Sample records for air side pressure

  1. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  2. Air Bag Applies Uniform Bonding Pressure

    NASA Technical Reports Server (NTRS)

    Gillespie, C. A.

    1982-01-01

    Air-bag box applies constant uniform pressure to tiles and other objects undergoing adhesive bonding. Box is basically a compliant clamp with adjustable force and position. Can be used on irregular surfaces as well as on flat ones. Pressurized air is fed to bag through a tube so that it expands, filling the box and pressing against work. Bag adopts a contour that accommodates surface under open side of box.

  3. Air pressures in wood frame walls

    Treesearch

    Anton TenWolde; Charles G. Carll; Vyto Malinauskas

    1998-01-01

    Wind pressures can play an important role in the wetting of exterior walls (driving rain). In response, the rain screen concept, including compartmentalization and air spaces, has been developed to provide pressure equalization and limit water entry into the wall. However, conventional construction such as wood lap siding has not been evaluated as to its ability to...

  4. Efficacy of side air bags in reducing driver deaths in driver-side collisions.

    PubMed

    Braver, Elisa R; Kyrychenko, Sergey Y

    2004-03-15

    Side air bags, a relatively new technology designed to protect the head and/or torso in side-impact collisions, are becoming increasingly common in automobiles. Their efficacy in preventing US driver deaths among cars struck on the near (driver's) side was examined using data from the Fatality Analysis Reporting System and the General Estimates System. Risk ratios for driver death per nearside collision during 1999-2001 were computed for head/torso and torso-only side air bags in cars from model years 1997-2002, relative to cars without side air bags. Confounding was addressed by adjusting nearside risk ratios for front- and rear-impact mortality, which is unaffected by side air bags. Risk ratios were 0.55 (95% confidence interval: 0.43, 0.71) for head/torso air bags and 0.89 (95% confidence interval: 0.79, 1.01) for torso-only air bags. Risk was reduced when cars with head/torso air bags were struck by cars/minivans (significant) or pickup trucks/sport utility vehicles (nonsignificant). Risk was reduced in two-vehicle collisions and among male drivers and drivers aged 16-64 years. Protective effects associated with torso-only air bags were observed in single-vehicle crashes and among male and 16- to 64-year-old drivers. Head/torso side air bags appear to be very effective in reducing nearside driver deaths, whereas torso-only air bags appear less protective.

  5. 27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  6. Simulation and Experiment Research on Fatigue Life of High Pressure Air Pipeline Joint

    NASA Astrophysics Data System (ADS)

    Shang, Jin; Xie, Jianghui; Yu, Jian; Zhang, Deman

    2017-12-01

    High pressure air pipeline joint is important part of high pressure air system, whose reliability is related to the safety and stability of the system. This thesis developed a new type-high pressure air pipeline joint, carried out dynamics research on CB316-1995 and new type-high pressure air pipeline joint with finite element method, deeply analysed the join forms of different design schemes and effect of materials on stress, tightening torque and fatigue life of joint. Research team set up vibration/pulse test bench, carried out joint fatigue life contrast test. The result shows: the maximum stress of the joint is inverted in the inner side of the outer sleeve nut, which is consistent with the failure mode of the crack on the outer sleeve nut in practice. Simulation and experiment of fatigue life and tightening torque of new type-high pressure air pipeline joint are better than CB316-1995 joint.

  7. Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin

    2011-09-01

    In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.

  8. Subsonic tests of an all-flush-pressure-orifice air data system

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1981-01-01

    The use of an all-flush-pressure-orifice array as a subsonic air data system was evaluated in flight and wind tunnel tests. Two orifice configurations were investigated. Both used orifices arranged in a cruciform pattern on the airplane nose. One configuration also used orifices on the sides of the fuselage for a source of static pressure. The all-nose-orifice configuration was similar to the shuttle entry air data system (SEADS). The flight data were obtained with a KC-135A airplane. The wind tunnel data were acquired with a 0.035-scale model of the KC-135A airplane. With proper calibration, several orifices on the vertical centerline of the vehicle's nose were found to be satisfactory for the determination of total pressure and angle of attack. Angle of sideslip could be accurately determined from pressure measurements made on the horizontal centerline of the aircraft. Orifice pairs were also found that provided pressure ratio relationships suitable for the determination of Mach number. The accuracy that can be expected for the air data determined with SEADS during subsonic orbiter flight is indicated.

  9. Air Quality Side Event Proposal November 2016 GEO XIII ...

    EPA Pesticide Factsheets

    The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques. It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO Participating Organizations at the Side Event. It is an opportunity to share scientific and technological advances in this area and build partnerships and collaboration. The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques.  It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO P

  10. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  11. Air intake side secondary air supply system for an internal combustion engine with a duty ratio control operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanabe, T.; Asakura, M.; Shina, T.

    1987-09-01

    An air intake side secondary air supply system is described for an internal combustion engine having an air intake passage with a carburetor and an exhaust passage, comprising: an air intake side secondary air supply passage communicating with the air intake passage on the downstream side of the carburetor; an open/close valve disposed in the air intake side secondary air supply passage; an oxygen concentration sensor disposed in the exhaust passage; and detection and control means for detecting whether an air-fuel ratio of mixture to be supplied to the engine is leaner or richer with respect to a target air-fuelmore » ratio through a level of an output signal of the oxygen concentration sensor and for periodically actuating the open/close valve, the detection and control means decreasing a valve open period of the open/close valve within each cyclic period by a first predetermined amount when a detected air-fuel ratio of mixture is leaner than the target air-fuel ratio and increasing the valve open period by a second predetermined amount when the detected air-fuel ratio of mixture is richer than the target air-fuel ratio. The second predetermined amount is different from the first predetermined amount.« less

  12. SOUTHEAST AND NORTHEAST SIDES. Looking west Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHEAST AND NORTHEAST SIDES. Looking west - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Fuel & Water Tank, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. SOUTH FRONT AND EAST SIDE. January, 1998 Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH FRONT AND EAST SIDE. January, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  14. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  15. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  16. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  17. Driver's side curtain air bag-related globe rupture.

    PubMed

    Porter, Ashley J; Hayes, Rylan; Lee, Lawrence; O'Hagan, Stephen

    2018-06-04

    A 35-year-old man presented after a high-speed motor vehicle accident and the driver's side curtain air bag causing blunt force trauma rupturing his right globe. The tangential force of the air bag resulted in an unusual arcuate horseshoe-shaped rupture through the lateral rectus insertion, causing avulsion of the muscle and tearing the sclera, with the apices of the tear extending anteriorly towards the limbus. Repair of the globe rupture was undertaken, and secondary vitrectomy revealed that the scleral tear had not involved the retina abutting the ora serrata. Silicone oil tamponade was used to fill the globe and the postoperative best corrected vision was 6/9. This is the first reported case of a ruptured globe caused by a side curtain air bag, resulting in a uniquely shaped arcuate scleral wound combined with lateral rectus avulsion, not associated with rhegmatogenous retinal damage, and is the first air bag-related globe rupture with scleral involvement to report a final best-corrected visual acuity better than 6/60. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Intraoral Air Pressure of Alaryngeal Speakers during a No-Air Insufflation Maneuver.

    ERIC Educational Resources Information Center

    Gorham, Mary M.; And Others

    1996-01-01

    Intraoral air pressure was recorded during the production of consonant cognate pairs by 8 esophageal speakers (mean age 67 years) under 2 experimental conditions: after the insufflation of air and without air insufflation. Results revealed that peak intraoral air pressure magnitudes were significantly greater following the insufflation of air than…

  19. Protection against head injuries should not be optional: a case for mandatory installation of side-curtain air bags.

    PubMed

    Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid

    2010-10-01

    More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P < .001). For rear passengers, the added protection from side-curtain air bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  1. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  2. NORTHWEST FRONT AND SOUTHWEST SIDE, BUILDING 1933 Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHWEST FRONT AND SOUTHWEST SIDE, BUILDING 1933 - Edwards Air Force Base, X-15 Engine Test Complex, Observation Bunker Types, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  3. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  4. Microfluidic pressure sensing using trapped air compression

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2010-01-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  5. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  6. The relationships between air exposure, negative pressure, and hemolysis.

    PubMed

    Pohlmann, Joshua R; Toomasian, John M; Hampton, Claire E; Cook, Keith E; Annich, Gail M; Bartlett, Robert H

    2009-01-01

    The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in vitro static blood model. Samples of fresh ovine or human blood (5 ml) were subjected to a bubbling air interface (0-100 ml/min) or negative pressure (0-600 mm Hg) separately, or in combination, for controlled periods of time and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air before initiating the test, hemolysis was four to five times greater than samples not preexposed to air. When these experiments were repeated using freshly drawn human blood, the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone.

  7. The Relationships between Air Exposure, Negative Pressure and Hemolysis

    PubMed Central

    Pohlmann, Joshua R.; Toomasian, John M.; Hampton, Claire E.; Cook, Keith E.; Annich, Gail M.; Bartlett, Robert H.

    2013-01-01

    The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in-vitro static blood model. Samples of fresh ovine or human blood (5 mL) were subjected to a bubbling air interface (0–100 mL/min) or negative pressure (0–600 mmHg) separately, or in combination, for controlled periods of time, and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air prior to initiating the test, hemolysis was 4–5 times greater than samples not pre-exposed to air. When these experiments were repeated using freshly drawn human blood the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone. PMID:19730004

  8. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  9. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  10. Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.

    2012-01-01

    Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.

  11. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  12. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  13. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  14. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  15. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Putt, Ronald A. (Inventor); Woodruff, Glenn (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  16. Drop impact on a solid surface at reduced air pressure

    NASA Astrophysics Data System (ADS)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  17. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  18. Self-balancing air riding seal for a turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Jacob A.

    A turbine of a gas turbine engine has an air riding seal that forms a seal between a rotor and a stator of the turbine, the air riding seal including an annular piston movable in an axial direction under the influence of a pressure on one side with a pressure acting on an opposite side that self-balances the air riding seal during the steady state condition of the engine and lifts off the seal during engine transients.

  19. ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Xinbang; Gong, Zhenfeng

    2018-03-01

    In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.

  20. Pressure ulcer incidence and progression in critically ill subjects: influence of low air loss mattress versus a powered air pressure redistribution mattress.

    PubMed

    Black, Joyce; Berke, Christine; Urzendowski, Gail

    2012-01-01

    The primary objective of this study was to compare facility-acquired pressure ulcer incidence and progression of pressure ulcers present on admission in critically ill patients, using 2 different support surfaces. We completed a comparison cohort study in a surgical intensive care unit (ICU). The study setting was a 12-bed cardiovascular ICU in a university-based hospital in the Midwestern United States. The sample comprised 52 critically ill patients; 31 were placed on low air loss weight-based pressure redistribution-microclimate management system beds and 21 were placed on integrated powered air pressure redistribution beds. Prior to the start of the study, 5 low airloss beds were placed in open rooms in the cardiovascular surgical ICU. Inclusion criteria were anticipated ICU stay of 3 days, and patients did not receive a speciality bed for pulmonary or wound issues. Initial assessment of the patients included risk assessment and prior events that would increase risk for pressure ulcer development such as extended time in operating room, along with skin assessment for existing pressure ulcers. Subjects in both groups had ongoing skin assessment every 3 to 4 days and a subjective evaluation of heel elevation and turning or repositioning by the researcher. Data were collected until the subjects were dismissed from the ICU. Patients admitted to the unit were assigned to open rooms following the usual protocols. The mean length of stay was 7.0 days, with an 8.1-day length of stay for subjects on "low air loss with microclimate management" beds (LAL-MCM) and 6.6 days on the integrated power pressure air redistribution (IP-AR) beds (P = NS). The incidence of pressure ulcers on the buttocks, sacrum, or coccyx was 0% (0/31) on the low air loss bed and 18% (4/21) on the IP-AR bed (P = .046). Five subjects had 6 pressure ulcers on admission. Two pressure ulcers on 2 patients worsened on the integrated power air redistribution beds, which required specialty bed rental

  1. A Balanced-pressure Sliding Seal for Transfer of Pressurized Air Between Stationary and Rotating Parts

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N; Cochran, Reeves P

    1957-01-01

    A combination sliding-ring and pressure-balancing seal capable of transferring pressurize air from stationary to rotating parts was developed and experimentally investigated at sliding velocities and cooling-air pressures up to 10,000 feet per minute and 38.3 pounds per square inch absolute, respectively. Leakage of cooling air was completely eliminated with an expenditure of balance air less than one-fourth the leakage loss of air from labyrinth seals under the same conditions. Additional cooling of the carbon-base seal rings was required, and the maximum wear rate on the rings was about 0.0005 inch per hour.

  2. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  3. Positive pressure ventilation in a patient with a right upper lobar bronchocutaneous fistula: right upper bronchus occlusion using the cuff of a left-sided double lumen endobronchial tube.

    PubMed

    Omori, Chieko; Toyama, Hiroaki; Takei, Yusuke; Ejima, Yutaka; Yamauchi, Masanori

    2017-08-01

    In patients with a bronchocutaneous fistula, positive pressure ventilation leads to air leakage and potential hypoxemia. A male patient with a right upper bronchocutaneous fistula was scheduled for esophageal reconstruction. His preoperative chest computed tomography image revealed aeration in the right middle and lower lobe, a large bulla in the left upper lobe, and pleural effusion and pneumonia in the left lower lobe. Therefore, left one-lung ventilation was considered to result in hypoxemia. Before anesthesia induction, the bronchocutaneous fistula was covered with gauze and film to prevent air leakage. After anesthesia induction, mask ventilation was performed with a peak positive pressure of 10 cmH 2 O. A left-sided double lumen endobronchial tube (DLT) was then inserted into the right main bronchus for occluding only the right superior bronchus, and two-lung ventilation was performed to minimize airway pressure and maintain oxygenation, which did not cause air leakage through the fistula. During anesthesia, no ventilation-related difficulty was faced. The method of inserting a left-sided DLT into the right main bronchus and occluding the right upper bronchus selectively by bronchial cuff is considered to be an option for mechanical ventilation in patients with a right upper bronchial fistula, as demonstrated in the present case.

  4. [Injection Pressure Evaluation of the New Venous Catheter with Side Holes for Contrast-enhanced CT/MRI].

    PubMed

    Fukuda, Junya; Arai, Keisuke; Miyazawa, Hitomi; Kobayashi, Kyouko; Nakamura, Junpei; Suto, Takayuki; Tsushima, Yoshito

    2018-01-01

    The simulation study was conducted for the new venous catheter with side holes of contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) to evaluate the infusion pressure on four contrast media and several injection speeds. All infusion pressure of the new venous catheter with side holes were less than 15 kg/cm 2 as limitation of extension tube and also reduced the infusion pressure by 15% at the maximum compared to the catheter with single hole. The results suggest that the new venous catheter with side holes can reduce the infusion pressure by power injection of contrast-enhanced CT and MRI.

  5. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  6. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...

  7. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...

  8. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...

  9. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...

  10. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification...

  11. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  12. Cross-validation of the osmotic pressure based on Pitzer model with air humidity osmometry at high concentration of ammonium sulfate solutions.

    PubMed

    Wang, Xiao-Lan; Zhan, Ting-Ting; Zhan, Xian-Cheng; Tan, Xiao-Ying; Qu, Xiao-You; Wang, Xin-Yue; Li, Cheng-Rong

    2014-01-01

    The osmotic pressure of ammonium sulfate solutions has been measured by the well-established freezing point osmometry in dilute solutions and we recently reported air humidity osmometry in a much wider range of concentration. Air humidity osmometry cross-validated the theoretical calculations of osmotic pressure based on the Pitzer model at high concentrations by two one-sided test (TOST) of equivalence with multiple testing corrections, where no other experimental method could serve as a reference for comparison. Although more strict equivalence criteria were established between the measurements of freezing point osmometry and the calculations based on the Pitzer model at low concentration, air humidity osmometry is the only currently available osmometry applicable to high concentration, serves as an economic addition to standard osmometry.

  13. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  14. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  15. Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air and Saline Filled Cuffs

    DTIC Science & Technology

    2017-01-31

    AFRL-SA-WP-SR-2017-0004 Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air- and Saline -Filled...Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air- and Saline -Filled Cuffs 5a. CONTRACT NUMBER FA8650-14...descending from altitude. When using saline in the ETT cuff, TW pressure differences with the 7.5 high-volume, low-pressure cuff and 8.0 TaperGuard

  16. Dynamic Response of the Hybrid III 3 Year Old Dummy Head and Neck During Side Air Bag Loading

    PubMed Central

    Duma, Stefan M.; Crandall, Jeff R.; Pilkey, Walter D.; Seki, Kazuhiro; Aoki, Takashi

    1998-01-01

    This paper presents the results from fourteen (n = 14) tests designed to evaluate the response and injury potential of a Hybrid III 3 year old dummy subject to loading by a deploying seat mounted side air bag. An instrumented Hybrid III 3 year old dummy was used for tests in two different occupant positions chosen to maximize head and neck loading. Four seat mounted thoracic side air bags were used that varied only in the level of inflator output. NHTSA’s neck injury criteria for complex loading, referred to as Nij, was modified to include moment values for both anterioposterior and lateral directions. The results of this testing indicate that side air bag loading can result in forces and moments approaching injury threshold values. While there is considerable uncertainty as to the validity of published injury criteria due to the lack of child biomechanical data, this study demonstrates the sensitivity of child response to initial position which may provide insight into placement and geometry of side airbag systems. Furthermore, the data indicates a relationship between airbag inflator properties and child dummy response for a given airbag geometry. Recently, automobile manufacturers have begun implementing side air bags as a safety feature to mitigate injuries resulting from side impact collisions. Unlike the case for the passenger side air bag, the injury potential to an out-of-position child in side airbag loading has not been presented in the literature. The purpose of this research is to evaluate the response of a Hybrid III 3 year old dummy subject to loading by a deploying side air bag.

  17. Air pressure changes in the creation and bursting of the type-1 big bubble in deep anterior lamellar keratoplasty: an ex vivo study.

    PubMed

    AlTaan, S L; Mohammed, I; Said, D G; Dua, H S

    2018-01-01

    PurposeTo measure the pressure and volume of air required to create a big bubble (BB) in simulated deep anterior lamellar keratoplasty (DALK) in donor eyes and ascertain the bursting pressure of the BB.Patients and methodsTwenty-two human sclera-corneal discs were used. Air was injected into the corneal stroma to create a BB and the pressure measured by means of a pressure converter attached to the system via a side port. A special clamp was designed to prevent air leak from the periphery of the discs. The pressure at which air emerged in the corneal tissue; the bursting pressure measured after advancing the needle into the bubble cavity and injecting more air; the volume of air required to create a BB and the volume of the BB were ascertained.ResultsType-1 BB were achieved in 19 and type-2 BB in 3 eyes. The maximum pressure reached to create a BB was 96.25+/- 21.61 kpa; the mean type-1 intrabubble pressure was 10.16 +/- 3.65 kpa. The mean bursting pressure of a type-1 BB was 66.65 +/- 18.65 kpa, while that of a type-2 BB was 14.77 +/- 2.44 kpa. The volume of air required to create a type-1 BB was 0.54 ml and the volume of a type-1 BB was consistently 0.1 ml.ConclusionsDua's layer baring DALK can withstand high intraoperative pressures compared to Descemet's membrane baring DALK. The study suggests that it could be safe to undertake procedures such as DALK-triple with a type-1 BB but not with a type-2 BB.

  18. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  19. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  20. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  1. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  2. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  3. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  4. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  5. The 727/JT8D refan side nacelle airloads

    NASA Technical Reports Server (NTRS)

    Bailey, R. W.; Vadset, H. J.

    1974-01-01

    Airloads on the 727/JT8D refan side engine nacelle are presented. These consist of surface static pressure distributions from two low speed wind tunnel tests. External nacelle surface pressures are from testing of a flow-through, body mounted nacelle model, and internal inlet surface pressures are from performance testing of a forced air inlet model. The method for obtaining critical airloads on nacelle components and a representative example are discussed.

  6. Inverse Association between Air Pressure and Rheumatoid Arthritis Synovitis

    PubMed Central

    Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo

    2014-01-01

    Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7×10−7, 0.00027, and 8.3×10−8, for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA. PMID:24454853

  7. Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry

    NASA Astrophysics Data System (ADS)

    Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.

    2013-12-01

    This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.

  8. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds During Production of Stop Consonants: New Evidence of Aeromechanical Regulation

    PubMed Central

    Zajac, David J.; Weissler, Mark C.

    2011-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults produced syllable trains of /pΛ/ using a mouthpiece coupled to a computer-controlled perturbator. The device randomly created bleed apertures that ranged from 0 to 40 mm2 during production of the 2nd or 4th syllable of an utterance. Although peak oral air pressure dropped in a linear manner across bleed apertures, it averaged 2 to 3 cm H2O at the largest bleed. While slope of oral pressure also decreased in a linear trend, duration of the oral pressure pulse remained relatively constant. The patterns suggest that respiratory reflexes, if present, have little effect on oral air pressure levels. In Study 2, both oral and subglottal air pressure responses were monitored in 2 adults while bleed apertures of 20 and 40 mm2 were randomly created. For 1 participant, peak oral air pressure dropped across bleed apertures, as in Study 1. Subglottal air pressure and slope, however, remained relatively stable. These patterns provide some support for the occurrence of respiratory reflexes to regulate subglottal air pressure. Overall, the studies indicate that the inherent physiologic processes of the respiratory system, which may involve reflexes, and passive aeromechanical resistance of the upper airway are capable of developing oral air pressure in the face of substantial pressure bleeds. Implications for understanding speech production and the characteristics of individuals with velopharyngeal dysfunction are discussed. PMID:15324286

  9. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  10. Air Warfare and Air Base Defense 1914-1973

    DTIC Science & Technology

    1988-01-01

    ground commanders diluted German efforts. Rommel described the prob- lem in organizational terms: " One thing that worked very seriously against us was...exerted severe pressure on the Marines. Japanese attempts at reinforcing their garri - son were constant and could be defeated only by air attacks on the...and in many cases pure chance that favors one side over the other. In response to a request by the Air Force Director of Plans, the Office of Air Force

  11. 17. VIEW OF AIR LOCK ENTRY DOOR. BANKS OF AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF AIR LOCK ENTRY DOOR. BANKS OF AIR FILTERS ARE VISIBLE TO THE SIDES OF THE DOORS. THE BUILDING WAS DIVIDED INTO ZONES BY AIRLOCK DOORS AND AIR FILTERS. AIR PRESSURE DIFFERENTIALS WERE MAINTAINED IN THE ZONES, SUCH THAT AIRFLOW WAS PROGRESSIVELY TOWARD AREAS WITH THE HIGHEST POTENTIAL FOR CONTAMINATION. (9/24/91) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  12. [Effect of subglottic air insufflation on subglottic pressure during swallowing].

    PubMed

    Clarett, M; Andreu, M F; Salvati, I G; Donnianni, M C; Montes, G S; Rodríguez, M G

    2014-04-01

    To determine whether there are differences between subglottic pressure during swallowing with and without air insufflation via a subglottic catheter in tracheostomized patients. A prospective, randomized cross-over study was made. Adult Intensive Care Units. Patients requiring mechanical ventilation and tracheostomy with a subglottic catheter, and with tolerance to deflation of the balloon and a speaking valve placed over the opening of the tracheostomy tube. Subglottic pressure was measured during swallowing of a thickened solution with and without the delivery of airflow through the subglottic catheter. Subglottic pressure during swallowing. Twelve out of 14 patients showed higher subglottic pressure values during swallowing with air insufflation. Two patients showed no differences between both conditions. Median (Med) values of subglottic pressure for the first, second and third swallow were 5, 4 and 4.5 cmH2O (Med 4.5 cmH2O) without air insufflation, and 8, 5.5 and 7.5 cmH2O (Med 5.5 cmH2O) with air insufflation, respectively (Wilcoxon, Z=-3.078; p=.002). In a group of tracheostomized patients, air insufflation via a subglottic catheter increased subglottic pressure levels measured during swallowing. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  13. Hospital-acquired pressure ulcer prevalence--evaluating low-air-loss beds.

    PubMed

    Johnson, Jane; Peterson, Darcie; Campbell, Betty; Richardson, Regina; Rutledge, Dana

    2011-01-01

    Higher-category pressure redistribution mattresses are considered a critical component of a pressure ulcer prevention program, but few studies have quantified the impact of specific preventive measures on the incidence or prevalence of hospital-acquired pressure ulcers (HAPUs). Therefore, this study was undertaken to determine the impact of low-air-loss beds on HAPU prevalence. This prospective, comparative cohort study monitored the prevalence of HAPU at our hospital and compared rates of matched medical-surgical units with and without low-air-loss beds. Units without low-air-loss beds used a variety of alternative pressure redistribution devices for patients deemed at risk for pressure ulceration. The prevalence of HAPU was operationally defined as the number of patients with HAPUs divided by numbers of patients observed. The prevalence of HAPU over 3 quarters in 2008 ranged from 1.0% to 3.3% (overall rate 2.4%). Eighty-three percent of patients with HAPUs were cared for on low-air-loss beds. Of 12 patients with 16 HAPUs during this time, 75% were aged 70 years or older and 25% were managed in critical care units. Over half of patients who developed HAPUs had been hospitalized for 20 days or more. Half of the patients with HAPUs were scored as no-low risk on the Braden Scale.On the paired medical-surgical units, no statistically significant differences were found when patients with low-air-loss beds were compared to standard hospital mattresses supplemented by a variety of pressure redistribution devices. Seven of 11 HAPUs (63%) occurred in patients placed on low-air-loss beds. The prevalence of HAPU in patients placed on low-air-loss beds was no different from patients placed on standard hospital mattresses supplemented by a variety of pressure redistribution devices. Further research is needed to determine the impact of specific strategies on prevention of HAPU.

