Science.gov

Sample records for air soil sewage

  1. Nitrogen Species in Soil, Sediment, and Ground Water at a Former Sewage-Treatment Wastewater Lagoon: Naval Air Station Whidbey Island, Island County, Washington

    USGS Publications Warehouse

    Cox, S.E.; Dinicola, R.S.; Huffman, R.L.

    2007-01-01

    The potential for contamination of ground water from remnant sewage sludge in re-graded sediments of a deconstructed sewage-treatment lagoon was evaluated. Ground-water levels were measured in temporary drive-point wells, and ground-water samples were collected and analyzed for nutrients and other water-quality characteristics. Composite soil and sediment samples were collected and analyzed for organic carbon and nitrogen species. Multiple lines of evidence, including lack of appreciable organic matter in sediments of the former lagoon, agronomic analysis of nitrogen, the sequestration of nitrogen in the developing soils at the former lagoon, and likely occurrence of peat deposits within the aquifer material, suggest that the potential for substantial additions of nitrogen to ground water beneath the former sewage lagoon resulting from remnant sewage sludge not removed from the former lagoon are small. Concentrations of nitrogen species measured in ground-water samples were small and did not exceed the established U.S. Environmental Protection Agency's maximum contaminant levels for nitrate (10 milligrams per liter). Concentrations of nitrate in ground-water samples were less than the laboratory reporting limit of 0.06 milligram per liter. Seventy to 90 percent of the total nitrogen present in ground water was in the ammonia form with a maximum concentration of 7.67 milligrams per liter. Concentrations of total nitrogen in ground water beneath the site, which is the sum of all forms of nitrogen including nitrate, nitrite, ammonia, and organic nitrogen, ranged from 1.15 to 8.44 milligrams per liter. Thus, even if all forms of nitrogen measured in ground water were converted to nitrate, the combined mass would be less than the maximum contaminant level. Oxidation-reduction conditions in ground water beneath the former sewage lagoon were reducing. Given the abundant supply of ambient organic carbon in the subsurface and in ground water at the former lagoon, any

  2. Impact of sewage sludge applications on the biogeochemistry of soils.

    PubMed

    Devaney, D; Godley, A R; Hodson, M E; Purdy, K; Yamulki, S

    2008-01-01

    This report describes an investigation into the bioavailability and fate of trace metals and their subsequent impact on important soil microbiological functions such as nitrification, denitrification and methane oxidation in low and high Cu containing soils in the presence and absence of residual organic matter from sewage sludge additions made 10 years earlier. The soils being studied are part of long term sewage sludge trials and include a low Cu soil (13.3 mg Cu/kg soil, 4.18 LOI %), left un-amended to serve as a control soil, soil amended with a high Cu sewage sludge (278.3 mg Cu/kg soil, 6.52 LOI %) and soil amended with a low Cu sewage sludge (46.3 mg Cu/kg soil, 6.18 LOI %). Soil was also amended with inorganic metal salts (273.4 mg Cu/kg soil, 4.52 LOI %) to further investigate the impact of Cu in the absence of additional organic matter contained in applied sewage sludge. Data from the first two years of a project are presented which has included field-based studies at long term sewage sludge trials based in Watlington, Oxford, UK and laboratory based studies at the Institute of Grassland & Environmental Research, North Wyke, Devon, UK.

  3. Utilization of night-soil, sewage, and sewage sludge in agriculture.

    PubMed

    PETRIK, M

    1954-01-01

    The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary.Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds.More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation.

  4. Utilization of night-soil, sewage, and sewage sludge in agriculture

    PubMed Central

    Petrik, Milivoj

    1954-01-01

    The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary. Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds. More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation. PMID:13160760

  5. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  6. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  7. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil.

    PubMed

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-11-01

    Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox(®)), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of Cfree PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of Cfree PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, Cfree PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested.

  8. Sewage sludge fertiliser use: implications for soil and plant copper evolution in forest and agronomic soils.

    PubMed

    Ferreiro-Domínguez, Nuria; Rigueiro-Rodríguez, Antonio; Mosquera-Losada, M Rosa

    2012-05-01

    Fertilisation with sewage sludge may lead to crop toxicity and environmental degradation. This study aims to evaluate the effects of two types of soils (forest and agronomic), two types of vegetation (unsown (coming from soil seed bank) and sown), and two types of fertilisation (sludge fertilisation and mineral fertilisation, with a no fertiliser control) in afforested and treeless swards and in sown and unsown forestlands on the total and available Cu concentration in soil, the leaching of this element and the Cu levels in plant. The experimental design was completely randomised with nine treatments and three replicates. Fertilisation with sewage sludge increased the concentration of Cu in soil and plant, but the soil values never exceeded the maximum set by Spanish regulations. Sewage sludge inputs increased both the total and Mehlich 3 Cu concentrations in agronomic soils and the Cu levels in plant developed in agronomic and forest soils, with this effect pronounced in the unsown swards of forest soils. Therefore, the use of high quality sewage sludge as fertiliser may improve the global productivity of forest, agronomic and silvopastoral systems without creating environmental hazards.

  9. Sewage sludge applied to agricultural soil: Ecotoxicological effects on representative soil organisms.

    PubMed

    Carbonell, G; Pro, J; Gómez, N; Babín, M M; Fernández, C; Alonso, E; Tarazona, J V

    2009-05-01

    Application of sewage sludge to agricultural lands is a current practice in EU. European legislation permits its use when concentrations of metals in soil do not increase above the maximum permissible limits. In order to assess the fate and the effects on representative soil organisms of sewage sludge amendments on agricultural lands, a soil microcosm (multi-species soil system-MS3) experiment was performed. The MS3 columns were filled with spiked soil at three different doses: 30, 60 and 120tha(-1) fresh wt. Seed plants (Triticum aestivum, Vicia sativa and Brassica rapa) and earthworms (Eisenia fetida) were introduced into the systems. After a 21-d exposure period, a statistically significant increase for Cd, Cu, Zn and Hg concentrations was found for the soils treated with the highest application rate. Dose-related increase was observed for nickel concentrations in leachates. Plants and earthworm metal body burden offer much more information than metal concentrations and help to understand the potential for metal accumulation. Bioaccumulation factor (BAF(plant-soil)) presented a different behavior among species and large differences for BAF(earthworm-soil), from control or sewage-amended soil, for Cd and Hg were found. B. rapa seed germination was reduced. Statistically significant decrease in fresh biomass was observed for T. aestivum and V. sativa at the highest application rate, whereas B. rapa biomass decreased at any application rate. Enzymatic activities (dehydrogenase and phosphatase) as well as respiration rate on soil microorganisms were enlarged.

  10. Single application of sewage sludge--impact on the quality of an alluvial agricultural soil.

    PubMed

    Suhadolc, Metka; Schroll, Reiner; Hagn, Alexandra; Dörfler, Ulrike; Schloter, Michael; Lobnik, Franc

    2010-12-01

    The effects of sewage sludge on soil quality with regard to its nutrient and heavy metal content, microbial community structure and ability to maintain specific soil function (degradation of herbicide glyphosate) were investigated in a three months study using an alluvial soil (Eutric Fluvisol). Dehydrated sewage sludge significantly increased soil organic matter (up to 20.6% of initial content), total and available forms of N (up to 33% and 220% of initial amount, respectively), as well as total and plant available forms of P (up to 11% and 170% of initial amount, respectively) and K (up to 70% and 47% of initial amount, respectively) in the upper 2 cm soil layer. The increase of organic matter was most prominent 3d after the application of sewage sludge, after 3 months it was no longer significant. Contents of nutrients kept to be significantly higher in the sewage sludge treated soil till the end of experiment. Contents of some heavy metals (Zn, Cu, Pb) increased as well. The highest increase was found for Zn (up to 53% of initial amount), however it was strongly bound to soil particles and its total content was kept below the maximum permissible limit for agricultural soil. Based on molecular fingerprinting of bacterial 16S rRNA gene and fungal ITS fragment on 3rd day and 3rd month after sewage sludge amendment, significant short term effects on bacterial and fungal communities were shown due to the sewage sludge. The effects were more pronounced and more long-term for bacterial than fungal communities. The mineralization of (14)C-glyphosate in the sewage sludge soil was 55.6% higher than in the control which can be linked to (i) a higher glyphosate bioavailability in sewage sludge soil, which was triggered by the pre-sorption of phosphate originating from the sewage sludge and/or (ii) beneficial alterations of the sewage sludge to the physical-chemical characteristics of the soil.

  11. Microbial quantities and enzyme activity in soil irrigated with sewage for different lengths of time.

    PubMed

    Guo, Xiaoming; Ma, Teng; Chen, Liuzhu; Cui, Yahui; Du, Peng; Liao, Yuan

    2014-12-01

    Sewage is widely used on agricultural soils in peri-urban areas of developing countries to meet shortages of water resource. Although sewage is a good source of plant nutrients, it also increases the heavy metals loads to soils. Microbial responses to these contaminants may serve as early warning indicators of adverse effects of sewage irrigation on soil quality. The purpose of this study was to assess the effect of time of sewage irrigation on soil microbial indicators. Soil samples were collected from seven soil sites (S1-S7) irrigated with 0 years, 16 years, 23 years, 25 years, 27 years, 32 years and 52 years, respectively in Shijiazhuang of China and analyzed. For each soil sample, we determined the quantities of bacteria, fungi and actinomycete, and enzyme activities of urease, sucrase, phosphatase, dehydrogenase and catalase. Our results showed that the soils of S2-S7 irrigated with sewage effluents for different times (ranged between 16 and 52 years) exhibited higher densities of bacteria, actinomycete, urease, sucrase and phosphatase but lower densities of fungi when compared with S1 irrigated with sewage effluents for 0 years. The soil S7 irrigated with sewage effluents for longest times (52 years) contained lowest activities of catalase when compared with the soils of S1-S6. The densities of bacteria (R = 0.877, p < 0.01), actinomycete (R = 0.875, p < 0.01), sucrase (R = 0.858, p < 0.01) and phosphatase (R = 0.804, p < 0.05) were significantly correlated in a positive manner with time of sewage irrigation. Soil fungi quantities and urease, dehydrogenase and catalase activities did not change significantly with irrigation time. This study confirms that sewage irrigation had negative effects on microbial properties including fungi, catalase and dehydrogenase in the long term, so there is a need for continuous monitoring for sustainable soil health.

  12. Safety use of sewage sludge as soil conditioner.

    PubMed

    El-Naim, M A; El-Housseini, M; Naeem, M H

    2004-01-01

    A series of field and laboratory experiments were conducted during 1994-996 to study the seasonal changes in sewage sludge characteristics and to evaluate the effect of sludge treatment processes and their application to sandy soil on soil-plant heavy metal contents and the numbers of some pathogenic microorganisms in both treated sludge and sludge provided soils. Results of seasonal production of sludge showed wide variation in their chemical and microbiological characteristics. Lime application resulted in an increase in the pH values and temperature degrees. The maximal values of temperature and pH were obtained when sludge treated with 20% lime. No big difference was observed between the sludge treatments received lime at rates of 10, 15, and 20% lime. The 10% limed-sludge treatment was the best for reducing concentrations of heavy metals and numbers of bacterial pathogens in sludge. Stoping addition of sludge to soil for one cropping season after continuous sludge addition for four seasons sharply decreased the soil heavy metal contents and subsequently decreased their accumulation in the edible parts of plants.

  13. Modification to degradation of hexazinone in forest soils amended with sewage sludge.

    PubMed

    Wang, Huili; Wang, Chengjun; Chen, Fan; Ma, Meiping; Lin, Zhenkun; Wang, Wenwei; Xu, Zhengti; Wang, Xuedong

    2012-01-15

    Influences of one sewage sludge on degradation of hexazinone and formation of its major metabolites were investigated in four forest soils (A, B, C and D), collected in Zhejiang Province, China. In non-amended forest soils, the degradation half-life of hexazinone was 21.4, 30.4, 19.4 and 32.8 days in forest soil A, B, C and D, respectively. Degradation could start in soil A and C without lag period because the two soils had been contaminated by this herbicide for a long time, possibly leading to completion of acclimation period of hexazinone-degrading bacteria. In forest soils amended with sewage sludge, the degradation rate constant increased by 17.3% in soil A, 48.2% in soil B, 8.1% in soil C and 51.6% in soil D, respectively. The higher degradation rates (soil A and C) in non-amended soils accord with the lower rate increase in sewage sludge-amended soils. Under non-sterile conditions, biological mechanism accounted for 51.8-62.4% of hexazinone degradation in four soils. Under sterile conditions, the four soils had the similar chemical degradation capacity for hexazinone. In non-amended soil B, only one metabolite (B) was detected, while two metabolites (B and C) were found in sewage sludge-amended soil B. Similarly situated in agricultural soils, N-demethylation at 6-position of triazine ring, hydroxylation at the 4-positon of cyclohexyl group, and removal of the dimethylamino group with formation of a carbonyl group at 6-position of triazine ring appear to be the principal mechanism involved in hexazinone degradation in sewage sludge-amended forest soils. These data will improve understanding of the actual pollution risk as a result of forest soil fertilization with sewage sludge.

  14. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil.

    PubMed

    Méndez, A; Gómez, A; Paz-Ferreiro, J; Gascó, G

    2012-11-01

    Pyrolytic conversion of sewage sludge into biochar could be a sustainable management option for Mediterranean agricultural soils. The aim of this work is to evaluate the effects of biochar from sewage sludge pyrolysis on soil properties; heavy metals solubility and bioavailability in a Mediterranean agricultural soil and compared with those of raw sewage sludge. Biochar (B) was prepared by pyrolysis of selected sewage sludge (SL) at 500°C. The pyrolysis process decreased the plant-available of Cu, Ni, Zn and Pb, the mobile forms of Cu, Ni, Zn, Cd and Pb and also the risk of leaching of Cu, Ni, Zn and Cd. A selected Mediterranean soil was amended with SL and B at two different rates in mass: 4% and 8%. The incubation experiment (200 d) was conducted in order to study carbon mineralization and trace metal solubility and bioavailability of these treatments. Both types of amendments increased soil respiration with respect to the control soil. The increase was lower in the case of B than when SL was directly added. Metals mobility was studied in soil after the incubation and it can be established that the risk of leaching of Cu, Ni and Zn were lower in the soil treated with biochar that in sewage sludge treatment. Biochar amended samples also reduced plant availability of Ni, Zn, Cd and Pb when compared to sewage sludge amended samples.

  15. PAHs content of sewage sludge in Europe and its use as soil fertilizer

    SciTech Connect

    Suciu, Nicoleta A. Lamastra, Lucrezia; Trevisan, Marco

    2015-07-15

    Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lack of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha{sup −1} sewage sludge annually than 15 t ha{sup −1} triennially. Results suggest, the EU maximum recommended limit of 6 mg kg{sup −1} PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms.

  16. A study on temporal trends and estimates of fate of Bisphenol A in agricultural soils after sewage sludge amendment.

    PubMed

    Zhang, Zulin; Le Velly, Morgane; Rhind, Stewart M; Kyle, Carol E; Hough, Rupert L; Duff, Elizabeth I; McKenzie, Craig

    2015-05-15

    Temporal concentration trends of BPA in soils were investigated following sewage sludge application to pasture (study 1: short term sludge application; study 2: long term multiple applications over 13 years). The background levels of BPA in control soils were similar, ranging between 0.67-10.57 ng g(-1) (mean: 3.02 ng g(-1)) and 0.51-6.58 ng g(-1) (mean: 3.22 ng g(-1)) for studies 1 and 2, respectively. Concentrations in both treated and control plots increased over the earlier sampling times of the study to a maximum and then decreased over later sampling times, suggesting other sources of BPA to both the treated and control soils over the study period. In study 1 there was a significant treatment effect of sludge application in the autumn (p=0.002) although no significant difference was observed between treatment and control soils in the spring. In study 2 treated soils contained considerably higher BPA concentrations than controls ranging between 12.89-167.9 ng g(-1) (mean: 63.15 ng g(-1)). This and earlier studies indicate the long-term accumulation of multiple contaminants by multiple sewage sludge applications over a prolonged period although the effects of the presence of such contaminant mixtures have not yet been elucidated. Fugacity modelling was undertaken to estimate partitioning of Bisphenol A (soil plus sewage: pore water: soil air partitioning) and potential uptake into a range of food crops. While Bisphenol A sorbs strongly to the sewage-amended soil, 4% by mass was predicted to enter soil pore water resulting in significant uptake by crops particularly leafy vegetables (3.12-75.5 ng g(-1)), but also for root crops (1.28-31.0 ng g(-1)) with much lower uptake into cereal grains (0.62-15.0 ng g(-1)). This work forms part of a larger programme of research aimed at assessing the risks associated with the long-term application of sewage sludge to agricultural soils.

  17. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Restoration of degraded soils with organic wastes could be a feasible practice to minimise erosion in the Mediterranean area. Today the use of sewage sludge to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr and Pb in agricultural soils repeatedly amended with sludge. Five surface soils (0-15 cm) that were polluted as a result of agricultural activities were used in this experiment. The sewage sludge amended soils were selected for diversity of physicochemical properties, especially pH and carbonate content. The soils are classified as non-calcareous and calcareous soils. The distribution of chemical forms of Cd, Ni, Cr and Pb in five sewage sludge amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible and residual forms. With regard to the mineralogical composition of the soil clay fraction, the mineralogical association found was: illite, kaolinite and chlorite. This paper provides quantitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewage sludge and also indicate the impact of the use of sludge on agricultural soils, as amendments. Data obtained showed different metal distribution trend among the fractions in sludge-amended soils. Comparison of distribution pattern of metals in sludge-applied soils shows that there is possible redistribution of metals among the different phases. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity

  18. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

  19. PAHs content of sewage sludge in Europe and its use as soil fertilizer.

    PubMed

    Suciu, Nicoleta A; Lamastra, Lucrezia; Trevisan, Marco

    2015-07-01

    The European Commission has been planning limits for organic pollutants in sewage sludge for 14years; however no legislation has been implemented. This is mainly due to lack of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr's most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5tha(-1) sewage sludge annually than 15tha(-1) triennially. Results suggest, the EU maximum recommended limit of 6mgkg(-)(1) PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms.

  20. [Effects of applying sewage sludge on chemical form distribution and bioavailability of heavy metals in soil].

    PubMed

    Song, Lin-Lin; Tie, Mei; Zhang, Zhao-Hong; Hui, Xiu-Juan; Jing, Kui; Chen, Zhong-Lin; Zhang, Ying

    2012-10-01

    A pot experiment was conducted to study the effects of applying sewage sludge on the chemical form distribution of heavy metals (Cd, Pb, Cu and Zn) in soil and the transfer and accumulation of the heavy metals in soil-plant (ryegrass) system. With the application of sewage sludge, the contents of bioavailable Cd and Zn in soil increased significantly but that of bioavailable Pb in soil had a significant decrease, and the content of residual form Pb in soil increased by 33.3% -74.5%, compared with CK. When the application rate of sewage sludge was 50% (M/M) of soil, the contents of exchangeable and reducible Cu in soil only occupied 0.7% and 0.2% of the total Cu respectively. The application of sewage sludge promoted the Cd, Cu and Zn absorption while inhibited the Pb absorption by ryegrass. Multiple linear regression analysis showed that the Cd, Zn and Cu contents in ryegrass were positively correlated with the reducible Cd and Zn and oxidizable Cu contents in soil, respectively, and Pb content in ryegrass was highly correlated with the soil exchangeable and oxidizable Pb contents. After planting ryegrass, the oxidizable Cd and Cu in rhizosphere soil were transformed into exchangeable Cd and residual form Cu, respectively, the exchangeable and reducible Zn transformed into oxidizable Zn, whereas the bioavailability of Pb was less affected.

  1. Effect of untreated sewage effluent irrigation on heavy metal content, microbial population and enzymatic activities of soils in Aligarh.

    PubMed

    Bansal, O P; Singh, Gajraj; Katiyar, Pragati

    2014-07-01

    The study pertains to the impact of domestic and industrial sewage water irrigation on the chemical, biological and enzymatic activities in alluvial soils of Aligarh District. Results showed that soil enzymatic [dehydogenase (DHA), acid and alkaline phosphatase, urease and catalase] activities in the soils increased up to 14 days of incubation and thereafter inhibited significantly. The enzymatic activity were in the order sewage effluent > partial sewage effluent > ground water irrigated soils. Increase in soil enzymatic activities up to 2nd week of incubation was due to decomposition of organic matter. Maximum inhibition of enzymatic activities, after 14 days of incubation were found in sewage effluent irrigated soils and minimum in ground water irrigated soils. Similar trend was also seen for microbial population. Soil enzymatic activities and microbial population were significantly and positively correlated with soil organic matter. Results also indicated that the microbial population and enzymatic activities in sewage irrigated soils decreased continually with irrigation period. The average concentration of total heavy metals in sewage irrigated soils and partial sewage irrigated soils increased and was 3 and 2 times higher for Zn; 4.5 and 1.7 times higher for Cu; 3.8 and 2.4 times higher for Cr; 5.7 and 3.5 times higher for Pb; 3.5 and 2.2 times higher for Cd and 2.7 and 2.0 times higher for Ni respectively than that of ground water irrigated soils. Results also showed that though total heavy metals concentration increased with period of sewage irrigation but the concentration of diethylene triamine pentaacetic acid (DTPA) extractable heavy metals in partial sewage irrigated and sewage irrigated soils remained almost same, which might be due to deposition of heavy metals in crops grown on the soils.

  2. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying.

  3. Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water

    NASA Astrophysics Data System (ADS)

    Lag, A.; Gomez, I.; Navarro-Pedreño, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

    2010-05-01

    Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was

  4. Effects of several applications of digested sewage sludge on soil and plants.

    PubMed

    de las Heras, Jorge; Mañas, Pilar; Labrador, Juana

    2005-01-01

    Sewage sludge production has significantly increased during the last years in European Union (EU) countries, being primarily used for agricultural purposes. In this study, digested sewage sludge was applied to greenhouse soil over a three-year period (2001--2003), with three sludge treatments in the first two years (2, 4, and 6 kg m(-2)) and three more applications using a greater quantity in the last year (6, 8, and 10 kg m(-2)). The effects of sewage sludge application on soil and on a leafy crop (Lactuca sativa L.) were studied. Mineral elements, organic matter, pH, and heavy metals were measured in soil and plant tissues. Pathogen and indicator microorganism dynamics in soil were also determined after each sludge application. Results showed that sewage sludge applications increased organic matter, P, and N Ca content in soil. Furthermore, Zn, Pb, Ni, and Cu content increased in soils, primarily after high doses of sludge. The highest yield value was obtained in the second-year harvest, since the last sludge application did not increase yield. Fecal coliform numbers decreased significantly one month after sludge application. However, total coliforms, Clostridium sulphite-reducers and Salmonella, were present in soils three months after sludge application.

  5. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  6. Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications

    SciTech Connect

    Moolenaar, S.W.; Beltrami, P.

    1998-07-01

    Applications of sewage sludge and Bordeaux mixture (Bm) (a mixture of copper sulfate and lime) add heavy metals to the soil. At an experimental farm in the Cremona district (Italy), the authors measured current heavy metal contents in soil and their removal via harvested products. They also measured heavy metal adsorption by soil from this farm. With these data, projections were made of the long-term development of heavy metal (Cd, Cu, and Zn) contents in soil, crop removal, and leaching at different application rates of sewage sludge and Bm. These projections were compared with existing quality standards of the European Union (EU) and Italy with regard to soil and groundwater. The calculations reveal that the permitted annual application rates of sewage sludge and Bm are likely to result in exceedance of groundwater and soil standards. Sewage sludge applications, complying with the Italian legal limits, may pose problems for Cd, Cu, and Zn within 30, 70, and 100 yr, respectively. Furthermore, severe Cu pollution of integrated and especially organic (Bm only) vineyards is unavoidable with the currently allowed application rates of Bm. The results suggest that the current Italian soil protection policy as well as the EU policy are not conducive of a sustainable heavy metal management in agroecosystems.

  7. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    PubMed Central

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  8. Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.

    PubMed

    Tai, Yiping; Li, Zhian; Mcbride, Murray B

    2016-04-01

    Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.

  9. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil.

    PubMed

    Antoniadis, Vasileios; Tsadilas, Christos D; Ashworth, Daniel J

    2007-06-01

    Sewage sludge-amended soils may alter their ability to adsorb heavy metals over time, due to the decomposition of sludge-borne organic matter. Thus, we studied Cd, Ni, and Zn adsorption by a sewage sludge-amended soil (Typic Xerofluvent) before and after one-year incubation in both monometal and competitive systems. In the monometal system, the order of decreasing sorption was Zn>Cd>Ni. Competition significantly reduced metal K(d), especially that of Cd which decreased by nearly 50%. Over the course of the incubation there was a 31% reduction of soil organic matter content. At the same time, in competitive systems Cd K(d) significantly decreased, while Zn K(d) significantly increased, and Ni K(d) remained unaffected. This study shows that sewage sludge-amended soils may change in their ability to sorb heavy metals over time at high metal concentrations. The data suggest that Cd is likely to be of most environmental significance in such soils, since it exhibited decreased sorption under competitive conditions and as the organic matter content of the soil was reduced. The potential for long-term release of metals should be considered in the risk assessment associated with sewage sludge addition to soils, particularly in climates where degradation of organic matter is likely to be enhanced.

  10. Investigation of sewage sludge treatment using air plasma assisted gasification.

    PubMed

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-03-18

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power.

  11. [Vertical distribution and possible sources of polycyclic aromatic hydrocarbon in sewage area soil].

    PubMed

    Yao, Lin-Lin; Zhang, Cai-Xiang; Li, Jia-Le; Liao, Xiao-Ping; Wang, Yan-Xin

    2013-04-01

    Nine profile soil samples were collected from Xiaodian sewage irrigation area, Taiyuan city, China. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography equipped with a mass spectrometry detector (GC/ MS). The rank order of the average concentrations of PAHs in the 0-10 cm upper soil layer was background area < swamp area < groundwater irrigation area < sewage irrigation area. The concentrations of PAHs in most profile soils decreased with the increase of depth, and the PAHs were mainly accumulated in the surface soil layer (0-40 cm). 4-6 rings of PAHs were mainly accumulated in the 0-50 cm soil layer, and the accumulation capacity in groundwater-irrigation area was better than that in sewage irrigation area. The correlation between different rings of PAHs and TOC was positive (r(max) = 0.791, P = 0), and the same situation was found for PAHs and sand (r(max) = 0. 882, P = 0). The correlation between PAHs and pH was negative (r(min) = -0.1, P = 0.702). The main source of PAHs in the surface soil layer (0-40 cm) of study area was coal combustion. There were two pollution ways of PAHs in soil, one was settled into soil directly, the other was first settled into water and absorbed on the surface of solid particles, and then got enrichment in soil as irrigation water flew.

  12. Physical characteristics of alkaline stabilized sewage sludge (N-viro soil) and their effects on soil physical properties

    SciTech Connect

    Logan, T.J.; Harrison, B.J.

    1995-01-01

    The N-Viro process for alkaline stabilization of municipal sewage sludge combines dewatered sludge with one or more alkaline industrial byproducts and destroys pathogens by a combination of high pH, heat, and drying. The final product, N-Viro Soil, is a soil-like material that is being used as an agricultural lime substitute, soil amendment, and soil substitute. Physical characteristics of 28 N-Viro Soils were determined and compared to those of mineral soils. Results are described. 24 refs., 10 tabs.

  13. Phytoremediation potential of Helianthus annuus L in sewage-irrigated Indo-Gangetic alluvial soils.

    PubMed

    Mani, Dinesh; Sharma, Bechan; Kumar, Chitranjan; Pathak, Niraj; Balak, Shiv

    2012-03-01

    The study of phytoremediation potential of Helianthus annuus L was conducted in the sewage-irrigated Indo-Gangetic alluvial soils, India. Calcium @ 1.0% and Zn @ 40 ppm enhanced the yield of H. annuus L and minimized the toxicity of Cr in the investigated soils. The study indicated that H. annuus L is highly sensitive to Cr and Zn in terms of metallic pollution; and may be used as indicator plant. For Cr-phytoremediation, humic acid treatment @ 500 mL/acre induced the Cr-accumulation in roots (p < 0.007) and in shoots (p < 0.015), which was recorded 3.21 and 3.16 mg/kg in root and shoot of H. annuus L, respectively. We suggest that H. annuus L fulfils the necessary condition for efficiently increasing species bioaccumulation after soil treatment with humic acid in Cr-polluted sewage-irrigated soils through soil- plant rhizospheric processes.

  14. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment

    NASA Astrophysics Data System (ADS)

    Masto, Reginald Ebhin; Chhonkar, Pramod K.; Singh, Dhyan; Patra, Ashok K.

    2009-01-01

    Though irrigation with sewage water has potential benefits of meeting the water requirements, the sewage irrigation may mess up to harm the soil health. To assess the potential impacts of long-term sewage irrigation on soil health and to identify sensitive soil indicators, soil samples were collected from crop fields that have been irrigated with sewage water for more than 20 years. An adjacent rain-fed Leucaena leucocephala plantation system was used as a reference to compare the impact of sewage irrigation on soil qualities. Soils were analyzed for different physical, chemical, biological and biochemical parameters. Results have shown that use of sewage for irrigation improved the clay content to 18-22.7%, organic carbon to 0.51-0.86% and fertility status of soils. Build up in total N was up to 2,713 kg ha-1, available N (397 kg ha-1), available P (128 kg ha-1), available K (524 kg ha-1) and available S (65.5 kg ha-1) in the surface (0.15 m) soil. Long-term sewage irrigation has also resulted a significant build-up of DTPA extractable Zn (314%), Cu (102%), Fe (715%), Mn (197.2), Cd (203%), Ni (1358%) and Pb (15.2%) when compared with the adjacent rain-fed reference soil. Soils irrigated with sewage exhibited a significant decrease in microbial biomass carbon (-78.2%), soil respiration (-82.3%), phosphatase activity (-59.12%) and dehydrogenase activity (-59.4%). An attempt was also made to identify the sensitive soil indicators under sewage irrigation, where microbial biomass carbon was singled out as the most sensitive indicator.

  15. Effect of sewage sludge on mobilization of surface-applied calcium in a Greenville soil

    SciTech Connect

    Tan, K.H.; Edwards, J.H.; Bennett, O.L.

    1985-03-01

    The effect of sewage sludge on movement of surface-applied Ca was determined with controlled leaching studies in the laboratory. Soil columns were prepared by filling 5.5- by 30-cm PVC plastic tubes with samples of the Ap horizon of a Greenville soil (clayey, kaolinitic, thermic Rhodic Paleudult). These were affixed to the 5.5- by 30-cm tubes filled with Bt1 horizon samples, so that the total column was 60 cm long. The soil columns, receiving various lime and sewage sludge treatments were leached with distilled water and analyzed for K, Ca, Mg, Al, Fe, Zn, and Cd concentrations. After leaching, the soil columns were sectioned into four 15-cm layers for determination of pH and the above elements. Although amounts equivalent to 4.5 metric tons (t) CaCO/sub 3/ and 112 t sewage sludge per ha were applied, no differences were detected in Ca contents of the leachates from soils with or without sewage sludge. Very low levels of K and Mg and negligible amounts of Al, Fe, Zn, and Cd were also found in the leachates, indicating minor leaching losses of these elements. The present result compared favorably with results of long-term experiments, indicating that significant Ca translocation can also be achieved in a shorter term even though most of the Ca was retained in the surface sections of the soil columns. Calcium movement into the subsoil increased soil pH. Infrared analysis indicated that mobilization of Ca was facilitated by formation of Ca-chelates, formed by the interaction of lime and fulvic acid produced by sewage sludge.

  16. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth.

    PubMed

    Yue, Yan; Cui, Liu; Lin, Qimei; Li, Guitong; Zhao, Xiaorong

    2017-04-01

    It is meaningful to quickly improve poor urban soil fertility in order to establish the green land vegetation. In this study, a series rates (0%, 1%, 5%, 10%, 20% and 50%, in mass ratio) of biochar derived from municipal sewage sludge was applied into an urban soil and then turf grass was grown in pots. The results showed that biochar amendment induced significant increases in soil total nitrogen, organic carbon, black carbon, and available phosphorus and potassium by more than 1.5, 1.9, 4.5, 5.6 and 0.4 times, respectively. Turf grass dry matter increased proportionally with increasing amount of added biochar (by an average of 74%), due to the improvement in plant mineral nutrition. Biochar amendment largely increased the total amounts of soil heavy metals. However, 43-97% of the heavy metals in the amended soil were concentrated in the residual fraction with low bioavailability. So the accumulation of heavy metals in turf grass aboveground biomass was highly reduced by the addition of biochar. These results indicated that sewage sludge biochar could be recommended in the poor urban raw soil as a soil conditioner at a rate of 50%. However, the environmental risk of heavy metal accumulation in soil amended with sewage sludge biochar should be carefully considered.

  17. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  18. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates.

  19. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    PubMed

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  20. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    PubMed

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic

  1. Heavy metal concentrations in earthworms from soil amended with sewage sludge

    USGS Publications Warehouse

    Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

    1982-01-01

    Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

  2. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil.

    PubMed

    Golet, Eva M; Xifra, Irene; Siegrist, Hansruedi; Alder, Alfredo C; Giger, Walter

    2003-08-01

    The behavior of fluoroquinolone antibacterial agents (FQs) during mechanical-biological wastewater treatment was studied by mass flow analysis. In addition, the fate of FQs in agricultural soils after sludge application was investigated. Concentrations of FQs in filtered wastewater (raw sewage, primary, secondary, and tertiary effluents) were determined using solid-phase extraction with mixed phase cation exchange disk cartridges and reversed-phase liquid chromatography with fluorescence detection. FQs in suspended solids, sewage sludge (raw, excess, and anaerobically digested sludge), and sludge-treated soils were determined as described for the aqueous samples but preceded by accelerated solvent extraction. Wastewater treatment resulted in a reduction of the FQ mass flow of 88-92%, mainly due to sorption on sewage sludge. A sludge-wastewater partition coefficient (log Kd approximately 4) was calculated in the activated sludge reactors with a hydraulic residence time of about 8 h. No significant removal of FQs occurred under methanogenic conditions of the sludge digesters. These results suggest sewage sludge as the main reservoir of FQ residues and outline the importance of sludge management strategies to determine whether most of the human-excreted FQs enter the environment. Field experiments of sludge-application to agricultural land confirmed the long-term persistence of trace amounts of FQs in sludge-treated soils and indicated a limited mobility of FQs into the subsoil.

  3. Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil

    SciTech Connect

    Jackson, B.P.; Miller, W.P.

    2000-04-01

    Mixing coal fly ash (FA) with organic wastes to provide balanced soil amendments offers a potential viable use of this industrial by-product. When such materials are land-applied to supply nutrients for agronomic crops, trace element contaminant solubility must be evaluated. In this study, major and trace element soil solution concentrations arising from application of fly ash, organic wastes, and mixtures of the two were compared in a laboratory incubation. Two fly ashes, broiler poultry litter (PL), municipal sewage sludge (SS), and mixtures of FA with either PL or SS were mixed with a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludult) at rates of 32.3, 8.1, and 16.1 g kg{sup {minus}1} soil for FA, PL, and SS, respectively. Treatments were incubated at 22 C at 17% moisture content and soil solution was periodically extracted by centrifugation over 33 d. Initial soil solution concentrations of As, Mo, Se, and Cu were significantly greater in FA/OL treatments than the respective FA-only treatments. For Cu, increased solution concentrations were attributable to increased loading rates in FA/PL mixtures. Solution Cu concentrations were strongly correlated with dissolved C (R{sup 2} > 0.96) in all PL treatments. Significant interactive effects for solution Mo and Se concentrations were observed for the FA/PL and may have resulted from the increased pH and competing anion concentrations of these treatments. Solution As concentrations showed a significant interactive effect for one FA/PL mixture. For the individual treatments, As was more soluble in the Pl treatment than either FA treatment. Except for soluble Se from on FA/SS mixture, trace element solubility in the FA/SS mixtures was not significantly different than the respective FA-only treatment.

  4. Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany.

    PubMed

    Lottermoser, Bernd G

    2012-02-01

    This study aimed to determine whether >110 years of sewage application has led to recognizable changes in the metal chemistry of soils from former sewage farms, Berlin, Germany. Background concentrations of soils and element enrichment factors were used for the evaluation of possible perturbations of natural element abundances in sewage farm soils. Calculations verify that precious metals (Ag, Au) as well as P, C(org), and heavy metals (Cd, Cu, Ni, Pb, Sn, and Zn) are invariably enriched in sewage farm topsoils (0-0.1 m depth) compared to local and regional background soils. Long-term irrigation of soils with municipal wastewater has caused significant heavy metal contamination as well as a pronounced enrichment in precious metals. Leaching of metals including Ag into underlying aquifers may impact on the quality of drinking water supplies.

  5. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot

    PubMed Central

    Fortes, Nara Lúcia Perondi; Navas-Cortés, Juan A; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. A multiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil. PMID:27176597

  6. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot.

    PubMed

    Ghini, Raquel; Fortes, Nara Lúcia Perondi; Navas-Cortés, Juan A; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. A multiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.

  7. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems.

  8. Molybdenum uptake by forage crops grown on sewage sludge -- Amended soils in the field and greenhouse

    SciTech Connect

    McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G.

    2000-06-01

    Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended with sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.

  9. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  10. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge

    SciTech Connect

    Wild, S.R.; Jones, K.C. )

    1993-01-01

    Sewage sludge containing typical indigenous concentrations of polynuclear aromatic hydrocarbons (PAHs) was applied to several different soils in glass microcosms. Biologically active and sterilized soils were monitored for PAH content over a period of approximately 205 d. Agricultural soils with and without previous exposure to sewage sludge were tested, together with a forest soil and a soil from a major roadside. Loss of PAHs from a soil spike with a PAH standard solution was also investigated. Results indicate the PAH compounds with less than four benzene rings are susceptible to abiotic loss processes. However, losses by these mechanisms were insignificant for compounds with four or more benzene rings. Half-lives for the sludge-applied PAHs were derived and indicated a strong dependence of persistence on chemical structure. Half-lives for phenanthrene and benzo[ghi]perylene were between 83 and 193 d and 282 and 535 d, respectively. Mean half-lives correlate directly with log K[sub ow] and inversely with log water solubility. Behavior of PAHs was different in each soil, probably due to different soil characteristics and history of PAH exposure. The soil spiked with PAHs provided the lowest half-life values for most PAH compounds, suggesting a higher susceptibility of spiked PAHs to both abiotic and biological degradation.

  11. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  12. Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain.

    PubMed

    Bourioug, Mohamed; Gimbert, Frédéric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Badot, Pierre-Marie; Alaoui-Sossé, Badr; Aleya, Lotfi

    2015-11-01

    Cu, Zn, Pb, and Cd concentrations in a soil plant (Lactuca sativa) continuum were measured after sewage sludge amendment. The effects of sewage sludge on growth and trace metal bioaccumulation in snails (Cantareus aspersus) were investigated in a laboratory experiment specifically designed to identify contamination sources (e.g., soil and leaves). Application of sewage sludge increased trace metal concentrations in topsoil. However, except Zn, metal concentrations in lettuce leaves did not reflect those in soil. Lettuce leaves were the main source of Zn, Cu, and Cd in exposed snails. Bioaccumulation of Pb suggested its immediate transfer to snails via the soil. No apparent toxic effects of trace metal accumulation were observed in snails. Moreover, snail growth was significantly stimulated at high rates of sludge application. This hormesis effect may be due to the enhanced nutritional content of lettuce leaves exposed to sewage sludge.

  13. Soil improvement with coal ash and sewage sludge: a field experiment

    NASA Astrophysics Data System (ADS)

    Shen, Junfeng; Zhou, Xuewu; Sun, Daisheng; Fang, Jianguo; Liu, Zhijun; Li, Zhongmin

    2008-02-01

    A field experimental study was carried out successfully to improve the quality of the sandy soil by adding coal ash and sewage sludge. One ha of barren sandy soil field was chosen for the experiment in Shanghe County, Shandong Province, China. For soil amelioration and tree planting, two formulas of the mixture:coal ash, sewage sludge and soil, in ratios of 20:10:70 and 20:20:60, respectively, were used. Poplar trees were planted in pits filled with soils with additives (mixture of ash and sludge) as well as in the original sandy soil. In the 19th months after the trees were planted, the soils with additives were sampled and analyzed. The results show that the barren sandy soil was greatly improved after mixing with coal ash and sludge. The improved soils have remarkably higher nutrient concentrations, better texture, smaller bulk density, higher porosity and mass moisture content, and higher content of fine-grained minerals. During the first 22 months after planting, the annual increase in height of the trees grown in the soil with additives (4.78 m per year) was 55% higher than that of the control group (3.07 m per year), and the annual increase in diameter at the breast height (1.3 m) was 33 % higher (43.03 vs. 32.36 mm). Trees planted in soils with additives appeared healthier and shed leaves later than those in the control group. As the volume of the additives (30-40% in both formulas) is less than that of the sandy soil in and around the tree pits, it appears that the use of coal ash and sludge for tree planting and soil amelioration is environmentally safe even though the additives have relatively high heavy metal concentrations.

  14. Microbiological hazards resulting from application of dairy sewage sludge: effects on occurrence of pathogenic microorganisms in soil.

    PubMed

    Jezierska-Tys, Stefania; Frac, Magdalena; Tys, Jerzy

    2010-01-01

    The aims of this study were to (1) examine the extent of bacterial contamination of soils subjected to exposure to dairy sewage sludge applied to soils as measured by determination of number of bacteria from the Escherichia coli family and (2) determine the effects of dairy sewage sludge and straw on populations of other microbial species present in gray-brown podzolic soil. The gray-brown podzolic soil was formed from heavy loamy sand, which is characterized by the following granulometric composition: a sand fraction, 65%; a silt fraction, 19%; and a silt and clay fraction; 16%. The brown soil was formed from silt-loam and characterized by the following granulometric composition of silty-clay deposit: sand fraction, 8%; silt fraction, 48%; and clay and silt fraction, 46%. In dairy sewage sludge the total bacteria number as defined by Alef and Nannipieri (1995) was 51 x 10(4) colony-forming units (cfu)/ kg dry matter (dm), fungi total number 10 x 10(3) cfu/ kg dm, and E. coli bacteria 9.5 x 10(3) most probable number (MPN)/kg dm. In dairy sewage sludge mixed with straw, total number of bacteria and total number of fungi decreased to 10(3) and 10(2), respectively. Competition for nitrogen, glucose, and lactose and organic acids such as acetic and succinic with soil microorganisms, as well as soil conditions such as lack of oxygen, lower soil pH, and temperature, may account for the reduction in the number of E. coli bacteria in soils to which dairy sewage sludge was applied. Dairy sewage sludge may provide a beneficial impact on soil environment and adversely affect microorganisms such that dairy sewage sludge may be used as a safe organic fertilizer.

