Science.gov

Sample records for air soil vegetation

  1. Pan-Arctic linkages between snow accumulation and growing season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-01-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the response of northern environments to changes in snow and growing season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG (growing season air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing season land surface characteristics, these associations were analyzed using the modern non-parametric technique of Alternating Conditional Expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and shading. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended

  2. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site

    SciTech Connect

    Gilbert, R.O.; Shinn, J.H.; Essington, E.H.; Tamura, T.; Romney, E.M.; Moor, K.S.; O'Farrell, T.P.

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 (Project 57) and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire.

  3. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Gel, Y.; Lin, J. C.; Kelly, R. E. J.; Duguay, C. R.

    2013-11-01

    Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier

  4. Hillslope soils and vegetation

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald; Heimsath, Arjun; Owen, Justine; Yoo, Kyungsoo; Dietrich, William E.

    2015-04-01

    Assessing how vegetation controls hillslope soil processes is a challenging problem, as few abiotic landscapes exist as observational controls. Here we identify five avenues to examine how actively eroding hillslope soils and processes would differ without vegetation, and we explore some potential feedbacks that may result in landscape resilience on vegetated hillslopes. The various approaches suggest that a plant-free world would be characterized by largely soil-free hillslopes, that plants may control the maximum thickness of soils on slopes, that vegetated landforms erode at rates about one order of magnitude faster than plant-free outcrops in comparable settings, and that vegetated hillslope soils generally maintain long residence times such that both N and P sufficiency for ecosystems is the norm. We conclude that quantitatively parameterizing biota within process-based hillslope models needs to be a priority in order to project how human activity may further impact the soil mantle.

  5. Soil and vegetation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  6. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site.

    PubMed

    Gilbert, R O; Shinn, J H; Essington, E H; Tamura, T; Romney, E M; Moor, K S; O'Farrell, T P

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 [Project 57] and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire. The average (GM) concentration of 239 + 240Pu for the GI (and contents) of Area 13 kangaroo rats and for the rumen contents of beef cattle that grazed Area 13 were very similar (400 vs. 440 Bq kg-1 dry wt, respectively) although the variability between individuals was very large. The

  7. Risk assessment of heavy metals in air, water, vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin, China.

    PubMed

    Bian, Bo; Zhou, Ling Jun; Li, Lei; Lv, Lin; Fan, Ya Min

    2015-05-01

    Metal contamination in farmlands irrigated with biogas slurry is of great concern because of its potential health risks to local inhabitants. Health risks that depend heavily on multi-pathway exposure to heavy metals (e.g., Pb, Cd, Cr, Zn, Cu, and As) in water, soil, air, and local food were studied through field sampling in Taihu Basin, China. Results show that Zn, Pb, and Cd in soils irrigated with biogas slurry exceed the soil quality standard values, and grown vegetables and grains contaminated with Pb and Cd exceed the permissible limits. Food ingestion plays an important role in the total average daily dose of metals, especially for Cu and Zn, which account for 94 and 91%, respectively. Non-carcinogenic risks posed to adults mainly result from Cu, Zn, Pb, Cd, and As through food ingestion and from Cr through soil ingestion. The highest non-carcinogenic risk was determined from food ingestion, followed by soil ingestion, air inhalation, air ingestion, and dermal contact with air. Carcinogenic risks to adults are 6.68 to 7.00 times higher than the safe level and can be attributed to Cr, As, and Cd pollution. The estimated risks mainly result from As and Cd through food ingestion and from Cr through soil ingestion. Both cancer and non-cancer risks through dermal contact can be ignored. Therefore, attention should be paid to health risks imposed by adults' multi-pathway exposure to heavy metals in vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin. Effective measures should be implemented to control heavy metal pollution and protect potentially exposed adults. PMID:25794576

  8. [Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy)].

    PubMed

    Ferrante, Margherita; Fiore, Maria; Ledda, Caterina; Cicciù, Francesca; Alonzo, Elena; Fallico, Roberto; Platania, Francesco; Di Mauro, Rosario; Valenti, Lina; Sciacca, Salvatore

    2013-01-01

    Contamination of fruits and vegetables with heavy metals can result from anthropogenic events (car or factory emissions, poor management of sewage and industrial waste) or from natural events (volcanic activity and geological soil matrix). The chemical and toxicological characteristics of heavy metals can have an impact on human health through several mechanisms. Other metals, on the other hand, are essential for maintenance of physiological and biochemical human processes, are protective against many diseases and must be present in the diet because they cannot be synthesized by the human body. The purpose of this study was to assess the presence of heavy metals and trace elements both in fruit and vegetable products widely consumed in the province of Catania (Sicily, Italy) and in various environmental matrices (air, water and land), and to investigate possible sources of contamination. Fruit and vegetable products (tomatoes, lettuce, spinach, eggplants, potatoes, zucchini, grapes, apples and pears) were sampled (n = 60) from the towns of Adrano, Biancavilla and Mazzarrone. These locations were selected for their geomorphology, climate and cultivation characteristics. Levels of lead, cadmium, nickel, copper, zinc, vanadium and selenium in fruit, vegetables, air and water samples were determined using atomic absorption spectrometer with graphite furnace Perkin-Elmer AAnalyst 800 while soil samples were evaluated by the atomic emission spectrometer Optima 2000 DV Perkin-Elmer. The presence of mercury was evaluated by atomic absorption spectrometry with cold vapor technique. Study results revealed widespread contamination of fruit and vegetables and mainly due to use of fertilizers and to volcanic activity. A strategy targeting the entire food chain is essential for ensuring food safety and consumer protection and maintaining contaminants at levels which are not hazardous to health. PMID:23532160

  9. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  10. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  11. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  12. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  13. Managing soil under vegetable production to improve soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the years, soil quality has eroded as soil organic matter has declined on farms across North Carolina. This study is assessing the effects of tillage practice, winter cover cropping and compost use on changes in soil function and improvement in soil quality under vegetable production. The field...

  14. Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife

    SciTech Connect

    Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

    2009-01-01

    This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

  15. Radar for Measuring Soil Moisture Under Vegetation

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  16. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  17. Remote sensing of vegetation and soil moisture

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Shin, R. T. (Principal Investigator)

    1983-01-01

    Progress in the investigation of problems related to the remote sensing of vegetation and soil moisture is reported. Specific topics addressed include: (1) microwave scattering from periodic surfaces using a rigorous modal technique; (2) combined random rough surface and volume scattering effects; (3) the anisotropic effects of vegetation structures; (4) the application of the strong fluctuation theory to the the study of electromagnetic wave scattering from a layer of random discrete scatterers; and (5) the investigation of the scattering of a plane wave obliquely incident on a half space of densely distributed spherical dielectric scatterers using a quantum mechanical potential approach.

  18. PIXE, 252Cf-PDMS and radiochemistry applied for soil and vegetable analysis

    NASA Astrophysics Data System (ADS)

    Dias da Cunha, K.; Cazicava, J.; Coelho, M. J.; Barros Leite, C. V.

    2006-01-01

    The aim of this work is to identify the elements present in vegetables and soils using PIXE (particle induced X-rays emission) and 252Cf-PDMS (252Cf plasma desorption mass spectrometry) techniques in order to estimate the possible influence of soil and agricultural techniques in the metal absorption by the vegetables. In this work, metal concentrations were evaluated in soil and vegetable samples from several regions, where different agricultural techniques were employed. Si, Zr, Ce, Th, Sc and Pb identified in the soil samples were not biologically available. Ga, Ge, As and Br identified in the tubercles indicate that spray pesticide used on the vegetable leaves was absorbed by them. 232Th and 238U present in the soil were not absorbed by the vegetables. The airborne particles from anthropogenic sources (as CFn, VCn) were absorbed by the vegetables. Compounds from mineral sources present in soil as V+, VCO3, HPO4, Cr+, CrOH+, Mn+, FeH+, Fe(OH)n and in the bioorganic compounds as N+, Ca (CN)n+and CnH+ were identified in vegetables. The metal absorption by the vegetables is not dependent of the metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions such as the elements present in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by vegetables. The absorption by the roots depends on the chemical compound of the elements. The use of pesticide sprays and air pollution can cause more contamination in the vegetables than in soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and the metal speciation.

  19. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The ability to read the 24-channel MSS CCT tapes, select specified agricultural land use areas from the CCT, and perform multivariate statistical and pattern recognition analyses has been demonstrated. The 5 optimum channels chosen for classifying an agricultural scene were, in the order of their selection the far red visible, short reflective IR, visible blue, thermal infrared, and ultraviolet portions of the electromagnetic spectrum, respectively. Although chosen by a training set containing only vegetal categories, the optimum 4 channels discriminated pavement, water, bare soil, and building roofs, as well as the vegetal categories. Among the vegetal categories, sugar cane and cotton had distinctive signatures that distinguished them from grass and citrus. Acreages estimated spectrally by the computer for the test scene were acceptably close to acreages estimated from aerial photographs for cotton, sugar cane, and water. Many nonfarmable land resolution elements representing drainage ditch, field road, and highway right-of-way as well as farm headquarters area fell into the grass, bare soil plus weeds, and citrus categories and lessened the accuracy of the farmable acreage estimates in these categories. The expertise developed using the 24-channel data will be applied to the ERTS-1 data.

  20. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data.

  1. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The Kubelka-Munk model, a regression model, and a combination of these models were used to extract plant, soil, and shadow reflectance components of vegetated surfaces. The combination model was superior to the others; it explained 86% of the variation in band 5 reflectance of corn and sorghum, and 90% of the variation in band 6 reflectance of cotton. A fractional shadow term substantially increased the proportion of the digital count sum of squares explained when plant parameters alone explained 85% or less of the variation. Overall recognition of 94 agricultural fields using simultaneously acquired aircraft and spacecraft MSS data was 61.8 and 62.8%, respectively; recognition of vegetable fields larger than 10 acres and taller than 25 cm, rose to 88.9 and 100% for aircraft and spacecraft, respectively. Agriculture and rangeland, were well discriminated for the entire county but level 2 categories of vegetables, citrus, and idle cropland, except for citrus, were not.

  2. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  3. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture. II - Vegetation-covered soil

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bradley, G. A.; Dobson, M. C.

    1979-01-01

    Results are presented for an experimental investigation to determine the relationship between radar backscatter coefficient (sigma) and soil moisture for vegetation-covered soil. These results extend a previous report which showed the experimental relationship between sigma and soil moisture for bare soil. It is shown that the highest correlation between sigma and soil moisture is 0.92 for the combined response of four crop types measured at 4.25 GHz, 10 deg incidence angle, and HH polarization. Radar look direction, relative to the crop row direction, is shown to have an insignificant effect on soil-moisture estimation if the radar frequency is higher than 4 GHz. The dependence on soil type can be minimized by expressing soil moisture in units of percent of field capacity. The possibility of using a single radar for measuring soil moisture for both bare and vegetated fields is demonstrated with a linear estimation algorithm having an experimental correlation coefficinet of 0.8.

  4. Interactive Vegetation Phenology, Soil Moisture, and Monthly Temperature Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Walker, G. K.

    2015-01-01

    The time scales that characterize the variations of vegetation phenology are generally much longer than those that characterize atmospheric processes. The explicit modeling of phenological processes in an atmospheric forecast system thus has the potential to provide skill to subseasonal or seasonal forecasts. We examine this possibility here using a forecast system fitted with a dynamic vegetation phenology model. We perform three experiments, each consisting of 128 independent warm-season monthly forecasts: 1) an experiment in which both soil moisture states and carbon states (e.g., those determining leaf area index) are initialized realistically, 2) an experiment in which the carbon states are prescribed to climatology throughout the forecasts, and 3) an experiment in which both the carbon and soil moisture states are prescribed to climatology throughout the forecasts. Evaluating the monthly forecasts of air temperature in each ensemble against observations, as well as quantifying the inherent predictability of temperature within each ensemble, shows that dynamic phenology can indeed contribute positively to subseasonal forecasts, though only to a small extent, with an impact dwarfed by that of soil moisture.

  5. SPATIO-TEMPORAL EVOLUTION AND TIME-STABLE CHARACTERISTICS OF SOIL MOISTURE WITHIN REMOTE SENSING FOOTPRINTS WITH VARYING SOIL, SLOPE, AND VEGETATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air-borne passive microwave remote sensors measure soil moisture at the footprint scale, a scale of several hundred square meters or kilometers that encompasses different characteristic combinations of soil, topography, vegetation, and climate. Studies of within-footprint variability of soil moistur...

  6. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and

  7. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  8. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  9. The tri-soil experiment: do plants discriminate among vegetation soil types?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested if rooting mass and root nutrient uptake of cheatgrass (Bromus tectorum) or creeping wildrye (Leymus triticoides) were influenced by vegetation soil type. Three soil types (A horizons), similar in gross physical and chemical properties, were freshly-collected. The soils varied in the veget...

  10. Remote sensing of vegetation and soil

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Auer, S. O.

    1977-01-01

    Microwave ellipsometry apparatus reflects circularly polarized train of microwaves from vegetation at predetermined angle of incidence to determine ratio of intensities of electric field components and their phase differences. Refractive index given by water content of vegetation and thickness of vegetation layer are computed from formula based on Maxwell's equations.

  11. Air-vegetation exchange of SOCs as a control of atmospheric concentrations and residence times

    SciTech Connect

    Hornbuckle, K.C.; Eisenreich, S.J.

    1994-12-31

    Semi-volatile organic compounds (SOCs) such as the polychlorinated biphenyls exhibit seasonal maxima in atmospheric concentrations with highest values in the warm summer. This generally believed to result from the effect of temperature on SOC vapor pressure with direct and important implications to global transport. The authors have conducted a series of field experiments whereby air samples were collected above an ombrotrophic, forested bog in northern MN at a frequency of 6 day{sup {minus}1} during the fall, winter, spring and summer. Samples of Sphagnum moss and other vegetation were also collected on each occasion. All samples were analyzed for PCBs, low MW PAHs, gaseous hydrocarbons and selected pesticides. Meteorological and soils data were collected during all experiments (air and soil temperature, wind direction and velocity, RH). Diurnal concentration data, air-plant and air-soil partition coefficients and probable mechanisms and kinetics of SOC-plant interactions will be presented.

  12. Radar reflectivity of bare and vegetation-covered soil

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Bradley, G. A.

    1981-01-01

    Radar sensitivity to soil moisture content has been investigated experimentally for bare and vegetation-covered soil using detailed spectral measurements obtained by a truck-mounted radar spectrometer in the 1-8 GHz band and by airborne scatterometer observations at 1.6, 4.75, and 13.3 GHz. It is shown that radar can provide quantitative information on the soil moisture content of both bare and vegetation-covered soil. The observed soil moisture is in the form of the soil matric potential or a related quantity such as the percent of field capacity. The depth of the monitored layer varies from 1 cm for very wet soil to about 15 cm for very dry soil.