  14. Ambient air pollution exposure and blood pressure changes during pregnancy

    PubMed Central

    Lee, Pei-Chen; Talbott, Evelyn O.; Roberts, James M.; Catov, Janet M.; Bilonick, Richard A.; Stone, Roslyn A.; Sharma, Ravi K.; Ritz, Beate

    2013-01-01

    Background Maternal exposure to ambient air pollution has been associated with adverse birth outcomes such as preterm delivery. However, only one study to date has linked air pollution to blood pressure changes during pregnancy, a period of dramatic cardiovascular function changes. Objectives We examined whether maternal exposures to criteria air pollutants, including particles of less than 10 µm (PM10) or 2.5 µm diameter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), in each trimester of pregnancy are associated with magnitude of rise of blood pressure between the first 20 weeks of gestation and late pregnancy in a prospectively followed cohort of 1684 pregnant women in Allegheny County, PA. Methods Air pollution measures for maternal ZIP code areas were derived using Kriging interpolation. Using logistic regression analysis, we evaluated the associations between air pollution exposures and blood pressure changes between the first 20 weeks of gestation and late pregnancy. Results First trimester PM10 and ozone exposures were associated with blood pressure changes between the first 20 weeks of gestation and late pregnancy, most strongly in non-smokers. Per interquartile increases in first trimester PM10 and O3 concentrations were associated with mean increases in systolic blood pressure of 1.88 mmHg (95% CI = 0.84 to 2.93) and 1.84 (95% CI = 1.05 to 4.63), respectively, and in diastolic blood pressure of 0.63 mmHg (95% CI= −0.50 to 1.76) and 1.13 (95% CI= −0.46 to 2.71) in non-smokers. Conclusions Our novel finding suggests that first trimester PM10 and O3 air pollution exposures increase blood pressure in the later stages of pregnancy. These changes may play a role in mediating the relationships between air pollution and adverse birth outcomes. PMID:22835955

  15. Air Quality Side Event Proposal November 2016 GEO XIII Plenary in St. Petersburg, Russia

    EPA Science Inventory

    The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quali...

  16. Influence of Mach Number and Dynamic Pressure on Cavity Tones and Freedrop Trajectories

    DTIC Science & Technology

    2014-03-27

    primary purpose is to ensure a steady flow of high pressure air from the compressors to the stagnation chamber. One side of the diaphragm is connected...collected for 20 psi stagnation pressure due to insufficient run times, even at the increased compressor air pressure of 180 psi. Furthermore, the data from...M-36 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A

  17. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

    2018-02-01

    The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

  18. Compressed air injection technique to standardize block injection pressures.

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  19. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  20. An alternating pressure sequence proposal for an air-cell cushion for preventing pressure ulcers.

    PubMed

    Arias, Sandra; Cardiel, Eladio; Rogeli, Pablo; Mori, Taketoshi; Nakagami, Gojiro; Noguchi, Hiroshi; Sanada, Hiromi

    2014-01-01

    The distribution and release of pressure on ischial regions are two important parameters for evaluating the effectiveness of a cushion; especially the release of pressure over time on ischial tuberosities, which is significant for preventing pressure ulcers. The aim of this work is to evaluate the effect on interface pressure through the application of a proposed alternating pressure sequence for an air-cell cushion. Six healthy volunteers were asked to sit on the air cell cushion, in static and alternating modes, as well as on a typical foam cushion for 12 minutes. Interface pressure was monitored with a matrix sensor system. Interface pressure values on ischial tuberosities, user contact area and pressure distribution were analyzed. Results showed that IP on IT tends to increase in both foam and static cushions, while in alternating cushion IP on IT tends to decrease. User contact area was significantly larger in alternating cushion than in static or foam cushions. Moreover, there is a better pressure re-distribution with alternating cushion than with the other cushions. The goal of the alternating sequence is to redistribute pressure and stimulate the ischial regions in order to promote blood flow and prevent pressure occurring in wheelchair users.

  1. Development and evaluation of a self-regulating alternating pressure air cushion.

    PubMed

    Nakagami, Gojiro; Sanada, Hiromi; Sugama, Junko

    2015-03-01

    To investigate the effect of alternating air cells of a newly developed dynamic cushion on interface pressure and tissue oxygenation levels. This cross-over experimental study included 19 healthy volunteers. The dynamic cushion used has an automatic self-regulating alternating pressure air-cell system with 35 small and four large air cells for maintaining posture while seated. This cushion also has 17 bottoming-out detectors that automatically inflate the air cells to release a high interface pressure. To assess the effect of this alternating system, participants sat on the new cushion with an alternating system or static system for 30 min and then performed push-ups. The interface pressure was monitored by pressure-sensitive and conductive ink film sensors and tissue oxygenation levels were monitored by near-infrared spectroscopy. A reactive hyperaemia indicator was calculated using tissue oxygenation levels as an outcome measure. The peak interface pressure was not significantly different between the groups. The reactive hyperaemia indicator was significantly higher in the static group than in the alternating group. An alternating system has beneficial effects on blood oxygenation levels without increasing interface pressure. Therefore, our new cushion is promising for preventing pressure ulcers with patients with limited ability to perform push-ups. Implications for Rehabilitation A dynamic cushion was developed, which consists of a uniquely-designed air-cell layout, detectors for bottoming out, and an alternating system with multiple air-cell lines. The alternating system did not increase interface pressure and it significantly reduced reactive hyperaemia after 30 min of sitting in healthy volunteers. This cushion is a new option for individuals who require stable posture but have limitations in performing scheduled push-ups for prevention of pressure ulcers.

  2. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired pressure...

  3. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired pressure...

  4. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired pressure...

  5. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  6. Association between side air bags and risk of injury in motor vehicle collisions with near-side impact.

    PubMed

    McGwin, Gerald; Metzger, Jesse; Porterfield, John R; Moran, Stephan G; Rue, Loring W

    2003-09-01

    Side air bags (SABs) have been introduced in an attempt to reduce the risk of injury in near-side-impact motor vehicle collisions (MVCs). The impact of SABs on MVC-related mortality and morbidity has yet to be evaluated with a large population-based study. The objective of this study was to assess the effectiveness of SABs in reducing the risk of injury or death in near-side-impact MVCs. A retrospective study investigated outboard front seat occupants involved in police-reported, near-side-impact MVCs using data from the General Estimates System (1997-2000). The risk of MVC-related nonfatal and fatal injury for occupants of vehicles with and without SABs was compared. Front seat occupants of vehicles with SABs had a risk of injury similar to that of occupants of vehicles without SABs (risk ratio [RR], 0.96; 95% CI confidence interval [CI], 0.79-1.15). Adjustment for the potentially confounding effects of age, gender, seat belt use, seating position, damage severity and location, and vehicle body type did not meaningfully affect the association (RR, 0.90; 95% CICI, 0.76-1.08). There is no association between the availability of SABs and overall injury risk in near-side-impact MVCs. Future research is necessary to determine the effectiveness of SABs in preventing the injuries for which they were specifically designed.

  7. Low Differential Pressure Generator

    NASA Technical Reports Server (NTRS)

    Stout, Stephen J. (Inventor); Deyoe, Richard T. (Inventor)

    1997-01-01

    A method and apparatus for evaluating low differential pressure transducers includes a pressure generator in the form of a piston-cylinder assembly having a piston that may be manually positioned precisely within the cylinder to change the volume and thus the pressure at respective sides of the piston. At one side of the piston the cylinder communicates with a first chamber and at the other side of the piston the cylinder communicates with a second chamber, the first and second chambers being formed within a common tank by a partition wall. The chambers each communicate with the transducer to be evaluated and a standard pre-calibrated transducer the transducers being connected fluidly in parallel so that a pressure differential between air in the two chambers resulting from movement of the piston within the cylinder is communicated to both the transducer to be evaluated and the standard transducer, and the outputs of the transducers is observed and recorded.

  8. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  9. Risk for intracranial pressure increase related to enclosed air in post-craniotomy patients during air ambulance transport: a retrospective cohort study with simulation.

    PubMed

    Brändström, Helge; Sundelin, Anna; Hoseason, Daniela; Sundström, Nina; Birgander, Richard; Johansson, Göran; Winsö, Ola; Koskinen, Lars-Owe; Haney, Michael

    2017-05-12

    Post-craniotomy intracranial air can be present in patients scheduled for air ambulance transport to their home hospital. We aimed to assess risk for in-flight intracranial pressure (ICP) increases related to observed intracranial air volumes, hypothetical sea level pre-transport ICP, and different potential flight levels and cabin pressures. A cohort of consecutive subdural hematoma evacuation patients from one University Medical Centre was assessed with post-operative intracranial air volume measurements by computed tomography. Intracranial pressure changes related to estimated intracranial air volume effects of changing atmospheric pressure (simulating flight and cabin pressure changes up to 8000 ft) were simulated using an established model for intracranial pressure and volume relations. Approximately one third of the cohort had post-operative intracranial air. Of these, approximately one third had intracranial air volumes less than 11 ml. The simulation estimated that the expected changes in intracranial pressure during 'flight' would not result in intracranial hypertension. For intracranial air volumes above 11 ml, the simulation suggested that it was possible that intracranial hypertension could develop 'inflight' related to cabin pressure drop. Depending on the pre-flight intracranial pressure and air volume, this could occur quite early during the assent phase in the flight profile. DISCUSSION: These findings support the idea that there should be radiographic verification of the presence or absence of intracranial air after craniotomy for patients planned for long distance air transport. Very small amounts of air are clinically inconsequential. Otherwise, air transport with maintained ground-level cabin pressure should be a priority for these patients.

  10. Vibration studies of a lightweight three-sided membrane suitable for space application

    NASA Technical Reports Server (NTRS)

    Sewell, J. L.; Miserentino, R.; Pappa, R. S.

    1983-01-01

    Vibration studies carried out in a vacuum chamber are reported for a three-sided membrane with inwardly curved edges. Uniform tension was transmitted by thin steel cables encased in the edges. Variation of ambient air pressure from atmospheric to near vacuum resulted in increased response frequencies and amplitudes. The first few vibration modes measured in a near vacuum are shown to be predictable by a finite element structural analysis over a range of applied tension loads. The complicated vibration mode behavior observed during tests at various air pressures is studied analytically with a nonstructural effective air-mass approximation. The membrane structure is a candidate for reflective surfaces in space antennas.

  11. Preliminary Investigation on the Behavior of Pore Air Pressure During Rainfall Infiltration

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Min, Ng Soon; Hasliza Hamzah, Nur; Hazreek Zainal Abidin, Mohd; Madun, Aziman; Tajudin, Saiful Azhar Ahmad

    2018-04-01

    This paper focused on the preliminary investigation of pore air pressure behaviour during rainfall infiltration in order to substantiate the mechanism of rainfall induced slope failure. The actual behaviour or pore air pressure during infiltration is yet to be clearly understood as it is regularly assumed as atmospheric. Numerical modelling of one dimensional (1D) soil column was utilized in this study to provide a preliminary insight of this highlighted uncertainty. Parametric study was performed by using rainfall intensities of 1.85 x 10-3m/s and 1.16 x 10-4m/s applied on glass beads to simulate intense and modest rainfall conditions. Analysis results show that the high rainfall intensity causes more development of pore air pressure compared to low rainfall intensity. This is because at high rainfall intensity, the rainwater cannot replace the pore air smoothly thus confining the pore air. Therefore, the effect of pore air pressure has to be taken into consideration particularly during heavy rainfall.

  12. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.

    PubMed

    Simonini, Irene; Pandolfi, Anna

    2016-05-01

    The air puff is a dynamic contactless tonometer test used in ophthalmology clinical practice to assess the biomechanical properties of the human cornea and the intraocular pressure due to the filling fluids of the eye. The test is controversial, since the dynamic response of the cornea is governed by the interaction of several factors which cannot be discerned within a single measurement. In this study we describe a numerical model of the air puff tests, and perform a parametric analysis on the major action parameters (jet pressure and intraocular pressure) to assess their relevance on the mechanical response of a patient-specific cornea. The particular cornea considered here has been treated with laser reprofiling to correct myopia, and the parametric study has been conducted on both the preoperative and postoperative geometries. The material properties of the cornea have been obtained by means of an identification procedure that compares the static biomechanical response of preoperative and postoperative corneas under the physiological IOP. The parametric study on the intraocular pressure suggests that the displacement of the cornea׳s apex can be a reliable indicator for tonometry, and the one on the air jet pressure predicts the outcomes of two or more distinct measurements on the same cornea, which can be used in inverse procedures to estimate the material properties of the tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft. [conducted in a Langley 8 foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Flechner, S. G.; Siemers, P. M., III

    1980-01-01

    The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed.

  14. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  15. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure.

    PubMed

    Razak, Nasrul Anuar Abd; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq

    2014-08-01

    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. The subject's dynamic pressure on the socket that's applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.

  16. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  17. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure

    PubMed Central

    2014-01-01

    Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005

  18. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraphs (b), (c), (d) or (e) of this section. (b) Hydraulic brakes. Vehicles manufactured on or after...

  19. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraphs (b), (c), (d) or (e) of this section. (b) Hydraulic brakes. Vehicles manufactured on or after...

  20. Simple Experiments for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Shamsipour, Gholamreza

    2006-01-01

    Everyone who teaches physics knows very well that sometimes a simple device or experiment can help to make a concept clear. In this paper, inspired by "The Jumping Pencil" by Martin Gardner, I will discuss a simple demonstration device that can be used to start the study of air pressure.

  1. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...

  2. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...

  3. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  4. Improving the side-to-side stapled anastomosis: comparison of staplers for robust crotch formation.

    PubMed

    Kimura, Masahiro; Kuwabara, Yoshiyuki; Taniwaki, Satoshi; Mitsui, Akira; Shibata, Yasuyuki; Ueno, Shuhei

    2018-01-01

    Few studies have investigated the burst pressure of side-to-side anastomoses comparing different stapling devices that are commercially available. We conducted side-to-side anastomoses with a variety of staplers and compared burst pressure in the crotch of the anastomoses. Nagoya City East Medical Center. We conducted side-to-side anastomoses with 9 staplers with different shapes and forms. Fresh pig small intestines were used. A side-to-side anastomosis was performed between 2 intestine specimens using a linear stapler. The burst pressure of the anastomosis was recorded. In total, 45 staplers were used for this experiment. The site of leakage in all cases was the crotch. Regarding the influence of the number of staple rows, the burst pressure in 3-row staplers was significantly higher than in 2-row staplers. With regard to the relationship between staple height and burst pressure, staples with a height slightly shorter than the intestinal thickness showed the highest burst pressure. In a comparison of staplers with uniform staple heights and stamplers with staples of 3 different heights, the latter had significantly lower burst pressures. Neoveil significantly increased the burst pressure in the crotch and contributed to the highest burst pressure of all the staplers used in this experiment. In this experiment, we defined the important factors that influence burst pressure at the crotch of a stapled, side-to-side anastomosis. These factors include the number of staple rows, the height of the staple compared with the thickness of the tissue, uniformity of staple height, and reinforcement of the staple line. In any surgical case requiring intestinal anastomosis, selection of a stapler is a critical step. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  5. Compressed-air work is entering the field of high pressures.

    PubMed

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.

  6. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  7. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  8. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and...-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure...

  9. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and... METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13015 Inspection of compressed-air receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels...

  10. Tables for pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Louden, F A

    1930-01-01

    In Technical Report no. 247 of the National Advisory Committee for Aeronautics theoretical formulas are given from which was computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. In that report, the table gave incompressible and adiabatic stop pressures of air for even-speed intervals in miles per hour and for some even-speed intervals in knots per hour. Table II of the present report extends the above-mentioned table by including the stop pressures of air for even-speed intervals in miles per hour, feet per-second, knots per hour, kilometers per hour, and meters per second. The pressure values in table II are also more exact than values given in the previous table. To furnish the aeronautical engineer with ready numerical formulas for finding the pressure of air on coming to rest, table I has been derived for the standard values specified below it. This table first presents the theoretical pressure-speed formulas and their working forms in C. G. S. Units as given in NACA Technical Report No. 247, then furnishes additional working formulas for several special units of speed. (author)

  11. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  12. Retrograde air escape via the nasolacrimal system: a previously unrecognized complication of continuous positive airway pressure in the management of obstructive sleep apnea.

    PubMed

    Singh, Narinder Pal; Walker, Robbie James Eades; Cowan, Fiona; Davidson, Arthur Craig; Roberts, David Newton

    2014-05-01

    Continuous positive airway pressure (CPAP) is the gold standard treatment for moderate to severe obstructive sleep apnoea (OSA). Eye-related side effects of CPAP are commonly attributed to a poorly sealed mask, allowing leaked air to blow over the eye. We present 3 cases where attended polysomnography (A-PSG) demonstrated CPAP-associated retrograde air escape via the nasolacrimal system (CRANS) in the absence of any mask leaks. Symptoms included dry eye, epiphora, air escape from the medial canthus, and eyelid flutter. Symptoms were controlled with a variety of surgical and nonsurgical techniques. CRANS represents a previously undescribed clinical entity. CRANS may be responsible for some CPAP-related eye side effects and possibly for rarer secondary eye complications, including conjunctivitis and corneal ulceration. CRANS should be suspected in any patient on CPAP complaining of eye symptoms. CRANS may be diagnosed through careful observation during A-PSG and confirmed by performing a "saline bubble test." Management options include nonsurgical (mask alternatives, humidification, nasopharyngeal airway) and surgical techniques (nasal airway surgery, inferior turbinate out-fracture and adhesion, injection of bulking agent around Hasner's valve).

  13. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  14. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  15. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Respiratory and Laryngeal Responses to an Oral Air Pressure Bleed during Speech

    ERIC Educational Resources Information Center

    Huber, Jessica E.; Stathopoulos, Elaine T.

    2003-01-01

    Researchers have hypothesized that the respiratory and laryngeal speech subsystems would respond to an air pressure bleed, but these responses have not been empirically studied. The present study examined the nature of the responses of the respiratory and laryngeal subsystems to an air pressure bleed in order to provide information relevant to the…

  17. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  18. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  19. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  20. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  1. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH...

  2. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  3. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  4. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH...

  5. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  6. Measuring Ancient Air Pressure Using Fossilized Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.

    2016-12-01

    The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2

  7. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.

  8. Multi-stage versus single-stage inflation and deflation cycle for alternating low pressure air mattresses to prevent pressure ulcers in hospitalised patients: a randomised-controlled clinical trial.

    PubMed

    Demarré, L; Beeckman, D; Vanderwee, K; Defloor, T; Grypdonck, M; Verhaeghe, S

    2012-04-01

    The duration and the amount of pressure and shear must be reduced in order to minimize the risk of pressure ulcer development. Alternating low pressure air mattresses with multi-stage inflation and deflation cycle of the air cells have been developed to relieve pressure by sequentially inflating and deflating the air cells. Evidence about the effectiveness of this type of mattress in clinical practice is lacking. This study aimed to compare the effectiveness of an alternating low pressure air mattress that has a standard single-stage inflation and deflation cycle of the air cells with an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. A randomised controlled trial was performed in a convenience sample of 25 wards in five hospitals in Belgium. In total, 610 patients were included and randomly assigned to the experimental group (n=298) or the control group (n=312). In the experimental group, patients were allocated to an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. In the control group, patients were allocated to an alternating low pressure air mattress with a standard single-stage inflation and deflation cycle of the air cells. The outcome was defined as cumulative pressure ulcer incidence (Grade II-IV). An intention-to-treat analysis was performed. There was no significant difference in cumulative pressure ulcer incidence (Grade II-IV) between both groups (Exp.=5.7%, Contr.=5.8%, p=0.97). When patients developed a pressure ulcer, the median time was 5.0 days in the experimental group (IQR=3.0-8.5) and 8.0 days in the control group (IQR=3.0-8.5) (Mann-Whitney U-test=113, p=0.182). The probability to remain pressure ulcer free during the observation period in this trial did not differ significantly between the experimental group and the control group (log-rank χ(2)=0.013, df=1, p=0.911). An alternating low pressure air mattress with multi-stage inflation

  9. Bubble performance of a novel dissolved air flotation(DAF) unit.

    PubMed

    Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  10. Exploration to generate atmospheric pressure glow discharge plasma in air

    NASA Astrophysics Data System (ADS)

    Wenzheng, LIU; Chuanlong, MA; Shuai, ZHAO; Xiaozhong, CHEN; Tahan, WANG; Luxiang, ZHAO; Zhiyi, LI; Jiangqi, NIU; Liying, ZHU; Maolin, CHAI

    2018-03-01

    Atmospheric pressure glow discharge (APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in air-gap is suppressed effectively and a large space of APGD plasma in air is generated. Further, through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.

  11. Can we trust intraocular pressure measurements in eyes with intracameral air?

    PubMed

    Jóhannesson, Gauti; Lindén, Christina; Eklund, Anders; Behndig, Anders; Hallberg, Per

    2014-10-01

    To evaluate the effect of intracameral air on intraocular pressure (IOP) measurements using Goldmann applanation tonometry (GAT) and applanation resonance tonometry (ART) in an in-vitro porcine eye model. IOP was measured on thirteen freshly enucleated eyes at three reference pressures: 20, 30, and 40 mmHg. Six measurements/method were performed in a standardized order with GAT and ART respectively. Air was injected intracamerally in the same manner as during Descemet's stripping endothelial keratoplasty (DSEK) and Descemet's membrane endothelial keratoplasty (DMEK), and the measurements were repeated. Measured IOP increased significantly for both tonometry methods after air injection: 0.7 ± 2.1 mmHg for GAT and 10.6 ± 4.9 mmHg for ART. This difference was significant at each reference pressure for ART but not for GAT. Although slightly affected, this study suggests that we can trust GAT IOP-measurements in eyes with intracameral air, such as after DSEK/DMEK operations. Ultrasound-based methods such as ART should not be used.

  12. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  13. Addressing reverse osmosis fouling within water reclamation--a side-by-side comparison of low-pressure membrane pretreatments.

    PubMed

    Kent, Fraser C; Farahbakhsh, Khosrow

    2011-06-01

    A tertiary membrane filtration (TMF) pilot operating on secondary effluent and a membrane bioreactor (MBR) were setup in a side-by-side study as pretreatments for two identical reverse osmosis pilot systems. The water quality of the permeate from both low-pressure membrane pretreatment systems and the fouling rate of the reverse osmosis systems were compared to assess the capabilities of the two low-pressure membrane pretreatments to prevent organic fouling of the reverse osmosis systems. Both pretreatment pilots were setup using typical operating conditions (i.e., solids retention time and mixed-liquor suspended solids). A consistent difference in water quality and reverse osmosis performance was demonstrated during the 12-month study. The MBR permeate consistently had significantly lower total organic carbon (TOC) and chemical oxygen demand concentrations, but higher color and specific UV absorbance compared with the permeate from the TMF pretreatment. The pretreatment with the MBR gave an average reverse osmosis fouling rate over the entire study (0.27 Lmh/bar.month) that was less than half of the value found for the reverse osmosis with TMF pretreatment (0.60 Lmh/bar.month). A correlation of reverse osmosis feed TOC concentration with average reverse osmosis fouling rate also was established, independent of the pretreatment method used. Results from a cleaning analysis, energy dispersive spectroscopy, and fourier transformed infrared reflectometry confirmed that the foulants were primarily organic in nature. It is concluded that, for this type of application and setup, MBR systems present an advantage over tertiary membrane polishing of secondary effluent for reverse osmosis pretreatment.

  14. Pressure Distribution and Air Data System for the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gibson, Lorelei S.; Siemers, Paul M., III; Kern, Frederick A.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) is designed to provide critical flight data necessary for the design of future Aeroassist Space Transfer Vehicles (ASTV). This flight experiment will provide aerodynamic, aerothermodynamic, and environmental data for verification of experimental and computational flow field techniques. The Pressure Distribution and Air Data System (PD/ADS), one of the measurement systems incorporated into the AFE spacecraft, is designed to provide accurate pressure measurements on the windward surface of the vehicle. These measurements will be used to determine the pressure distribution and air data parameters (angle of attack, angle of sideslip, and free-stream dynamic pressure) encountered by the blunt-bodied vehicle over an altitude range of 76.2 km to 94.5 km. Design and development data are presented and include: measurement requirements, measurement heritage, theoretical studies to define the vehicle environment, flush-mounted orifice configuration, pressure transducer selection and performance evaluation data, and pressure tubing response analysis.

  15. Acute Air Pollution Exposure and Blood Pressure at Delivery Among Women With and Without Hypertension

    PubMed Central

    Männistö, Tuija; Liu, Danping; Leishear, Kira; Sherman, Seth; Laughon, S. Katherine

    2015-01-01

    BACKGROUND Chronic air pollution exposure increases risk for hypertensive disorders of pregnancy, but the effect of acute air pollution exposure on blood pressure during pregnancy is less well known. METHODS We studied 151,276 singleton term deliveries from the Consortium on Safe Labor (2002–2008) with clinical blood pressure measured at admission to labor/delivery and diagnoses of hypertensive disorders collected from electronic medical records and hospital discharge summaries. Air pollution exposures were estimated for the admission hour and the 4 hours preceding admission using a modified version of the Community Multiscale Air Quality models and observed air monitoring data. Blood pressure was categorized as normal; high normal; and mild, moderate, or severe hypertension based on pregnancy cut points. Adjusted ordinal logistic regression estimated the odds of women having a higher admission blood pressure category as a function of air pollutant, hypertensive disorders, and their interaction effect. RESULTS Odds of high blood pressure at admission to labor/delivery were increased in normotensive women after exposure to nitrogen oxides (by 0.2%/5 units), sulfur dioxide (by 0.3%/1 unit), carbon monoxide and several air toxics (by 3%–4%/high exposure). The effects were often similar or stronger among women with gestational hypertension and preeclampsia. Exposure to particulate matter <10 μm increased odds of high blood pressure in women with preeclampsia by 3%/5 units. CONCLUSIONS Air pollution can influence admission blood pressure in term deliveries and may increase likelihood of preeclampsia screening at delivery admission. PMID:24795401

  16. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  17. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    PubMed

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  18. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  19. Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear

    NASA Astrophysics Data System (ADS)

    Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie

    A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.