  15. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation.

    PubMed

    Urbaniak, Magdalena; Wyrwicka, Anna; Tołoczko, Wojciech; Serwecińska, Liliana; Zieliński, Marek

    2017-05-15

    The aim of the study was to determine the impact of sewage sludge from three wastewater treatment plants of different sizes (small, medium and large) applied in two doses (3 and 9 tons per hectare) on soil properties, determined as the content of organic carbon and humus fractions, bacterial abundance, phytotoxicity and PCDD/PCDF TEQ concentrations. The study also evaluated the impact of this sewage sludge on the biometric and physiological parameters and detoxification reaction of willow (Salix sp.) as a typical crop used for the remediation of soil following sludge application. The cultivation of willow on soil treated with sludge was found to result in a gradual increase of humus fractions, total organic carbon content and bacterial abundance as well as soil properties measured using Lepidium sativum. However, it also produced an initial increase of soil phytotoxicity, indicated by Sinapis alba and Sorghum sacharatum, and PCDD/PCDF Toxic Equivalent (TEQ) concentrations, which then fell during the course of the experiment, particularly in areas planted by willow. Although the soil phytotoxicity and PCDD/PCDF TEQ content of the sewage sludge-amended soil initially increased, sludge application was found to have a positive influence on willow, probably due to its high nutrient and carbon content. The obtained results reveal increases in willow biomass, average leaf surface area and leaf length as well as chlorophyll a+b content. Moreover, a strong decline was found in the activity of the detoxifying enzyme glutathione S-transferase (GSTs), a multifunctional enzyme involved in the metabolism of xenobiotics in plants, again demonstrating the used sludge had a positive influence on willow performance.

  16. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  17. Soil and stream-water impacts of sewage effluent irrigation onto steeply sloping land

    SciTech Connect

    Speir, T.W.; Schaik, A.P. van; Kettles, H.A.; Vincent, K.W.; Campbell, D.J.

    1999-08-01

    In a pilot study, the authors investigated how irrigation of secondary sewage effluent onto steeply sloping land affected soil physical, chemical, and biochemical properties, the composition of soil- and surface-waters and the vegetation of the site. The 3.36-ha site received up to 44 mm effluent/wk for 65 wk. Irrigation significantly improved total- and Olsen-P status of the soils and greatly enhanced nitrification potential. Respiration increased with increasing soil water content, but microbial biomass was not greatly affected by irrigation. Soil phosphatase activity decreased with increasing P fertility. Soil physical properties were not affected by effluent and hydraulic conductivities were sufficient to conduct water into and through the soil profiles. Soil- and surface-water NO{sub 3}{sup {minus}}-N concentrations increased markedly, especially in the second half of the trial when soil nitrification rates were also high. However, the streamwater NO{sub 3}{sup {minus}}-N concentrations remained well below the drinking water limit concentration of 11.3 g m{sup {minus}3}. In contrast, streamwater NH{sub 4}{sup +}-N and PO{sub 4}{sup 3{minus}}-P concentrations remained low and results indicated that concentrations of PO{sub 4}{sup 3{minus}}-P in river water, resulting from a full-scale irrigation scheme, would not exceed the target limit level of 0.0056 g m{sup {minus}3}. Irrigation accelerated natural successional changes in the vegetation, with a decline in undesirable fire-prone and shrubby species and an increase in native trees and tree ferns. These results demonstrated that, in the short term at least, a carefully designed and implemented irrigation scheme on steepland could renovate secondary sewage effluent, without adversely affecting soil properties and surface water quality.

  18. Poliovirus retention in 75-cm soil cores after sewage and rainwater application

    SciTech Connect

    Landry, E.F.; Vaughn, J.M.; Penello, W.F.

    1980-12-01

    The adsorption rate of a guanidine-resistant strain of poliovirus LSc 2ab was measured in Long Island soils with in situ field cores (10.1 by 75 cm). The test virus was chosen because it exhibited soil adsorption and elution characteristics of a number of non-polioviruses. After the inoculation of cores with seeded sewage effluent at a 1-cm/h infiltration rate, cores were extracted, fractionated, and analyzed for total plaque-forming units per each 5-cm fraction. The results showed that 77% of the viruses were adsorbed in the first 5 cm of soil. An additional 11% were found in the 5- to 10-cm fraction, and a total of 96% of the viruses were adsorbed by 25 cm. The remaining 4% were uniformly distributed over the next 50 cm of soil, with a minimum of 0.23% in each soil section. Few viruses (< 0.22%) were observed in core filtrates. Analysis of the viral distribution pattern in seeded cores, after an application of a single rinse of either sewage effluent or rainwater, indicated that large-scale viral mobilization was absent. However, localized areas of viral movement were noted in both of the rinsed cores, with the rainwater rinsed cores exhibiting more extensive movement. All mobilized viruses were resorbed at lower core depths.

  19. Accumulation of few heavy metals in sewage sludges, soils and plants of Coimbatore, Tamil Nadu (India).

    PubMed

    Somasundaram, J; Krishnasamy, R; Savithri, P; Mahimairaja, S; Kumar, B Satish; Sivasubramanium, K; Kumar, V Arun; Poongothai, S; Coumar, M Vassanda; Behera, S K

    2012-01-01

    A study was carried out in Coimbatore district of Tamil Nadu (India) to assess the distribution pattern of heavy metals in the soils and plants irrigated with sewage effluent/sludge. About 69 soil samples (surface and subsurface), 65 plant samples as well as 34-sewage sludge samples were collected from various tehsils of Coimbatore. Six tehsils in Coimbatore have been identified and categorized into two groups--Class I City (densely populated tehsils) and Class II city (thinly populated tehsils). The available micronutrients like Fe, Mn, Zn and Cu; heavy metals: Cr, Cd, Ni, and Pb were within the safe limits. However, the total Cr and Cd concentrations were relatively higher in the sludge samples collected from Coimbatore and Tiruppur tehsils compared to other tehsils, while for Ni, the sequence was in the order Coimbatore > Tiruppur > Palladam > Pollachi > Avinashi > Mettupalayam and for Pb, Coimbatore > Mettupalayam > Palladam > Tiruppur > Avinashi > Pollachi. Soil analysis results indicated that heavy metal concentration recorded higher level in soils of Class I city (densely populated tehsils) compared to Class II city (thinly populated tehsils). The plant samples analyzed had also registered higher concentration of total Cd, Ni and Pb, which were classified under toxic, excessive and below excessive level, respectively. Correlation analysis revealed that iron (Fe), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were significantly negatively correlated with pH of soil. EC had a significant positive correlation with available iron (Fe), zinc (Zn), cadmium (Cd) and lead (Pb). A significant positive correlation of Fe, Mn, Zn, Cu, Cd and Pb was also registered with OC. Among the plant samples collected, it was evident that heavy metal concentrations were recorded higher in grass spp followed by Amaranthus spp. It was inferred from the study that soils samples had higher levels of heavy metals even though the values recorded were below the critical value

  20. Ambient air temperature effects on the temperature of sewage sludge composting process.

    PubMed

    Huang, Qi-fei; Chen, Tong-bin; Gao, Ding; Huang, Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5 degrees C when ambient air temperature changed 13 degrees C. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3 degrees C when ambient air temperature changed 8-15 degrees C. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent (at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate (at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  1. Characterization and environmental implications of nano- and larger TiO(2) particles in sewage sludge, and soils amended with sewage sludge.

    PubMed

    Kim, Bojeong; Murayama, Mitsuhiro; Colman, Benjamin P; Hochella, Michael F

    2012-04-01

    Titanium dioxide (TiO(2)) is the most extensively used engineered nanoparticle to date, yet its fate in the soil environment has been investigated only rarely and is poorly understood. In the present study, we conducted two field-scale investigations to better describe TiO(2) nano- and larger particles in their most likely route of entry into the environment, i.e., the application of biosolids to soils. We particularly concentrated on the particles in the nano-size regime due to their novel and commercially useful properties. First, we analyzed three sewage sludge products from the US EPA TNSSS sampling inventory for the occurrence, qualitative abundance, and nature of TiO(2) nano- and larger particles by using analytical scanning electron microscopy and analytical (scanning) transmission electron microscopy. Nano- and larger particles of TiO(2) were repeatedly identified across the sewage sludge types tested, providing strong evidence of their likely concentration in sewage sludge products. The TiO(2) particles identified were as small as 40 nm, and as large as 300 nm, having faceted shapes with the rutile crystal structure, and they typically formed small, loosely packed aggregates. Second, we examined surface soils in mesocosms that had been amended with Ag nanoparticle-spiked biosolids for the occurrence of TiO(2) particles. An aggregate of TiO(2) nanoparticles with the rutile structure was again identified, but this time TiO(2) nanoparticles were found to contain Ag on their surfaces. This suggests that TiO(2) nanoparticles from biosolids can interact with toxic trace metals that would then enter the environment as a soil amendment. Therefore, the long-term behavior of TiO(2) nano- and larger particles in sewage sludge materials as well as their impacts in the soil environment need to be carefully considered.

  2. Evaluation of composted sewage sludge (CSS) as a soil amendment for Bermudagrass growth.

    PubMed

    Roudsari, O Nouri; Pishdar, H

    2007-05-01

    In order to evaluate the growth of Bermudagrass (Cynodon dactylon L.) in soils amended with 5-100% composted sewage sludge (CSS) and the impacts of CSS amendment on soil physical and chemical properties an experiment was conducted. Soils amended with < or = 20% CSS did not significantly affect the seedling emergence, while the contents of chlorophyll, nitrogen, phosphorous and potassium of Bermudagrass grown in such soils were greatly improved. Bulk density, water retention and nutrient contents of the soil were also improved with the amendment of CSS, but high CSS contents introduced excessive amounts of heavy metals and soluble salts. Results show that Cu, Zn and Pb accumulated slightly (up to approximately 2.3 times) in clippings of Bermudagrass grown in CSS-amended soils compared to those grown in the base and reference soils, while no significant Cd absorption in shoots of Bermudagrass occurred. The detrimental effects on seedling emergence and turfgrass growth observed on substrates with high (> or = 40%) CSS contents were mainly attributed to the presence of high soluble salt concentrations. The findings suggest that addition of CSS at 10-20% levels can greatly improve the soil nutrient supply for turfgrass growth without significantly affecting heavy metal and soluble salt contents of the soil.

  3. Growth, chemical composition and soil properties of Tipuana speciosa (Benth.) Kuntze seedlings irrigated with sewage effluent

    NASA Astrophysics Data System (ADS)

    Ali, Hayssam M.; Khamis, Mohamed H.; Hassan, Fatma A.

    2012-06-01

    This study was carried out at a greenhouse of Sabahia Horticulture Research Station, Alexandria, Egypt, to study the effect of sewage effluent on the growth and chemical composition of Tipuana speciosa (Benth.) Kuntze seedlings as well as on soil properties for three stages. The irrigation treatments were primary-treated wastewater and secondary-treated wastewater, in addition to tap water as control. Therefore, the treated wastewater was taken from oxidation ponds of New Borg El-Arab City. Results of these study revealed that the primary effluent treatment explored the highest significant values for vegetative growth and biomass, compared to the other treatments. In addition, the higher significant concentration and uptake of chemical composition in different plant parts were obtained from the primary effluent treatment during the three stages of irrigation. It was found that the concentration of heavy metals in either plant or soil was below as compared to the world-recommended levels. These findings suggested that the use of sewage effluent in irrigating T. speciosa seedlings grown in calcareous soil was beneficial for the improvement of soil properties and production of timber trees, and also important for the safe manner of disposal of wastewater.

  4. The Effect of Liming and Sewage Sludge Application on Heavy Metal Speciation in Soil.

    PubMed

    Malinowska, Elżbieta

    2017-01-01

    The aim of this paper is to assess the effect of liming and low doses of municipal sewage sludge (5%, 10%, 15% of the soil mass) on lead, chromium and nickel speciation in soil. The 420-day experiment was carried out in laboratory conditions. In all the samples lead, chromium and nickel concentration was determined with the ICP-AES method, while the content of those metals in different fractions was measured with the seven-step Zeien and Brümmer method, on the 30th and 420th days of the experiment. Sewage sludge doses significantly diversified lead, chromium and nickel amounts in the soil. The highest dose of sludge caused a significant increase, compared to the control, in the content of those metals. In the sludge the dominant forms of metals tested in the experiment were lead and chromium bound to organic matter (F4) as well as nickel bound to amorphous iron oxides (F5). Liming decreased the mobility of the metals in the soil.

  5. Land application of chemically treated sewage sludge. II. Effects on soil and plant heavy metal content

    SciTech Connect

    Soon, Y.K.; Bates, T.E.; Moyer, J.R.

    1980-07-01

    Anaerobically digested sewage sludges resulting from treatment of sewage with Ca(OH)/sub 2/, Al/sub 2/(SO/sub 4/)/sub 3/, or FeCl/sub 3/ for phosphorus precipitation were applied to corn (Zea mays L.) and bromegrass (Bromus inermis Leyess) grown on a soil having an initial pH of 7.3. Rates of sludge supplied 200, 400, 800, and and 1,600 kg N/ha each year for 5 years. Treatments with NH/sub 4/NO/sub 3/ supplying 0, 100, 20, and 400 kg N/ha were included for comparison. Plant tissue was analyzed for Cu, Zn, Mn, Cd, Ni, Cr, and Pb. No toxicity or deficiency symptoms were noted. Soil Zn, Cd, and Ni extracted by NTA (nitrilotriacetic acid) were increased by continued sludge application. The NTA-extractable Zn and Cd were positively correlated with the Zn and Cd concentrations in corn stover. Soil pH was reduced by the Fe-sludge application, slightly affected by the Al-sludge, and increased by the Ca-sludge. Increases in Cu concentrations in bromegrass and corn stover were associated with increases in the N content rather than the source of N, and plant Cu concentrations remained relatively constant across years. Sewage sludge application increased Zn, Cd, and Ni concentrations in bromegrass and corn stover, and Zn and Ni concentrations in corn grain, particularly at the higher metal loadings from sludge application. Zinc and Cd concentrations, especially in corn stover, increased with continued sludge application during the 5-year period. The inclusion of soil pH as a factor, in addition to cummulative amounts of Zn or Cd added as a constituent of sludge, improved the regression equations predicting Zn or Cd uptake.

  6. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    PubMed

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6soil and the amended soil.

  7. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  8. Evaluation of biochemical and redox parameters in rats fed with corn grown in soil amended with urban sewage sludge.

    PubMed

    Grotto, Denise; Carneiro, Maria Fernanda Hornos; Sauer, Elisa; Garcia, Solange Cristina; de Melo, Wanderley José; Barbosa, Fernando

    2013-09-01

    The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20 t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20 t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to

  9. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge.

    PubMed

    García-Orenes, F; Roldán, A; Guerrero, C; Mataix-Solera, J; Navarro-Pedreño, J; Gómez, I; Mataix-Beneyto, J

    2007-01-01

    Sewage sludges are increasingly used in soil amendment programmes, although not without risk since they contain, among other potential hazards, high concentrations of total coliform bacteria. In this paper we have studied the effect of irrigation on the survival of total coliforms in three semiarid degraded soils with different agricultural practices. Fresh sewage sludge was added at 50 g kg(-1) soil, and incubated in both the presence and absence of irrigation. The absence of irrigation led to a sharp decrease in the number of total coliforms in all soils, with the bacteria disappearing in 40 days. Irrigation produced a substantial initial increase in the number of coliforms in the three soils, although after 80 days there was none growing in any of the soils. The results showed that there were significant differences in the survival of coliform bacteria due to the presence or absence of irrigation.

  10. Impact of sewage contaminated water on soil, vegetables, and underground water of peri-urban Peshawar, Pakistan.

    PubMed

    Ullah, Hidayat; Khan, Ikhtiar; Ullah, Ihsan

    2012-10-01

    The use of sewage-contaminated municipal water for irrigation of crops is an old practice in many big cities of Pakistan. Since the wastewater is rich in nutrients, it increases crops yield substantially but at the cost of food quality. The objective of this study was to investigate sewage water irrigation as a source of accumulation of heavy metals in soil and its subsequent transfer to crops and underground water. Sewage water, soil, groundwater, and crop samples were collected from selected areas around Peshawar city and analyzed for heavy metals concentration by atomic absorption spectroscopic method. Analysis of data revealed a considerable impact of the irrigation practices in the peri-urban Peshawar. Statistical analysis of the data showed a positive correlation between heavy metals concentration and soil carbon contents on the one hand and cation exchange capacity on the other. A strongly negative correlation was observed between metal contents and soil pH. The vertical movement of heavy metals from contaminated soil has polluted crops and underground water. The results indicated higher concentration of toxic metals in soil accumulated due to long-term sewage-contaminated water irrigation and their subsequent transfer to our food chain. The practice, if continued un-noticed may pose a threat of phytotoxicity to the local population.

  11. The odour of digested sewage sludge--determination and its abatement by air stripping.

    PubMed

    Winter, P; Jones, N; Asaadi, M; Bowman, L

    2004-01-01

    This paper describes a project to investigate the odour of sewage sludge after anaerobic digestion. The impact of air stripping on the odour of liquid sludge and on the quality of the dewatered product was evaluated at a full-scale sludge treatment installation. A continuous and a batch air-stripping mode were tested. Odour samples were collected during air stripping from the liquid sludge and from the biosolids surface during long term storage. The biosolids were also analysed for hedonic tone and for their potential odour expressed as an odour unit per unit mass. The odour emission profiles for continuous and batch air stripping demonstrated a reduction in the overall (time weighted) emissions during a 24 hr-period compared with emissions from the quiescent liquid storage tank. The averaged specific odour emission rate (Esp) of the biosolids derived from the continuous process was only 13% of the Esp of the biosolids derived from unaerated liquid sludge during the first month of storage. The results of the total potential odour and the hedonic tone of the biosolids underpin the beneficial effects of the air stripping. Odour dispersion modelling showed a noticeable reduction in overall odour impact from the sludge centre when air stripping was applied. The reduction was primarily associated with the reduced odour from stockpiled biosolids. The continuous air-stripping mode appeared to provide the greatest benefits in terms of odour impact from site operations.

  12. Monitoring of Cd pollution in soils and plants irrigated with untreated sewage water in some industrialized cities of Punjab, India.

    PubMed

    Sikka, R; Nayyar, V; Sidhu, S S

    2009-07-01

    The disposal of industrial and sewage water is a problem of increasing importance throughout the world. In India, and most of the developing countries untreated sewage and industrial wastes are discharged on land or into the running water streams which is used for irrigating crops. These wastes often contain high amount of trace elements which may accumulate in soils in excessive quantities on long term use and enter the food chain through absorption by the plants. Among the trace metals, Cd has received the greater attention because of its easy absorption and accumulation in plants and animals to levels toxic for their health. The objective of this study conducted in three industrially different cities viz., Ludhiana, Jalandhar and Malerkotla was to monitor the extent of Cd accumulation in soils and plants receiving untreated sewage water. Plant and soil samples were collected from sewage and tubewell irrigated areas. Soil samples were analysed for texture, pH, EC, organic carbon (OC), CaCO(3), bioavailable DTPA-Cd and plant samples were analysed for total Cd. In sewage irrigated soils, the mean values of pH were lower but organic carbon and electrical conductivity were generally higher both in surface and sub-surface layers of all the three cities as compared to tubewell irrigated soils. The mean DTPA- extractable Cd in sewage irrigated soil was 6.3- and 4.36-fold in Ludhiana, 3.38- and 1.71-fold in Jalandhar and 3.35- and 6.67-fold in Malerkotla in 0-15 and 15-30 cm soil depth, respectively, compared with the values in tubewell irrigated soils. The accumulation of DTPA-Cd in sewage irrigated soils was restricted to 30 cm depth after which the values were generally close to values in tubewell irrigated soils. Soil pH, OC, CaCO(3), clay and silt collectively accounted for 37.1%, 65.1% and 53.9% DTPA-extractable bioavailable Cd in soils of Ludhiana, Jalandhar and Malerkotla, respectively. Lower R(2) values in Ludhiana suggest that factors other than the ones

  13. Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil.

    PubMed

    Schowanek, Diederik; David, Helen; Francaviglia, Rosa; Hall, Jeremy; Kirchmann, Holger; Krogh, Paul Henning; Schraepen, Nathalie; Smith, Stephen; Wildemann, Tanja

    2007-12-01

    Deterministic and probabilistic risk assessments were developed for commercial LAS in agricultural soil amended with sewage sludge. The procedure done according to ILSI Europe's Conceptual Framework [Schowanek, D., Carr, R., David, H., Douben, P., Hall, J., Kirchmann, H., Patria, L., Sequi, P., Smith, S., Webb, S.F., 2004. A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture-conceptual Framework. Regul. Toxicol. Pharmacol. 40 (3), 227-251], consists of three main steps. First, the most sensitive endpoint was determined. This was found to be the chronic ecotoxicity of LAS to soil invertebrates and plants. Additional endpoints, such as potential for plant uptake and transfer in the food chain, leaching to groundwater, surface erosion run-off, human health risk via drinking water, plant consumption and soil ingestion were also systematically evaluated but were all assessed to be of little toxicological significance. In the second step, a back-calculation was conducted from the Predicted No-Effect Concentration in soil (PNECsoil) to a safe level of LAS in sludge (here called 'Sludge Quality Standard'; SQS). The deterministic approach followed the default agricultural soil exposure scenario in the EU-Technical Guidance Document (TGD). The SQS for LAS was calculated as 49 g/kg sludge Dry Matter (DM). In order to assess the potential variability as a result of varying agricultural practices and local environmental conditions, two probabilistic exposure assessment scenarios were also developed. The mean SQS was estimated at 55 and 27.5 g/kg DM for the homogeneous soil mixing and soil injection scenarios, respectively. In the final step, the resulting SQS values were evaluated for consistency and relevance versus available information from agricultural experience and field tests. No build-up, adverse impact on soil fertility, agronomic performance, or animal/human health have been reported for agricultural

  14. Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil

    SciTech Connect

    Vaca-Paulin, R. . E-mail: rvp@uaemex.mx; Esteller-Alberich, M.V.; Lugo-de la Fuente, J.; Zavaleta-Mancera, H.A.

    2006-07-01

    The application of biosolids such as sewage sludge is a concern, because of the potential release of toxic metals after decomposition of the organic matter. The effect of application of sewage sludge (Sw) and compost (C) to the soil (S) on the Cu and Cd sorption, distribution and the quality of the dissolved organic matter (DOM) in the soil, was investigated under controlled conditions. Visible spectrophotometry, infrared spectroscopy, sorption isotherms (simple and competitive sorption systems), and sequential extraction methods were used. The E {sub 4}/E {sub 6} ({lambda} at 465 and 665 nm) ratio and the infrared spectra (IR) of DOM showed an aromatic behaviour in compost-soil (C-S); in contrast sewage sludge-soil (Sw-S) showed an aliphatic behaviour. Application of either Sw or C increased the Cu sorption capacity of soil. The Cd sorption decreased only in soil with a competitive metal system. The availability of Cu was low due to its occurrence in the acid soluble fraction (F3). The Cu concentration varied in accordance with the amounts of Cu added. The highest Cd concentration was found in the exchangeable fraction (F2). The Sw and C applications did not increase the Cd availability in the soil.

  15. Influence of long-term sewage irrigation on the distribution of organochlorine pesticides in soil-groundwater systems.

    PubMed

    Zhang, Caixiang; Liao, Xiaoping; Li, Jiale; Xu, Liang; Liu, Ming; Du, Bin; Wang, Yanxin

    2013-07-01

    Serious shortage of water resources is one of the major factors restricting the sustainable development of cropland and pasture land in northern and northwestern China. Although the reuse of wastewater for agricultural irrigation becomes a well established practice in these regions, many contaminants have been also introduced into the soil-groundwater systems such as persistent organochlorine pesticides (OCPs). To study the influence of long-term sewage irrigation on the distribution of OCPs in soil-groundwater systems, the groundwater flow field was investigated and 31 topsoil samples, 9 boreholes, 11 sewage effluents and 34 groundwater samples were collected in Xiaodian, Taiyuan city, one of the largest sewage irrigation districts, China. During sampling, three representative types of regions were considered including effluent-irrigated area, groundwater-irrigated area served as the control field and no-irrigated area as reference "background". The results showed over-exploitation of groundwater had changed the flow field of groundwater and wherever in soil or in groundwater, the concentration of OCPs in effluent-irrigation area presented the highest value, which indicated that the sewage irrigation had a strong influence on the distribution of OCPs in soil-groundwater systems. Principal component analysis for OCPs content in groundwater showed that the major influence factors on the occurrence and distribution of OCPs in groundwater systems attribute to the flow field of groundwater and to the current pesticide use.

  16. Seroepidemiology of infection with Toxoplasma gondii in workers occupationally exposed to water, sewage, and soil in Durango, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water, sewage, and soil are potential sources of infection for Toxoplasma gondii. Therefore, we sought to determine the prevalence of T. gondii infection and associated characteristics in 61 plumbers, 203 construction workers, and 168 gardeners in Durango City, Mexico. Participants were tested for T...

  17. Dissolved air flotation as a potential treatment process to remove Giardia cysts from anaerobically treated sewage.

    PubMed

    Santos, Priscila Ribeiro Dos; Daniel, Luiz Antonio

    2016-11-30

    Controlling Giardia cysts in sewage is an essential barrier for public health protection, reducing possible routes of protozoa transmission. The aim of this study was to evaluate the capability of dissolved air flotation (DAF), on a bench scale, to remove Giardia cysts from anaerobic effluent. Moreover, removals of indicator microorganisms and physical variables were also investigated. Flocculation conditions were studied, associating different flocculation times with different mean velocity gradients. DAF treatment achieved mean log removals in the range of 2.52-2.62 for Giardia cysts, depending on the flocculation condition. No statistical differences were observed among the flocculation conditions in terms of cyst removal. Low levels of turbidity and apparent color obtained from the treated effluent may indicate good treatment conditions for the DAF process in cyst removal. Indicator microorganisms were not able to predict the parasitological quality of the wastewater treated by flotation in terms of cyst concentrations. The DAF process provided an effective barrier to control cysts from sewage, which is an important parasite source.

  18. Occurrence of emerging contaminants in agricultural soils, sewage sludge and waters in Valencia (E Spain)

    NASA Astrophysics Data System (ADS)

    Boluda, Rafael; Marimon, Lupe; Atzeni, Stefania; Mormeneo, Salvador; Iranzo, María; Zueco, Jesús; Gamón, Miguel; Sancenón, José; Romera, David; Gil, Carlos; Amparo Soriano, Maria; Granell, Clara; Roca, Núria; Bech, Jaume

    2013-04-01

    In recent years, studies into the presence and distribution of emerging contaminants (ECs), like pharmaceutical products, some pesticides and mycotoxins in the natural environment, are receiving considerable attention. Thus, the presence of these compounds in waters, soils and wastes in different locations including agricultural systems has been stressed; very few studies into this matter are available in Spain. The main source of ECs in the environment is wastewater spillage from wastewater treatment plants (WTP), where these compounds arrive from the sewer system network. The objective of this study was to determine the levels of 35 ECs constituted by nine pharmaceutical products, 23 fungicides and three mycotoxins in soils, sewages sludge and waters adjacent to WTP from an agriculture area of Valencia (E Spain) influenced by intense urban and industrial activity. Seven samples from sludge, 13 soil samples and eight samples of waters from the area of influence of WTP were collected. The ECs extraction were performed using 5 g of fresh sample and a mixture of acetonitrile with 1% formic acid and water at the 3:1 ratio by shaking for 45 min and then centrifuging at 4,000 rpm for 5 min. The extract was filtered and determination was done by HPLC system connected to a 3200-Qtrap de triple quadrupole mass spectrometer with an electrospray ion source. The results showed that soil-ECs concentrations were 10 times lower that in sewage sludge. The smaller number of detections and detected compounds should also be stressed. As in previous cases, fungicides azole (tebuconazole and tricyclazole), along with boscalid, were the most detected compounds with concentrations of between 100 and 400 µg kg-1 dw. In second place, propiconazole and azoxystrobin stood out, followed by carbendazim, dimetomorph, pyraclostrobin and propamocarb. The following drugs and mycotoxins were detected to have a higher to lower concentration (1-40 µg kg-1): telmisartan, irbesartan, venlafaxine

  19. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time.

    PubMed

    Elsgaard, L; Petersen, S O; Debosz, K

    2001-08-01

    The anionic surfactant linear alkylbenzene sulfonate (LAS) may inhibit soil microorganisms and may occur in agricultural soil through the application of sewage sludge. For five microbial parameters (microbial biomass C and the potentials of iron reduction, ammonium oxidation, dehydrogenase activity, and arylsulfatase activity), we compared the effects of aqueous LAS and LAS-spiked sewage sludge added to existing levels of 0, 3, 8, 22, 22, 62, 174, and 488 mg/kg soil (dry wt) in a Danish sandy agricultural soil that was incubated for 5 d to eight weeks. Arylsulfatase activity (measured after four weeks of incubation) was rather insensitive to LAS, with an EC 10 of 222 and more than 488 mg/kg in soil samples treated with aqueous LAS and LAS-spiked sewage sludge, respectively. For the other microbial parameters, the short-term effects (approximately one to two weeks) of aqueous LAS were characterized by an EC10 in the range of 3 to 39 mg/kg. Application of LAS via sewage sludge generally reduced the short-term effects for the microbial parameters, and the EC10 for LAS in sludge-amended soil after approximately one to two weeks of incubation ranged from less than 8 to 102 mg/kg. Recovery potential was seen for most microbial parameters as a result of prolonged incubation, both under conditions of LAS persistence (anaerobic conditions, the iron-reduction test) and LAS depletion (aerobic incubations, all other assays). In conclusion, the short-term inhibitory effects of LAS on soil microbiology were decreased in the presence of sewage sludge and by a prolonged (two to eight weeks) laboratory incubation period.

  20. Accumulation and translocation of metals in soil and different parts of French bean (Phaseolus vulgaris L.) amended with sewage sludge.

    PubMed

    Kumar, Vinod; Chopra, A K

    2014-01-01

    A pot experiment was conducted to study the accumulation and translocation of metals in French bean (Phaseolus vulgaris L.). Plants were grown in soil amended with up to 100 % sewage sludge. Significant (p < 0.01) changes to soil characteristics were observed. The maximum growth of P. vulgaris was noted in the treatment with 40 % of sewage sludge. Metal concentrations were significantly (p < 0.05) higher in P. vulgaris after sewage sludge amendment where Fe > Zn > Cd > Cu > Cr > Pb. The translocation for Fe and Zn was in the order of leaves > shoot > root > fruits, for Cd, shoot > root > leaves > fruits, for Cu and Pb shoot > leaves > root > fruits and for Cr root > shoot > leaves > fruits of P. vulgaris. All accumulated metal concentrations except Cd in the fruit were below the FAO/WHO standard limits. Thus, the amendment of agricultural soil by sewage sludge might be feasible. However, a regular monitoring of metal levels in agricultural products is recommended to prevent their accumulation in the food chain.

  1. Long-term impact of municipal sewage irrigation on treated soil and black locust trees in a semi-arid suburban area of Iran.

    PubMed

    Tabari, Masoud; Salehi, Azadeh

    2009-01-01

    The effects of municipal sewage irrigation on the soil and black locust (Robinia pseudoacacia L.) tree were studied. For this purpose, two artificial black locust stands under irrigation of municipal sewage and well water were selected in south of Tehran, Iran. Data were collected using technique of systematic random sampling with 4 replicates in each stand. It was found that the growth of black locust tree, as indicated by diameter at breast height, total height, crown length, average crown diameter, basal area and volume, in sewage irrigation stand was much higher than that of well water irrigation stand (P < 0.01). Plant analysis indicated that concentrations of leaf nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Cu and Zn) were greater in sewage-irrigated trees, without toxicity to the minerals of tree leaf, than those of well waterirrigated trees, and positively correlated with their respective value in soil. Ni, Cr and Pb were not detected in leaf samples. Application of sewage resulted in a 1.5-fold increase in the concentrations of soil nutrients, Ni, Cr and Pb. Among these minerals only Pb and Ni in some soil samples exceeded the toxicity limit. The increase in pH, electrical conductivity (EC) and organic carbon of soil was also observed in sewage irrigation. Results confirm that besides the use as irrigation water, municipal sewages are also a potential source of plant nutrients. However, significant accumulation of heavy metals such as Pb and Ni in soil needs to be monitored.

  2. Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan.

    PubMed

    Syed, Jabir Hussain; Malik, Riffat Naseem; Liu, Di; Xu, Yue; Wang, Yan; Li, Jun; Zhang, Gan; Jones, Kevin C

    2013-02-01

    This study provides the first systematic data on the distribution of organochlorine pesticides (OCPs) in the soils and atmosphere of the Punjab province, Pakistan. Atmospheric concentrations of OCPs were estimated by using the polyurethane foam passive air sampling (PUF-PAS) technique. DDTs (dichlorodiphenyltrichloroethane), HCHs (hexachlorocyclohexane) and chlordane were the dominant OCPs found in both soil and air samples. The average concentrations of DDTs, HCHs and chlordane were 350, 55 and 99 pg m(-3) in air and 40, 7.8 and 3.8 ng g(-1) in soils, respectively. Air-soil exchange of OCPs was estimated by calculating the fugacities in soil and air. Fugacity fraction (ff) values indicate that soils are acting as a secondary source to contaminate the atmosphere at certain sampling stations.

  3. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    PubMed

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants.

  4. Sewage sludge application in a plantation: effects on trace metal transfer in soil-plant-snail continuum.

    PubMed

    Bourioug, Mohamed; Gimbert, Frédéric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Aleya, Lotfi; Alaoui-Sossé, Badr

    2015-01-01

    We studied the potential bioaccumulation of Cu, Zn, Pb and Cd by the snail Cantareus aspersus and evaluated the risk of leaching after application of sewage sludge to forest plantation ecosystems. Sewage sludge was applied to the soil surface at two loading rates (0, and 6 tons ha(-1) in dry matter) without incorporation into the soil so as to identify the sources of trace metal contamination in soil and plants and to evaluate effects on snail growth. The results indicated a snail mortality rate of less than 1% during the experiment, while their dry weight decreased significantly (<0.001) in all treatment modalities. Thus, snails showed no acute toxicity symptoms after soil amendment with sewage sludge over the exposure period considered. Additions of sewage sludge led to higher levels of trace metals in forest litter compared to control subplots, but similar trace metal concentrations were observed in sampling plants. Bioaccumulation study demonstrated that Zn had not accumulated in snails compared to Cu which accumulated only after 28 days of exposure to amended subplots. However, Pb and Cd contents in snails increased significantly after 14 and 28 days of exposure in both the control and amended subplots. At the last sampling date, in comparison to controls the Cd increase was higher in snails exposed to amended subplots. Thus, sludge spread therefore appears to be responsible for the observed bioaccumulation for Cu and Cd after 28days of exposure. Concerning Pb accumulation, the results from litter-soil-plant compartments suggest that soil is this metal's best transfer source.

  5. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    PubMed

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  6. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-12-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations

  7. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    USGS Publications Warehouse

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at

  8. Development of an analytical procedure to study linear alkylbenzenesulphonate (LAS) degradation in sewage sludge-amended soils.

    PubMed

    Comellas, L; Portillo, J L; Vaquero, M T

    1993-12-24

    A procedure for determining linear alkylbenzenesulphonates (LASs) in sewage sludge and amended soils has been developed. Extraction by sample treatment with 0.5 M potassium hydroxide in methanol and reflux was compared with a previously described extraction procedure in Soxhlet with methanol and solid sodium hydroxide in the sample. Repeatability results were similar with savings in extraction time, solvents and evaporation time. A clean-up method involving a C18 cartridge has been developed. Analytes were quantified by a reversed-phase HPLC method with UV and fluorescence detectors. Recoveries obtained were higher than 84%. The standing procedure was applied to high doses of sewage sludge-amended soils (15%) with increasing quantities of added LASs. Degradation data for a 116-day period are presented.

  9. The effects of soil liming and sewage sludge application on dynamics of copper fractions and total copper concentration.

    PubMed

    Malinowska, Elżbieta

    2016-10-01

    The paper deals with effects of liming and different doses of municipal sewage sludge (5, 10, and 15 % of soil mass) on copper speciation in soil. In all samples, pH was determined together with total copper concentration, which was measured with the ICP-AES method. Concentration of copper chemical fractions was determined using the seven-step procedure of Zeien and Brümmer. In the soil treated with the highest dose of sludge (15 %), there was, compared to the control, a twofold increase in the concentration of copper and a threefold increase in the concentration of nitrogen. Copper speciation analysis showed that in the municipal sewage sludge the easily soluble and exchangeable fractions (F1 and F2) constituted only a small share of copper with the highest amount of this metal in the organic (F4) and residual (F7) fractions. In the soil, at the beginning of the experiment, the highest share was in the organic fraction (F4), the residual fraction (F7) but also in the fraction where copper is bound to amorphous iron oxides (F5). After 420 days, at the end of the experiment, the highest amount of copper was mainly in the organic fraction (F4) and in the fraction with amorphous iron oxides (F5). Due to mineralization of organic matter in the sewage sludge, copper was released into the soil with the share of the residual fraction (F7) decreasing. In this fraction, there was much more copper in limed soil than in non-limed soil.

  10. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.

    Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio

  11. Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis.

    PubMed

    Hernández, Ana Belén; Okonta, Felix; Freeman, Ntuli

    2017-03-25

    Thermochemical valorisation processes that allow energy to be recovered from sewage sludge, such as pyrolysis and gasification, have demonstrated great potential as convenient alternatives to conventional sewage sludge disposal technologies. Moreover, these processes may benefit from CO2 recycling. Today, the scaling up of these technologies requires an advanced knowledge of the reactivity of sewage sludge and the characteristics of the products, specific to the thermochemical process. In this study the behaviour of sewage sludge during thermochemical conversion, under different atmospheres (N2, CO2 and air), was studied, using TGA-FTIR, in order to understand the effects of different atmospheric gases on the kinetics of degradation and on the gaseous products. The different steps observed during the solid degradation were related with the production of different gaseous compounds. A higher oxidative degree of the atmosphere surrounding the sample resulted in higher reaction rates and a shift of the degradation mechanisms to lower temperatures, especially for the mechanisms taking place at temperatures above 400 °C. Finally, a multiple first-order reaction model was proposed to compare the kinetic parameters obtained under different atmospheres. Overall, the highest activation energies were obtained for combustion. This work proves that CO2, an intermediate oxidative atmosphere between N2 and air, results in an intermediate behaviour (intermediate peaks in the derivative thermogravimetric curves and intermediate activation energies) during the thermochemical decomposition of sewage sludge. Overall, it can be concluded that the kinetics of these different processes require a different approach for their scaling up and specific consideration of their characteristic reaction temperatures and rates should be evaluated.

  12. Accelerated simulation of the migration of solutes in sandy soils amended by sewage sludge: Transport and retardation

    NASA Astrophysics Data System (ADS)

    Etchebers, O.; Kedziorek, M. A.; Chossat, J.; Riou, C.; Bourg, A. C.

    2003-12-01

    A common way to dispose of sewage sludge is to spead it on agricultural land because of its high nutrient (P, N) and org C contents. However, in addition to these beneficial components, sewage sludge can contain toxic chemicals such as heavy metals. This farming technique is relatively recent (several decades, at most) and there is still a need for information concerning the processes controlling the fate of the heavy metals in the sludge. To study how fast they migrate in the soil profile, the transfer of water and associated solutes in both unsaturated and unsaturated conditions can be accelerated by centrifugation according to the equation: tsimulated = treal * g2. (t: time). In a lysimeter study (diameter 30 cm, depth 60 cm) carried out using the CEA-CESTA Silat 265 centrifuge, we simulated, at 20 g, several months of percolation in one day. Experiments were done on cores of sandy forest soil (podzol) to which various sewage sludges (containing 2 to 12 mg/kg Cd, 20 to 120 mg/kg Ni, 50 to 465 mg/kg Pb) and simulated rain were applied. Major ions migrated at an estimated rate of 6-8.5 mm/simulated day (2-3 m/simulated year), while heavy metals (Cd, Ni, Pb) were retarded by a factor of 1.5 to 2. The retention of these heavy metals is associated with the organic C content of the soil profile (rich in the upper horizon).

  13. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge.

    PubMed

    Paraíba, Lourival Costa; Queiroz, Sônia Cláudia Nascimento; Maia, Aline de Holanda Nunes; Ferracini, Vera Lúcia

    2010-07-15

    This study presents a model to simulate the organic substance concentrations in corn grains assuming that the substances in soil solution are absorbed via the transpiration stream by plants growing in soils fertilized with sewage sludge (SS). The model was applied and validated using soil and corn grain samples from a long-term field experiment with six successive yearly applications of SS to the soil. The following polycyclic aromatic hydrocarbons (PAHs) were simulated and evaluated in soil and grain samples: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benz(a)pyrene, benz(b)fluoranthene, benz(g,h,i)perylene, benz(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene. The PAH bioconcentration factors (BCF) in corn grains ranged from 1.57 to 10.97 L kg(-1). Polycyclic aromatic hydrocarbons with low soil distribution coefficients and high values of transpiration stream concentration factors (TSCF) are more likely to be absorbed by corn plants and accumulated in grains. It was possible to estimate and observe that highly lipophilic PAH molecules (heavy PAHs) show lower accumulative potential in corn grains than the less lipophilic ones (light PAHs). Sewage sludges containing significant concentrations of light PAHs with two, three or four benzene rings should be avoided as fertilizers in alimentary field crops.

  14. Bioconcentration of some macrominerals in soil, forage and buffalo hair continuum: A case study on pasture irrigated with sewage water

    PubMed Central

    Khan, Zafar Iqbal; Ahmad, Kafeel; Ashraf, Iqra; Gondal, Sumaira; Sher, Muhammad; Hayat, Zafar; Laudadio, Vito; Tufarelli, Vincenzo

    2014-01-01

    The present study aimed to evaluate the bioaccumulation of some macrominerals in grazing buffaloes fed forage irrigated with sewage water or canal water. In particular, the transfer of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) from soil to plant and in turn to animals was evaluated under sub-tropical environmental conditions. Samples of soil, forage and buffalo hair were collected and digested by wet method. Sodium and K concentrations were significantly higher in the soil but lower in the forages; however, Mg and Ca concentrations in both soil and forages were higher. The correlation between soil, forage and hair showed an imbalanced flow of Na, Mg and K and a balanced flow of Ca from soil to forage and then to animals. Based on the findings, the highest rates of transfer of minerals were found for sewage water treatment, whereas lowest rates were found for canal water treatment, except for Na. As the transfer of minerals depends on their bioavailability, the highest values may be due to the high rates of mineral uptake by plants. Thus, the high transfer rate of some elements by plants could become toxic in future causing detrimental effect to grazing livestock. PMID:25972745

  15. Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis.