  13. Using Vegetation Maps to Provide Information on Soil Distribution

    NASA Astrophysics Data System (ADS)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Brevik, Eric C.; Cerdà, Artemi

    2016-04-01

    Many different types of maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research has indicated that comparing the results of different but related maps (e.g., soil and geology maps) may aid in identifying deficiencies in those maps. Therefore, this study was undertaken in the Almería Province (Andalusia, Spain) to (i) compare the underlying map structures of soil and vegetation maps and (ii) to investigate if a vegetation map can provide useful soil information that was not shown on a soil map. To accomplish this soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis. Results of the spatial analysis were exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence (P/A): (i) climatophilous (climate is the only determinant of P/A) (ii); lithologic-climate (climate and parent material determine PNV P/A); and (iii) edaphophylous (soil features determine PNV P/A). The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophylous units (which demand more soil water than is supplied by other soil types in the surrounding landscape) were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity

  14. Measurement of soil hydraulic conductivity in relation with vegetation

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cheng, Qinbo

    2010-05-01

    Hydraulic conductivity is a key parameter which influences hydrological processes of infiltration, surface and subsurface runoff. Vegetation alters surface characteristics (e.g., surface roughness, litter absorption) or subsurface characteristics (e.g. hydraulic conductivity). Field infiltration experiment of a single ring permeameter is widely used for measuring soil hydraulic conductivity. Measurement equipment is a simple single-ring falling head permeameter which consists of a hollow cylinder that is simply inserted into the top soil. An optimization method on the basis of objective of minimum error between the measured and simulated water depths in the single-ring is developed for determination of the soil hydraulic parameters. Using the single ring permeameter, we measured saturated hydraulic conductivities (Ks) of the red loam soil with and without vegetation covers on five hillslopes at Taoyuan Agro-Ecology Experimental Station, Hunan Province of China. For the measurement plots without vegetation roots, Ks value of the soil at 25cm depth is much smaller than that of surface soil (1.52×10-4 vs. 1.10×10-5 m/s). For the measurement plots with vegetation cover, plant roots significantly increase Ks of the lower layer soil but this increase is not significant for the shallow soil. Moreover, influences of vegetation root on Ks depend on vegetation species and ages. Ks value of the Camellia is about three times larger than that of seeding of Camphor (2.62×10-4 vs. 9.82×10-5 m/s). Ks value of the matured Camellia is 2.72×10-4 m/s while Ks value of the young Camellia is only 2.17×10-4 m/s. Key words: single ring permeameter; soil hydraulic conductivity; vegetation

  15. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The best wavelengths in the 0.4 to 2.5 micron interval were determined for detecting lead toxicity and ozone damage, distinguishing succulent from woody species, and detecting silverleaf sunflower. A perpendicular vegetation index, a measure of the distance from the soil background line, in MSS 5 and MSS 7 data space, of pixels containing vegetation was developed and tested as an indicator of vegetation development and crop vigor. A table lookup procedure was devised that permits rapid identification of soil background and green biomass or phenological development in LANDSAT scenes without the need for training data.

  16. Fluoride accumulation in soil and vegetation in the vicinity of brick fields.

    PubMed

    Jha, S K; Nayak, A K; Sharma, Y K; Mishra, V K; Sharma, D K

    2008-04-01

    Fluoride in the soil and vegetation in the vicinity of brick field in the suburb of Lucknow, India was estimated. The water soluble fluoride (1:1) in the surface soil ranged from 0.59 ppm to 2.74 ppm where as CaCl(2) extractable fluoride ranged from 0.69 ppm to 3.18 ppm. The mean total fluoride concentration in surface soil varied from 322 microg g(-1) to 456 microg g(-1). The local vegetations grown in the area found to accumulate air borne fluoride from the brick field. The fluoride accumulation in the vegetation followed the order Mentha arvensis > Spinacea oleracea > Luffa cylindrical. PMID:18345473

  17. Vegetation management with fire modifies peatland soil thermal regime.

    PubMed

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime

  18. Designing a generalized soil-adjusted vegetation index (GESAVI)

    NASA Astrophysics Data System (ADS)

    Gilabert, M. A.; Gonzalez Piqueras, Jose; Garcia-Haro, Joan; Melia, J.

    1998-12-01

    Operational monitoring of vegetative cover by remote sensing currently involves the utilization of vegetation indices (VIs), most of them being functions of the reflectance in red (R) and near-infrared (NIR) spectral bands. A generalized soil-adjusted vegetation index (GESAVI), theoretically based on a simple vegetation canopy model, is introduced. It is defined in terms of the soil line parameters (A and B) as: GESAVI equals (NIR-BR-A)/(R + Z), where Z is related to the red reflectance at the cross point between the soil line and vegetation isolines. Z can be considered as a soil adjustment coefficient which let this new index be considered as belonging to the SAVI family. In order to analyze the GESAVI sensitivity to soil brightness and soil color, both high resolution reflectance data from two laboratory experiments and data obtained by applying a radiosity model to simulate heterogeneous vegetation canopy scenes were used. VIs (including GESAVI, NDVI, PVI and SAVI family VIs) were computed and their correlation with LAI for the different soil backgrounds was analyzed. Results confirmed the lower sensitivity of GESAVI to soil background in most of the cases, thus becoming the most efficient index. This good index performance results from the fact that the isolines in the NIR-R plane are neither parallel to the soil line (as required by the PVI) nor convergent at the origin (as required by the NDVI) but they converge somewhere between the origin and infinity in the region of negative values of both NIR and R. This convergence point is not necessarily situated on the bisectrix, as required by other SAVI family indices.

  19. Predicting Vegetation Patterning across Climate, Soil, and Topographic Gradients

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2014-12-01

    Vegetation communities in water-limited systems sometimes form periodic patterns, e.g. banded, spotted and labyrinthine distributions of woody and herbaceous plants. Pattern formation is commonly linked to competition and facilitation among plants, and variation in runoff and infiltration capacity in the landscape. Based on previous studies, we expect that climate, soil type, and slope to a large degree influence the type of vegetation pattern found at a specific site. We have analyzed to what extent vegetation patterns on the African continent can be predicted based on available climatic, topographic, and soil data. Our focus is not restricted to periodic patterns in drylands, but encompasses a range of tropical ecosystems from arid to humid. Vegetation patterns observed in remote sensing data can be informative regarding the underlying ecological processes that shape the landscape, not only in strikingly periodic vegetation but also in savannas with randomly located or dispersed vegetation. We use high-resolution multispectral and panchromatic remote sensing data classified into woody, herbaceous, and bare ground components. From these images we extract spatial statistical metrics that define type and degree of vegetation patterning. We then relate variables from climate, soil and topographic datasets to the observed patterns in order to determine how well we can predict vegetation patterning and which climatic and edaphic variables are most informative. We discuss the results and the possible sources of uncertainty in the relationships.

  20. The soil water balance in a mosaic of clumped vegetation

    NASA Astrophysics Data System (ADS)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006

  1. Soil permeability as a function of vegetation type and soil water content

    SciTech Connect

    Morris, R.C.; Fraley, L. Jr.

    1994-06-01

    Soil permeability is important for estimating the rate of mass transport of {sup 222}Rn through soils and into basements. We measured permeability and soil water content on a set of nine plots consisting of three plots vegetated with common barley (Hordeum vulgare), three plots vegetated with Russian thistle (Salsola kali), and three bare plots. Soil moisture was consistently highest on the bare plots and lowest on the Russian thistle plots. Plots with vegetation had lower soil water content during the growing season. Permeability was consistently higher on Russian thistle plots. ANOVA showed that both soil water content and presence of Russian thistle had a significant impact on permeability but that presence of barley did not. The effect of vegetation and moisture on permeability may have significant effects on {sup 222}Rn transport in soils. 18 refs., 8 figs., 1 tab.

  2. Vegetation fires and air pollution in Vietnam.

    PubMed

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. PMID:25108840

  3. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; van de Giesen, Nick

    2016-06-01

    This study addresses two critical barriers to the use of Passive Distributed Temperature Sensing (DTS) for large-scale, high-resolution monitoring of soil moisture. In recent research, a particle batch smoother (PBS) was developed to assimilate sequences of temperature data at two depths into Hydrus-1D to estimate soil moisture as well as soil thermal and hydraulic properties. However, this approach was limited to bare soil and assumed that the cable depths were perfectly known. In order for Passive DTS to be more broadly applicable as a soil hydrology research and remote sensing soil moisture product validation tool, it must be applicable in vegetated areas. To address this first limitation, the forward model (Hydrus-1D) was improved through the inclusion of a canopy energy balance scheme. Synthetic tests were used to demonstrate that without the canopy energy balance scheme, the PBS estimated soil moisture could be even worse than the open loop case (no assimilation). When the improved Hydrus-1D model was used as the forward model in the PBS, vegetation impacts on the soil heat and water transfer were well accounted for. This led to accurate and robust estimates of soil moisture and soil properties. The second limitation is that, cable depths can be highly uncertain in DTS installations. As Passive DTS uses the downward propagation of heat to extract moisture-related variations in thermal properties, accurate estimates of cable depths are essential. Here synthetic tests were used to demonstrate that observation depths can be jointly estimated with other model states and parameters. The state and parameter results were only slightly poorer than those obtained when the cable depths were perfectly known. Finally, in situ temperature data from four soil profiles with different, but known, soil textures were used to test the proposed approach. Results show good agreement between the observed and estimated soil moisture, hydraulic properties, thermal properties, and

  4. Linking soil biodiversity and vegetation: implications for a changing planet.

    PubMed

    Sylvain, Zachary A; Wall, Diana H

    2011-03-01

    Soil biota are intimately tied to plant communities through herbivory and symbiosis and indirectly by the decomposition of dead organic plant material. Through both roots and aboveground organic material (e.g., leaves and wood), plants provide substantial inputs of organic matter to soil systems. Plants are the basis for most biotic soil food webs that comprise an enormous diversity of species whose multiple interactions function to help regulate nutrient cycling, which in turn influences plant growth. Many factors govern the biogeography of soil biota, including the physical and chemical properties of soil, climate, the composition and type of vegetation, and interactions with other soil biota. Despite awareness of factors influencing soil communities, no single factor allows predictions of soil animal diversity or distribution. However, research is showing that plants can have unique soil biotic communities. Degradation of soil, which removes predators and biotic regulation that occurs in less managed ecosystems, can result in increased pathogens and pests that affect humans, other animals and plants. Global changes such as land use, desertification, and soil pollution all have been shown to alter soil animal diversity and abundance. Because of our dependence on soils and plant production, studies linking soil biotic communities to primary productivity are needed to assure long-term soil sustainability. PMID:21613143

  5. [Soil chemical property changes in vegetable greenhouse fields].

    PubMed

    Liu, Yanjun; Jiang, Yong; Liang, Wenju

    2005-11-01

    To explore the changes of soil chemical properties in vegetable greenhouse, a comparative study was carried out with the samples gathered from vegetable greenhouse fields and their adjacent upland fields in Damintun Town, Xinming County, Liaoning Province. The results showed that compared with upland fields, the contents of soil organic carbon and total nitrogen in greenhouse fields increased significantly. At the depth of 0 approximately 30 cm, soil organic carbon in greenhouses of 1-, 4- and 10-year increased by 31.09%, 35.44%, and 66.80%, respectively, compared with the upland soil. Soil nitrate content at the depth of 0 approximately 30 cm in greenhouse fields was 5.05 approximately 12.49 times as much as that in upland fields. The nitrate content in different soil layers increased with the increasing age of greenhouse field., e.g., at the depth of 20 approximately 30 cm, soil nitrate content was significantly higher in 10-year than in 1- and 4-year greenhouse field, with an increase of 65.73% and 50.89%, respectively, and 6.55 times as much as that in upland field, which indicated that soil nitrate transported downwards, and obviously enriched in deeper soil layers under heavy application of fertilizer. Also with the increasing age of greenhouse field, soil pH decreased, while soil soluble salts accumulated. PMID:16471371

  6. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  7. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  8. Antibiotic uptake by vegetable crops from manure-applied soils.

    PubMed

    Kang, Dong Hee; Gupta, Satish; Rosen, Carl; Fritz, Vincent; Singh, Ashok; Chander, Yogesh; Murray, Helene; Rohwer, Charlie

    2013-10-23

    This study quantified the uptake of five antibiotics (chlortetracycline, monensin, sulfamethazine, tylosin, and virginiamycin) by 11 vegetable crops in two different soils that were fertilized with raw versus composted turkey and hog manures or inorganic fertilizer. Almost all vegetables showed some uptake of antibiotics from manure treatments. However, statistical testing showed that except for a few isolated treatments the concentrations of all antibiotics in vegetable tissues were generally less than the limits of quantification. Further testing of the significant treatments showed that antibiotic concentrations in vegetables from many of these treatments were not significantly different than the corresponding concentrations from the fertilizer treatment (matrix effect). All five antibiotic concentrations in the studied vegetables were <10 μg kg(-1). On the basis of the standards for maximum residue levels in animal tissues and suggested maximum daily intake based on body weight, this concentration would not pose any health risk unless one is allergic to that particular antibiotic. PMID:24106840

  9. Assessment of regional biomass-soil relationships using vegetation indexes

    NASA Technical Reports Server (NTRS)

    Lozano-Garcia, D. Fabian; Fernandez, R. Norberto; Johannsen, Chris J.

    1991-01-01

    The development of photosynthetic active biomass in different ecological conditions, as indicated by normalized difference vegetation indices (NDVIs) is compared by performing a stratified sampling (based on soil assocations) on data acquired over Indiana. Data from the NOAA-10 AVHRR were collected for the 1987 and 1988 growing seasons. An NDVI transformation was performed using the two optical bands of the sensor (0.58-0.68 microns and 0.72-1.10 microns). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing eight soil associations throughout Indiana were collected to assess the effect of soil conditions and acquisition date on the spectral response of the vegetation, as shown by the NDVIs. Statistical analysis of results indicate that land-cover types (forest, forest/pasture, and crops), soil texture, and soil water-holding capacity have an important effect on vegetation biomass changes as measured by AVHRR data. Acquisition dates should be selected with condideration of the phenological stages of vegetation. Sampling of AVHRR data over extended areas should be stratified according to physiographic units rather than man-made boundaries. This will provide more homogeneous samples for statistical analysis.

  10. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  11. Vegetation on the Soil Infiltration System Treating Livestock Wastewater

    NASA Astrophysics Data System (ADS)

    Sakurai, Shinji; Fujikawa, Yoko; Fukui, Masami; Hamasaki, Tastuhide; Sugahara, Masataka

    In the overland flow wastewater treatments and the constructed wetlands, the purification by soil infiltration units is enhanced using vegetation. However, wetland plants (i.e. cattail (Typha latifolia)) and trees, rather than agronomic crops, have been used in conventional systems. We carried out laboratory-scale soil infiltration experiments using two forage crops, tall fescue (Festuca araundinacea) and white clover (Trifolium repens) while using livestock wastewater for irrigation. The purpose of the study was to clarify the amount of accumulation of available phosphorus and exchangeable cations in the soil and its effect on the plant growth. The application of livestock wastewater increased available phosphorus, and exchangeable potassium and sodium in the upper soil. The soil sodification, examined based on exchangeable sodium ratio and plant growth, was not very significant after 10 months of livestock wastewater application. Growing forage crops on the soil infiltration system may be a promising technology to improve crop production and treatment efficacy.

  12. Aminopyralid soil residues affect rotational vegetable crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the sensitivity of bell pepper, eggplant, tomato, muskmelon, and watermelon to aminopyralid soil residues. Aminopyralid was applied at six rates ranging from 0.0014 kg ae ha 1 to 0.0448 kg ae ha 1, and vegetable crops were planted in the treated areas. ...

  13. Sulfamethazine sorption to vegetative filter strip and row crop soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotic (VA) presence in the environment, often associated with land application of manure, has generated significant interest in VA fate and transport in soil. However, few studies have focused on land management practices, such as vegetative filter strips, that might mitigate VA loss...

  14. On the Opposing Roles of Air Temperature and Wind Speed Variability in Flux Estimation over Partially Vegetated Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions the evapotranspiration rates depend on both the spatial distribution of the vegetation and the soil moisture, for a given radiation regime. Remote sensing can provide high resolution spatially distributed estimation of land surface states. However, data on the near surface air p...

  15. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H.; Torline, R. J.; Gautreaux, M. R.; Everitt, J. H.; Guellar, J. A.; Rodriguez, R. R.

    1974-01-01

    The author has identified the following significant results. Bands 4, 5, and 7 and 5, 6, and 7 were best for distinguishing among crop and soil categories in ERTS-1 SCENES 1182-16322 (1-21-73) and 1308-16323 (5-21-73) respectively. Chlorotic sorghum areas 2.8 acres or larger in size were identified on a computer printout of band 5 data. Reflectance of crop residues was more often different from bare soil in band 4 than in bands 5, 6, and 7. Simultaneously acquired aircraft and spacecraft MSS data indicated that spacecraft surveys are as reliable as aircraft surveys. ERTS-1 data were successfully used to estimate acreage of citrus, cotton, and sorghum as well as idle crop land.