  20. Modeling pressure relationships of inspired air into the human lung bifurcations through simulations

    NASA Astrophysics Data System (ADS)

    Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana

    2018-03-01

    Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.

  1. Experimental measurements and analytical analysis related to gas turbine heat transfer. Part 1: Time-averaged heat-flux and surface-pressure measurements on the vanes and blades of the SSME fuel-side turbine and comparison with prediction. Part 2: Phase-resolved surface-pressure and heat-flux measurements on the first blade of the SSME fuel-side turbine

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Time averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat flux measurements, while miniature silicon-diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  2. Pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1927-01-01

    The text gives theoretical formulas from which is computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. Pressure graphs are given for speeds from 1 cm. Sec. up to those of swift projectiles.

  3. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  4. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  5. Association between lower air pressure and the onset of ischemic colitis: a case-control study.

    PubMed

    Kimura, Takefumi; Shinji, Akihiro; Tanaka, Naoki; Koinuma, Masayoshi; Yamaura, Maki; Nagaya, Tadanobu; Joshita, Satoru; Komatsu, Michiharu; Umemura, Takeji; Horiuchi, Akira; Wada, Shuichi; Tanaka, Eiji

    2017-09-01

    Ischemic colitis (IC) often affects the elderly. Proarteriosclerotic factors, such as hypertension and smoking, and cardiovascular disease are considered major contributors to IC. Although a possible link between certain cerebrocardiovascular disorders and meteorological phenomena has been reported, the relationship between IC onset and weather changes remains uninvestigated. This study examined whether specific meteorological factors were associated with the occurrence of IC. We retrospectively enrolled 303 patients who had been diagnosed with IC between January 2003 and June 2010 at Suwa Red Cross Hospital in Nagano Prefecture, Japan. The meteorological data of the days on which IC patients visited the hospital (IC+ days) were compared with those of the days on which IC patients did not (IC- days). Univariate analysis indicated that IC+ days had significantly lower air pressure (P<0.001), depressed air pressure from the previous day (P<0.001), and fewer daylight hours (P<0.001), as well as higher air temperature (P=0.017), air humidity (P=0.004), wind velocity (P<0.001), and rainfall (P=0.012) compared with IC- days. Multivariate logistic regression analysis of the meteorological data showed that air pressure (odds ratio: 0.935, P<0.001) and change in air pressure from the previous day (odds ratio: 0.934, P<0.001) were related to onset of IC. Lower air pressure and decrease in air pressure from the previous day are possible novel factors associated with the development of IC.

  6. Acute air pollution exposure and blood pressure at delivery among women with and without hypertension.

    PubMed

    Männistö, Tuija; Mendola, Pauline; Liu, Danping; Leishear, Kira; Sherman, Seth; Laughon, S Katherine

    2015-01-01

    Chronic air pollution exposure increases risk for hypertensive disorders of pregnancy, but the effect of acute air pollution exposure on blood pressure during pregnancy is less well known. We studied 151,276 singleton term deliveries from the Consortium on Safe Labor (2002-2008) with clinical blood pressure measured at admission to labor/delivery and diagnoses of hypertensive disorders collected from electronic medical records and hospital discharge summaries. Air pollution exposures were estimated for the admission hour and the 4 hours preceding admission using a modified version of the Community Multiscale Air Quality models and observed air monitoring data. Blood pressure was categorized as normal; high normal; and mild, moderate, or severe hypertension based on pregnancy cut points. Adjusted ordinal logistic regression estimated the odds of women having a higher admission blood pressure category as a function of air pollutant, hypertensive disorders, and their interaction effect. Odds of high blood pressure at admission to labor/delivery were increased in normotensive women after exposure to nitrogen oxides (by 0.2%/5 units), sulfur dioxide (by 0.3%/1 unit), carbon monoxide and several air toxics (by 3%-4%/high exposure). The effects were often similar or stronger among women with gestational hypertension and preeclampsia. Exposure to particulate matter <10 μm increased odds of high blood pressure in women with preeclampsia by 3%/5 units. Air pollution can influence admission blood pressure in term deliveries and may increase likelihood of preeclampsia screening at delivery admission. © Published by Oxford University Press on behalf of American Journal of Hypertension Ltd 2014. This work is written by (a) US Government employees(s) and is in the public domain in the US.

  7. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    NASA Astrophysics Data System (ADS)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  8. 122. VIEW OF CABINETS ON WEST SIDE OF LANDLINE INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. VIEW OF CABINETS ON WEST SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751), FACING EAST. PECOS CABINET INCLUDES CONTROLS FOR PRESSURE SWITCHES, VALVES, AND PURGE; THE LOGIC AND MONITOR UNITS FOR BOOSTER AND FUEL SYSTEMS INCLUDES CONTROLS FOR MISSILE GROUND POWER AND HYDRAULICS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  10. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  11. Adding a custom made pressure release valve during air enema for intussusception: A new technique.

    PubMed

    Ahmed, Hosni Morsi; Ahmed, Osama; Ahmed, Refaat Khodary

    2015-01-01

    Non-surgical reduction remains the first line treatment of choice for intussusception. The major complication of air enema reduction is bowel perforation. The authors developed a custom made pressure release valve to be added to portable insufflation devices, delivering air at pressures accepted as safe for effective reduction of intussusception in children under fluoroscopic guidance. The aim of this study was to develop a custom made pressure release valve that is suitable for the insufflation devices used for air enema reduction of intussusception and to put this valve into regular clinical practice. An adjustable, custom made pressure release valve was assembled by the authors using readily available components. The valve was coupled to a simple air enema insufflation device. The device was used for the trial of reduction of intussusception in a prospective study that included 132 patients. The success rate for air enema reduction with the new device was 88.2%. The mean pressure required to achieve complete reduction was 100 mmHg. The insufflation pressure never exceeded the preset value (120 mmHg). Of the successful cases, 58.3% were reduced from the first attempt while 36.1% required a second insufflation. Only 5.55% required a third insufflation to complete the reduction. In cases with unsuccessful pneumatic reduction attempt (18.1%), surgical treatment was required. Surgery ranged from simple reduction to resection with a primary end to end anastomosis. No complications from air enema were recorded. The authors recommend adding pressure release valves to ensure safety by avoiding pressure overshoot during the procedure.

  12. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions

  13. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  14. An analysis of contact stiffness between a finger and an object when wearing an air-cushioned glove: the effects of the air pressure.

    PubMed

    Wu, John Z; Wimer, Bryan M; Welcome, Daniel E; Dong, Ren G

    2012-04-01

    Air-cushioned gloves have the advantages of lighter weight, lower cost, and unique mechanical performance, compared to gloves made of conventional engineering materials. The goal of this study is to analyze the contact interaction between fingers and object when wearing an air-cushioned glove. The contact interactions between the the fingertip and air bubbles, which is considered as a cell of a typical air-cushioned glove, has been analyzed theoretically. Two-dimensional finite element models were developed for the analysis. The fingertip model was assumed to be composed of skin layers, subcutaneous tissue, bone, and nail. The air bubbles were modeled as air sealed in the container of nonelastic membrane. We simulated two common scenarios: a fingertip in contact with one single air bubble and with two air cushion bubbles simultaneously. Our simulation results indicated that the internal air pressure can modulate the fingertip-object contact characteristics. The contact stiffness reaches a minimum when the initial air pressure is equal to 1.3 and 1.05 times of the atmosphere pressure for the single air bubble and the double air bubble contact, respectively. Furthermore, the simulation results indicate that the double air bubble contact will result in smaller volumetric tissue strain than the single air bubble contact for the same force. Published by Elsevier Ltd.

  15. Microcontrolled air-mattress for ulcer by pressure prevention

    NASA Astrophysics Data System (ADS)

    Pasluosta, Cristian F.; Fontana, Juan M.; Beltramone, Diego A.; Taborda, Ricardo A. M.

    2007-11-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  16. Evaluation of BAUER High Pressure Breathing Air P-2 Purification System

    DTIC Science & Technology

    1991-08-01

    and is a coalescing type separator that removes oil and water vapors suspended in the compressed air . The molecular sieve is made to adsorb oil and...filtering, moisture separation, and prevents compressed air return from the charged air storage flasks to the compressor during unit shutdown. A manual...1111111111111 1111 IE IH fil91i C NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 10-91 EVALUATION OF BAUER HIGH PRESSURE BREATHING AIR P-2 PURIFICATION SYSTEM GEORGE D

  17. Two-dimensional cold-air cascade study of a film-cooled turbine stator blade. 1: Experimental results of pressure-surface film cooling tests

    NASA Technical Reports Server (NTRS)

    Moffitt, T. P.; Prust, H. W., Jr.; Bartlett, W. M.

    1974-01-01

    The effect of film coolant ejection from the pressure side of a stator blade was determined in a two-dimensional cascade. Stator exit surveys were made for each of six rows of coolant holes. Successive multirow tests were made with two, three, four, five, and six rows of coolant holes open. The results of the multirow tests are compared with the predicted multirow performance obtained by adding the single-row data. Results are presented in terms of stator primary-air efficiency as a function of coolant fraction.

  18. Air riding seal with purge cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, Thomas D; Mills, Jacob A

    An air riding seal for a turbine in a gas turbine engine, where an annular piston is axial moveable within an annular piston chamber formed in a stator of the turbine and forms a seal with a surface on the rotor using pressurized air that forms a cushion in a pocket of the annular piston. A purge cavity is formed on the annular piston and is connected to a purge hole that extends through the annular piston to a lower pressure region around the annular piston or through the rotor to an opposite side. The annular piston is sealed alsomore » with inner and outer seals that can be a labyrinth seal to form an additional seal than the cushion of air in the pocket to prevent the face of the air riding seal from overheating.« less

  19. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  20. Analysis of the intraocular jet flows and pressure gradients induced by air and fluid infusion: mechanism of focal chorioretinal damage.

    PubMed

    Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek

    2014-05-01

    To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. A Novel Approach to Model the Air-Side Heat Transfer in Microchannel Condensers

    NASA Astrophysics Data System (ADS)

    Martínez-Ballester, S.; Corberán, José-M.; Gonzálvez-Maciá, J.

    2012-11-01

    The work presents a model (Fin1D×3) for microchannel condensers and gas coolers. The paper focusses on the description of the novel approach employed to model the air-side heat transfer. The model applies a segment-by-segment discretization to the heat exchanger adding, in each segment, a specific bi-dimensional grid to the air flow and fin wall. Given this discretization, the fin theory is applied by using a continuous piecewise function for the fin wall temperature. It allows taking into account implicitly the heat conduction between tubes along the fin, and the unmixed air influence on the heat capacity. The model has been validated against experimental data resulting in predicted capacity errors within ± 5%. Differences on prediction results and computational cost were studied and compared with the previous authors' model (Fin2D) and with other simplified model. Simulation time of the proposed model was reduced one order of magnitude respect the Fin2D's time retaining its same accuracy.

  2. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study

    PubMed Central

    Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.

    2015-01-01

    Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health

  3. Traffic-related air pollution and noise and children's blood pressure: results from the PIAMA birth cohort study.

    PubMed

    Bilenko, Natalya; van Rossem, Lenie; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; Hoek, Gerard; Houthuijs, Danny; de Jongste, Johan C; van Kempen, Elise; Koppelman, Gerard H; Meliefste, Kees; Oldenwening, Marieke; Smit, Henriette A; Wijga, Alet H; Gehring, Ulrike

    2015-01-01

    Elevation of a child's blood pressure may cause possible health risks in later life. There is evidence for adverse effects of exposure to air pollution and noise on blood pressure in adults. Little is known about these associations in children. We investigated the associations of air pollution and noise exposure with blood pressure in 12-year-olds. Blood pressure was measured at age 12 years in 1432 participants of the PIAMA birth cohort study. Annual average exposure to traffic-related air pollution [NO2, mass concentrations of particulate matter with diameters of less than 2.5 µm (PM2.5) and less than 10 µm (PM10), and PM2.5 absorbance] at the participants' home and school addresses at the time of blood pressure measurements was estimated by land-use regression models. Air pollution exposure on the days preceding blood pressure measurements was estimated from routine air monitoring data. Long-term noise exposure was assessed by linking addresses to modelled equivalent road traffic noise levels. Associations of exposures with blood pressure were analysed by linear regression. Effects are presented for an interquartile range increase in exposure. Long-term exposure to NO2 and PM2.5 absorbance were associated with increased diastolic blood pressure, in children who lived at the same address since birth [adjusted mean difference (95% confidence interval) [mmHg] 0.83 (0.06 to 1.61) and 0.75 (-0.08 to 1.58), respectively], but not with systolic blood pressure. We found no association of blood pressure with short-term air pollution or noise exposure. Long-term exposure to traffic-related air pollution may increase diastolic blood pressure in children. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Self-pressurized air-Q® intubating laryngeal airway versus the LMA® Classic™: a randomized clinical trial.

    PubMed

    Ha, Sang Hee; Kim, Min-Soo; Suh, Jiwoo; Lee, Jong Seok

    2018-05-01

    The self-pressurized air-Q® (air-Q SP) intubating laryngeal airway is a relatively new supraglottic airway (SGA) device. The intracuff pressure of air-Q dynamically equilibrates with the airway pressure and adjusts to the patient's pharyngeal and periglottic anatomy, potentially providing improved airway fit and seal. The aim of this prospective randomized study was to compare the clinical performance of air-Q to the LMA® Classic™ SGA. Adult patients requiring general anesthesia for elective surgery were prospectively enrolled and randomly assigned to either air-Q SP or the LMA Classic SGA. Oropharyngeal leak pressure (primary endpoint), success rate, insertion features (insertion time, ease of insertion, requirement for device manipulation), sealing function, gastric insufflation, bronchoscopic view, and oropharyngeal complications at device insertion and following its removal (sore throat, dysphagia, dysphonia) were compared. The mean (standard deviation [SD]) oropharyngeal leak pressure just after insertion was similar in the air-Q SP and LMA [16.8 (4.9) vs 18.6 (5.5) cm H 2 O, respectively; mean difference, 1.8 cm H 2 O; 95% CI, -0.5 to 4.2; P = 0.13] and did not differ at ten minutes following device insertion. Median [interquartile range (IQR)] peak inspiratory pressure just after insertion was lower in the air-Q SP (11.0 [10.0-13.0] vs 13.0 [11.0-14.0] cmH 2 O, median difference, 1.0 cm H 2 O; 95% CI, 0.0 to 2.0; P = 0.03) but no difference was observed at ten minutes. The median [IQR] insertion time was faster with the air-Q SP (15.9 [13.6-20.3] sec vs 24 [21.2-27.1] sec; median difference, 8.1 sec; 95% CI, 5.6 to 9.9; P < 0.001) and improved bronchoscopic viewing grade were seen with the air-Q SP immediately after insertion (P < 0.001). No differences between the groups were observed with respect to the rate of successful insertion at first attempt, overall insertion success rate, ease of insertion, and complications. The air-Q SP had similar leak

  5. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  6. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 1963. They shall be subjected to a hydrostatic pressure test of one and one-half times the working... quarterly by a competent person. They shall be subjected yearly to a hydrostatic pressure test of one and... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels...

  7. [Nitrous Oxide Exposure-mediated Increases in Cuff Pressure: A Comparison of Disposable Type and Re-use Type air-Q Devices].

    PubMed

    Miyazaki, Yu; Komasawa, Nobuyasu; Fujiawara, Shunsuke; Majima, Nozomi; Tatsumi, Shinichi; Minami, Toshiaki

    2015-02-01

    BaCKGROUND: The present study aimed to compare nitrous oxide-mediated increases in cuff pressure between the disposable type air-Q (air-Q-DT) and re-use type air-Q (air-Q-RU) in a simulated adult airway model. Automated cuff pressure was adjusted to 10, 20, and 30 cmH2O. The air-Q-DT and air-Q-RU were exposed to 80% nitrous oxide and cuff pressure was measured 15 and 30 minutes later. Cuff pressure of the air-Q-DT was significantly lower than that of the air-Q-RU after 15 and 30 minutes, regardless of the initial pressure. The polyvinyl chloride-based air-Q-DT may be more effective than the silicon-based air-Q-RU in preventing hyperinflation of the tracheal tube cuff in response to nitrous oxide exposure.

  8. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    which must be added a 1.5 month salary to A. Bugayev for assistance in laser and optic techniques. 2 Part II Technical report Plasma-induced phase shift...two-wavelength heterodyne interferometry applied to atmospheric pressure air plasma 11.1 .A. Plasma-induced phase shift - Electron density...a driver, since the error on the frequency leads to an error on the phase shift. (c) Optical elements Mirrors Protected mirrors must be used to stand

  9. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  10. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  11. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  12. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  13. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  14. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  15. Prenatal Air Pollution Exposure and Newborn Blood Pressure

    PubMed Central

    Rifas-Shiman, Sheryl L.; Melly, Steven J.; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Mittleman, Murray A.; Oken, Emily; Gillman, Matthew W.; Koutrakis, Petros; Gold, Diane R.

    2015-01-01

    Background Air pollution exposure has been associated with increased blood pressure in adults. Objective: We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). Methods: We studied 1,131 mother–infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child’s birth weight; mother’s age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Results: Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., –2.3 mmHg; 95% CI: –4.4, –0.2 for a 13.5-ppb increase during the 90 days before birth). Conclusions: Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood. Citation: van Rossem L, Rifas-Shiman SL, Melly SJ, Kloog I, Luttmann-Gibson H, Zanobetti A, Coull BA, Schwartz JD, Mittleman MA, Oken E, Gillman MW, Koutrakis P, Gold DR. 2015. Prenatal air pollution exposure and newborn blood pressure

  16. Influence of wind-induced air pressure fluctuations on topsoil gas concentrations within a Scots pine forest

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk

    2017-04-01

    Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of

  17. Evaluation of Bauer K-20 Diesel Drive High Pressure Breathing Air Compressor

    DTIC Science & Technology

    1993-12-01

    was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and cleanliness... compressed air return from the air storage flasks to the compressor during unit shut down. All four stages of the compressor are protected by safety...1993. 6. Naval Ships Technical Manual, S9086-SY-STM-0O0, Chapeter 551 1st Rev. I November 1987. Compressed Air Plants and Systems, para 551-4.2.21. 7

  18. The exposure of children to deploying side air bags: an initial field assessment.

    PubMed

    Arbogast, Kristy B; Kallan, Michael J

    2007-01-01

    Tremendous effort has been invested in the laboratory to ensure side air bag (SAB) deployments minimize injury metrics in pediatric anthropometric test devices (ATDs). Little is known, however, about the experience of children exposed to this technology in real world crashes. Therefore, the objective of this study was to determine the prevalence of SAB exposure in children and provide estimates of injury risk among those exposed. This study utilized data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to identify a probability sample of 348 child occupants, age 0-15 years, weighted to represent 6,600 children, in vehicles of model year 1998 and newer, equipped with SABs, in side impact crashes from three large U.S. regions between 1/1/05 and 12/31/06. In the study sample, 27 children per 1000 children in crashes were exposed to a deployed side air bag. Over 75% of these children were seated in the rear seat and 83% were exposed to a head curtain SAB. 65% of those exposed were less than 9 years of age. Of those exposed, 10.6% sustained an AIS2+ injury; all injuries were of the AIS 2 level and limited to the head or upper extremity. This paper provides the first population-based estimates of the exposure of children to SABs. Initial experience suggests that the risk of injury is fairly low with only one in ten sustaining injury - none of which were serious or life threatening. These findings offer assurance that efforts by regulators and the automotive industry to minimize negative consequences from SABs to vulnerable occupants appear to be effective and cause no change in the current recommendation of safe seating for children next to SABs.

  19. Prevention of pressure ulcers with a static air support surface: A systematic review.

    PubMed

    Serraes, Brecht; van Leen, Martin; Schols, Jos; Van Hecke, Ann; Verhaeghe, Sofie; Beeckman, Dimitri

    2018-06-01

    The aims of this study were to identify, assess, and summarise available evidence about the effectiveness of static air mattress overlays to prevent pressure ulcers. The primary outcome was the incidence of pressure ulcers. Secondary outcomes included costs and patient comfort. This study was a systematic review. Six electronic databases were consulted: Cochrane Library, EMBASE, PubMed (Medline), CINAHL (EBSCOhost interface), Science direct, and Web of Science. In addition, a hand search through reviews, conference proceedings, and the reference lists of the included studies was performed to identify additional studies. Potential studies were reviewed and assessed by 2 independent authors based on the title and abstract. Decisions regarding inclusion or exclusion of the studies were based on a consensus between the authors. Studies were included if the following criteria were met: reporting an original study; the outcome was the incidence of pressure ulcer categories I to IV when using a static air mattress overlay and/or in comparison with other pressure-redistribution device(s); and studies published in English, French, and Dutch. No limitation was set on study setting, design, and date of publication. The methodological quality assessment was evaluated using the Critical Appraisal Skills Program Tool. Results were reported in a descriptive way to reflect the exploratory nature of the review. The searches included 13 studies: randomised controlled trials (n = 11) and cohort studies (n = 2). The mean pressure ulcer incidence figures found in the different settings were, respectively, 7.8% pressure ulcers of categories II to IV in nursing homes, 9.06% pressure ulcers of categories I to IV in intensive care settings, and 12% pressure ulcers of categories I to IV in orthopaedic wards. Seven comparative studies reported a lower incidence in the groups of patients on a static air mattress overlay. Three studies reported a statistical (P < .1) lower incidence compared

  20. Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.

    PubMed

    Pryor, Lee N; Baldwin, Claire E; Ward, Elizabeth C; Cornwell, Petrea L; O'Connor, Stephanie N; Chapman, Marianne J; Bersten, Andrew D

    2016-05-01

    Advancements in tracheostomy tube design now provide clinicians with a range of options to facilitate communication for individuals receiving ventilator assistance through a cuffed tube. Little is known about the impact of these modern design features on resistance to air flow. We undertook a bench model test to measure pressure-flow characteristics and resistance of a range of tubes of similar outer diameter, including those enabling subglottic suction and speech. A constant inspiratory ± expiratory air flow was generated at increasing flows up to 150 L/min through each tube (with or without optional, mandatory, or interchangeable inner cannula). Driving pressures were measured, and resistance was calculated (cm H2O/L/s). Pressures changed with increasing flow (P < .001) and tube type (P < .001), with differing patterns of pressure change according to the type of tube (P < .001) and direction of air flow. The single-lumen reference tube encountered the lowest inspiratory and expiratory pressures compared with all double-lumen tubes (P < .001); placement of an optional inner cannula increased bidirectional tube resistance by a factor of 3. For a tube with interchangeable inner cannulas, the type of cannula altered pressure and resistance differently (P < .001); the speech cannula in particular amplified pressure-flow changes and increased tube resistance by more than a factor of 4. Tracheostomy tube type and inner cannula selection imposed differing pressures and resistance to air flow during inspiration and expiration. These differences may be important when selecting airway equipment or when setting parameters for monitoring, particularly for patients receiving supported ventilation or during the weaning process. Copyright © 2016 by Daedalus Enterprises.

  1. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  2. Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing.

    PubMed

    Talataisong, W; Wang, D N; Chitaree, R; Liao, C R; Wang, C

    2015-04-01

    We demonstrate a fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with open micro-channel for high-pressure sensing applications. The inner air-cavity is fabricated by combining femtosecond laser micromachining and the fusion splicing technique. The micro-channel is drilled on the top of the inner air-cavity to allow the high-pressure gas to flow in. The fiber in-line device is miniature, robust, and stable in operation and exhibits a high pressure sensitivity of ∼8,239  pm/MPa.

  3. Comparison of water and air charged transducer catheter pressures in the evaluation of cystometrogram and voiding pressure studies.

    PubMed

    McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima

    2018-04-01

    Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.

  4. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    NASA Astrophysics Data System (ADS)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  5. Post-Tensioning Duct Air Pressure Testing Effects on Web Cracking

    DOT National Transportation Integrated Search

    2015-01-01

    Nevada Department of Transportation (NDOT) post-tensioned concrete bridges have experienced web cracking near the post-tensioning ducts during the construction process. The ducts were air pressure tested to ensure the duct can successfully be grouted...

  6. Pressure Injury Development in Patients Treated by Critical Care Air Transport Teams: A Case-Control Study.

    PubMed

    Dukes, Susan F; Maupin, Genny M; Thomas, Marilyn E; Mortimer, Darcy L

    2018-04-01

    The US Air Force transports critically ill patients from all over the world, with transport times commonly ranging from 6 to 11 hours. Few outcome measures have been tracked for these patients. Traditional methods to prevent pressure injuries in civilian hospitals are often not feasible in the military transport environment. The incidence rate and risk factors are described of en route-related pressure injuries for patients overseen by the Critical Care Air Transport Team. This retrospective, case-control, medical records review investigated risk factors for pressure injury in patients who developed a pressure injury after their transport flight compared with those with no documented pressure injuries. The pressure injury rate was 4.9%. Between 2008 and 2012, 141 patients in whom pressure injuries developed and who had received care by the team were matched with 141 patients cared for by the team but did not have pressure injury. According to regression analysis, body mass index and 2 or more Critical Care Air Transport Team transports per patient were associated with pressure injury development. Although the pressure injury rate of 4.9% in this cohort of patients is consistent with that reported by civilian critical care units, the rate must be interpreted with caution, because civilian study data frequently represent the entire intensive care unit length of stay. Targeted interventions for patients with increased body mass index and 2 or more critical care air transports per patient may help decrease the development of pressure injury in these patients. ©2018 American Association of Critical-Care Nurses.