    PubMed

    Charlton, Alex; Sakrabani, Ruben; Tyrrel, Sean; Rivas Casado, Monica; McGrath, Steve P; Crooks, Bill; Cooper, Pat; Campbell, Colin D

    2016-12-01

    The Long-Term Sludge Experiments (LTSE) began in 1994 as part of continuing research into the effects of sludge-borne heavy metals on soil fertility. The long-term effects of Zn, Cu, and Cd on soil microbial biomass carbon (Cmic) were monitored for 8 years (1997-2005) in sludge amended soils at nine UK field sites. To assess the statutory limits set by the UK Sludge (Use in Agriculture) Regulations the experimental data has been reviewed using the statistical methods of meta-analysis. Previous LTSE studies have focused predominantly on statistical significance rather than effect size, whereas meta-analysis focuses on the magnitude and direction of an effect, i.e. the practical significance, rather than its statistical significance. The results presented here show that significant decreases in Cmic have occurred in soils where the total concentrations of Zn and Cu fall below the current UK statutory limits. For soils receiving sewage sludge predominantly contaminated with Zn, decreases of approximately 7-11% were observed at concentrations below the UK statutory limit. The effect of Zn appeared to increase over time, with increasingly greater decreases in Cmic observed over a period of 8 years. This may be due to an interactive effect between Zn and confounding Cu contamination which has augmented the bioavailability of these metals over time. Similar decreases (7-12%) in Cmic were observed in soils receiving sewage sludge predominantly contaminated with Cu; however, Cmic appeared to show signs of recovery after a period of 6 years. Application of sewage sludge predominantly contaminated with Cd appeared to have no effect on Cmic at concentrations below the current UK statutory limit.

  16. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    PubMed

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  17. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.

    PubMed

    Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

    2014-07-15

    A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120°C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  18. Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.

    PubMed

    Bialowiec, Andrzej; Janczukowicz, Wojciech; Gusiatin, Zygmunt M; Thornton, Arthur; Rodziewicz, Joanna; Zielinska, Magdalena

    2014-03-01

    Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate.

  19. Application of a battery of biotests for the determination of leachate toxicity to bacteria and invertebrates from sewage sludge-amended soil.

    PubMed

    Malara, Anna; Oleszczuk, Patryk

    2013-05-01

    The objective of the study was to determine the leachates toxicity from sewage sludge-amended soils (sandy and loamy). Samples originated from a plot experiment realized over a period of 29 months. Two types of soil were fertilized with sewage sludges at the dose of 3 % (90 t/ha). Soil samples were taken after 0, 7, 17, and 29 months from the application of sewage sludges. Leachates were obtained according to the EN 12457-2 protocol. The following commercial tests were applied for the estimation of the toxicity: Microtox (Vibrio fischeri), Microbial assay for toxic risk assessment (ten bacteria and one yeast), Protoxkit F (Tetrahymena thermophila), Rotoxkit F (Brachionus calyciflorus), and Daphtoxkit F (Daphnia magna). The test organisms displayed varied toxicity with relation to the soils amended with sewage sludges. The toxicity of the leachates depended both on the soil type and on the kind of sewage sludge applied. Notable differences were also observed in the sensitivity of the test organisms to the presence of sewage sludge in the soil. The highest sensitivity was a characteristic of B. calyciflorus, while the lowest sensitivity to the presence of the sludges was revealed by the protozoa T. thermophila. Throughout the periods of the study, constant variations of toxicity were observed for most of the test organisms. The intensity as well as the range of those variations depended both on the kind of test organism and on the kind of sludge and soil type. In most cases, an increase of the toxicity of soils amended with the sewage sludges was observed after 29 months of the experiment.

  20. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    NASA Astrophysics Data System (ADS)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  1. Cadmium from soil amended with sewage sludge: effects and residues in swine.

    PubMed

    Hansen, L G; Hinesly, T D

    1979-02-01

    Liquid digested sewage sludge from a Chicago waste treatment plant was applied to experimental corn plots starting in 1968. The treatment plant received a high proportion of industrial effluent and the sludge averaged about 200 ppm Cd (dry weight). Corn grain harvested from the plots in 1974 was fed to growing swine for 56 days, and other swine were permitted to forage on the plots during the winters of 1975-76 and 1976-77. The sludge-fertilized corn contained higher concentrations of nutrient and toxic elements, but did not interfere with swine performance. Minor changes in hepatic microsomal oxidases and red blood cells accompanied significant increases in renal Cd and decreases in hepatic Fe. Swine foraging on these plots ingested considerable amounts of sludge soil and accumulated significantly higher concentrations of renal Cd. At lower rates of sludge application the swine outperformed those foraging both on control plots and those receiving heavy sludge applications in terms of weight gain, in-utero piglet survival, blood hemoglobin, and tissue Fe concentrations.

  2. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.

    PubMed

    Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai

    2014-08-01

    Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase.

  3. Effects of heavy metals contained in soil irrigated with a mixture of sewage sludge and effluent for thirty years on soil microbial biomass and plant growth

    NASA Astrophysics Data System (ADS)

    Katanda, Y.; Mushonga, C.; Banganayi, F.; Nyamangara, J.

    The use of sewage effluent as a source of nutrients and water in peri-urban crop production is widespread in developing countries. A study was conducted in 2005 at Crowborough and Firle farms (near Harare) to assess effect of Cd on microbial biomass and activity, effect of sewage sludge and effluent on soybean (Glycine max L (Merr)) nodulation, and uptake of Zn and Cu by lettuce ( Lactuca sativa L.), mustard rape ( Brassica juncea L.), covo ( Brassica napus) and star grass ( Cynodon nlemfuensis). The soil that was used had been irrigated with sewage sludge and effluent for 30 years. Soil collected from Crowborough farm was enriched with Cd to different concentrations (0.4-5 mg Cd kg -1 soil) using Cd(NO 3) 2 and microbial biomass C and N (chloroform-incubation extraction) and respiration rates (CO 2 evolution) determined. A similar experiment to determine the effect of repeated addition of small amounts of Cd to soil over time on the same parameters was conducted. Three vegetables and star grass were grown in a pot experiment and harvested at six weeks after transplanting for the determination of above ground dry matter yield, and Zn and Cu, uptake. In another pot experiment, two soybean varieties, Magoye and Solitaire, were harvested after eight weeks and nodule number and effectiveness, and above ground dry matter yield were then determined. Cd significantly decreased biomass C (68%) and N (73%). Microbial respiration also significantly decreased. It was concluded that long-term application of sewage sludge and effluent to soil has negative effects on soil micro organisms, including Rhizobia. These micro organisms are essential for N-fixation. The damage to Rhizobia, caused diminished nodulation of soybean. Mustard rape and lettuce can accumulate Zn and Cu beyond toxic limits without apparent reduction in growth thereby posing a serious concern to the food chain. The consumption of mustard rape and lettuce grown on soil amended with sewage sludge and effluent at

  4. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    PubMed

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer.

  5. Monitoring of Lead (Pb) Pollution in Soils and Plants Irrigated with Untreated Sewage Water in Some Industrialized Cities of Punjab, India.

    PubMed

    Sikka, R; Nayyar, V K

    2016-04-01

    Soil and plant samples were collected from sewage and tubewell irrigated sites from three industrially different cities of Punjab (India) viz. Ludhiana, Jalandhar and Malerkotla. The extent of lead (Pb) pollution was assessed with respect to background concentration of tubewell irrigation. In sewage irrigated surface soil layer (0-15 cm), the extent of Pb accumulation was 4.61, 4.20 and 2.26 times higher than those receiving tubewell irrigation sites in Ludhiana, Jalandhar and Malerkotla, respectively. Multiple regression analysis showed that soil pH, organic carbon, calcium carbonate and clay were significant soil parameters explaining the variation in available soil Pb. The mean Pb content in plants receiving sewage irrigation was 4.56, 5.48 and 2.72 times higher than tubewell irrigation in Ludhiana, Jalandhar and Malerkotla, respectively. The content of Pb in plants receiving sewage irrigation revealed that, assuming a weekly consumption of 500-1000 g of vegetables grown on sewage irrigated soils by an adult of 70 kg body weight, the Pb intake may far exceed the World Health Organization proposed tolerable weekly intake of Pb.

  6. Transport of sewage molecular markers through saturated soil column and effect of easily biodegradable primary substrate on their removal.

    PubMed

    Foolad, Mahsa; Ong, Say Leong; Hu, Jiangyong

    2015-11-01

    Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area. The aim of this study was to evaluate transport of nine selected molecular markers through saturated soil column experiments. The selected sewage molecular markers in this study were six PPCPs including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), crotamiton (CTMT), diethyltoluamide (DEET), salicylic acid (SA) and three ASs including acesulfame (ACF), cyclamate (CYC), and saccharine (SAC). Results confirmed that ACF, CBZ, CTMT, CYC and SAC were suitable to be used as sewage molecular markers since they were almost stable against sorption and biodegradation process during soil column experiments. In contrast, transport of ACT, CF and DEET were limited by both sorption and biodegradation processes and 100% removal efficiency was achieved in the biotic column. Moreover, in this study the effect of different acetate concentration (0-100mg/L) as an easily biodegradable primary substrate on a removal of PPCPs and ASs was also studied. Results showed a negative correlation (r(2)>0.75) between the removal of some selected sewage chemical markers including ACF, CF, ACT, CYC, SAC and acetate concentration. CTMT also decreased with the addition of acetate, but increasing acetate concentration did not affect on its removal. CBZ and DEET removal were not dependent on the presence of acetate.

  7. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.

  8. The influence of the Cucurbitaceae on mitigating the phytotoxicity and PCDD/PCDF content of soil amended with sewage sludge.

    PubMed

    Urbaniak, Magdalena; Zieliński, Marek; Wyrwicka, Anna

    2017-03-04

    The study evaluates the impact of sewage sludge on OECD - Organization for Economic Cooperation and Development and vegetable soil phytotoxicity, measured using three test species: Lepidium sativum, Sinapis alba and Sorghum saccharatum, and total and TEQ PCDD/PCDF (toxic equivalency polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans) soil concentration, measured using HRGC/HRMS - High Resolution Gas Chromatography/High Resolution Mass Spectrometry. It also evaluates the effect of zucchini and cucumber cultivation during 5-weeks period on mitigating these parameters. The application of 3, 9 and 18 t/ha of sewage sludge gradually increases the phytotoxicity of both OECD and vegetable soil. In the case of OECD soil, the highest roots growth inhibitions were observed for S. alba (73%, 86% and 87%, respectively) and the lowest for S. saccharatum (7%, 59% and 70%), while in vegetable soil inhibitions were averagely 25% lower. Sludge application also led to a 38% (3 t/ha), 169% (9 t/ha) and 506% (18 t/ha) increase in PCDD/PCDF concentration, and the TEQs were augmented by 15%, 159% and 251%. Both soil phytotoxicity and total and TEQ PCDD/PCDF concentrations were diminished as a result of zucchini and cucumber cultivation. The maximum reduction of soil phytotoxicity (83%) was observed as an effect of cucumber cultivation, while zucchini was 11% less effective. Zucchini, in turn, was more efficient in PCDD/PCDF removal (37% reduction), followed by cucumber (24%). Such differences were not observed in the case of TEQ reductions (68% and 66% for zucchini and cucumber cultivation, respectively).

  9. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China.

    PubMed

    Li, Xiaojun; Li, Peijun; Lin, Xin; Gong, Zongqiang; Fan, Shuxiu; Zheng, Le; Verkhozina, E A

    2008-08-01

    Spatial distribution and sources of 16 priority polycyclic aromatic hydrocarbons (16 EPA-PAHs) in soils were studied in Shenfu Irrigation Area (SIA) located at northeast of China. SIA (1.3 x 10(4) ha) was an important agricultural farmland irrigated with oil-sewage since the 1960s. Soil profiles at 91 sites controlling all SIA were sampled. The results demonstrated that four- and five-ring PAHs accounted for 71.2% and 73.0% of the total PAHs in surface (0-20 cm) and subsurface (20-30 cm) soil, respectively. Phenanthrene (Phe), Fluoranthene (Fla), Pyrene (Pyr), Benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP) were identified as five dominant individual PAHs. Generally, there was a decreasing trend in concentrations of 16 EPA-PAHs from upper to lower reaches (by distance away from source) within 0.6-12.36 mg kg(-1) and 0.04-4.99 mg kg(-1) in surface and subsurface soil, respectively. The concentrations of 16 EPA-PAHs in the surface soil were threefold higher than those in the subsurface soil. A combination of grass, wood or coal combustion and petroleum combustion in surface soil and a combination of grass, wood or coal combustion and petroleum sources in subsurface soil might be the most significant contributors of 16 EPA-PAHs in SIA, indicating different pollution periods.

  10. Effect of sewage sledge and their bio-char on some soil qualities in Second year cropping

    NASA Astrophysics Data System (ADS)

    fathi dokht, hamed; Movahedi Naeini, Seyed Alireza; Dordipor, Esmaeil; mirzanejad, moujan

    2016-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of sewage sledge and their bio-char on the soil physical properties, nutrient status and plant production in Second year cropping. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 7%.

  11. Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions

    SciTech Connect

    Tsadilas, C.D.; Dimoyiannis, D.; Matsi, T.

    1995-12-31

    The influence of sewage sludge application on some soil properties and on the growth of wheat and corn plants were studied with pot experiments. The distribution of heavy metals among the various soil fractions and their availability to plants were also investigated in relation to soil pH. The results showed that sewage sludge application significant influenced pH, organic matter content, electrical conductivity and available phosphorus. Soil pH increased and tended to hold steady near neutrality while organic matter content, electrical conductivity and available phosphorus (P) increased. For the heavy metals investigated, only total copper (Cu) and zinc (Zn) increased but were below the limits set by the EC. A significant increase was observed in the concentrations of cadmium (Cd), nickel (Ni), Cu, and Zn extracted by DTPA while iron (Fe) and manganese (Mn) were reduced showing a strong relationship to soil pH. For the metals sequentially extracted it was observed that chromium (Cr), Ni, Cu, and lead (Pb) extracted by NaOH, EDTA, and HNO3 increased significantly with the increase of sludge application, while the respective forms of Zn and Pb were not affected. NaOH-Cr, NaOH-Cu, and NaOH-Pb were significantly related to organic matter content but KNO3-Pb were significantly related to soil pH. Wheat and corn clearly responded to sludge application. All metals except Fe showed increased concentrations in dry matter with increasing sludge rate, but were below toxicity levels. In contrast, K concentration in corn plants was reduced with increasing sludge rate. All metals, except Fe, extracted by DTPA were significantly correlated with the metal concentration in wheat dry matter while for the corn the results were variable. 25 refs., 15 tabs.

  12. [Evaluation of the content of harmful substances in the air of sewage treatment facilities of Astrakhan gas processing plant].

    PubMed

    Boĭko, V I; Dotsenko, Iu I; Boĭko, O V

    2013-01-01

    Despite the fact that the progress in regard to the degree of processing of natural gas and condensate in the Astrakhan gas processing plant is significant, necessary hygienic normalization of working environment on the part of the content of harmful substances in the air of working areas is still unable. Harmful substances were detected in the breathing zone of workers of sewage treatment plant almost constantly. In this connection there is a need in the further joint work hygienists, designers and manufacturers for the development and justification of new, more effective decisions - both on the part of as well technology as hardware design - with the purpose of improvement of working conditions.

  13. Toxicity of OTC to Ipomoea aquatica Forsk. and to microorganisms in a long-term sewage-irrigated farmland soil.

    PubMed

    Ma, Tingting; Chen, Li'ke; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-08-01

    Water spinach (Ipomoea aquatic Forsk.) was selected to investigate the effects of oxytetracycline (OTC) on the toxicity of soil contaminated by long-term sewage irrigation. After acute toxicity test in petri dish at nine different OTC-spiked levels for 48 h, the germination rate was found to be generally inhibited in all treatments treated with OTC but the root elongation and activities of several antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were either forward or backward stimulated to varying extent. During a 60-day sub-chronic toxicity test by means of a pot experiment, activities of SOD, POD and CAT in both the leaf and root tissue at 25 mg OTC per kg soil (dry weight) and in root tissue at 1 mg OTC per kg soil (dry weight) were significantly different than those in other treatments, which also indicated the higher sensitivity of the root. The foliar photosynthetic rate, stomatal conductance and transpiration rate were all gradually inhibited in spite of elevated water use efficiency under the pressure of the different OTC concentrations, which were highly significant different at 10 mg OTC per kg soil (dry weight). Indices of soil microbial diversity at 4 mg OTC kg(-1) soil were significantly different from those of the control, indicating the potential adverse effects of OTC to soil microorganisms. The results suggest that the introduction of OTC could damage both plants and soil microorganisms, and during sub-chronic incubation, the sensitivity of different indices generally followed the order of root tissue antioxidant enzyme activities, soil microbial diversity indices, leaf photosynthesis-related index and leaf tissue enzyme antioxidant activities. In addition, the application of livestock and poultry manure containing pollutants like OTC in farmland soil, especially if the soil has been contaminated before, should be taken more seriously in the context of the current pursuit of increased agricultural

  14. Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Börjesson, G.; Kätterer, T.; Kirchmann, H.

    2012-04-01

    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields

  15. Sustainable measures for sewage sludge treatment - evaluating the effects on P reaction in soils and plant P uptake

    NASA Astrophysics Data System (ADS)

    Shenker, Moshe; Einhoren, Hana

    2016-04-01

    Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.

  16. Improving the mining soil quality for a vegetation cover after addition of sewage sludges: inorganic ions and low-molecular-weight organic acids in the soil solution.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán-Carrizosa, Ignacio; Fernández-Espinosa, Antonio J

    2015-03-01

    We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment.

  17. Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays

    SciTech Connect

    Chaudri, A.M.; Knight, B.P.; Barbosa-Jefferson, V.L.

    1999-06-01

    The effects of increasing concentrations of Zn and Cu in soil pore water from soils of a long-term sewage sludge field experiment on microbial bioluminescence were investigated. Concentrations of total soluble Zn, free Zn{sup 2+}, and soluble Cu increased sharply in soil pore water with increasing total soil metal concentrations above 140 mg of Zn kg{sup {minus}1} or 100 mg of Cu kg{sup {minus}1}. Two luminescence bioassays were tested, based on two bacteria (Escherichia coli and Pseudomonas fluorescens) with the lux genes encoding bacterial luminescence inserted into them. The bioluminescence response of the two microorganisms declined as total soil Zn, soil pore water soluble Zn, and soil pore water free Zn{sup 2+} concentrations increased. The EC{sub 25} values for E. coli and P. fluorescens were 1.3 {+-} 0.2 and 4.3 {+-} 0.5 mg L{sup {minus}1} on a free Zn{sup 2+} basis, respectively. The EC{sub 50} values were 2.5 {+-} 0.2 and 9.6 {+-} 0.9 mg of free Zn{sup 2+} L{sup {minus}1}, respectively. Copper had no significant effect on bioluminescence in the two assays, even at the largest soil pore water concentration of about 620 {micro}g L{sup {minus}1}, corresponding to a total Cu concentration in bulk soil of about 350 mg kg{sup {minus}1}. Thus, the decline in bioluminescence of the two assays was ascribed to increasing soil pore water free Zn{sup 2+} and not soluble Cu.

  18. Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis.

    PubMed

    Kim, Minhee; Li, Loretta Y; Gorgy, Tamer; Grace, John R

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) are still present in sewage sludge and sludge-amended soil, even though commercial PBDEs were prohibited or voluntarily phased out several years ago. In this study, levels and compositional profiles of seven major PBDE congeners in sludge are assessed in relation to their usage patterns in commercial products, and years of being banned and phased out in North America, Europe, and Asia. Annual accumulations and future long-term changes of PBDE in sludge-amended soil are estimated. BDE-209 has the highest concentration, followed by BDE-99 and BDE-47. The highest concentrations, up to 23,500 ng g(-1), of PBDEs in sludge were found in North America until 2004-2007, whereas since then sludge PBDE concentrations, up to 6600 ng g(-1) have been higher in Asia than on the other two continents. The amount of sludge applied and the soil organic matter content play important roles in determining PBDE concentrations in sludge-amended soil. The estimated concentrations of BDE-47, -99, and -209 in soils receiving sludge applications during the past 15 years are 40-300 times higher than in soils after the initial sludge application. The accumulated concentrations of BDE-47 and BDE-99 are expected to decrease by 99% between 2016 and 2100, whereas the decrease in the BDE-209 concentration is predicted to be approximately 87%.

  19. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain.

    PubMed

    Meena, Ramu; Datta, S P; Golui, Debasis; Dwivedi, B S; Meena, M C

    2016-07-01

    A case study was undertaken to assess the risk of sewage-irrigated soils in relation to the transfer of trace elements to rice and wheat grain. For this purpose, peri-urban agricultural lands under the Keshopur Effluent Irrigation Scheme (KEIS) of Delhi were selected. These agricultural lands have been receiving irrigation through sewage effluents since 1979. Sewage effluent, groundwater, soil, and plant (rice and wheat grain) samples were collected with GPS coordinates from this peri-urban area. Under wheat crop, sewage irrigation for four decades resulted into a significant buildup of zinc (141 %), copper (219 %), iron (514 %), nickel (75.0 %), and lead (28.1 %) in sewage-irrigated soils over adjacent tube well water-irrigated ones. Under rice crop, there was also a significant buildup of phosphorus (339 %), sulfur (130 %), zinc (287 %), copper (352 %), iron (457 %), nickel (258 %), lead (136 %), and cadmium (147 %) in sewage-irrigated soils as compared to that of tube well water-irrigated soils. The values of hazard quotient (HQ) for intake of trace toxic elements by humans through consumption of rice and wheat grain grown on these sewage-irrigated soils were well within the safe permissible limit. The variation in Zn, Ni, and Cd content in wheat grain could be explained by solubility-free ion activity model (FIAM) to the extent of 50.1, 56.8, and 37.2 %, respectively. Corresponding values for rice grain were 49.9, 41.2, and 42.7 %, respectively. As high as 36.4 % variation in As content in rice grain could be explained by solubility-FIAM model. Toxic limit of extractable Cd and As in soil for rice in relation to soil properties and human health hazard associated with consumption of rice grain by humans was established. A similar exercise was also done in respect of Cd for wheat. The conceptual framework of fixing the toxic limit of extractable metals and metalloid in soils with respect to soil properties and human health hazard under the

  20. Effects of treated sewage sludge levels on temporal variations of some soil properties of a Typic Xerofluvent soil in Menemen Plain, Western Anatolia, Turkey.

    PubMed

    Delibacak, S; Okur, B; Ongun, A R

    2009-01-01

    The aim of this study is to determine effects of treated sewage sludge (TSS) levels as an organic matter (OM) resource on temporal variations of some soil properties of a Typic Xerofluvent soil. The experiment was conducted in Menemen Plain, in the Western Anatolia Region of Turkey (latitudes 38 degrees 34'48.22''-38 degrees 34'49.24'' N; longitudes 27 degrees 1'23.05-27 degrees 1'24.14'' E) in the years of 2003 and 2004. Moist TSS was added to the soil at the rates of 0, 30, 60 and 90 t ha(-1) on May 1, 2003. Peanut (Arachis hypogaea) was planted as first crop. On the other hand, mixture of green barley (Hordeum vulgare) and common vetch (Vicia sativa L.) was planted as second crop. During the experiment, soil samples were taken in five different periods (1st, June 18, 2003; 2nd, November 13, 2003; 3rd, April 30, 2004; 4th, October 10, 2004 and 5th, May 12, 2004). The results showed that increasing TSS application to Typic Xerofluvent soil was significantly increased total salt, OM, total porosity, micro porosity, macro porosity, field capacity, wilting point, available water content, structure stability index and aggregation percentage values of soil when compared with control. Meanwhile, particle density, dry bulk density and nonaggregated silt + clay values of soil decreased. On the other hand, soil reaction (pH), lime content and total silt + clay values of soil did not significantly change. In the course of time, depending on decomposing of TSS organic materials in soil, effect of TSS levels on soil properties decreased particularly in the last periods. For this reason, it can be recommended that 90 t ha(-1) moist TSS can be added once in 2 years for improving soil properties of Typic Xerofluvent soil, which are characterized by low OM content.

  1. Determination of insoluble soap in agricultural soil and sewage sludge samples by liquid chromatography with ultraviolet detection.

    PubMed

    Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Vílchez, José L; Crovetto, Guillermo; Verge, Coral; de Ferrer, Juan A

    2010-11-01

    We have developed a new analytical procedure for determining insoluble Ca and Mg fatty acid salts (soaps) in agricultural soil and sewage sludge samples. The number of analytical methodologies that focus in the determination of insoluble soap salts in different environmental compartments is very limited. In this work, we propose a methodology that involves a sample clean-up step with petroleum ether to remove soluble salts and a conversion of Ca and Mg insoluble salts into soluble potassium salts using tripotassium ethylenediaminetetraacetate salt and potassium carbonate, followed by the extraction of analytes from the samples using microwave-assisted extraction with methanol. An improved esterification procedure using 2,4-dibromoacetophenone before the liquid chromatography with ultraviolet detection analysis also has been developed. The absence of matrix effect was demonstrated with two fatty acid Ca salts that are not commercial and are never detected in natural samples (C₁₃:₀ and C₁₇:₀). Therefore, it was possible to evaluate the matrix effect because both standards have similar environmental behavior (adsorption and precipitation) to commercial soaps (C₁₀:₀) to C₁₈:₀). We also studied the effect of the different variables on the clean-up, the conversion of Ca soap, and the extraction and derivatization procedures. The quantification limits found ranged from 0.4 to 0.8 mg/kg. The proposed method was satisfactorily applied for the development of a study on soap behavior in agricultural soil and sewage sludge samples.

  2. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    PubMed

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  3. Monitoring heavy metal concentrations in leachates from a forest soil subjected to repeated applications of sewage sludge.

    PubMed

    Egiarte, G; Pinto, M; Ruíz-Romera, E; Camps Arbestain, M

    2008-12-01

    The aim of the study was to establish whether the repeated application of sewage sludge to an acid forest soil (Dystric Cambisol) would lead to short-term groundwater contamination. Sludge was applied at four loading rates (0, 2.4, 17 and 60 Mg ha(-1)) in two consecutive years and leachates were analysed. Heavy metal inputs to soils at the lowest dose were below EC regulations but, at higher doses, limits for Zn, Cd, Cr and Ni were exceeded. Repeated application of sludge at 60 Mg ha(-1) resulted in significantly (P<0.05) higher concentrations of Zn, Cd, Cr and Ni in the leachates than with other treatments. The drinking water standards for Cd and Ni were surpassed in all treatments. Control plots were contaminated by groundwater flow despite the existence of buffer zones between plots. This complicated interpretation of the results, highlighting the importance of careful design of this type of experiment.

  4. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  5. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil.

    PubMed

    Al-Kindi, Sumaiya; Abed, Raeid M M

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2-3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC-MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7-1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  6. Evaluation of Emission of Greenhouse Gases from Soils Amended with Sewage Sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in concentrations of various greenhouse gases originated by various human activities, including agricultural origin, could contribute to climate change. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in ...

  7. Final Environmental Assessment: Construction of New Arnold Village Sewage Treatment Plant Arnold Air Force Base, Tennessee

    DTIC Science & Technology

    2004-05-01

    Vulpes vulpes ATL/P:\\ARNOLDAFB\\315331DO34\\SEWAGE TREATMENT PLANT EA\\CD\\FINAL STP EA 05_05.DOC 3-11 TABLE 3-2 Common Wildlife Species Occurring in Arnold...frog is disjunct, separated from the nearest other population by several hundred miles and may represent a distinct, as yet undescribed, subspecies ...The three subspecies of the gopher frog recognized in the scientific literature are considered species of concern by the USFWS. Many of the rare

  8. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application.

    PubMed

    Cai, Quan-Ying; Mo, Ce-Hui; Wu, Qi-Tang; Zeng, Qiao-Yun

    2008-04-01

    We studied the accumulation of polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in a latosolic red soil and radish (Raphanus sativus) with application of sewage sludge at rates of 10, 20 and 40 g kg(-1) soil or compost at rate of 10 g kg(-1) soil. In radish the concentrations of individual PAHs and PAEs varied from non-detectable to 803 microg kg(-1) dry weight (d.w.) and from non-detectable to 2048 microg kg(-1) d.w., respectively. Compared to the control, higher application rates of sewage sludge resulted in pronounced increases in shoot, root and soil concentrations of PAHs and PAEs. PAE concentrations in radish grown in soil spiked with sludge compost were higher while the PAH concentrations were comparable to those receiving 10 g kg(-1) of sewage sludge. However, the root biomass of radish in soil amended with compost was significantly higher and the shoot-to-root ratio was significantly lower than in the other treatments. The bioconcentration factors (BCFs, the ratio of contaminant concentration in plant tissue to the soil concentration) of di-n-butyl phthalate and di(2-ethylhexyl) phthalate in both shoots and roots and of total PAH concentrations in roots were less than 1.0, but some BCFs for individual PAHs were high with a maximum value of 80.

  9. Effects of anthracene, pyrene and benzo[a]pyrene spiking and sewage sludge compost amendment on soil ecotoxicity during a bioremediation process.

    PubMed

    Hamdi, Helmi; Manusadzianas, Levonas; Aoyama, Isao; Jedidi, Naceur

    2006-11-01

    The fate of spiked anthracene, pyrene and benzo[a]pyrene in soil with or without sewage sludge compost was assessed during a 6-month bioremediation process simulating landfarming. Bioassays and physico-chemical analyses were employed to monitor toxicity change in soil samples and elutriates through ten sampling campaigns. Pearson product-moment correlation coefficient was determined to measure the strength of relationship between bioassays and physico-chemical analyses. The PAH dissipation in soil was enhanced after the first water addition, and the remaining amounts at the end of the experiment were positively correlated to the number of benzene rings and the presence of sewage sludge compost. Toxicity of soil elutriates to Daphnia magna was evident at early stages, originating exclusively from sewage sludge compost amendment. The lettuce root elongation was continuously inhibited by elutriates for all the treatments including control soil, probably due to high salinity or to unaddressed leachable phytotoxic compounds that were present in the experimental soil. The newly developed direct solid-phase chronic toxicity test using ostracod (Heterocypris incongruens) succeeded in evaluating the soil-bound PAH toxicity, as PAHs could not be detected in elutriates.

  10. The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil

    SciTech Connect

    Carbonell-Barrachina, A.; Jugsujinda, A.; DeLaune, R.D.; Patrick, W.H. Jr.; Burlo, F.; Sirisukhodom, S.; Anurakpongsatorn, P.

    1999-07-01

    Chemical fractionation procedures were used to quantify the effect of the sediment redox and pH conditions on the adsorption and solubility of arsenic (As) in municipal sewage sludge and sewage sludge-amended soil. Sludge and sludge-amended soil were incubated in microcosms in which Eh-pH conditions were controlled. Samples were sequentially extracted to determine As in various chemical forms (water soluble, exchangeable, bound to carbonates, bound to iron (Fe) and manganese (Mn) oxides, bound to insoluble organics and sulfides) and the chemically inactive fraction (mineral residues). In both sewage sludge and sludge-amended soil, As chemistry was governed by large molecular humic matter and sulfides and Fe and Mn-oxides. Solubility of As remained low and constant under both aerobic and anaerobic conditions in sludge-amended soil. After dissolution of Fe and Mn-oxides, As{sup 5+} was released into sludge solution, reduced to As{sup 3+} and likely precipitated as sulfide. Therefore, an organic amendment rich in sulfur compounds, such as sewage sludge, would drastically reduce the potential risks derived from As pollution under highly anoxic conditions by precipitation of this toxic metalloid as insoluble and immobile sulfides.

  11. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    PubMed

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC

  12. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-06

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  13. Organic contaminants in an agricultural soil with a known history of sewage sludge amendments: Polynuclear aromatic hydrocarbons

    SciTech Connect

    Wild, S.R.; Waterhouse, K.S.; Jones, K.C. ); McGrath, S.P. )

    1990-11-01

    The PAH content of soils from a long-term agricultural experiment that received 25 separate sewage sludge applications from 1942 to 1961 is presented along with data from an untreated control plot and a plot that received repeated applications of farmyard manure. Archived plough layer (0-23 cm) soil samples were collected, stored, and processed in the same manner between 1942 and 1984 (i.e., before, during, and after sludge amendments) and samples of the applied sludges were available for analysis. Soil {Sigma} PAH concentrations increased between 1942 and 1960 on the sludge-amended plot and subsequently showed a steady decline. By 1984 the sludge-amended plot still contained over 3 times more {Sigma} PAH than the corresponding control soil. By 1960 {approximately} 70% of the {Sigma} PAH load added in the sludge was unaccounted for; this had increased to nearly 85% by 1984. Some compound-specific trends are apparent in the data; generally, the higher molecular weight PAHs have been more persistent. It is argued that biodegradation and transboundary transfers due to ploughing are the two main loss mechanisms.

  14. Effects of biochar on organic matter dynamics in unamended soils and soils amended with municipal solid waste compost and sewage sludge

    NASA Astrophysics Data System (ADS)

    Plaza, César; Giannetta, Beatrice; Fernández, José M.; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2015-04-01

    Biochar is a loosely-defined C-rich solid byproduct obtained from biomass pyrolysis, which is intended for use as a soil amendment. A full understanding of the agronomic and environmental potential of biochar, especially its potential as a C sequestration strategy, requires a full understanding of its effects on native soil organic matter, as well as of its interactions with other organic amendments applied to soil. Here we determined the organic C distribution in an arable soil amended with biochar at rates of 0 and 20 t ha-1 in a factorial combination with two types of organic amendment (viz. municipal solid waste compost and sewage sludge) in a field experiment under Mediterranean conditions. The analysis of variance revealed that biochar and organic amendment factors increased significantly total organic C and mineral-associated organic C contents, and had little effect on intra-macroaggregate and intra-microaggregate organic C pools. Free soil organic C content was significantly affected by biochar application, but not by the organic amendments. Especially noteworthy were the interaction effects found between the biochar and organic amendment factors for mineral-associated organic C contents, which suggested a promoting action of biochar on C stabilization in organically-amended soils.

  15. Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination.

    PubMed

    Nogueira, Thiago Assis Rodrigues; Franco, Ademir; He, Zhenli; Braga, Vivian Santoro; Firme, Lucia Pittol; Abreu, Cassio Hamilton

    2013-01-15

    A field experiment was carried out to study the effect of application rates of sewage sludge and mineral nitrogen and phosphate fertilizers on As, Ba, Cd, Cr, Cu, Ni, Pb, Se, and Zn concentration in soil, cane plant, and first ratoon (residual effect) in a Typic Hapludult soil. To allow an analysis by means of response surface modeling, four rates of sewage sludge (0, 3.6, 7.2 and 10.8 t ha(-1), dry base), of N (0, 30, 60 and 90 kg ha(-1)) and of P(2)O(5) (0, 60, 120 and 180 kg ha(-1)) were applied in randomized block design, in a 4 × 4 × 4 factorial scheme, with confounded degrees of freedom for triple interaction, with two replications. To evaluate the residual effect of the sludge applied to cane plant on the cane ratoon growth, mineral NK fertilizers were applied at the rates of 120 kg ha(-1) N and 140 kg ha(-1) of K(2)O, on all treatments. The application rates of mineral nitrogen and phosphate fertilizers did not affect statistically the heavy metal concentration in the soil and in the sugarcane plants. Sewage sludge application increased As, Cd, Cu, Ni, Pb, and Zn concentrations in soil, but values did not exceed the quality standard established by legislation for agricultural soils. Although the concentrations of metals in the plants were very low, the uptake of heavy metal by sugarcane plants was generally increased by sewage sludge doses. The use of sewage sludge based on N criteria introduces a small amount of heavy metal into the agricultural system, however it poses no hazard to the environment.

  16. Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings.

    PubMed

    Garrido, Tatiana; Mendoza, Jorge; Arriagada, Francisco

    2012-01-01

    The effect of mine tailings and sewage sludge was evaluated on sorption, desorption, availability and distribution of copper in two soils, one high (sandy soil) and one low in copper (clay soil). In both soils contaminated by mine tailings the copper sorption capacity and the affinity of the substrate for the metal decreased substantially compared to the uncontaminated soils, however, the sorption remained always high in the clay soil substrates. In the substrates with sandy soil, the high Cu content and lower clay content were determining factors in the lower magnitude of the sorption. Similarly, metal desorption was closely related to these two parameters, and it was higher in clay soil with lower pH. In general, the application of sewage sludge favored the sorption of Cu in soils contaminated and uncontaminated with mine tailings, and in all cases desorption decreased, an effect that remained for at least 30 days. Simple extraction of Cu with CaCl2 and diethylenetriaminepentaacetic acid gave contradictory results, so a careful choice of the procedure is required, depending on the level of metal in the soil and on the acting principle of the extracting agent. In that relation, more complete information on the changes in the metal forms was obtained by application of the sequential extraction procedure proposed by the European Community Bureau of Reference.

  17. 1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF STORAGE SHED (BLDG 773). SECURITY FENCE EAST OF SEWAGE TREATMENT PLANT. - Vandenberg Air Force Base, Space Launch Complex 3, Sewage Treatment Plant, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Evaluation of the co-application of fly ash and sewage sludge on soil biological and biochemical quality.

    PubMed

    Masto, Reginald E; Sunar, Kapil K; Sengupta, Taniya; Ram, Lal C; Rout, T K; Selvi, Vetrivel A; George, Joshy; Sinha, Awadhesh K

    2012-01-01

    Disposal of sewage sludge (SS) and fly ash (FA) is a multifaceted problem, which can affect environmental quality. FA has the potential to stabilize SS by reducing metal availability and making the SS suitable for application in the agricultural sector. An experiment was performed to evaluate soil biological quality changes with the combined amendment of SS and FA (fluidized bed combustion ash (FBCA) and lignite fly ash (LFA)). SS was amended with 0, 10, 30, 50 and 100%, (w/w) of FA, and then the FA-SS mixtures were incubated with red soil at 1:1 (v/v). Soil quality parameters such as pH, electrical conductivity, N, soil enzyme activities such as dehydrogenase (DHA), urease (URE), and catalase (CAT), and microbial biomass carbon (MBC) were evaluated at 20, 30, and 60 days of incubation, pH and EC increased with FA-SS dose; however, N decreased. DHA and URE were found to be increased with 10% LFA amendment; thereafter it decreased. However, URE increased up to 30% of FBCA. CAT and MBC increased with both FA amendments, even up to addition of 50% FA. Bioavailable Zn, Cu, and Co contents were decreased by the addition of FA. Principal component analysis showed that pH is the most influential factor. MBC appears to be a sensitive soil indicator for the effects that result from the addition of FA-SS. Phytotoxicity studies with Zea mays showed optimum performance at 30% FA. Addition of 10-30% FBCA or LFA to SS has a positive advantage on soil biological quality.

  19. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  20. Self-purification of loamy-sandy agrosoddy-podzolic soils polluted by sewage sludge in the eastern Moscow region

    NASA Astrophysics Data System (ADS)

    Plekhanova, I. O.

    2009-06-01

    For 12 years, the contents of Zn and Cd compounds in the plow horizons of the loamy-sandy agrosoddy-podzolic soils polluted due to the application of sewage sludge decreased by 2 times; the Cu and Ni concentrations became lower by 1.5 times. The thickness of the polluted layer increased from 20 to 45 cm. The reserves of Cd, Zn, and Cu in the 0- to 50-cm-thick layer decreased, on the average, by 22, 14, and 9%, respectively. The changes in the fractional composition of the metal compounds were found. The sum of the Cu and Ni compounds increased due to the fraction of these metals bound with organic matter; for the Cd compounds, due to the weakly adsorbed fraction.

  1. Evaluation on the air-borne ultrasound-assisted hot air convection thin-layer drying performance of municipal sewage sludge.

    PubMed

    Sun, G Y; Chen, M Q; Huang, Y W

    2017-01-01

    The thin-layer drying behavior of the municipal sewage sludge in a laboratory-scale hot air forced convective dryer assisted with air-borne ultrasound was investigated in between 70 and 130°C hot air temperatures. The drying kinetics in the convective process alone were compared to that for ultrasound-assist process at three ultrasound powers (30, 90, 150W). The average drying rates within whole drying temperature range at ultrasound powers of 30, 90 and 150W increased by about 22.6%, 27.8% and 32.2% compared with the convective drying alone (without ultrasound). As the temperature increasing from 70°C to 130°C, there were maximum increasing ratios for the effective moisture diffusivities of the sewage sludge in both falling rate periods at ultrasonic power of 30W in comparison with other two high powers. In between the ultrasound powers of 0 and 30W, the effect of the power on the drying rate was significant, while its effect was not obvious over 30W. Therefore, the low ultrasonic power can be just set in the drying process. The values of the apparent activation energy in the first falling rate period were down from 13.52 to 12.78kJmol(-1), and from 17.21 to 15.10kJmol(-1) for the second falling rate period with increasing the ultrasonic power from 30 to 150W. The values of the apparent activation energy in two falling rate periods with the ultrasound-assist were less than that for the hot air convective drying alone.

  2. Pesticides in western Canadian mountain air and soil.

    PubMed

    Daly, Gillian L; Lei, Ying D; Teixeira, Camilla; Muir, Derek C G; Wania, Frank

    2007-09-01

    The distribution of organochlorine pesticides (OCP; in past and current use) in the mountains of western Canada was determined by sampling air, soil, and lichen along three elevational transects in 2003-2004. Two transects west of the Continental Divide were located in Mount Revelstoke and Yoho National Park, while the Observation Peak transect in Banff National Park is east of the divide. XAD-based passive air samplers, yielding annually averaged air concentrations, were deployed, and soils were collected at all 22 sampling sites, whereas lichen were only sampled in Revelstoke. Back trajectory analysis showed limited air mass transport from the Prairies to the east, but a high frequency of air arriving from the southwest, which includes agricultural regions in British Columbia and Washington State. Endosulfan, dieldrin, and a-hexachlorocyclohexane were the most prevalent OCPs in air and soil; hexachlorobenzene was only abundant in air; chlorothalonil, dacthal, and pentachloronitrobenzene were also consistently present. OCP air concentrations were similar across the three transects, suggesting efficient atmospheric mixing on a local and regional scale. Soil concentrations and soil/air concentration ratios of many OCPs were significantly higher west of the Continental Divide. The soil and lichen concentrations of most OCPs increased with altitude in Revelstoke, and displayed maxima at intermediate elevations at Yoho and Observation Peak. These distribution patterns can be understood as being determined by the balance between atmospheric deposition to, and retention within, the soils. Higher deposition, due to more precipitation falling at lower temperatures, likely occurs west of the divide and at higher elevations. Higher retention, due to higher soil organic matter content, is believed to occur in soils below the tree line. Highest pesticide concentrations are thus found intemperate mountain soils that are rich in organic matter and receive large amounts of cold

  3. TECHNOLOGY ASSESSMENT OF SOIL VAPOR EXTRACTION AND AIR SPARGING

    EPA Science Inventory

    Air sparging, also called "in situ air stripping and in situ volatilization" injects air into the saturated zone to strip away volatile organic compounds (VOCs) dissolved in groundwater and adsorbed to soil. hese volatile contaminants transfer in a vapor phase to the unsaturated ...