  16. Improving Soil-Vegetation Dynamics in the Soil and Water Assessment Tool (SWAT)

    NASA Astrophysics Data System (ADS)

    Ou, G.; Munoz-Arriola, F.; Chen, X.; Kilic, A.

    2014-12-01

    A non-iterative 1D Richard's equation model is developed and implemented in the Soil and Water Assessment Tool (SWAT) to improve the physical representation of soil-water-vegetation dynamics. SWAT's improved version (UN-SWAT) explicitly represents infiltration, soil evaporation, unsaturated water flow, root water update, and lateral drainage. Water-exchanges across the surface-subsurface and unsaturated-saturated zone interfaces are defined as the system's dependent top and bottom boundaries of the soil profile, respectively. In the continuum from the land surface to the aquifer, the top boundary of the soil profile accounts for non-ponding or ponding infiltration, as well as atmosphere-controlled or soil-controlled evaporation. Vegetation's root water update and lateral drainage are represented as sink terms in each soil layer. The soil profile is discretized by a variable number of computational nodes of the soil profile, whose bottom position is determined based on the groundwater table. UN-SWAT validation is performed by a single-HRU and a multi-HRU simulations in the Little Washita River Experimental Watershed in Oklahoma. Results prove that UN-SWAT's performance simulating the soil water movement in both space and time under complex conditions agree observed soil moisture and stream discharge data. UN-SWAT represents an improvement over other hydrologic models by providing a more accurate solution to the soil-water-vegetation model and accounting for the dynamics of climate and groundwater conditions.

  17. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  18. Carbon Dynamics in Vegetation and Soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim

    2005-01-01

    The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.

  19. Vegetation studies on Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hickson, Diana E.; Hinkle, C. Ross

    1988-01-01

    Vandenburg Air Force Base, located in coastal central California with an area of 98,400 ac, contains resources of considerable biological significance. Available information on the vegetation and flora of Vandenburg is summarized and new data collected in this project are presented. A bibliography of 621 references dealing with vegetation and related topics related to Vanderburg was compiled from computer and manual literature searches and a review of past studies of the base. A preliminary floristic list of 642 taxa representing 311 genera and 80 families was compiled from past studies and plants identified in the vegetation sampling conducted in this project. Fifty-two special interest plant species are known to occur or were suggested to occur. Vegetation was sampled using permanent plots and transects in all major plant communities including chaparral, Bishop pine forest, tanbark oak forest, annual grassland, oak woodland, coastal sage scrub, purple sage scrub, coastal dune scrub, coastal dunes, box elder riparian woodland, will riparian woodland, freshwater marsh, salt marsh, and seasonal wetlands. Comparison of the new vegetation data to the compostie San Diego State University data does not indicate major changes in most communities since the original study. Recommendations are made for additional studies needed to maintain and extend the environmental data base and for management actions to improve resource protection.

  20. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. This report deals with the selection of the best channels from the 24-channel aircraft data to represent crop and soil conditions. A three-step procedure has been developed that involves using univariate statistics and an F-ratio test to indicate the best 14 channels. From the 14, the 10 best channels are selected by a multivariate stochastic process. The third step involves the pattern recognition procedures developed in the data analysis plan. Indications are that the procedures in use are satsifactory and will extract the desired information from the data.

  1. Organic fertilization for soil improvement in a vegetable cropping system

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Micheline; De Rocker, Erwin; De Reycke, Luc

    2016-04-01

    Vegetable Research Centre East-Flanders Karreweg 6, 9770 Kruishoutem, Belgium A long term trial for soil improvement by organic fertilization was carried out in Kruishoutem from 2001 till 2010 in a vegetable rotation (carrots - leek - lettuce (2/year) - cauliflower (2/year) - leek - carrots - lettuce (2/year) - cauliflower (2/year) - leek and spinach). The trial compared yearly applications of 30 m²/ha of three types of compost (green compost, vfg-compost and spent mushroom compost) with an untreated object which did not receive any organic fertilization during the trial timescale. The organic fertilization was applied shortly before the cropping season. Looking at the soil quality, effects of organic fertilization manifest rather slow. The first four years after the beginning of the trial, no increase in carbon content of the soil is detectable yet. Although, mineralization of the soil has increased. The effect on the mineralization is mainly visible in crops with a lower N uptake (e.g. carrots) leading to a higher nitrate residue after harvest. Effects on soil structure and compaction occur rather slowly although, during the first two cropping seasons compost applications increase the water retention capacity of the soil. Compost increases the pH of the soil from the first year on till the end of the trial in 2010. Thus, organic fertilization impedes acidification in light sandy soils. Also soil fertility benefits from compost by an increase in K-, Ca- and Mg- content in the soil from the second year on. After 10 years of organic fertilization, yield and quality of spinach were increased significantly (p<0.05) compared to the untreated object. Also leek (2002 and 2009) and lettuce (2003 and 2007) benefit from organic fertilization.

  2. Vegetation Dynamics And Soil Moisture: Consequences For Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Guardiola-Claramonte, M.; Troch, P. A.

    2007-12-01

    Current global population growth and economical development accelerates land cover conversion in many parts of the world. Introducing non-native species and woody species encroachment, with different water demands, can affect the partitioning of hydrological fluxes. The impacts on the hydrologic cycle at local to regional scales are poorly understood. The present study investigates the hydrologic implications of land use conversion from native vegetation to rubber. We first compare the vegetation dynamics of rubber (Hevea brasiliensis), a non- native specie in Southeast Asia, to the other main vegetation types in the study area. The experimental catchment, Nam Ken (69km 2), is located in the Xishuangbanna Prefecture (21 °N, 100 °E), in the south of Yunnan province in South China. From 2005 to 2006, we collected continuous records of 2 m deep soil moisture profiles in four different land covers (tea, secondary forest, grassland and rubber), and measured surface radiation in tea and rubber canopies. Our observations show that root water uptake by rubber during the dry season is controlled by the change of day-length, whereas water demand of the native vegetation starts with the arrival of the first monsoon rainfall. The different root water uptake dynamics of rubber result in distinct depletion of deeper layer soil moisture. Traditional evapotranspiration and soil moisture models are unable to simulate this specific behavior, thus a different conceptual model is needed to predict hydrologic changes due to land use conversion in the area.

  3. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  4. A method to downscale soil moisture to fine-resolutions using topographic, vegetation, and soil data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture can be estimated over large regions with spatial resolutions greater than 500 m, but many applications require finer resolutions (10 – 100 m grid cells). Several methods use topographic data to downscale, but vegetation and soil patterns can also be important. In this paper, a downsc...

  5. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  6. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A ratio of MSS channels 5 and 7 (5/7) and 5 to 6 (5/6) signals resulted in a correct recognition of 86.9% of the members of representative crop and soil conditions, compared with recognitions of 60.0, 64.1, 74.1, and 81.4% for channels 4, 5, 6, and 7 taken individually. Based on this result a satellite channel ratio procedure has been developed that enhances line printer gray maps for more efficient experimental test site location in the CCT data. Because independent estimates are not available to judge acreage estmates derived from ERTS-1 data against, except for a few crops, an interpenetrating sample constituting 3.5% of the county is ground truthed periodically. The crop of land uses and their acreages, respectively, as estimated from the interpenetrating samples, are: cotton, 129, 714; sorghum, 182,783; mixed citrus, 53,954; oranges, 16,929; grapefruit, 13,863; rangeland, 137,845; and, improved pastures, 57.169.

  7. Soil Moisture Estimation under Vegetation Applying Polarimetric Decomposition Techniques

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Schön, H.; Hajnsek, I.; Papathanassiou, K. P.

    2009-04-01

    Polarimetric decomposition techniques and inversion algorithms are developed and applied on the OPAQUE data set acquired in spring 2007 to investigate their potential and limitations for soil moisture estimation. A three component model-based decomposition is used together with an eigenvalue decomposition in a combined approach to invert for soil moisture over bare and vegetated soils at L-band. The applied approach indicates a feasible capability to invert soil moisture after decomposing volume and ground scattering components over agricultural land surfaces. But there are still deficiencies in modeling the volume disturbance. The results show a root mean square error below 8.5vol.-% for the winter crop fields (winter wheat, winter triticale and winter barley) and below 11.5Vol-% for the summer crop field (summer barley) whereas all fields have a distinct volume layer of 55-85cm height.

  8. Biogenic NO emission from a spruce forest soil in the Fichtelgebirge (Germany) under the influence of different understorey vegetation cover

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Andreae, M. O.; Meixner, F. X.

    2009-04-01

    Within the framework of the EGER project (ExchanGE processes in mountainous Regions) soil samples have been taken from the spruce forest site "Weidenbrunnen" (Fichtelgebirge, Germany) in September 2008 to determine the NO exchange in the laboratory and for a series of soil analyses. The soil was sampled below different understorey vegetation covers: young Norway spruce, moss/litter, blueberries and grass. We investigated the net NO release rate from corresponding organic layers as well as from the A horizon of respective soils. Additionally we measured pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, the thickness of the organic layer and the quality of the organic matter. Net NO release rates (as well as the NO production and NO consumption rates) from the soil samples were determined by a fully automated laboratory incubation & fumigation system. Purified dry air passed five dynamic incubation chambers, four containing water saturated soil samples and one reference chamber. By this procedure, the soil samples dried out slowly (within 2-6 days), covering the full range of soil moisture (0-300% gravimetric soil moisture). To quantify NO production and NO consumption rates separately, soil samples were fumigated with zero-air (approx. 0 ppb NO) and air of 133 ppb NO. The chambers were placed in a thermostatted cabinet for incubation at 10 an 20˚ C. NO and H2O concentrations at the outlet of the five dynamic chambers were measured sequentially by chemiluminescence and IR-absorption based analyzers, switching corresponding valves every two minutes. Net NO release rates were determined from the NO concentration difference between soil containing and reference chambers. Corresponding measurements of H2O mixing ratio yielded the evaporation loss of the soil samples, which (referenced to the gravimetric soil water content before and after the incubation experiment) provided the individual soil moisture contents of each soil samples during the

  9. Vegetation establishment on soil-amended weathered fly ash

    SciTech Connect

    Semalulu, O.; Barnhisel, R.I.; Witt, S.

    1998-12-31

    A field study was conducted with the following objectives in mind: (1) to study the effect of soil addition to weathered fly ash on the establishment and survival of different grasses and legumes, (2) to identify suitable grasses and/or legume species for vegetation of fly ash, (3) to study the fertilizer N and P requirements for successful vegetation establishment on fly ash and ash-soil mixtures, (4) to examine the nutrient composition of the plant species tested, and (5) to study the plant availability of P from fly ash and ash-soil mixtures. Three rooting media were used: weathered fly ash, and 33% or 50% soil blended with the ash. Four experiments were established on each of these media to evaluate warm season grasses in pure stands, warm season grasses inter-seeded with legumes, cool season grasses, and cool season grasses inter-seeded with legumes. Soil used in this study was more acidic than the fly ash. Only the results from characterization of the rooting media, ground cover, and yield will be presented here.

  10. Assessment of regional biomass-soil relationships using vegetation indexes

    SciTech Connect

    Lozano-Garcia, D.F.; Fernandez, R.N.; Johannsen, C.J. )

    1991-03-01

    This paper reports on data from the NOAA-10 Advanced Very High Resolution Radiometer (AVHRR) collected over the midwestern United States for the 1987 and 1988 growing seasons. A Normalized Difference Vegetation Index (NDVI) transformation was performed using the two optical bands of the sensor (0.58-0.68 {mu}m and 0.72-1.10 {mu}m). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing 8 soil associations throughout the State of Indiana were collected to assess the effect of soil conditions and acquisition data on the spectral response of the vegetation, as shown by the NDVI's.

  11. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  12. Environmental sensor networks for vegetation, animal and soil sciences

    NASA Astrophysics Data System (ADS)

    Zerger, A.; Viscarra Rossel, R. A.; Swain, D. L.; Wark, T.; Handcock, R. N.; Doerr, V. A. J.; Bishop-Hurley, G. J.; Doerr, E. D.; Gibbons, P. G.; Lobsey, C.

    2010-10-01

    Environmental sensor networks (ESNs) provide new opportunities for improving our understanding of the environment. In contrast to remote sensing technologies where measurements are made from large distances (e.g. satellite imagery, aerial photography, airborne radiometric surveys), ESNs focus on measurements that are made in close proximity to the target environmental phenomenon. Sensors can be used to collect a much larger number of measurements, which are quantitative and repeatable. They can also be deployed in locations that may otherwise be difficult to visit regularly. Sensors that are commonly used in the environmental sciences include ground-based multispectral vegetation sensors, soil moisture sensors, GPS tracking and bioacoustics for tracking movement in wild and domesticated animals. Sensors may also be coupled with wireless networks to more effectively capture, synthesise and transmit data to decision-makers. The climate and weather monitoring domains provide useful examples of how ESNs can provide real-time monitoring of environmental change (e.g. temperature, rainfall, sea-surface temperature) to many users. The objective of this review is to examine state-of-the-art use of ESNs for three environmental monitoring domains: (a) terrestrial vegetation, (b) animal movement and diversity, and (c) soil. Climate and aquatic monitoring sensor applications are so extensive that they are beyond the scope of this review. In each of the three application domains (vegetation, animals and soils) we review the technologies, the attributes that they sense and briefly examine the technical limitations. We conclude with a discussion of future directions.

  13. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  14. The role of soil moisture on the coevolution of soil and vegetation in mountain grasslands

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Claudia, Notarnicola; Brenner, Johannes; Castelli, Mariapina; Greifeneder, Felix; Niedrist, Georg; Seeber, Julia; Tappeiner, Ulrike

    2016-04-01

    One of the key variables controlling the organization of vegetation and the coevolution of soils and landforms is soil moisture content (SMC). For this reason, understanding the controls on the spatial and temporal patterns of SMC is essential to predict how perturbations in vegetation and climate will affect mountain ecosystem functioning. In this contribution, we focus on the dynamic of surface SMC of water-limited alpine grasslands in the Long Term Ecological Research area Mazia Valley in the European Alps. We analyze the impacts of different land managements (meadows versus pastures) and its relationships with climate and topography. The area has been equipped since 2009 with a network of more than 20 stations, measuring SMC and climatic variables and with two eddy-covariance stations, measuring surface fluxes over meadows and pastures. Monthly biomass production data have been collected and detailed soil and spatial soil moisture surveys are available. Moreover, high spatial resolution SMC maps have been derived from satellites Synthetic Aperture Radar Radar (SAR) images (Sentinel 1 and RADARSAT2 images). Both ground surveys and remote sensing observations show persistent landscape-level patterns. Meadows, in general located in flatter areas, tend to be wetter. This leads to higher vegetation productivity and to the development of soils with higher water holding capacity, thus to a positive feedback on SMC. In contrast, pastures, located on steeper slopes with lower vegetation density and higher soil erosion, tend to be drier, leading to a negative feedback on SMC and soil development. This co-evolution of land cover and SMC leads therefore to persistent spatial patterns. In order to understand quantitatively such linked interactions, a sensitivity analysis has been performed with the GEOtop hydrological model. Results show how both abiotic (mainly slope and elevation) and anthropogenic (irrigation and soil management) factors exert a significant control on

  15. [Soil macropore characteristics under typical vegetations in Liupan Mountains].