  7. A study of pressure losses in residential air distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

    2002-07-01

    An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effectsmore » on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.« less

  8. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure vessels. 1915.172 Section 1915.172 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Portable, Unfired Pressure...

  9. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  10. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  11. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  12. A preliminary investigation of the air-bone gap: Changes in intracochlear sound pressure with air- and bone-conducted stimuli after cochlear implantation

    PubMed Central

    Banakis Hartl, Renee M.; Mattingly, Jameson K.; Greene, Nathaniel T.; Jenkins, Herman A.; Cass, Stephen P.; Tollin, Daniel J.

    2016-01-01

    Hypothesis A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Background Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative air-bone gap remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative air-bone gap. Methods Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Results Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with prior literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable following electrode placement. Conclusion Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity. PMID:27579835

  13. 75 FR 59674 - Make Inoperative Exemptions; Vehicle Modifications To Accommodate People With Disabilities, Side...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... that many vehicles will depend on side impact air bag technology to meet all of the injury criteria of... ``lead to the installation of new technologies, such as side curtain air bags and torso side air bags... is side air bag technology incorporated in the vehicle's roof rail (side air bag curtain), door, and...

  14. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  15. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  16. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  17. 73. DETAIL OF LIQUID OXYGEN STORAGE PRESSURE GAUGE IN UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. DETAIL OF LIQUID OXYGEN STORAGE PRESSURE GAUGE IN UPPER LEFT CORNER OF WEST SIDE OF CENTER SKID IN CA-133-1-C-69 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  19. Soviet research on the transport of intense relativistic electron beams through high-pressure air

    NASA Astrophysics Data System (ADS)

    Wells, Nikita

    1987-05-01

    Soviet development of intense relativistic electron beams (IREB) through background air at pressures from 1/100 Torr to atmospheric is analyzed as reflected by Soviet open literature of the last 15 years. Important Soviet findings include: (1) the formation of a plasma channel created by an IREB propagating through background air and the effect of beam parameters upon the plasma channel parameters (and vice versa); (2) determination of the background air pressure for the optimum transport of IREB in two ranges, an ion focused regime at 0.06 to 0.09 Torr and a low pressure window at 1 Torr; (3) observation of current enhancement, whereby the IREB-induced current in plasma is higher than the initial beam current; and (4) the effect of resistive hose instability on IREB propagation. This research is characterized by absence of high energy experimentation. A conclusion of the research is that, for optimum beam transport through air, it is imperative to ensure conditions that allow full neutralization of the IREB's self-fields along the entire path of the beam's transport.

  20. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds during Production of Stop Consonants: New Evidence of Aeromechanical Regulation.

    ERIC Educational Resources Information Center

    Zajac, David J.; Weissler, Mark C.

    2004-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults…

  1. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  2. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bohn, Mark S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440 C and air inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/sq m/s air flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.

  3. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  4. The Jar Magic--Instructional Activities for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-01-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass,…

  5. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  6. Heat transfer and pressure measurements for the SSME fuel-side turbopump

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.

    1990-01-01

    A measurement program is currently underway at the Calspan-UB Research Center (CUBRC) which utilizes the Rocketdyne two-state fuel-side turbine with the engine geometric configuration reproduced. This is a full two-state turbine for which the vane rows and the blades are the engine hardware currently used on the Space Shuttle turbopump. A status report is provided for the experimental program and a description of the instrumentation and the measurements to be performed. The specific items that will be illustrated and described are as follows: (1) the gas flow path, (2) the heat-flux instrumentation, (3) the surface-pressure instrumentation, (4) the experimental conditions for which data will be obtained, and (5) the specific measurements that will be performed.

  7. Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution.

    PubMed

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J; Reed, William

    2007-08-01

    Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O(3) that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. We conducted a study of 81 children, 7.9 +/- 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O(3) levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 mum in aerodynamic diameter (PM(2.5)) before endothelin-1 measurement (p = 0.03). Chronic exposure of children to PM(2.5) is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure.

  8. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  9. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  10. Investigation of the reaction of liquid hydrogen with liquid air in a pressure tube

    NASA Technical Reports Server (NTRS)

    Karb, Erich H.

    1987-01-01

    A pressure tube should protect the FR-2 reactor from the consequences of a hydrogen-air reaction, which is conceivable in the breakdown of several safety devices of the planned cold neutron source Project FR-2/16. The magnitudes and time pattern of the pressures to be expected were investigated. In the geometry used and the ignition mechanism selected, which is comparable to the strongest ignition process conceivable in the reactor, the reaction proceeds with greater probability than combustion. The combustion is possibly smaller if local limited partial detonations are superimposed. The magnitude of the pressure was determined by the masses of the reaction partners, liquid H2 and liquid air, and determines their ratio to each other.

  11. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.

    PubMed

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense.

  12. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air.

    PubMed

    Li, Cheng; Lan, Tian; Yu, Xiyu; Bo, Nan; Dong, Jingyu; Fan, Shangchun

    2017-11-04

    We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P) interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality ( Q ) factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10 -2 and 10⁵ Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509-542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0-199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 10⁵ kHz³/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials.

  13. A randomized comparison of the i-gel with the self-pressurized air-Q intubating laryngeal airway in children.

    PubMed

    Kim, Min-Soo; Lee, Jae Hoon; Han, Sang Won; Im, Young Jae; Kang, Hyo Jong; Lee, Jeong-Rim

    2015-04-01

    Supraglottic airway devices with noninflatable cuff have advantages in omitting the cuff pressure monitoring and reducing potential pharyngolaryngeal complications. Typical devices without cuff inflation available in children are the i-gel and the self-pressurized air-Q intubating laryngeal airway (air-Q SP). To date, there is no comparative study between these devices in pediatric patients. The purpose of this randomized study was to compare the i-gel(™) and the self-pressurized air-Q(™) intubating laryngeal airway (air-Q SP) in children undergoing general anesthesia. Eighty children, 1-108 months of age, 7-30 kg of weight, and scheduled for elective surgery in which supraglottic airway devices would be suitable for airway management, were randomly assigned to either the i-gel or the air-Q SP. Oropharyngeal leak pressure and fiberoptic view were assessed three times as follows: after insertion and fixation of the device, 10 min after initial assessment, and after completion of surgery. We also assessed insertion parameters and complications. Insertion of the i-gel was regarded as significantly easier compared to the air-Q SP (P = 0.04). Compared to the air-Q SP group, the i-gel group had significantly higher oropharyngeal leak pressures at all measurement points and significantly lower frequencies of gastric insufflation at 10 min after initial assessment and completion of surgery. The air-Q SP group had better fiberoptic views than the i-gel group at all measurement points. Our results showed that the i-gel had easier insertion and better sealing function, and the air-Q SP provided improved fiberoptic views in children requiring general anesthesia. © 2015 John Wiley & Sons Ltd.

  14. Air charged and microtip catheters cannot be used interchangeably for urethral pressure measurement: a prospective, single-blind, randomized trial.

    PubMed

    Zehnder, Pascal; Roth, Beat; Burkhard, Fiona C; Kessler, Thomas M

    2008-09-01

    We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.

  15. Prenatal air pollution exposure and newborn blood pressure.

    PubMed

    van Rossem, Lenie; Rifas-Shiman, Sheryl L; Melly, Steven J; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A; Schwartz, Joel D; Mittleman, Murray A; Oken, Emily; Gillman, Matthew W; Koutrakis, Petros; Gold, Diane R

    2015-04-01

    Air pollution exposure has been associated with increased blood pressure in adults. We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). We studied 1,131 mother-infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child's birth weight; mother's age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., -2.3 mmHg; 95% CI: -4.4, -0.2 for a 13.5-ppb increase during the 90 days before birth). Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood.

  16. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  17. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  18. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  19. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  20. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation.

    PubMed

    Banakis Hartl, Renee M; Mattingly, Jameson K; Greene, Nathaniel T; Jenkins, Herman A; Cass, Stephen P; Tollin, Daniel J

    2016-10-01

    A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative ABG remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative ABG. Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with previous literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable after electrode placement. Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity.

  1. Air pressure measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    The pressure measurement was made by a Model 830J Rosemont sensor which utilized the principle of a changing pressure to change correspondingly the capacitance of the pressure sensitive element. The sensor's range was stated to be from zero to 100 Torr (14 km); however, the sensor was not activated until an altitude of 20 km (41 Torr) was reached during the balloon ascent. The resolution of the sensor was specified by the manufacturer as infinitesimal; however, associated electronic and pressure readout systems limit the resolution to .044 Torr. Thus in the vicinity of an altitude of 30 km the pressure resolution corresponded to an altitude resolution of approximately 33 meters.

  2. Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae

    NASA Astrophysics Data System (ADS)

    Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido

    2018-06-01

    The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n  ‑  1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the

  3. 76 FR 37025 - Make Inoperative Exemptions; Vehicle Modifications To Accommodate People With Disabilities, Side...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... the seat. Many vehicles will depend on side impact air bag technology to meet all of the injury... installing side air bags in vehicle seats and/or door panels and side roof rails. The phase-in of the... expressed concern that: ``* * * torso side air bags are commonly installed in the outboard side of the OEM...

  4. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength

    PubMed Central

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a “hard” and “soft” mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in “soft” than in “hard” mode. The differences between the sinking distances of the mattress in “soft” and “hard” modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense. PMID:26741497

  5. Multi-hole pressure probes to wind tunnel experiments and air data systems

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Shmakov, A. S.

    2017-10-01

    The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.

  6. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    EPA Science Inventory

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  7. A micro-machined piezoelectric flexural-mode hydrophone with air backing: a hydrostatic pressure-balancing mechanism for integrity preservation.

    PubMed

    Choi, Sungjoon; Lee, Haksue; Moon, Wonkyu

    2010-09-01

    Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.

  8. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    NASA Astrophysics Data System (ADS)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  9. Lighter-Than-Air and Pressurized Structures Technology for Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2010-01-01

    through lighter-than-air or pressurized structures-based ( PSB ) technologies. Basically, we examined how to construct the UAV in such a way that a...considerable percentage of its weight will be supported by or composed of inflatable structures containing air or helium. In this way, PSB technology...will reduce the amount of energy required to keep the UAV aloft, thus allowing the use of smaller, slower, and quieter motors. Using PSB technology

  10. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  11. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  12. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  13. Effect of cleaning methods after reduced-pressure air abrasion on bonding to zirconia ceramic.

    PubMed

    Attia, Ahmed; Kern, Matthias

    2011-12-01

    To evaluate in vitro the influence of different cleaning methods after low-pressure air abrasion on the bond strength of a phosphate monomer-containing luting resin to zirconia ceramic. A total of 112 zirconia ceramic disks were divided into 7 groups (n = 16). In the test groups, disks were air abraded at low pressure (L) 0.05 MPa using 50-μm alumina particles. Prior to bonding, the disks were ultrasonically (U) cleaned either in isopropanol alcohol (AC), hydrofluoric acid (HF), demineralized water (DW), or tap water (TW), or they were used without ultrasonic cleaning. Disks air abraded at a high (H) pressure of 0.25 MPa and cleaned ultrasonically in isopropanol served as positive control; original (O) milled disks used without air abrasion served as the negative control group. Plexiglas tubes filled with composite resin were bonded with the adhesive luting resin Panavia 21 to the ceramic disks. Prior to testing tensile bond strength (TBS), each main group was further subdivided into 2 subgroups (n=8) which were stored in distilled water either at 37°C for 3 days or for 30 days with 7500 thermal cycles. Statistical analyses were conducted with two- and one-way analyses of variance (ANOVA) and Tukey's HSD test. Initial tensile bond strength (TBS) ranged from 32.6 to 42.8 MPa. After 30 days storage in water with thermocycling, TBS ranged from 21.9 to 36.3 MPa. Storage in water and thermocycling significantly decreased the TBS of test groups which were not air abraded (p = 0.05) or which were air abraded but cleaned in tap water (p = 0.002), but not the TBS of the other groups (p > 0.05). Also, the TBS of air-abraded groups were significantly higher than the TBS of the original milled (p < 0.01). Cleaning procedures did not significantly affect TBS either after 3 days or 30 days storage in water and thermocycling (p > 0.05). Air abrasion at 0.05 MPa and ultrasonic cleaning are important factors for improving bonding to zirconia ceramic.

  14. CMC blade with pressurized internal cavity for erosion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interiormore » fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.« less

  15. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  16. Non-invasive positive-pressure ventilation with positive end-expiratory pressure counteracts inward air leaks during preoxygenation: a randomised crossover controlled study in healthy volunteers.

    PubMed

    Hanouz, J-L; Le Gall, F; Gérard, J-L; Terzi, N; Normand, H

    2018-04-01

    During preoxygenation, the lack of tight fit between the mask and the patient's face results in inward air leak preventing effective preoxygenation. We hypothesized that non-invasive positive-pressure ventilation and positive end-expiratory pressure (PEEP) could counteract inward air leak. Healthy volunteers were randomly assigned to preoxygenated through spontaneous breathing without leak (SB), spontaneous breathing with a calibrated air leak (T-shaped piece between the mouth and the breathing system; SB-leak), or non-invasive positive inspiratory pressure ventilation (inspiratory support +6 cm H 2 O; PEEP +5 cm H 2 O) with calibrated leak (PPV-leak). The volunteers breathed through a mouthpiece connected to an anaesthesia ventilator. The expired oxygen fraction (FeO 2 ) and air-leak flow (ml s -1 ) were measured. The primary end point was the proportion of volunteers with FeO 2 >90% at 3 min. The secondary end points were FeO 2 at 3 min, time to reach FeO 2 of 90%, and the inspiratory air-leak flow. Twenty healthy volunteers were included. The proportion of volunteers with FeO 2 >90% at 3 min was 0% in the SB-leak group, 95% in the SB group, and 100% in the PPV-leak group (P<0.001). At 3 min, the mean [standard deviation (sd)] FeO 2 was 89 (1)%, 76 (1)%, and 90 (0)% in the SB, SB-leak, and PPV-leak groups, respectively (P<0.001). The mean (sd) inward air leak was 59 (12) ml s -1 in the SB-leak group, but 0 (0) ml s -1 in the PPV-leak group (P<0.001). Preoxygenation through non-invasive positive-pressure ventilation and PEEP provided effective preoxygenation despite an inward air leak. NCT03087825. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  17. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  18. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    PubMed

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  19. A Modified Triples Algorithm for Flush Air Data Systems that Allows a Variety of Pressure Port Configurations

    NASA Technical Reports Server (NTRS)

    Millman, Daniel R.

    2017-01-01

    Air Data Systems (FADS) are becoming more prevalent on re-entry vehicles, as evi- denced by the Mars Science Laboratory and the Orion Multipurpose Crew Vehicle. A FADS consists of flush-mounted pressure transducers located at various locations on the fore-body of a flight vehicle or the heat shield of a re-entry capsule. A pressure model converts the pressure readings into useful air data quantities. Two algorithms for converting pressure readings to air data have become predominant- the iterative Least Squares State Estimator (LSSE) and the Triples Algorithm. What follows herein is a new algorithm that takes advantage of the best features of both the Triples Algorithm and the LSSE. This approach employs the potential flow model and strategic differencing of the Triples Algorithm to obtain the defective flight angles; however, the requirements on port placement are far less restrictive, allowing for configurations that are considered optimal for a FADS.

  20. Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics.

    PubMed

    Baumgartner, Jill; Carter, Ellison; Schauer, James J; Ezzati, Majid; Daskalopoulou, Stella S; Valois, Marie-France; Shan, Ming; Yang, Xudong

    2018-02-09

    We evaluated the exposure-response associations between personal exposure to air pollution from biomass stoves and multiple vascular and haemodynamic parameters in rural Chinese women. We analysed the baseline information from a longitudinal study in southwestern China. Women's brachial and central blood pressure and pulse pressure, carotid-femoral pulse wave velocity and augmentation index, and their 48-hour personal exposures to fine particulate matter (PM 2.5 ) and black carbon were measured in summer and winter. We evaluated the associations between exposure to air pollution and haemodynamic parameters using mixed-effects regression models adjusted for known cardiovascular risk factors. Women's (n=205, ages 27-86 years) exposures to PM 2.5 and black carbon ranged from 14 µg/m 3 to 1405 µg/m 3 and 0.1-121.8 µg/m 3 , respectively. Among women aged ≥50 years, increased PM 2.5 exposure was associated with higher systolic (brachial: 3.5 mm Hg (P=0.05); central: 4.4 mm Hg (P=0.005)) and diastolic blood pressure (central: 1.3 mm Hg (P=0.10)), higher pulse pressure (peripheral: 2.5 mm Hg (P=0.05); central: 2.9 mm Hg (P=0.008)) and lower peripheral-central pulse pressure amplification (-0.007 (P=0.04)). Among younger women, the associations were inconsistent in the direction of effect and not statistically significant. Increased PM 2.5 exposure was associated with no difference in pulse wave velocity and modestly higher augmentation index though the CI included zero (1.1%; 95% CI -0.2% to 2.4%). Similar associations were found for black carbon exposure. Exposure to household air pollution was associated with higher blood pressure and central haemodynamics in older Chinese women, with no associations observed with pulse wave velocity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. This is a photograph from the left side of the aircraft as NASA's DC-8 does an AirSAR 2004 research "line" over Honduras

    NASA Image and Video Library

    2004-03-03

    This is a photograph from the left side of the aircraft as NASA's DC-8 does an AirSAR 2004 research "line" over Honduras. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  2. The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Liu, H. Q.; Jie, Y. X.; Wei, X. C.; Hu, L. Q.

    2018-01-01

    A heterodyne interferometer operating at the frequency f = 890 GHz has been designed for measuring the electron density of atmospheric pressure air plasmas, it's density range is from 1015 to 3×1019 m-3 and the pressure range is from 1 Pa to 20 kPa. The system is configured as a Mach\

  3. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  4. Blood pressure control with selective vagal nerve stimulation and minimal side effects

    NASA Astrophysics Data System (ADS)

    Plachta, Dennis T. T.; Gierthmuehlen, Mortimer; Cota, Oscar; Espinosa, Nayeli; Boeser, Fabian; Herrera, Taliana C.; Stieglitz, Thomas; Zentner, Joseph

    2014-06-01

    Objective. Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. Approach. We present a novel method for selective VN stimulation to reduce BP without the aforementioned side effects. Baroreceptor compound activity of rat VN (n = 5) was localized using a multichannel cuff electrode, true tripolar recording and a coherent averaging algorithm triggered by BP or electrocardiogram. Main results. Tripolar stimulation over electrodes near the barofibers reduced the BP without triggering significant bradycardia and bradypnea. The BP drop was adjusted to 60% of the initial value by varying the stimulation pulse width and duration, and lasted up to five times longer than the stimulation. Significance. The presented method is robust to impedance changes, independent of the electrode's relative position, does not compromise the nerve and can run on implantable, ultra-low power signal processors.

  5. Xanthan production on polyurethane foam and its enhancement by air pressure pulsation.

    PubMed

    Zhang, Zhi-guo; Chen, Hong-zhang

    2010-12-01

    In this study, we evaluated the feasibility of solid-state fermentation (SSF) on polyurethane foam (PUF) for xanthan production. The effects of air pressure pulsation (APP) on biomass accumulation and final xanthan concentration were also studied. Under suitable conditions (15% inoculum, 0.5-cm (side length) PUF cubes, 15 mL medium per gram cubes and 4.5 cm bed depth), the broth was dispersed on the PUF as a film. When the initial glucose concentration in the media was low (20 and 40 g L⁻¹), there was no significant difference between the final xanthan concentration in static SSF and submerged fermentation (SMF). When high initial glucose concentrations (60 and 80 g L⁻¹) were used, the final gum concentrations in SSF were much higher than those in SMF. When the APP technique was applied in xanthan production with a medium containing a high glucose concentration (80 g L⁻¹), the oxygen consumption rate of Xanthomonas campestris was significantly enhanced at the later stages of fermentation, and both the biomass and xanthan concentration were improved. The results indicated that SSF on PUF is suitable for xanthan preparation, especially when the initial glucose concentration ranged from 60 to 80 g L⁻¹. Those results also demonstrated that APP technology can be used to enhance xanthan yields.

  6. Liver Stiffness Reflecting Right-Sided Filling Pressure Can Predict Adverse Outcomes in Patients With Heart Failure.

    PubMed

    Taniguchi, Tatsunori; Ohtani, Tomohito; Kioka, Hidetaka; Tsukamoto, Yasumasa; Onishi, Toshinari; Nakamoto, Kei; Katsimichas, Themistoklis; Sengoku, Kaoruko; Chimura, Misato; Hashimoto, Haruko; Yamaguchi, Osamu; Sawa, Yoshiki; Sakata, Yasushi

    2018-01-12

    This study sought to investigate whether elevated liver stiffness (LS) values at discharge reflect residual liver congestion and are associated with worse outcomes in patients with heart failure (HF). Transient elastography is a newly developed, noninvasive method for assessing LS, which can be highly reflective of right-sided filling pressure associated with passive liver congestion in patients with HF. LS values were determined for 171 hospitalized patients with HF before discharge using a Fibroscan device. The median LS value was 5.6 kPa (interquartile range: 4.4 to 8.1; range 2.4 to 39.7) and that of right-sided filling pressure, which was estimated based on LS, was 5.7 mm Hg (interquartile range: 4.1 to 8.2 mm Hg; range 0.1 to 18.9 mm Hg). The patients in the highest LS tertile (>6.9 kPa, corresponding to an estimated right-sided filling pressure of >7.1 mm Hg) had advanced New York Heart Association functional class, high prevalence of jugular venous distention and moderate/severe tricuspid regurgitation, large inferior vena cava (IVC) diameter, low hemoglobin and hematocrit levels, high serum direct bilirubin level, and a similar left ventricular ejection fraction compared with the lower tertiles. During follow-up periods (median: 203 days), 8 (5%) deaths and 33 (19%) hospitalizations for HF were observed. The patients in the highest LS group had a significantly higher mortality rate and HF rehospitalization (hazard ratio: 3.57; 95% confidence interval: 1.93 to 6.83; p < 0.001) compared with the other tertiles. Although LS correlated with IVC diameter and serum direct bilirubin and brain natriuretic peptide levels, LS values were predictive of worse outcomes, even after adjustment for these indices. These data suggest that LS is a useful index for assessing systemic volume status and predicting the severity of HF, and that the presence of liver congestion at discharge is associated with worse outcomes in patients with HF. Copyright © 2018 American

  7. Air-broadened Lorentz halfwidths and pressure-induced line shifts in the nu(4) band of C-13H4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1988-01-01

    Air-broadened halfwidths and pressure-induced line shifts in the nu(4) fundamental of C-13H4 were determined from spectra recorded at room temperature and at 0.01/cm resolution using a Fourier transform spectrometer. Halfwidths and pressure shifts were determined for over 180 transitions belonging to J-double prime values of less than or = to 16. Comparisons of air-broadened halfwidths and pressure-induced line shifts made for identical transitions in the nu(4) bands of C-12H4 and C-13H4 have shown that C-13H4 air-broadened halfwidths are about 5 percent smaller than the corresponding C-12H4 halfwidths, and the pressure shifts for C-13H4 lines are about 5-15 percent larger than those for C-12H4.

  8. Pressure at the ground in a large tornado

    NASA Astrophysics Data System (ADS)

    Winn, W. P.; Hunyady, S. J.; Aulich, G. D.

    1999-09-01

    A number of instruments were placed on the ground across the path of a large tornado that passed west of the town of Allison, Texas, on June 8, 1995. The center of the tornado came within 660 m of the closest instrument, which recorded a pressure drop of 55 mbar and a subsequent pressure rise of 60 mbar. During the lowest recorded pressures (near r = 660 m), there were large and rapid pressure fluctuations; the largest fluctuation was a 10-mbar spike lasting 2 s. A second instrument on the opposite side of the tornado recorded a pressure drop of 26 mbar. From the pressure variations with time P(t) at the two instruments, the variation of pressure with distance p(r) from the center of the tornado has been deduced for r>660 m. As r decreases, the measured pressure function p(r) drops more abruptly than would be expected from conservation of angular momentum of air spiraling inward near the ground level.

  9. Effects of setting under air pressure on the number of surface pores and irregularities of dental investment materials.

    PubMed

    Tourah, Anita; Moshaverinia, Alireza; Chee, Winston W

    2014-02-01

    Surface roughness and irregularities are important properties of dental investment materials that can affect the fit of a restoration. Whether setting under air pressure affects the surface irregularities of gypsum-bonded and phosphate-bonded investment materials is unknown. The purpose of this study was to investigate the effect of air pressure on the pore size and surface irregularities of investment materials immediately after pouring. Three dental investments, 1 gypsum-bonded investment and 2 phosphate-bonded investments, were investigated. They were vacuum mixed according to the manufacturers' recommendations, then poured into a ringless casting system. The prepared specimens were divided into 2 groups: 1 bench setting and the other placed in a pressure pot at 172 kPa. After 45 minutes of setting, the rings were removed and the investments were cut at a right angle to the long axis with a diamond disk. The surfaces of the investments were steam cleaned, dried with an air spray, and observed with a stereomicroscope. A profilometer was used to evaluate the surface roughness (μm) of the castings. The number of surface pores was counted for 8 specimens from each group and the means and standard deviations were reported. Two-way ANOVA was used to compare the data. Specimens that set under atmospheric air pressure had a significantly higher number of pores than specimens that set under increased pressure (P<.05). No statistically significant differences for surface roughness were found (P=.078). Also, no significant difference was observed among the 3 different types of materials tested (P>.05). Specimens set under positive pressure in a pressure chamber presented fewer surface bubbles than specimens set under atmospheric pressure. Positive pressure is effective and, therefore, is recommended for both gypsum-bonded and phosphate-bonded investment materials. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All

  10. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  11. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  12. The Impact of a Science Demonstration on Children's Understanding of Air Pressure.