  4. Dispersal of Aspergillus fumigatus from Sewage Sludge Compost Piles Subjected to Mechanical Agitation in Open Air

    PubMed Central

    Millner, Patricia D.; Bassett, David A.; Marsh, Paul B.

    1980-01-01

    Aerosolization of the thermophilous fungal opportunist Aspergillus fumigatus from mechanically agitated compost piles was examined at a pilot-scale sewage sludge composting facility and two other selected test sites. Aerosols of A. fumigatus downwind from stationary compost piles were insignificant in comparison with those downwind from agitated piles. These aerosols were generated by a front-end loader moving and dropping compost. Aerial concentrations of the fungus at distances downwind from the point of emission were used to determine an emission rate for A. fumigatus associated with the moving operations. The maximum emission rate, 4.6 × 106A. fumigatus particles per s, was used to calculate predicted concentrations in an unobstructed plume with restrictive, neutral, and dispersive atmospheric mixing conditions up to 1 km downwind from the emission source. PMID:16345563

  5. Biochemical stability of sewage sludge chars and their impact on soil organic matter of a Mediterranean Cambisol

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Knicker, Heike

    2016-04-01

    Transformation of sewage sludge (SS) into char achieves sludge hygienisation, which is necessary prior its application into agricultural soils. The pyrolysis of SS increases its stability in a degree which depends on the thermal treatment used. Thus, chars produced by using hydrothermal carbonization are typically more stable than normal soil organic matter (SOM), but less stable than chars from dry pyrolysis (Libra et al., 2011). Addition of highly-recalcitrant SS-chars to soil will likely increase its carbon sequestration potential; however the fertilizing properties of SS may be compromised due to its alteration during the pyrolysis. The main goal of this work was to investigate the biochemical recalcitrance of two 13C-enriched SS-chars once applied in a Mediterranean Cambisol as well as to evaluate their impact on the SOM quality and carbon stability. Thus, we studied the distribution of 13C between plants and soil after the addition of the 13C-enriched chars (2 atm%) to the soil. Therefore, we performed a greenhouse incubation experiment, using a Mediterranean Cambisol as matrix and tested the following treatments: control (soil alone), raw SS, SS-hydrochar, SS-pyrochar. The SS was produced in a pilot-scale waste-water plant and enriched with 13C by the addition of 13C-glucose during the treatment. The amendment was only applied to the upper 2 cm of the soil matrix where it accounted for 5% of its dry weight. Per pot, 25 seeds of Lolium perenne were sowed and incubated under controlled conditions. The biomass production as well as the concentration of 13C in leaves and roots was determined after 1, 2 and 5 months. The partitioning of the 13C between soil and plant and its transformation into bioavailable forms were monitored by stable isotopic mass spectrometry. The 13C-enrichment of the chars allowed the use of solid-state 13C NMR spectroscopy as a means for the detection of chemical alterations of the chars during their aging. Libra J., Ro K., Kammann C

  6. Effect of sewage sledge and their bio-char on some soil qualities

    NASA Astrophysics Data System (ADS)

    Fathi, Hamed; Movahedi Naeini, Seyed Alireza; Mirzanejad, Mojan

    2015-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of biochar on the soil physical properties, nutrient status and plant production. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 6%.

  7. Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil.

    PubMed

    Antonious, George F; Kochhar, Tejinder S; Coolong, Timothy

    2012-01-01

    The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.

  8. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties.

    PubMed

    Xue, Dong; Huang, Xiangdong

    2013-10-01

    In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)-soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0-75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15-45%, and then an increasing trend from compost application of 45-75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30-75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ≤45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony-soil ecosystems.

  9. Analysis of linear and cyclic methylsiloxanes in sewage sludges and urban soils by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2012-12-14

    Concurrent solvent recondensation-large volume injection (CSR-LVI) is a gas chromatography injection technique that is particularly suitable for determining volatile compounds. In the present work, we evaluated the applicability of this technique for the analysis of linear and cyclic methylsiloxanes in sewage sludges and soils after solvent extraction to prevent losses of low-molecular-weight compounds. The CSR-LVI injection method was optimised to achieve maximum sensitivity and good chromatographic peak shapes. A liner packed with deactivated glass wool and a 5 m × 0.32 mm I.D. uncoated fused-silica precolumn was used. This made it possible to inject extract volumes of up to 30 μl. Good linearity (r>0.9993) and precision (RSD <15%), with recoveries ranging from 80 to 100% and method limits of quantification from 0.03 to 0.4 ng g(-1) wet weight (0.04-1.5 ng g(-1) dry weight for sewage sludges and 0.01-0.5 ng g(-1) dry weight for soils) were obtained. The developed method was applied to the analysis of linear and cyclic methylsiloxanes in sewage sludges collected from several wastewater treatment plants in Catalonia (NE Spain) and urban soils from the city of Barcelona.

  10. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    PubMed

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  11. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi.

    PubMed

    Arriagada, C; Sampedro, I; Garcia-Romera, I; Ocampo, J

    2009-08-15

    Sewage sludge is widely used as an organic soil amendment to improve soil fertility. We investigated the effects of sewage sludge (SS) application on certain biological parameters of Eucalyptus globulus Labill. The plant was either uninoculated or inoculated with saprobe fungi (Coriolopsis rigida and Trichoderma harzianum) or arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Gigaspora rosea). Sewage sludge was applied to the surface of experimental plots at rates of 0, 2, 4, 6 and 8 g 100 g(-1) of soil. Inoculation with both AM and saprobe fungi in the presence of SS was essential for the promotion of plant growth. The AM, saprobe fungi and SS significantly increased dry shoot weight. The AM fungi induced a significant increase in Fluorescein diacetate (FDA) activity but did not increase beta-glucosidase activity. Addition of SS to AM-inoculated soil did not affect either FDA or alpha-glucosidase activities in plants from soil that was either uninoculated or inoculated with the saprobe fungi. SS increased beta-glucosidase activity when it was applied at 4 g 100 g(-1). SS negatively affected AM colonization as well as the mycelium SDH activity for both mycorrhizal fungi. SS increased Eucalyptus shoot biomass and enhanced its nutrient status. Inoculation of the soil with G. deserticola stimulated significant E. globulus growth and increases in shoot tissue content of N, P, K, Ca, Mg and Fe. Dual inoculation with G. deserticola and either of the saprobe fungi had positive effects on K, Ca, Mg and Fe contents. The application of 8 g 100 g(-1) of SS had no positive effects on plant nutrition. The experimental setup provided a suitable tool for evaluating SS in combination with saprobe and AM fungi as a biological fertiliser for its beneficial effects on E. globulus plant growth.

  12. Changes in soil microbial functional diversity and biochemical characteristics of tree peony with amendment of sewage sludge compost.

    PubMed

    Huang, Xiangdong; Xue, Dong; Xue, Lian

    2015-08-01

    A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly.

  13. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  14. PAHs in soils and estimated air-soil exchange in the Pearl River Delta, South China.

    PubMed

    Liu, Guoqing; Yu, Lili; Li, Jun; Liu, Xiang; Zhang, Gan

    2011-02-01

    In this study, 74 soil samples collected from the Pearl River Delta were analyzed for polycyclic aromatic hydrocarbons (PAHs). The PAH mixture in the soils is mainly of low molecular weight compounds, with naphthalene (21.4%) and phenanthrene (21.8%) being dominant. Soil PAH levels from the Pearl River Delta are relatively low (28-711 ng/g, averaged 192 ng/g) compared to those from urban soils in temperate regions. The mean concentration of ΣPAHs generally decrease with increasing distance from the city center, with ΣPAHs of paddy soils>crop soil>natural soil. PAHs in the air were measured during a year-round sampling campaign using semipermeable membrane devices, and the transfer of chemicals between the soil and air compartments were estimated. Soil-air fugacity quotient calculations showed a highly uncertain equilibrium position of PAHs, with net volatilization of naphthalene and fluorene, whereas net deposition of phenanthrene, fluoranthene, and pyrene, indicating a capacity for the air to supply the soil with more substances.

  15. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars.

    PubMed

    Zielińska, Anna; Oleszczuk, Patryk

    2016-11-01

    The objective of this study was to estimate the effectiveness of application of sewage sludge-derived biochars for the immobilisation of freely dissolved (Cfree) and bioaccessible (Cbioacc) polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Soil SL-COK collected from the area of a coking plant and soil SL-BIT collected from the area of a plant producing bituminous materials were chosen for the study. The biochars were produced from sewage sludge at temperatures of 500 °C (BC500) or 700 °C (BC700). The biochars were mixed with the soil at the dose of 5% and incubated for a period of 60 d. The content of PAHs was determined with the use of polyoxymethylene (POM) (Cfree) or a solution of cyclodextrins and silicon rod elastomer (Cbioacc). Biochars reduced the content of Cfree and Cbioacc PAHs in soils. A higher level of reduction was noted for Cfree PAHs than for Cbioacc PAHs. Biochar produced at 700 °C was more effective in the reduction of Cfree and Cbioacc PAHs than biochar produced at 500 °C. It was found that in the soil in which the source of contamination were processes related with the production of bituminous materials (SL-BIT), the effect of reduction of Cfree and Cbioacc was greater than in soil SL-COK where the source of PAHs were coking processes. It also needs to be emphasised that soil SL-BIT, for which better reduction of PAHs was noted, was also characterised by a lower affinity towards those compounds than soil SL-COK.

  16. Assessing the potential for greenhouse gas emissions from sewage sludge amended soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of municipal biosolids is the primary means of their disposal. In recent decades environmental concerns related to land application have focused mainly on risk for soil contamination with heavy metals and organic pollutants as well as on pathogen control. Studies on nutrient leachin...

  17. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.

  18. Changes in the distribution of chemical elements throughout the profile of a soddy-podzolic soil after the long-term application of sewage sludge

    NASA Astrophysics Data System (ADS)

    Malinina, M. S.

    2012-12-01

    The distributions of the total and water-soluble macro- and microelements throughout the profile of a loamy sandy soddy-podzolic soil were studied six years after the long-term (for more than 15 years) application of sewage sludge and lime as ameliorants. It was shown that the anthropogenic factor affecting the distributions of the metals in the soil remained predominant. The highest differences compared to the control were observed for P, S, Cl, Cu, Zn, Ni, and Pb. A second accumulative soil horizon was developed, which was an additional source of contamination with mobile metals for the adjacent environments. Six years after the cessation of the application, the contents of Cu, Zn, and Ni exceeded their PPCs for sandy and loamy sandy soils.

  19. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  20. Effects of municipal waste compost and sewage sludge on proton binding behavior of humic acids from Portuguese sandy and clay loam soils.

    PubMed

    Pedra, Filipe; Plaza, César; García-Gil, Juan Carlos; Polo, Alfredo

    2008-05-01

    The effects of amendment with municipal solid waste compost (MSWC) and sewage sludge (SS) on acid-base properties of soil humic acids (HAs) were investigated. For this purpose, HAs were isolated from MSWC and SS and two different Portuguese soils, one sandy and the other clay loam, either unamended or amended with MSWC or SS at a rate of 60 t ha(-1), and analysed by potentiometric titrations at various ionic strengths (0.01, 0.05, 0.1 and 0.3M) over the pH range from 3.5 to 10.5. All titration data were fitted with the NICA-Donnan model and the variations of model parameters between the various HA samples were discussed. The HAs from MSWC and SS had lower acidic functional group contents and higher proton binding affinities than the control soil HAs. Amending soils with MSWC and SS determined a decrease of acidic functional group contents and an increase on proton binding affinities of soil HAs. These effects were more evident in SS-amended soil HAs than in MSWC-amended soil HAs, and in clay loam soil HA than in sandy soil HA.

  1. [Environmental effects of applying heavy metal-containing municipal sewage sludge on wheat-rice rotation system on different types of soil].

    PubMed

    Ren, Jing; Cheng, Miao-Miao; Li, Rui; Liu, Ling; Wu, Long-Hua; Liu, Hong-Yan; Luo, Yong-Ming

    2012-02-01

    A pot experiment with the yellow soil and limestone soil from Guizhou province, and paddy soil from Zhejiang Province was conducted to study the impacts of applying municipal sewage sludge containing different concentrations of heavy metals on the wheat and rice growth and their Zn and Cd absorption. The risks of the crop heavy metals pollution caused by the application of the same sludge differed with tested soils. On the yellow soil and paddy soil, applying the sludge containing high concentration heavy metals induced higher pollution risks to the crops. Applying the sludge 1.6% in dry mass and containing 1789 mg x kg(-1) of Zn and 8.47 mg x kg(-1) of Cd to yellow soil made the Zn and Cd concentrations in wheat grains reached 109 and 0.08 mg x kg(-1), and after the second time application of the same dosage of this sludge after rice planting, the Zn and Cd concentrations in brown rice reached 52.0 and 0.54 mg x kg(-1), respectively. However, applying the sludge to calcareous soil had no pollution risk to the edible parts of wheat and rice. Soil NH4OAc-extractable Zn was the main factor affecting the Zn concentration in wheat grain and brown rice, but soil NH4OAc-extractable Cd had less effect on the Cd concentration in wheat grain and brown nce. Applying the sludge containing high concentration Zn and Cd to the three soils made the concentrations of total Zn and Cd in the soils increased significantly, and after the first time and the second time of the application, the total Zn concentration in the soils all exceeded the 2nd level of the national soil environmental quality standards.

  2. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils.

    PubMed

    Warman, P R; Termeer, W C

    2005-05-01

    This paper presents the data from two years of experiments concerned with the application of aerobically-digested sewage sludge, anaerobic lagoon septic sludge, sewage sludge compost or fertilizer to soils for grass forage and feed corn (Zea mays L.) production at two different sites 45 km from Truro, Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and nine elements in the soil extracts. This paper describes the results of crop yields, plant N, P and K content and Mehlich-1 extractable P and K. The research demonstrated the fertilizer produced higher yields of grass forage than the sludge and the compost but equivalent to the sludge in corn yields. Forage and corn N, P and K contents, however, varied with treatment, crop and year, while the compost-amended soils were highest in extractable nutrients. Both sludges and the compost, therefore, could be effective sources of N, P and K for crop production. Compared to the conventional fertilizer, the nutrient availability from the organic amendments (especially N and P) was considerably lower than the 50% assumed at the start of the experiment; the sludges however, provided higher nutrient availability than the compost.

  3. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: Ca, Mg, S, Fe, Mn, Cu, Zn and B content of crops and soils.

    PubMed

    Warman, P R; Termeer, W C

    2005-06-01

    This is the second of two papers presenting the data from an experiment on the application of aerobically-digested sewage sludge (AES), anaerobic lagoon septic wastes (ANS), sewage sludge compost and fertilizer to soils for grass forage and feed corn production at two different sites in Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and 9 elements in the soil extracts. This paper describes the Ca, Mg, S, Fe, Mn, Cu, Zn and B content of the crops and the Mehlich-1 extractable content of the soils. The response to the amendments was not consistent at the two sites with the two different crops. We found that the septic sludge (ANS) produced the highest forage Fe, Cu and Zn levels and was equal to compost in elevating corn stover and forage S and the forage B content. The compost produced the highest forage Ca and corn Zn, the AES produced the highest corn Mn, and fertilizer produced the highest forage Mn. None of the amendments produced excessive levels of the above nutrients; rather, the amendments improved the feed quality of the forage and corn stover. Lastly, it was noted that the Mehlich-1 extract only had a significantly positive correlation with forage Cu content.

  4. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A million gallon-a-day sewage treatment plant in Huntington Beach, CA converts solid sewage to activated carbon which then treats incoming waste water. The plant is scaled up 100 times from a mobile unit NASA installed a year ago; another 100-fold scale-up will be required if technique is employed for widespread urban sewage treatment. This unique sewage-plant employed a serendipitous outgrowth of a need to manufacture activated carbon for rocket engine insulation. The process already exceeds new Environmental Protection Agency Standards Capital costs by 25% compared with conventional secondary treatment plants.

  5. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    NASA Astrophysics Data System (ADS)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff < 0.5) and volatilization ( ff > 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  6. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  7. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    PubMed

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  8. Air sparging in low permeability soils

    SciTech Connect

    Marley, M.C.

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.

  9. Control of aromatic waste air streams by soil bioreactors

    SciTech Connect

    Miller, D.E. ); Canter, L.W. )

    1991-11-01

    Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam from Ada, Oklahoma, and Dougherty Sand from Stratford, Oklahoma. Soil columns were used to examine the effects of soil type, air flow rate and inlet vapor concentrations. Adjustment of the hydrocarbon loading rate produced removals which corresponded to first-order removal kinetics. Estimated residence times of 10 to 20 minutes produced removals of the individual inlet BTEX compounds which ranged from 8 to 39%. Increasing the residence time produced increased removals corresponding to first-order removal rates. Further increases in the residence time revealed transport limitations which restricted additional removals. Soil which had moisture less than 50% of saturation displayed preferential utilization of benzene followed in order by ethylbenzene, toluene, and o-xylene.

  10. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  11. Cadmium-enriched sewage sludge application to acid and calcareous soils: relation between treatment, cadmium in saturation extracts, and cadmium uptake

    SciTech Connect

    Mahler, R.J.; Bingham, F.T.; Sposito, G.; Page, A.L.

    1980-07-01

    The objective of this study was to determine the effect of soil pH on the availability of saturation-extract Cd. Four acid and four calcareous soils were treated with a uniform amount of sewage sludge enriched with different amounts of CdSO/sub 4/ to yield soil Cd concentrations ranging from 0.1 to 160 ..mu..g Cd/g of sludge-amended soils. These treated soils were placed in plastic containers and cropped for approximately 7 weeks with sweet corn (Zea mays L.), tomato (Lycopersicon esculentum Mill.), and Swiss chard (Beta vulgaris var. cicla). Shoot weights were obtained as a measure of yields. The concentration of Cd in the shoot (Cd uptake) was taken as a measure of Cd availability. Saturation extracts from each treated soil (7 Cd rates x 3 replicates x 8 soils) collected at harvest time were analyzed for pH, EC, principal soluble anions, and cations with Cu, Cd, Ni, and Zn. The chemical analyses of the saturation extracts were used as input data to calculate the concentration of free ionic Cd (Cd/sup 2 +/), the activity of Cd/sup 2 +/, and the concentration of Cd complexes. These Cd parameters, along with the measured concentration of all Cd forms present in saturation extracts, were compared to Cd concentrations in each of the test plants.

  12. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop.

    PubMed

    Mantovi, Paolo; Baldoni, Guido; Toderi, Giovanni

    2005-01-01

    To evaluate the effects of repeated sewage sludge applications in comparison to mineral fertilisers on a winter wheat-maize-sugar beet rotation, a field experiment on a silty-loam soil, in the eastern Po Valley (Italy), was carried out since 1988. Municipal-industrial wastewater sludge as anaerobically digested, belt filtered (dewatered), and composted with wheat straw, has been applied at 5 and 10 Mg DM ha(-1)yr(-1). Biosolids gave crop yields similar to the highest mineral fertiliser dressing. However, with the higher rate of liquid and dewatered sludge, excessive N supply was harmful, leading to wheat lodging and poor quality of sugar beet and wheat crops. From this standpoint compost use was safer. Biosolids increased organic matter (OM), total N, and available P in the soil and reduced soil alkalinity, with more evident effects at the highest rate. Compost caused the most pronounced OM top soil accumulation. Significant accumulations of total Zn and Cu were detected in amended top soil, but no other heavy metals (Cd, Cr, Ni, Pb), whose total concentration remained well below the hazard limits. Biosolid applications significantly increased the content of N, P, Zn, and Cu in wheat grain, N and Cu in sugar beet roots, and only Cu in maize grain. The application of biosolids brought about notable benefits to soil fertility but it was associated with possible negative effects on water quality due to increased P availability and on soil ecology due to Zn accumulation.

  13. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  14. Effects of Air Drying on Soil Available Phosphorus in Two Grassland Soils

    NASA Astrophysics Data System (ADS)

    Schaerer, M.; Frossard, E.; Sinaj, S.

    2003-04-01

    Mobilization of P from the soil to ground and surface water is principally determined by the amount of P in the soil and physico-chemical as well as biological processes determining the available P-pool that is in equilibrium with soil solution. Soil available P is commonly estimated on air dry soil using a variety of methods (extraction with water, dilute acids and bases, anion exchange resin, isotopic exchange or infinite sinks). Recently, attempts have been made to use these measurements to define the potential for transport of P from soil to water by overland flow or subsurface flow. The effect of air drying on soil properties in general, and plant nutrient status in particular, have been subject of a number of studies. The main objective of this paper was to evaluate the effect of air-drying on soil properties and available P. For this experiment, grassland soils were sampled on two study sites located on slopes in the watershed of Lake Greifensee, 25 km south-east of Zurich. Both soils (0-4 cm depth) are rich in P with 1.7 and 1.3 g kg-1 total P at site I and site II, respectively. The concentrations on isotopically exchangeable P within 1 minute (E1min, readily available P) for the same depth were also very high, 58 and 27 mg P kg soil-1 for the site I and II, respectively. In the present study both field moist and air dried soil samples were analyzed for microbial P (Pmic), resin extractable P (P_r), isotopically exchangeable P (E1min) and amorphous Al and Fe (Alox, Feox). Generally, the microbial P in field moist soils reached values up to 120 mg P/kg soil, whereas after drying they decreased by 73% in average for both soils. On the contrary to Pmic, available P estimated by different methods strongly increased after drying of the soil samples. The concentration of phosphate ions in the soil solution c_p, E1min and P_r were 4.2, 2.2 and 2 times higher in dry soils than in field moist soils. The increase in available P shows significant semilogarithmic

  15. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1970's, National Space Technology Laboratories discovered that water hyacinths literally thrive on sewage; they absorb and digest nutrients and minerals from wastewater, converting sewage effluents to clean water. They offer a means of purifying water at a fraction of the cost of a conventional sewage treatment plant, and provide a bonus value in byproducts. Hyacinths must be harvested at intervals; the harvested plants are used as fertilizers, high-protein animal feed and a source of energy. Already serving a number of small towns, the "aquaculture" technique has significantly advanced with its adoption by a major U.S. city.

  16. The study of the cumulative effects of the application of urban sewage sludge on an eroded soil cultivated in the Algerian steppe

    NASA Astrophysics Data System (ADS)

    Boutmedjet, Ahmed; Boukkaya, Nassira; Houyou, zohra; Ouakid, Mohamed; Bielders, Charles

    2014-05-01

    Since the seventies, desertification is one of the major problems faced by the Mediterranean climate regions. These problems are inherent in the soil and climate characteristics of these regions, but their magnitude and acuity depend mainly on human activities. The process of desertification that affects more and more land is more pronounced as soil degradation, which accelerates constantly reduced resources farmland and pasture. Especially in areas bordering the Sahara, as the Algerian steppe, a real belt between the Sahara and the Algerian tell As part of the study of the cumulative effect of the application of urban sewage sludge on sandy soil and culture that is a cereal (barley), we had results that enabled us to identify some precepts,. The short-term effects studied in this experiment indicate that the amendment of the sewage sludge had a beneficial effect on the fertilizing qualities of the soil and therefore the performance of barley. To observations of Culture (barley), indicate that the best grain yield was obtained with D3 (28.76 quintals / ha) and D2 (33.91 quintals / ha). This is due to the effect of the sludge by the addition of required nutrients crop production. The lowest yield (24.11 quintals / ha) being obtained for the control (D0). It is the same for straw yield, with 47.5 quintals / ha in D2. The D3 treatment (30 t / ha) has previously presented the best results, but after 3 years we noticed that the best yields are obtained with D2 (10 t / ha). Except the pH and the rate of limestone that are related to changes in the characteristics of the site, there was an improvement in some physical and chemical properties of the soil. The contributions of sewage sludge amended greater quality soil biology D2 (number and effective species collected). Increasing the organic matter content (1.45%) and electrical conductivity (0.18 microseconds / cm) in the soil is only significant for the highest dose (30t/ha), although a tendency to enrichment in

  17. Application of acclimated sewage sludge as a bio-augmentation/bio-stimulation strategy for remediating chlorpyrifos contamination in soil with/without cadmium.

    PubMed

    Wang, Can; Zhou, Zhiren; Liu, Hongdan; Li, Junjie; Wang, Ying; Xu, Heng

    2017-02-01

    This experiment was performed to investigate the effects of acclimated sewage sludge (ASS) and sterilized ASS on the fates of chlorpyrifos (CP) in soil with or without cadmium (Cd), as well as the improvement of soil biochemical properties. Results showed that both ASS and sterilized ASS could significantly promote CP dissipation, and the groups with ASS had the highest efficiency on CP removal, whose degradation rates reached 71.3%-85.9% at the 30th day (40.4%-50.2% higher than non-sludge groups). Besides, the degradation rate of CP was not severely influenced by the existence of Cd, and the population of soil microorganism dramatically increased after adding sludge. The soil enzyme activities (dehydrogenase, acid phosphatase and FDA hydrolase activities) ranked from high to low were as follows: groups with sterilized ASS>groups with ASS>groups without sludge. Simultaneously, 16S rRNA gene sequencing revealed that ASS changed bacterial community structure and diversity in soil. In addition, alkali-hydrolyzable nitrogen and Olsen- phosphorus increased after application of sludge, indicating that the addition of ASS (or sterilized ASS) could effectively improve soil fertility.

  18. Changes in fertility parameters and contents of heavy metals of soddy-podzolic soils upon the long-term application of sewage sludge

    NASA Astrophysics Data System (ADS)

    Vasbieva, M. T.; Kosolapova, A. I.

    2015-05-01

    The effect of the long-term sewage sludge (SS) application on the chemical, agrophysical, and biological properties of a soddy-podzolic soil ( Umbric Albeluvisols Abruptic) was studied. Regular SS application in the course of five crop rotations (1976-2013) ensured the improvement of the soil fertility parameters, i.e., a rise in the contents of humus, available phosphorus, and exchangeable potassium; a better state of the soil adsorption complex, bulk density, and aggregation; and higher cellulolytic, nitrification, and urease activities. The efficiencies of SS and the traditional organic fertilizer (cattle manure) were compared. The effect of the long-term application of SS on the accumulation of heavy metals in the soils was also studied. It was found that the application of SS caused a rise in the bulk content of heavy metals and in the contents of their acid-extractable and mobile forms by 1.1-6.0 times. However, the maximum permissible concentrations of heavy metals in the soils were not exceeded. In the soil subjected to the application of SS for more than 25 years, the cadmium concentration somewhat exceeded the maximum permissible concentration.

  19. Estimation of Soil Moisture Content Using Air-Launched GPR Techniques in Variable Soil Conditions

    NASA Astrophysics Data System (ADS)

    Hardel, B.; Kelly, B.

    2008-12-01

    Air-launched Ground Penetrating Radar (GPR) techniques have most frequently been used for infrastructure characterization, but these techniques show promise for soil moisture estimation in the near subsurface. Air- launched GPR data can be acquired very quickly, and data processing can be easily automated, so these techniques have potential for efficient estimation of water content in the shallow subsurface over large areas. In this experiment, we investigate the efficacy of air-launched GPR techniques for estimating soil water content under saturated and dry conditions in both sandy and organic-rich soils. Data were also acquired to investigate the depth of penetration of air-launched data in these soils using multiple GPR frequencies. The experiment was performed in a large tank under controlled climatic conditions. Initially, the tank was filled with wet sand to a depth of 24-cm, and GPR data were acquired over the sand using 250-, 500-, and 1000-MHz antennas. Then, a thin plastic tarp was placed on the wet sand, a 3-cm layer of dry sand was placed on the tarp, and data collection was repeated. Additional 3-cm layers of dry sand were placed in the tank, with data acquisition after each layer, until the dry sand layer was 15-cm thick. The tank was then excavated, and a basal layer of dry sand was added. Data were again acquired over the dry sand, and the incremental filling of the tank and data acquisition were repeated using 3-cm layers of wet sand. Finally, the entire process was repeated using a basal layer of wet organic soil overlain by dry organic soil and using a basal layer of dry organic soil overlain by wet organic soil. For all air-launch data, the dielectric constant was determined using the amplitudes of the reflection from the soil surface, and Topp's equation was used to convert the dielectric constant to water content. Data analysis is ongoing, but preliminary results indicate that water content can be estimated with reasonable accuracy in both

  20. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge.

    PubMed

    Djedidi, Zied; Bouda, Médard; Souissi, Med Aly; Ben Cheikh, Ridha; Mercier, Guy; Tyagi, Rajeshwar Dayal; Blais, Jean-François

    2009-12-30

    This study concerns the treatment by precipitation of three acidic and metal-rich leachates by using various reagents. Two treatment modes (simple and combined precipitation) have been performed to evaluate the metals removal efficiency and the dewatering ability of the generated sludge. It appears that for the three leachates used, the Ca(OH)(2) addition gave better metals removal at pH 10.0 than the use of NaOH at the same pH. Moreover, the combination of NaOH and Na(2)S allows better removal for Pb(2+), Zn(2+), Cu(2+) and Mn(2+) ions than with NaOH/Na(2)CO(3) or NaOH/Na(2)HPO(4). The dewaterability (vacuum filtration) of precipitates produced during the treatment of soil leachate was established as follows on the basis of the specific resistance to filtration (SRF) values: sulphides (4.3 x 10(12)mkg(-1))sewage sludge filtrate using phosphate salt gave the best results regarding to SVI and SRF parameters (180 mL g(-1) and 7.6 x 10(12) m kg(-1), respectively). Experimental results show that whatever precipitating agent is used, vacuum filtration is more efficient in water elimination [total solids: 11-73% (ww(-1))] than in centrifugation [5-11% (ww(-1))] from sludge.

  1. Comparison of microwave assisted, ultrasonic assisted and Soxhlet extractions of N-nitrosamines and aromatic amines in sewage sludge, soils and sediments.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2013-10-01

    This paper describes a cost-effective and sensitive method for the gas chromatographic determination of 10 aliphatic and aromatic N-nitrosamines and 14 aromatic amines (including aniline, several chloroanilines and 2-nitroaniline) in various soil matrices, after microwave-assisted extraction (MAE) combined with continuous solid-phase extraction. A systematic comparison of MAE with ultrasonic assisted and Soxhlet extraction alternatives showed that MAE provided the highest extraction efficiency (94-96%) with the shortest extraction time (3 min). The method developed provides a linear response throughout the concentration range 0.1-150 ng g(-1) and features low limits of detection (0.03-0.35 ng g(-1)) and good precision. The method was successfully applied to study the occurrence of the analytes in sewage sludge, agricultural soils, and river and pond sediments. Aniline and chloroanilines were the amines most frequently detected (0.4-5.4 ng g(-1)), whereas N-nitrosodimethylamine, N-nitrosodiethylamine and N-nitrosomorpholine were only found in two of the urban sewage sludge samples analyzed (0.4-1.6 ng g(-1)).

  2. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    PubMed

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials.

  3. Analysis of modified wet-air oxidation for soil detoxification

    SciTech Connect

    Unterberg, W.; Willms, R.S.; Balinsky, A.M.; Reible, D.D.; Wetzel, D.M.

    1987-09-01

    This report presents the results of research on wet-air oxidation as a method for the destruction of hazardous wastes. For organics in the presence of large amounts of water, the water need not be vaporized during wet-air oxidation, an attractive characteristic for energy conservation. The feasibility of using wet-air oxidation was investigated in terms of the effects of temperature, pressure, and the presence or absence of soil on the oxidation rate of three model compounds. Wet-air oxidation is a semi-commercial process that has been used to treat a variety of weakly toxic chemical wastes and for the regeneration of activated carbon. In the study, wet-air oxidation research was carried out in a 1-liter batch reactor at temperatures from 130 to 275/sup 0/C and pressures from 703-1760 x 10/sup 3/ kg/sq m on three substances: m-xylene, tetrachloroethylene (TCE), and malathion, both with and without addition of soil. Any attempt to balance the effect of residence time and the cost of energy requires an accurate description of the oxidation kinetics for the compound or waste stream in question. Due to the sampling technique used during the investigation and the inherent nature of the wet-air oxidation process, a variety of potential problems with the interpretation and analysis of the raw concentration-time data were encountered during the study.

  4. Chemical-specific representation of air--soil exchange and soil penetration in regional multimedia models.

    PubMed

    McKone, T E; Bennett, D H

    2003-07-15

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil layers with different properties but a fixed boundary condition at the air-soil surface. The soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, groundwater, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo[a]pyrene, MTBE, TCDD, and tritium.

  5. In situ air sparging for bioremediation of groundwater and soils

    SciTech Connect

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-12-31

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m{sup 2} area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m{sup 2} area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance.

  6. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is

  7. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    NASA Astrophysics Data System (ADS)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (<4 mm). The columns were irrigated with 2000 mL/week (230 mm) for twelve weeks (April to July). Half of them were irrigated with non-saline water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect

  8. Ascorbic acid, β-carotene, sugars, phenols, and heavy metals in sweet potatoes grown in soil fertilized with municipal sewage sludge.

    PubMed

    Antonious, George F; Dennis, Sam O; Unrine, Jason M; Snyder, John C

    2011-01-01

    Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl₂ solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g⁻¹ fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g⁻¹ fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.

  9. The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: a comparison with the labile elements Cd and Zn.

    PubMed

    Dar, Mudasir Irfan; Khan, Fareed Ahmad; Green, Iain D; Naikoo, Mohd Irfan

    2015-10-01

    The contamination of agroecosystems due to the presence of trace elements in commonly used agricultural materials is a serious issue. The most contaminated material is usually sewage sludge, and the sustainable use of this material within agriculture is a major concern. This study addresses a key issue in this respect, the fate of trace metals applied to soil in food chains. The work particularly addresses the transfer of Pb, which is an understudied element in this respect, and compares the transfer of Pb with two of the most labile metals, Cd and Zn. The transfer of these elements was determined from sludge-amended soils in a food chain consisting of Indian mustard (Brassica juncea), the mustard aphid (Lipaphis erysimi) and a predatory beetle (Coccinella septempunctata). The soil was amended with sludge at rates of 0, 5, 10 and 20 % (w/w). Results showed that Cd was readily transferred through the food chain until the predator trophic level. Zn was the most readily transferred element in the lower trophic levels, but transfer to aphids was effectively restricted by the plant regulating shoot concentration. Pb had the lowest level of transfer from soil to shoot and exhibited particular retention in the roots. Nevertheless, Pb concentrations were significantly increased by sludge amendment in aphids, and Pb was increasingly transferred to ladybirds as levels increased. The potential for Pb to cause secondary toxicity to organisms in higher trophic levels may have therefore been underestimated.

  10. Modelling of nitrate leaching from arable land into unsaturated soil and chalk 2. Model confirmation and application to agricultural and sewage sludge management

    NASA Astrophysics Data System (ADS)

    Andrews, R. J.; Lloyd, J. W.; Lerner, D. N.

    1997-12-01

    A layered deterministic N-leaching model, IMPACT, has been calibrated using data from two study sites on the unconfined Chalk aquilfer of East Anglia, UK. The model predicts nitrogen species movement resulting from the application of sewage sludges and fertilizers to arable land for different vegetation-soil-hydrogeological conditions. One site received sludge in the form of digested sewage cake (DSC) for the first time during the study period, whilst the other site had over 15 years history of liquid undigested sludge (LUS) applications at 3 year intervals. Site data included: 3-monthly concentration profiles at 0.3 m intervals to depths of up to 6 m for N-species and chloride; unsaturated potential measurements; water level and saturated groundwater solute concentrations, fertilizer and sludge input; daily recharge, and soil/chalk type and moisture content. The observed average movement rate for nitrate peaks in the Lower Chalk, measured at one site, was 0.2 m year -2. Leachate peaks were not observed annually but approximately every third year, being associated with large sludge applications and ploughing of grass crops. Significant correlation between observed and modelled nitrate profiles in soil and chalk were obtained which demonstrated applications. The relationship between crop demand, application times of fertilizers and sludge, nitrate availability and recharge was shown strongly to control the shape of nitrate profiles in the soil and chalk and the quantity of nitrate leached tochalk. The change in hydrogeological conditions at the soil-chalk contact and associated potential for denitrification was also shown to exert a significant control on the shape of the nitrate profile. Following calibration, different arable crop and sludge application regimes were examined for a 6 year period and ranked according to their nitrate leaching risk. Of the modelled cereal farming scenarios, the crop/sludge regime giving the least nitrate leaching was a late autumn

  11. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  12. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  13. Thermoelectric Air/Soil Energy-Harvesting Device

    NASA Technical Reports Server (NTRS)

    Snyder, Jeffrey; Fleurial, Jean-Pierre; Lawrence, Eric

    2005-01-01

    A proposed thermoelectric device would exploit natural temperature differences between air and soil to harvest small amounts of electric energy. Because the air/soil temperature difference fluctuates between nighttime and daytime, it is almost never zero, and so there is almost always some energy available for harvesting. Unlike photovoltaic cells, the proposed device could operate in the absence of sunlight. Unlike a Stirling engine, which could be designed to extract energy from the air/soil temperature difference, the proposed device would contain no moving parts. The main attractive feature of the proposed device would be high reliability. In a typical application, this device would be used for low-power charging of a battery that would, in turn, supply high power at brief, infrequent intervals for operating an instrumentation package containing sensors and communication circuits. The device (see figure) would include a heat exchanger buried in soil and connected to a heat pipe extending up to a short distance above the ground surface. A thermoelectric microgenerator (TEMG) would be mounted on top of the heat pipe. The TEMG could be of an advanced type, now under development, that could maintain high (relative to prior thermoelectric generators) power densities at small temperature differentials. A heat exchanger exposed to the air would be mounted on top of the TEMG. It would not matter whether the air was warmer than the soil or the soil warmer than the air: as long as there was a nonzero temperature difference, heat would flow through the device and electricity would be generated. A study of factors that could affect the design and operation of the device has been performed. These factors include the thermal conductances of the soil, the components of the device, the contacts between the components of the device, and the interfaces between the heat exchangers and their environments. The study included experiments that were performed on a model of the device

  14. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  15. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia

    PubMed Central

    Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2015-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  16. DEMONSTRATION BULLETIN: IN-SITU STEAM/HOT AIR SOIL STRIPPING TOXIC TREATMENT (USA) INC.

    EPA Science Inventory

    This technology uses steam and hot air to strip volatile organics from contaminated soil. The treatment equipment is mobile and treats the soil in-situ without need for soil excavation or transportation. The organic contaminants volatilized from the soil are condensed and col...

  17. Some heavy metals in soils treated with sewage sludge, their effects on yield, and their uptake by plants

    SciTech Connect

    Valdares, J.M.A.S.; Gal, M.; Mingelgrin, U.; Page, A.L.

    1983-01-01

    The possible use of sludge with high heavy metal concentrations and at high rates in calcareous soil was demonstrated in this study. Mixtures of two sludges were added to soils in various proportions up to 4% sludge content. One sludge was rich in Ni and Cd, while the other was relatively poor in heavy metals. Three soils varying in pH from 7.7 to 5.5 were tested. The concentrations of Cd, Ni, Cu and Zn in the DTPA and saturation extracts of the soil-sludge mixtures were determined and correlated with their uptake by plants and the yield of Swiss chard (Beta vulgaris L., cv. Ford Hook Giant) grown on these mixtures. The metal-poor sludge hardly affected the yield of the relatively salt-resistant Swiss chard. The metal-rich sludge reduced the yield drastically in noncalcareous soils after a critical amount of that sludge (1.5%) was added to the soils. Yet, even 4% of this metal-rich sludge increased the yield of Swiss chard, as compared with the sludge-free control in a calcareous soil. The best fit to yield was obtained by multiple regression with metal content in the soil saturation extract. The solubility in soil solution of Cd, Ni and Zn was strongly affected by the pH. The uptake of Ni and Zn by plants was significantly larger in the acid soil than in the calcareous soil. The difference in the uptake of Cd and Cu between the soils was smaller. Plant uptake of the metals was generally predicted better by the total metal addition or concentration in the DPTA extract than by metal concentration in the soil saturation extract. In noncalcaeous soils the total metal addition correlated as well as metal content in the DTPA extracts with the metal concentration in the soil solution, with the uptake by plants and with the yield.

  18. Corrective Action Investigation Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Air port Strainer Box, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    1999-06-10

    This Corrective Action Investigation Plan contains the US Department of Energy, Nevada Operation Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 230/320 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 230 consists of Corrective Action Site (CAS) 22-03-01, Sewage Lagoon; while CAU 320 consists of CAS 22-99-01, Strainer Box. These CAUs are referred to as CAU 230/320 or the Sewage Lagoons Site. The Sewage Lagoons Site also includes an Imhoff tank, sludge bed, and associated buried sewer piping. Located in Area 22, the site was used between 1951 to 1958 for disposal of sanitary sewage effluent from the historic Camp Desert Rock Facility at the Nevada Test Site in Nevada. Based on site history, the contaminants of potential concern include volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPH), and radionuclides. Vertical migration is estimated to be less than 12 feet below ground surface, and lateral migration is limited to the soil immediately adjacent to or within areas of concern. The proposed investigation will involve a combination of field screening for VOCs and TPH using the direct-push method and excavation using a backhoe to gather soil samples for analysis. Gamma spectroscopy will also be conducted for waste management purposes. Sampling locations will be biased to suspected worst-case areas including the nearby sludge bed, sewage lagoon inlet(s) and outlet(s), disturbed soil surrounding the lagoons, surface drainage channel south of the lagoons, and the area near the Imhoff tank. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  19. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  20. Interactions between sewage sludge-amended soil and earthworms--comparison between Eisenia fetida and Eisenia andrei composting species.