    PubMed

    Shi, Zhong-Jie; Wang, Yan-Hui; Xu, Li-Hong; Yu, Peng-Tao; Xiong, Wei; Xu, Da-Ping

    2007-12-01

    The radius and density of soil macropores under eight typical vegetations in Liupan Mountains of Northwest China were studied by using water breakthrough curves and Poiseuille equation. The results indicated that the radii of soil macropores ranged from 0.4 mm to 2.3 mm, and the weighted mean radii ranged from 0.57 mm to 1.21 mm, with a mean of 0.89 mm. The density of soil macropores ranged from 57 individuals per dm2 to 1 117 individuals per dm2, with a mean of 408 individuals per dm2. The macropores with radii bigger than 1.4 mm had a lower density, accounting for only 6.86% of the total. The area proportion of soil macropores ranged from 0.76% to 31.26%, with a mean of 10.82%. In study area, the density of soil macropores was higher in broadleaf forest than in coniferous forest, but basically the same in sub-alpine meadow and in broadleaf forest, as well as in shrubs and in coniferous forest. As for the area proportion of soil macropores, it was also higher in broadleaf forest than in coniferous forest, but basically the same in shrubs and in broadleaf forest soil, as well as in sub-alpine meadow and in coniferous forest. PMID:18333438

  16. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  17. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  18. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    NASA Astrophysics Data System (ADS)

    Gu, Yingxin; Hunt, Eric; Wardlow, Brian; Basara, Jeffrey B.; Brown, Jesslyn F.; Verdin, James P.

    2008-11-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r~0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r~0.22).

  19. The influence of vegetation on soil water repellency-markers and soil hydrophobicity.

    PubMed

    Mao, Jiefei; Nierop, Klaas G J; Rietkerk, Max; Sinninghe Damsté, Jaap S; Dekker, Stefan C

    2016-10-01

    Soil water repellency (SWR) markers are defined as hydrophobic compounds in soil causing SWR and are mainly derived from plants. Previous studies have shown the types and abundance of SWR-markers in soils. However, how these SWR-markers are exactly related to SWR and their origin is poorly understood. This study aims to understand the relationship between SWR-markers, vegetation type and cover and SWR for a simple sandy soil ecosystem, consisting of oaks with sedge and six grass species. All the soil (at different depth) and vegetation samples were collected in the field along a 6m transect, starting from an oak tree. Further along the transect grasses and sedges became more abundant. Free and ester-bound lipids from soils and plant leaves/roots were obtained using a sequential extraction method and identified by gas chromatography-mass spectrometry. Significant linear correlations were found between the main soil characteristics, such as total organic carbon content, and SWR. Single long-chain (>C20) SWR-markers derived from both plant leaf waxes and roots positively related to SWR. Both ester-bound ω-hydroxy fatty acids and C22 and C24 α,ω-dicarboxylic acids were predominantly present in the grass roots, but to a lesser extent in the roots of oak and sedge. These suberin-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids characteristic of roots could well predict the SWR. Additionally, the SWR predictors abundantly present in the soils matched well with high concentrations of the corresponding biomarkers in the dominant vegetation species that covered the soils. Our analyses demonstrated that grass roots influenced SWR more due to their more substantial contribution of organic matter to the topsoils than oak roots. This led to a stronger SWR of the soils covered with grass than those covered with oak vegetation. PMID:27236626

  20. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China

    PubMed Central

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431

  1. Vegetation and Soil Responses to Fertilization Along the Kalahari Transect

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; D'Odorico, P.; Ries, L.; Okin, G.; Swap, R.; Shugart, H.; Scanlon, T.; Macko, S.

    2006-12-01

    To better understand how soil nutrients and soil moisture interactively control vegetation dynamics in savanna ecosystems, a large-scale stable isotope fertilization experiment was conducted using four study sites with different mean annual precipitation (MAP), along the Kalahari Transect (KT). KT in southern Africa traverses a dramatic aridity gradient (from 200 mm to more than 1000 mm MAP, through the Republic of South Africa, Botswana, Namibia and Zambia), on relatively homogenous soils (deep Kalahari sands). The experimental design consisted of a randomized block design with four 21 m x 13 m plots at each site. Each plot was divided into four 10 m x 6 m subplots with a 1 m buffer zone between each subplot. Four treatments (N addition, P addition, N+P addition and control) were randomly applied to the subplots. The N and N+P additions were enriched with 15N to a signature of 10.3 ‰. Grass foliar 15N was significantly higher in the N and N+P addition than in the control or P-addition during following growing season. The differences disappeared in the second growing season. Soil 15N and soil surface CO2 fluxes were not different between treatments in both seasons for all four locations. Herbaceous biomass responses to fertilization were different in different locations. Significantly higher biomass was observed in N+P addition in driest site and in P addition in wetter site. The 15N results provide evidence of N uptake limitation and we also see evidence of productivity limitation. These results suggest that there is a complex feedback between soil and vegetation in savanna ecosystems.

  2. Radar response to vegetation. [soil moisture mapping via microwave backscattering

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1975-01-01

    Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.

  3. A method to estimate the concentration of elements in smoke from burning vegetation growing in contaminated soil

    SciTech Connect

    Murphy, C.E. Jr.

    1991-03-04

    The Savannah River Site has areas where soil is contaminated with metals and/or radionuclides. Many of these areas are surrounded by native vegetation which is growing adjacent to the area and where the roots have penetrated into the contaminated soil of the area. In some cases vegetation has actually invaded the contaminated area. Even though the volume of contaminated vegetation is small, there are problems associated with its disposal. Vegetation decomposes quickly after burial and the volume of buried vegetation can decrease. The voids left can lead to subsidence and possible failure of the clay cap constructed over hazardous and/or radioactive waste burial grounds. An alternative to burying the wood is to burn it and bury the ash. However, burning will introduce the contamination in the vegetation into the air where there is potential for inhalation of the contaminants. A procedure is described to assess the hazard associated with inhalation of contamination from burning of vegetation growing in contaminated soil. The procedure is applied to evaluation of the consequence of burning vegetation grown adjacent to and in the SRL Seepage Basins. The results indicate that burning the vegetation during the day could introduce a level of contaminants to the atmosphere that could cause an exposure greater than the 1 mrem recommended as negligible by the National Council on Radiation Protection and Measurements but lower than the US Department of Energy 100 mrem release guide. A scenario is also investigated where the largest volume of wood, associated with the least contaminated area, is burned. The air concentrations are significantly decreased by this strategy although the total dose commitment due to all radionuclides is still above the 1 mrem dose guide.

  4. Development of a Multi-experience Approach in Introductory Soil and Vegetation Geography Courses.

    ERIC Educational Resources Information Center

    Limbird, Arthur

    1982-01-01

    Describes an introductory college level course in soil and vegetation which uses lecture, audiovisual tutorial, individualized instruction, field trips, films, and games. The course consists of three segments: basic concepts of soils, basic concepts of plants, and soil and vegetation concepts in a spatial context. (KC)

  5. Vegetation, soil, and flooding relationships in a blackwater floodplain forest

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Gartner, D.; Eisenbies, M.H.

    2003-01-01

    Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study, we characterized the soils, hydroperiod, and vegetation communities and evaluated relationships between the physical and chemical environment and plant community structure on the floodplain of the Coosawhatchie River, a blackwater river in South Carolina, USA. The soils were similar to previous descriptions of blackwater floodplain soils but had greater soil N and P availability, substantially greater clay content, and lower soil silt content than was previously reported for other blackwater river floodplains. Results of a cluster analysis showed there were five forest communities on the site, and both short-term (4 years) and long-term (50 years) flooding records documented a flooding gradient: water tupelo community > swamp tupelo > laurel oak = overcup oak > mixed oak. The long-term hydrologic record showed that the floodplain has flooded less frequently from 1994 to present than in previous decades. Detrended correspondence analysis of environmental and relative basal area values showed that 27% of the variation in overstory community structure could be explained by the first two axes; however, fitting the species distributions to the DCA axes using Gaussian regression explained 67% of the variation. Axes were correlated with elevation (flooding intensity) and soil characteristics related to rooting volume and cation nutrient availability. Our study suggests that flooding is the major factor affecting community structure, but soil characteristics also may be factors in community structure in blackwater systems. ?? 2003, The Society of Wetland Scientists.

  6. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. PMID

  7. Active Distributed Temperature Sensing to Characterise Soil Moisture and Heat Dynamics of a Vegetated Hillslope.

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Krause, S.; Chalari, A.; Hannah, D. M.; Mondanos, M.

    2015-12-01

    Complex correlated water and heat dynamics characterise the land surface and shallow subsurface, as consequence of the concurrent action of multiple transport processes. Point sensors and/or remote techniques show limitations in providing precise measurements of key indicators of soil heat and water transport such as soil temperature and moisture, at both high spatiotemporal resolution and large areal coverage. Fibre optics Distributed Temperature Sensors (DTS) allow for precise temperature measurement along optical cables of up to several kilometres, sampling at resolutions of up to few centimetres in space and seconds in time. The optical cable is the sensor and can be buried in the soil with minimum disturbance, to construct soil temperature profiles, over large surveying areas. Soil moisture can be obtained from the analysis of both heating and cooling rates measured by the DTS, when copper conductors embedded in the optical cable are electrically heated (technique known as Active DTS). In July 2015, three loops of optical cable of 500m each have been buried in the soil at different depths (0.05m, 0.25m and 0.40m), along an inclined recently vegetated field in the Birmingham area, UK. Active DTS tests have been set with the aim to characterize the soil temperature and moisture regimes of the field at high spatial resolution, in response to both sporadic events such as showers or scheduled irrigation, and diurnal fluctuations induced by atmospheric forcing. Spatiotemporal variations of the aforementioned regimes will be used to trace vertical and horizontal soil heat and water movements. Finally, assumptions on the possibility to correlate soil heat and water dynamics to a specific process such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the Marie Curie Initial Training Network (ITN) INTERFACES project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with

  8. Soil water and vegetation management for cleanup of selenium contaminated soils

    SciTech Connect

    Not Available

    1989-05-01

    Over the past year scientists have initiatived a new effort aimed at developing a soil water and vegetation management plan for Kesterson Reservoir. The plan is intended to result in a gradual depletion of the inventory of soluble selenium at the Reservoir through a combination agriculturally oriented practices that enhance dissipation of selenium from near surface soils. Agriculturally oriented processes that will contribute to depletion include microbial volatilization from the soils, direct volatilization by living plants, decomposition and volatilization of selenium-bearing vegetation, harvest and removal of seleniferous vegetation, and leaching. The benefits of using this integrated approach are that (1) no single mechanism needs to be relied upon to detoxify the soils, (2) a stable plant community can be established during this period so that impacts to wildlife can be more easily evaluated and controlled, (3) cleanup and management of the site can be carried out in a cost-effective manner. The management plan is also intended to facilitate control over wildlife exposure to selenium contaminated biota by creating a well managed environment. The majority of research associated with this new effort is being carried out at a 200 m by 50 m test plot in Pond 7. A two-line irrigation system , providing local groundwater as an irrigation supply, has been installed. Through an intensive program of soil water sampling, soil gas sampling, vegetation sampling, groundwater monitoring, and soil moisture monitoring, the mass balance for selenium under irrigated conditions is being evaluated. These studies, in conjunction with supplementary laboratory experiments will provide the information needed to develop an optimal management plan for the site. 23 refs., 38 figs., 10 tabs.

  9. Electromagnetic wave scattering from vegetation (Potato) and vegetation covered soil moisture for remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, Keshev

    In the country with limited resources, where the nutrition level of the population has to be maintained under inhospitable situation, the potato has a special value as food. Therefore efforts should be made for improvement and spreading the cultivation of this important crop. It demands an effective program that may provide information about potato growing areas and the growth conditions. Remote sensing has been acknowledged to be a valuable source of spatially comprehensive and temporally repeatable information of crop covered soil moisture, crop growth climatic information etc, which is useful and necessary for agriculture purposes. For this purpose, microwave remote sensing has evolved as an important tool. Since microwave are able to penetrate more deeply into vegetation and underneath ground surface. It is also preferred to the optical frequency band because microwave can work in all type of weather and have a wide signal dynamic range compared optical wavelengths. However interpretation of microwave scattering from agricultural crops requires an understanding the interaction among microwave, vegetative material and the soil. In order to develop useful forward and inverse models for retrieving the vegetation characteristic, it is necessary to know in detail the dielectric properties and plant structure of the vegetation over the range of expected growing conditions. In this paper, a theoretical model based on microwave interaction with potato crop along with examination of biomass of potato crop with the varying underlying soil moisture is studied. For this purpose, X-band (9.5GHz) scatterometer is used for studying the interaction of microwave with potato crop biomass and underlying soil moisture at various sensor parameters (i.e. angular variation and polarization, HH- and VV-). Although there may be a lot of crop parameters (i.e. crop height, leaf area index, etc) which also gives their effect on microwave. All this parameters are interlinked in the crop

  10. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  11. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil.

    PubMed

    Dai, Jiu-Lan; Zhu, Yong-Guan; Zhang, Min; Huang, Yi-Zhong

    2004-12-01

    A greenhouse pot experiment was conducted to select vegetables for iodine uptake. The residual effect of iodate fertilization on the growth of and iodine uptake by spinach plants were also investigated. Six vegetables, including leafy vegetables (pakchoi [Brassica chinensis L.], spinach [Spinacia oleracea L.]), tuber vegetables (onion [Allium cepa L.]), shoot vegetables (water spinach [Ipomoea aquatica Forsk.], celery [Apium graveolens L.]), and root vegetables (carrot [Daucus carota var. sativa DC.]) were examined. Results showed that the concentrations of iodate in soil had significant effect on the biomass of edible parts of pakchoi and spinach (p<0.01), whereas the concentrations of iodate in soil had no significant effect on that of carrots, water spinach, celery, and onion. Iodine concentrations in edible parts of vegetables and the transfer factors (TFedible parts) of soil-to-edible parts of vegetables significantly increased with increasing iodine concentrations in soil (p<0.001), and iodine concentrations in edible parts and TFedible parts of spinach were much higher than those of other vegetables at any treatment. Both transfer coefficients for edible parts (TCedible parts) and for aerial parts (TCaerial parts) of vegetables changed differently with increasing iodine concentrations in the soil, and TCedible parts and TCaerial parts of spinach were higher than those of other vegetables. Therefore, spinach was considered as an efficient vegetable for iodine biofortification. Further experiment showed that there is considerable residual effect of soil fertilization with iodate. PMID:15564656

  12. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.

  13. Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA.

    PubMed

    Smith, Philip N; Yu, Lu; McMurry, Scott T; Anderson, Todd A

    2004-11-01

    Water, soil, vegetation, and rodents were collected from three areas along the Las Vegas Wash, a watershed heavily contaminated with perchlorate. Perchlorate was detected at elevated concentrations in water, soil, and vegetation, but was not frequently detected in rodent liver or kidney tissues. Broadleaf weeds contained the highest concentrations of perchlorate among all plant types examined. Perchlorate in rodent tissues and vegetation was correlated with perchlorate concentrations in soil as expected, however rodent residues were not highly correlated with plant perchlorate concentrations. This indicates that soil may be a greater source, or a more constant source of perchlorate exposure in rodents than vegetation. PMID:15276280

  14. Vegetation and soils field research data base: Experiment summaries

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Understanding of the relationships between the optical, spectral characteristics and important biological-physical parameters of earth-surface features can best be obtained by carefully controlled studies over fields and plots where complete data describing the condition of targets are attainable and where frequent, timely spectral measurement can be obtained. Development of a vegetation and soils field research data base was initiated in 1972 at Purdue University's Laboratory for Applications of Remote Sensing and expanded in the fall of 1974 by NASA as part of LACIE. Since then, over 250,000 truck-mounted and helicopter-borne spectrometer/multiband radiometer observations have been obtained of more than 50 soil series and 20 species of crops, grasses, and trees. These data are supplemented by an extensive set of biophysical and meteorological data acquired during each mission. The field research data form one of the most complete and best-documented data sets acquired for agricultural remote sensing research. Thus, they are well-suited to serve as a data base for research to: (1) quantiatively determine the relationships of spectral and biophysical characteristics of vegetation, (2) define future sensor systems, and (3) develop advanced data analysis techniques.

  15. Vegetation and other development options for mitigating urban air pollution impacts

    EPA Science Inventory

    In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...

  16. Transregional Collaborative Research Centre 32: Patterns in Soil-Vegetation

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.; Simmer, C.; Masbou, M.; Boessenkool, K.; Crewell, S.; Diekkruger, B.; Huber, K.; Klitzsch, N.; Koyama, C. N.; Vereecken, H.