    ERIC Educational Resources Information Center

    Shepardson, Damiel P.; And Others

    1994-01-01

    Examines 52 fifth graders' written and oral responses to determine the impact of a scientific demonstration on their understanding of air pressure. For one-third of the children, the demonstration reinforced previous understanding. Recommendations for using demonstrations to promote children's scientific understanding are presented. (ZWH)

  13. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Reduction of Flap Side Edge Noise - the Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, THomas F.

    2005-01-01

    A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.

  15. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  16. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ying; Bi, Zhenhua; Wang, Xueyang

    2016-08-15

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniformmore » surface air discharge.« less

  17. Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators among Cardiovascular and Cerebrovascular Patients

    PubMed Central

    Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

    2014-01-01

    The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27–28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients’ heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury. PMID:24583830

  18. Effects of moderate strength cold air exposure on blood pressure and biochemical indicators among cardiovascular and cerebrovascular patients.

    PubMed

    Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

    2014-02-27

    The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27-28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients' heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury.

  19. Brushless machine having ferromagnetic side plates and side magnets

    DOEpatents

    Hsu, John S

    2012-10-23

    An apparatus is provided having a cylindrical stator and a rotor that is spaced from a stator to define an annular primary air gap that receives AC flux from the stator. The rotor has a plurality of longitudinal pole portions disposed parallel to the axis of rotation and alternating in polarity around a circumference of the rotor. Each longitudinal pole portion includes portions of permanent magnet (PM) material and at least one of the longitudinal pole portions has a first end and an opposing second end and a side magnet is disposed adjacent the first end and a side pole is disposed adjacent the second end.

  20. Stability and Agreement of a Microtransducer and an Air-Filled Balloon Esophageal Catheter in the Monitoring of Esophageal Pressure.

    PubMed

    Augusto, Renan Maloni; Albuquerque, André Luis Pereira; Jaeger, Thomas; de Carvalho, Carlos Roberto Ribeiro; Caruso, Pedro

    2017-02-01

    The use of esophageal catheters with microtransducer promises advantages over traditional catheters with air-filled balloons. However, performance comparisons between these 2 types of catheters are scarce and incomplete. A catheter with a 9.5-cm air-filled balloon at the distal tip and a catheter with a microtransducer mounted within a flexible silicone rubber were tested in vitro and in vivo. In vitro, the response times of both catheters were compared, and the drift of the baseline pressure of the microtransducer catheter was evaluated over a 6-h period. In vivo, 11 healthy volunteers had both catheters inserted, and the drift of the baseline esophageal pressure was measured over a 3-h period. Also, the correlation and agreement of the baseline and changes in the esophageal pressure of both catheters were evaluated. In vitro, the microtransducer catheter had a response time significantly higher (262 × 114 Hz, P < .01) and a good pressure stability, with a mean baseline pressure drift of 1.4 cm H 2 O. In vivo, both catheters presented a small and similar baseline esophageal pressure drift (P = 0.08). For measurements of baseline and changes in esophageal pressure, the correlation and agreement between the catheters were poor, with a large bias between them. The catheter with the microtransducer had a small baseline pressure drift, similar to the air-filled balloon catheter. The low agreement between the catheters does not allow the microtransducer catheter to be used as a surrogate for the traditional air-filled balloon catheter. Copyright © 2017 by Daedalus Enterprises.

  1. Intraoperative assessment of intraocular pressure in vitrectomized air-filled and fluid-filled eyes.

    PubMed

    Moon, Chan Hee; Choi, Kyung Seek; Rhee, Mi Ri; Lee, Sung Jin

    2013-11-01

    To ascertain the difference of intraocular pressure (IOP) measurement between vitrectomized air-filled and fluid-filled eyes. Thirty-one eyes of 31 consecutive patients who underwent conventional vitrectomy and intraocular gas tamponade were assessed. After vitrectomy, IOP of the fluid-filled eyes was measured by Tono-Pen. Thereafter, fluid-air exchange was performed, and IOP of the air-filled eyes was measured again. The IOP within each fluid- and air-filled eye was varied by selecting settings on the vitrectomy system, from 10 to 50 mmHg with 5-mmHg increments. Postoperatively, IOP was assessed by both Tono-Pen and Goldmann applanation tonometry (GAT). Linear and nonlinear regression analyses were conducted between intraoperatively measured Tono-Pen readings and actual IOPs. Bland-Altman plot was used to assess the agreements between postoperatively measured Tono-Pen readings and GAT readings. The discrepancy between Tono-Pen readings and actual IOP in fluid-filled eyes was not significant, except for the profound high pressures over 45 mmHg. However, Tono-Pen readings in air-filled eyes were significantly lower than actual IOPs in all ranges, and Tono-Pen increasingly underestimates IOP at higher levels. Intraoperative Tono-Pen readings were correlated significantly with actual IOP and a quadratic equation evidenced the best fit (R(2) = 0.996). Postoperatively, difference of the measurements between Tono-Pen and GAT was not significant. Tono-Pen and GAT significantly underestimate actual IOP in air-filled eyes. It should be considered that actual IOP would be greater than the measured IOP in gas-filled eyes, even though the IOP is measured as normal. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case...

  3. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure and pressure altimeter...

  4. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure and pressure altimeter...

  5. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure and pressure altimeter...

  6. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air case... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure and pressure altimeter...

  7. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  8. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions

    NASA Technical Reports Server (NTRS)

    Henry, M. W.; Wolf, H.; Siemers, Paul M., III

    1988-01-01

    The SEADS pressure data obtained from the Shuttle flight 61-C are analyzed in conjunction with the preflight database. Based on wind tunnel data, the sensitivity of the Shuttle Orbiter stagnation region pressure distribution to angle of attack and Mach number is demonstrated. Comparisons are made between flight and wind tunnel SEADS orifice pressure distributions at several points throughout the re-entry. It is concluded that modified Newtonian theory provides a good tool for the design of a flush air data system, furnishing data for determining orifice locations and transducer sizing. Ground-based wind tunnel facilities are capable of providing the correction factors necessary for the derivation of accurate air data parameters from pressure data.

  9. Interactions Between Air Pollution and Obesity on Blood Pressure and Hypertension in Chinese Children.

    PubMed

    Dong, Guang-Hui; Wang, Jing; Zeng, Xiao-Wen; Chen, Lihua; Qin, Xiao-Di; Zhou, Yang; Li, Meng; Yang, Mingan; Zhao, Yang; Ren, Wan-Hui; Hu, Qian-Sheng

    2015-09-01

    Little information exists regarding the effect of interaction of obesity and long-term air pollution exposure on children's blood pressure and hypertension in areas with high levels of air pollution. The aim of this study is to assess effect modification by obesity on the association between exposure and blood pressure in Chinese children. We studied 9,354 Chinese children, ages 5-17 years old, from 24 elementary schools and 24 middle schools in the Seven Northeastern Cities during 2012-2013. Four-year average concentrations of particles with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide, nitrogen dioxides, and ozone (O3) were measured at the monitoring stations in the 24 districts. We used generalized additive models and two-level logistic regression models to examine the health effects. Consistent interactions were found between exposure and obesity on blood pressure and hypertension. The association between exposure and hypertension was consistently larger for overweight/obese children than for children with normal-weight, with odds ratios for hypertension ranging from 1.16 per 46.3μg/m for O3 (95% confidence interval [CI] = 1.12, 1.20) to 2.91 per 30.6μg/m for PM10 (95% CI = 2.32, 3.64), and estimated increases in mean systolic and diastolic blood pressure ranging from 0.57 mmHg (95% CI = 0.36, 0.78) and 0.63 mmHg (95% CI = 0.46, 0.81) per 46.3 μg/m for O3 to 4.04 mmHg (95% CI = 3.00, 5.09) and 2.02 mmHg (95% CI = 1.14, 2.89) per 23.4 μg/m for sulfur dioxide. Obesity amplifies the association of long-term air pollution exposure with blood pressure and hypertension in Chinese children.

  10. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  11. Validation of a dew-point generator for pressures up to 6 MPa using nitrogen and air

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Mutter, D.; Peruzzi, A.

    2012-08-01

    A new primary humidity standard was developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated with other carrier gases such as natural gas at pressures up to 6 MPa and SF6 at pressures up to 1 MPa. The temperature range of the standard is from -80 °C to +20 °C. In this paper, we report the validation of the new primary dew-point generator in the temperature range -41 °C to +5 °C and the pressure range 0.1 MPa to 6 MPa using nitrogen and air. For the validation the flow through the dew-point generator was varied up to 10 l min-1 (at 23 °C and 1013 hPa) and the dew point of the gas entering the generator was varied up to 15 °C above the dew point exiting the generator. The validation results showed that the new generator, over the tested temperature and pressure range, can be used with a standard uncertainty of 0.02 °C frost/dew point. The measurements used for the validation at -41 °C and -20 °C with nitrogen and at +5 °C with air were also used to calculate the enhancement factor at pressures up to 6 MPa. For +5 °C the differences between the measured and literature values were compatible with the respective uncertainties. For -41 °C and -20 °C they were compatible only up to 3 MPa. At 6 MPa a discrepancy was observed.

  12. Gradient porous electrode architectures for rechargeable metal-air batteries

    DOEpatents

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  13. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...

  14. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... the facepiece shall not fall below atmospheric at inhalation airflows less than 115 liters (4 cubic...

  15. Selective laser melting in heat exchanger development - experimental investigation of heat transfer and pressure drop characteristics of wavy fins

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2018-04-01

    To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.

  16. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    PubMed

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  17. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Estimating past leaf-to-air vapour pressure deficit from terrestrial plant 13C

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Barringer, James; Hunt, John E.; McGlone, Matt S.

    1999-08-01

    13C was determined in lignin extracted from present-day cladodes of Phyllocladus alpinus (a small coniferous tree) from seven well-lit sites across New Zealand. The 13C values ranged from -30.9 to -23.6 and were compared with monthly means of temperature, precipitation, relative humidity and vapour pressure deficit from the nearest recording stations. Of these parameters, the leaf-to-air vapour pressure deficit of the first month of cladode growth and expansion proved to be the most significantly correlated with lignin 13C, over a range of 0.3 to 0.8 kPa, confirming the importance of atmospheric moisture content on stomatal conductance. The carbon isotopic signature of lignin from fossilised cladodes preserved under the Kawakawa Tephra (22.6 k 14C yr BP) on the North Island is identical to that of the whole tissue, suggesting that for this species at least, fossil material can be used to approximate the lignin 13C. The 13C of species- and organ-specific fossil terrestrial plant material therefore provides an excellent method to quantify past changes in leaf-to-air vapour pressure deficit.

  19. A comparison between the dimensions of positive transtibial residual limb molds prepared by air pressure casting and weight-bearing casting methods.

    PubMed

    Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam

    2016-01-01

    Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.

  20. The Exposure of Children to Deploying Side Air Bags: An Initial Field Assessment

    PubMed Central

    Arbogast, Kristy B.; Kallan, Michael J.

    2007-01-01

    Tremendous effort has been invested in the laboratory to ensure side air bag (SAB) deployments minimize injury metrics in pediatric anthropometric test devices (ATDs). Little is known, however, about the experience of children exposed to this technology in real world crashes. Therefore, the objective of this study was to determine the prevalence of SAB exposure in children and provide estimates of injury risk among those exposed. This study utilized data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to identify a probability sample of 348 child occupants, age 0–15 years, weighted to represent 6,600 children, in vehicles of model year 1998 and newer, equipped with SABs, in side impact crashes from three large U.S. regions between 1/1/05 and 12/31/06. In the study sample, 27 children per 1000 children in crashes were exposed to a deployed side airbag. Over 75% of these children were seated in the rear seat and 83% were exposed to a head curtain SAB. 65% of those exposed were less than 9 years of age. Of those exposed, 10.6% sustained an AIS2+ injury; all injuries were of the AIS 2 level and limited to the head or upper extremity. This paper provides the first population-based estimates of the exposure of children to SABs. Initial experience suggests that the risk of injury is fairly low with only one in ten sustaining injury – none of which were serious or life threatening. These findings offer assurance that efforts by regulators and the automotive industry to minimize negative consequences from SABs to vulnerable occupants appear to be effective and cause no change in the current recommendation of safe seating for children next to SABs. PMID:18184496

  1. QA /QC of European NOx measurements by round robin and side by side experiment at the Meteorological Observatory Hohenpeissenberg in the framework of ACTRIS

    NASA Astrophysics Data System (ADS)

    Gilge, Stefan; Plass-Dülmer, Christian; Weyrauch, Dietmar; Rohrer, Franz

    2013-04-01

    The European ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) project, Work Package 4, aims at harmonization and improvement of the measurement of volatile organic carbon and nitrogen oxides. Central tools to assess and compare the performance of European NOx monitoring stations and labs within ACTRIS are a round robin experiment (2012) and side-by-side intercomparisons (Nov 2012). While the first checked the used laboratories' scales versus a common scale, the latter investigated weather same samples are identically and artefact-free analyzed by collocated instruments. The ACTRIS-NOx-side-by-side intercomparison was realised by instruments sampling from a common manifold which was fed by zero gas, synthetic air mixtures, ambient air, and spiked ambient air. Thus, the side-by-side experiments enabled a full characterization of the detection limit, the linear range, the span, and of potential artefacts due to interfering species for each of the contributing instruments. Generally, CLD type NOx instruments were used in the comparisons supplemented by four new optical techniques, comprising LIF and cavity enhanced techniques. In the round robin exercise, some 20 monitoring sites participated, and 14 instruments were running side-by-side in the one week Nov comparison. The results of both experiments will be presented and discussed with respect to the data quality objectives of GAW and ACTRIS.

  2. Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs.

    PubMed

    Hayashi, Shigeki; Yasuki, Tsuyoshi; Kitagawa, Yuichi

    2008-11-01

    When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models. Finite element simulations were conducted assuming a case where a passenger vehicle collides against a pole at 29km/h. Occupant kinematics, force-deformation responses and pressure levels were compared between cases with and without side airbag deployment. The results indicated that strain to the ribs and pressure to the organs was smaller with side airbag deployment. The side airbag widened the contact area at the torso, helping to distribute the force to the shoulder, arm and chest. Such distributed force helped generate relatively smaller deformation in the ribs. Furthermore, the side airbag deployment helped restrict the spine displacement. The smaller displacement contributed to lowering the magnitude of contact force between the torso and the door. The study also examined the correlations between the pressure levels in the internal organs, rib deflection, and V*C of chest. The study found that the V*C(t) peak appeared to be synchronized with the organ pressure peak, suggesting that the pressure level of the internal organs could be one possible

  3. Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration.

    PubMed

    Martin, Jeffrey S; Borges, Alexandra R; Christy, John B; Beck, Darren T

    2015-10-01

    Methods employed for pulse wave analysis (PWA) and peripheral blood pressure (PBP) calibration vary. The purpose of this study was to evaluate the agreement of SphygmoCor PWA parameters derived from radial artery tonometry when considering (1) timing (before vs. after tonometry) and side selection (ipsilateral vs. contralateral limb) for PBP calibration and (2) side selection for tonometry (left vs. right arm). In 34 subjects (aged 21.9 ± 2.3 years), bilateral radial artery tonometry was performed simultaneously on three instances. PBP assessment via oscillometric sphygmomanometry in the left arm only and both arms simultaneously occurred following the first and second instances of tonometry, respectively. Significant within arm differences in PWA parameters derived before and after PBP measurement were observed in the right arm only (for example, aortic systolic blood pressure, Δ=0.38 ± 0.64 mm Hg). Simultaneously captured bilateral PWA variables demonstrated significant between arm differences in 88% (14/16) and 56% (9/16) of outcome variables when calibrated to within arm and equivalent PBP, respectively. Moreover, the right arm consistently demonstrated lower values for clinical PWA variables (for example, augmentation index, bias=-2.79%). However, 26% (n=9) of participants presented with clinically significant differences (>10 mm Hg) in bilateral PBP and their exclusion from analysis abolished most between arm differences observed. SphygmoCor PWA in the right radial artery results in greater variability independent of the timing of PBP measurement and magnitude of calibration pressures in young subjects. Moreover, bilateral PBP measurement is imperative to identify subjects in whom a significant difference in bilateral PWA outcomes may exist.

  4. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  5. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictatedmore » by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.« less

  6. Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin

    2017-09-01

    During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.

  7. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  8. Double air-fuel ratio sensor system having double-skip function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuno, T.

    1988-01-26

    A method for controlling the air-fuel ratio in an internal combustion engine is described having a catalyst converter for removing pollutants in the exhaust gas thereof, and upstream-side and downstream-side air-fuel ratio sensors disposed upstream and downstream, respectively, of the catalyst converter for detecting a concentration of a specific component in an exhaust gas, comprising the steps of: comparing the output of the upstream-side air-fuel ratio sensor with a first predetermined value; gradually changing a first air-fuel ratio correction amount in accordance with a result of the comparison of the output of the upstream-side air-fuel ratio sensor with the predeterminedmore » value; shifting the first air-fuel ratio correction amount by a first skip amount during a predetermined time period after the result of the comparison of the upstream-side air-fuel ratio sensor is changed; shifting the first air-fuel ratio correction amount by a second skip amount smaller than the first skip amount after the predetermined time period has passed; comparing the output of the downstream-side air-fuel ratio with a second predetermined value, calculating a second air-fuel ratio correction amount in accordance with the comparison result of the output of the downstream-side air-fuel ratio sensor with the second predetermined value; and adjusting the actual air-fuel ratio in accordance with the first and second air-fuel ratio correction amounts; wherein the gradually-changing step comprises the steps of: gradually decreasing the first air-fuel ratio correction amount when the output of the upstream-side air-fuel sensor is on the rich side with respect to the first predetermined value; and gradually increasing the first air-fuel ratio correction amount when the output of the upstream-side air-fuel sensor is on the lean side with respect to the first predetermined value.« less

  9. Evidence of a Structural Defect in Ice VII and the Side Chain Dependent Response of Small Model Peptides to Increased Pressure

    PubMed Central

    Scott, J. Nathan; Vanderkooi, Jane M.

    2014-01-01

    The effect of high pressure on the OH stretch of dilute HOD in D2O was examined using high pressure FTIR. It was found that at pressures directly above the ice VI to ice VII transition, ice VII displays a splitting in the OH absorption indicative of differing hydrogen bonding environments. This result is contrary to published structures of ice VII in which each OH oscillator should experience an identical electronic environment. The anomalous band was found to decrease in absorbance and finally disappear at ~43.0 kbar. In addition, the pressure response of the amide I′ and II′ bands of three small model peptides was examined. Analysis of these bands’ response to increased pressure indicates significant side chain dependence of their structural rearrangement, which may play a role in the composition of full length proteins of barophilic organisms. PMID:21740637

  10. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  11. Pulmonary artery pressure increases during commercial air travel in healthy passengers.

    PubMed

    Smith, Thomas G; Talbot, Nick P; Chang, Rae W; Wilkinson, Elizabeth; Nickol, Annabel H; Newman, David G; Robbins, Peter A; Dorrington, Keith L

    2012-07-01

    It is not known whether the mild hypoxia experienced by passengers during commercial air travel triggers hypoxic pulmonary vasoconstriction and increases pulmonary artery pressure in flight. Insidious pulmonary hypertensive responses could endanger susceptible passengers who have cardiopulmonary disease or increased hypoxic pulmonary vascular sensitivity. Understanding these effects may improve pre-flight assessment of fitness-to-fly and reduce in-flight morbidity and mortality. Eight healthy volunteers were studied during a scheduled commercial airline flight from London, UK, to Denver, CO. The aircraft was a Boeing 777 and the duration of the flight was 9 h. Systolic pulmonary artery pressure (sPAP) was assessed by portable Doppler echocardiography during the flight and over the following week in Denver, where the altitude (5280 ft/1610 m) simulates a commercial airliner environment. Cruising cabin altitude ranged between 5840 and 7170 ft (1780 to 2185 m), and mean arterial oxygen saturation was 95 +/- 0.6% during the flight. Mean sPAP increased significantly in flight by 6 +/- 1 mmHg to 33 +/- 1 mmHg, an increase of approximately 20%. After landing in Denver, sPAP was still 3 +/- 1 mmHg higher than baseline and remained elevated at 30 +/- 1 mmHg for a further 12 h. Pulmonary artery pressure increases during commercial air travel in healthy passengers, raising the possibility that hypoxic pulmonary hypertension could develop in susceptible individuals. A hypoxia altitude simulation test with simultaneous echocardiography ('HAST-echo') may be beneficial in assessing fitness to fly in vulnerable patients.

  12. Laser-based measurements of OH in high pressure CH4/air flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1991-01-01

    Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.

  13. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  14. Pressure-Application Device for Testing Pressure Sensors

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  15. 18. VIEW OF EAST SIDE INTERIOR OF MST AT STATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF EAST SIDE INTERIOR OF MST AT STATIONS 3 AND 12, FACING WEST. COMPRESSED AIR TANK AND GENERATOR AT STATION 3. CURTAIN FOR NORTH ENVIRONMENTAL DOOR VISIBLE ON LEFT SIDE OF PHOTOGRAPH; RAIL VISIBLE AT BOTTOM OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Development of 72kV High Pressure Air-insulated GIS with Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Aoyagi, Kenji; Saitoh, Hitoshi; Oomori, Takashi

    SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. So investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6 gas-free GIS has been commercialized for the 24kV class. Air or N2 gas is used as insulation gas for this GIS. On the other hand, SF6 gas-free GIS has not been commercialized for 72kV class GIS. Dielectric strengths of air and N2 gas are approximately 1/3 that of SF6 gas. So to enhance insulation performance of air and N2, we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72kV SF6 gas-free GIS. This paper deals with key technologies for SF6 gas-free GIS such as the hybrid insulation structure, bellows for the high pressure vacuum circuit breaker, a newly designed disconnector and spacer and prevention of particle levitation. Test results of 72kV high pressure air-insulated GIS with the vacuum circuit breaker are described.

  17. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  18. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.

  19. Mass spectrometer characterization of halogen gases in air at atmospheric pressure.

    PubMed

    Ivey, Michelle M; Foster, Krishna L

    2005-03-01

    We have developed a new interface for a commercial ion trap mass spectrometer equipped with APCI capable of real-time measurements of gaseous compounds with limits of detection on the order of pptv. The new interface has been tested using the detection of Br2 and Cl2 over synthetic seawater ice at atmospheric pressure as a model system. A mechanical pump is used to draw gaseous mixtures through a glass manifold into the corona discharge area, where the molecules are ionized. Analysis of bromine and chlorine in dry air show that ion intensity is affected by the pumping rate and the position of the glass manifold. The mass spectrometer signals for Br2 are linear in the 0.1-10.6 ppbv range, and the estimated 3sigma detection limit is 20 pptv. The MS signals for Cl2 are linear in the 0.2-25 ppbv range, and the estimated 3sigma detection limit is 1 ppbv. This new interface advances the field of analytical chemistry by introducing a practical modification to a commercially available ion trap mass spectrometer that expands the available methods for performing highly specific and sensitive measurements of gases in air at atmospheric pressure.

  20. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  1. The effect of air-blowing duration on all-in-one systems.

    PubMed

    Fu, Jiale; Pan, Feng; Kakuda, Shinichi; Sharanbir, K Sidhu; Ikeda, Takatsumi; Nakaoki, Yasuko; Selimovic, Denis; Sano, Hidehiko

    2012-01-01

    The purpose of this study was to evaluate the effect of air-blowing duration on the bonding performance of all-in-one systems using the same pressure (0.25 MPa). Three all-in-one systems were: EB (Easy Bond, 3M ESPE, USA), BB (BeautiBond, Shofu Inc., Japan) and GBp (G-Bond plus, GC Corporation, Japan). After adhesive application, the 3 systems were air-blown thereafter using 7 different durations (5 s, 10 s, 15 s, 20 s, 25 s, 30 s and 35 s). Bond strengths to dentin were determined using µTBS test after 24 h water storage. In addition, evaluation of both the resin-dentin interface and the fractured surface on the dentin side were performed by SEM. The maximum µTBS for each system, BB (40.4±14.8 MPa), EB (79.8±16.5 MPa), and GBp (47.3±17.6 MPa), were recorded with 15 s, 15 s and 25 s air-blowing duration respectively. Under the same air-pressure, the air-blowing duration could affect evaporation and the thickness of the adhesive layer, which contributed to the different bond strengths.

  2. Liquid- and Air-Filled Catheters without Balloon as an Alternative to the Air-Filled Balloon Catheter for Measurement of Esophageal Pressure

    PubMed Central

    Carvalho, Alysson R.; Zin, Walter Araujo; Carvalho, Nadja C.; Huhle, Robert; Giannella-Neto, Antonio; Koch, Thea; de Abreu, Marcelo Gama

    2014-01-01

    Background Measuring esophageal pressure (Pes) using an air-filled balloon catheter (BC) is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC), during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32–42 kg) were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. Main Results Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal) than in AFC and LFC (<3%). Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. Conclusions In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use. PMID:25247308

  3. Liquid- and air-filled catheters without balloon as an alternative to the air-filled balloon catheter for measurement of esophageal pressure.