    PubMed

    Rorat, Agnieszka; Suleiman, Hanine; Grobelak, Anna; Grosser, Anna; Kacprzak, Małgorzata; Płytycz, Barbara; Vandenbulcke, Franck

    2016-02-01

    Vermicomposting is an eco-friendly technology, where earthworms are introduced in the waste, inter alia sewage sludge, to cooperate with microorganisms and enhance decomposition of organic matter. The main aims of the present study was to determine the influence of two different earthworm species, Eisenia fetida and Eisenia andrei, on the changes of selected metallic trace elements content in substratum during vermicomposting process using three different sewage sludge mainly differentiated by their metal contents. Final vermicompost has shown a slight reduction in Cd, Cu, Ni, and Pb, while the Zn concentration tends to increase. Accumulation of particular heavy metals in earthworms' bodies was assessed. Both species revealed high tendency to accumulate Cd and Zn, but not Cu, Ni, and Pb, but E. andrei has higher capabilities to accumulate some metals. Riboflavin content, which content varies depending on metal pollution in several earthworms species, was measured supravitaly in extruded coelomocytes. Riboflavin content decreased slightly during the first 6 weeks of exposure and subsequently restored till the end of the 9-week experiment. Selected agronomic parameters have also been measured in the final product (vermicompost) to assess the influence of earthworms on substratum.

  1. Rainfall Prediction using Soil and Air Temperature in a Tropical Station

    NASA Astrophysics Data System (ADS)

    Chacko, Tessy P.; Renuka, G.

    2007-07-01

    An attempt is made to establish a linkage between soil and air temperature and south-west monsoon rainfall at Pillicode (12°12'N,75°10'E) a tropical station in north Kerala. The dependence of monsoon rainfall on pre-monsoon soil temperature decreases as the depth of the soil increases. A regression equation has been developed for the estimation of monsoon rainfall using pre-monsoon soil and air temperature. The results show that sub soil temperature along with air temperature can be used for forecasting the monsoon level.

  2. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  3. Solar Park Impacts on Air and Soil Microclimate

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Ostle, N. J.; Whitaker, J.

    2015-12-01

    The drive towards low carbon energy sources and increasing energy demand has resulted in a rapid rise in solar photovoltaics across the world. A substantial proportion of photovoltaics are large-scale ground-mounted systems, solar parks, causing a notable land use change. While the impacts of photovoltaic panel production and disposal have been considered, the consequences of the operation of solar parks on the hosting landscape are poorly resolved. Here, we present data which demonstrates that a solar park sited on permanent grassland in the UK significantly impacted the air and soil microclimate. Specifically, we observed (1) cooler soil under the photovoltaic panels during the summer and between the photovoltaic panel rows during the winter; (2) dampening of the diurnal variation in air temperature and absolute humidity from the spring to the autumn; (3) lower photosynthetically active radiation and a lower direct:diffuse under the panels; and (4) reduced wind speed between the panel rows and substantially reduced wind speeds under the panels. Further, there were differences in vegetation type and productivity and greenhouse gas emissions. Given the centrality of climate on ecosystem function, quantifying the microclimatic impacts of this emerging land use change is critical. We anticipate these data will help develop understanding of effects in other climates, under different solar park designs and the implications for the function and service provision of the hosting landscape.

  4. Electrothermal atomic absorption spectrometric determination of vanadium in extracts of soil and sewage sludge certified reference materials after fractionation by means of the Communities Bureau of Reference modified sequential extraction procedure

    NASA Astrophysics Data System (ADS)

    Žemberyová, M.; Jankovič, R.; Hagarová, I.; Kuss, H.-M.

    2007-05-01

    A modified three-step sequential extraction procedure proposed by the Commission of European Communities Bureau of Reference (BCR) was applied to certified reference materials of three different soil groups (rendzina, luvisol, cambisol) and sewage sludge of different composition originating from a municipal water treatment plant in order to assess potential mobility and the distribution of vanadium in the resulting fractions. Analysis of the extracts was carried out by electrothermal atomic absorption spectrometry with Zeeman background correction using transversely heated graphite atomizers. Extracts showed significant matrix interferences which were overcome by the standard addition technique. The original soil and sludge certified reference materials (CRMs) and the extraction residue from the sequential extraction were decomposed by a mixture of HNO 3-HClO 4-HF in an open system. The content of V determined after decomposition of the samples was in very good agreement with the certified total values. The accuracy of the sequential extraction procedure was checked by comparing the sum of the vanadium contents in the three fractions and in the extraction residue with the certified total content of V. The amounts of vanadium leached were in good correlation with the certified total contents of V in the CRMs of soils and sewage sludge. In the soils examined, vanadium was present almost entirely in the mineral lattice, while in the sewage sludge samples 9-14% was found in the oxidizable and almost 25% in the reducible fractions. The recovery ranged from 93-106% and the precision (RSD) was below 10%.

  5. Natural radioactivity content in soil and indoor air of Chellanam.

    PubMed

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed.

  6. On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate?

    PubMed

    Katsoyiannis, Athanasios; Terzi, Eleni; Cai, Quan-Ying

    2007-10-01

    The concentrations ratios of specific pairs of polycyclic aromatic hydrocarbons (PAHs) are widely used for the qualitative determination of the PAHs sources. These ratios are called PAHs molecular diagnostic ratios and are commonly used for PAHs concentrations in air, soils and sediments. Some scientists have extended the use of these ratios also for sewage sludges, suggesting that calculation of these ratios by individual PAHs concentrations can be as effective as in soils or sediments. This paper describes the reason why the PAH molecular ratios calculated from sewage sludge concentrations should not be used for the understanding of the PAH sources.

  7. Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters.

    PubMed

    Schubert, M; Schulz, H

    2002-07-01

    Measurements of the radon concentration in a column (1 m2 x 2 m) consisting of a homogeneous mixture of dry sand and uranium tailings have been performed to obtain information on the radon transport under well defined conditions. The dependence of the radon concentration has been exclusively studied on the soil/air temperature gradient and on the wind speed. The soil moisture content has been kept constant. Significant diurnal variations of the radon concentration were detected in the uppermost soil layer and at the soil/air interface. Such a behavior was not found in 30 cm and deeper soil layers. It is argued that the diurnal radon variation in the uppermost soil layer is mainly associated with the diurnal inversion of the soil/air temperature gradient giving rise to a convective soil gas migration additional to the common upward diffusion processes, whereas the diurnal variation of the radon concentration at the soil/air interface is caused by the interplay of the temperature gradient and the wind speed. No impact of atmospheric pressure variations on the radon migration has been observed.

  8. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    NASA Astrophysics Data System (ADS)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  9. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  10. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    PubMed Central

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation. PMID:28054663

  11. Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    We determined national baseline levels and release inventories of 77 traditional and novel brominated flame retardants (BFRs) in biosolids composites (prepared from 110 samples) from the U.S. Environmental Protection Agency’s 2001 national sewage sludge survey (NSSS). Additionally, analyses were performed on archived samples from a 3-year outdoor mesocosm study to determine the environmental persistence of BFRs in biosolids-amended soil. The total polybrominated diphenylether (PBDE) concentration detected in biosolids composites was 9,400±960 μg/kg dry weight, of which deca-BDE constituted 57% followed by nona- and penta-BDE at 18 and 13%, respectively. The annual mean loading rate estimated from the detected concentrations and approximate annual biosolids production and disposal numbers in the U.S., of the sum of PBDEs and non-BDE BFRs was calculated to be 47,900–60,100 and 12,900–16,200 kg/year, of which 24,000–36,000 and 6,400–9,700 kg/year are applied on land, respectively. Mean concentration of PBDEs were higher in the 2001 samples compared to levels reported in EPA’s 2006/7 Targeted NSSS, reflecting on-going efforts in phasing-out PBDEs in the U.S. In outdoor soil mesocosms, >99% of the initial BFRs mass in the biosolids/soil mixtures (1:2) persisted over the monitoring duration of three years. Estimates of environmental releases may be refined in the future by analyzing individual rather than composited samples, and by integrating currently unavailable data on disposal of biosolids on a plant-specific basis. This study informs the risk assessment of BFRs by furnishing national inventories of BFR occurrence and environmental release via biosolids application on land. PMID:24607311

  12. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.

  13. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  14. Impact of sewage sludge conditioning and dewatering on the fate of nonylphenol in sludge-amended soils.

    PubMed

    Kouloumbos, V N; Schäffer, A; Corvini, P F-X

    2008-08-01

    The fate of (14)C-labelled p353-nonylphenol (NP) in soils amended with differently treated sludges originating from the same precursor sludge was assessed. The effects of commonly applied conditioning and dewatering techniques were investigated. Nonylphenol was degraded considerably faster in soils amended with liquid sludge, while a significant portion of it remained intact and extractable by organic solvents when sludge had been centrifuged before soil amendment. Mineralization was reduced or even inhibited when freeze-thaw or lime conditioning was applied, respectively. Flocculation by an acrylamide-based cationic polymer led to the formation of a nitro-addition product of nonylphenol in soil, as well to decreased mineralization rates after prolonged incubation times. Possible mechanisms underlying the observations are suggested and discussed.

  15. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  16. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    EPA Science Inventory

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  17. Soil-air exchange model of persistent pesticides in the United States cotton belt.

    PubMed

    Harner, T; Bidleman, T F; Jantunen, L M; Mackay, D

    2001-07-01

    Measurements of organochlorine pesticides (lindane, cis-chlordane [CC], trans-chlordane [TC], trans-nonachlor [TN]), dieldrin, p,p'-dichlorodiphenyldichloroethylene [DDE], and toxaphene) in Alabama, USA, air and soil were used to assess the soil-air equilibrium status and to identify compounds with significant contributions to observed air burdens. Of the compounds tested, p,p'-DDE and toxaphene showed a significant potential for outgasing, followed by dieldrin and trans-nonachlor, which showed moderate outgasing potentials. Lindane, cis-chlordane, and trans-chlordane were near soil-air equilibrium. A fugacity-based, multilayered soil-air exchange model was used to predict temporal trends of chemical in air and soil resulting from reemission of soil residues to a presumed clean atmosphere (maximum emission scenario). Results showed that p,p'-DDE and toxaphene accounted for up to 50% of the observed air burden and that approximately 200 to 600 kg of p,p'-DDE and 3,000 to 11,000 kg to toxaphene are released to the atmosphere each year by soils in Alabama (area = 1.23 x 10(11) m2). High annual net fluxes were also predicted for dieldrin and trans-nonachlor (300-1,100 kg and 150-500 kg, respectively), but these only account for up to approximately 20% of their observed air burdens.

  18. Sewage Monitors

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Every U.S. municipality must determine how much waste water it is processing and more importantly, how much is going unprocessed into lakes and streams either because of leaks in the sewer system or because the city's sewage facilities were getting more sewer flow than they were designed to handle. ADS Environmental Services, Inc.'s development of the Quadrascan Flow Monitoring System met the need for an accurate method of data collection. The system consists of a series of monitoring sensors and microcomputers that continually measure water depth at particular sewer locations and report their findings to a central computer. This provides precise information to city managers on overall flow, flow in any section of the city, location and severity of leaks and warnings of potential overload. The core technology has been expanded upon in terms of both technical improvements, and functionality for new applications, including event alarming and control for critical collection system management problems.

  19. Expedited soil remediation employing soil vapor extraction and bioventing at Castle Air Force Base

    SciTech Connect

    Hoge, J.

    1996-12-31

    Soil vapor extraction (SVE) involves in-situ removal and treatment of volatile organic compounds (VOCs) from the vadose zone. An SVE system includes vent wells screened in the areas of highest contamination, a piping network connecting the vent wells to a SVE treatment unit, blower(s), and a treatment unit. Typical treatment units include granular activated carbon, catalytic oxidation (catox), thermal oxidation and internal combustion (IC) engines. The type of treatment unit selected is a function of the characteristics of the incoming vapor stream. The blower(s) apply vacuum to selected vent wells, resulting in propagation of a pressure gradient some distance from the wells. This is known as the radius of influence. The zone of remediation within this radius of influence is the distance from the well where sufficient flow velocity exists such that timely clean up of VOCs from the vadose zone can occur. Bioventing is most effective in removing petroleum hydrocarbons with less than 10 carbon chains (C10+). Bioventing involves passive or active injection of air into the subsurface, thus promoting the natural biodegradation of residual petroleum hydrocarbons. Passive injection involves opening vent wells to the atmosphere. Active injection is performed by connecting blowers to vent wells, or the existing piping manifold, and injecting air. Bioventing is most effective in promoting natural biodegradation of residual hydrocarbons in compounds with more than C10+ carbon chains. Factors effecting bioventing performance include: (1) Microorganisms (capable of producing enzymes that can degrade the contamination), (2) Energy source (carbon), (3) Electron acceptor (oxygen), (4) Soil moisture, (5) pH, (6) Nutrients, (7) Soil temperature, and (8) Absence of compounds toxic to microorganisms.

  20. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  1. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    PubMed

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  2. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    PubMed Central

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  3. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  4. Does shift in oxygen level in soil air affect the trace gases emissions?

    NASA Astrophysics Data System (ADS)

    malghani, S.; Gleixner, G.; Trumbore, S.

    2013-12-01

    Biogenic processes in soil such as, trace gasses emissions are influenced by presence or absence of oxygen as it is a dominant final acceptor of electrons for number of biochemical processes. However, it is unknown that trace gases emissions from soil are influenced by the level of oxygen or not. To understand the impact of oxygen level on CO2, CH4 and N2O emissions, five contrasting soils which differ in land use and other properties, were incubated at constant temperature and moisture in an automated chamber measurement system. Automated system continuously (30 mL/min) flushed the chambers holding soil samples with inlet air of known composition and the outlet air, sampling the headspace of the column, was connected to an automated multiport stream selection valve (Valco) that directed the air stream from different columns sequentially to instrumental part (LiCOR6262,PICARRO2101i and PICCARO2301). Other greenhouse gases and isotopes (δ13C & D) of CH4 were sampled weekly using 2L flasks. Oxygen levels in inlet air were switched weekly, started from 20% followed by 10, 5, 2.5, 1, 0%, and all levels were repeated in reverse fashion (from 1 to 20%).The results showed that soil respiration was higher in soils that were rich in soil organic matter with higher microbial biomass. Three out of five soils exhibited a gradual decrease in soil respiration while shifting higher to lower O2 levels but no such impact was recorded during gradual increase in O2 level. The lowest respiration rates in all soil types were recorded under anaerobic conditions. Forest soils were rich in soil organic carbon and respired more CO2 than grassland or cropland soils. All soils oxidized CH4, except one grassland soil which was acidic in nature (pH=4.1), in the presence of O2 at all levels. Amount of CH4 oxidized varied among soil types and was highest in forest soils. Under anaerobic condition CH4 oxidation was not observed in any soil, while two soils (cropland and one grassland) emitted

  5. Environmental monitoring of chromium in air, soil, and water.

    PubMed

    Vitale, R J; Mussoline, G R; Rinehimer, K A

    1997-08-01

    Historical uses of chromium have resulted in its widespread release into the environment. In recent years, a significant amount of research has evaluated the impact of chromium on human health and the environment. Additionally, numerous analytical methods have been developed to identify and quantitate chromium in environmental media in response to various state and federal mandates such as CERCLA, RCRA, CWA, CAA, and SWDA. Due to the significant toxicity differences between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium, it is essential that chromium be quantified in these two distinct valence states to assess the potential risks to exposure to each in environmental media. Speciation is equally important because of their marked differences in environmental behavior. As the knowledge of risks associated with each valence state has grown and regulatory requirements have evolved, methods to accurately quantitate these species at ever-decreasing concentrations within environmental media have also evolved. This paper addresses the challenges of chromium species quantitation and some of the most relevant current methods used for environmental monitoring, including ASTM Method D5281 for air, SW-846 Methods 3060A, 7196A and 7199 for soils, sediments, and waste, and U.S. EPA Method 218.6 for water.

  6. New species of ice nucleating fungi in soil and air

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    -8°C. The IN seem not be bound to cells because they can be easily washed off the mycelium. They pass through a 0.1 µm filter and can be inactivated by 60°C treatment. Ongoing investigations of various soil and air samples indicate that diverse ice nucleation active fungi from more than one phylum are not only present in air and soil but can also be abundant components of the cultivable community. A recently discovered group of IN fungi in soil was also found to possess easily suspendable IN smaller than 300 kDa. Ice nucleating fungal mycelium may ramify topsoils and release cell-free IN into it. If some of these IN survive decomposition or are adsorbed onto mineral surfaces this contribution will accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties. Thanks for collaboration and support to M.O. Andreae, B. Baumgartner, I. Germann-Müller, T. Godwill, L.E. Hanson, A.T. Kunert, J. Meeks, T. Pooya, S. Lelieveld, J. Odhiambo Obuya, C. Ruzene-Nespoli, and D. Sebazungu. The Max Planck Society (MPG), Ice Nuclei research UnIT (INUIT), the German Research Foundation (PO1013/5-1), and the National Science Foundation (NSF, grant 0841542) are acknowledged for financial support. 1. Fröhlich-Nowoisky, J., et al. (2009) Proc. Natl Acad. Sci., 106, 12814-12819 2. Després, V. R., et al. (2012) Tellus B, 64, 15598 3. Georgakopoulos, D.G., et al. (2009) Biogeosciences, 6, 721-737 4. Pouleur, S., et al. (1992) Appl. Environ. Microbiol. 58, 2960-2964 5. Burrows, S.M., et al. (2009a) Atmos. Chem. Phys., 9, (23), 9281-9297 6. Burrows, S.M., et al. (2009b) Atmos. Chem. Phys., 9, (23), 9263-9280 7. Fröhlich-Nowoisky, J., et al. (2012) Biogeosciences, 9, 1125-1136 8. Huffman A. J. et al. (2013) Atmos. Chem. Phys., 13, 6151-6164

  7. The role of soil air composition for noble gas tracer applications in tropical groundwater

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner; Weissbach, Therese; Peregovich, Bernhard; Machado, Carlos

    2016-04-01

    Dissolved noble gases (NGs) in groundwater provide a well-established tool for paleo temperature reconstruction. However, reliable noble gas temperature (NGT) determination needs appropriate assumptions or rather an exact knowledge of soil air composition. Deviations of soil air NG partial pressures from atmospheric values have already been found in mid latitudes during summer time as a consequence of subsurface oxygen depletion. This effect depends on ambient temperature and humidity and is thus expected to be especially strong in humid tropical soils, which was not investigated so far. We therefore studied NGs in soil air and shallow groundwater near Santarém (Pará, Brazil) at the end of the rainy and dry seasons, respectively. Soil air data confirms a correlation between NG partial pressures, the sum value of O2+CO2 and soil moisture contents. During the rainy season, we find significant NG enhancements in soil air by up to 7% with respect to the atmosphere. This is twice as much as observed during the dry season. Groundwater samples show neon excess values between 15% and 120%. Nearly all wells show no seasonal variations of excess air, even though the local river level seasonally fluctuates by about 8 m. Assuming atmospheric NG contents in soil air, fitted NGTs underestimate the measured groundwater temperature by about 1-2° C. However, including enhanced soil air NG contents as observed during the rainy season, resulting NGTs are in good agreement with local groundwater temperatures. Our presented data allows for a better understanding of subsurface NG variations. This is essential with regard to NG tracer applications in humid tropical areas, for which reliable paleoclimate data is of major importance for modern climate research.

  8. Heavy metal availability and uptake by barley and swiss chard from a calcareous soil fertilized with sewage sludges

    SciTech Connect

    Badamchian, B.

    1984-01-01

    Barley (Hordeum vulgare L.) and Swiss chard (Beta vulagris L.) were grown on calcareous Millville silt loam in field plots to determine mainly (1) the effects of single and repeated sludge applications on the plant accumulation of Cd, Zn, Cu, Ni, Pd, and Cr, and (2) the extent of the hazard of heavy metal uptake. A Chicago sludge high in selected metals, a Salt Lake sludge and an Idaho Falls sludge were used. Of the three sludges only the Idaho Falls sludge, with its low metal and high P and K contents was considered suitable for use. Lower rates of the other sludges could allow them to be used. After 5 years of sludge application, there was no significant metal movement below the incorporate depth. Following the sludge applications, elevated levels of selected heavy metals were observed in all harvested plant materials. The heavy metal concentrations increased with the amount of applied sludges; however, subsequent applications did not increase the levels significantly. Results of 5 year sludge suggested that the heavy metal contents of crops harvested from oil with repeated sludge applications was most affected by the most recent sludge application, rather than an affect of the cumulative total metal content added to soil. Although Cd concentrations in barley and Swiss chard grown in Millville were lower than most suggested hazardous limits, the concentration in barley and Swiss chard leaves were high enough to warrant some concern in applying these sludges to similar soils.

  9. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    EPA Pesticide Factsheets

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  10. Air sparging: Effects of VOCs and soil properties on VOC volatilization

    SciTech Connect

    Chao, K.P.; Ong, S.K.

    1995-12-31

    The effect of the physical-chemical properties of volatile organic compounds (VOCs) and soil on the volatilization of VOCs during air sparging was investigated using a laboratory-scale air sparging system. The variables studied included two types of soils, three different VOCs, and various air flowrates. VOCs used were chloroform, trichloroethylene (TCE), and carbon tetrachloride. As expected, the percent removal efficiencies of VOCs over a 24-h period were proportional to the injected air flowrate and Henry`s law constant. Experimental results also indicated that beyond a certain air flowrate, the mass of TCE removed was similar for the two porous media used in the experiments. The VOCs volatilized from the porous media appeared to be limited by the interfacial surface area of the water-air interface of the air channels. However, other physical processes, such as diffusion, may also be limiting.

  11. Soil-air relationships for toxaphene in the southern United States.

    PubMed

    Bidleman, Terry E; Leone, Andi

    2004-10-01

    Volatilization of toxaphene residues from agricultural soil was investigated at farms in the southern United States by collecting air samples 40 cm above the soil. The concentration of total toxaphene ranged over several orders of magnitude, from <3 to 6,500 ng g(-1) dry weight in soil, and <0.3 to 42 ng m(-3) in air. A log-log plot of total toxaphene concentrations in soil and overlying air showed a significant (p < 0.001) positive relationship, with r2 = 0.73. The soil/air fugacity ratio (FR) for 26 events ranged from 0.4 to 238, exceeded FR = 1.0 (soil/air equilibrium) in 24 events, and exceeded FR = 10 in 17 events. This indicates that toxaphene in air sampled at 40 cm generally was not at equilibrium but undersaturated with respect to the soil. Compared to a technical toxaphene standard, chromatographic profiles of toxaphene residues in soil and air showed alterations due to preferential degradation and volatilization of the components. Peaks matching the retention times of labile octachlorobornanes B8-531 and B8-806 + B8-809 were depleted in both soil and air relative to the more recalcitrant B8-1413 + B8-1945 and B8-2229. For each event, log-log plots were made of the dimensionless soil/air concentration quotient (Q) versus liquid-phase vapor pressure (PL, Pa) for 10 toxaphene components (peaks containing coeluting congeners) that spanned the volatility range of hepta- to nonachlorobornanes. Statistically significant linear relationships were obtained with r2 values for most events ranging from 0.54 to 0.96. Slopes for all but one event ranged from -1.01 to -1.53 and averaged -1.28 +/- 0.20. When regressions were carried out for only components one to nine, which cover the vapor pressure range of most components reported in ambient air, the average slope was reduced to -1.02 +/- 0.15. Previous models of toxaphene emission, transport, and deposition have considered only total toxaphene. These results provide a basis for modeling soil/air exchange on the basis

  12. Genotoxic and mutagenic effects of sewage sludge on higher plants.

    PubMed

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; Souza, Tatiana da Silva

    2016-02-01

    Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils.

  13. New species of ice nucleating fungi in soil and air

    NASA Astrophysics Data System (ADS)

    Froehlich, Janine; Hill, Tom; Franc, Gary; Poeschl, Ulrich

    2013-04-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (2, 3). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (2). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (4, 5). The results presented in Fröhlich-Nowoisky et al. 2012 (6) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. Thus, the objective of this study is the identification and quantification of ice nuclei-active fungi in and above ecosystems, and the unraveling of IN-active structures in fungi. Results obtained from the analysis of various soil and air samples and the presence of new fungal ice active species will be revealed. Thanks for collaboration and support to M.O. Andreae, J.-D. Förster, I. Germann-Müller, L.E. Hanson, S. Lelieveld, J. Odhiambo Obuya, T. Pooya, and C. Ruzene-Nespoli. The Max Planck Society (MPG), Ice Nuclei research UnIT (INUIT), and the German Research Foundation (PO1013/5-1) are acknowledged for financial support. 1. Fröhlich-Nowoisky, J., et al. (2009) Proc. Natl Acad. Sci., 106, 12814-12819 2. Georgakopoulos

  14. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    SciTech Connect

    Mohr, D.H.; Merz, P.H.

    1995-05-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature.

  15. PRELIMINARY ASSESSMENT OF WORKER AND AMBIENT AIR EXPOSURES DURING SOIL REMEDIATION TECHNOLOGY DEMONSTRATIONS

    EPA Science Inventory

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead contaminated soil sites. An industrial hygiene survey and air monitoring program for both lead and dust were performed during initial soil sampling acti...

  16. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward

    2014-11-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.

  17. Studies on affecting factors and mechanism of treating decentralized domestic sewage by a novel anti-clogging soil infiltration system.

    PubMed

    Yuan, Haiping; Nie, Junying; Gu, Lin; Zhu, Nanwen

    2016-12-01

    The effects of bore diameter and particle size of polyurethane (PU) foam on soil wastewater infiltration system as well as its anti-clogging mechanism were investigated in this study. Different types of PU were used to determine the effect of bore diameter and particle size on the chemical oxygen demand (COD) removal. The results revealed that bore diameter showed little effects and the optimal size of PU should be not less than 10 mm. The formation of strong hydrophilic group on the outer layer of hydrophobic PU foam was fixed with active ingredient Al2O3, leading to good anti-clogging effect. Denaturing gradient gel electrophoresis fingerprint profiles and cluster analysis showed that the microbial community in the bottom was different from that in other places of the normal column, while it in the top has obvious differences from that in other places of the clogging column. Furthermore, the dominant microbial species of the normal column was Betaproteobacteria while Alphaproteobacteria in the clogging column.

  18. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  19. PROCESS DESIGN MANUAL: LAND APPLICATION OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE

    EPA Science Inventory

    Land application of sewage sludge generated by domestic sewage treatment is performed in an environmentally safe and cost–effective manner in many communities. Land application involves taking advantage of the fertilizing and soil conditioning properties of sewage sludge by sp...

  20. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    NASA Astrophysics Data System (ADS)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  1. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    PubMed

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  2. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  3. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    NASA Astrophysics Data System (ADS)

    Garbesi, Karina; Sextro, Richard G.; Robinson, Allen L.; Wooley, John D.; Owens, Jonathan A.; Nazaroff, William W.

    1996-03-01

    This work investigates the dependence of soil permeability to air on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas phase contaminants through soils.

  4. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  5. Evolution of HTO concentrations in soil, vegetation and air during an experimental chronic HT release

    SciTech Connect

    Davis, P.A.; Galeriu, D.C.; Spencer, F.S.; Amiro, B.D.

    1995-10-01

    A small experimental plot was continuously exposed to elevated levels of HT in air over a 12-day period to study the build up and steady-state concentrations of HTO in the environment. HTO concentrations in soil, vegetation and air all showed similar dynamics, increasing gradually over time with temporary decreases during and following rainfall. The relative magnitudes of the soil, vegetation and air concentrations depended on the height at which the air and vegetation were sampled, the depth at which the soil sample was taken and the soil depth over which the plants drew their transpiration water. The system was at or near steady-state in the last two or three days of the release. When averaged over an eight day interval that included periods of rain, the ratios of HTO concentration in soil, foliage and air moisture to HT concentration in air (measured 20 cm above the ground) were typically 0.0014, 0.0010 and 0.0011 (Bq/mL)/(Bq/m{sup 3}) for a cultivated field. 10 refs., 7 figs.

  6. Prediction of soil frost penetration depth in northwest of Iran using air freezing indices

    NASA Astrophysics Data System (ADS)

    Mohammadi, H.; Moghbel, M.; Ranjbar, F.

    2016-11-01

    Information about soil frost penetration depth can be effective in finding appropriate solutions to reduce the agricultural crop damage, transportations, and building facilities. Amongst proper methods to achieve this information are the statistical and empirical models capable of estimating soil frost penetration depth. Therefore, the main objective of this research is to calculate soil frost penetration depth in northwest of Iran during the year 2007-2008 to validate two different models accuracy. To do so, the relationship between air and soil temperature in different depths (5-10-20-30-50-100 cm) at three times of the day (3, 9, and 15 GMT) for 14 weather stations over 7 provinces was analyzed using linear regression. Then, two different air freezing indices (AFIs) including Norwegian and Finn AFI was implemented. Finally, the frost penetration depth was calculated by McKeown method and the accuracy of models determined by actual soil frost penetration depth. The results demonstrated that there is a significant correlation between air and soil depth temperature in all studied stations up to the 30 cm under the surface. Also, according to the results, Norwegian index can be effectively used for determination of soil frost depth penetration and the correlation coefficient between actual and estimated soil frost penetration depth is r = 0.92 while the Finn index overestimates the frost depth in all stations with correlation coefficient r = 0.70.

  7. CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS

    EPA Science Inventory

    Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam fro...

  8. Air-soil exchange of organochlorine pesticides in a sealed chamber.

    PubMed

    Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed.

  9. Credit PSR. Northeast and southwest facades of Sewage Pumping Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. Northeast and southwest facades of Sewage Pumping Station (Building 4330). Building retains its World War II construction materials and character. In the background at the extreme left is Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Sewage Pumping Station, Southwest of E Street, Boron, Kern County, CA

  10. Estimating human exposure through multiple pathways from air, water, and soil.

    PubMed

    McKone, T E; Daniels, J I

    1991-02-01

    This paper describes a set of multipathway, multimedia models for estimating potential human exposure to environmental contaminants. The models link concentrations of an environmental contaminant in air, water, and soil to human exposure through inhalation, ingestion, and dermal-contact routes. The relationship between concentration of a contaminant in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). A PEF is an algebraic expression that incorporates information on human physiology and lifestyle together with models of environmental partitioning and translates a concentration (i.e., mg/m3 in air, mg/liter in water, or mg/kg in soil) into a lifetime-equivalent chronic daily intake (CDI) in mg/kg-day. Human, animal, and environmental data used in calculating PEFs are presented and discussed. Generalized PEFs are derived for air----inhalation, air----ingestion, water----inhalation, water----ingestion, water----dermal uptake, soil----inhalation, soil----ingestion, and soil----dermal uptake pathways. To illustrate the application of the PEF expressions, we apply them to soil-based contamination of multiple environmental media by arsenic, tetrachloroethylene (PCE), and trinitrotoluene (TNT).

  11. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.

    PubMed

    Riedmann, Robin A; Purtschert, Roland

    2011-10-15

    For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.

  12. Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion

    PubMed Central

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412

  13. Decomposition odour profiling in the air and soil surrounding vertebrate carrion.

    PubMed

    Forbes, Shari L; Perrault, Katelynn A

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.

  14. [Fungal biomass estimation in soils from southwestern Buenos Aires province (Argentina) using calcofluor white stain].

    PubMed

    Vázquez, María B; Amodeo, Martín R; Bianchinotti, María V

    Soil microorganisms are vital for ecosystem functioning because of the role they play in soil nutrient cycling. Agricultural practices and the intensification of land use have a negative effect on microbial activities and fungal biomass has been widely used as an indicator of soil health. The aim of this study was to analyze fungal biomass in soils from southwestern Buenos Aires province using direct fluorescent staining and to contribute to its use as an indicator of environmental changes in the ecosystem as well as to define its sensitivity to weather conditions. Soil samples were collected during two consecutive years. Soil smears were prepared and stained with two different concentrations of calcofluor, and the fungal biomass was estimated under an epifluorescence microscope. Soil fungal biomass varied between 2.23 and 26.89μg fungal C/g soil, being these values in the range expected for the studied soil type. The fungal biomass was positively related to temperature and precipitations. The methodology used was reliable, standardized and sensitive to weather conditions. The results of this study contribute information to evaluate fungal biomass in different soil types and support its use as an indicator of soil health for analyzing the impact of different agricultural practices.

  15. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  16. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  17. Threshold velocities for input of soil particles into the air by desert soils

    NASA Astrophysics Data System (ADS)

    Gillette, Dale A.; Adams, John; Endo, Albert; Smith, Dudley; Kihl, Rolf

    1980-10-01

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: distrubed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavements (alluvial deposits).

  18. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    NASA Astrophysics Data System (ADS)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  19. Modeling the air-soil transport pathway of perfluorooctanoic acid in the mid-Ohio Valley using linked air dispersion and vadose zone models

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.

    2012-05-01

    As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.

  20. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    SciTech Connect

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  1. Preliminary assessment of worker and ambient air exposures during soil remediation technology demonstration.

    PubMed

    Romine, James D; Barth, Edwin F

    2002-01-01

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead-contaminated soil sites. Industrial hygiene surveys and air monitoring programs for both lead and dust were performed during initial soil sampling activities and during pilot scale technology demonstration activities at two lead-contaminated soil sites to assess whether worker protection or temporary resident relocation would be suggested during any subsequent remediation technology activities. The concentrations of lead and dust in the air during pilot scale technology demonstration studies were within applicable exposure guidelines, including Occupational Health and Safety Administration permissible exposure limits, National Institute for Occupational Safety and Health recommended exposure limits, American Conference of Governmental Industrial Hygiene threshold limit values, and the United States Environmental Protection Agency's National Ambient Air Quality Standards program limits.

  2. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    PubMed

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  3. Estimation of soil air permeability components at a laboratory-scale pilot.

    PubMed

    Boudouch, Otmane; Esrael, Daoud; Kacem, Mariem; Benadda, Belkacem

    2012-01-01

    Soil air permeability is a key parameter in the design of soil vapour extraction. The purpose of this study is to verify the applicability of different analytical solutions, developed to determine soil characteristics in field conditions, to estimate soil air permeability in a small-scale pilot, since field testing may be expensive. A laboratory tridirectional pilot and a unidirectional column were designed in order to achieve the objectives of this work. Use of a steady-state unconfined analytical solution was found to be an appropriate method to determine soil air permeability components for the pilot conditions. Using pressure data collected under open, steady-state conditions, the average values of radial and vertical permeability were found to be, respectively, 9.97 x 10(-7) and 8.74 x 10(-7) cm2. The use of semi-confined analytical solutions may not be suitable to estimate soil parameters since a significant difference was observed between simulated and observed vacuums. Air permeability was underestimated when transient solutions were used, in comparison with methods based on steady-state solutions. The air radial and vertical permeability was found to be, respectively, 7.06 x 10(-7) and 4.93 x 10(-7) cm2, in the open scenario, and 2.30 x 10(-7) and 1.51 x 10(-7) cm2 in the semi-confined scenario. However, a good estimate of soil porosity was achieved using the two transient methods. The average values were predicted to be 0.482, in the open scenario, and 0.451 in the semi-confined scenario, which was in good agreement with the real value.

  4. Air-Based Remediation Workshop - Section 2 Soil Vapor Extraction

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sties," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  5. Modelling pesticide volatilization after soil application using the mechanistic model Volt'Air

    NASA Astrophysics Data System (ADS)

    Bedos, Carole; Génermont, Sophie; Le Cadre, Edith; Garcia, Lucas; Barriuso, Enrique; Cellier, Pierre

    Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH 3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to K h. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make

  6. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  7. United States Air Force Soil Stabilization Index System - A Validation

    DTIC Science & Technology

    1975-01-01

    Tests Results of Strength Tests Results of Freeze-Ihaw Test Results of Wet- Dry Test Long-Term Immersion Test Effect of Sulface on Cement... Dry Test Results of Soil-Cement Mixtures 120 12 Summary of Immersion Test Results of Soil-Cement Mixtures 131 13 Seven-Day St engths and Durabilities...much higher than the strengths after 12 freeze-thaw cycles. The high temperature (160oF) during the drying phase of the wet- dry test may have

  8. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  9. 13. Sewage treatment lagoon, drainage control at center left, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Sewage treatment lagoon, drainage control at center left, looking south - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  10. Impact of Fertilizing with Raw or Anaerobically Digested Sewage Sludge on the Abundance of Antibiotic-Resistant Coliforms, Antibiotic Resistance Genes, and Pathogenic Bacteria in Soil and on Vegetables at Harvest

    PubMed Central

    Rahube, Teddie O.; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R.

    2014-01-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. PMID:25172864

  11. Laboratory simulation of recent NAPL spills to investigate radon partition among NAPL vapours and soil air.

    PubMed

    De Simone, Gabriele; Lucchetti, Carlo; Pompilj, Francesca; Galli, Gianfranco; Tuccimei, Paola

    2017-02-01

    Soil radon is employed to trace residual NAPL (Non-Aqueous Phase Liquid) contamination because it is very soluble in these substances and is strongly depleted over polluted volumes of the subsoil. The solubility of radon into NAPL vapors, generally poorly considered, is investigated here, either as growth of radon exhalation from a material contaminated with increasing volumes of kerosene, or as radon partition between liquid kerosene, water and total air, considered ad the sum of kerosene vapors plus air.

  12. Byproducts Utilization Program: Sewage Sludge Irradiation Project. Progress report, July-December 1983

    SciTech Connect

    Not Available

    1984-12-01

    Engineering support for a demonstration-scale irradiator design included assisting the City of Albuquerque in preparing a comprehensive site plan for their proposed sludge handling and treatment facilities. The solar sludge dryer has been delivered to SNLA. A preliminary sludge drying experiment indicated the importance of optimizing stirring and air flow. Installation of instrumentation and mechanical equipment continued. The Sandia Irradiator for Dried Sewage Solids (SIDSS) was used to irradiate 23 tons of dried, digested sewage sludge for the New Mexico State University (NMSU) Department of Crop and Soil Sciences. Gamma Irradiation Facility (GIF) operations included irradiation of ground pork for Toxoplasma gondii inactivation experiments, irradiation of surgical supplies and soil samples. Beneficial Uses Shipping Systems (BUSS) cask activities included near completion of the two full-scale cask bodies. Work continued on the Cask Safety Analysis Report (SAR) including additional analyses to reconfigure the six strontium fluoride capsules and/or reduce the number of capsules accommodated. NMSU has indicated no regrowth of salmonellae occurred in the irradiated sludge stockpile, while salmonellae did regrow in the unirradiated stockpile. Analyses of raw and digested sewage sludge from the Albuquerque Waste Water Treatment Plant showed levels of Yersinia enterocolitica (a human pathogen of emerging significance) to be below detection limits.

  13. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  14. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  16. Distinct effects of moisture and air contents on acoustic properties of sandy soil.

    PubMed

    Oshima, Takuya; Hiraguri, Yasuhiro; Okuzono, Takeshi

    2015-09-01

    Knowledge of distinct effects of moisture content and air volume on acoustic properties of soil is sought to predict the influence of human activities such as cultivation on acoustic propagation outdoors. This work used an impedance tube with the two-thickness method to investigate such effects. For a constant moisture weight percentage, the magnitude of the characteristic impedance became smaller and the absorption coefficient became higher with increase of the air space ratio. For a constant air space ratio, the absorption coefficient became larger and the magnitude of the propagation constant became smaller with increasing moisture weight percentage.

  17. Air sparging/high vacuum extraction to remove chlorinated solvents in groundwater and soil

    SciTech Connect

    Phelan, J.M.; Gilliat, M.D.

    1998-11-01

    An air sparging and high vacuum extraction was installed as an alternative to a containment pump and treat system to reduce the long-term remediation schedule. The site is located at the DOE Mound facility in Miamisburg, Ohio, just south of Dayton. The air sparging system consists of 23 wells interspersed between 17 soil vapor extraction wells. The SVE system has extracted about 1,500 lbs of VOCs in five months. The air sparging system operated for about 6 weeks before shutdown due to suspected biochemical fouling. Technical data are presented on the operating characteristics of the system.

  18. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    PubMed

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  19. Using in-situ hot air/steam stripping (HASS) of hydrocarbons in soils

    SciTech Connect

    La Mori, P.N.

    1994-12-31

    The remediation of soils containing volatile (VOC) and semi-volatile (SVC) hydrocarbons is most desirably accomplished in-situ, i.e., without removal of the contaminated soils from the ground. This approach mitigates the environmental problem, i.e., does not transport it to another location, and when properly applied, does not impact on the local environment during remediation NOVATERRA has demonstrated commercially an in-situ, hot air/steam stripping (HASS) technology to remove VOC and SVC from soils both in the vadose and saturated zones. The technology consists of a drill tower which injects and mixes steam and hot air continuously into the soil below ground and a method to immediately capture all vapors escaping to the surface and remove the vaporized VOC/SVC using condensation and carbon beds. The air can be recompressed and recycled. The condensed liquid containing hydrocarbons is purified by distillation. The recovered hydrocarbons can be destroyed or recycled. The technology has successfully removed various chlorinated aliphatics and aromatics, glycol ethers, phthalates, polyaromatic compounds, ketones, petroleum hydrocarbons and many other compound types from sand to clay soils to risk based standards; e.g. 1 increased cancer risk in 1,000,000 using currently acceptable risk assessment standards.

  20. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus).

    PubMed

    Mikes, Ondrej; Cupr, Pavel; Trapp, Stefan; Klanova, Jana

    2009-02-01

    Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for beta-hexachlorocyclohexane. Bioconcentration factor (BCF, defined as a ratio between the contaminant concentration in the plant tissue and concentration in soil) was determined for roots, edible bulbs and shoots. Root BCF values were constant and not correlated to log K(OW). A negative correlation between BCF and log K(OW) was found for edible bulbs. Shoot BCF values were rather constant and varied between 0.01 and 0.22. Resuspended soil particles may facilitate the transport of chemicals from soil to shoots. Elevated POP concentrations found in shoots of radishes grown in the control plot support the hypothesis that the uptake from air was more significant for shoots than the one from soil. The uptake of POPs from air was within the range of theoretical values predicted from log K(OA).

  1. MEASUREMENT OF EFFECTIVE AIR DIFFUSION COEFFICIENTS FOR TRICHLOROETHENE IN UNDISTURBED SOIL CORES. (R826162)

    EPA Science Inventory

    Abstract

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...

  2. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in sewage sludge amended soil.

    PubMed

    Gautam, Meenu; Agrawal, Madhoolika

    2017-05-01

    Lemongrass is a commercially important perennial herb with medicinal value and ability to tolerate high alkaline and saline conditions. Essential oil bearing plants can grow safely in soil contaminated with heavy metals without severe effects on morphology and oil yield. The present study was aimed to assess the essential oil content and composition in lemongrass in response to elevated metals in above-ground plant parts. Pot experiment was conducted for six months using sewage sludge as soil amendment (soil: sludge: 2:1 w/w) followed by red mud treatments (0, 5, 10 and 15% w/w). Garden soil without sludge and red mud was control and there were ten replicates of each treatment. Oil content in leaves was differently affected due to presence of metals in soil under different treatments. Oil content under SRM5 (5% red mud) treatment was raised by 42.9 and 11.5% compared to the control and SRM0 treatment, respectively. Among identified compounds in oil under red mud treatments, 17 compounds contributed more than 90% of total volatiles (citral contributing approximately 70%). Under SRM10 treatment, essential oil showed maximum citral content (75.3%). Contents of Fe, Zn, Cu, Cd, Ni and Pb in above-ground plant parts exceeded, whereas Mn was detected within WHO permissible limits for medicinal plants. However, metal contents in essential oil were well within FSSAI limits for food. The study suggests utilization of 5 and 10% red mud in sludge amended soil for lemongrass cultivation to have better oil yield and quality, without metal contamination.