    2011-12-01

    The soil, vegetation and the lower atmosphere (SVA) are key compartments of the Earth, where almost all activities of mankind take place. This region is characterized by extremely complex patterns, structures and processes that act at different temporal and spatial scales. While the exchange of energy, water and carbon is continuous between the different compartments, the pertinent fluxes are strongly heterogeneous and variable in space and time. The overarching TR32 paradigm is that the characterisation of structures and patterns will lead to a deeper qualitative and quantitative understanding of the SVA system, and ultimately to better predictions of the SVA state. The TR32 combines research groups in the field of soil and plant science, remote sensing, hydrology, meteorology and mathematics located at the Universities of Aachen, Bonn, Braunschweig and Cologne and the Research Centre Juelich study the soil-vegetation atmosphere system under the novel holistic paradigm of patterns. To understand the mechanisms leading to spatial and temporal patterns in energy and matter fluxes of the SVA system we link experiments and theory via model-observation integration. Focusing our research on the Rur Catchment (Germany), patterns are monitored since 2006 continuously using existing and novel geophysical and remote sensing techniques from the local to the catchment scale based on ground penetrating radar methods, induced polarization, radiomagnetotellurics, electrical resistivity tomography, boundary layer scintillometry, lidar techniques, microwave radiometry, and precipitation radars with polarization diversity. Modeling approaches involve high resolution numerical weather prediction (NWP; 400m) and hydrological models (few meters). Example work from the first phase includes the transfer of laboratory methods to the field; the measurements of patterns of soil-carbon, evapotranspiration and respiration measured in the field; catchment-scale modeling of exchange processes

  17. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  18. Sulfamethazine sorption to soil: vegetative management, pH, and dissolved organic matter effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidating veterinary antibiotic (VA) interactions with soil is important for assessing and mitigating possible environmental hazards. Objectives of this study were to investigate the effects of vegetative management, soil physical and chemical properties, and manure-derived dissolved organic matte...

  19. Management effects on soil quality in organic vegetable systems in western Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices in organic vegetable cropping systems and their contributions toward sustainable farming practices can differ greatly. Soil quality monitoring may help organic farmers evaluate and choose best management practices. This study 1) assessed the sensitivity of soil biological prop...

  20. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties

    NASA Astrophysics Data System (ADS)

    Wittenberg, L.; Malkinson, D.

    2009-04-01

    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  1. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice.

    PubMed

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Wang, Junjie; Wu, Guofeng

    2016-05-01

    This study systematically analyzed the performance of multivariate hyperspectral vegetation indices of rice (Oryza sativa L.) in estimating the arsenic content in agricultural soils. Field canopy reflectance spectra was obtained in the jointing-booting growth stage of rice. Newly developed and published multivariate vegetation indices were initially calculated to estimate soil arsenic content. The well-performing vegetation indices were then selected using successive projections algorithm (SPA), and the SPA selected vegetation indices were adopted to calibrate a multiple linear regression model for estimating soil arsenic content. Results showed that a three-band vegetation index (R716-R568)/(R552-R568) performed best in the newly developed vegetation indices in estimating soil arsenic content. The photochemical reflectance index (PRI) and red edge position (REP) performed well in the published vegetation indices. Moreover, the linear combination of two vegetation indices ((R716-R568)/(R552-R568) and REP) selected using SPA improved the estimation of soil arsenic content. These results indicated that the newly developed three-band vegetation index (R716-R568)/(R552-R568) might be recommended as an indicator for estimating soil arsenic content in the study area. PRI and REP could be used as universal vegetation indices for monitoring soil arsenic contamination. PMID:26844405

  2. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  3. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].

    PubMed

    Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun

    2014-11-01

    limit of mercury in food. Spinach appeared to accumulate more mercury than the other four vegetables, in which the median and mean mercury content were both higher than 20 μg x kg(-1). The mercury concentrations in rape, lettuce and allium tuberosum were lower than the standard. Moreover, test results indicated that the Hg content in leafy vegetables was mainly the gaseous mercury through leaf adsorption but not the Hg particulates. This study clearly manifested that there should be a great concern on the pollution risk of both air-and soil borne mercury when cultivating leafy vegetables in long-term wastewater-irrigated area. PMID:25639114

  4. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  5. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation.

    PubMed

    Madejón, Engracia; de Mora, Alfredo Pérez; Felipe, Efraín; Burgos, Pilar; Cabrera, Francisco

    2006-01-01

    We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl(2)-soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain. PMID:16005126

  6. Solar Park Impacts on Air and Soil Microclimate

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Ostle, N. J.; Whitaker, J.

    2015-12-01

    The drive towards low carbon energy sources and increasing energy demand has resulted in a rapid rise in solar photovoltaics across the world. A substantial proportion of photovoltaics are large-scale ground-mounted systems, solar parks, causing a notable land use change. While the impacts of photovoltaic panel production and disposal have been considered, the consequences of the operation of solar parks on the hosting landscape are poorly resolved. Here, we present data which demonstrates that a solar park sited on permanent grassland in the UK significantly impacted the air and soil microclimate. Specifically, we observed (1) cooler soil under the photovoltaic panels during the summer and between the photovoltaic panel rows during the winter; (2) dampening of the diurnal variation in air temperature and absolute humidity from the spring to the autumn; (3) lower photosynthetically active radiation and a lower direct:diffuse under the panels; and (4) reduced wind speed between the panel rows and substantially reduced wind speeds under the panels. Further, there were differences in vegetation type and productivity and greenhouse gas emissions. Given the centrality of climate on ecosystem function, quantifying the microclimatic impacts of this emerging land use change is critical. We anticipate these data will help develop understanding of effects in other climates, under different solar park designs and the implications for the function and service provision of the hosting landscape.

  7. Modelling the effects of vegetation and soil moisture onto biogenic nitrogen oxide emissions from Sahelian soils.

    NASA Astrophysics Data System (ADS)

    Delon, Claire; Mougin, Eric; Grippa, Manuela; Galy-Lacaux, Corinne; Serça, Dominique; Kergoat, Laurent; Hiernaux, Pierre; Diawara, Mamadou

    2013-04-01

    Natural (biogenic) emissions of nitrogen oxide (NO) from soils are strongly dependent on soil moisture, particularly in Sahelian regions where the soil moisture is very low at the end of the dry season (around 2% in top soil 0-20 cm). When the first rains fall at the beginning of the wet season, soil moisture increases sharply, until reaching a threshold value above which the microbial population can develop, and the microbial activity generating nitrogen within the soil is reactivated. NO emissions to the atmosphere result from the microbial decomposition of organic matter, and present important peaks at the beginning of the wet season. In Sahelian soils, the organic matter decomposition is very efficient at the onset of the wet season because part of the litter has been buried during the dry season by livestock trampling, and is rapidly decomposed when soil moisture is sufficient. The goal of the work presented here is to simulate NO emissions from soils thanks to a parameterization based on a neural network development, coupled to a vegetation model (STEP) and a litter decomposition model (GENDEC), at the Agoufou site (15.1°N, 1.7°W, Gourma, Mali, super site of the AMMA-CATCH observatory). The resulting coupled model (STEP-GENDEC) includes vegetation growth in a dynamic way, and the quantity of nitrogen brought to the soil either as litter and straws or as livestock excretions. Livestock contributes to the N flux either directly trough excretion deposition (faeces and urine) or indirectly through grazing uptake, conversion of standing straw to litter, fragmentation and burying of litter by trampling. A small part of this N available in the soil is released to the atmosphere in the form of different N compounds such as NO. Knowing the quantity of N available in the soil, NO emissions to the atmosphere are calculated for the years 2006-2007-2008, and compared to the few existing measurements. These results show that Sahelian soils emit non negligible quantities

  8. Winter soil respiration from different vegetation patches in the Yellow River Delta, China.

    PubMed

    Han, Guangxuan; Yu, Junbao; Li, Huabing; Yang, Liqiong; Wang, Guangmei; Mao, Peili; Gao, Yongjun

    2012-07-01

    Vegetation type and density exhibited a considerable patchy distribution at very local scales in the Yellow River Delta, due to the spatial variation of soil salinity and water scarcity. We proposed that soil respiration is affected by the spatial variations in vegetation type and soil chemical properties and tested this hypothesis in three different vegetation patches (Phragmites australis, Suaeda heteroptera and bare soil) in winter (from November 2010 to April 2011). At diurnal scale, soil respiration all displayed single-peak curves and asymmetric patterns in the three vegetation patches; At seasonal scale, soil respiration all declined steadily until February, and then increased to a peak in next April. But, the magnitude of soil respiration showed significant differences among the three sites. Mean soil respiration rates in winter were 0.60, 0.45 and 0.17 μmol CO(2) m(-2) s(-1) for the Phragmites australis, Suaeda heteroptera and bare soil, respectively. The combined effect of soil temperature and soil moisture accounted for 58-68 % of the seasonal variation of winter soil respiration. The mean soil respiration revealed positive and linear correlations with total N, total N and SOC storages at 0-20 cm depth, and plant biomass among the three sites. We conclude that the patchy distribution of plant biomass and soil chemical properties (total C, total N and SOC) may affect decomposition rate of soil organic matter in winter, thereby leading to spatial variations in soil respiration. PMID:22576142

  9. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables

    PubMed Central

    McBride, Murray B.; Shayler, Hannah A.; Spliethoff, Henry M.; Mitchell, Rebecca G.; Marquez-Bravo, Lydia G.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Casey, Linda; Bachman, Sharon

    2014-01-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429

  10. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    PubMed

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429

  11. Vegetative cover and PAHs accumulation in soils of urban green space.

    PubMed

    Peng, Chi; Ouyang, Zhiyun; Wang, Meie; Chen, Weiping; Jiao, Wentao

    2012-02-01

    We investigated how urban land uses influence soil accumulation of polycyclic aromatic hydrocarbons (PAHs) in the urban green spaces composed of different vegetative cover. How did soil properties, urbanization history, and population density affect the outcomes were also considered. Soils examined were obtained at 97 green spaces inside the Beijing metropolis. PAH contents of the soils were influenced most significantly by their proximity to point source of industries such as the coal combustion installations. Beyond the influence circle of industrial emissions, land use classifications had no significant effect on the extent of PAH accumulation in soils. Instead, the nature of vegetative covers affected PAH contents of the soils. Tree-shrub-herb and woodland settings trapped more airborne PAH and soils under these vegetative patterns accumulated more PAHs than those of the grassland. Urbanization history, population density and soil properties had no apparent impact on PAHs accumulations in soils of urban green space. PMID:22230065

  12. Evaluation of soil and vegetation response to drought using SMOS soil moisture satellite observations

    NASA Astrophysics Data System (ADS)

    Piles, Maria; Sánchez, Nilda; Vall-llossera, Mercè; Ballabrera, Joaquim; Martínez, Justino; Martínez-Fernández, José; Camps, Adriano; Font, Jordi

    2014-05-01

    Soil moisture plays an important role in determining the likelihood of droughts and floods that may affect an area. Knowledge of soil moisture distribution as a function of time and space is highly relevant for hydrological, ecological and agricultural applications, especially in water-limited or drought-prone regions. However, measuring soil moisture is challenging because of its high variability; point-scale in-situ measurements are scarce being remote sensing the only practical means to obtain regional- and global-scale soil moisture estimates. The ESA's Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to measuring the Earth's surface soil moisture at near daily time scales with levels of accuracy previously not attained. Since its launch in November 2009, significant efforts have been dedicated to validate and fine-tune the retrieval algorithms so that SMOS-derived soil moisture estimates meet the standards required for a wide variety of applications. In this line, the SMOS Barcelona Expert Center (BEC) is distributing daily, monthly, and annual temporal averages of 0.25-deg global soil moisture maps, which have proved useful for assessing drought and water-stress conditions. In addition, a downscaling algorithm has been developed to combine SMOS and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) data into fine-scale (< 1km) soil moisture estimates, which permits extending the applicability of the data to regional and local studies. Fine-scale soil moisture maps are currently limited to the Iberian Peninsula but the algorithm is dynamic and can be transported to any region. Soil moisture maps are generated in a near real-time fashion at BEC facilities and are used by Barcelona's fire prevention services to detect extremely dry soil and vegetation conditions posing a risk of fire. Recently, they have been used to explain drought-induced tree mortality episodes and forest decline in the Catalonia region. These

  13. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Field spectral measurements and laboratory densitometric measurements showed that tree canopy reflectance differences among the Marrs, Redblush, and Valencia varieties in the visible spectral region were due to their different leaf chlorophyll concentrations. Field measurements of visible light reflectance were directly related to the tonal responses on infrared color photos of the varietal tree canopies. Consequently, densitometric measurements of the foliage on the infrared color transparency with red-filtered light successfully discriminated among the three varieties. Reflectance measurements with a field spectroradiometer on nine dates the growing season of two wheat varieties, Milam and Penjamo, documented their spectra over the 0.45 to 2.50 micron wavelength interval associated with plant cover and physiological development. An image analyzer system was used to optically planimeter the percentage of soil background, vegetation and shadow in the vertical photographs taken within the FOV of the spectroradiometer on each measurement date.

  14. Reflectance of vegetation, soil, and water. [in Hidalgo County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A study was conducted in a 340-acre (139 hectares) field of grain sorghum (Sorghum bicolor (L.) Moench) to determine if multispectral data from ERTS-1 could be used to detect differences in chlorophyll concentration between iron-deficient (chlorotic) and apparently normal (green) grain sorghum. Chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size were identified on a computer printout of band 5 data which contains the chlorophyll absorption band at the 0.65 micron wavelength. ERTS resolution is sufficient for practical applications in detecting iron-deficient sorghum in otherwise uniform fields. The first classification map of the study county has been produced. Vegetation (crops), rangeland, bare soil, water, and an undefined (all other) category occupied 15.2, 45.0, 19.1, 0.02, and 20.6% of the land area, respectively.

  15. Online vegetation parameter estimation using passive microwave observations for soil moisture estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation affects the ability to estimate soil moisture from passive microwave observations by attenuating the surface soil moisture signal. To use radiobrightness observations in land data assimilation a vegetation opacity parameter is required as input to a radiative transfer model, which maps su...

  16. The contribution of vegetation cover and bare soil to pixel reflectance in an arid ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterogeneity of vegetation and soils in arid and semi-arid environments complicates the analysis of medium spatial resolution remotely sensed imagery. A single pixel may contain several different types of vegetation, as well as a sizeable proportion of bare soil. We have used linear mixture mod...

  17. Importance of Soil Moisture and Vegetation Cover for Energy Balance partition in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Tyler, S. W.; Bou-Zeid, E.; Van De Giesen, N.; Parlange, M. B.

    2015-12-01

    Land surface characteristics are the main control on hydrologic processes, the driver of most livelihoods, in semi arid West Africa. We use the energy and water balance measured with two eddy-covariance towers, coupled with a dense network of small, wireless meteorological stations in a small (3.5 km2) catchment to understand these relationships. Time series of monthly averages of soil moisture, rainfall, air temperature, cloud cover, components of net radiation, wind speed, and NDVI are presented in relation to the evaporative fraction and energy balance. We found that both latent and sensible heat fluxes are greater over mixed forest and savanna areas compared agricultural land. Sensible heat is found to be most different between the two land-covers at the end of the year, when the grass and vegetation is dry, and latent heat is found to be most different at the beginning of the year, when bare ground dominates. Further examination shows that soil moisture and vegetation indexes provide the main controls on evaporative fraction. These findings have implications for modeling the evaporation over large regions based on remotely sensed land surface temperature. The site is characteristic of the contrasts in vegetation and moisture availability present in the rocky escarpments found in Northern Benin and Southeastern Burkina Faso. Historically these sites are important in location for village choice and land use designation. These findings reinforce local cultural beliefs of the importance of vegetation for climate regulation and may provide support to local farmers for improving the resilience of natural resources and livelihood security.

  18. The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation

    SciTech Connect

    Yang, R.