    PubMed

    Beda, Alessandro; Güldner, Andreas; Carvalho, Alysson R; Zin, Walter Araujo; Carvalho, Nadja C; Huhle, Robert; Giannella-Neto, Antonio; Koch, Thea; de Abreu, Marcelo Gama

    2014-01-01

    Measuring esophageal pressure (Pes) using an air-filled balloon catheter (BC) is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC), during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32-42 kg) were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal) than in AFC and LFC (<3%). Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use.

  4. Investigation of X24C-2 10-Stage Axial-Flow Compressor. 2; Effect of Inlet-Air Pressure and Temperature of Performance

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.

    1947-01-01

    Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.

  5. Air Bubble-Induced High Intraocular Pressure After Descemet Membrane Endothelial Keratoplasty.

    PubMed

    Röck, Daniel; Bartz-Schmidt, Karl Ulrich; Röck, Tobias; Yoeruek, Efdal

    2016-08-01

    To investigate the incidence and risk factors of pupillary block caused by an air bubble in the anterior chamber in the early postoperative period after Descemet membrane endothelial keratoplasty (DMEK). A retrospective review was conducted in 306 eyes that underwent DMEK from September 2009 through October 2014 at the Tübingen Eye Hospital. Intraocular pressure (IOP) elevation was defined as a spike above 30 mm Hg. In the first 190 eyes, an intraoperative peripheral iridectomy was performed at the 12-o'clock position and in the other 116 eyes at the 6-o'clock position. If possible, reasons for IOP elevation were identified. For all eyes, preoperative and postoperative slit-lamp examinations and IOP measurements were performed. Overall, 30 eyes (9.8%) showed a postoperative IOP elevation within the first postoperative day. The incidence of IOP elevation was 13.9% (5/36) in the triple DMEK group, and 2 of 5 phakic eyes (40%) developed an air bubble-induced IOP elevation. All eyes presented with a de novo IOP elevation, associated in 25 patients with pupillary block from air anterior to iris and in 5 patients with angle closure from air migration posterior to the iris. All of them had an iridectomy at the 12-o'clock position. A postoperative pupillary block with IOP elevation caused by the residual intraoperative air bubble may be an important complication that could be avoided by close and frequent observations, especially in the first postoperative hours and by an inferior peripheral iridectomy and an air bubble with a volume of ≤80% of the anterior chamber.

  6. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  7. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  8. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solutionmore » with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.« less

  9. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. 7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL SHOWING BLAST SHIELDED WINDOWS, WEST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    NASA Astrophysics Data System (ADS)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  12. Closeup side view of Space Shuttle Main Engine (SSME) 2059 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up side view of Space Shuttle Main Engine (SSME) 2059 mounted in a SSME Engine Handler near the Drying Area in the High Bay section of the SSME Processing Facility. The prominent features of the SSME in this view are the hot-gas expansion nozzle extending from the approximate image center toward the image right. The main-engine components extend from the approximate image center toward image right until it meets up with the mount for the SSME Engine Handler. The engine is rotated to a position where the major components in the view are the Low-Pressure Fuel Turbopump Discharge Duct with reflective foil insulation on the upper side of the engine, the Low-Pressure Oxidizer Turbopump and its Discharge Duct on the right side of the engine assembly extending itself down and wrapping under the bottom side of the assembly to the High-Pressure Oxidizer Turbopump pump. The High-Pressure Oxidizer Turbopump Discharge Duct exists the turbopump and extends up to the top side of the assembly where it enters the main oxidizer valve. The sphere on the lower side of the engine assembly is an accumulator that is part of the SSMEs POGO suppression system. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    NASA Astrophysics Data System (ADS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  14. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  15. 5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  16. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  17. NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA

  18. Determining osmotic pressure of drug solutions by air humidity in equilibrium method.

    PubMed

    Zhan, Xiancheng; Li, Hui; Yu, Lan; Wei, Guocui; Li, Chengrong

    2014-06-01

    To establish a new osmotic pressure measuring method with a wide measuring range. The osmotic pressure of drug solutions is determined by measuring the relative air humidity in equilibrium with the solution. The freezing point osmometry is used as a control. The data obtained by the proposed method are comparable to those by the control method, and the measuring range of the proposed method is significantly wider than that of the control method. The proposed method is performed in an isothermal and equilibrium state, so it overcomes the defects of the freezing point and dew point osmometries which result from the heterothermal process in the measurement, and therefore is not limited to diluted solutions.

  19. 1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST SIDE AND SOUTHWEST FRONT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  20. Balanced pressure gerotor fuel pump

    DOEpatents

    Raney, Michael Raymond; Maier, Eugen

    2004-08-03

    A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.

  1. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  2. Effects of axisymmetric and normal air jet plumes and solid plume on cylindrical afterbody pressure distributions at Mach numbers from 1.65 to 2.50

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1982-01-01

    A wind tunnel investigation of the interference effects of axisymmetric nozzle air plumes, a solid plume, and normal air jet plumes on the afterbody pressure distributions and base pressures of a cylindrical afterbody model was conducted at Mach numbers from 1.65 to 2.50. The axisymmetric nozzles, which varied in exit lip Mach number from 1.7 to 2.7, and the normal air jet nozzle were tested at jet pressure ratios from 1 (jet off) to 615. The tests were conducted at an angle of attack of 0 deg and a Reynolds number per meter of 6.56 million. The results of the investigation show that the solid plume induces greater interference effects than those induced by the axisymmetric nozzle plumes at the selected underexpanded design conditions. A thrust coefficient parameter based on nozzle lip conditons was found to correlate the afterbody disturbance distance and the base pressure between the different axisymmetric nozzles. The normal air jet plume and the solid plume induce afterbody disturbance distances similar to those induced by the axisymmetric air plumes when base pressure is held constant.

  3. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  4. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  5. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  6. Validation of Test Methods for Air Leak Rate Verification of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.; Mather, Janice L.

    2017-01-01

    As deep space exploration continues to be the goal of NASAs human spaceflight program, verification of the performance of spaceflight hardware becomes increasingly critical. Suitable test methods for verifying the leak rate of sealing systems are identified in program qualification testing requirements. One acceptable method for verifying the air leak rate of gas pressure seals is the tracer gas leak detector method. In this method, a tracer gas (commonly helium) leaks past the test seal and is transported to the leak detector where the leak rate is quantified. To predict the air leak rate, a conversion factor of helium-to-air is applied depending on the magnitude of the helium flow rate. The conversion factor is based on either the molecular mass ratio or the ratio of the dynamic viscosities. The current work was aimed at validating this approach for permeation-level leak rates using a series of tests with a silicone elastomer O-ring. An established pressure decay method with constant differential pressure was used to evaluate both the air and helium leak rates of the O-ring under similar temperature and pressure conditions. The results from the pressure decay tests showed, for the elastomer O-ring, that neither the molecular flow nor the viscous flow helium-to-air conversion factors were applicable. Leak rate tests were also performed using nitrogen and argon as the test gas. Molecular mass and viscosity based helium-to-test gas conversion factors were applied, but did not correctly predict the measured leak rates of either gas. To further this study, the effect of pressure boundary conditions was investigated. Often, pressure decay leak rate tests are performed at a differential pressure of 101.3 kPa with atmospheric pressure on the downstream side of the test seal. In space applications, the differential pressure is similar, but with vacuum as the downstream pressure. The same O-ring was tested at four unique differential pressures ranging from 34.5 to 137.9 k

  7. 132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB (BLDG. 751), QUALITY CONTROL BOARD ON LEFT. SOUTH SIDE OF TRANSFORMER ROOM (212) ON RIGHT SIDE OF PHOTOGRAPH, THROUGH OPEN DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. 2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 8767, SOUTH FRONT AND EAST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  9. 6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDING 8768, NORTHWEST SIDE AND SOUTHWEST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. 8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. BUILDING 8769, WEST FRONT AND SOUTH SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  11. The influence of a low air pressure environment on human metabolic rate during short-term (< 2 h) exposures.

    PubMed

    Cui, W; Wang, H; Wu, T; Ouyang, Q; Hu, S; Zhu, Y

    2017-03-01

    Passengers in aircraft cabins are exposed to low-pressure environments. One of the missing links in the research on thermal comfort under cabin conditions is the influence of low air pressure on the metabolic rate. In this research, we simulated the cabin pressure regime in a chamber in which the pressure level could be controlled. Three pressure levels (101/85/70 kPa) were tested to investigate how metabolic rate changed at different pressure levels. The results show that as pressure decreased, the respiratory flow rate (RFR) at standard condition (STPD: 0°C, 101 kPa) significantly decreased. Yet the oxygen (O 2 ) consumption and carbon dioxide (CO 2 ) production significantly increased, as reflected in the larger concentration difference between inhaled and exhaled air. A significant increase in the respiratory quotient (RQ) was also observed. For metabolic rate, no significant increase (P > 0.05) was detected when pressure decreased from 101 kPa to 85 kPa; however, the increase associated with a pressure decrease from 85 kPa to 70kPa was significant (P < 0.05). Empirical equations describing the above parameters are provided, which can be helpful for thermal comfort assessment in short-haul flights. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Hernández-Pérez, Francisco E.; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P. H.

    2017-09-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  13. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  14. Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula.

    PubMed

    Hull, Jeffrey E; Balakin, Boris V; Kellerman, Brad M; Wrolstad, David K

    2013-07-01

    The goal of this research was to compare side-to-side (STS) and end-to-side (ETS) anastomoses in a computer model of the arteriovenous fistula with computational fluid dynamic analysis. A matrix of 17 computer arteriovenous fistula models (SolidWorks, Dassault Systèmes, France) of artery-vein pairs (3-mm-diameter artery + 3-mm-diameter vein and 4-mm-diameter artery +6-mm-diameter vein elliptical anastomoses) in STS, 45° ETS, and 90° ETS configurations with cross-sectional areas (CSAs) of 3.5 to 18.8 mm(2) were evaluated with computational fluid dynamic software (STAR-CCM+; CD-adapco, Melville, NY) in simulations at defined flow rates from 600 to 1200 mL/min and mean arterial pressures of 50 to 140 mm Hg. Models and configurations were evaluated for pressure drop across the anastomosis, arterial inflow, venous outflow, arterial outflow, velocity vector, and wall shear stress (WSS) profile. Pressure drop across the anastomosis was inversely proportional to anastomotic CSA and to venous outflow and was proportional to arterial inflow. Pressure drop was greater in 3 + 3 models than in 4 + 6 STS models; 90° ETS configurations had the lowest pressure drops and were nearly identical, whereas 45° ETS configurations had the highest pressure drops. Venous outflow in the 4 + 6 model in STS configurations, evaluated at 100 mm Hg arterial inflow pressure, was 390, 592, 610, and 886 mL/min in anastomotic CSAs of 3.5, 5.3, 7.1, and 18.8 mm(2), respectively, and was similar in 90° ETS (609 and 908 mL/min) and lower in 45° ETS (534 and 562 mL/min) configurations at CSAs of 5.3 and 18.8 mm(2). The mean increase in venous outflow was 69 mL/min (range, -59 to 134) between 3 + 3 and 4 + 6 models at 100 mm Hg arterial inflow. The most uniform WSS profile occurs in STS anastomoses followed by 45° ETS and then 90° ETS anastomoses. The STS and 90° ETS anastomoses have high venous outflow and a tendency toward reversed arterial outflow. The 45° ETS anastomosis has reduced venous

  15. Filterability of freshly-collected sickle erythrocytes under venous oxygen pressure without exposure to air.

    PubMed

    Shah, Siddharth; Acholonu, Rhonda Graves; Ohene-Frempong, Kwaku; Asakura, Toshio

    2015-12-01

    We previously found that blood samples collected from steady-state patients with sickle cell disease (SCD) without exposure to air contain a new type of reversibly sickled cells (RSCs) with blunt edges at a level of as high as 78%. Since partial oxygenation of once-deoxygenated sickled cells with pointy edges to near venous oxygen pressure generates similar sickled cells with blunt edges in vitro, we named them as partially oxygenated sickled cells (POSCs). On the other hand, partial deoxygenation of once-oxygenated SS cells to venous oxygen pressure generates partially deoxygenated sickled cells (PDSCs) with pointy edges. In this study, we obtained blood samples from 6 steady-state patients with SCD under venous oxygen pressure without exposure to air, subjected them to various oxygenation/deoxygenation/reoxygenation cycles, and studied their filterability through a membrane filter with pore diameter of 3μm, the theoretical minimum diameter of a capillary. Our results indicated that discocytes, POSCs with blunt edges, and irreversibly sickled cells could deform and pass through the filter, while PDSCs with pointy edges were rigid and could not. The filterability of SS cells seems to be related to the length and amount of deoxy-hemoglobin S fibers in the cells. Copyright © 2015. Published by Elsevier Inc.

  16. Controlled-force end seal arrangement for an air press of a papermaking machine

    DOEpatents

    Beck, David A.

    2003-07-08

    An air press for pressing a fiber web includes a plurality of rolls and a pair of end seal arrangements. Of the plurality of rolls, each pair of adjacent rolls forms a nip therebetween. Further, each roll has a pair of roll ends, the plurality of rolls together forming two sets of roll ends. Each end seal arrangement coacts with one set of roll ends, the plurality of rolls and the pair of end seal arrangements together defining an air press chamber having an air chamber pressure. Each end seal arrangement is composed of at least one roll seal, including a first roll seal, and an adjustable bias mechanism. Each roll seal forms a seal with at least one roll end, and one side of the first roll seal being exposed to the air chamber pressure. The adjustable bias mechanism is configured for controlling a position of each roll seal relative to a respective at least one roll end and for adjusting a seal force between the roll seal and the respective at least one roll end.

  17. A 2-year comparative study of mold and bacterial counts in air samples from neutral and positive pressure rooms in 2 tertiary care hospitals.

    PubMed

    Ryan, Laura; O'Mara, Niall; Tansey, Sana; Slattery, Tom; Hanahoe, Belinda; Vellinga, Akke; Doyle, Maeve; Cormican, Martin

    2018-05-01

    Immunocompromised patients are at risk of invasive fungal infection. These high-risk patients are nursed in protective isolation to reduce the risk of nosocomial aspergillosis while in hospital-ideally in a positive pressure single room with high-efficiency particulate air filtration. However, neutral pressure rooms are a potential alternative, especially for patients requiring both protective and source isolation. This study examined mold and bacterial concentrations in air samples from positive and neutral pressure rooms to assess whether neutral pressure rooms offer a similar environment to that of positive pressure rooms in terms of mold concentrations in the air. Mold concentrations were found to be similar in the positive and neutral pressure room types examined in this study. These results add to the paucity of literature in this area. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Improved pressurized Marinelli beaker measurements of radioactive xenon in air.

    PubMed

    Robinson, Troy; Mann, Nick; Houghton, Tracy; Watrous, Matthew; Peterson, John; Fabian, Paul; Hipp, Pat; Reavis, Mark; Fernandez, Francisco

    2017-08-01

    INL has shown that a Marinelli beaker geometry can be used for the measurement of radioactive xenon in air using an aluminum Marinelli. A carbon fiber Marinelli was designed and constructed to improve overall performance. This composite Marinelli can withstand sample pressures of 276bar and achieve approximately a 4x performance improvement in the minimum detectable concentrations (MDCs) and concentration uncertainties. The MDCs obtained during a 24h assay for 133 Xe, 131m Xe, and 135 Xe are: 1.4, 13, and 0.35Bq/m 3 . Copyright © 2016. Published by Elsevier Ltd.

  19. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  20. Patient-specific interface pressure case study at transradial prosthetic socket: comparison trials between ICRC polypropylene socket and air splint socket.

    PubMed

    Abd Razak, Nasrul A; Abu Osman, Noor A; Ali, Sadeeq A; Gholizadeh, Hossein

    2016-01-15

    While considering how important the interface between the amputees with the prostheses socket, we have carried out research to compare the gradient pressure occur at the interface socket that may lead to the discomforting effects to the user using common ICRC polypropylene socket and air splint socket. Not Applicable SETTING: Not Applicable POPULATION: The subject was a 23 year old who suffered a traumatic defect on the right arm caused by higher electrical volt. F-Socket sensors have been used to measure dynamic socket interface pressure for the transradial amputee wearer during static and dynamic movements. The printed circuit with a thickness of 0.18 mm is equipped between the socket and the surface of the residual limb. Two F-Socket sensor is required to cover the entire socket surface attached to the residual limb. The average of 10 trials made on prosthetic user using both type of sockets for static and dynamic movements was recorded. The pressure gradient shows that the circumference of the socket interface for the ICRC polypropylene socket gives the most pressure distributions to the amputees compared to the pressure gradient for the air splint socket. The pressure gradient for ICRC socket increased consistently when the user makes movements while for the air splint socket remain constantly. The specific interface pressure occur at the socket interface help in determine the comfort and pain of the socket design and improve the correlation between the user and the prosthesis.

  1. Air Leakage and Air Transfer Between Garage and Living Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressuremore » relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.« less

  2. Valve exploiting the principle of a side channel turbine

    NASA Astrophysics Data System (ADS)

    Jandourek, Pavel; Pochylý, František; Haban, Vladimír

    2017-04-01

    The presented article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Pressure reducing valves are a source of high hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the reducing valve and the side channel turbine. The basis for the design is the loss characteristics of the pressure reducing valve. Thereby create a new kind of turbine valve with speed-controlled flow in dependence of the runner revolution. It is technical innovation and new renewable source of energy, which can be in future used in rehabilitation or projecting of pumped-storage power plants. It also increases the power of the power plant.

  3. 60. SAC emblem on side of missile, front lawn, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. SAC emblem on side of missile, front lawn, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax.

    PubMed

    Park, Joo Hyung; Lee, Sun Hwa; Yun, Seong Jong; Ryu, Seokyong; Choi, Seung Woon; Kim, Hye Jin; Kang, Tae Kyung; Oh, Sung Chan; Cho, Suk Jin

    2018-04-14

    To investigate the impact of short-term exposure to air pollutants and meteorological variation on ED visits for primary spontaneous pneumothorax (PSP). We retrospectively identified PSP cases that presented at the ED of our tertiary center between January 2015 and September 2016. We classified the days into three types: no PSP day (0 case/day), sporadic days (1-2 cases/day), and cluster days (PSP, ≥3 cases/day). Association between the daily incidence of PSP with air pollutants and meteorological data were determined using Poisson generalized-linear-model to calculate incidence rate ratio (IRRs) and the use of time-series (lag-1 [the cumulative air pollution level on the previous day of PSP], lag-2 [two days ago], and lag-3 [three days ago]). Using multivariate logistic regression analysis, O 3 (p = 0.010), NO 2 (p = 0.047), particulate matters (PM) 10 (p = 0.021), and PM 2.5 (p = 0.008) were significant factors of PSP occurrence. When the concentration of O 3 , NO 2 , PM 10 , and PM 2.5 were increased, PSP IRRs increased approximately 15, 16, 3, and 5-fold, respectively. With the time-series analyses, atmospheric pressure in lag-3 was significantly lower and in lag-2, was significantly higher in PSP days compared with no PSP days. Among air pollutant concentrations, O 3 in lag-1 (p = 0.017) and lag-2 (p = 0.038), NO 2 in lag-1 (p = 0.015) and lag-2 (p = 0.009), PM 10 in lag-1 (p = 0.012), and PM 2.5 in lag-1 (p = 0.021) and lag-2 (p = 0.032) were significantly different between no PSP and PSP days. Increased concentrations of air pollutants and abrupt change in atmospheric pressure were significantly associated with increased IRR of PSP. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  6. Negative Intraoral Air Pressures of Deaf Children with Cochlear Implants: Physiology, Phonology, and Treatment.

    ERIC Educational Resources Information Center

    Higgins, Maureen B.; And Others

    1996-01-01

    A study of four children with deafness who had cochlear implants investigated the use of negative intraoral air pressure in articulation, from both the physiological and phonological perspectives. The study showed that the children used speech-production strategies that were different from hearing children and that deviant speech behaviors should…

  7. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  8. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and

  9. Low Pressure Robot-assisted Radical Prostatectomy With the AirSeal System at OLV Hospital: Results From a Prospective Study.

    PubMed

    La Falce, Sabrina; Novara, Giacomo; Gandaglia, Giorgio; Umari, Paolo; De Naeyer, Geert; D'Hondt, Frederiek; Beresian, Jean; Carette, Rik; Penicka, Martin; Mo, Yujiing; Vandenbroucke, Geert; Mottrie, Alexandre

    2017-12-01

    Limited studies examined effects of pneumoperiotneum during robot-assisted radical prostatectomy (RARP) and with AirSeal. The aim of this study was to assess the effect on hemodynamics of a lower pressure pneumoperitoneum (8 mmHg) with AirSeal, during RARP in steep Trendelenburg 45° (ST). This is an institutional review board-approved, prospective, interventional, single-center study including patients treated with RARP at OLV Hospital by one extremely experienced surgeon (July 2015-February 2016). Intraoperative monitoring included: arterial pressure, central venous pressure, cardiac output, heart rate, stroke volume, systemic vascular resistance, intrathoracic pressure, airways pressures, left ventricular end-diastolic and end-systolic areas/volumes and ejection fraction, by transesophageal echocardiography, an esophageal catheter, and FloTrac/Vigileo system. Measurements were performed after induction of anesthesia with patient in horizontal (T0), 5 minutes after 8 mmHg pneumoperitoneum (TP), 5 minutes after ST (TT1) and every 30 minutes thereafter until the end of surgery (TH). Parameters modification at the prespecified times was assessed by Wilcoxon and Friedman tests, as appropriate. All analyses were performed by SPSS v. 23.0. A total of 53 consecutive patients were enrolled. The mean patients age was 62.6 ± 6.9 years. Comorbidity was relatively limited (51% with Charlson Comorbidity Index as low as 0). Despite the ST, working always at 8 mmHg with AirSeal, only central venous pressure and mean airways pressure showed a statistically significant variation during the operative time. Although other significant hemodynamic/respiratory changes were observed adding pneumoperitoneum and then ST, all variables remained always within limits safely manageable by anesthesiologists. The combination of ST, lower pressure pneumoperitoneum and extreme surgeon's experience enables to safely perform RARP. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Predictions of the physicochemical properties of amino acid side chain analogs using molecular simulation.

    PubMed

    Ahmed, Alauddin; Sandler, Stanley I

    2016-03-07

    A candidate drug compound is released for clinical trails (in vivo activity) only if its physicochemical properties meet desirable bioavailability and partitioning criteria. Amino acid side chain analogs play vital role in the functionalities of protein and peptides and as such are important in drug discovery. We demonstrate here that the predictions of solvation free energies in water, in 1-octanol, and self-solvation free energies computed using force field-based expanded ensemble molecular dynamics simulation provide good accuracy compared to existing empirical and semi-empirical methods. These solvation free energies are then, as shown here, used for the prediction of a wide range of physicochemical properties important in the assessment of bioavailability and partitioning of compounds. In particular, we consider here the vapor pressure, the solubility in both water and 1-octanol, and the air-water, air-octanol, and octanol-water partition coefficients of amino acid side chain analogs computed from the solvation free energies. The calculated solvation free energies using different force fields are compared against each other and with available experimental data. The protocol here can also be used for a newly designed drug and other molecules where force field parameters and charges are obtained from density functional theory.

  11. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  12. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  13. Design of a Two Dimensional Planer Pressurized Air Labyrinth Seal Test Rig

    DTIC Science & Technology

    1993-12-01

    identity by block number) Dump Diffuser, Flow Modification, Laser Doppler Velocimeter, Labyrinth Seal , Leakage Prediction, Press --ized air 19 Abstract...reducing this high to low pressure leakage . Figure 1.1 is a two dimensional representation of a 3 dimensional annular labyrinth seal . The object of this... Labyrinth Seal literature, Sneck [2] credits C.A. Parsons with development of the labyrinth seal in concert with Parson’s [31 development of the steam

  14. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.

    PubMed

    Wistbacka, Greta; Sundberg, Johan; Simberg, Susanna

    2016-10-01

    Resonance tube phonation in water (RTPW) is commonly used in voice therapy, particularly in Finland and Sweden. The method is believed to induce a lowering of the vertical laryngeal position (VLP) in phonation as well as variations of the oral pressure, possibly inducing a massage effect. This pilot study presents an attempt to measure VLP and oral pressure in two subjects during RTPW and during phonation with the free tube end in air. VLP is recorded by means of a dual-channel electroglottograph. RTPW was found to lower VLP in the subjects, while it increased during phonation with the tube end in air. RTPW caused an oral pressure modulation with a bubble frequency of 14-22 Hz, depending mainly on the depth of the tube end under the water surface. The results indicate that RTPW lowers the VLP instantly and creates oral pressure variations.

  15. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  16. Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine.

    PubMed

    Pienaar, Andries W; Barnard, Justhinus G

    2017-04-01

    This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB ® ) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years, ±18.58) participated in this study. The validity of PAB ® was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to compare air pressure force (mb) to electromyography (EMG) in microvolt (μV) and to measure the reliability of PAB ® . A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB ® force (mb) and EMG activity (μV) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB ® test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB ® device is reliable and valid.