  3. Mercury in soil gas and air--A potential tool in mineral exploration

    USGS Publications Warehouse

    McCarthy, Joseph Howard; Vaughn, W.W.; Learned, R.E.; Meuschke, J.L.

    1969-01-01

    The mercury content in soil gas and in the atmosphere was measured in several mining districts to test the possibility that the mercury content in the atmosphere is higher over ore deposits than over barren ground. At Cortez, Nev., the distribution of anorhalous amounts of mercury in the air collected at ground level (soil gas) correlates well with the distribution of gold-bearing rocks that are covered by as much as 100 feet of gravel. The mercury content in the atmosphere collected at an altitude of 200 feet by an aircraft was 20 times background over a mercury posit and 10 times background over two porphyry copper deposits. Measurement of mercury in soil gas and air may prove to be a valuable exploration tool.

  4. A laboratory assessment of air sparging performance on oil-contaminated soil

    SciTech Connect

    Harkness, M.R.; Bracco, A.A.; Ciampa, J.D.

    1995-12-31

    The efficacy of air sparging to remediate a subsurface plume of transformer oil is evaluated in a comprehensive laboratory study. Shake flask assays containing contaminated soil indicated the oil was highly (>80%) biodegradable by indigenous bacteria when oxygen, nitrogen, and phosphorous were supplied. From 50 to 60% of the oil was removed from the soil in a 169-day biodegradation rate study performed in laboratory soil columns designed to mimic air sparged conditions. Maximal total petroleum hydrocarbon (TPH) biodegradation rates of {approximately}70 mg/kg per day were observed in nutrient (N and P) amended columns at 23 C, based upon O{sub 2} uptake and CO{sub 2} production. The total TPH biodegraded in these columns was 3-fold higher than in an unamended control column.

  5. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  6. [Effects of air temperature and soil moisture on flavonoids accumulation in Ginkgo biloba leaves].

    PubMed

    Wang, Gui-Bin; Guo, Xu-Qin; Chang, Li; Cao, Fu-Liang

    2013-11-01

    Taking the 2-year old Ginkgo biloba seedlings as test materials, a pot experiment was conducted in an artificial climate chamber to study the effects of air temperature and soil moisture on the flavonoids accumulation in leaves. Three levels of air temperature (15/5 degrees C, 25/15 degrees C, and 35/25 degrees C day/night) and three levels of soil moisture (55%-60%, 40%-45%, and 30%-35% of field capacity) were installed, yielding nine temperature-soil moisture combinations. Under the three levels of soil moisture, the quercetin, kaempferol, isorhamnetin, and total flavonoids contents in the leaves were higher at 15/5 degrees C than at 25/15 degrees C and 35/25 degrees C. Soil moisture had minor effects on the flavonoids accumulation. The leaf kaempferol content was the highest, followed by quercetin and isorhamnetin. The total flavonoids yield per plant at 35/25 degrees C was higher than that at 15/5 degrees C and 25/15 degrees C. It was suggested that to adopt appropriate soil covering and watering before harvesting to decrease the ambient temperature could benefit the enhancement of leaf flavonoids content and the improvement of per unit area flavonoids production in G. biloba leaf-harvesting plantation.

  7. Air pollution: Household soiling and consumer welfare losses

    USGS Publications Warehouse

    Watson, W.D.; Jaksch, J.A.

    1982-01-01

    This paper uses demand and supply functions for cleanliness to estimate household benefits from reduced particulate matter soiling. A demand curve for household cleanliness is estimated, based upon the assumption that households prefer more cleanliness to less. Empirical coefficients, related to particulate pollution levels, for shifting the cleanliness supply curve, are taken from available studies. Consumer welfare gains, aggregated across 123 SMSAs, from achieving the Federal primary particulate standard, are estimated to range from $0.9 to $3.2 million per year (1971 dollars). ?? 1982.

  8. Predicting soil fumigant air concentrations under regional and diverse agronomic conditions.

    PubMed

    Cryer, Steven A

    2005-01-01

    SOFEA (SOil Fumigant Exposure Assessment system; Dow AgroSciences, Indianapolis, IN) is a new stochastic numerical modeling tool for evaluating and managing human inhalation exposure potential associated with the use of soil fumigants. SOFEA calculates fumigant concentrations in air arising from volatility losses from treated fields for large agricultural regions using multiple transient source terms (treated fields), geographical information systems (GIS) information, agronomic specific variables, user-specified buffer zones, and field reentry intervals. A modified version of the USEPA Industrial Source Complex Short Term model (ISCST3) is used for air dispersion calculations. Weather information, field size, application date, application rate, application type, soil incorporation depth, pesticide degradation rates in air, tarp presence, field retreatment, and other sensitive parameters are varied stochastically using Monte Carlo techniques to mimic region and crop specific agronomic practices. Regional land cover, elevation, and population information can be used to refine source placement (treated fields), dispersion calculations, and risk assessments. This paper describes the technical algorithms of SOFEA and offers comparisons of simulation predictions for the soil fumigant 1,3-dichloropropene (1,3-D) to actual regional air monitoring measurements from Kern, California. Comparison of simulation results to daily air monitoring observations is remarkable over the entire concentration distribution (average percent deviation of 44% and model efficiency of 0.98), especially considering numerous inputs such as meteorological conditions for SOFEA were unavailable and approximated by neighboring regions. Both current and anticipated and/or forecasted fumigant scenarios can be simulated using SOFEA to provide risk managers and product stewards the necessary information to make sound regulatory decisions regarding the use of soil fumigants in agriculture.

  9. [Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy)].

    PubMed

    Ferrante, Margherita; Fiore, Maria; Ledda, Caterina; Cicciù, Francesca; Alonzo, Elena; Fallico, Roberto; Platania, Francesco; Di Mauro, Rosario; Valenti, Lina; Sciacca, Salvatore

    2013-01-01

    Contamination of fruits and vegetables with heavy metals can result from anthropogenic events (car or factory emissions, poor management of sewage and industrial waste) or from natural events (volcanic activity and geological soil matrix). The chemical and toxicological characteristics of heavy metals can have an impact on human health through several mechanisms. Other metals, on the other hand, are essential for maintenance of physiological and biochemical human processes, are protective against many diseases and must be present in the diet because they cannot be synthesized by the human body. The purpose of this study was to assess the presence of heavy metals and trace elements both in fruit and vegetable products widely consumed in the province of Catania (Sicily, Italy) and in various environmental matrices (air, water and land), and to investigate possible sources of contamination. Fruit and vegetable products (tomatoes, lettuce, spinach, eggplants, potatoes, zucchini, grapes, apples and pears) were sampled (n = 60) from the towns of Adrano, Biancavilla and Mazzarrone. These locations were selected for their geomorphology, climate and cultivation characteristics. Levels of lead, cadmium, nickel, copper, zinc, vanadium and selenium in fruit, vegetables, air and water samples were determined using atomic absorption spectrometer with graphite furnace Perkin-Elmer AAnalyst 800 while soil samples were evaluated by the atomic emission spectrometer Optima 2000 DV Perkin-Elmer. The presence of mercury was evaluated by atomic absorption spectrometry with cold vapor technique. Study results revealed widespread contamination of fruit and vegetables and mainly due to use of fertilizers and to volcanic activity. A strategy targeting the entire food chain is essential for ensuring food safety and consumer protection and maintaining contaminants at levels which are not hazardous to health.

  10. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect

    Wan, Shiqiang; Norby, Richard J; Childs, Joanne; Weltzin, Jake

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study

  11. Interactions of subsoiling and sewage sludge on soil physical and chemical factors and growth of Pinus Taeda L. and a Festuca Sp. Progress report

    SciTech Connect

    Berry, C.R.

    1984-01-01

    Eight intensities of subsoiling were compared to disking on borrow pit reclamation plots amended with 17 mt/ha sewage sludge or inorganic fertilizer (1121 kg/ha) and lime (242 kg/ha). After one year, N and P levels in sludge plots were significantly higher than in fertilizer plots. K was low in all plots. Foliar N was significantly increased in trees on sludge plots, but foliar K was significantly higher in trees on fertilizer plots. Trees on the sludge-amended plots grew an average of 37.3% more in height and 76.5% more in DBH than trees grown in the fertilizer-amended plots.

  12. Predicting bioconcentration of chemicals into vegetation from soil or air using the molecular connectivity index

    SciTech Connect

    Dowdy, D.L.; McKone, T.E.; Hsieh, D.P.H.

    1995-12-31

    Bioconcentration factors (BCFs) are the ratio of chemical concentration found in an exposed organism (in this case a plant) to the concentration in an air or soil exposure medium. The authors examine here the use of molecular connectivity indices (MCIs) as quantitative structure-activity relationships (QSARS) for predicting BCFs for organic chemicals between plants and air or soil. The authors compare the reliability of the octanol-air partition coefficient (K{sub oa}) to the MC based prediction method for predicting plant/air partition coefficients. The authors also compare the reliability of the octanol/water partition coefficient (K{sub ow}) to the MC based prediction method for predicting plant/soil partition coefficients. The results here indicate that, relative to the use of K{sub ow} or K{sub oa} as predictors of BCFs the MC can substantially increase the reliability with which BCFs can be estimated. The authors find that the MC provides a relatively precise and accurate method for predicting the potential biotransfer of a chemical from environmental media into plants. In addition, the MC is much faster and more cost effective than direct measurements.

  13. Impacts on groundwater due to land application of sewage sludge

    SciTech Connect

    Higgins, A.J.

    1984-06-01

    The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.

  14. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    PubMed

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications.

  15. Lockport Sewage Lagoon.

    ERIC Educational Resources Information Center

    Perry, John

    1995-01-01

    Describes a student initiated stewardship project that resulted in the transformation of a sewage lagoon near the school into a place to study nature. Contains a list of 20 things that discourage a successful stewardship project. (LZ)

  16. Vessel Sewage Discharges

    EPA Pesticide Factsheets

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  17. [Dictyostelids (Eumycetozoa) from soils of Punta Lara, Province of Buenos Aires, Argentina].

    PubMed

    Vadell, E M

    2000-01-01

    Five taxa of dictyostelid cellular slime molds were isolated from soil and litter samples of the relictual gallery forest of Punta Lara (34 degrees 47' S, 58 degrees 1' W), Province of Buenos Aires, Argentina. Dictyostelium lavandulum, D. polycephalum, D. purpureum and Polysphondylium violaceum were identified from most samples studied, whereas D. macrocephalum was isolated only once. Strains were lyophilized and kept in the BAFC Ceparium. Two additional isolated strains were related to D. sphaerocephalum, and to D. mucoroides var. stoloniferum. These species were likewise found, among others, in soils of the Iguazú National Park (Misiones, Argentina) in 1995.

  18. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge.

    PubMed

    Dai, Jia-yin; Chen, Ling; Zhao, Jian-fu; Ma, Na

    2006-01-01

    In order to better understand land application of sewage sludge, the characterization of heavy metals and organic pollutants were investigated in three different sewage sludges in Shanghai City, China. It was found that the total concentrations of Cd in all of sewage sludge and total concentrations of Zn in Jinshan sewage sludge, as well as those of Zn, Cu, and Ni in Taopu sludge are higher than Chinese regulation limit of pollutants for sludge to be used in agriculture. Leachability of Hg in all of studied samples and that of Cd in Taopu sewage sludge exceed the limit values of waste solid extraction standard in China legislation. Based on the characteristics for three kinds of sewage sludge, a pot experiment was conducted to investigate the effect of soil amended with Quyang sewage sludge on the accumulation of heavy metal by Begonia semperflorens-hybr; Ophiopogon japonicus (L.F.) Ker-Gaw; Loropetalum chindense-var. rubrum; Dendranthema morifolium; Viola tricolor; A ntirrhinum majus; Buxus radicans Sieb; Viburnum macrocephalum; Osmanthus fragrans Lour; Cinnamomum camphora siebold and Ligustrum lucidum ait. Results showed that 8 species of plant survived in the amended soil, and moreover they flourished as well as those cultivated in the control soil. The heavy metal concentration in plants varied with species, As, Pb, Cd and Cr concentration being the highest in the four herbaceous species studied, particularly in the roots of D. morifolium. These plants, however, did not show accumulator of As, Pb, Cd and Cr. The highest concentration of Ni and Hg was found in the roots of D. morifolium, followed by the leaves of B. semperflorens-hybr. Levels of Zn and Cu were much higher in D. morifolium than in the other plant species. D. morifolium accumulated Ni, Hg, Cu and Zn, which may contribute to the decrease of heavy metal contents in the amended soil. Treatment with sewage sludge did not significantly affect the uptake of heavy metals by the L. chindense-var. rubrum

  19. Determination of methyl isocyanate in outdoor residential air near metam-sodium soil fumigations.

    PubMed

    Woodrow, James E; LePage, Jane T; Miller, Glenn C; Hebert, Vincent R

    2014-09-10

    The soil fumigant metam-sodium (CH3NHCS2Na) produces the bioactive respiratory irritant methyl isothiocyanate (MITC). Recent laboratory gas-phase oxidative studies indicate that MITC rapidly transforms to the more toxic methyl isocyanate (MIC) in the lower atmosphere. Inhalation exposure risks from MITC plus MIC may therefore be an occupational worker and/or bystander health concern. To address this concern, MIC was monitored, along with MITC, in outdoor residential air in Washington state during the peak fall metam fumigation season. XAD-7 cartridges, coated with 1-(2-pyridyl)piperazine, were developed to retain MIC as its stable substituted urea derivative. Of the 68 residential air measurements of MIC, 15 (22%) were observed to be above the California Environmental Protection Agency's chronic inhalation reference level of 1 μg/m(3), with an observed maximum MIC air concentration of 4.4 μg/m(3). This study indicates MIC air concentrations can be anticipated along with MITC in residential air where seasonal metam soil fumigant applications occur.

  20. Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor

    SciTech Connect

    McGrath, S.P.; Knight, B.; Killham, K.; Preston, S.; Paton, G.I.

    1999-04-01

    Currently, regulations regarding the maximum permitted concentrations of metals in soils are based on measurements of the total concentration. However, a range of chemical and biological techniques are being developed to predict the bioavailable component of these pollutants. A lux-based biosensor was tested in soil solutions extracted from two field experiments at Braunschweig, Germany, that had the same metal inputs, but differed in pH. The bioluminescence response was found to decline as the free Zn{sup 2+} increased, and both soils fitted the same relationship with soil solution metal concentrations. The EC25 and EC50 derived from this curve were 1.9 and 6.1 mg/L, respectively. In contrast, the response to total Zn concentrations in the bulk soil showed distinct curves for each soil, further highlighting the appropriateness of free Zn{sup 2+} as a toxicity indicator. Other metals were present in the soil, but were unlikely to be toxic, because the observed concentrations were less than their individual toxic threshold values in solution. Bioluminescence-based biosensors were concluded to possibly offer an inexpensive and rapid technique to evaluate the bioavailability of metals in soil systems. The response of these biosensors can be related to soil solution speciation measurements, and this gives a common basis for expression of toxic thresholds in different soils.

  1. Quantitative Passive Diffusive Sampling for Assessing Soil Vapor Intrusion to Indoor Air

    DTIC Science & Technology

    2012-03-28

    4/11/2012 1 Quantitative Passive Diffusive Sampling for Assessing Soil Vapor Intrusion to Indoor Air Todd McAlary and Hester Groenevelt, Geosyntec... Intrusion to Indoor Air 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...10-6 risk (ppb) Vapour pressure (atm) Water solubility (g/l) 1,1,1-Trichloroethane 110 400 0.16 1.33 1,2,4-Trimethylbenzene

  2. Utilization of W/Mg(NO 3) 2 modifiers for the direct determination of As and Sb in soils, sewage sludge and sediments by solid sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Török, Peter; Žemberyová, Mária

    2010-04-01

    A simple method has been developed for the determination of arsenic and antimony in environmental samples by solid sampling electrothermal atomic absorption spectrometry, which was validated using certified reference materials of soils (S-VM — Soil Eutric Cambisol; S-MS — Soil Orthic Luvisols; S-SP — Soil Rendzina), sewage sludge (WT-L; WT-M) and sediments (NIES2; GBW07906). The analytical procedure combines solid sampling with utilization of a matrix modifier admixture containing 5 µg of W and 5 µg of Mg. The tungsten in the admixture serves to stabilize the solid matrix during atomisation, which results in dramatically reduced non-specific absorption compared with the conventional palladium modifier. Magnesium was efficient in reducing the accumulation of the matrix residue on the platform. An alternative resonance line of 197.2 nm for arsenic and 206.8 nm for Sb was used in order to eliminate the spectral interferences caused by aluminum compounds, and silicon and iron compounds, respectively. Under optimized experimental conditions, the effective in situ analyte/matrix separation was achieved so that the use of aqueous standards for calibration became possible. With the modifier, a 3 SD detection limit of 0.5 µg g -1 As and 0.1 µg g -1 Sb and 10 SD quantification limit of 1.7 µg g -1As and 0.3 µg g -1 Sb and a characteristic mass of 65 pg As and 53 pg Sb were obtained. For all the matrices under scrutiny, a good agreement with certified values was achieved with RSD values less than 10%.

  3. Effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate

    SciTech Connect

    Patten, D.K.; Bremner, J.M.; Blackmer, A.M.

    1980-01-01

    The effects of drying and air-dry storage of soils on their capacity for denitrification of nitrate were studied by determining the influence of these pretreatments on the ability of soils to reduce nitrate to gaseous forms of nitrogen (N/sub 2/, N/sub 2/O, and NO) when incubated anaerobically with nitrate for various times. It was found that drying of soils markedly increases their capacity for denitrification of nitrate under anaerobic conditions and that the effect observed increases as the temperature of drying is increased from 25/sup 0/ to 100/sup 0/C. Partial drying of soils and storage of air-dried soils also lead to a significant increase in their ability to denitrify nitrate under anaerobic conditions. Determination of the CO/sub 2/ produced when field-moist, partly dried, air-dried, and air-dried and stored soils were incubated anaerobically with nitrate showed that production of CO/sub 2/ was very highly correlated with production of (N/sub 2/O + N/sub 2/)-N. This suggests that drying and air-dry storage of soils increase their capacity to denitrify nitrate under anaerobic conditions by increasing the amount of soil organic matter readily utilized by denitrifying microorganisms.

  4. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  5. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    PubMed

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.

  6. Soil methane oxidation in both dry and wet temperate eucalypt forests shows a near-identical relationship with soil air-filled porosity

    NASA Astrophysics Data System (ADS)

    Fest, Benedikt J.; Hinko-Najera, Nina; Wardlaw, Tim; Griffith, David W. T.; Livesley, Stephen J.; Arndt, Stefan K.

    2017-01-01

    Well-drained, aerated soils are important sinks for atmospheric methane (CH4) via the process of CH4 oxidation by methane-oxidising bacteria (MOB). This terrestrial CH4 sink may contribute towards climate change mitigation, but the impact of changing soil moisture and temperature regimes on CH4 uptake is not well understood in all ecosystems. Soils in temperate forest ecosystems are the greatest terrestrial CH4 sink globally. Under predicted climate change scenarios, temperate eucalypt forests in south-eastern Australia are predicted to experience rapid and extreme changes in rainfall patterns, temperatures and wild fires. To investigate the influence of environmental drivers on seasonal and inter-annual variation of soil-atmosphere CH4 exchange, we measured soil-atmosphere CH4 exchange at high-temporal resolution (< 2 h) in a dry temperate eucalypt forest in Victoria (Wombat State Forest, precipitation 870 mm yr-1) and in a wet temperature eucalypt forest in Tasmania (Warra Long-Term Ecological Research site, 1700 mm yr-1). Both forest soil systems were continuous CH4 sinks of -1.79 kg CH4 ha-1 yr-1 in Victoria and -3.83 kg CH4 ha-1 yr-1 in Tasmania. Soil CH4 uptake showed substantial temporal variation and was strongly controlled by soil moisture at both forest sites. Soil CH4 uptake increased when soil moisture decreased and this relationship explained up to 90 % of the temporal variability. Furthermore, the relationship between soil moisture and soil CH4 flux was near-identical at both forest sites when soil moisture was expressed as soil air-filled porosity (AFP). Soil temperature only had a minor influence on soil CH4 uptake. Soil nitrogen concentrations were generally low and fluctuations in nitrogen availability did not influence soil CH4 uptake at either forest site. Our data suggest that soil MOB activity in the two forests was similar and that differences in soil CH4 exchange between the two forests were related to differences in soil moisture and

  7. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants.

    PubMed

    Singh, R P; Agrawal, M

    2007-05-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil. The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading

  8. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  9. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.

    PubMed

    Bartelt-Hunt, Shannon L; Smith, James A

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  10. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores

    NASA Astrophysics Data System (ADS)

    Bartelt-Hunt, Shannon L.; Smith, James A.

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm 2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  11. EPA Method EMSL-33: Isotopic Determination of Plutonium, Uranium, and Thorium in Water, Soil, Air, and Biological Tissue

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of isotopic plutonium, uranium and thorium, together or individually, in drinking water, aqueous/liquid, soil/sediment, surface wipe and/or air filter samples by alpha spectrometry.

  12. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  13. Sewage sludge and fly ash mixture as an alternative for decontaminating lead and zinc ore regions.

    PubMed

    Pogrzeba, M; Galimska-Stypa, R; Krzyżak, J; Sas-Nowosielska, A

    2015-01-01

    Many years of heavy industrial processes in the Upper Silesian Industrial Region in Poland (ore flotation, metal smelting and battery scrap processing) have resulted in lead, zinc and cadmium pollution of the air and soil. The most significant issues stem not only from elevated levels of these metals in environmental compartments, but also from the uneven pattern of their distribution. Point sources of local metal concentration are to be found dispersed over areas of contaminated soil. Such distribution is a challenge for remediation technology, as it precludes the introduction of standard procedures. Metals present in the soil pose a constant risk for living organisms. One of the most effective ways of limiting their ecological impact is by decreasing their mobility. In this study, the effect of introducing sewage sludge and fly ash mixtures (sluash material) into contaminated soil was evaluated. We tested the mixture in terms of the probability of its ecotoxicological impact on plant growth and development. The data obtained have shown that even low doses (3%) of sluash are effective in reducing the bioavailability of lead, cadmium and zinc, resulting in a decrease of their concentration in plants. The application of sluash also led to stabilize soil pH. It also had a positive impact on the total number of soil bacteria and soil fungi.

  14. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields.

  15. Evaluation of forest trees growth after sewage sludge application

    NASA Astrophysics Data System (ADS)

    Vaitkutä--, Dovilé; Balträ--Naitä--, Edita; Booth, Colin A.; Fullen, Michael A.; Pereira, Paulo

    2010-05-01

    Sewage sludge is extensively used in forest to improve soil properties. It is expected that sewage sludge rich in phosphorus, nitrogen and organic material enhance the germination of tree seedlings in poor soils. In Lithuania, the deforested soils are highly acid, and have a lack of nutrients, especially in exploited peat areas. Sewage sludge from industry contains beneficial components for the soils (such as organic matter, phosphorus, nitrogen, calcium, magnesium, etc.). However, it is also rich in heavy metals, especially Cd, Pb, Cu and Zn. High heavy metals concentrations in soil can be phytotoxic and cause reduced plant growth or plant death. The main objectives of this research was to determine the influence of industrial sewage sludge in the forestry and to highlight the idea that industrial sewage sludge containing metals does not favour development of birch and pine trees. The study was performed in Taruskos experimental plot in Panevezys region (Lithuania), amended with industrial sewage sludge ten years ago was afforestated with birch and pine seedlings. In order to observe the effects of the amendment in accumulation the mentioned metals and tree growth we collected data from trees in amended plot and control plot. The results showed that soil parameters were improved in the amended plot, in comparing with control site (higher pH, organic matter and cation exchange capacity). However, the growth of investigated trees was slower (e.g. birch roots, shoot, stem and leaves biomass was 40, 7.4, 18.6, 22% smaller than in control site. In pine case: 30, 1.2, 17, 36%, respectively; the stem height of birch was 16% and pine - 12% smaller than in control site). This reduced growth can be related with heavy metals concentration load on soil and accumulation in trees. Cu and Cd concentrations were higher in soil amended with sewage sludge comparing with control site (60 and 36%, respectively). Also, in contaminated trees Cu and Cd concentrations were higher (Cu

  16. Soil erosion and causative factors at Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  17. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS, SECTIONS, AND DETAILS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  18. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FLOOR PLANS AND SECTIONS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  19. Deep rooting plants influence on soil hydraulic properties and air conductivity over time

    NASA Astrophysics Data System (ADS)

    Uteau, Daniel; Peth, Stephan; Diercks, Charlotte; Pagenkemper, Sebastian; Horn, Rainer

    2014-05-01

    Crop sequences are commonly suggested as an alternative to improve subsoil structure. A well structured soil can be characterized by enhanced transport properties. Our main hypothesis was, that different root systems can modify the soil's macro/mesopore network if enough cultivation time is given. We analyzed the influence of three crops with either shallower roots (Festuca arundinacea, fescue) or taproots (Cichorium intybus, chicory and Medicago sativa, alfalfa). The crops where cultivated on a Haplic Luvisol near Bonn (Germany) for one, two or three years. Undisturbed soil cores were taken for measurement of unsaturated hydraulic conductivity and air permeability. The unsaturated conductivity was measured using the evaporation method, monitoring the water content and tension at two depths of each undisturbed soil core. The van Genuchten-Mualem model (1991) was fitted to the measured data. Air permeability was measured in a permeameter with constant flow at low pressure gradient. The measurements were repeated at -1, -3, -6, -15, -30 and -50 kPa matric tension and the model of Ball et al. (1988) was used to describe permeability as function of matric tension. Furthermore, the cores equilibrated at -15 kPa matric tension were scanned with X-Ray computer tomography. By means of 3D image analysis, geometrical features as pore size distribution, tortuosity and connectivity of the pore network was analyzed. The measurements showed an increased unsaturated hydraulic conductivity associated to coarser pores at the taprooted cultivations. A enhanced pore system (related to shrink-swell processes) under alfalfa was observed in both transport measurements and was confirmed by the 3D image analysis. This highly functional pore system (consisting mainly of root paths, earthworm channels and shrinking cracks) was clearly visible below the 75 cm of depth and differentiated significantly from the other two treatments only after three years of cultivation, which shows the time

  20. Changes in physical properties of sandy soil after long-term compost treatment

    NASA Astrophysics Data System (ADS)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  1. Determination of selected parabens, benzophenones, triclosan and triclocarban in agricultural soils after and before treatment with compost from sewage sludge: A lixiviation study.

    PubMed

    Camino-Sánchez, F J; Zafra-Gómez, A; Dorival-García, N; Juárez-Jiménez, B; Vílchez, J L

    2016-04-01

    An accurate and sensitive method for the determination of selected EDCs in soil and compost from wastewater treatment plants is developed and validated. Five parabens, six benzophenone-UV filters and the antibacterials triclosan and triclocarban were selected as target analytes. The parameters for ultrasound-assisted extraction were thoroughly optimized. After extraction, the analytes were detected and quantified using ultra-high performance liquid chromatography tandem mass spectrometry. Ethylparaben (ring-(13)C6 labelled) and deuterated benzophenone (BP-d10) were used as internal standards. The method was validated using matrix-matched calibration and recovery assays with spiked samples. The limits of detection ranged from 0.03 to 0.40 ng g(-1) and the limits of quantification from 0.1 to 1.0 ng g(-1), while precision in terms of relative standard deviation was between 9% and 21%. Recovery rates ranged from 83% to 107%. The validated method was applied for the study of the behavior of the selected compounds in agricultural soils treated and un-treated with compost from WWTP. A lixiviation study was developed in both agricultural soil and treated soil and first order kinetic models of their disappearance at different depths are proposed. The application of organic composts in the soil leads to an increase of the disappearance rate of the studied compounds. The lixiviation study also shows the risk of pollution of groundwater aquifers after disposal or waste of these EDCs in agricultural soils is not high.

  2. Pesticide pollution of soil, water and air in Delhi area, India.

    PubMed

    Pillai, M K

    1986-11-01

    In India organochlorine insecticides such as DDT and HCH constitute more than 70% of the pesticides used at present. Its continued use has given interest to monitor for the last few years the extent of organochlorine insecticide residues in soil, water, air and rain water in Delhi area. Out of the 50 samples each of soil and earthworms collected from different parts 48 samples showed that soil and earthworms contained 0-2.61 and 0-37.74 mg Kg-1 of total DDT residues respectively. The area near the vicinity of the DDT factory showed high levels of DDT residues. A two-year survey of the Yamuna river in Delhi showed that water contained an average of 0.24 ug L-1 and the bottom sediment had 0.24 mg Kg-1 of total DDT residues. The fishes collected from the Yamuna river showed very high bioaccumulation of DDT residues. The air and rainwater samples monitored from 3 different areas for two years indicated that DDT was more near the DDT factory area while HCH was more near a commercial complex. These results indicate that the overall organochlorine-residue levels in Delhi is not alarming. It probably indicates that DDT and HCH are more rapidly dissipated and degraded in a tropical country like India.

  3. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    PubMed

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  4. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    NASA Astrophysics Data System (ADS)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  5. Plants + soil/wetland microbes: Food crop systems that also clean air and water

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Wolverton, B. C.

    2011-02-01

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. Biogeochemical cycles have microbial links and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, has long been established. Wetland plants and the rootzone microbes of wetland soils/media also been extensively researched for their ability to purify wastewaters of a great number of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and rootzone microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an adaptive capacity as long as the starting populations are sufficiently diverse. Tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and equipment enclosed. Human waste products carry a plethora of microbes which are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors as these systems operate without the need for human intervention. We review

  6. Barium uptake by maize plants as affected by sewage sludge in a long-term field study.

    PubMed

    Nogueira, Thiago Assis Rodrigues; deMelo, Wanderley José; Fonseca, Ivana Machado; Marques, Marcos Omir; He, Zhenli

    2010-09-15

    A long-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization.

  7. Using a passive air sampler to monitor air-soil exchange of organochlorine pesticides in the pasture of the central Tibetan Plateau.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Ren, Jiao; Gong, Ping; Yao, Tandong

    2017-02-15

    Air-soil exchange is a key process controlling the fate of persistent organic pollutants (POPs). However, the "sink effect" of soil for POPs in Tibetan pasture has not been clear. In NamCo, in the central Tibetan Plateau (TP) where the land is covered by grass, a modified passive air sampler (PAS) (thickness: 2cm) was tested. Using the PAS, the atmospheric gaseous phase organochlorine pesticides (OCPs) at 11 heights from close-to-surface (2cm) to 200cm above ground, in summer and in winter, were measured. Concentrations of OCPs in summer were higher than those in winter. Both in summer and winter, atmospheric concentrations of OCPs decreased with decreasing height from 200 to 2cm, indicating that OCPs were being deposited from air to soil. Air deposition of OCPs was possibly driven by wind speed. Furthermore, based on air OCPs at 0-3cm near the surface, the interface exchange of OCPs between air and soil was studied by the fugacity method. The results showed that pastural soil in the TP was a "sink" of OCPs even in summer. The mean deposition fluxes of α-HCH, γ-HCH and o,p'-DDT were 0.72, 0.24 and 0.54pg/h/m(2), respectively, and it was estimated that the level of these pollutants in the soil will double every 24, 66 and 206years, respectively. This study will contribute to the further understanding of global cycling of POPs in different land covers.

  8. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  9. More New Carbon in the Soil of a Poplar Plantation Under Free Air Carbon Enrichment

    NASA Astrophysics Data System (ADS)

    Hoosbeek, M. R.

    2002-12-01

    Early 1999 three FACE (Free Air Carbon Enrichment) and three control rings were installed on former agricultural fields near Viterbo, Italy. A 9 ha poplar plantation was established using hardwood cuttings. Within the rings two Populus species and one hybrid were planted (P. nigra, P. alba, P.x euramericana) at a density of 10000 per ha. The 314 m2 circular plots were divided in six sectors, with two sectors per species. Carbon enrichment was achieved by injection of pure CO2 through laser drilled holes in tubing mounted on telescopic poles. The average CO2 concentration was 544 +/- 48 micromol mol-1. During the first year the total C content of the soils decreased on average from 1.05% to 0.95%. During the second and third year the total soil carbon content remained more or less stable, while no treatment effects could be detected due to the large C pool as compared to the annual C influx. The d13C signature of the CO2 enrichment gas was close to that of ambient CO2, and could therefore not be used as an isotopic signal to follow the incorporation of new carbon into the soil carbon pool. Instead we used root ingrowth cores (40 cm deep, 4 cm in diameter) filled with sieved and well mixed C4 soil. This C4 soil with a d13C value of -18.33 was obtained from a similar soil that had been under corn for many years. For each incubation period, species and rings, two ingrowth cores were placed in the C3 soil. Fractions of new carbon were calculated with a simple mixing model. Multiplying these fractions with the total C content yielded the new C contents (by weight percentage). During the first year no treatment effect was detected. During the second year, new soil C% under P. alba was respectively 0.12 under ambient and 0.15 under increased CO2 treatment (P= 0.07). The third year showed the same effect on new soil C%, i.e. with P. alba respectively 0.07 under ambient and 0.13 under increased CO2 treatment (P= 0.02), and with P. nigra respectively 0.08 under ambient and 0

  10. Deposition and adsorption of the air pollutant HNO 3 vapor to soil surfaces

    NASA Astrophysics Data System (ADS)

    Padgett, Pamela E.; Bytnerowicz, Andrzej

    Deposition of nitric acid (HNO 3) vapor to soils has been evaluated in three experimental settings: (1) continuously stirred tank reactors with the pollutant added to clean air, (2) open-top chambers at high ambient levels of pollution with and without filtration reducing particulate nitrate levels, (3) two field sites with high or low pollution loads in the coastal sage plant community of southern California. The results from experiment (1) indicated that the amount of extractable NO 3- from isolated sand, silt and clay fractions increased with atmospheric concentration and duration of exposure. After 32 days, the highest absorption of HNO 3 was determined for clay, followed by silt and sand. While the sand and silt fractions showed a tendency to saturate, the clay samples did not after 32 days of exposure under highly polluted conditions. Absorption of HNO 3 occurred mainly in the top 1 mm layer of the soil samples and the presence of water increased HNO 3 absorption by about 2-fold. Experiment (2) indicated that the presence of coarse particulate NO 3- could effectively block absorption sites of soils for HNO 3 vapor. Experiment (3) showed that soil samples collected from open sites had about 2.5 more extractable NO 3- as compared to samples collected from beneath shrub canopies. The difference in NO 3- occurred only in the upper 1-2 cm as no significant differences in NO 3- concentrations were found in the 2-5 cm soil layers. Extractable NO 3- from surface soils collected from a low-pollution site ranged between 1 and 8 μg NO 3-N g -1, compared to a maximum of 42 μg NO 3-N g -1 for soils collected from a highly polluted site. Highly significant relationship between HNO 3 vapor doses and its accumulation in the upper layers of soils indicates that carefully prepared soil samples (especially clay fraction) may be useful as passive samplers for evaluation of ambient concentrations of HNO 3 vapor.

  11. Quantitative determination of octylphenol, nonylphenol, alkylphenol ethoxylates and alcohol ethoxylates by pressurized liquid extraction and liquid chromatography-mass spectrometry in soils treated with sewage sludges.

    PubMed

    Andreu, Vicente; Ferrer, Emilia; Rubio, José Luís; Font, Guillermina; Picó, Yolanda

    2007-05-25

    Surfactants have one of the highest production rates of all organic chemicals. Non-ionic surfactants, especially alkylphenol ethoxylates, received most attention as precursors of estrogenic metabolic products generated during wastewater treatment. Alkylphenols (octyl and nonylphenol), alkylphenol polyethoxylates (APEOs), and alcohol ethoxylates (AEOs) have been determined in a Mediterranean forest soil (Mediterranean Rendzic Leptosol) amended with sludges from six waste water treatment plants (WWTPs) located in the Valencian Community. These compounds were isolated from soil by pressurized liquid extraction (PLE) using a mixture acetone-hexane (50:50 v/v), the extracts were cleaned up by solid-phase extraction (SPE) with C(18), and determined by liquid chromatography atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) using analytical standards for quantification. The method enabled high-reliable identification by monitoring the corresponding ammonium adduct [M+NH(3)](+) for AEOs and APEOs, and the deprotonated molecule [M-H](-) for octyl and nonylphenol. Recoveries, determined spiking soil samples at different concentrations, ranged from 89 to 94%, with limits of quantification from 1 to 100 microg kg(-1). Data obtained from a soil sample mixed with biosolids in the laboratory showed that these compounds are present at concentrations ranging from 0.02 to 5 mg kg(-1). According to these concentrations, levels of possible risk can be concluded for the presence of non-ionic surfactants in soil. However, further assessment will be necessary to establish the relationship between exposure and effect findings.

  12. Preparation of biochar from sewage sludge

    NASA Astrophysics Data System (ADS)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  13. The Relationship Between Soil Air Filled Porosity and Soil Methane Oxidation is Almost Identical in Both Dry and Wet Temperate Eucalypt Forests

    NASA Astrophysics Data System (ADS)

    Fest, B. J.; Wardlaw, T.; Hinko-Najera, N.; Arndt, S. K.

    2015-12-01

    In order to gain a better understanding of the temporal variation in soil methane (CH4) exchange in temperate evergreen eucalypt forests in south-eastern Australia we measured soil CH4 exchange in high temporal resolution (every 2 hours or less) over two consecutive years (Wombat State Forest, Victoria, AUS) and over one year (Warra, Tasmania, AUS) in two temperate Eucalyptus obliqua (L. Her) forests with contrasting annual precipitation (Wombat State Forest = 870 mm yr-1, Warra = 1700 mm yr-1). Both forests were continuous CH4 sinks with the Victorian site having a sink strength of -1.79 kg CH4 ha-1 yr-1 and the Tasmanian site having a sink strength of -3.83 kg CH4 ha-1 yr-1. Our results show that CH4 uptake was strongly controlled by soil moisture at both sites and explained up to 90% of the temporal variability in CH4 uptake. Furthermore, when soil moisture was expressed as soil air filled porosity (AFP) we were able to predict the CH4 uptake of one site by the linear regression between AFP and CH4 uptake from the other site. Soil temperature only had an apparent control over seasonal variation in CH4 uptake during periods when soil moisture and soil temperature were closely correlated. The fluctuation of the generally low soil nitrogen levels did not influence soil CH4 uptake at either site.

  14. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  15. Evaluation of background soil and air polychlorinated biphenyl (PCB) concentrations on a hill at the outskirts of a metropolitan city.

    PubMed

    Kuzu, S Levent; Saral, Arslan; Güneş, Gülten; Karadeniz, Aykut

    2016-07-01

    Air and soil sampling was conducted inside a forested area for 22 months. The sampling location is situated to the north of a metropolitan city. Average atmospheric gas and particle concentrations were found to be 180 and 28 pg m(-3) respectively, while that of soil phase was detected to be 3.2 ng g(-1) on dry matter, The congener pairs of PCB#4-10 had the highest contribution to each medium. TEQ concentration was 0.10 pg m(-3), 0.07 pg m(-3), 21.92 pg g(-1), for gas, particle and soil phases, respectively. PCB#126 and PCB#169 contributed to over 99% of the entire TEQ concentrations for each medium. Local sources were investigated by conditional probability function (CPF) and soil/air fugacity. Landfilling area and medical waste incinerator, located to the 8 km northeast, contributed to ambient concentrations, especially in terms of dioxin-like congeners. The industrial settlement (called Dilovasi being to the east southeast of 60 km distant) contributed from southeast direction. Further sources were identified by potential source contribution function (PSCF). Sources at close proximity had high contribution. Air mass transportation from Aliaga industrial region (being to the southwest of 300 km distant) moderately contributed to ambient concentrations. Low molecular weight congeners were released from soil body. 5-CBs and 6-CBs were close to equilibrium state between soil/air interfaces. PCB#171 was close to equilibrium and PCB#180 was likely to evaporate from soil, which constitute 7-CBs. PCB#199, representing 8-CBs deposited to soil. 9-CB (PCB#207) was in equilibrium between soil and air phases.

  16. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, A. B.; Sherstyukov, B. G.; Groisman, P. Y.

    2007-12-01

    A study of the impact of climate changes during for the last four decades on soil temperatures at depths up to 3.2 meters has been conducted for the territory of Russia. For the 1965-2004 period, we compiled and analyzed data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm. Traditionally, these stations also observe a complete set of standard meteorological variables (that include surface air temperature and extensive monitoring of snow cover characteristics). This allowed us to investigate the impact of surface air temperatures and snow depth variations on soil temperatures in the upper soil layer, to quantify it using statistical analyses of multi-dimensional 40-year-long time series at 164 locations throughout the country, and assess the representativeness of the obtained results. Three-dimensional spatial distributions of regression and correlation coefficients were mapped for warm and cold seasons separately as well as for the entire year, and thereafter analyzed. In the permafrost zone we found special features in these fields that distinctively separate the permafrost zone from the remaining territory. In this zone, soil temperatures are practically uncorrelated with surface air temperatures and variations of the snow depth controls soil temperature variations (with R2 up to 0.5) Quantitative estimates of the contribution of mid-annual air temperature and snow cover depth in the long-term changes of mid-annual soil temperatures across the Russia territory were received. We found that the prevailing influence on soil temperature variations in the European part was surface air temperatures and in the Asian part of Russia was snow cover depth. Furthermore, increase of the winter snow depth in the permafrost zone (by preserving the heat accumulated in the warm season) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing

  17. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  18. Experimental Air Warming of a Stylosanthes capitata, Vogel Dominated Tropical Pasture Affects Soil Respiration and Nitrogen Dynamics

    PubMed Central

    Gonzalez-Meler, Miquel A.; Silva, Lais B. C.; Dias-De-Oliveira, Eduardo; Flower, Charles E.; Martinez, Carlos A.