    1992-01-01

    The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation is studied through the use of the Simple Biosphere Model (SiB) and the Center for Ocean-Land-Atmosphere interactions (COLA) GCM. Tests for the SiB sensitivity to the conversion of the forest to other short vegetation or bare soil were performed at Amazonian and Great Plains sites, and a North Wales spruce forest site respectively. The results show that deforestation has a significant influence on the local surface energy budget and surface weather. The influence is especially prominent at the Amazon and Great Plains sites, and larger in summer than in other seasons. The influence on the partitioning of surface incoming radiative energy is generally constrained by the local atmospheric boundary condition. The sensitivity of the COLA GCM to changes in initial soil wetness (ISW) is determined by repeating three 10-day model integrations with the same initial and boundary conditions as the control runs except the values of ISW, which are revised at 69 model grid points covering much of the continental U.S. It is found that the relations between the changes in the 5-day mean forecast surface air temperature/surface specific humidity and the changes in ISW depend upon vegetation type and the values of ISW, and can be approximated by regression equations. These relations are also confirmed with independent data. With the ISW revised based on these regression equations the surface forecasts of the revised runs are consistently improved. The spatial scale of the ISW anomaly determines the degree and range of the influence. The influence of a small regional ISW change is mainly confined to the local region and to low atmospheric levels. The influence on surface fluxes is strong and persists for more than one month, but the effects on precipitation are relatively weak, changeable, and complex, particularly when an interactive cloud scheme is used.

  19. Modeling radium and radon transport through soil and vegetation

    USGS Publications Warehouse

    Kozak, J.A.; Reeves, H.W.; Lewis, B.A.

    2003-01-01

    A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil. ?? 2003 Elsevier Science B.V. All rights reserved.

  20. [Mechanism of watershed soil erosion control by vegetation].

    PubMed

    Qin, Fucang; Yu, Xinxiao; Zhang, Manling; Xie, Yuanyuan

    2005-09-01

    From the view of hydrodynamics, this paper studied the acting mechanism of tree, grass and forest litter on slope runoff velocity and kinetic energy. The results showed that slope runoff head loss was related to slope gradient, forest density, net rainfall intensity and slope length. The relationship of water head loss with the distance among trees and the diameter at the ground of tree was Eoc (D/b)4/3. The grass on slope turned to be curved with s flowing, and thus, increased the bottom resistance of flow, and reduced the shearing stress of soil surface. Therefore, silt-carrying capacity decreased dramatically. The analysis of actually measured materials of each rainfall, runoff and sediment, and the comparison of Qiaozi eastern gully and Qiaozi west gully in Tianshui city of Gansu Province showed that under same precipitation condition, the runoff, sediment yield, flood peak discharge and maximum sediment transport rate in treated watershed was less than those in untreated watershed, suggesting that vegetation was obviously beneficial to water reservation and water and soil conservation. PMID:16355771

  1. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    PubMed Central

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  2. Influence of vegetation changes on soil organic matter

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per

    In a heath region at Hjelm Hede in Denmark oak trees are invading a Calluna/Empetrum vegetation. In less than a century the oak invasion has caused considerable changes in the soil: what was once an O-horizon under Calluna has changed to an A-horizon under oak; the Calluna E-horizon has lost its distinct appearance; and the sharp boundary between E and Bh has been obliterated. The directly visible changes are associated with a rise in pH of about one unit in the top horizon under the oaks, an increasing content of organic matter in the E-horizon, a decreasing content of organic matter in the Bh-horizon, and a fall in the C/N ratio. In order to estimate the total microbiological activity, cotton strips were placed in the upper soil horizons. The loss in tensile strength during two summer months was 10-15% under Calluna, but more than 50% under oaks. Initial attempts to find differences in the type and content of organic matter showed that the most abundant low-molecular organic acids extracted from the Of-horizons were 3,4-dihydroxybenzoic acid (protocatechuic acid), 4-hydroxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid (vanillic acid). The extraction was done in 0.1 M sodium pyrophosphate at pH 10.2. The organic compounds were determined by HPLC. The 3,4-dihydroxybenzoic acid was relatively the most important compound under the Calluna heath, whereas 4-hydroxy-3-methoxybenzoic acid was most important under oaks. Extractions were performed on water samples from field lysimeter experiments to determine whether the substituted benzoic acids in the soil water arose under transport. These extractions exposed a ppm concentration of 2,4-dichlorobenzoic acid, a compound believed to originate from microbial decomposition of lysimeter material.

  3. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Mcmurtrey, J. E., III; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)

    1981-01-01

    A USDA Beltsville Agricultural Research Center site was used for an experiment in which soil moisture remote sensing over bare, grass, and alfalfa fields was conducted over a three-month period using 0.6 GHz, 1.4 GHz, and 10.6 GHz Dicke-type microwave radiometers mounted on mobile towers. Ground truth soil moisture content and ambient air and sil temperatures were obtained concurrently with the radiometric measurements. Biomass of the vegetation cover was sampled about once a week. Soil density for each of the three fields was measured several times during the course of the experiment. Results of the radiometric masurements confirm the frequency dependence of moisture sensing sensitivity reduction reported earlier. Observations over the bare, wet field show that the measured brightness temperature is lowest at 5.0 GHz and highest of 0.6 GHz frequency, a result contrary to expectation based on the estimated dielectric permittivity of soil water mixtures and current radiative transfer model in that frequency range.

  4. Evaluation of Landsat Multispectral Scanner data for mapping vegetated soil landscapes

    USGS Publications Warehouse

    Thompson, D. R.; Haas, Robert H.; Milford, M. H.

    1981-01-01

    Landsat multispectral scanner data for Brazos County, Texas, were evaluated in terms of effectiveness for classifying soils on vegetated landscapes at three times during the year: a time of normally adequate soil water, a time of expected soil water deficit, and a time when soil water is normally being replenished. Six test sites were used to evaluate LARSYS supervised and unsupervised classification of vegetated soil landscapes. Open grassland soils were best separated in the fall during a period when soil moisture was being replenished after the summer period of soil water deficit. Woodland soils were separated by Landsat data in late spring when adequate moisture was available. However, a high degree of accuracy was not achieved using Landsat for separating soil map units. Accurate separation of soil mapping units on vegetated landscapes was not possible during late summer when soil water was deficient. Selected soil properties important to plant growth were separable on the test sites using June and October Landsat data. Particle size and soil moisture regime were separated at both dates. Soils with argillic horizons were separated from soils without argillic horizons.

  5. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  6. Greenland soil bacteria & biogeochemistry: a vegetation cover proxy for climate warming effects

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Sistla, S.; Buckeridge, K. M.; Schimel, J.; Schaeffer, S. M.

    2013-12-01

    Climate warming in the high Arctic is expected to increase plant biomass, deepen thaw, and stimulate decomposition of soil organic matter. However, it remains unclear how warming, plant growth, and microbial processing will interact to drive Arctic carbon and nutrient cycling. For example, greater plant growth should increase carbon storage in the ecosystem; however, increasing plant C inputs and thawing permafrost carbon should stimulate microbial biomass, potentially causing soil respiration to outpace storage. Alternatively, greater plant cover may lower soil temperature through shading, potentially curtailing the predicted increase in microbial activity. To evaluate microbial responses to climate warming in the high Arctic, we characterized the soil bacterial community and related soil biogeochemical properties, including pH, temperature, moisture, bulk density, extractable nutrient pools, extractable organic carbon and nitrogen, and total microbial biomass along a vegetation cover gradient in northwest Greenland. Vegetation cover was classified using the Normalized Difference Vegetation Index (NDVI), and vegetation cover classes were used as a proxy for changes associated with warming. We found that soil moisture increased and soil temperature decreased significantly with vegetation cover; moisture and temperature were higher in organic than in mineral horizons. Extractable nutrients (NO3-, NH4+, PO43-) and extractable organic C and N generally increased with vegetation cover and are higher in organic than in mineral horizons within a given vegetation class, with the exception of NO3-, which was comparable between horizons. Despite increases in available carbon and nutrients, microbial biomass carbon in both horizons ultimately decreased with vegetation cover, as did microbial biomass nitrogen in the mineral horizon. Moreover, the relative proportion of microbial biomass carbon to extractable organic carbon decreased with vegetation cover, indicating that

  7. Analysis of co-evolving soil depths, vegetation patterns, and connectivity on drylands.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Willgoose, Garry

    2014-05-01

    Arid and semiarid landscapes cover more than 30% of the Earth's surface. Vegetation in these areas is usually patchy due limited resource availability. This self-organized patchiness results from the nonlinear feedbacks between water redistribution, soils, landforms, and biota. These complex interactions make the understanding and prediction of landscape responses to climate and land use change highly challenging. Though several models have been recently developed and used to understand these feedbacks and the emergence of vegetation patterns in drylands, these models do not explicitly incorporate feedbacks with coevolving soil depths. Here we analyse feedback effects resulting from co-evolving soil depths, which play a key role in the redistribution of surface runoff and therefore on the patterns of vegetation and landscape connectivity. We present modelling results using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module accounts and for soil production and sediment erosion and deposition processes. We analyse the co-evolution of soil depths and vegetation patterns for varying soil erodibilities, slopes and plant functional types. We find that for deeper soils, facilitation effects of vegetation gives rise to the formation of regular patterns, and slope and soil erodibility are the key factors for recovery after disturbance. Disturbances in areas with high slope and/or soil erodibility lead to an increase in connectivity and a degraded state. In contrast, we find that for shallow soils, the facilitation effect of vegetation becomes less important and vegetation patterns are more irregular. In this case, soil depth becomes the key factor prescribing surface connectivity and for the recovery of the system after disturbance. These results have critical implications for effective management and restoration efforts, and for understanding the effects of changes in climate and land use.

  8. Soil vulnerability to future climate in the southwestern USA, with implications for vegetation change and water cycle

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Bachelet, D. M.

    2011-12-01

    Understanding soil response to changes in precipitation/snow cover and increasing temperatures is essential to predicting changes in riparian, wetland, and aquatic as well as terrestrial communities in the coming decades. Changes in precipitation and snowmelt are affecting streamflow seasonality and magnitude, and rising air temperatures and declining precipitation affect aquatic habitats directly by causing increases in stream temperatures and evapo-transpiration causing lower streamflow. The water resources of the Colorado River system are projected to be strained due to runoff losses of 7 to 20% this century, and a reduction of approximately 5% of the annual average runoff is due to increased evapotranspiration from early exposure of vegetation and soils. We are developing a spatially-explicit soil vulnerability index of high, moderate and low sensitivity soils for the southwestern USA and comparing it to projections of vegetation dieback under future climate change scenarios to provide 1) a measure of uncertainty of the model skill and 2) a warning that vegetation shifts may increase soil vulnerability in areas where it is still protected by current plant cover, thus enabling a preliminary estimate of the future location of sources of aeolian dust.

  9. Radar backscattering measurement of bare soil and vegetation covered soil using X-band and full polarization

    NASA Astrophysics Data System (ADS)

    Goswami, B.; Kalita, M.

    2014-11-01

    The objective of the study is to measure backscattered power of bare soil and vegetation covered soil using X-band scatterometer system with full polarization and various angles during monsoon season and relate backscattered power to the density of vegetation over soil. The measurement was conducted at an experimental field located in the campus of Assam Engineering College, Guwahati, India. The soil sample consists of Silt and Clay in higher proportions as compared to Sand. The scatterometer system consists of dual-polarimetric square horn antennas, Power meter, Klystron, coaxial cables, isolator and waveguide detector. The polarization of the horn antennas as well as the look angle can be changed in the set-up. The backscattering coefficients were calculated by applying a radar equation for the measured values at incident angles between 30° and 60° for full polarization (HH, VV, HV, VH), respectively, and compared with vegetation cover over soil for each scatterometer measurement simultaneously. The VH polarization and 60° look angle are found to be the most suitable combination of configuration of an X-band scatterometer for distinguishing the land cover targets such as bare soil and vegetation covered soil. From the analysis of the results, polarimetric scatterometer data appear to be promising to distinguish the land cover types such as bare soil and soil completely covered by vegetation. The results of this study will help the scientists working in the field of active microwave remote sensing.

  10. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Liding; Wei, Wei; Yu, Yang; Zhang, Handan

    2014-05-01

    Soil moisture stored below rainfall infiltration depth is a reliable water resource for plant growth in semi-arid ecosystems. Along with the large-scale ecological restoration in Chinese Loess Plateau, identifying the ecohydrological response to human-introduced vegetation restoration has become an important issue in current research. In this study, soil moisture data in depth of 0-5 m was obtained by field observation and geostatistical method in two neighboring re-vegetation watersheds. Profile characteristics and spatial pattern of soil moisture was compared between different land use types, transects, and watersheds. The results showed that: (1) Introduced vegetation drastically decreased deep soil moisture when compared with farmland and native grassland. No significant differences in deep soil moisture were found between different introduced vegetation types. (2) An analysis of differences in soil moisture for different land use patterns indicated that land use had significant influence on deep soil moisture spatial variability. Land use structure determined the soil moisture condition and its spatial variation. (3) Vegetation restoration with introduced plants diminished the spatial heterogeneity of deep soil moisture on watershed scale. The improvement of land use management was suggested to improve the water management and maintain the sustainability of vegetation restoration.

  11. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    NASA Astrophysics Data System (ADS)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  12. Soils and vegetation of Santa Barbara Island, Channel Islands National Park, California, USA

    NASA Astrophysics Data System (ADS)

    Halvorson, William L.; Fenn, Dennis B.; Allardice, William R.

    1988-01-01

    The multifaceted development of an erosion surface on Santa Barbara Island, Channel Islands National Park, California, has led to this study of the relationship between soils and vegetation. A dry Mediterranean climate and past attempts at farming and introductions of alien species have led to vegetative degradation accompanied by both gully and surface erosion. Soil and vegetation analyses show this erosion to be in a location of transition. The soils are Typic Chromoxererts (Vertisol Order) with high clay, salinity, and sodium contents. The vegetation is ecotonal in nature, grading from a principally alien annual grassland with Avena fatua and Atriplex semibaccata to a shrub community dominated by the native Suaeda californica. Management toward revegetation and stabilization of this island ecosystem will be difficult with high clay, saline-sodic soils and disturbed vegetation.

  13. Effects of Vegetation Removal and Soil Disturbance on Soil Organic and Inorganic Carbon Dynamics in California Desert Ecosystems

    NASA Astrophysics Data System (ADS)

    Swanson, A. C.; Allen, E. B.; Allen, M. F.; Hernandez, R. R.

    2015-12-01

    Solar energy developments are projected to be deployed over desert wildland areas with deep soil inorganic carbon (SIC) deposits, which often involves elimination of deep-rooted vegetation. This land cover change may systemically alter SIC pools since respired CO2 is the carbon (C) source during SIC formation. We sought to understand how removal of creosote bush scrub affects soil C pools. We hypothesized that vegetation is important for maintaining SIC and soil organic C (SOC) pools and that disturbance to the vegetation and soil will change CO2 flux with increased losses from SIC. Soils were collected from sites that had intact creosote bush scrub habitat adjacent to disturbed, bare areas where the native vegetation had been previously removed. Samples were taken from beneath shrub canopies and interspaces in intact areas, and from random points in the disturbed area. Soils were analyzed for SIC, SOC, microbial and labile C, and δ13C. Soils were also incubated to determine the potential CO2 flux from disturbed and undisturbed soils along with the sources of CO2. Three replicates per soil underwent a control and water addition treatment and flux and δ13C of CO2 were measured continuously. Control replicates yielded no significant CO2 flux. CO2 flux from watered soils was higher beneath shrub canopy (18.57µmol g soil-1 day-1±1.86) than the interspace soils (0.86 µmol g soil-1 day-1±0.17). Soils collected from bare areas had an intermediate flux (5.41 µmol g soil-1 day-1±2.68 and 3.68 µmol g soil-1 day-1±0.85, respectively) lying between shrub canopy and interspace soils. There was no significant difference between the δ13C values of CO2 from shrub canopy and interspace soils, both of which had a very low δ13C values (-22.60‰±0.64 and -23.88‰±0.89, respectively), resembling that of organic C. However, the isotopic values of CO2 from disturbed soils were significantly higher (-16.68‰±1.36 and -15.22‰±2.12, respectively) suggesting that these

  14. Soil detachment by overland flow under different vegetation restoration models in the loess plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use change has significant effects on soil properties and vegetation cover and thus probably affects soil detachment by overland flow. Few studies were conducted to evaluate the effect of restoration models on the soil detachment process in the Loess Plateau in the past decade during which a Gr...