  17. Characteristics of a DC-Driven Atmospheric Pressure Air Microplasma Jet

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    2008-08-01

    A dc-driven atmospheric pressure air plasma jet has been investigated for some applications, such as local dental treatment, the inner surface treatment of capillaries, stimuli for microorganisms, and the local cleaning of semiconductor devices. The main experimental results are as follows. The discharge in the pulsed mode occurs repetitively despite of the dc input, and the pulsed mode transfers to the continuous mode as the current exceeds a threshold. The measured emission spectrum from the arc column of the air discharge reveals that most energy of activated electrons is used for the excitation of N2 (second positive system bands) and part of the energy for the dissociation of O2. The length of the plasma torch depends on the tube length, inner gap distance, and flow rate. The maximum torch length of about 40 mm is obtained under certain conditions. The spatial distributions of plasma gas temperature are measured and confirmed by the visualization of the gas flow using Schlieren images. Furthermore, surface treatment and decolorization using the generated plasma torch are carried out, focusing on industrial applications.

  18. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  19. Conversion of urodynamic pressures measured simultaneously by air-charged and water-filled catheter systems.

    PubMed

    Awada, Hassan K; Fletter, Paul C; Zaszczurynski, Paul J; Cooper, Mitchell A; Damaser, Margot S

    2015-08-01

    The objective of this study was to compare the simultaneous responses of water-filled (WFC) and air-charged (ACC) catheters during simulated urodynamic pressures and develop an algorithm to convert peak pressures measured using an ACC to those measured by a WFC. Examples of cough leak point pressure and valsalva leak point pressure data (n = 4) were obtained from the literature, digitized, and modified in amplitude and duration to create a set of simulated data that ranged in amplitude from 15 to 220 cm H2 O (n = 25) and duration from 0.1 to 3.0 sec (n = 25) for each original signal. Simulated pressure signals were recorded simultaneously by WFCs, ACCs, and a reference transducer in a specially designed pressure chamber. Peak pressure and time to peak pressure were calculated for each simulated pressure signal and were used to develop an algorithm to convert peak pressures recorded with ACCs to corresponding peak pressures recorded with WFCs. The algorithm was validated with additional simulated urodynamic pressure signals and additional catheters that had not been utilized to develop the algorithm. ACCs significantly underestimated peak pressures of more rapidly changing pressures, as in coughs, compared to those measured by WFCs. The algorithm corrected 90% of peak pressures measured by ACCs to within 5% of those measured by WFCs when simultaneously exposed to the same pressure signals. The developed algorithm can be used to convert rapidly changing urodynamic pressures, such as cough leak point pressure, obtained using ACC systems to corresponding values expected from WFC systems. © 2014 Wiley Periodicals, Inc.

  20. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  1. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors.

    PubMed

    Kang, Seong Min; Her, Keun; Choi, Seong Wook

    2016-08-25

    In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.

  2. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.

    2010-11-15

    Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less

  3. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    NASA Astrophysics Data System (ADS)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  4. Observation hall along west side. Looking south to escape ladder. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Observation hall along west side. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  5. 7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE OF SOUTH ABUTMENT; VIEW TO NORTHEAST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  6. Air Vehicle Integration and Technology Research (AVIATR). Delivery Order 0002: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Strategy Development

    DTIC Science & Technology

    2010-11-01

    material. The rubber is laser -etched with rows of tiny, interconnected channels or galleries, to which air pressure is applied. Any propagating crack... clad one side. The Upper Lobe has a radius of approximately 85” (compound curvature) in the region of interest. As stated previously, the skin is...7079-T6 sheet; clad one side with a varying thickness of 0.050” to 0.071” (varies according to stability requirements for compression combined with

  7. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. Themore » elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.« less

  8. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  9. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  10. 14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. NORTH REAR AND WEST SIDE, Looking southeast down Saturn Boulevard. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH REAR AND WEST SIDE, Looking southeast down Saturn Boulevard. February, 1998 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Electrical Substation, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. Compressed air injection technique to standardize block injection pressures : [La technique d'injection d'air comprimé pour normaliser les pressions d'injection d'un blocage nerveux].

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les

  13. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  14. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  15. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  16. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.

    PubMed

    Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M

    2017-01-01

    Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  18. 4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL SHOWING PERISCOPE AND SHIELDED WINDOWS ON EAST SIDE, NORTH PART. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION IN LEFT FOREGROUND - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  20. 6. DETAIL, WEST SIDE, SOUTH BAY, SHOWING ENTRANCE TO INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL, WEST SIDE, SOUTH BAY, SHOWING ENTRANCE TO INSTRUMENTATION ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  1. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    NASA Astrophysics Data System (ADS)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  2. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  3. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  4. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis.

    PubMed

    Boszczyk, Agnieszka; Kasprzak, Henryk; Jóźwik, Agnieszka

    2017-05-01

    The aim of this study was to analyse the indentation and deformation of the corneal surface, as well as eye retraction, which occur during air puff intraocular pressure (IOP) measurement. A group of 10 subjects was examined using a non-contact Corvis ST tonometer, which records image sequences of corneas deformed by an air puff. Obtained images were processed numerically in order to extract information about corneal deformation, indentation and eyeball retraction. The time dependency of the apex deformation/eye retraction ratio and the curve of dependency between apex indentation and eye retraction take characteristic shapes for individual subjects. It was noticed that the eye globes tend to rotate towards the nose in response to the air blast during measurement. This means that the eye globe not only displaces but also rotates during retraction. Some new parameters describing the shape of this curve are introduced. Our data show that intraocular pressure and amplitude of corneal indentation are inversely related (r 8  = -0.83, P = 0.0029), but the correlation between intraocular pressure and amplitude of eye retraction is low and not significant (r 8  = -0.24, P = 0.51). The curves describing corneal behaviour during air puff tonometry were determined and show that the eye globe rotates towards the nose during measurement. In addition, eye retraction amplitudes may be related to elastic or viscoelastic properties of deeper structures in the eye or behind the eye and this should be further investigated. Many of the proposed new parameters present comparable or even higher repeatability than the standard parameters provided by the Corvis ST. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  5. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa,more » temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)« less

  6. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices

  7. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings.

    PubMed

    Mehta, Prina; Justo, Lucas; Walsh, Susannah; Arshad, Muhammad S; Wilson, Clive G; O'Sullivan, Ciara K; Moghimi, Seyed M; Vizirianakis, Ioannis S; Avgoustakis, Konstantinos; Fatouros, Dimitris G; Ahmad, Zeeshan

    2015-05-01

    A scalable platform to prepare multi-functional ocular lenses is demonstrated. Using rapidly dissolving polyvinylpyrrolidone (PVP) as the active stabilizing matrix, both sides of ocular lenses were coated using a modified scaled-up masking electrohydrodynamic atomization (EHDA) technique (flow rates variable between 5 and 10 µL/min, applied voltage 4-11 kV). Each side was coated (using a specially designed flip-able well) selectively with a pre-determined morphology and model drug substance. PVP nanoparticles (inner side, to be in contact with the cornea, mean size side, to be exposed to air and eye lid, mean width size pressure. These provide multi-functional properties (in personalized delivery, nanomedicine and nanosensors) from a single drug delivery device.

  8. 11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF SOUTH ABUTMENT, SEEN FROM SOUTH BANK OF WINTER'S RUN. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  9. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  10. Static Air Support Surfaces to Prevent Pressure Injuries: A Multicenter Cohort Study in Belgian Nursing Homes.

    PubMed

    Serraes, Brecht; Beeckman, Dimitri

    2016-01-01

    The aim of this study was to investigate the incidence and risk factors for developing pressure injuries (PIs) in patients placed on a static air support surfaces: mattress overlay, heel wedge, and seat cushion. Multicenter cohort study. The sample comprised 176 residents; their mean age was 87 (SD = 6.76) years; their mean Braden Scale score was 14 (SD = 2.54). The study was performed on a convenience sample of 6 nursing homes in Belgium. Data were collected on 23 care units. The primary outcome measure, cumulative PI incidence (category [stage] II-IV) over a 30-day observation period, was calculated. Pressure injury occurrence was defined according to the 2014 European and US National Pressure Injury Advisory panels, Pan Pacific Pressure Injury Alliance classification system. The PI incidence for category (stage) II-IV was 5.1%. Six residents (3.4%) developed a category II PI, and 3 (1.7%) developed a category III PI; no category IV ulcers occurred. No significant risk factors for category II-IV PIs were identified using multivariate logistic regression. Time of sitting in a chair was found to be a risk factor for development of nonblanchable erythema (category I PI) (odds ratio = 21.608; 95% confidence interval [CI], 20.510-22.812; P = .013). The median time to develop a category II-IV PI was 16 days (interquartile range = 2-26). The interrater reliability between the observations of the researcher and nurses on-site was almost perfect (0.86; 95% CI, 0.81-0.91). We found a low incidence of PIs when using a static air overlay mattress for patients at risk in a nursing home population. Static air support surfaces, alongside patient-tailored patient repositioning protocols, should be considered to prevent PIs in this patient population.

  11. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  12. 13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO MAIN ROOM. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad track to AF Plant 72 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  14. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  15. Urotensin II inhibited the proliferation of cardiac side population cells in mice during pressure overload by JNK-LRP6 signalling

    PubMed Central

    Chen, Zhidan; Xu, Jiahong; Ye, Yong; Li, Yang; Gong, Hui; Zhang, Guoping; Wu, Jian; jia, Jianguo; Liu, Ming; Chen, Ying; Yang, Chunjie; Tang, Yu; Zhu, Yichun; Ge, Junbo; Zou, Yunzeng

    2014-01-01

    Cardiac side population cells (CSPs) are promising cell resource for the regeneration in diseased heart as intrinsic cardiac stem cells. However, the relative low ratio of CSPs in the heart limited the ability of CSPs to repair heart and improve cardiac function effectively under pathophysiological condition. Which factors limiting the proliferation of CSPs in diseased heart are unclear. Here, we show that urotensin II (UII) regulates the proliferation of CSPs by c-Jun N-terminal kinase (JNK) and low density lipoprotein receptor-related protein 6 (LRP6) signalling during pressure overload. Pressure overload greatly upregulated UII level in plasma, UII receptor (UT) antagonist, urantide, promoted CSPs proliferation and improved cardiac dysfunction during chronic pressure overload. In cultured CSPs subjected to mechanical stretch (MS), UII significantly inhibited the proliferation by UT. Nanofluidic proteomic immunoassay showed that it is the JNK activation, but not the extracellular signal-regulated kinase signalling, that involved in the UII-inhibited- proliferation of CSPs during pressure overload. Further analysis in vitro indicated UII-induced-phospho-JNK regulates phosphorylation of LRP6 in cultured CSPs after MS, which is important in the inhibitory effect of UII on the CSPs during pressure overload. In conclusion, UII inhibited the proliferation of CSPs by JNK/LRP6 signalling during pressure overload. Pharmacological inhibition of UII promotes CSPs proliferation in mice, offering a possible therapeutic approach for cardiac failure induced by pressure overload. PMID:24447593

  16. Travel of the center of pressure of airfoils transversely to the air stream

    NASA Technical Reports Server (NTRS)

    Katzmayr, Richard

    1929-01-01

    The experiments here described were performed for the purpose of obtaining the essential facts concerning the distribution of the air force along the span. We did not follow, however, the time-consuming method of point-to-point measurements of the pressure distribution on the wing surfaces, but determined directly the moment of mean force about an axis passing through the middle of the span parallel to the direction of flight.

  17. The right side? Under time pressure, approach motivation leads to right-oriented bias.

    PubMed

    Roskes, Marieke; Sligte, Daniel; Shalvi, Shaul; De Dreu, Carsten K W

    2011-11-01

    Approach motivation, a focus on achieving positive outcomes, is related to relative left-hemispheric brain activation, which translates to a variety of right-oriented behavioral biases. In two studies, we found that approach-motivated individuals display a right-oriented bias, but only when they are forced to act quickly. In a task in which they had to divide lines into two equal parts, approach-motivated individuals bisected the line at a point farther to the right than avoidance-motivated individuals did, but only when they worked under high time pressure. In our analysis of all Fédération Internationale de Football Association (FIFA) World Cup penalty shoot-outs, we found that goalkeepers were two times more likely to dive to the right than to the left when their team was behind, a situation that we conjecture induces approach motivation. Because penalty takers shot toward the two sides of the goal equally often, the goalkeepers' right-oriented bias was dysfunctional, allowing more goals to be scored. Directional biases may facilitate group coordination but prove maladaptive in individual settings and interpersonal competition.

  18. Vibration and recoil control of pneumatic hammers. [by air flow pressure regulation

    NASA Technical Reports Server (NTRS)

    Constantinescu, I. N.; Darabont, A. V.

    1974-01-01

    Vibration sources are described for pneumatic hammers used in the mining industry (pick hammers), in boiler shops (riveting hammers), etc., bringing to light the fact that the principal vibration source is the variation in air pressure inside the cylinder. The present state of the art of vibration control of pneumatic hammers as it is practiced abroad, and the solutions adopted for this purpose, are discussed. A new type of pneumatic hammer with a low noise and vibration level is presented.

  19. 17. VIEW OF INTERIOR, EAST SIDE, DECK LEVEL OF MST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF INTERIOR, EAST SIDE, DECK LEVEL OF MST. NOTE CANVAS CURTAIN (RIGHT) USED TO COVER SOUTH SIDE OF MST BELOW LOWEST ENVIRONMENTAL DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  1. 3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  2. Calculating osmotic pressure of glucose solutions according to ASOG model and measuring it with air humidity osmometry.

    PubMed

    Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong

    2016-09-01

    The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.

  3. Effects of nozzle exit geometry and pressure ratio on plume shape for nozzles exhausting into quiescent air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1991-01-01

    The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.

  4. 116. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (206), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751), WITH CABINETS ON EAST SIDE OF ROOM FACING WEST. THE ROW OF CABINETS ON EAST SIDE OF ROOM INCLUDES LEFT TO RIGHT: CABLE DISTRIBUTION UNITS, AUTOPILOT CONTROLS, AND POWER DISTRIBUTION UNITS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories.

  6. Rebubbling in Descemet Membrane Endothelial Keratoplasty: Influence of Pressure and Duration of the Intracameral Air Tamponade.

    PubMed

    Pilger, Daniel; Wilkemeyer, Ina; Schroeter, Jan; Maier, Anna-Karina B; Torun, Necip

    2017-06-01

    To explore the impact of intracameral air tamponade pressure and duration on graft attachment and rebubbling rates. A prospective, interventional, nonrandomized study. setting: Department of Ophthalmology, Charité - Universitätsmedizin Berlin. One hundred seventeen patients who underwent Descemet membrane endothelial keratoplasty (DMEK). Intraocular pressure (IOP) at the end of the surgery, immediately after filling the anterior chamber with air, categorized into low (<10 mm Hg), normal (10-20 mm Hg), and high (>20 mm Hg), and the time until partial removal of the air. Rebubbling rates and endothelial cell density over a 3-month follow-up period analyzed by a multivariable Cox regression model and an analysis of covariance model. Thirty-two patients required a rebubbling (27% [95% CI 19%-35%]). Nine patients required more than 1 rebubbling (7% [95% CI 3%-12%]). Compared with normal IOP, lower (HR 8.98 [95% CI 1.07-75.41]) and higher IOP (HR 10.63 [95% CI 1.44-78.27]) increased the risk of requiring a rebubbling (P = .006). Independent of the IOP, an air tamponade duration beyond 2 hours reduced the risk of rebubbling (HR 0.36 [95% CI 0.18-0.71, P = .003]). One month after surgery, the mean endothelial cell loss was 13% (95% CI 2%-25%) and 23% (95% CI 17%-29%) in the group with air tamponade duration of below and above 2 hours, respectively (P = .126). At 3 months after surgery, it was 31% (95% CI 17%-42%) and 42% (95% CI 32%-52%) in the respective groups (P = .229). A postsurgical air tamponade of at least 2 hours with an IOP within the physiological range could help to reduce rebubbling rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  8. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort

  9. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may

  10. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  11. 3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST SIDE FROM ATOP TUNNEL, SHOWING BLAST SHIELDED WINDOWS AND PERISCOPE FACING TO TEST STAND 1-3. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. 11. OBSERVATION POST NO. 3, NORTH SIDE AND WEST REAR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. OBSERVATION POST NO. 3, NORTH SIDE AND WEST REAR, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  13. 5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  14. 3. BUILDING 8814, WEST SIDE AND SOUTH REAR, SHOWING BLAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 8814, WEST SIDE AND SOUTH REAR, SHOWING BLAST DOOR. BUILDING 8826 IS IN BACKGROUND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  15. 2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 8814, NORTH FRONT AND EAST SIDE. Looking south southwest toward water tank complex. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  16. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  17. Promoting Students' Learning of Air Pressure Concepts: The Interrelationship of Teaching Approaches and Student Learning Characteristics

    ERIC Educational Resources Information Center

    She, Hsiao-Ching

    2005-01-01

    The author explored the potential to promote students' understanding of difficult science concepts through an examination of the inter-relationships among the teachers' instructional approach, students' learning preference styles, and their levels of learning process. The concept "air pressure," which requires an understanding of…

  18. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  19. 3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  20. 12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN PRE-VALVE DECK (2ND LEVEL). Looking south. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  1. Efficacy and Safety of Using Air Versus Alkalinized 2% Lignocaine for Inflating Endotracheal Tube Cuff and Its Pressure Effects on Incidence of Postoperative Coughing and Sore Throat.

    PubMed

    Gaur, Pallavi; Ubale, Pravin; Khadanga, Prashant

    2017-01-01

    We wished to compare the endotracheal tube (ETT) cuff pressure inflated with air or alkalinized lignocaine during anesthesia and evaluate clinical symptoms such as coughing and sore throat (postoperative sore throat [POST]) following tracheal extubation. This was a prospective randomized controlled study conducted in a tertiary care set up over a period of 1 year. We included 100 patients in age group of 18-65 years posted for elective surgeries of duration more than 90 min under general anesthesia with N 2 O-O 2 mixture. Patients were randomized using computer-generated randomization table into air and lignocaine group. The ETT cuff was inflated with air or alkalinized lignocaine (2% lignocaine with 7.5% sodium bicarbonate, in the proportions of 19.0:1.0 ml) to the volume that prevented air leak using cuff pressure manometer. After extubation, an independent observer blinded to study group recorded the presence or absence of coughing and POST at immediately, 1 h and 24 h postoperatively. Demographic data, baseline characteristics (American Society of Anesthesiologists grade, intracuff volume/cuff pressure at start of surgery), and duration of anesthesia were comparable among study groups ( P > 0.05). Cuff pressure and volume achieved in the end of surgery were much higher in air group as compared to lignocaine group ( P < 0.05). Incidence of coughing and POST at immediately, 1 h and 24 h postoperatively was significantly higher in air group compared to lignocaine group. Impact of duration of anesthesia on rise in cuff pressure was significantly higher in air group and its effect on cuff-induced laryngotracheal morbidity was significant in both air and lignocaine group. This study showed the significance of use of alkalinized 2% lignocaine in prevention of rise of cuff pressure and incidence of coughing and POST. Duration of anesthesia has also a significant effect on incidence of postoperative trachea-laryngeal morbidity.

  2. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  3. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  4. Apparatus and method for pressure testing closure disks

    DOEpatents

    Merten, Jr., Charles W.

    1992-01-21

    A method and device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug.

  5. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    NASA Astrophysics Data System (ADS)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  6. Simultaneous in vivo comparison of water-filled and air-filled pressure measurement catheters: Implications for good urodynamic practice.

    PubMed

    Gammie, A; Abrams, P; Bevan, W; Ellis-Jones, J; Gray, J; Hassine, A; Williams, J; Hashim, H

    2016-11-01

    This study aimed to evaluate whether the pressure readings obtained from air-filled catheters (AFCs) are the same as the readings from simultaneously inserted water-filled catheters (WFCs). It also aimed to make any possible recommendations for the use of AFCs to conform to International Continence Society (ICS) Good Urodynamic Practices (GUP). Female patients undergoing urodynamic studies in a single center had water-filled and air-filled catheters simultaneously measuring abdominal and intravesical pressure during filling with saline and during voiding. The pressures recorded by each system at each event during the test were compared using paired t-test and Bland-Altman analyses. 62 patients were recruited, of whom 51 had pressures that could be compared during filling, and 23 during voiding. On average, the pressures measured by the two systems were not significantly different during filling and at maximum flow, but the values for a given patient were found to differ by up to 10 cmH 2 O. This study shows that AFCs and WFCs cannot be assumed to register equal values of pressure. It has further shown that even when the p det readings are compared with their value at the start of a test, a divergence of values of up to 10 cmH 2 O remains. If AFCs are used, care must be taken to compensate for any p det variations that occur during patient movement. Before AFCs are adopted, new normal values for resting pressures need to be developed to allow good quality AFC pressure readings to be made. Neurourol. Urodynam. 35:926-933, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    PubMed

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Injury and side impact air bag deployment in near and far sided motor vehicle crashes, United States, 2000-2005.

    PubMed

    Stadter, Greg; Grabowski, Jurek G; Burke, Christine; Aldaghlas, Tayseer A; Robinson, Linda; Fakhry, Samir M

    2008-12-01

    Side impact crashes, the most lethal type, account for 26% of all motor vehicle crashes in the United States. The purpose of this study is to delineate side impact airbag (SIAB) deployment rates, injury rates, and analyze crash factors associated with SIAB deployment and occupant injury. All passenger vehicles equipped with SIABs that were involved in a side impact crash were identified from the National Automotive Sampling System database. Crashes with multiple impacts, ejections, unbelted drivers or rollovers were excluded from the study. The outcome variables of interest were SIAB deployment and driver injury. SIAB deployment was compared in similar crashes to analyze the impact on driver's injury severity score. Other crash factors were also examined to analyze what role they play in SIAB deployment rates and injury rates, such as plane of contact, striking object and Delta-V. The data set for this study contained 247 drivers in near and far side crashes in vehicles with installed SIABs. Overall SIAB deployment was 43% in side impact crashes. A significant factor associated with both the SIAB deployment rate and the driver's injury rate was increased Delta-V. SIABs do not deploy consistently in crashes with a high Delta-V or with a lateral primary direction of force and a front plane of contact. In these two scenarios, further research is warranted on SIAB deployments. With SIAB deployment, it appears drivers are able to sustain a higher Delta-V impact without serious injury.

  9. 3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF NORTH FRONT AND WEST SIDE, WITH SUPERSTRUCTURE, FROM NEAR OBSERVATION POST NO. 3. Looking south southeast from below. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. 43. TOP PART OF UMBILICAL MAST, NORTH AND WEST SIDES. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. TOP PART OF UMBILICAL MAST, NORTH AND WEST SIDES. AIR CONDITIONING DUCTING IS VISIBLE ON INTERIOR OF MAST. RAIL IS VISIBLE LEFT OF THE MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 8814, NORTH FRONT AND WEST SIDE. BUILDING 8832, TEST STAND 1-E, IN LEFT DISTANCE. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  12. Pollutant emissions from flat-flame burners at high pressures

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  13. Radial pressure flange seal

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  14. Radial pressure flange seal

    DOEpatents

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  15. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  16. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  17. 21. STATION 70.5 OF MST, WEST SIDE. AIRCONDITIONING DUCT AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. STATION 70.5 OF MST, WEST SIDE. AIR-CONDITIONING DUCT AT TOP; POWER BOX ON RIGHT; WINCH ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  19. 134. VIEW OF TRANSFORMER CABINETS ON NORTH SIDE OF TRANSFORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    134. VIEW OF TRANSFORMER CABINETS ON NORTH SIDE OF TRANSFORMER ROOM (212), LSB (BLDG. 751), FACING SOUTH. POWER PANEL B AT EAST SIDE OF TRANSFORMER ROOM (212), FACING WEST, AT RIGHT IN PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. The effect of continuous positive airway pressure on middle ear pressure.

    PubMed

    Lin, Fred Y; Gurgel, Richard K; Popelka, Gerald R; Capasso, Robson

    2012-03-01

    While continuous positive airway pressure (CPAP) is commonly used for obstructive sleep apnea treatment, its effect on middle ear pressure is unknown. The purpose of this study was to measure the effect of CPAP on middle ear pressure and describe the correlation between CPAP levels and middle ear pressures. Retrospective review of normal tympanometry values and a prospective cohort evaluation of subjects' tympanometric values while using CPAP at distinct pressure levels. A total of 3,066 tympanograms were evaluated to determine the normal range of middle ear pressures. Ten subjects with no known history of eustachian tube dysfunction or obstructive sleep apnea had standard tympanometry measurements while wearing a CPAP device. Measurements were taken at baseline and with CPAP air pressures of 0, 5, 10, and 15 cm H(2)O. The percentage of normal control patients with middle ear pressures above 40 daPa was 0.03%. In the study population, prior to a swallowing maneuver to open the eustachian tube, average middle ear pressures were 21.67 daPa, 22.63 daPa, 20.42, daPa, and 21.58 daPa with CPAP pressures of 0, 5, 10, and 15 cm H(2) 0, respectively. After swallowing, average middle ear air pressures were 18.83 daPa, 46.75 daPa, 82.17 daPa, and 129.17 daPa with CPAP pressures of 0, 5, 10, and 15 cm H(2)0, respectively. The postswallow Pearson correlation coefficient correlating CPAP and middle ear pressures was 0.783 (P < 0.001). Middle ear air pressure is directly proportional to CPAP air pressure in subjects with normal eustachian tube function. Middle ear pressure reaches supraphysiologic levels at even minimal CPAP levels. Although further investigation is necessary, there may be otologic implications for patients who are chronically CPAP dependent. These findings may also influence the perioperative practice of otologic and skull base surgeons. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. [Pressure control in medical gas distribution systems].