    2017-01-01

    Warming due to global climate change is predicted to reach 2°C in tropical latitudes. There is an alarming paucity of information regarding the effects of air temperature on tropical agroecosystems, including foraging pastures. Here, we investigated the effects of a 2°C increase in air temperature over ambient for 30 days on an established tropical pasture (Ribeirão Preto, São Paulo, Brazil) dominated by the legume Stylosanthes capitata Vogel, using a T-FACE (temperature free-air controlled enhancement) system. We tested the effects of air warming on soil properties [carbon (C), nitrogen (N), and their stable isotopic levels (δ13C and δ15N), as well as soil respiration and soil enzymatic activity] and aboveground characteristics (foliar C, N, δ13C, δ15N, leaf area index, and aboveground biomass) under field conditions. Results show that experimental air warming moderately increased soil respiration rates compared to ambient temperature. Soil respiration was positively correlated with soil temperature and moisture during mid-day (when soil respiration was at its highest) but not at dusk. Foliar δ13C were not different between control and elevated temperature treatments, indicating that plants grown in warmed plots did not show the obvious signs of water stress often seen in warming experiments. The 15N isotopic composition of leaves from plants grown at elevated temperature was lower than in ambient plants, suggesting perhaps a higher proportion of N-fixation contributing to tissue N in warmed plants when compared to ambient ones. Soil microbial enzymatic activity decreased in response to the air warming treatment, suggesting a slower decomposition of organic matter under elevated air temperature conditions. Decreased soil enzyme capacity and increases in soil respiration and plant biomass in plots exposed to high temperature suggest that increased root activity may have caused the increase seen in soil respiration in this tropical pasture. This response

  19. Dose-response functions for the soiling of heritage materials due to air pollution exposure.

    PubMed

    Watt, John; Jarrett, David; Hamilton, Ron

    2008-08-01

    A set of materials (Portland limestone, white painted steel, white plastic and polycarbonate filter material) was exposed at locations in London, Athens and Krakow. Regular measurements of reflectance were taken over a period of twelve months. Co-located measurements of PM(10) concentrations were available. Based on these results, the relationship between soiling (measured as loss of reflectance) and ambient PM(10) concentrations was quantified leading to the development of dose-response functions for the soiling of materials. The results for limestone revealed too much scatter for a prediction to be made. Implications for air quality management and for the conservation of cultural heritage buildings are considered, including public acceptability and economic factors.

  20. Basic Sewage Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce operators to the fundamentals of sewage plant operation. The course consists of lecture-discussions and hands-on activities. Each of the lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in…

  1. Plumbing and Sewage Disposal.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  2. Comparison of decision support systems for an optimised application of compost and sewage sludge on agricultural land based on heavy metal accumulation in soil.

    PubMed

    Horn, Andreas L; Düring, Rolf-Alexander; Gäth, Stefan

    2003-07-20

    Two different decision support systems (DSS) for the application of organic wastes on agricultural land were developed. Both DSS calculate the maximum application period of organic waste considering exhaustion of the uptake potential of soils for heavy metals. The definition of the uptake potential differs between the DSS alternatives. In the first DSS (DSS-AR), the uptake potential is derived from the difference of actual total heavy metal concentration in soil (according to aqua regia digestion) and the respective statutory limit value. The other DSS (DSS-SI) calculates the remaining sorption capacity of the soil for a heavy metal, i.e. the difference between the predefined maximum and the actual heavy metal concentration at the sorbent. The concentration of sorbed heavy metal is derived from pedotransfer functions (general purpose Freundlich isotherms) using predefined limit concentrations in soil solution (WHO drinking water quality standards) or the actual concentration of soluble heavy metal (according to neutral salt extraction), respectively. For evaluation of their individual characteristics, both DSS were tested in model scenarios using soil data (basic physicochemical properties; Cd, Pb, and Zn concentrations) from various agricultural regions and German guidelines for organic waste application. The DSS-SI showed a better performance than the DSS-AR in this context. The capacity of the soil for heavy metal uptake was used with higher efficiency, i.e. the potential was maximised while environmental limit values were still complied with. Furthermore, the DSS-SI offered a better approximation of the natural variability of soil conditions using an extended set of soil properties in comparison to the DSS-AR. Despite these indications of good DSS-SI performance, the approach requires improvement with regard to the pedotransfer functions implemented in order to consolidate and extend the range of predictions. Furthermore, it should be noted that assessment of

  3. Sources of organochlorine pesticides in air in an urban Mediterranean environment: volatilisation from soil.

    PubMed

    Lammel, Gerhard; Klánová, Jana; Erić, Ljiljana; Ilić, Predrag; Kohoutek, Jiří; Kovacić, Igor

    2011-12-01

    Organochlorine pesticide (OCP) cycling was studied in the area of Banja Luka, Bosnia and Herzegovina, over 3 days in summer with high temporal (4 h-means) and spatial (3 sites distanced 3-6 km) resolutions. Elevated levels of DDX compounds (i.e. o,p'- and p,p'-isomers of DDT, DDE and DDD, 44-74 pg m(-3) at the urban sites and 27 pg m(-3) as a background level), HCH (α-, β- and γ-isomers, 52-70 vs. 147 pg m(-3)), HCB (34-48 vs. <0.1 pg m(-3)) and pentachlorobenzene (6.8-9.9 vs. 6.0 pg m(-3)) were found. The variation of OCP levels at the two urban sites was not in phase, except for most DDX compounds. This was related to background levels, which for HCH were higher than in the urban area. Vertical profiles between samples collected from 1.1 and 2.3 m (part of the time 0.6 and 2.3 m) above a soil, which was only moderately contaminated by OCPs (0.12 ng g(-1) HCH, 0.11 ng g(-1) DDX, 0.44 ng g(-1) HCB) were analysed. Volatilisation from the ground caused negative vertical concentration gradients of HCH isomers (day and night), but not for HCB (except for 1 day-time sample) and DDX compounds (except p,p'-DDD, day-time, sporadically). The concentration in air and the vertical concentration gradient of the HCH isomers varied with air temperature (day-time maxima), while the variation of the HCB concentration was inversely related to air temperature and was determined by mixing (night-time maxima). α- and β-HCH were volatilised from soil throughout the three days, even during periods of cooling. Fugacity calculations, based on the absorption in soil organic matter as the process determining retention in soil, underestimated the volatilisation of β-HCH and p,p'-DDD. It is concluded that the representativeness of point measurements of OCPs in urban areas is limited by the spatial variability of soil contamination.

  4. Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol

    NASA Astrophysics Data System (ADS)

    Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.

    2013-12-01

    Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.

  5. Prevention of sewage pollution by stabilization ponds.

    PubMed

    Lakshminarayana, J S

    1975-01-01

    Water is polluted when it constitutes a health hazard or when its usefulness is impaired. The major sources of water pollution are municipal, manufacturing, mining, steam, electric power, cooling and agricultural. Municipal or sewage pollution forms a greater part of the man's activity and it is the immediate need of even smaller communities of today to combat sewage pollution. It is needless to stress that if an economic balance of the many varied services which a stream or a body of water is called upon to render is balanced and taken into consideration one could think of ending up in a wise management programme. In order to eliminate the existing water pollutional levels of the natural water one has to think of preventive and treatment methods. Of the various conventional and non-conventional methods of sewage treatment known today, in India, where the economic problems are complex, the waste stabilization ponds have become popular over the last two decades to let Public Health Engineers use them with confidence as a simple and reliable means of treatment of sewage and certain industrial wastes, at a fraction of the cost of conventional waste treatment plants used hitherto. A waste stabilization pond makes use of natural purification processes involved in an ecosystem through the regulating of such processes. The term "waste stabilization pond" in its simplest form is applied to a body of water, artificial or natural, employed with the intention of retaining sewage or organic waste waters until the wastes are rendered stable and inoffensive for discharge into receiving waters or on land, through physical, chemical and biological processes commonly referred to as "self-purification" and involving the symbiotic action of algae and bacteria under the influence of sunlight and air. Organic matter contained in the waste is stabilized and converted in the pond into more stable matter in the form of algal cells which find their way into the effluent and hence the term

  6. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost.

    PubMed

    Wong, Jonathan W C; Selvam, Ammaiyappan

    2009-10-01

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)--amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg(-1), respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg(-1) for 10% ASC- and 9.4 to 18.6 mg kg(-1) for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. Furthermore, there were fewer plant-available heavy metals in 25% ASC, which decreased the uptake of heavy metals by plants. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting

  7. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost

    SciTech Connect

    Wong, J.W.C.; Selvam, A.

    2009-10-15

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)-amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg{sup -1}, respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg{sup -1} for 10% ASC- and 9.4 to 18.6 mg kg{sup -1} for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting and ASC application rates were at 25 and 20%, respectively.

  8. Effects of soil dust emissions on air quality over the East Asia

    NASA Astrophysics Data System (ADS)

    Koo, Y.; Kim, S.; Cho, J.; choi, D.

    2013-12-01

    Asian mineral dust from Gobi Desert, sand desert, Loess Plateau and barren mixed soil in Northern China and Mongolia has a major impact on the air quality in the East Asia. These mineral aerosols increase PM10 concentration over 1000 μg/m3 during the dust storm event as well as PM10 background concentrations as the fugitive dust during the non-dust period in the SMA (Seoul Metropolitan Area). The PM10 prediction by a regional chemical transport model without the dust emission shows an intrinsic tendency of underestimation according to previous studies in this region, especially for the soil originated coarse PM. The Asian Dust Aerosol Model 2 (ADAM2) scheme for the dust emission with CAMx was tested for its applicability in assessing impact of the fugitive dust on air quality in the China region and SMA. The performance of ADMS2 dust emission was evaluated to depict not only onset times of the dust storm event but also to estimate the level of background PM10 concentration for the non-dust event against the surface measurements and satellite measurements over East Asia. The surface observations were from EANET (Acid Deposition Monitoring NETwork in East Asia), API (Air Pollution Index) monitoring sites in China and the intensive monitoring stations in the SMA. The results show that the CAMx predictions of PM10 with ADAM2 scheme were relatively in a good agreement with the observations. They, however, occasionally over-predicted the PM10 concentrations during non-dust event periods and under-predicted the PM10 concentrations during dust event periods. Details of model comparison for other chemical species and implication of dust emission schemes on the air quality will be discussed in the presentation. Acknowledgements This subject is supported by Korea Ministry of Environment as 'The Eco-technopia 21 project'.

  9. Air born soil pollution assessment and mitigation in the south of ukraine

    NASA Astrophysics Data System (ADS)

    Titarenko, Olga; Kharytonov, Mykola; Moschner, Christin; Khlopova, Valentina M.

    2016-04-01

    Atmospheric emissions made by mining and metallurgy industry account for 54 % of total air pollutions of the Dnipropetrovsk Region. As it has been shown previously, the range of pollutants depends on the number and types of the industrial enterprises located within the each urban area. In Dnipropetrovsk and surrounding cities the dominant emissions come from the waste of metallurgical and chemical industries, which is heavily developed in this area. The multipollution exposure assessment was made for the several cities in Dnipropetrovsk industrial region in the south of Ukraine. In this connection the monitoring of atmospheric air pollution in the environment of the Dnepropetrovsk megalopolis area was carried out in several industrial cities: Dnipropetrovsk, Dneprodzerzhynsk, Kryvyy Ryg and Pavlograd with use of the network of stationary monitoring stations at the Dnepropetrovsk Regional Center of Hydrometeorology. The initial evaluation of technogenic atmospheric pollution with toxic substances was performed with due to the limit values of so-called maximum permissible concentrations (MPC) for harmful emissions in the atmosphere as set out in the Ukrainian Air Quality Standards. The main sources of air pollution in industrial cities are stationary. Meantime increasing road transport is a growing source of pollution. The maximum excess of MPC content of NO2 in the atmosphere of the cities has reached twice. Over the last 5 years in the atmosphere of industrial cities in the region there was an increased level of nitrogen dioxide (excess of MPC in 1, 5-2, 5 times). Number of inorganic aerosols (nitrogen dioxide, sulfur dioxide and other) has an effect of summation. In the presence of diffuse sources are superimposed individual emissions and formed the total torch actually located over the whole of the industrial agglomeration. Spatial structure of such a torch is very complicated, instant concentrations of impurities at various points in the city are substantially

  10. A dynamic model of the fate of organic chemicals in a multilayered air/soil system: development and illustrative application.

    PubMed

    Ghirardello, Davide; Morselli, Melissa; Semplice, Matteo; Di Guardo, Antonio

    2010-12-01

    A new site-specific, dynamic model (SoilPlus) was developed to simulate the fate of nonionized organic chemicals in the air/litter/soil system; key features of the model are the double-layered air compartment interacting dynamically with multilayered litter and soil compartments, with seasonal dissolved organic carbon (DOC) fluxes. The model describes the soil environment calculating separate mass balances for water, chemical, and organic matter. SoilPlus underwent a process of benchmarking and evaluation in order to reach a satisfying confirmation of its predictive capability. Several simulations were performed to estimate the role of litter and DOC in affecting the fate of a model contaminant for POPs (hexachlorobenzene). The model shows that litter can behave as a buffer in the process of transferring hexachlorobenzene from air to the mineral soil and as a trap when hexachlorobenzene tends to move from a contaminated field toward clean air. DOC seems to behave as a leaching-enhancer in certain climatic conditions (heavy rainfall, high DOC concentrations), but it does not appear to move significant amounts of HCB in a year calculation.

  11. Investigation of organochlorine pesticides from the Indus Basin, Pakistan: sources, air-soil exchange fluxes and risk assessment.

    PubMed

    Sultana, Jawairia; Syed, Jabir Hussain; Mahmood, Adeel; Ali, Usman; Rehman, Muhammad Yasir Abdur; Malik, Riffat Naseem; Li, Jun; Zhang, Gan

    2014-11-01

    Present study aimed to evaluate the contamination status of organochlorine pesticides (OCPs) and their associated potential for air-soil exchange and health risks from ecologically important sites of the Indus Basin, Pakistan. Among different OCPs investigated, ΣDDTs and ΣHCHs were more prevalent compounds in the agricultural soils and ambient air samples of the study area. The average concentrations for DDTs were found higher at downstream agricultural sites, particularly at Head Panjnad (Soil: 320 ng/g; Air: 743 pg/m(3)) and acting as an ultimate sink of ΣOCP burden in soils. Spatial distribution patterns inferred ubiquitous distribution of ΣDDTs in soils and air of the study area. Source diagnostic ratios demonstrated that studied OCPs either are illegally being used in agricultural practices or/and they are residues of past use in the environment. Fugacity fraction model revealed wide variations (ff=0.12-0.94) with 20% of OCPs above equilibrium range and net volatilization of α-endosulfan, β-HCH and o,p'-DDD. Assessment of cancer risks for OCPs indicated a higher cancer risk (CR>1×10(-6)) for the residents of the Indus Basin. According to the available soil quality guidelines, DDTs and HCHs were above the permissible limits and pose a threat to natural habitat and biodiversity of the Indus Basin.

  12. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs.

  13. Accumulation of Metals in Soils, Groundwater and Edible Parts of Crops Grown Under Long-Term Irrigation with Sewage Mixed Industrial Effluents.

    PubMed

    Yadav, R K; Minhas, P S; Lal, Khajanchi; Chaturvedi, R K; Yadav, Gajender; Verma, T P

    2015-08-01

    Farmers in developing countries irrigate crops using raw urban and industrial effluents with consequent risks from metal contamination. Therefore, soils, crops and groundwater from an effluent irrigation use site were assessed for Cd, Cr, Ni and Pb. Total and available contents of metals in soil followed the order Pb>Ni>Cr>Cd. Crops accumulated more Pb, followed by Cd, Ni and Cr. Pb exceeded the permissible limit with wastewater irrigation only, but Cd exceeded the limit even with combined irrigations of wastewater and groundwater. Among crops, sugar beet assimilated highest Cd (3.14 μg g(-1)) and Pb (6.42 μg g(-1)) concentrations. Legumes accumulated more metals than cereals. Long-term use of wastewater and its conjunctive use with groundwater led to toxic accumulations of Cd, Pb, Ni and Cr. Cd with higher availability and mobility indices and lower toxicity limit, posed the maximum risk of food-chain contamination.

  14. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil - A critical review.

    PubMed

    Verlicchi, P; Zambello, E

    2015-12-15

    This review is based on 59 papers published between 2002 and 2015, referring to about 450 treatment trains providing data regarding sludge concentrations for 169 compounds, specifically 152 pharmaceuticals and 17 personal care products, grouped into 28 different classes. The rationale of the study is to provide data to evaluate the environmental risk posed by the spreading of treated sludge in agriculture. Following discussion of the legislative scenario governing the final disposal of treated sludge in European countries and the USA, the study provides a snapshot of the occurrence of selected compounds in primary, secondary, mixed, digested, conditioned, composted and dried sludge originating in municipal wastewater treatment plants fed mainly with urban wastewater as well as in sludge-amended soil. Not only are measured values reported, but also predicted concentrations based on Kd values are reported. It emerges that in secondary sludge, the highest concentrations were found for fragrances, antiseptics and antibiotics and an attenuation in their concentrations occurs during treatment, in particular anaerobic digestion and composting. An in-depth literature survey of the (measured and predicted) Kd values for the different compounds and treated sludge are reported and an analysis of the influence of pH, redox conditions, sludge type was carried out. The data regarding measured and predicted concentrations of selected compounds in sludge-amended soil is then analyzed. Finally an environmental risk assessment posed by their occurrence in soil in the case of land application of sludge is examined, and the results obtained by different authors are compared. The most critical compounds found in the sludge-amended soil are estradiol, ciprofloxacin, ofloxacin, tetracycline, caffeine, triclosan and triclocarban. The study concludes with a focus on the main issues that should be further investigated in order to refine the environmental risk assessment.

  15. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefevre, R.-A.; Theodorakopoulou, K.; Kreislova, K.

    2011-12-01

    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  16. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefevre, R.-A.; Theodorakopoulou, K.; Kreislova, K.

    2010-12-01

    In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  17. Evaluation of bangkok sewage sludge for possible agricultural use.

    PubMed

    Pasda, Nuanjun; Panichsakpatana, Supamard; Limtong, Pitayakon; Oliver, Robert; Montange, Denis

    2006-04-01

    Bangkok (Thailand) covers more than 1500 km2 and has 10 million inhabitants. The disposal of wastewater is creating huge problems of pollution. The estimated amount of sewage sludge was estimated to be around 108 tonnes dry matter (DM) per day in 2005. In order to find a lasting way of disposal for this sewage sludge, the suitability of the sludge produced from three waste-water treatment plants for use as fertilizing material was investigated. Monthly samplings and analysis of sewage sludge from each plant showed that the composition of sludge varied according to the area of collection and period of sampling, and there was no link to rainfall cycle. Plant nutrient content was high (i.e. total N from 19 to 38 g kg(-1) DM) whereas organic matter content was low. The concentrations of heavy metals varied between sludge samples, and were sometimes higher than the E.U. or U.S. regulations for sewage sludge use in agriculture. Faecal coliforms were present in the sludge from one of the plants, indicating a possible contamination by night soil. In order to decrease this potentially pathogenic population the sewage sludge should be heated by composting. As the C/N ratio of sewage sludge was low (around 6) some organic by-products with high carbon content could be added as structural material to enhance the composting.

  18. Cycling of Lead Through Soil, Air, and Household Dust in El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Clague, J.; Amaya, M. A.

    2008-12-01

    Elimination of leaded gasoline in the US is associated with a dramatic overall decrease in ambient lead in the environment and blood lead levels in our population. However, Pb is such a potent neurotoxin for children during the formative growth years that legislation for additional reduction of airborne lead levels is under consideration. X-ray absorption spectroscopy of a suite of samples of local (El Paso) soil, airborne particulate matter, and household dust reveals that lead humate is the dominant Pb species in these diverse environmental materials. Lead humate is a stable complex of Pb with the humus component of soil, a product of interaction between the humus and such introduced contaminant lead species as lead oxide, lead sulfate, etc. Because lead humate forms only in soil, we conclude that the source of the majority of the lead in El Paso's airborne particulate matter and household dust is local soils. Analysis of lead isotopes in selected samples is consistent with this conclusion. Re-entrainment of low-density (relative to most Pb species) humus soil particles is the apparent pathway from soil to air. Deposition of airborne particulate matter and pedal traction are the presumed mechanisms for transfer to household interiors. Reduction of airborne lead in El Paso by reducing input from its dominant local source may require extensive soil remediation, a tedious and expensive prospect. X-Ray absorption spectroscopy experiments were conducted at the Stanford Synchrotron Radiation Laboratory on beam lines 7-3, 10-2, and 11-2. Spectra were collected at the Pb L-III absorption edge in fluorescence mode using a 13-element or a 30-element Ge solid-state detector. This publication was made possible by grant numbers 1RO1-ES11367 and 1 S11 ES013339-04 from the National Institute of Environmental Health Sciences (NIEHS), NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH. Partial

  19. Large-scale soil remediation using low temperature thermal volatilization technology at the Chanute Air Force Base

    SciTech Connect

    Davis, H.A.; Silkebakken, D.M.; Ghosh, S.B.; Beardsley, G.P.

    1995-12-31

    Chanute Air Force Base (AFB) in Rantoul, Illinois, was selected for closure by the Round 1 Base Closure Commission, pursuant to the Base Realignment and Closure (BRAC) Act of 1988. As part of the requirements for base closure, Parsons Engineering Science, Inc. was retained by the Air Force Center for Environmental Excellence (AFCEE) to treat petroleum-contaminated soil using low temperature thermal volatilization (LTTV). Using this technology, over 40,000 tons of fuel contaminated soils were successfully treated using one of the largest transportable LTTV treatment units in the world. The soil treatment system, soil management procedures, cost-effectiveness, and limitations of the use of this system are described in this paper.

  20. Revisiting Atmospheric Lead in NYC - Comparison of Archived Air Filters to Urban Park Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Chillrud, S. N.; Ross, J. M.; Yan, B.; Bopp, R.

    2015-12-01

    Urban lake sediments have the potential to be used for reconstructing history of aerosols, providing data before the start of urban air quality monitoring. In a previous study, the similarity between radionuclide and excess Pb inventories (57 g/m^2) in Central Park Lake (CPL) sediments and those same parameters in Central Park soils (CPS) was interpreted to indicate that urban lake sediment cores from CPL represent deposition of atmospheric aerosols over the history of the park, which was constructed in the 1860s. Furthermore, metal ratios and metal chronologies indicated that incineration was the major source of Pb to the NYC atmosphere over the 20th century. In this report, we compare the lake chronologies for metals to a set of archived air filters collected by the Department of Energy's Environmental Measurement Lab (EML). These weekly filters of total suspended particulates (TSP) were collected by a high volume sampler located in lower Manhattan for radionuclides as part of the program focused on documenting radioactive fallout from nuclear weapons testing. Metal concentrations measured in subsamples of the EML filters collected between the 1970s to 1990s showed Pb decreasing more slowly than the records of Pb added to gasoline. Metal ratios in the filters were similar to the ratios measured in CPL sediments; the Pb to Sn ratios were roughly 20:1 and the Pb to Zn ratios were in close to 1. The similarity of the ratios provides additional solid support that the CP Lake sediment cores reflect atmospheric inputs. The enrichment of Pb in the large aerosol particle fraction (TSP), relative to fine PM2.5 fraction, demonstrates that the resuspended NYC soils and their historical contaminant burden, are the primary, current source of Pb to NYC air.

  1. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  2. Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization

    NASA Astrophysics Data System (ADS)

    Priyadarshini, J.; Roy, P. K.; Mazumdar, A.

    2014-01-01

    In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.

  3. The study of mercury exchange rate between air and soil surface in Hongfeng reservoir region, Guizhou, PR China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Feng, X.; Qiu, G.

    2003-05-01

    In summer of 2002, we measured the exchange flux of mercury between air and soil surface using the method of Dynamic Flux Chamber (DFC) in Hongfeng lake region. At the same time, we recorded meteorological parameters such as air temperature, soil temperature, wind speed and solar radiation using a multi-function mini-weather station (global water III). Soil, moss and fertilizer samples in study area were also collected. The Hg fluxes of air/soil surface rangeed from -11.0ng m^{-2} h^{-1} to 219.0ng m^{-2}h^{-1}, averaged at 29.2 ng m^{-2} h^{-1} (n = 508). The data show that the exchange of mercury is bi-direction between air and soit surface: namely both emission and deposition of mercury occurs, but Hg emission is much more frequent than deposition process (n_{deposition} =3,n_{emission}= 505). The average mercury content in soil, moss, fertilizer sample are 249.9± 24.1ng/g (n=3), 450.4 ± 64.6ng/g (n=2), 53.4ng/g (n= 1) respectively.

  4. Sensitivity of desert cryptograms to air pollutants: soil crusts and rock lichens

    USGS Publications Warehouse

    Belnap, J.

    1991-01-01

    Parks throughout the West are being faced with increasing air pollution threats from current or proposed industries near their boundaries. For this reason, it is important to understand the effects these industries may have on desert ecosystems. Rock lichens can be excellent biomonitors, acting as early warning systems of impending damage to other components of the desert ecosystem. Cryptogamic crusts, consisting mostly of cyanobacteria and lichens, may not only be excellent bioindicators, but also are an essential part of the desert ecosystem. Their presence is critical for soil stability as well as for the contribution of nitrogen to the ecosystem in a form available to higher plants. Air pollutants, such as emissions from coal-fired power plants, may threaten the healthy functioning of these non-vascular plants. The purpose of this study is to determine if, in fact, air pollutants do have an impact on the physiological functioning of cryptogamic crusts or rock lichens in desert systems and, if so, to what extent. Some results have already been obtained. Both rock lichens and cryptogamic crusts exhibit physiological damage in the vicinity of the Navajo Generating Station in Page, Arizona. Increased electrolyte leakage and chlorophyll degradation, along with reduced nitrogen fixation, have been found. Preliminary studies comparing sensitivity between substrates indicate that crusts on limestone and sandstone substrates may be more sensitive than those on gypsum.

  5. Soil-Air Mercury Flux near a Large Industrial Emission Source before and after Closure (Flin Flon, Manitoba, Canada).

    PubMed

    Eckley, Chris S; Blanchard, Pierrette; McLennan, Daniel; Mintz, Rachel; Sekela, Mark

    2015-08-18

    Prior to its closure, the base-metal smelter in Flin Flon, Manitoba, Canada was one of the North America's largest mercury (Hg) emission sources. Our project objective was to understand the exchange of Hg between the soil and the air before and after the smelter closure. Field and laboratory Hg flux measurements were conducted to identify the controlling variables and used for spatial and temporal scaling. Study results showed that deposition from the smelter resulted in the surrounding soil being enriched in Hg (up to 99 μg g(-1)) as well as other metals. During the period of smelter operation, air concentrations were elevated (30 ± 19 ng m(-3)), and the soil was a net Hg sink (daily flux: -3.8 ng m(-2) h(-1)). Following the smelter closure, air Hg(0) concentrations were reduced, and the soils had large emissions (daily flux: 108 ng m(-2) h(-1)). The annual scaling of soil Hg emissions following the smelter closure indicated that the landscape impacted by smelter deposition emitted or re-emitted almost 100 kg per year. Elevated soil Hg concentrations and emissions are predicted to continue for hundreds of years before background concentrations are re-established. Overall, the results indicate that legacy Hg deposition will continue to cycle in the environment long after point-source reductions.

  6. Vitrification as an alternative to landfilling of tannery sewage sludge

    SciTech Connect

    Celary, Piotr Sobik-Szołtysek, Jolanta

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  7. The Real World of Industrial Chemistry: The Use of Oxygen in the Treatment of Sewage.

    ERIC Educational Resources Information Center

    Cook, Gerhard A.; And Others

    1980-01-01

    Reviews the events leading up to the establishment of oxygen (rather than air) as an important component in the second stage treatment of municipal wastewater in sewage-disposal plants. Advantages, problems, and costs of using oxygen are discussed. (CS)

  8. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm(-1)) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions.

  9. Behavior of dioxin like PCBs and PBDEs during early diagenesis of organic matter in settling material and bottom sediments from the sewage impacted Buenos Aires' coastal area, Argentina.

    PubMed

    Cappelletti, N; Skorupka, C N; Migoya, M C; Tatone, L; Astoviza, M; Colombo, J C

    2014-10-01

    Settling particles (SPs) and sediments collected in the Buenos Aires sewer area were analyzed for dioxin like polychlorinated biphenyls (dlPCBs) and polybrominated diphenyl ethers (PBDEs) to follow early diagenetic changes during transport and deposition of organic matter. SP showed a temporal trend of higher total organic carbon (TOC) and fresher dlPCBs and PBDEs signatures during warm-rainy months related to more efficient washout of residues. TOC-normalized sediment trap concentrations suggest a diagenetic magnification of dlPCBs during cold-dry months due to enhanced decomposition of TOC, whereas most labile PBDEs appear to follow TOC decay. The diagenetic behavior of individual congeners along seasonal changes (cold/warm) and during deposition (bottom sediment/SP) shows the selective preservation of heavier, more persistent congeners with a positive relationship with sediment half-lives. The 3-4 times diagenetic magnification of heavier congeners observed in bottom sediments would be a prevailing long-term pathway for dlPCBs and PBDEs bioaccumulation in detritus feeding organisms.

  10. Evaluation of Trichloroethylene vapour fluxes using measurements at the soil-air interface and in the atmosphere close to the soil surface

    NASA Astrophysics Data System (ADS)

    Cotel, Solenn; Nagel, Vincent; Schäfer, Gerhard; Marzougui, Salsabil; Razakarisoa, Olivier; Millet, Maurice

    2013-04-01

    Industrialization during the 19th and 20th century led to the use of chemical products such as chlorinated solvents, e.g., trichloroethylene (TCE). At locations where volatile organic compounds were accidentally spilled on the soil during transport or leaked from their storage places, they could have migrated vertically through the unsaturated zone towards the underlying groundwater. As a result of their high volatility a large vapour plume is consequently formed. Understanding when, at which concentrations and how long, these pollutants will be present in soil, groundwater, atmosphere or indoor air, still remains a challenge up to date. This study was conducted as part of a broader experiment of TCE multiphase mass transfer in a large (25m×12m×3m) well-instrumented artificial basin. TCE was injected as liquid phase in the vadose zone and experiments were conducted during several months. Firstly, TCE vapour fluxes were experimentally determined in two different ways: (a) direct measurements at the soil-air interface using a flux chamber and (b) evaluations based on measurements of TCE concentrations in the air above the soil surface using a modular experimental flume (5m×1m×1m) with a fixed air flow. Secondly, numerical simulations were conducted to analyse the differences between these two types of fluxes. Several positions of the flume on the soil surface were tested. Based on the TCE concentrations measured in the air, vapour fluxes were determined with the aerodynamic method using the modified Thornthwaite-Holzmann equation. It assumes that the concentrations and velocities are temporally and spatially constant in horizontal planes and requires data on the gradients of concentration, horizontal wind velocity and temperature. TCE vapour fluxes measured at the soil-air interface decrease with distance from the source zone. However, this decrease was either high, at the first stage of experiment (120μg/(m2s) near the source zone compared to 1,1μg/(m2s) 2m

  11. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  12. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  13. BOREAS TE-6 1994 Soil and Air Temperatures in the NSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Norman, John; Wilson, Tim

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains measurements of the air temperature at a single height and soil temperature at several depths in the NSA from 25-May to 08-Oct- 1994. Chromel-Constantan thermocouple wires run by a miniprogrammable data logger (Model 21X, Campbell Scientific, Inc., Logan, UT) provided direct measurements of temperature. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  14. Optimized air sparging coupled with soil vapor extraction to remediate groundwater

    SciTech Connect

    Martinson, M.; Linck, J.; Manz, C.; Petrofske, T.

    1995-12-31

    Air sparging coupled with soil vapor extraction (AS/SVE) has obvious benefits for groundwater contamination consisting of volatile organic compounds, particularly benzene, ethylbenzene, toluene, and xylenes (BTEX). Although AS/SVE is easily employed given suitable site conditions, optimized AS/SVE system operation and monitoring (O/M) are often overlooked once treatment is initiated. Site O/M typically is conducted with on-site field staff, or as an alternative, by remotely connecting to the site via modem and programmable logic controller (PLC). Two AS/SVE sites located in Wisconsin have used either traditional on-site O/M or the remote modem/PLC option to evaluate and optimize system operation. System on-time efficiency using remote telemetry was improved compared to traditional O/M and system operations.

  15. Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants.

    PubMed

    Gebicki, Jacek; Byliński, Hubert; Namieśnik, Jacek

    2016-01-01

    The study presents information about the measurement techniques used for the assessment of air quality in terms of the olfactory intensity resulting from the operation of municipal sewage treatment plants. Advantages and disadvantages of the measurement techniques used are presented. Sources of malodourous substance emission from sewage treatment plants were described, and the malodourous substances emitted were characterised. Trends in development of analysis and monitoring of the malodourous substances in the air were also presented.

  16. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2015-09-01

    Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect.

  17. Soil carbon isotopic composition and soil carbon content in an agroecosystem during six years of Free Air Carbon dioxide Enrichment (FACE).

    PubMed

    Giesemann, Anette; Weigel, Hans-Joachim

    2008-12-01

    The Free Air Carbon dioxide Enrichment (FACE) experiment conducted at the Federal Agricultural Research Centre (FAL) in Braunschweig in an arable crop rotation (total duration six years) allowed us to trace carbon (C) input in the soil C pool, as the CO(2), used in the experiment to increase the atmospheric CO(2) concentration, was depleted in (13)C. Accurate assessment of the C input by means of stable C isotope analysis requires detailed knowledge on the spatial distribution of both the C isotopic composition and the C content in the soil C. Assumed changes in these parameters were examined. CO(2) enrichment treatment over a six year period resulted in a clear trend towards an increase of soil C content in the uppermost 10 cm of soil. About 4.9% of the soil C present under ambient air conditions, and 10.7% present under elevated CO(2) conditions were determined as new input. However, the results are not statistically significant yet.

  18. Spectrophotometric determination of nitrogen dioxide in air and nitrite in water and soil samples

    SciTech Connect

    Pandurangappa, M.; Balasubramanian, N.

    1995-02-01

    A sensitive spectrophotometric method for the determination of nitrogen dioxide in air and nitrite in water and soil samples is described. Nitrogen dioxide in air is fixed as nitrite ion in alkaline sodium arsenite or in triethanolamine absorber solutions. The method is based on the diazo coupling reaction between p-nitro aniline and 1-hydroxy-2-naphthoic acid. The azo dye formed under aqueous condition has an absorption maximum at 585nm and obeys Beer`s law over the range 0-25{mu}g of nitrite. The colour system is stable for 72h. The relative standard deviation is 2.7% for ten determinations at 15{mu}g of nitrite. The dye is extracted with 1:1 isoamyl alcohol-IBMK mixture and stabilisation with methanolic potassium hydroxide showed {lambda}{sub max} at 610nm. It obeys Beer`s law over the range 0-4{mu}g of nitrite. The colour system is stable for 40h in organic phase and the relative standard deviation is 2.5% for ten determinations at 3{mu}g of nitrite. The molar absorptivity of the colour system is 3.68 x 10{sup 4} Lmol{sup {minus}1} cm{sup {minus}1}. The effect of interfering gases and other ions on the determination of nitrite is described. The developed method has been applied for the determination of residual nitrogen dioxide gas present in the laboratory fume cupboard and automobile exhaust gases. In addition, the method has been applied for the determination of nitrite and nitrate in samples like water, soil and radiator coolants.

  19. Wood anatomical responses of oak saplings exposed to air warming and soil drought.

    PubMed

    Fonti, P; Heller, O; Cherubini, P; Rigling, A; Arend, M

    2013-01-01

    Water is vital for plant performance and survival. Its scarcity, induced by a seasonal decline in soil water availability or an increase of evaporative demand, can cause failures of the water conducting system. An adequate tolerance to drought and the ability to acclimate to changing hydraulic conditions are important features for the survival of long-lived woody plants in dry environments. In this study we examine secondary growth and xylem anatomical acclimation of 6 year old saplings of three European oak species (Quercus robur, Q. petraea, Q. pubescens) during the third consecutive year of exposure to soil drought and/or air warming (from 2007 to 2009). Intra-annual pinning was applied to mark the development of the formation of the annual ring 2009. Vessel size, parenchyma cell density and fiber size produced at different time of the growing season 2009 were compared between drought and warming treatments and species. Drought reduced secondary growth and induced changes in xylem structure while air warming had little effect on wood anatomical traits. Results indicate that drought-exposed saplings adjust their xylem structure to improve resistance and repairing abilities after cavitation. All species show a significant radial growth reduction, a reduced vessel size with diminished conductivity and a slightly increased density of parenchyma cells. Comparisons between species fostered our understanding of the relationship between the inter-specific xylem hydraulic plasticity and the ecological response to drought. The stronger changes observed for Q. robur and Q. petraea indicate a lower drought tolerance than Q. pubescens.

  20. Are the ratios of the two concentrations at steady state in the medium pairs of air-water, air-soil, water-soil, water-sediment, and soil-sediment?

    PubMed

    Kim, Hee Seok; Kim, Seung-Kyu; Kim, Jong-Guk; Lee, Dong Soo

    2016-05-15

    For optimization and evaluation of a steady state multimedia model, concurrent multimedia monitoring data of steady state are necessary. In the lack of emission rate information, the primary aim of the present work was to assess if five concentration ratios (CRs) (C water/Cair, C soil/Cair, C sediment/C soil, C water/C soil, and C sediment/C water) of chemical compounds are at steady state in South Korea. A total of 16,676 CRs values were calculated using 74,641 concurrent multimedia (air, water, soil and sediment) monitoring data from 96 areas for 45 semi-volatile organic compounds (polychlorinated dibenzo-p-dioxins/furans, polybrominated diphenyl ethers, phthalates, and polycyclic aromatic hydrocarbons). Test of steady state indicated that CR is statistically at steady state with an overall occurrence rate of 70% of the 223 tested cases while the rates of individual chemical groups were 94.5%, 88%, 82.5%, and 37.6% for polycyclic aromatic hydrocarbons, phthalates, polybrominated diphenyl ethers, and polychlorinated dibenzo-p-dioxins/furans, respectively. About 83% of the steady state CRs resulted from scattering of two concentrations in each of the medium pairs without a certain temporal trend while the rest due to closely co-varying two concentrations. Analysis of the 95% confidence interval of the fugacity ratio indicated that CRs at steady state may occur in equilibrium state with higher chances than CRs at unsteady state. A total of 156 point values representing the CRs at steady state were determined that can be used for optimization and evaluation of steady state one-box multimedia models. However, potential influences of the uncertainties of the values arisen from the scattering of the concentration data should quantitatively be assessed in the model optimization and evaluation.

  1. Effects of soil dust emissions on air quality over East Asia

    NASA Astrophysics Data System (ADS)

    Koo, Y.; Kim, S.; Cho, J.

    2012-12-01

    Dust emissions from the Gobi Desert, sand desert, Loess Plateau and barren mixed soil in Northern China and Mongolia have a major impact on the air quality in the East Asian region. These mineral aerosols increase PM10 concentration over 1000 μg/m3 during the dust storm event as well as PM10 background concentrations as the fugitive dust during the non-dust period in Korea. The mineral dusts also modifies the formation mechanism of inorganic aerosols via the chemical interactions with atmospheric gas species. The performance of available dust emission schemes to depict not only the high PM10 concentration and onset time for the dust storm period but also the level of background PM10 concentration for the non-dust event were evaluated against the surface measurements of EANET (Acid Deposition Monitoring NETwork in East Asia) and satellite measurements over East Asia. The US EPA Models-3/CMAQ v5.0 by modifying the fugitive dust modules was used to simulate the chemical transport including the mineral aerosols. The results show that the Asian Dust Aerosol Model 2 (ADAM2) and DEAD are relatively good dust emission schemes in this region and influence of mineral dusts on the sulfate and nitrate formations is significant when the dust mixes with anthropogenic emissions over China. Details of modifications of dust emission schemes and annual background PM10 concentrations by the soil fugitive dust in Korea will be discussed in the presentation.

  2. An investigation of the impact of inorganic air pollutants on soils in Saguaro National Monument, Tucson, Arizona

    SciTech Connect

    Gladney, E.S.; Ferenbaugh, R.W.; Stolte, K.W.; Duriscoe, D.M.

    1993-08-01

    Environmental data related to the evaluation of inorganic air pollution input to the Saguaro National Monument ecosystem were collected over four years. The data specific to soils are presented in this document. The enrichment factor approach is employed to provide a framework for simplified interpretation of this large collection of data.

  3. Foliage response of young central European oaks to air warming, drought and soil type.

    PubMed

    Günthardt-Goerg, M S; Kuster, T M; Arend, M; Vollenweider, P

    2013-01-01

    Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species.

  4. Sewage treatment method

    DOEpatents

    Fassbender, Alex G.

    1995-01-01

    The invention greatly reduces the amount of ammonia in sewage plant effluent. The process of the invention has three main steps. The first step is dewatering without first digesting, thereby producing a first ammonia-containing stream having a low concentration of ammonia, and a second solids-containing stream. The second step is sending the second solids-containing stream through a means for separating the solids from the liquid and producing an aqueous stream containing a high concentration of ammonia. The third step is removal of ammonia from the aqueous stream using a hydrothermal process.

  5. A study of hear sink performance in air and soil for use in a thermoelectric energy harvesting device

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Lawrence, E. E.

    2002-01-01

    A suggested application of a thermoelectric generator is to exploit the natural temperature difference between the air and the soil to generate small amounts of electrical energy. Since the conversion efficiency of even the best thermoelectric generators available is very low, the performance of the heat sinks providing the heat flow is critical. By providing a constant heat input to various heat sinks, field tests of their thermal conductances in soil and in air were performed. Aprototype device without a thermoelectric generator was constructed, buried, and monitored to experimentally measure the heat flow achievable in such a system. Theoretical considerations for design and selection of improved heat sinks are also presented. In particular, the method of shape factoranalysis is used to give rough estimates and upper bounds for the thermal conductance of a passive heat sink buried in soil.

  6. Reduced European emissions of S and N--effects on air concentrations, deposition and soil water chemistry in Swedish forests.

    PubMed

    Pihl Karlsson, Gunilla; Akselsson, Cecilia; Hellsten, Sofie; Karlsson, Per Erik

    2011-12-01

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO(2) and NO(2), have decreased. The SO(4)-deposition has decreased in parallel with the European emission reductions. Soil water SO(4)-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO(3)-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters.

  7. Use of leaching chambers for on-site sewage treatment.

    PubMed

    St Marseille, J G; Anderson, B C

    2002-03-01

    An innovative chamber system was installed for on-site sewage treatment beneath an active parking lot at a restaurant near Cornwall, Ontario. The configuration of this prototype system used polyethylene leaching chambers over which wastewater was allowed to trickle. The chambers were vented to the surface to provide direct, passive air transfer. This demonstration project was examined as a cost-effective wastewater treatment alternative for a very constrained site. The leaching chambers were installed over a geotextile-covered sand filter bed. Chamber sidewall contact contributed an additional 50% to the total soil contact area hence justification for a footprint reduction. A labile carbon source (sawdust) was added into one half of the bed to encourage dissimilatory denitrification. Average hydraulic loading was 50 l m(-1) day(-1) (5 cm day(-1)). Treatment rates exceeded more than 4 orders of magnitude removal for E. coli; 90% biochemical oxygen demand; ammonium; and 99% total phosphorus. Nitrate-N on the carbon-amended side averaged 0.6 mg l(-1) compared with 8.6 mg l(-1) on the (non-carbon) control side. This project has demonstrated that effective on-site treatment can be accomplished. Flow and load equalization, pulse dosing, chamber venting, phosphorus precipitation, and denitrification were keys to treatment success. Applications include domestic and commercial sites.