  15. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    PubMed

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p < 0.001). Amplicons of AOA from the Nitrososphaera cluster dominated all four ecosystem soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. PMID:23897748

  16. Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The additive value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and model-based soil moisture obtained before and after the assimilation of surface soil m...

  17. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  18. The Effect of Vegetation on Soil Moisture Retrievals from GPS Signal-to-Noise Ratio Data

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Small, E. E.; Larson, K. M.; Zavorotny, V.

    2012-12-01

    GPS-Interferometric Reflectometry (GPS-IR) is a method of environmental monitoring that relates changes in ground-reflected (multipath) GPS signals to changes in surface soil moisture and vegetative state for an area of approximately 1000 m2 surrounding a GPS antenna. GPS-IR operates as a bi-static radar: L2C frequency signals transmitted by GPS satellites and subsequent reflections (multipath) are measured by antennas at permanent GPS stations. Changes in multipath signals are seen in signal-to-noise ratio (SNR) interferograms, which are recorded by the GPS receiver. Results from previous field studies have shown that shallow soil moisture can be estimated from SNR phase for bare soil conditions or when vegetation is sparse. Vegetation surrounding a GPS antenna affects the phase shift, amplitude, and frequency/apparent reflector height of SNR oscillations. Therefore, it is necessary to quantify the vegetation conditions, for example vegetation height or water content, that preclude retrieval of soil moisture estimates using GPS-IR. We use both field data and an electrodynamic model that simulates SNR interferograms for variable soil and vegetation conditions to: 1. Determine how changes in vegetation height, biomass, and water content affect GPS phase, amplitude, and apparent reflector height and 2. Quantify the amount of vegetation that obscures the soil moisture signal in SNR data. We report results for rangeland and agricultural sites. At the rangeland sites, vegetation water content only varies between 0 and 0.6 kg/m2. Both observed and simulated SNR data from these sites show that apparent reflector height is nearly constant. Therefore, SNR interferograms are strongly affected by permittivity at the soil surface, and thus soil moisture can be retrieved. Even though reflector height does not change, SNR phase shift and amplitude are affected by fluctuations in rangeland vegetation and must be accounted for in soil moisture retrievals. At several agricultural

  19. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    USGS Publications Warehouse

    Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P.

    2008-01-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.

  20. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    PubMed Central

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  1. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  2. Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions

    NASA Astrophysics Data System (ADS)

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.

    2015-04-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  3. Modeling soil water content for vegetation modeling improvement

    NASA Astrophysics Data System (ADS)

    Cianfrani, Carmen; Buri, Aline; Zingg, Barbara; Vittoz, Pascal; Verrecchia, Eric; Guisan, Antoine

    2016-04-01

    Soil water content (SWC) is known to be important for plants as it affects the physiological processes regulating plant growth. Therefore, SWC controls plant distribution over the Earth surface, ranging from deserts and grassland to rain forests. Unfortunately, only a few data on SWC are available as its measurement is very time consuming and costly and needs specific laboratory tools. The scarcity of SWC measurements in geographic space makes it difficult to model and spatially project SWC over larger areas. In particular, it prevents its inclusion in plant species distribution model (SDMs) as predictor. The aims of this study were, first, to test a new methodology allowing problems of the scarcity of SWC measurements to be overpassed and second, to model and spatially project SWC in order to improve plant SDMs with the inclusion of SWC parameter. The study was developed in four steps. First, SWC was modeled by measuring it at 10 different pressures (expressed in pF and ranging from pF=0 to pF=4.2). The different pF represent different degrees of soil water availability for plants. An ensemble of bivariate models was built to overpass the problem of having only a few SWC measurements (n = 24) but several predictors to include in the model. Soil texture (clay, silt, sand), organic matter (OM), topographic variables (elevation, aspect, convexity), climatic variables (precipitation) and hydrological variables (river distance, NDWI) were used as predictors. Weighted ensemble models were built using only bivariate models with adjusted-R2 > 0.5 for each SWC at different pF. The second step consisted in running plant SDMs including modeled SWC jointly with the conventional topo-climatic variable used for plant SDMs. Third, SDMs were only run using the conventional topo-climatic variables. Finally, comparing the models obtained in the second and third steps allowed assessing the additional predictive power of SWC in plant SDMs. SWC ensemble models remained very good, with

  4. Quantifying the influence of deep soil moisture on ecosystem albedo: The role of vegetation

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle

    2014-05-01

    As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer soil moisture control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer soil moisture framework based on permutations of whether the shallow and deep soil layers were wet or dry. Using these Cases, we identified differences in how shallow and deep soil moisture influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and soil moisture on ecosystem albedo. Our results highlight the importance of deep soil moisture in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep soil moisture, and link deep soil moisture to a decrease in canopy albedo. Understanding relationships between vegetation and deep soil moisture will provide important insights into feedbacks between the hydrologic cycle and the climate system.

  5. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales

    PubMed Central

    Feng, Huihui

    2016-01-01

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and −14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed −40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate. PMID:27600157

  6. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales.

    PubMed

    Feng, Huihui

    2016-01-01

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate. PMID:27600157

  7. STOMP Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode

    SciTech Connect

    Ward, Anderson L.; White, Mark D.; Freeman, Eugene J.; Zhang, Z. F.

    2005-09-15

    The Water-Air-Energy (WAE) Operational Mode of the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator solves the coupled conservation equations for water mass, air mass, and thermal energy in multiple dimensions. This addendum describes the theory, input file formatting, and application of a soil-vegetation-atmosphere transfer (SVAT) scheme for STOMP that is based on a sparse vegetation evapotranspiration model. The SVAT scheme is implemented as a boundary condition on the upper surface of the computational domain and has capabilities for simulating evaporation from bare surfaces as well as evapotranspiration from sparsely vegetated surfaces populated with single or multiple plant species in response to meteorological forcings. With this extension, the model calculates water mass, air mass and thermal energy across a boundary surface in addition to root-water transport between the subsurface and atmosphere. This mode represents the barrier extension of the WAE mode and is designated as STOMP-WAE-B. Input for STOMP-WAE-B is specified via three input cards and include: atmospheric conditions through the Atmospheric Conditions Card; time-invariant plant species data through the Plant Properties Card; and time varying plant species data through the Boundary Conditions Card. Two optional cards, the Observed Data and UCODE Control Cards allow use of STOMP-WAE with UCODE in an inverse mode to estimate model parameters. STOMP-WAE was validated by solving a number of test problems from the literature that included experimental observations as well as analytical or numerical solutions. Several of the UNSAT-H verification problems are included along with a benchmark simulation derived from a recently published intercode comparison for barrier design tools. Results show that STOMP is able to meet, and in most cases, exceed performance of other commonly used simulation codes without having to resort to may of their simplifying assumptions. Use of the fully

  8. On Budyko curve as a consequence of climate-soil-vegetation equilibrium hypothesis

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2012-04-01

    A hypothesis that Budyko curve is a consequence of stable equilibriums of climate-soil-vegetation co-evolution is tested at biome scale. We assume that i) distribution of vegetation, soil and climate within a biome is a distribution of equilibriums of similar soil-vegetation dynamics and that this dynamics is different across different biomes and ii) soil and vegetation are in dynamic equilibrium with climate while in static equilibrium with each other. In order to test the hypothesis, a two stage regression is considered using MOPEX/Hydrologic Synthesis Project dataset for basins in eastern United States. In the first stage, multivariate regression (Seemingly Unrelated Regression) is performed for each biome with soil (estimated porosity and slope of soil water retention curve) and vegetation characteristics (5-week NDVI gradient) as dependent variables and aridity index, vegetation and soil characteristics as independent variables for respective dependent variables. The regression residuals of the first stage along with aridity index then serve as second stage independent variables while actual vaporization to precipitation ratio (vapor index) serving as dependent variable. Insignificance, if revealed, of a first stage parameter allows us to reject the role of corresponding soil or vegetation characteristics in the co-evolution hypothesis. Meanwhile the significance of second stage regression parameter corresponding to a first stage residual allow us to reject the hypothesis that Budyko curve is a locus "solely" of climate-soil-vegetation co-evolution equilibrium points. Results suggest lack of evidence for soil-vegetation co-evolution in Prairies and Mixed/SouthEast Forests (unlike in Deciduous Forests) though climate plays a dominant role in explaining within biome soil and vegetation characteristics across all the biomes. Preliminary results indicate absence of effects beyond climate-soil-vegetation co-evolution in explaining the ratio of annual total minimum

  9. Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA

    USGS Publications Warehouse

    Bailey, E.A.; Gray, J.E.; Theodorakos, P.M.

    2002-01-01

    We chemically analysed vegetation (willow and alder) and soil samples collected at three abandoned mercury (Hg) mines and at background sites in southwestern Alaska and compared Hg concentrations, speciation and distribution. Total Hg and methylmercury (MeHg) concentrations were higher in vegetation and soil samples from all the mine sites compared to samples from the background sites, but there was no correlation between total-Hg concentrations in vegetation and total-Hg concentrations in soil or between total-Hg and MeHg concentrations. However, the percent MeHg of the total Hg was higher in samples from the background sites compared to samples from the mine sites and is higher in vegetation samples than in corresponding soil samples. The percent MeHg is an order of magnitude higher in the willow samples than in corresponding alder or soil samples. The percent of divalent Hg [Hg(II)] is highest in soil samples from the retort and background areas. The higher percent MeHg in vegetation and soil in samples from background sites may be explained by the higher proportions of reactive Hg species, such as Hg(II), at these sites compared to the surface mined and tailings areas where most of the Hg is in the elemental and cinnabar (HgS) forms. Dissolved gaseous Hg species are more readily accumulated in vegetation and are more readily methylated than solid phases like HgS and liquid Hg.

  10. Patterns and Processes in Southwestern shrublands and grasslands: role of vegetation, soil- geomorphology, and overland flow

    NASA Astrophysics Data System (ADS)

    Bedford, D. R.; Small, E. E.; E, T. G.

    2007-12-01

    Pattern of variable soil properties have been linked to vegetation as well as soil-landform characteristics and processes. It has been long hypothesized that patterns of infiltration and overland flow play key roles in arid and semi-arid region ecohydrology. Specifically, the process of redistribution of water and sediments have been linked to vegetation related feedbacks that enable persistence of vegetation in water limited environments. Yet, the processes of redistribution, such as through runoff and surface ponding, have been poorly described or documented. We have documented that the spatial pattern of soil properties is dependant on the vegetation pattern as well as the type of, and in some cases location within a, landform. These patterns are likely due to feedbacks between vegetation and the surface processes that affect soil properties and therefore water availability. In this paper, we present observations and numerical simulation that show how patterns of overland flow and infiltration are affected by vegetation-topography related patterns of soil properties. We have developed a numerical model that works on 10 cm grid cells that can inform on the processes of infiltration and overland flow over continuously varying soil properties. We use this model to show how the patterns of soil properties affect runoff, as well as the conditions under which redistribution via runon and ponding can occur. Furthermore, we show using data from a central New Mexico grassland and shrubland, and an eastern Mojave Desert shrubland how climatic differences can affect the patterns of infiltration and runoff.

  11. Pesticides in western Canadian mountain air and soil.

    PubMed

    Daly, Gillian L; Lei, Ying D; Teixeira, Camilla; Muir, Derek C G; Wania, Frank

    2007-09-01

    The distribution of organochlorine pesticides (OCP; in past and current use) in the mountains of western Canada was determined by sampling air, soil, and lichen along three elevational transects in 2003-2004. Two transects west of the Continental Divide were located in Mount Revelstoke and Yoho National Park, while the Observation Peak transect in Banff National Park is east of the divide. XAD-based passive air samplers, yielding annually averaged air concentrations, were deployed, and soils were collected at all 22 sampling sites, whereas lichen were only sampled in Revelstoke. Back trajectory analysis showed limited air mass transport from the Prairies to the east, but a high frequency of air arriving from the southwest, which includes agricultural regions in British Columbia and Washington State. Endosulfan, dieldrin, and a-hexachlorocyclohexane were the most prevalent OCPs in air and soil; hexachlorobenzene was only abundant in air; chlorothalonil, dacthal, and pentachloronitrobenzene were also consistently present. OCP air concentrations were similar across the three transects, suggesting efficient atmospheric mixing on a local and regional scale. Soil concentrations and soil/air concentration ratios of many OCPs were significantly higher west of the Continental Divide. The soil and lichen concentrations of most OCPs increased with altitude in Revelstoke, and displayed maxima at intermediate elevations at Yoho and Observation Peak. These distribution patterns can be understood as being determined by the balance between atmospheric deposition to, and retention within, the soils. Higher deposition, due to more precipitation falling at lower temperatures, likely occurs west of the divide and at higher elevations. Higher retention, due to higher soil organic matter content, is believed to occur in soils below the tree line. Highest pesticide concentrations are thus found intemperate mountain soils that are rich in organic matter and receive large amounts of cold

  12. Role of native and exotic woody vegetation in soil restoration in active gully systems (southern Ecuador)

    NASA Astrophysics Data System (ADS)

    Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard

    2015-04-01

    Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active

  13. Remote sensing of vegetation and soil using microwave ellipsometry

    NASA Technical Reports Server (NTRS)

    Auer, S. O.; Schutt, J. B. (Inventor)

    1977-01-01

    A method is described of determining vegetation height and water content of vegetation from the intensity and state of elliptical polarization of a reflected train of microwaves. The method comprises the steps of reflecting a circularly polarized train of microwaves from vegetation at a predetermined angle of incidence and detecting the reflected train of microwaves. The ratio of the intensities of the electric field vector components is determined, the phase difference of the components is measured, and the refractive index and thickness of the layer of vegetation are computed from a formula. The refractive index is given essentially by the water content of the vegetation.

  14. TECHNOLOGY ASSESSMENT OF SOIL VAPOR EXTRACTION AND AIR SPARGING

    EPA Science Inventory

    Air sparging, also called "in situ air stripping and in situ volatilization" injects air into the saturated zone to strip away volatile organic compounds (VOCs) dissolved in groundwater and adsorbed to soil. hese volatile contaminants transfer in a vapor phase to the unsaturated ...

  15. Bioremediation of petroleum contaminated soil using vegetation. A microbial study

    SciTech Connect

    Lee, E.; Banks, M.K. )

    1993-12-01

    The degradation of selected petroleum hydrocarbons in the rhizosphere of alfalfa was investigated in a greenhouse experiment. Petroleum contaminated and uncontaminated soils were spiked with 100 ppm of polynuclear aromatic and aliphatic hydrocarbons. Unspiked, uncontaminated soil was used as a control. Microbial counts for soils with and without plants for each soil treatment were performed 4, 8, 16, and 24 weeks after planting. Microbial numbers were substantially greater in soil with plants when compared to soil containing no plants, indicating that plant roots enhanced microbial populations in contaminated soil. Soil treatments had no effect on microbial numbers in the presence of plants. 12 refs., 3 figs., 1 tab.

  16. Measuring and modelling water related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2013-08-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objectives of this study are to test the potential of integrated non invasive geophysical methods and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  17. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2014-03-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil-vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  18. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    PubMed

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump. PMID:27337909

  19. Microwave Dielectric Properties of Soil and Vegetation and Their Estimation From Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; McDonald, Kyle C.

    1996-01-01

    This paper is largely tutorial in nature and provides an overview of the microwave dielectric properties of certain natural terrestrial media (soils and vegetation) and recent results in estimating these properties remotely from airborne and orbital synthetic aperture radar (SAR).