    PubMed

    Bourgain, J L; Benayoun, L; Baguenard, P; Haré, G; Puizillout, J M; Billard, V

    1997-01-01

    To assess whether the pressure gauges at the downstream part of pressure regulators are accurate enough to ensure that pressure in O2 pipeline is always higher than in Air pipeline and that pressure in the latter is higher than pressure in N2O pipeline. A pressure difference of at least 0.4 bar between two medical gas supply systems is recommended to avoid the reflow of either N2O or Air into the O2 pipeline, through a faulty mixer or proportioning device. Prospective technical comparative study. Readings of 32 Bourdon gauges were compared with data obtained with a calibrated reference transducer. Two sets of measurements were performed at a one month interval. Pressure differences between Bourdon gauges and reference transducer were 8% (0.28 bar) in average for a theoretical maximal error less than 2.5%. During the first set of measurements, Air pressure was higher than O2 pressure in one place and N2O pressure higher than Air pressure in another. After an increase in the O2 pipeline pressure and careful setting of pressure regulators, this problem was not observed at the second set of measurements. Actual accuracy of Bourdon gauges was not convenient enough to ensure that O2 pressure was always above Air pressure. Regular controls of these pressure gauges are therefore essential. Replacement of the faulty Bourdon gauges by more accurate transducers should be considered. As an alternative, the increase in pressure difference between O2 and Air pipelines to at least 0.6 bar is recommended.

  2. Air Separation Using Hollow Fiber Membranes

    NASA Technical Reports Server (NTRS)

    Huang, Stephen E.

    2004-01-01

    300 different hydrocarbons commonly found in JP- 8, Jet A, and JP-5 fuels. I researched the major hydrocarbons that has a concentration of greater than 50 parts per million and found the vapor pressure data coefficients for a specific temperature range. The coefficients were applied to Antoine s Equation and Riedel's Equation to calculate the vapor pressures for that specific hydrocarbon in the specific temperature range. With the vapor pressure data scientists can formulate a fuel composition that has a lower vapor pressure profile, therefore making jet fuels less flammable. work, learn how to operate and examine the data from Gas Chromatograph and Mass Spectrometer, and develop new ways in applying hollow fiber membrane technology to other areas of environmental engineering. The United States military currently uses air separation technology and their primary The other side of making air travel safer is to reformulate the fuel. Analyses of three My goal this summer is to learn about hollow fiber membrane technologies and how they

  3. Air Leakage and Air Transfer Between Garage and Living Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressuremore » relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.« less

  4. Side-specific effects by cadmium exposure: Apical and basolateral treatment in a coculture model of the blood-air barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papritz, Mirko, E-mail: papritz@uni-mainz.d; Institute of Pathology, Johannes Gutenberg University Mainz; Pohl, Christine

    2010-06-15

    Cadmium (Cd{sup 2+}) is a widespread environmental pollutant, which is associated with a wide variety of cytotoxic and metabolic effects. Recent studies showed that intoxication with the heavy metal most importantly targets the integrity of the epithelial barrier. In our study, the lung epithelial cell line, NCI H441, was cultured with the endothelial cell line, ISO-HAS-1, as a bilayer on a 24-well HTS-Transwell (registered) filter plate. This coculture model was exposed to various concentrations of CdCl{sub 2}. The transepithelial electrical resistance decreased on the apical side only after treatment with high Cd{sup 2+} concentrations after 48 h. By contrast, amore » breakdown of TER to less than 5% of baseline could be observed much earlier (after 24 h) when Cd{sup 2+} was administered from the basal side. Observations of cell layer fragmentation and widening of intercellular spaces confirmed the barrier breakdown only for the basolaterally treated samples. Furthermore, the cytotoxicity and release of proinflammatory markers was enhanced if samples were exposed to Cd{sup 2+} from the basal side compared to treatment from the apical side. Moreover, we could demonstrate that a high concentration of Ca{sup 2+} could prevent the barrier-disrupting effect of Cd{sup 2+}. In conclusion, the exposure of Cd{sup 2+} to cocultures of lung cells caused a decrease in TER, major morphological changes, a reduction of cell viability and an increase of cytokine release, but the effects markedly differed between the two modes of exposure. Therefore, our results suggest that intact epithelial TJs may play a major role in protecting the air-blood barrier from inhaled Cd{sup 2+}.« less

  5. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  6. Origins of pressure-induced protein transitions.

    PubMed

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  7. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, E. V., E-mail: oreshkinev@scalpnet.ru; Barengolts, S. A.; A. M. Prokhorov General Physics Institute, RAS, 119991 Moscow

    2015-12-15

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beammore » in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.« less

  8. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  9. Suppression of Rn-daughters in the DarkSide Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Cao, Huajie; Borexino; DarkSide Collaboration

    2011-04-01

    Alpha-emitting activity from radon daughters will be an important source of background for the next generation of direct dark matter searches. A vacuum swing adsorption (VSA) system with a radon suppression factor better than 100 was constructed and operated to purify the make-up air to the clean room that was used for the construction of the Borexino nylon vessels. The system was recently refurbished and upgraded for use in the construction and assembly of the DarkSide-50 dark matter detector. The VSA system consists of two charcoal-filled tanks cycled between atmospheric pressure and 10 mbar. I will discuss the design and operation of the system and detail its performance. Results from this test may inform the development of radon filters dedicated to support the next generation of dark matter and double beta decay detectors.

  10. 5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. WEST SIDE, ALSO SHOWING INSTRUMENTATION AND CONTROL BUILDING (BLDG. 8668) IN MIDDLE DISTANCE AT LEFT, AND TEST AREAS 1-120 AND 1-125 BEYOND. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  11. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ENTRY PORTION OF SOUTH SIDE, VIEW FACING NORTHNORTHWEST. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ENTRY PORTION OF SOUTH SIDE, VIEW FACING NORTH-NORTHWEST. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI

  13. Monolithic composite “pressure + acceleration + temperature + infrared” sensor using a versatile single-sided “SiN/Poly-Si/Al” process-module.

    PubMed

    Ni, Zao; Yang, Chen; Xu, Dehui; Zhou, Hong; Zhou, Wei; Li, Tie; Xiong, Bin; Li, Xinxin

    2013-01-16

    We report a newly developed design/fabrication module with low-cost single-sided "low-stress-silicon-nitride (LS-SiN)/polysilicon (poly-Si)/Al" process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first "pressure + acceleration + temperature + infrared" (PATIR) composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage), a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a -3 dB bandwidth of 780 Hz), a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W) and a thermistor (-25-120 °C). This design/fabrication module concept enables a low-cost monolithically-integrated "multifunctional-library" technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments.

  14. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    NASA Technical Reports Server (NTRS)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  15. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  16. An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets

    NASA Astrophysics Data System (ADS)

    Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong

    2018-03-01

    In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.

  17. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  18. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  19. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  20. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  1. Peak Sound Pressure Levels and Associated Auditory Risk from an H[subscript 2]-Air "Egg-Splosion"

    ERIC Educational Resources Information Center

    Dolhun, John J.

    2016-01-01

    The noise level from exploding chemical demonstrations and the effect they could have on audiences, especially young children, needs attention. Auditory risk from H[subscript 2]- O2 balloon explosions have been studied, but no studies have been done on H[subscript 2]-air "eggsplosions." The peak sound pressure level (SPL) was measured…

  2. Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes.

    PubMed

    Kuo, Chung-Hsien; Wu, Chun-Ju; Chou, Hung-Chyun; Chen, Guan-Ting; Kuo, Yu-Cheng

    2017-01-01

    This paper presents an oscillometric blood pressure (BP) measurement approach based on the active control schemes of cuff pressure. Compared with conventional electronic BP instruments, the novelty of the proposed BP measurement approach is to utilize a variable volume chamber which actively and stably alters the cuff pressure during inflating or deflating cycles. The variable volume chamber is operated with a closed-loop pressure control scheme, and it is activated by controlling the piston position of a single-acting cylinder driven by a screw motor. Therefore, the variable volume chamber could significantly eliminate the air turbulence disturbance during the air injection stage when compared to an air pump mechanism. Furthermore, the proposed active BP measurement approach is capable of measuring BP characteristics, including systolic blood pressure (SBP) and diastolic blood pressure (DBP), during the inflating cycle. Two modes of air injection measurement (AIM) and accurate dual-way measurement (ADM) were proposed. According to the healthy subject experiment results, AIM reduced 34.21% and ADM reduced 15.78% of the measurement time when compared to a commercial BP monitor. Furthermore, the ADM performed much consistently (i.e., less standard deviation) in the measurements when compared to a commercial BP monitor.

  3. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-housemore » air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.« less

  4. Fatal and non-fatal injuries from vessels under air pressure in construction.

    PubMed

    Welch, L S; Weeks, J; Hunting, K L

    1999-02-01

    Using a surveillance system that captures data on construction workers treated in an urban emergency department, we identified a series of injuries caused by vessels and tools under air pressure. We describe those six cases, as well as similar cases found in the Census of Fatal Occupational Injuries; we also review data from the National Surveillance for Traumatic Occupational Fatalities database and data from the Bureau of Labor Statistics. Among the injuries and deaths for which we had good case descriptions, the majority would have been prevented by adherence to existing Occupational Safety and Health Administration standards in the construction industry.

  5. JT8D revised high-pressure turbine cooling and other outer air seal program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT8D high pressure turbine was revised to reduce leakage between the blade tip shrouds and the outer air seal, and engine testing was performed to determine the effect on performance. The addition of a second knife-edge on the blade tip shroud, the extension of the honeycomb seal land to cover the added knife-edge and an existing spoiler on the shroud, and a material substitution in the seal support ring to improve thermal growth characteristics are included. A relocation of the blade cooling air discharge to insure adequate cooling flow is required. Significant specific fuel consumption and exhaust gas temperature improvements were demonstrated with the revised turbine in sea level and simulated altitude engine tests. Inspection of the revised seal hardware after these tests showed no unusual wear or degradation.

  6. 2. SOUTHEAST SIDE AND NORTHEAST REAR. SHOP BUILDING IN DISTANCE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE AND NORTHEAST REAR. SHOP BUILDING IN DISTANCE. NOTE CONCRETE PROTECTION SLAB FOR UNDERGROUND CONTROL ROOM AND ESCAPE HATCH ON GROUND AT RIGHT MIDDLE DISTANCE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  7. 63. Refrigerator, microwave oven, storage cabinet open, north side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Refrigerator, microwave oven, storage cabinet open, north side - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  8. Characteristics of Capacity Coupled Discharge in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Sasaki, Tadahiro; Omukai, Reina; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Mase, Hiroshi; Sato, Noriyoshi

    This paper describes characteristics of capacity coupled discharge in atmospheric pressure air with focusing influence of gap length of point-to-plane electrode configuration on input power into the discharge. The discharge can be quenched in short time duration by inserting a small capacitance capacitor between the electrode and the ground. We employed a needle electrode and a coaxial cable as the quenching capacitor. The discharge was successfully quenched within 25 ns in duration according to 9.4 pF in a capacitance of the quenching capacitor. The discharge was classified as two modes; a spark mode and a corona mode. At the spark mode, the power consumed in the discharge plasma was almost 10 times as large as that of a conventional dielectric barrier discharge. At the corona mode, the consumed energy was almost same value with that of the dielectric barrier discharge. A velocity of the discharge development was obtained to be 3×105 m/s by an optical measurement.

  9. 113. VIEW OF NORTH SIDE OF MECHANICAL AND ELECTRICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. VIEW OF NORTH SIDE OF MECHANICAL AND ELECTRICAL ROOM (110), LSB (BLDG. 770). QUALITY ASSURANCE ROOM (106A) ON RIGHT SIDE OF PHOTO; CABLE TRAYS OVERHEAD AT TOP; STAIRS TO LSB (BLDG. 770) ADDITION (ROOMS 117 THROUGH 120) IN CENTER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  11. FEATURE 2, OPEN SIDE OF SHELTER, VIEW FACING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 2, OPEN SIDE OF SHELTER, VIEW FACING NORTHEAST. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Shelter, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  12. SENSITIVITY OF THE HOUSE PRESSURE TEST FOR DUCT LEAKAGE TO VARIATIONS IN THE DISTRIBUTION OF AIR LEAKAGE IN THE HOUSE ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDREWS,J.W.

    1998-12-01

    The house pressure test for air leakage in ducts calculates the signed difference between the supply and return leakage from the response of the air pressure in the house to operation of the system fan. The currently accepted version of this calculation was based on particular assumptions about how the house envelope leakage is distributed between the walls, ceiling, and floor. This report generalizes the equation to account for an arbitrary distribution of envelope leakage. It concludes that the currently accepted equation is usually accurate to within {+-}5%, but in a small proportion of cases the results may diverge bymore » 50% or more.« less

  13. The Chace air indicator.

    DOT National Transportation Integrated Search

    1981-01-01

    The study reported here has revealed very poor agreement between air contents determined by the Chace air indicator (CAI) and those by the pressure method. In tests of highway concretes the pressure method gave values typically 30% higher than antici...

  14. Pulmonary hypertension associated with left-sided heart disease.

    PubMed

    Maeder, Micha Tobias; Schoch, Otto D; Kleiner, Rebekka; Joerg, Lucas; Weilenmann, Daniel; Swiss Society For Pulmonary Hypertension

    2017-01-19

    Pulmonary hypertension associated with left-sided heart disease (PH-LHD) is the most common type of pulmonary hypertension. In patients with left-sided heart disease, the presence of pulmonary hypertension is typically a marker of more advanced disease, more severe symptoms, and worse prognosis. In contrast to pulmonary arterial hypertension, PH-LHD is characterised by an elevated pulmonary artery wedge pressure (postcapillary pulmonary hypertension) without or with an additional precapillary component (isolated postcapillary versus combined postcapillary and precapillary pulmonary hypertension). Transthoracic echocardiography is the primary nonin-vasive imaging tool to estimate the probability of pulmonary hypertension and to establish a working diagnosis on the mechanism of pulmonary hyperten-sion. However, right heart catheterisation is always required if significant pulmonary hypertension is sus-pected and exact knowledge of the haemodynamic constellation is necessary. The haemodynamic con-stellation (mean pulmonary artery pressure, mean pulmonary artery wedge pressure, left ventricular end-diastolic pressure) in combination with clinical infor-mation and imaging findings (mainly echocardiog-raphy, coronary angiography and cardiac magnetic resonance imaging) will usually allow the exact mech-anism underlying PH-LHD to be defined, which is a prerequisite for appropriate treatment. The general principle for the management of PH-LHD is to treat the underlying left-sided heart disease in an optimal man-ner using drugs and/or interventional or surgical ther-apy. There is currently no established indication for pulmonary arterial hypertension-specific therapies in PH-LHD, and specific therapies may even cause harm in patients with PH-LHD.

  15. Validation of New Crack Monitoring Technique for Victoria Class High-Pressure Air Bottles

    DTIC Science & Technology

    2014-06-01

    technique de corrélation d’images numériques a été employée pour mesurer le champ de déforma- tion dans la zone située du côté opposé à l’entaille... la Reine en droit du Canada (Ministère de la Défense nationale), 2014 Abstract High-pressure air bottles are used in the Victoria class submarines to...charges cycliques pouvant provoquer l’apparition et favoriser la croissance de fissures de fatigue. L’ob- servation d’une marque interne semblable à une

  16. FEATURE 2, SHELTER, NORTHNORTHEAST SIDE, VIEW FACING SOUTHSOUTHWEST. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 2, SHELTER, NORTH-NORTHEAST SIDE, VIEW FACING SOUTH-SOUTHWEST. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Shelter, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  17. Effect of the Tin- versus Air-side Plate-glass Orientation on the Impact Response and Penetration Resistance of a Laminated Transparent Armour Structure

    DTIC Science & Technology

    2012-01-16

    January 2012 2012 226:Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications M Grujicic, W C Bell...unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Effect of the tin- versus air-side plate-glass...orientation on the impact response and penetration resistance of a laminated transparent armour structure M Grujicic1*, W C Bell1, B Pandurangan1, B

  18. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  19. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  20. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  1. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  2. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  3. Monolithic Composite “Pressure + Acceleration + Temperature + Infrared” Sensor Using a Versatile Single-Sided “SiN/Poly-Si/Al” Process-Module

    PubMed Central

    Ni, Zao; Yang, Chen; Xu, Dehui; Zhou, Hong; Zhou, Wei; Li, Tie; Xiong, Bin; Li, Xinxin

    2013-01-01

    We report a newly developed design/fabrication module with low-cost single-sided “low-stress-silicon-nitride (LS-SiN)/polysilicon (poly-Si)/Al” process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first “pressure + acceleration + temperature + infrared” (PATIR) composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage), a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a −3 dB bandwidth of 780 Hz), a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W) and a thermistor (−25–120 °C). This design/fabrication module concept enables a low-cost monolithically-integrated “multifunctional-library” technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments. PMID:23325169

  4. Counteracting negative venous line pressures to avoid arterial air bubbles: an experimental study comparing two different types of miniaturized extracorporeal perfusion systems.

    PubMed

    Aboud, Anas; Mederos-Dahms, Hendrikje; Liebing, Kai; Zittermann, Armin; Schubert, Harald; Murray, Edward; Renner, Andre; Gummert, Jan; Börgermann, Jochen

    2015-05-29

    Because of its low rate of clinical complications, miniaturized extracorporeal perfusion systems (MEPS) are frequently used in heart centers worldwide. However, many recent studies refer to the higher probability of gaseous microemboli formation by MEPS, caused by subzero pressure values. This is the main reason why various de-airing devices were developed for today's perfusion systems. In the present study, we investigated the potential benefits of a simple one-way-valve connected to a volume replacement reservoir (OVR) for volume and pressure compensation. In an experimental study on 26 pigs, we compared MEPS (n = 13) with MEPS plus OVR (n = 13). Except OVR, perfusion equipment was identical in both groups. Primary endpoints were pressure values in the venous line and the right atrium as well as the number and volume of air bubbles. Secondary endpoints were biochemical parameters of systemic inflammatory response, ischemia, hemodilution and hemolysis. One animal was lost in the MEPS + OVR group. In the MEPS + OVR group no pressure values below -150 mmHg in the venous line and no values under -100 mmHg in right atrium were noticed. On the contrary, nearly 20% of venous pressure values in the MEPS group were below -150 and approximately 10% of right atrial pressure values were below -100 mmHg. Compared with the MEPS group, the bubble counter device showed lower numbers of arterial air bubbles in the MEPS + OVR group (mean ± SD: 13444 ± 5709 vs. 1 ± 2, respectively; p < 0.001). In addition, bubble volume was significantly lower in the MEPS + OVR group than in the MEPS group (mean ± SD: 1522 ± 654 μl vs. 4 ± 6 μl, respectively; p < 0.001). The proinflammatory cytokine interleukin-6 and biochemical indices of cardiac ischemia (creatine kinase, and troponin I) were comparable between both groups. The use of a miniaturized perfusion system with a volume replacement reservoir is able to counteract excessive

  5. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  7. Fully wireless pressure sensor based on endoscopy images

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni

    2018-04-01

    In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.

  8. SOUTHWEST (FRONT) AND SOUTHEAST (SIDE) ELEVATIONS OF BUILDING. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHWEST (FRONT) AND SOUTHEAST (SIDE) ELEVATIONS OF BUILDING. VIEW TO NORTH - Plattsburgh Air Force Base, Capehart Four-Family Home, Minnesota Circle at Montana Drive, Plattsburgh, Clinton County, NY

  9. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  10. Crack Growth of D6 Steel in Air and High Pressure Oxygen

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.; Engstrom, W. L.

    1971-01-01

    Fracture and subcritical flaw growth characteristics were experimentally deter­mined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.

  11. Surface Functionalization of Polyethylene Granules by Treatment with Low-Pressure Air Plasma.

    PubMed

    Šourková, Hana; Primc, Gregor; Špatenka, Petr

    2018-05-25

    Polyethylene granules of diameter 2 mm were treated with a low-pressure weakly ionized air plasma created in a metallic chamber by a pulsed microwave discharge of pulse duration 180 μs and duty cycle 70%. Optical emission spectroscopy showed rich bands of neutral nitrogen molecules and weak O-atom transitions, but the emission from N atoms was below the detection limit. The density of O atoms in the plasma above the samples was measured with a cobalt catalytic probe and exhibited a broad peak at the pressure of 80 Pa, where it was about 2.3 × 10 21 m -3 . The samples were characterized by X-ray photoelectron spectroscopy. Survey spectra showed oxygen on the surface, while the nitrogen concentration remained below the detection limit for all conditions. The high-resolution C1s peaks revealed formation of various functional groups rather independently from treatment parameters. The results were explained by extensive dissociation of oxygen molecules in the gaseous plasma and negligible flux of N atoms on the polymer surface.

  12. Do sudden air temperature and pressure changes affect cardiovascular morbidity and mortality?

    NASA Astrophysics Data System (ADS)

    Plavcová, E.; Davídkovová, H.; Kyselý, J.

    2012-04-01

    Previous studies have shown that sudden changes in weather (usually represented by air temperature and/or pressure) are associated with increases in daily mortality. Little is understood about physiological mechanisms responsible for the impacts of weather changes on mortality, and whether similar patterns appear for morbidity as well. Relatively little is known also about differences in the magnitude of the mortality response in provincial regions and in cities, where the impacts may be exacerbated by air pollution effects and/or heat island. The present study examines the effects of sudden air temperature and pressure changes on morbidity (represented by hospital admissions) and mortality due to cardiovascular diseases in the population of the Czech Republic (approx. 10 million inhabitants) and separately in the city of Prague (1.2 million inhabitants). The events are selected from data covering 1994-2009 using the methodology introduced by Plavcová and Kyselý (2010), and they are compared with the datasets on hospital admissions and daily mortality (both standardized to account for long-term changes and the seasonal and weekly cycles). Relative deviations of morbidity/mortality from the baseline were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. The study aims at (i) identifying those weather changes associated with increased cardiovascular morbidity/mortality, separately in summer and winter, (ii) comparing the effects of weather changes on morbidity and mortality, (iii) identifying whether urban population of Prague is more/less vulnerable in comparison to the population of the whole Czech Republic, (iv) comparing the effects for different cardiovascular diseases (ischaemic heart diseases, ICD-10 codes I20-I25; cerebrovascular diseases, I60-I69; hypertension, I10; atherosclerosis, I70) and individual population groups (by age

  13. 3. Southwest side of Building 1042 (brig), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of Building 1042 (brig), looking northeast - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  14. 8. Southwest side of Building 1040 (chapel), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Southwest side of Building 1040 (chapel), looking northeast - Naval Air Station Chase Field, Building 1040, Enterprise Street, .37 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  15. 4. Southwest side of Building 1042 (brig), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Southwest side of Building 1042 (brig), looking northeast - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  16. 2. Southeast side of Building 1042 (brig), looking northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of Building 1042 (brig), looking northwest - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  17. 1. Northeast side of Building 1042 (brig), looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast side of Building 1042 (brig), looking southwest - Naval Air Station Chase Field, Building 1042, Ofstie Road, .6 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  18. SOUTHWEST SIDE OF TANK, WITH ENTRY DOOR. Looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHWEST SIDE OF TANK, WITH ENTRY DOOR. Looking northeast - Edwards Air Force Base, X-15 Engine Test Complex, Tank & Garage, Rogers Dry Lake, east of Runway between North Base & South Base, Boron, Kern County, CA

  19. Importance of Air Absorption During Mechanical Integrity Testing

    NASA Astrophysics Data System (ADS)

    Arnold, Fredric C.

    1990-11-01

    Wells used for injection of liquid industrial waste into deep saline aquifers are required to be periodically tested for mechanical integrity. A generally accepted method to demonstrate mechanical integrity is to pressurize the casing-tubing annulus and monitor any decline in pressure. If air is used to pressurize the annulus, uncertainty may exist in differentiating between absorption of air into water in the annulus and loss of pressure due to the absence of mechanical integrity. An analytical model of air absorbance has been derived and used to quantify the pressure decline due to dissolving and diffusion of the air in annular water. A parameteric study was made to determine when annular pressure decline due to absorption of air is significant.

  20. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak.

    PubMed

    Brunelli, Alessandro; Salati, Michele; Pompili, Cecilia; Gentili, Paolo; Sabbatini, Armando

    2017-11-01

    To verify the association between the air leak objectively measured intraoperatively (IAL) using the ventilator and the air leak duration after pulmonary lobectomy. Prospective analysis on 111 patients submitted to pulmonary lobectomy (33 by video-assisted thoracic surgery). After resection, objective assessment of air leak (in milliliter per minute) was performed before closure of the chest by measuring the difference between a fixed inspired and expired volume, using a tidal volume of 8 ml/kg, a respiratory rate of 10 and a positive-end expiratory pressure of 5 cmH2O. A multivariable analysis was performed for identifying factors associated with duration of postoperative air leak. Average IAL was 158 ml/min (range 0-1500 ml/min). The best cut-off (receiver-operating characteristics analysis) associated with air leak longer than 5 days was 500 ml/min. Nine patients had IAL >500 ml/min (8%). They had a longer duration of postoperative air leak compared with those with a lower IAL (mean values, 10.1 days, SD 8.8 vs 1.5 days, SD 4.9 P < 0.001). The following variables remained associated with days of air leak duration after multivariable regression: left side resection (P = 0.018), upper site resection (P = 0.031) and IAL >500 ml/min (P < 0.001). The following equation estimating the days of air leak duration was generated: 1.7 + 2.4 × left side + 2.2 × upper site + 8.8 × IAL >500. The air leak measurement using the ventilator parameters after lung resection may assist in estimating the risk of postoperative prolonged air leak. An IAL > 500 ml/min may warrant the use of intraoperative preventative measures, particularly after video-assisted thoracic surgery lobectomy where a submersion test is often unreliable. © 2017 European Society of Cardiology and European Atherosclerosis Association. All rights reserved. For permissions please email: journals.permissions@oup.com.