setting Cohorts in Finland, Sweden, Denmark, Germany, and Italy. Participants 100 166 people were enrolled from 1997 to 2007 and followed for an average of 11.5 years. Participants were free from previous coronary events at baseline. Main outcome measures Modelled concentrations of particulate matter <2.5 μm (PM2.5), 2.5-10 μm (PMcoarse), and <10 μm (PM10) in aerodynamic diameter, soot (PM2.5 absorbance), nitrogen oxides, and traffic exposure at the home address based on measurements of air pollution conducted in 2008-12. Cohort specific hazard ratios for incidence of acute coronary events (myocardial infarction and unstable angina) per fixed increments of the pollutants with adjustment for sociodemographic and lifestyle risk factors, and pooled random effects meta-analytic hazard ratios. Results 5157 participants experienced incident events. A 5 μg/m3 increase in estimated annual mean PM2.5 was associated with a 13% increased risk of coronary events (hazard ratio 1.13, 95% confidence interval 0.98 to 1.30), and a 10 μg/m3 increase in estimated annual mean PM10 was associated with a 12% increased risk of coronary events (1.12, 1.01 to 1.25) with no evidence of heterogeneity between cohorts. Positive associations were detected below the current annual European limit value of 25 μg/m3 for PM2.5 (1.18, 1.01 to 1.39, for 5 μg/m3 increase in PM2.5) and below 40 μg/m3 for PM10 (1.12, 1.00 to 1.27, for 10 μg/m3 increase in PM10). Positive but non-significant associations were found with other pollutants. Conclusions Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European

  17. Application of thermoluminescence for detection of cascade shower 2: Detection of cosmic ray cascade shower at Mount Fuji

    NASA Technical Reports Server (NTRS)

    Akashi, M.; Kawaguchi, S.; Watanabe, Z.; Misaki, A.; Niwa, M.; Okamoto, Y.; Fujinaga, T.; Ichimura, M.; Shibata, T.; Dake, S.

    1985-01-01

    The results of a thermoluminescence (TL) chamber exposed at Mt. Fuji during Aug. '83 - Aug. '84 are reported. The TL signal induced by cosmic ray shower is detected and compared with the spot darkness of X-ray film exposed at the same time.

  18. Transboundary Transport of Biomass Burning Emissions in Southeast Asia and Contribution to Local Air Quality During the 2006 Fire Event

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G.; Balasubramanian, R.; Betha, R.

    2014-12-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) that originated in Indonesia using WRF-Chem. Our study addressed 3 research questions: (1) Can the WRF-Chem model reproduce observations of both aerosol and CO concentrations in this complex region? (2) What is the evolution in the chemical composition of the aerosol fire plume during its atmospheric transport? and (3) What is the relative contribution of these fires to air quality in the urbanized area of the city-state of Singapore? To test model performance, we used three independent datasets for comparison (PM10 in Singapore, CO measurements in Sumatra, and AOD column observations from 4 satellite-based sensors). We found reasonable agreement of the model runs with ground-based measurements of both CO and PM10. However, the comparison with AOD was less favorable and indicated the model underestimated AOD. In the past, modeling studies using only AOD as a constraint have often boosted fire emissions to get a better agreement with observations. In our case, this approach would seriously deteriorate the difference with ground-based observations. Finally, our results show that about 21% of the total mass loading of ambient PM10 during the July-October study period in Singapore was due to the influence of biomass and peat burning in Sumatra, with an increased contribution during high burning periods. The composition of this biomass burning plume was largely dominated by primary organic carbon. In total, our model results indicated that during 35 days aerosol concentrations in Singapore were above the threshold of 50 μg m-3 day-1 (WHO threshold). During 17 days this deterioration was due to Indonesian fires, based on the difference between the simulations with and without fires. Local air pollution in combination with recirculation of air masses was probably the main

  19. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  20. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  1. Guideline on the identification and handling of ambient air quality data affected by special events or special conditions. Draft report

    SciTech Connect

    Byrd, L.A.B.; Phillips, B.