  8. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  9. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review.

    PubMed

    Net, Sopheak; Delmont, Anne; Sempéré, Richard; Paluselli, Andrea; Ouddane, Baghdad

    2015-05-15

    Because of their widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in the environment. Their presence has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health, so their quantification has become a necessity. Various extraction procedures as well as gas/liquid chromatography and mass spectrometry detection techniques are found as suitable for reliable detection of such compounds. However, PAEs are ubiquitous in the laboratory environment including ambient air, reagents, sampling equipment, and various analytical devices, that induces difficult analysis of real samples with a low PAE background. Therefore, accurate PAE analysis in environmental matrices is a challenging task. This paper reviews the extensive literature data on the techniques for PAE quantification in natural media. Sampling, sample extraction/pretreatment and detection for quantifying PAEs in different environmental matrices (air, water, sludge, sediment and soil) have been reviewed and compared. The concept of "green analytical chemistry" for PAE determination is also discussed. Moreover useful information about the material preparation and the procedures of quality control and quality assurance are presented to overcome the problem of sample contamination and these encountered due to matrix effects in order to avoid overestimating PAE concentrations in the environment.

  10. Assessment of the air-soil partitioning of polycyclic aromatic hydrocarbons in a paddy field using a modified fugacity sampler.

    PubMed

    Wang, Yan; Luo, Chunling; Wang, Shaorui; Liu, Junwen; Pan, Suhong; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-01-06

    Rice, one of the most widely cultivated crops, has received great attention in contaminant uptake from soil and air, especially for the special approaches used for its cultivation. The dry-wet alternation method can influence the air-soil partitioning of semivolatile organic compounds (SVOCs) in the paddy ecosystem. Here, we modified a fugacity sampler to investigate the air-surface in situ partitioning of ubiquitous polycyclic aromatic hydrocarbons (PAHs) at different growth stages in a suburban paddy field in South China. The canopy of rice can form a closed space, which acts like a chamber that can force the air under the canopy to equilibrate with the field surface. When we compared the fugacities calculated using a fugacity model of the partition coefficients to the measured fugacities, we observed similar trends in the variation, but significantly different values between different growing stages, especially during the flooding stages. However, the measured and calculated fugacity fractions were comparable when uncertainties in our calculations were considered, with the exception of the high molecular weight (HMW) PAHs. The measured fugacity fractions suggested that the HMW PAHs were also closed to equilibrium between the paddy field and atmosphere. The modified fugacity sampler provided a novel way of accurately determining the in situ air-soil partitioning of SVOCs in a wet paddy field.

  11. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    PubMed

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization.

  12. [Effects of sewage sludge vermicompost on the growth of marigold].

    PubMed

    Ma, Li; Yin, Xiu-qin

    2010-05-01

    The 1:1, 2:1, 3:1, 4:1, 5:1, and 1:0 mixtures of sewage sludge and cattle dung were treated with earthworm Eisenia foetida, and then, mixed with black soil in the proportions of 10%, 20%, and 30% (dry mass) to investigate the effects of the vermicompost on the marigold plant height, stem diameter, leaf number, branch number, aboveground biomass, underground biomass, ratio of root to shoot, flower bud number, flower yield, flower diameter, and flower biomass. An obvious promotion effect of the vermicompost was observed on the growth of marigold. The smaller the ratio of sewage sludge to cattle dung, the better the growth of marigold; while a higher proportion of the vermicompost to soil would inhibit the marigold growth. In this study, a proportion of 20% vermicompost to soil was the best for the growth of marigold.

  13. Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partition ratios and a molecular connectivity index

    SciTech Connect

    Dowdy, D.L.; McKone, T.E.

    1997-12-01

    A bioconcentration ratio (BCR) represents the ratio of the concentration of a chemical found in an exposed biological system, such as a plant or fish, to the concentration in the exposure medium (water, soil, or air). A comparison is made of the precision and accuracy of the molecular connectivity index (MCI) and the octanol/water partition coefficient (K{sub ow}) as predictors of BCRs from the soil matrix into above- or below-ground vegetation tissues. Calculated octanol/air partition coefficient (K{sub oa}) values are compared with calculated K{sub ow} and MCI values as predictors of measured air-to-plant BCRs. Based on a statistical evaluation of explained variance, residual error, and cross-validation, this evaluation reveals that the MCI provides higher precision, greater ease of use, and a more cost-effective method for predicting the potential bioconcentration of a chemical from soil into above-ground vegetation. Statistical analyses of the various methods reveal that both the K{sub ow} and MCI approaches have a similar level of precision for predicting BCRs from soil solution into roots and, among MCI, K{sub oa} and K{sub ow}; K{sub oa} is somewhat more precise and valid than MCI and K{sub ow} for estimating uptake, but all have limited accuracy as bioconcentration predictors. These latter results are derived mainly from the paucity of both reliable K{sub oa} values and measured air-to-plant BCRs and indicate a need for more experimental measurements from which more accurate models may be developed.

  14. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site

    SciTech Connect

    Gilbert, R.O.; Shinn, J.H.; Essington, E.H.; Tamura, T.; Romney, E.M.; Moor, K.S.; O'Farrell, T.P.

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 (Project 57) and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire.

  15. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    DTIC Science & Technology

    2015-05-01

    ER-200830) Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using...Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques W912HQ-08-C...volatile organic compounds (VOCs) at sites with potential human health risks. These risks were attributable to subsurface vapor intrusion to indoor air by

  16. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties.

    PubMed

    Klumpp, Andreas; Hintemann, Therese; Lima, Josanídia Santana; Kandeler, Ellen

    2003-01-01

    A field study near the copper smelter of a large industrial complex examined air pollution effects on vegetation and soil parameters in Camaçari (northeast Brazil). Close to the smelter, soil pH-value was lower and total acidity as well as organic carbon contents were higher compared with a site far from the source and two reference sites. The acidification of top soil particularly and the drastically enhanced plant-available copper concentrations were caused by atmospheric deposition. High sulphur and copper deposition significantly reduced microbial biomass and altered functional diversity of soil microorganisms (arylsulphatase and xylanase). Large accumulations of sulphur, arsenic and copper were detected in mango leaves (Mangifera indica) growing downwind from the smelter suggesting potential food chain-mediated risk.

  17. Comparison of field soil vapor results with laboratory ground water and soil results at a former air force rocket engine test cell, Chanute Air Force Base, IL

    SciTech Connect

    Thies, G.J. ); Bailey, W.M.; Madaj, A.J. III

    1993-10-01

    A soil vapor survey utilizing 276 survey points was performed at the site to help determine the areal extent of soil and ground-water contamination. Survey results indicated a VOC anomaly approximately four acres in size present at the eastern end of the site. Historical information supported the soil vapor results in that the eastern portion of the site was the most active during engine testing activities. The most common and abundant VOC identified was TCE. The highest TCE concentration detected was 12.8 ppm. Forty subsurface soil samples were collected from the anomaly area. The most common VOC detected was again TCE at a maximum concentration of 84 [mu]g/kg. Fourteen temporary monitoring wells and 13 permanent wells were installed and sampled to determine the horizontal and vertical extent of contamination. One well was installed in the source area to determine the maximum contaminant concentrations. TCE was again the most common VOC detected with a maximum concentration of 4000 [mu]g/1. Isoconcentration maps for VOCs in the three media (soil vapor, ground water, and soil) all overlay very closely indicating a distinct anomaly at the eastern end of the site. Field soil vapor results are supported by laboratory analytical results for soil and ground water in terms of compounds detected and location of anomaly.

  18. Report on the Oak Ridge sewage sludge land-farming experience. Part 1. Data presentation

    SciTech Connect

    Oakes, T.W.; Braunstein, H.M.; Daniels, K.L.; Ohnesorge, W.F.; Kitchings, J.T.; Alexander, W.A.

    1984-08-01

    Disposal of sludge from the City of Oak Ridge's sewage treatment facility on a 65-acre site on the Department of Energy's Oak Ridge Reservation was initiated in November 1983. On March 22, 1984, DOE and the City determined that the sludge contained radioactive materials. Application of sludge on the Reservation was suspended on March 25 and a comprehensive survey and sampling plan was instituted to radiologically characterize the disposal site. By April 1, a radiation walkover survey had been completed on the site and samples of air, water, and soil had been collected to be analyzed for the presence of radionuclides. The mean air dose rate, one meter above the ground surface, was found to be 13 ..mu..R/h with a range from about 8 ..mu..R/h, which is the usual background level in the area, to 21 ..mu..R/h. Concentrations of Cs-137 and Co-60, the principle contaminants in the soil, were essentially below the analytical detection limits in the air and water. About 350 soil samples were collected by extracting cores to a depth of 12 to 15 inches according to a systematic random sampling design. Each core was separated into three sections; the top 3 inches, a middle section, and the bottom 3 inches to represent layers on the site. The majority of the radioactivity was determined to be in the upper 3 inches of soil. A statistical treatment of the analytical results provided an estimate of the total activity at the site, the vertical distribution of the gamma activity, and the areal distribution of the primary radionuclides. A total of 170 mCi of activity was estimated as present in the top 3-inch layer of the 65-acre site, 69% of which was contributed by Co-60 and Cs-137, 23% by U-234 and Sr-90, and 8% by other minor radionuclides. 4 references, 12 figures, 43 tables.

  19. Quantification of Soil-to-Plant Transport of Recombinant Nucleopolyhedrovirus: Effects of Soil Type and Moisture, Air Currents, and Precipitation†

    PubMed Central

    Fuxa, James R.; Richter, Arthur R.

    2001-01-01

    Significantly more occlusion bodies (OB) of DuPont viral construct HzSNPV-LqhIT2, expressing a scorpion toxin, were transported by artificial rainfall to cotton plants from sandy soil (70:15:15 sand-silt-clay) than from silt (15:70:15) and significantly more from silt than from clay (15:15:70). The amounts transported by 5 versus 50 mm of precipitation were the same, and transport was zero when there was no precipitation. In treatments that included precipitation, the mean number of viable OB transported to entire, 25- to 35-cm-tall cotton plants ranged from 56 (clay soil, 5 mm of rain) to 226 (sandy soil, 50 mm of rain) OB/plant. In a second experiment, viral transport increased with increasing wind velocity (0, 16, and 31 km/h) and was greater in dry (−1.0 bar of matric potential) than in moist (−0.5 bar) soil. Wind transport was greater for virus in a clay soil than in silt or sand. Only 3.3 × 10−7 (clay soil, 5 mm rain) to 1.3 × 10−6 (sandy soil, 50 mm rain) of the OB in surrounding soil in experiment 1 or 1.1 × 10−7 (−0.5 bar sandy soil, 16-km/h wind) to 1.3 × 10−6 (−1.0 bar clay soil, 31-km/h wind) in experiment 2 were transported by rainfall or wind to cotton plants. This reduces the risk of environmental release of a recombinant nucleopolyhedrovirus (NPV), because only a very small proportion of recombinant virus in the soil reservoir is transported to vegetation, where it can be ingested by and replicate in new host insects. PMID:11679341

  20. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    PubMed

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L(-1) and from 11.8 to 792.9 μg kg(-1)dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  1. Enhanced Representation of Soil NO Emissions in the Community Multiscale Air Quality (CMAQ) Model Version 5.0.2

    NASA Technical Reports Server (NTRS)

    Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.

    2016-01-01

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.

  2. Impact of Surface Air Temperature and Snow Cover Depth on the Upper Soil Temperature Variations in Russia

    NASA Astrophysics Data System (ADS)

    Sherstyukov, B. G.; Sherstyukov, A. B.; Groisman, P. Y.

    2008-12-01

    For the 1965-2004 period, data from all Russian meteorological stations with long-term soil temperature observations at depths 80, 160 and 320 cm were compiled and analyzed. It was found that the prevailing influence on soil temperature variations in the European part of Russia was surface air temperature and in the Asian part of Russia - snow cover depth. By preserving the heat accumulated in the warm season, an observed increase of the winter snow depth in the permafrost zone (cf., Bulygina et al. 2007) promotes annual soil temperature increase and therefore may foster the further permafrost degradation associated with ongoing regional warming. The impact of long-term changes in surface air temperatures on soil temperatures in the central regions of the permafrost zone is weak throughout the year. However, in the regions with intermittent permafrost, this impact is substantial. The impact of snow depth on soil temperatures is observed throughout the entire permafrost zone of Russia. Reference cited: Bulygina O.N., N.N. Korshunova, and V.N. Razuvaev, 2007: Variations in snow characteristics over the Russian territory in the recent decades. Transactions of RIHMI-WDC, 173, 41-46.

  3. Enhanced representation of soil NO emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.

    2016-09-01

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12 km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.

  4. Particle-phase dry deposition and air-soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-07-15

    The particle-phase dry deposition and soil-air gas-exchange of polybrominated diphenyl ethers (PBDEs) were measured in Izmir, Turkey. Relative contributions of different deposition mechanisms (dry particle, dry gas, and wet deposition) were also determined. BDE-209 was the dominating congener in all types of samples (air, deposition, and soil). Average dry deposition fluxes of total PBDEs (sigma7PBDE) for suburban and urban sites were 67.6 and 128.8 ng m(-2) day(-1), respectively. Particulate dry deposition velocities ranged from 11.5 (BDE-28) to 3.9 cm s(-1) (BDE-209) for suburban sites and 7.8 (BDE-28) to 2.8 cm s(-1) (BDE-154) for urban sites with an overall average of 5.8 +/- 3.7 cm s(-1). The highest sigma7PBDE concentration (2.84 x 10(6) ng kg(-1) dry wt) was found around an electronic factory among the 13 soil samples collected from different sites. The concentration in a bag filter dust from a steel plant was also high (2.05 x 10(5) ng kg(-1)), indicating that these industries are significant PBDE sources. Calculated net soil-air gas exchange flux of sigma7PBDE ranged from 11.8 (urban) to 23.4 (industrial) ng m(-2) day(-1) in summer, while in winter it ranged from 3.2 (urban) to 11.6 (suburban) ng m(-2) day(-1). All congeners were deposited at all three sites in winter and summer. It was estimated that the wet deposition also contributes significantly to the total PBDE deposition to soil. Dry particle, wet, and gas deposition contribute 60, 32, and 8%, respectively, to annual PBDE flux to the suburban soil.

  5. Influence of invasive earthworm activity on carbon dynamics in soils from the Aspen Free Air CO2 Enrichment Experiment

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Top, S. M.; Hopkins, F. M.

    2010-12-01

    The influence of CO2-driven increase in net primary productivity on soil organic carbon accrual has received considerable emphasis in ecological literature with conclusions varying from positive, to neutral, to negative. What has been understudied is the coupled role of soil fauna, such as earthworms, in controlling the ultimate fate of new above and below ground plant carbon under elevated CO2. Such considerations are particularly relevant considering that in most northern North American forests earthworms are an exotic organism known to cause significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter and mixing litter and humus deep into the mineral soil. The impact of these exotic earthworms on overall soil carbon stabilization is largely unknown but likely a function of both species composition and edaphic soil properties. In this paper we present the initial results of a carbon isotope study (13C, 14C) conducted at the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, USA to track allocation and redistribution within the soil of plant litter and root carbon (bulk and biopolymer). Along with litter and soil to 25 cm depth, earthworm populations were quantified, and their gut contents collected for isotopic and plant biopolymer chemistry analysis. Contributions of root vs. leaf input to soil and earthworm fecal matter were derived from differences in the chemical and isotope composition of alkaline CuO-derived lignin and substituted fatty acids (SFA) from cutin and suberin. Our investigation demonstrates the presence of invasive European earthworms, of both litter and surface soil dwelling (epigeic) and deep soil dwelling (endogeic) varieties, whose abundance increases under elevated CO2 conditions. Additionally, the different species show selective vertical movement of new and pre-FACE plant biopolymers indicating dynamics in root and leaf decomposition and burial (down to 30 cm

  6. 40 CFR Table 5 to Subpart Llll of... - Summary of Reporting Requirements for New Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Sewage Sludge Incineration Units a 5 Table 5 to Subpart LLLL of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units Pt. 60, Subpt. LLLL, Table...

  7. 40 CFR Table 5 to Subpart Llll of... - Summary of Reporting Requirements for New Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Sewage Sludge Incineration Units a 5 Table 5 to Subpart LLLL of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units Pt. 60, Subpt. LLLL, Table...

  8. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt....

  9. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt....

  10. Polychlorinated biphenyls (PCBs) in air and soil from a high-altitude pasture in the Italian Alps: evidence of CB-209 contamination.

    PubMed

    Tremolada, Paolo; Guazzoni, Niccolò; Comolli, Roberto; Parolini, Marco; Lazzaro, Serena; Binelli, Andrea

    2015-12-01

    This study analyses the seasonal trend of polychlorinated biphenyls (PCB) concentrations in air and soil from a high-altitude mountain pasture in the Italian Alps. PCB concentrations in soil were generally comparable to background levels and were lower than those previously measured in the same area. Only CB-209 unexpectedly showed high concentrations with respect to the other congeners. GC-MS-MS identification was very clear, rising a new problem of increasing PCB contamination concerning only CB-209, which is not present in commercial mixtures used in the past in Italy and Europe. Considering all of the congeners, seasonal PCB trends were observed both in air and in soil that were related to the temperature and precipitation measured specifically in the study area. Highly significant relationships were found between the temperature-normalised concentrations in soil and the precipitation amounts. A north/south enrichment factor was present only in soil with rapid early summer re-volatilisation kinetics from soil to air and autumn re-deposition events from air to soil. Fugacity ratio calculations confirmed these trends. Surface soils respond rapidly to meteorological variables, while subsurface soils respond much more slowly. Seasonal trends were different for the northern and southern sides of the mountain. A detailed picture of the interactions among temperature, precipitation, mountain aspects and soil features was obtained.

  11. The dissipation of phosphorus in sewage and sewage effluents.

    PubMed

    Collingwood, R W

    Of the 41 kt of phosphorus reaching the sewage works in England and Wales 15 kt is removed in sewage sludge and the remainder is disposed of to rivers. 60% of the sewage sludge is now used as fertilizer and this proportion will no doubt increase in the future. The total use of sewage sludge, however, represents only about 5% of the current annual usage of artificial phosphorus fertilizer. At present there is no general economic incentive to make better use of the phosphorus in effluents. Phosphorus removal is expensive--about 2--3 pence/m3. If all the sewage effluents in England and Wales were to be so treated the cost would be about 100--150 million pounds annually, that is about 50% of the present costs of sewage treatment. In certain cases, but rarely in the UK, phosphate is removed, not to conserve phosphorus but to minimize the problems it creates in the environment. The phosphorus removed has little value as fertilizer. Alternative methods of using the phosphorus in effluents by the production and harvesting of crops of algae or aquatic plants have so far proved uneconomic. However, these methods need to be reviewed periodically as they may in the future become economically more attractive, especially in warmer climates where plant growth can be maintained throughout the year.

  12. Air permeability of compost as related to bulk density and volumetric air content.

    PubMed

    Poulsen, Tjalfe G; Moldrup, Per

    2007-08-01

    Compost air permeability controls air flow through compost during composting or when using compost as biofilter material. Air permeability is therefore an important characteristic of compost. The relationships between air permeability (k(a)) in compost and compost dry bulk density (rho b), gravimetric water content (omega), and volumetric air content (epsilon) was investigated for two types of composts. The composts used were produced from a digested sewage sludge-straw mixture and from garden waste and measurements were conducted on sieved and repacked 100 cm3 compost samples. Results showed a linear relation between log(k(a)) and rho b at constant values of omega for both composts, indicating an exponential relationship between k(a) and rho b. The slopes of these relationships generally became more negative with increasing rho b. The results further showed a linear relationship between log(k(a)) and log(epsilon) for both composts as also often observed for soils. It was observed that the log(k(a)) and log(epsilon) relationships for the garden waste compost all intercepted at the same location despite having very different slopes. This means that it is possible to predict the entire k(a)-epsilon relationship using only one measurement of corresponding (k(a), epsilon) for garden waste. It was not possible to determine whether this was also the case for the sewage sludge compost due to difficulties in sample preparation at low and high water content.

  13. Impacts of traffic-induced lead emissions on air, soil and blood lead levels in Beirut.

    PubMed

    Hashisho, Z; El-Fadel, M

    2004-01-01

    Lead is a purely toxic heavy metal which induces a wide variety of adverse physiologic effects. Nevertheless, it has been mined and used for more than 8,000 years. Among the different contemporary sources of lead pollution, traffic-induced emissions from the combustion of leaded gasoline is of particular concern, as it can constitute more than 90 percent of total lead emissions into the atmosphere in congested urban areas where no phase-out activities have been adopted. Gasoline lead content and traffic volume are strongly correlated with concentrations of lead in various environmental media. In the absence of policies to reduce the use of lead in gasoline or to favor the use of unleaded gasoline, leaded gasoline remains the predominant grade in many countries. This paper assesses the status of lead pollution from the combustion of leaded gasoline in Beirut based on field measurements of lead in air and roadside dust of urban and rural/suburban areas and recent data on soil and blood lead levels. Average atmospheric lead concentrations was about 1.86 microg m(-3) at urban locations and 0.147 microg m(-3) at suburban locations. The analysis of roadside dust revealed an average lead level of 353 microg g(-1) along urban streets and 125 microg g(-1) along rural/suburban roads. Blood lead levels were also relatively high in comparison to countries where leaded gasoline has been phased-out.

  14. Effects of chemically contaminated sewage sludge on an aphid population

    SciTech Connect

    Culliney, T.W.; Pimentel, D.

    1986-12-01

    Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

  15. P-band Radar Retrieval of Root-Zone Soil Moisture: AirMOSS Methodology, Progress, and Improvements

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Tabatabaeenejad, A.; Chen, R.

    2015-12-01

    The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE)by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of themajor North American biomes. The radar snapshots are used to generate estimates of RZSM. To retrieve RZSM, weuse a discrete scattering model integrated with layered-soil scattering models. The soil moisture profile is representedas a quadratic function in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to beretrieved. The ancillary data necessary to characterize a pixel are available from various databases. We applythe retrieval method to the radar data acquired over AirMOSS sites including Canada's BERMS, Walnut Gulchin Arizona, MOISST in Oklahoma, Tonzi Ranch in California, and Metolius in Oregon, USA. The estimated soilmoisture profile is validated against in-situ soil moisture measurements. We have continued to improve the accuracyof retrievals as the delivery of the RZSMproducts has progressed since 2012. For example, the 'threshold depth' (thedepth up to which the retrieval is mathematically valid) has been reduced from 100 cm to 50 cm after the retrievalaccuracy was assessed both mathematically and physically. Moreover, we progressively change the implementationof the inversion code and its subroutines as we find more accurate and efficient ways of mathematical operations. Thelatest AirMOSS results (including soil moisture maps, validation plots, and scatter plots) as well as all improvementsapplied to the retrieval algorithm, including the one mentioned above, will be reported at the talk, following a briefdescription of the retrieval methodology. Fig. 1 shows a validation plot for a flight over Tonzi Ranch from September2014 (a) and a scatter plot for various threshold depths using 2012 and 2013 data.

  16. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying.

    PubMed

    Guo, Shi-Hong; Liu, Zhen-Ling; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; He, Bao-Yan; Xu, Zhi-Min; Ye, Jin-Shao; Zeng, Eddy Y

    2016-08-01

    Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P < 0.05), with removal rates ranging from 10% to 51%. The amounts of the exchangeable, carbonate, reducible, and oxidizable fractions also significantly decreased (P < 0.05). Moreover, prolonged seawater inundation enhanced the release of heavy metals. Measurement of diffusive gradients in thin films indicated that seawater inundation significantly increased the re-mobility of heavy metals. During seawater inundation, iron oxide reduction induced the release of heavy metals in the reducible fraction. Decomposition of organic matter, and complexation with dissolved organic carbon decreased the amount of heavy metals in the oxidizable fraction. Furthermore, complexation of chloride ions and competition of cations during seawater inundation and/or leaching decreased the levels of heavy metals in the exchangeable fraction. By contrast, air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater.

  17. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  18. Superfund record of decison (EPA Region 2): Naval Air Engineering Center, Area C soil and groundwater, Lakehurst, NJ, February 20, 1996

    SciTech Connect

    1996-08-01

    The decision document presents the selected alternative to address Area C soil and groundwater at the Naval Air Engineering Station in Lakehurst, New Jersey. The selected alternative to address groundwater at Area C is continued operation of the existing groundwater treatment facility with modifications to enhance system performance. For soil, the selected alternative for Site 10 is no further action. For Site 16 soil, the selected alternative is continued operation of the bioventing system with potential modifications to enhance system performance. For Site 17 soil, the selected alternative is continued operation of the soil vapor extraction and bioventing system with potential modifications to enhance system performance.

  19. Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants.

    PubMed

    Dumanoglu, Yetkin; Gaga, Eftade O; Gungormus, Elif; Sofuoglu, Sait C; Odabasi, Mustafa

    2017-02-15

    Atmospheric and concurrent soil samples were collected during winter and summer of 2014 at 41 sites in Kutahya, Turkey to investigate spatial and seasonal variations, sources, air-soil exchange, and associated carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The highest atmospheric and soil concentrations were observed near power plants and residential areas, and the wintertime concentrations were generally higher than ones measured in summer. Spatial distribution of measured ambient concentrations and results of the factor analysis showed that the major contributing PAH sources in Kutahya region were the coal combustion for power generation and residential heating (48.9%), and diesel and gasoline exhaust emissions (47.3%) while the major PCB sources were the coal (thermal power plants and residential heating) and wood combustion (residential heating) (45.4%), and evaporative emissions from previously used technical PCB mixtures (34.7%). Results of fugacity fraction calculations indicated that the soil and atmosphere were not in equilibrium for most of the PAHs (88.0% in winter, 87.4% in summer) and PCBs (76.8% in winter, 83.8% in summer). For PAHs, deposition to the soil was the dominant mechanism in winter while in summer volatilization was equally important. For PCBs, volatilization dominated in summer while deposition was higher in winter. Cancer risks associated with inhalation and accidental soil ingestion of soil were also estimated. Generally, the estimated carcinogenic risks were below the acceptable risk level of 10(-6). The percentage of the population exceeding the acceptable risk level ranged from <1% to 16%, except, 32% of the inhalation risk levels due to PAH exposure in winter at urban/industrial sites were >10(-6).

  20. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site.

    PubMed

    Gilbert, R O; Shinn, J H; Essington, E H; Tamura, T; Romney, E M; Moor, K S; O'Farrell, T P

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 [Project 57] and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire. The average (GM) concentration of 239 + 240Pu for the GI (and contents) of Area 13 kangaroo rats and for the rumen contents of beef cattle that grazed Area 13 were very similar (400 vs. 440 Bq kg-1 dry wt, respectively) although the variability between individuals was very large. The

  1. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site.

    PubMed

    Pereira, R Calvelo; Monterroso, C; Macías, F; Camps-Arbestain, M

    2008-09-01

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly alpha-, beta-, gamma- and delta-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The beta-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil-->root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil-->air-->shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles-->shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.

  2. Bioslurping/bioventing demonstration in tight soils at Tinker Air Force Base southwest tanks site. Technical report, October 1995-July 1996

    SciTech Connect

    Payton, B.; Leeson, A.; Gibbs, J.

    1997-04-01

    Innovative bioremediation technology was evaluated for its effectiveness at removing petroleum hydrocarbon contaminants from a site featuring clay soils underlain by a partially-cemented sandstone with an extensive smear zone was dewatered to facilitate soil aeration and the clay layer was aerated by forced air injection. Significant mass removal mechanisms included volatilization and biodegradtion.

  3. From sewage water treatment to wastewater reuse. One century of Paris sewage farms history.

    PubMed

    Védry, B; Gousailles, M; Affholder, M; Lefaux, A; Bontoux, J

    2001-01-01

    The irrigation fields of Paris have been used for 100 years. Their soils mainly contain heavy metals in the topmost layer. Metals come from raw sewage as well as from digested sludge of biological treatment plants which have been diluted for years in raw water. Vegetables that are cultivated in the irrigation fields concentrate metals but their average contents, however, are lower than the recommended limit values. Some vegetables concentrate more specifically one type of metal. Corn seeds accumulate less metal than green vegetables. The SIAAP keeps operating irrigation fields by delivering clariflocculated water with a low metal content from the new Seine Centre plant, with the purpose of keeping some 2,000 ha of green zone in an otherwise heavily constructed area and to prevent a metal release from the soil should irrigation be interrupted. Maintaining irrigation fields also relieves the biological treatment plant and then contributes to preserve the quality of the Seine river, especially in summer.

  4. Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant.

    PubMed

    Boudissa, Soraya M; Lambert, Jean; Müller, Caroline; Kennedy, Greg; Gareau, Lise; Zayed, Joseph

    2006-05-15

    In Montreal (Canada), the mean annual atmospheric Mn concentrations between 1981 and 1990 were stable, followed by a decrease of almost 50% from 1990 to 1992. The reason for such a decrease in Mn is probably the shutdown of a large manganese alloy production plant in Beauharnois, approximately 25 km from Montreal. The objective of this study is to assess the level of air and soil contamination by Mn in the vicinity of this ferroalloy plant more than 10 years after its closure. Air and soil were sampled over 5 days at two and three sites, respectively. Site 1 was located 10 m NE of the closed plant, in the direction of the prevailing SW-NE winds. Sites 2 and 3 were at 50 and 800 m SE from the plant. Air samples were collected in order to determine total (MnT) and respirable (MnR). Soil samples were taken in the surface and subsurface strata. The results show that site 1 is extremely polluted with a mean Mn concentration in surface strata of 2,66,000+/-45,000 ppm and 2,83,000+/-23,000 ppm in the subsurface strata, while the average MnT and MnR are 21.9+/-13.7 and 3.5+/-3.9 microg/m(3), respectively. The explanation for this contamination is direct deposition on the soil of solid Mn-rich residue and atmospheric erosion of Mn particles. The situation should be remediated by the public authority with high priority.

  5. (7)Be in soil, deposited dust and atmospheric air and its using to infer soil erosion along Alexandria region, Egypt.

    PubMed

    Saleh, I H; Abdel-Halim, A A

    2017-03-14

    This study investigated the radioactivity behavior of (7)Be in surface soil, airborne and deposited dust along Alexandria region in Egypt. The results obtained were used to predict scavenging processes of (7)Be from surface soil to infer soil erosion and land vulnerable to accelerated sea-level rise. The areal activity concentrations of (7)Be in surface soil were investigated in 30 undisturbed sites and (7)Be inventories were determined via deposited dust in 10 locations. Results of the former were found to be ranged from 78 Bq/m(2) to 104 Bq/m(2). High levels were observed in western sites associated with high dust deposition rate. On the other hand, low levels were found in the eastern sites, those may be attributed to scavenging processes such as land erosion toward the direction to the sea. The effective removal rates of (7)Be were calculated using the box-model, showing a broad special trend of inventories generally decreasing eastwards. The scavenging rates were ranged between 3.13 yr(-1) in western sites to 5.34 yr(-1) in eastern ones which denote that the east of the city suffers from rapid soil erosion. The airborne (7)Be was monthly monitored along the period from October 2014 to September 2015 through one site located at the mid of the city. The results revealed lower values in winter and autumn than in summer and spring ranged between 6.2 mBq/m(3) and 10.5 mBq/m(3). These levels are comparable with that in other world regions and the seasonal variations are associated with the prevailing climatic conditions in Alexandria region.

  6. Determination of pesticide residues in sewage sludge: a review.

    PubMed

    Tadeo, José L; Sánchez-Brunete, Consuelo; Albero, Beatriz; García-Valcárcel, Ana I

    2010-01-01

    Pesticides are widely applied to protect plants from diseases, weeds, and insect damage, and they usually come into contact with soil where they may undergo a variety of transformations and provide a complex pattern of metabolites. Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as a byproduct of wastewater treatment, sewage sludge may contain pesticides and other toxic substances that could be incorporated into agricultural products or be distributed in the environment. This article reviews the determination of pesticides in sewage sludge samples. Sample preparation including pretreatment, extraction, and cleanup, as well as the subsequent instrumental determination of pesticide residues, are discussed. Extraction techniques such as Soxhlet extraction, ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and matrix solid-phase dispersion and their most recent applications to the determination of pesticides in sewage sludge samples are reviewed. Determination of pesticides, generally carried out by GC and HPLC coupled with different detectors, especially MS for the identification and quantification of residues, is summarized and discussed.

  7. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel Operations § 159.307 Untreated sewage. No person shall discharge any untreated sewage from a cruise...

  8. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel Operations § 159.307 Untreated sewage. No person shall discharge any untreated sewage from a cruise...

  9. Soil concentrations and soil-air exchange of organochlorine pesticides along the Aba profile, east of the Tibetan Plateau, western China

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Qi, Shihua; Yang, Dan; Hu, Ying; Li, Feng; Liu, Jia; Xing, Xinli

    2013-12-01

    Mianzhu—Aba profile, east of the Tibetan Plateau, was selected to study the occurrence of organochlorine pesticides (OCPs) along an altitudinal gradient. Dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs) and Aldrin, Dieldrin and Endrin (Drins) in surface soils were detected in winter (March) and summer (July). Soil concentrations (ng·g-1, dw) in winter and summer ranged as follws: DDTs, 0.37-179.16 and 0.32-42.57; HCHs, 0.14-10.76 and 0.55-32.71; Drins, N.D-3.99 and 0.02-6.93, respectively. Main soil OCPs were p, p'-DDT, p, p'-DDE, β-HCH and Drins, among which Drins were rarely reported in current literature of the Tibetan Plateau. Higher OCP concentrations in the profile were attributed close to the agricultural fields of the Sichuan Basin, current lindane and nondicofol DDTs inputs, and also long-range atmospheric transport from abroad. Soil OCP concentrations underwent obvious seasonal variation, with higher DDTs in winter and higher HCHs and Drins in summer. It may be caused by climatic conditions, summer monsoon type, and physico-chemical properties of such contaminants. Though "rest" phenomenon occurred in some sampling sites, HCHs and Drins showed an increasing trend with increasing altitude, while DDTs showed an evident decrease with increasing altitude. The altitudinal distributions of OCPs were all consistent with previous findings in other mountainous regions. A primary fugacity analysis on OCPs soil-air exchange indicated that the profile may be secondary sources for HCHs and Endrin. As with Aldrin, Dieldrin, and DDTs, the profile may be both secondary sources and sinks.

  10. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-10-21

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies.

  11. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  12. Comparison of PAHs uptake by selected Monocotyledones and Dicotyledones from municipal and industrial sewage sludge.

    PubMed

    Gworek, Barbara; Klimczak, Katarzyna; Kijeńska, Marta; Gozdowski, Dariusz

    2016-10-01

    The study was focused on two goals: (i) the confirmation of the existence of a general relation between the content of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and in plants growing in it, regardless of the type and content of sewage sludge, and (ii) if so, the answer to the question whether the uptake of PAHs by plants depends on their type. To realize the set aims, the contents of PAHs in four differentiated plant species were measured, two belonging to the Monocotyledones and two belonging to Dicotyledones group, growing in municipal and industrial sewage sludge in two locations. All the investigations were carried out during the period of 3 years. The results clearly demonstrated that the uptake of PAHs by a plant depended on polyaromatic hydrocarbon concentration in the sewage sludge. The relation between accumulation coefficient of PAHs in plant material vs. the content of PAH in sewage sludge was of exponential character. The results indicate that in case of four- and five-ring PAHs, the root uptake mechanism from soil solution occurs, regardless of the type and origin of sewage sludge and the type of plant. For three-ring PAHs, we can assume for Monocotyledones that the root uptake mechanism occurs because we observe a significant correlation between the content of fluorene, phenanthrene, and anthracene in plant material and in the sewage sludge. For Dicotyledones, the correlation is insignificant, and in this case probably two mechanisms occur-the uptake by roots and by leaves.

  13. Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatão, Brazil.

    PubMed

    Klumpp, G; Furlan, C M; Domingos, M; Klumpp, A

    2000-01-31

    The present study was performed in the vicinity of the industrial complex of Cubatão, São Paulo, Brazil, in order to evaluate the response of 'manaca da serra' Tibouchina pulchra Cogn. (Melastomataceae), a common species of secondary Atlantic Rain Forest vegetation, to the impact of complex air pollution. Emphasis was given to changes of biochemical parameters such as ascorbic acid concentration, peroxidase activity, contents of water-soluble thiols, pH of leaf extract and buffering capacity. These plant factors are often used as early indicators of air pollution stress. Field experiments included sampling of leaves from mature trees in areas with different air pollution load (passive monitoring), exposure of saplings cultivated in uniform soil at these areas (active monitoring) and a study on the combined effects of contaminated soil and air pollution. In general, metabolic response of saplings was more accentuated than that of mature trees. Leaf extract pH and buffering capacity showed no or only small alterations in plants exposed to industrial emissions. In contrast, air pollution resulted in a distinct decrease in ascorbic acid contents and an increase in peroxidase activity and thiol concentrations in leaves. Cultivation of saplings in soil types from contaminated regions frequently caused the same modifications or enhanced the effects produced by air pollution. Growth analysis of exposed saplings demonstrated that a change of the relationship between above-ground and below-ground plant parts was the most obvious effect of air pollution and soil contamination. The experiments showed that even T. pulchra, a species considered resistant to air pollution, suffers metabolic disturbances by the present ambient air and soil quality. Although biochemical and physiological alterations were not related to a certain air pollution type, they could be used to estimate the overall pollution load and to map zones with different air quality.

  14. Accumulation of heavy metals in Spinacia oleracea irrigated with paper mill effluent and sewage.

    PubMed

    Pathak, Chakresh; Chopra, A K; Srivastava, Sachin

    2013-09-01

    The present study on heavy metal contamination in soil and their accumulation in edible part (leaves) and roots of Spinacia oleracea (Spinach) on irrigation with paper mill effluent (PME)/sewage revealed that there was significant increase in the nickel (Ni, +227.17 %) content of the soil irrigated with PME, whereas in the soil irrigated with sewage chromium (Cr, +274.84 %), iron (Fe, +149.56 %), and cadmium (Cd, +133.39 %), contents were increased appreciably. The value of enrichment factor (EF) for Ni (3.27) indicated moderate enrichment in PME-irrigated soil. The EF of Fe, zinc (Zn), Cd, and Cr were <2 in PME effluent-irrigated soil which showed deficiency of minimal enrichment. In sewage irrigated soil, EF value for Cr, Fe, and Cd indicated moderate enrichment, while the values for Zn and Ni indicated deficiency of minimal enrichment. Among various metallic concentrations, the maximum concentration of Fe was observed in leaves (400.12 ± 11.47 mg/kg) and root (301.41 ± 13.14 mg/kg) of S. oleracea after irrigation with PME, whereas the maximum concentrations of Fe was found in leaves (400.49 ± 5.97 mg/kg) and root (363.94 ± 11.37 mg/kg) of S. oleracea after irrigation with sewage for 60 days. The bioaccumulation factor value was found maximum for Cd (2.23) in the plants irrigated with PME while that of Fe (0.90) in the plants irrigated with sewage. The undiluted use of PME/sewage for irrigation increased the concentration of Cr, Cd, Zn, Ni, and Fe metals which were accumulated in S. oleracea, posing a potential threat to human health from this practice of irrigation.

  15. Sewage sludge gasification: First studies

    SciTech Connect

    Garcia-Bacaicoa, P.; Bilbao, R.; Uson, C.

    1995-11-01

    Wastewater treatment installations produce a large quantity of sewage sludge, the disposal and treatment of which causes several problems because of its volume, its toxic organic constituents and the heavy metals that it contains. Certain methods of treatment and disposal do exist, but they are not entirely satisfactory. Moreover, it is important to develop a technology for the adequate treatment of sewage sludge in order to reduce the environmental problem and the costs of treatment. It can be assumed that gasification is a suitable technology because it reduces the waste volume, destroys the toxic organic compounds and fixes the heavy metals in the resultant solid. In order to gain knowledge of the processes occurring in the gasifier, the results obtained in experiments on the thermal decomposition of sewage sludge at different heating rates are shown.

  16. Study Uncovers Dirty Little Secret: Soil Emissions are Much-Bigger-than-Expected Component of Air Pollution

    NASA Technical Reports Server (NTRS)

    Stricherz, Vince

    2005-01-01

    Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.

  17. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa.

    PubMed

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; da Silva Souza, Tatiana

    2016-04-01

    The objective of this study was to ascertain the cytotoxic, genotoxic and mutagenic potential of sewage sludge using Allium cepa bioassay. Solubilized and crude sludge from two sewage treatment stations (STSs), herein named JM and M, were tested. In addition, sanitized, crude and solubilized sludge were also analyzed from STS M. The treatments showed positive response to phytotoxicity, cytotoxicity, genotoxicity and/or mutagenicity. Despite negative results for MN F1 (micronuclei counted in F1 root cells, derived from meristematic cells), the monitoring of genotoxic and mutagenic activities of sewage sludge are recommended because in agricultural areas this residue is applied in large scale and continuously. Based on our results we advise caution in the use of sewage sludge in agricultural soils.

  18. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    NASA Astrophysics Data System (ADS)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many

  19. FORCED AIR VENTILATION FOR REMEDIATION OF UNSATURATED SOILS CONTAMINATED BY VOC

    EPA Science Inventory

    Parameters which were expected to control the removal process of VOCs from contaminated soil during the SVE operation were studied by means of numerical simulations and laboratory experiments in this project. Experimental results of SVE with soil columns in the laboratory indicat...

  20. Lead concentration in the blood of children and its association with lead in soil and ambient air--trends between 1983 and 2000 in Duisburg.

    PubMed

    Ranft, Ulrich; Delschen, Thomas; Machtolf, Monika; Sugiri, Dorothee; Wilhelm, Michael

    2008-01-01

    Children are known to be at greater risk of exposure to lead (Pb). As Pb levels in ambient air have decreased during the last decades, the relative contribution of soil ingestion to ambient Pb exposure has increased. Using data from five cross-sectional studies conducted during 1983 to 2000 in the industrial city of Duisburg and comprising 843 children, 6-11 yr old, the aim of this study was to evaluate the contribution of Pb in soil to Pb blood levels of children in comparison to the contribution of Pb in air. Based on measurements of soil samples, the spatial distribut