    1994-09-01

    The document provides guidance on procedures for flagging and reporting data associated with various circumstances: data validation, submittal of information related to data, and/or request for special treatment accompanied by supporting documentation related to a special event or condition (SEC). Chapter 1 provides a brief history of SEC data flagging. Chapter 2 presents data usage, tests, and criteria used to determine if a data value can qualify for the attachment of a data flag. Chapter 3 provides information on procedures to be followed for flagging data and providing supporting documentation for flags. Appendix A provides an explanation of several categories of SEC that may be used to describe some types of circumstances affecting data values. Appendix B provides examples of events that should not be considered as SEC.

  2. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    SciTech Connect

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  3. Long-Term Continuous Double Station Observation of Faint Meteor Showers

    PubMed Central

    Vítek, Stanislav; Páta, Petr; Koten, Pavel; Fliegel, Karel

    2016-01-01

    Meteor detection and analysis is an essential topic in the field of astronomy. In this paper, a high-sensitivity and high-time-resolution imaging device for the detection of faint meteoric events is presented. The instrument is based on a fast CCD camera and an image intensifier. Two such instruments form a double-station observation network. The MAIA (Meteor Automatic Imager and Analyzer) system has been in continuous operation since 2013 and has successfully captured hundreds of meteors belonging to different meteor showers, as well as sporadic meteors. A data processing pipeline for the efficient processing and evaluation of the massive amount of video sequences is also introduced in this paper. PMID:27649179

  4. Long-Term Continuous Double Station Observation of Faint Meteor Showers.

    PubMed

    Vítek, Stanislav; Páta, Petr; Koten, Pavel; Fliegel, Karel

    2016-09-14

    Meteor detection and analysis is an essential topic in the field of astronomy. In this paper, a high-sensitivity and high-time-resolution imaging device for the detection of faint meteoric events is presented. The instrument is based on a fast CCD camera and an image intensifier. Two such instruments form a double-station observation network. The MAIA (Meteor Automatic Imager and Analyzer) system has been in continuous operation since 2013 and has successfully captured hundreds of meteors belonging to different meteor showers, as well as sporadic meteors. A data processing pipeline for the efficient processing and evaluation of the massive amount of video sequences is also introduced in this paper.

  5. Surface Deformation Associated With a Historical Diking Event in Afar From Correlation of Space and Air-Borne Optical Images

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Peltzer, G.; Leprince, S.; Ayoub, F.; Kasser, M.

    2011-12-01

    We present new measurements of the surface deformation associated with the rifting event of 1978 in the Asal-Ghoubbet rift, Republic of Djibouti. The Asal-Ghoubbet rift forms a component of the Afar Depression, a broad extensional region at the junction between the Nubia, Arabia, and Somalia plates, which apart from Iceland, is the only spreading center located above sea-level. The 1978 rifting event was marked by a 2-month sequence of small to moderate earthquakes (Mb ~3-5) and a fissural eruption of the Ardukoba Volcano. Deformation in the Asal rift associated with the event included the reactivation of the main bordering faults and the development of numerous open fissures on the rift floor. The movement of the rift shoulders, measured using ground-based geodesy, showed up to 2.5 m of opening in the N40E direction. Our data include historical aerial photographs from 1962 and 1984 (less than 0.8 m/pixel) along the northern border fault, three KH-9 Hexagon(~8 m/pixel) satellite images from 1973, and recently acquired ASTER (15 m/pixel) and SPOT5 (2.5 m/pixel) data. The measurements are made by correlating pre- and post-event images using the COSI-Corr (Co-registration of Optically Sensed Images and Correlation) software developed at Caltech. The ortho-rectification of the images is done with a mosaic of a 10 m resolution digital elevation model, made by French Institut Geographique National (IGN), and the SRTM and GDEM datasets. Correlation results from the satellite images indicate 2-3 meters of opening across the rift. Preliminary results obtained using the 1962 and 1984 aerial photographs indicate that a large fraction of the opening occurred on or near Fault γ, which borders the rift to the North. These preliminary results are largely consistent with the ground based measurements made after the event. A complete analysis of the aerial photograph coverage will provide a better characterization of the spatial distribution of the deformation throughout the rift.

  6. GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events.

    PubMed

    Faruque, Fazlay S; Li, Hui; Williams, Worth B; Waller, Lance A; Brackin, Bruce T; Zhang, Lei; Grimes, Kim A; Finley, Richard W

    2014-12-01

    Air pollutants, such as particulate matter with a diameter ≤2.5 microns (PM2.5) and ozone (O3), are known to exacerbate asthma and other respiratory diseases. An integrated surveillance system that tracks such air pollutants and associated disease incidence can assist in risk assessment, healthcare preparedness and public awareness. However, the implementation of such an integrated environmental health surveillance system is a challenge due to the disparate sources of many types of data and the implementation becomes even more complicated for a spatial and real-time system due to lack of standardised technological components and data incompatibility. In addition, accessing and utilising health data that are considered as Protected Health Information (PHI) require maintaining stringent protocols, which have to be supported by the system. This paper aims to illustrate the development of a spatial surveillance system (GeoMedStat) that is capable of tracking daily environmental pollutants along with both daily and historical patient encounter data. It utilises satellite data and the groundmonitor data from the US National Aeronautics and Space Administration (NASA) and the US Environemental Protection Agenecy (EPA), rspectively as inputs estimating air pollutants and is linked to hospital information systems for accessing chief complaints and disease classification codes. The components, developmental methods, functionality of GeoMedStat and its use as a real-time environmental health surveillance system for asthma and other respiratory syndromes in connection with with PM2.5 and ozone are described. It is expected that the framework presented will serve as an example to others developing real-time spatial surveillance systems for pollutants and hospital visits.

  7. Dust Event of April 23-24, 2014 in the Northwest China and Changes in Air Quality, Atmospheric and Meteorological Parameters

    NASA Astrophysics Data System (ADS)

    Zheng, S.; Cao, C.; Singh, R. P.

    2014-12-01

    Dust season is prevalent every year during spring season (March-May) affecting the Northern parts of China. A strong cold air from the Western Siberia started affecting the Northern parts of China on April 22, 2014. On April 23-24, 2014, a massive dust storm blanketed the Northwest China including Xinjiang, Gansu, Qinghai, Ningxia, and Shanxi provinces. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra images clearly show the long range transport of dust storms. Higher concentrations of atmospheric (satellite aerosol optical depth - AOD) and air quality (PM10 and PM2.5) were observed after the dust event. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to produce forward dispersion patterns of pollutants from the source locations. It is found that the dust disperse from west to east in the Northwest region of China. We have considered three locations along dust flow (Urumchi in Xinjiang, Jiayuguan in Gansu, and Yinchuan in Ningxia provinces). Using Atmospheric Infrared Sounder (AIRS) and ground data, we have analyzed changes in carbon monoxide (CO), water vapor, and relative humidity (RH) at different pressure levels with the dust storms. The results show distinct differences in these meteorological parameters during dusty days at the three locations. Our analysis shows changes in total column CO, ground and upper layer CO concentrations, water vapor mass mixing ratio and relative humidity. The changes in atmospheric and meteorological parameters and their impacts on the regional weather and climate will be discussed.

  8. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.; Stutz, Jochen; Erickson, Matthew H.; Hurlock, Stephen C.; Cheung, Ross; Tsai, Catalina; Colosimo, Santo F.; Festa, James; Wijesinghe, Asanga; Neish, Bradley S.

    2017-02-01

    During the Benzene and other Toxics Exposure (BEE-TEX) study, a remote sensing network based on long path Differential Optical Absorption Spectroscopy (DOAS) was set up in the Manchester neighborhood beside the Ship Channel of Houston, Texas in order to perform Computer Aided Tomography (CAT) scans of hazardous air pollutants. On 18-19 February 2015, the CAT scan network detected large nocturnal plumes of toluene and xylenes most likely associated with railcar loading and unloading operations at Ship Channel petrochemical facilities. The presence of such plumes during railcar operations was confirmed by a mobile laboratory equipped with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), which measured transient peaks of toluene and C2-benzenes of 50 ppb and 57 ppb respectively around 4 a.m. LST on 19 February 2015. Plume reconstruction and source attribution were performed using the 4D variational data assimilation technique and a 3D micro-scale forward and adjoint air quality model based on both tomographic and PTR-MS data. Inverse model estimates of fugitive emissions associated with railcar transfer emissions ranged from 2.0 to 8.2 kg/hr for toluene and from 2.2 to 3.5 kg/hr for xylenes in the early morning of 19 February 2015.

  9. Search for neutrino-induced particle showers with IceCube-40

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2014-05-01

    We report on the search for neutrino-induced particle showers, so-called cascades, in the IceCube-40 detector. The data for this search were collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV leads to the observation of 14 cascadelike events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of E2Φlim≤7.46×10-8 GeV sr-1 s-1 cm-2 (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an Eν-2 spectrum and a neutrino flavor ratio of 1∶1∶1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a 2.7σ excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube's recently observed evidence for high-energy astrophysical neutrinos.

  10. Using memory for prior aircraft events to detect conflicts under conditions of proactive air traffic control and with concurrent task requirements.

    PubMed

    Bowden, Vanessa K; Loft, Shayne

    2016-06-01

    In 2 experiments we examined the impact of memory for prior events on conflict detection in simulated air traffic control under conditions where individuals proactively controlled aircraft and completed concurrent tasks. Individuals were faster to detect conflicts that had repeatedly been presented during training (positive transfer). Bayesian statistics indicated strong evidence for the null hypothesis that conflict detection was not impaired for events that resembled an aircraft pair that had repeatedly come close to conflicting during training. This is likely because aircraft altitude (the feature manipulated between training and test) was attended to by participants when proactively controlling aircraft. In contrast, a minor change to the relative position of a repeated nonconflicting aircraft pair moderately impaired conflict detection (negative transfer). There was strong evidence for the null hypothesis that positive transfer was not impacted by dividing participant attention, which suggests that part of the information retrieved regarding prior aircraft events was perceptual (the new aircraft pair "looked" like a conflict based on familiarity). These findings extend the effects previously reported by Loft, Humphreys, and Neal (2004), answering the recent strong and unanimous calls across the psychological science discipline to formally establish the robustness and generality of previously published effects. (PsycINFO Database Record

  11. Containment and resolution of hadronic showers at the FCC

    NASA Astrophysics Data System (ADS)

    Carli, T.; Helsens, C.; Henriques Correia, A.; Solans Sánchez, C.

    2016-09-01

    The particles produced at a potential Future Circular Collider with √s = 100 TeV are of unprecented energies. In this document we present the hadronic shower containment and resolution parametrizations based on Geant4 simulations for the Hadronic calorimetry needed for conceptual detector design at this energy. The Geant4 toolkit along with FTFP_BERT physics list are used in this study. Comparisons are made with test-beam data from the ATLAS Tile hadronic calorimeter. These simulations motivate a 12 λ calorimeter in order to contain at 98% level TeV single hadron showers and multi-TeV jets and keep a pion energy resolution constant term of approximately 3%.

  12. Frequency and intensity of comet showers from the Oort cloud

    SciTech Connect

    Heisler, J.; Alcock, C.; Tremaine, S.

    1987-05-01

    The nature of new comets and the frequency and intensity of comet showers are presently studied by means of a simulation in which an ensemble of one million comets is perturbed at random times by the Bahcall-Soneira (1980) Galaxy model's population of main sequence stars and white dwarfs. The time-integrated flux is dominated by the showers for comets whose semimajor axes are less than about 30,000 AU. The inclusion of tidal effects increases the loss rate of comets with semimajor axes between 10,000 and 20,000 AU by a factor of about 4, so that the Galactic tide, rather than individual stellar perturbations, is the dominant Oort cloud evolution-driving mechanism. 44 references.

  13. Signal fluctuations and multi-layer shower fronts

    SciTech Connect

    Mor