  20. Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Tellers, T. E.

    1982-01-01

    The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.

  1. A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Sawada, Yohei; Koike, Toshio; Walker, Jeffrey P.

    2015-06-01

    Despite the importance of the coupling between vegetation dynamics and root-zone soil moisture in land-atmosphere interactions, there is no land data assimilation system (LDAS) that currently addresses this issue, limiting the capacity to positively impact weather and seasonal forecasting. We develop a new LDAS that can improve the skill of an ecohydrological model to simulate simultaneously surface soil moisture, root-zone soil moisture, and vegetation dynamics by assimilating passive microwave observations that are sensitive to both surface soil moisture and terrestrial biomass. This LDAS first calibrates both hydrological and ecological parameters of a land surface model, which explicitly simulates vegetation growth and senescence. Then, it adjusts the model states of soil moisture and leaf area index (LAI) sequentially using a genetic particle filter. We can adjust the subsurface soil moisture, which is not observed directly by satellites, because we simulate the interactions between vegetation dynamics and subsurface water dynamics. From a point-scale evaluation, we succeed in improving the performance of our land surface model and generate ensembles of the model state whose distribution reflects the combined information in the land surface model and satellite observations. We show that the adjustment of the subsurface soil moisture significantly improves the capacity to simulate vegetation dynamics in seasonal forecast timescales. This LDAS can contribute to the generation of ensemble initial conditions of surface and subsurface soil moisture and LAI for a probabilistic framework of weather and seasonal forecasting.

  2. Evaluating Soil Compaction for an Annual Winter Grazing/Vegetable Production Rotation in North-Central

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degraded soils of Alabama have demonstrated the ability to respond well to conservation tillage in a large variety of crops. Winter annual grazing/sod-based rotations with summer vegetable production can offer reduced economic risks for producers but may change tillage requirements for vegetable pro...

  3. Roadside vegetation barrier designs to mitigate near-road air pollution impacts.

    PubMed

    Tong, Zheming; Baldauf, Richard W; Isakov, Vlad; Deshmukh, Parikshit; Zhang, K Max

    2016-01-15

    With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; however, the characteristics of these barriers needed to ensure pollution reductions are not well understood. Designing vegetation barriers to mitigate near-road air pollution requires a mechanistic understanding of how barrier configurations affect the transport of traffic-related air pollutants. We first evaluated the performance of the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model with Large Eddy Simulation (LES) to capture the effects of vegetation barriers on near-road air quality, compared against field data. Next, CTAG with LES was employed to explore the effects of six conceptual roadside vegetation/solid barrier configurations on near-road size-resolved particle concentrations, governed by dispersion and deposition. Two potentially viable design options are revealed: a) a wide vegetation barrier with high Leaf Area Density (LAD), and b) vegetation-solid barrier combinations, i.e., planting trees next to a solid barrier. Both designs reduce downwind particle concentrations significantly. The findings presented in the study will assist urban planning and forestry organizations with evaluating different green infrastructure design options. PMID:26457737

  4. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  5. Monitoring metals in the vicinity of a municipal waste incinerator: temporal variation in soils and vegetation.

    PubMed

    Meneses, M; Llobet, J M; Granero, S; Schuhmacher, M; Domingo, J L

    1999-02-01

    The aim of this study was to determine the temporal variation in the concentrations of arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), mercury (Hg), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) in soil and vegetation near an old municipal solid waste incinerator (MSWI). In October 1997, 24 soil and 24 herbage samples were collected at the same sampling points in which samples were also taken in October 1996. With the exception of an increase in the levels of Be and Ni, no significant differences in soils between both surveys were found; only Cr and V (decreases) and Hg (increase) showed significant variations in herbage samples during the last year. The concentrations of most elements in soil and vegetation samples collected near the MSWI are within the ranges previously reported for soil and vegetation in the vicinity of MSWIs. PMID:10085565

  6. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  7. [Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area].

    PubMed

    Kang, Bing; Liu, Shi-rong; Cai, Dao-xiong; Lu, Li-hua; He, Ri-ming; Gao, Yan-xia; Di, Wei-zhi

    2010-10-01

    This paper studied the change of soil physical and chemical properties under eleven vegetation restoration patterns (1 kind of secondary forest, 2 kinds of pure coniferous plantations, 5 kinds of evergreen broad-leaved plantations, 2 kinds of conifer and broad-leaved mixed plantations, and 1 kind of shrub) typical in Daqingshan of Guangxi. Obvious differences were observed in the soil physical and chemical properties under different vegetation restoration patterns. The soil physical properties were better in secondary forest but poorer in pure conifer plantations. Conifer and broad-leaved mixed plantations had lower soil bulk density, and their soil total porosity and water-holding capacity were higher than those in pure plantations. There were no significant differences in the soil porosity among the 5 evergreen broad-leaved plantations. Except that of soil total K, the contents of soil nutrients in secondary forest were higher than those in plantations, and the soil C/N ratio and pH value were relatively lower. Comparing with shrub, the 9 plantations had an obvious change in their soil nutrient contents, e. g. , the increase of soil total N and available K. The 2 pure coniferous plantations had lower soil nutrient contents, but after mixed planted with evergreen broad-leaved trees, their soil nutrient contents increased markedly, and the soil C/N ratio decreased. PMID:21328932

  8. Multi-discipline resource inventory of soils, vegetation and geology

    NASA Technical Reports Server (NTRS)

    Simonson, G. H. (Principal Investigator); Paine, D. P.; Lawrence, R. D.; Norgren, J. A.; Pyott, W. Y.; Herzog, J. H.; Murray, R. J.; Rogers, R.

    1973-01-01

    The author has identified the following significant results. Computer classification of natural vegetation, in the vicinity of Big Summit Prairie, Crook County, Oregon was carried out using MSS digital data. Impure training sets, representing eleven vegetation types plus water, were selected from within the area to be classified. Close correlations were visually observed between vegetation types mapped from the large scale photographs and the computer classification of the ERTS data (Frame 1021-18151, 13 August 1972).

  9. IMPACT OF AIR POLLUTION ON VEGETATION NEAR THE COLUMBIA GENERATING STATION - WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was u...

  10. Temporal variations in soil moisture for three typical vegetation types in inner Mongolia, northern China.

    PubMed

    Zheng, Hao; Gao, Jixi; Teng, Yanguo; Feng, Chaoyang; Tian, Meirong

    2015-01-01

    Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area. PMID:25781333

  11. Temporal Variations in Soil Moisture for Three Typical Vegetation Types in Inner Mongolia, Northern China

    PubMed Central

    Zheng, Hao; Gao, Jixi; Teng, Yanguo; Feng, Chaoyang; Tian, Meirong

    2015-01-01

    Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area. PMID:25781333

  12. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  13. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Burton, K. W.; Georg, R. B.; West, A. J.; Guicharnaud, R. A.; Sigfusson, B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.

    2014-01-01

    Understanding the biogeochemical cycle of magnesium (Mg) is not only crucial for terrestrial ecology, as this element is a key nutrient for plants, but also for quantifying chemical weathering fluxes of Mg and associated atmospheric CO2 consumption, requiring distinction of biotic from abiotic contributions to Mg fluxes exported to the hydrosphere. Here, Mg isotope compositions are reported for parent basalt, bulk soils, clay fractions, exchangeable Mg, seasonal soil solutions, and vegetation for five types of volcanic soils in Iceland in order to improve the understanding of sources and processes controlling Mg supply to vegetation and export to the hydrosphere. Bulk soils (δ26Mg = -0.40 ± 0.11‰) are isotopically similar to the parent basalt (δ26Mg = -0.31‰), whereas clay fractions (δ26Mg = -0.62 ± 0.12‰), exchangeable Mg (δ26Mg = -0.75 ± 0.14‰), and soil solutions (δ26Mg = -0.89 ± 0.16‰) are all isotopically lighter than the basalt. These compositions can be explained by a combination of mixing and isotope fractionation processes on the soil exchange complex. Successive adsorption-desorption of heavy Mg isotopes leads to the preferential loss of heavy Mg from the soil profile, leaving soils with light Mg isotope compositions relative to the parent basalt. Additionally, external contributions from sea spray and organic matter decomposition result in a mixture of Mg sources on the soil exchange complex. Vegetation preferentially takes up heavy Mg from the soil exchange complex (Δ26Mgplant-exch = +0.50 ± 0.09‰), and changes in δ26Mg in vegetation reflect changes in bioavailable Mg sources in soils. This study highlights the major role of Mg retention on the soil exchange complex amongst the factors controlling Mg isotope variations in soils and soil solutions, and demonstrates that Mg isotopes provide a valuable tool for monitoring biotic and abiotic contributions of Mg that is bioavailable for plants and is exported to the hydrosphere.

  14. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    PubMed

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions. PMID:25475118

  15. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    PubMed

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (< or = 1 mm in diameter) played effective roles on the improvement of soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots. PMID:17552181

  16. Effect of vegetation on rock and soil type discrimination

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Goetz, A. F. H.

    1977-01-01

    The effect of naturally occurring vegetation on the spectral reflectance of earth materials in the wavelength region of 0.45 to 2.4 microns is determined by computer averaging of in situ acquired spectral data. The amount and type of vegetation and the spectral reflectance of the ground are considered. Low albedo materials may be altered beyond recognition with only ten per cent green vegetation cover. Dead or dry vegetation does not greatly alter the shape of the spectral reflectance curve and only changes the albedo with minimum wavelength dependency. With increasing amounts of vegetation the Landsat MSS band ratios 4/6, 4/7, 5/6, and 5/7 are significantly decreased whereas MSS ratios 4/5 and 6/7 remain entirely constant.

  17. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  18. Combined effect of soil erosion and climate change induces abrupt changes in soil and vegetation properties in semiarid Mediterranean shrublands.

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio

    2013-04-01

    Semiarid Mediterranean ecosystems are experiencing major alterations as a result of the complex interactions between climatic fluctuations and disturbances caused by human activities. Future scenarios of global change forecast a rapid degradation of these ecosystems, with a reduction of their functionality, as a result of changes in relevant vegetation and soil properties. Some theoretical models indicate that these ecosystems respond non-linearly to regular variations in the external conditions, with an abrupt shift when conditions approach a certain critical level or threshold. Considering these predictions, there is an urgent need to know the effects that these alterations might have on semi-arid ecosystems and their components. In this study, we aim at analyzing the consequences of climate change and increasing soil erosion on soil and vegetation properties and the functional dynamics of semiarid Mediterranean shrublands. We predict that the combined effect of both drivers will be additive or synergistic, increasing the negative effects of each one. We compared vegetation and soil properties of flat areas (low erosion) and steep hillslopes (high erosion) in two climatic areas (484 mm and 10.3°C, and 368mm and 11.9°C, respectively) that reproduce the predicted climate change in temperature and precipitation for the next 40 years. Species richness, vegetal cover, plant life-form composition were determined in 20 m2 plots and soil was sampled in the same plots to determine bulk density, aggregate stability, fertility and water holding capacity. All soil and vegetation properties were negatively affected by soil erosion and climate change. However, contrary to our hypothesis, the joined effect of both drivers on all soil and vegetation properties was antagonistic, except for the vegetal cover that showed an additive response to their interaction. Our results evidence that soil erosion affects more negatively the soil and vegetation properties in the cooler and

  19. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  20. The impact of Precipitation and Grassland Vegetation on Soil Moisture Dynamics

    NASA Astrophysics Data System (ADS)

    Salve, R.; Sudderth, E. A.; St. Clair, S. B.; Torn, M. S.

    2009-12-01

    The primary objective of this study was to assess the impact of grassland vegetation and precipitation (defined by the temporal pattern of water deposition and cumulative rainfall) on near-surface hydrology. Using a randomized block design experiment in a greenhouse, we monitored soil-moisture dynamics in mesocosms planted with three types of grassland vegetation found in California (mixed California grassland, avena grass monoculture, and erodium forb monoculture). We observed that above ground biomass production was strongly influenced by rainfall amount, with most productivity in the mid-level rainfall treatment. Soil moisture content (SMC) was best predicted by rainfall, stage of plant growth, and the interaction between these two parameters. Surprisingly, SMC did not depend on species composition of the grassland. The role of ET in drying the soil was influenced by the interaction between growth stage and rainfall, and to a lesser extend by the interaction between vegetation type and growth stage. When combined, seasonal precipitation and vegetation influenced the near-surface hydrology in ways that cannot be predicted from manipulation of a single variable. These results emphasize the importance of the interactive effects of precipitation and vegetation on soil moisture dynamics, and the potential for feedbacks since soil moisture affects vegetation. This study was supported by the Program for Ecosystem Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. [Characteristics of soil microelements contents in the rhizospheres of different vegetation in hilly-gully region of Loess Plateau].

    PubMed

    Zhang, Chao; Liu, Guo-Bin; Xue, Sha; Zhang, Chang-Sheng

    2012-03-01

    To explore the rhizosphere effect of the microelements in the soils under different vegetation types in Loess Plateau, this paper analyzed the organic C, total N, Mn, Cu, Fe, and Zn contents in the rhizosphere soil and bulk soil of six vegetation types in hilly-gully region of Loess Plateau. Among the six vegetation types, Caragana korshinskii, Heteropappus altaicus, and Artemisia capillaries had higher organic C and total N contents in rhizosphere soil than in bulk soil. With the exception of C. korshinskii and H. rhamnoides, all the six vegetation types had a significantly lower pH in rhizosphere soil than in bulk soil. The six vegetation types had a lower available Mn content in rhizosphere soil than in bulk soil, and the C. korshinskii, Astragalus adsurgen, and Panicum virgatum had a significantly higher available Cu content in rhizosphere soil than in bulk soil. The six vegetation types except A. adsurgens had a slightly higher available Fe content in rhizosphere soil than in bulk soil, and A. adsurgens, P. virgatum, H. altaicus, and A. capillaries had a significant accumulation of available Zn in rhizosphere soil. There existed significant positive correlations between the rhizosphere soil and bulk soil of the six vegetation types in the relationships between the organic C and total N contents and the available Mn and Zn contents and between the contents of available Mn and Zn. In rhizosphere soil, available Mn and Zn contents were significantly negative- ly correlated with pH value. Due to the differences in root growth characteristics, rhizosphere pH value, and microbial structure composition, the microelements contents in the rhizosphere soil of the six vegetation types differed, with the contents of Mn, Cu, Fe, and Zn being higher in the rhizosphere soil of H. altaicus than in that of the other vegetation types. PMID:22720606

  2. Remote measurement of soil moisture over vegetation using infrared temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.

    1991-01-01

    Better methods for remote sensing of surface evapotranspiration, soil moisture, and fractional vegetation cover were developed. The objectives were to: (1) further develop a model of water movement through the soil/plant/atmosphere system; (2) use this model, in conjunction with measurements of infrared surface temperature and vegetation fraction; (3) determine the magnitude of radiometric temperature response to water stress in vegetation; (4) show at what point one can detect that sensitivity to water stress; and (5) determine the practical limits of the methods. A hydrological model that can be used to calculate soil water content versus depth given conventional meteorological records and observations of vegetation cover was developed. An outline of the results of these initiatives is presented.

  3. An overview of research on the beneficial effects of vegetation in contaminated soil.

    PubMed

    Erickson, L E

    1997-11-21

    Vegetation can enhance in situ bioremediation processes in many applications. Microbial transformations occur in soil and water external to plant roots. Organic contaminants also enter vegetation and are transformed within plants. Research progress is reviewed with emphasis on recent experimental results and mathematical models of contaminant fate in systems where vegetation is present. Plant evapotranspiration provides a solar driven pump-and-treat system which moves contaminants to the rhizosphere and helps to contain them on site. Significant savings have been reported at several field sites where vegetation has been utilized. PMID:9472312

  4. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  5. Influence of Vegetations' Metabolites on the Composition and Functioning of Soil Microbial Complex

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail

    2013-04-01

    Microbiota is one of the major factors of soils fertility. It transforms organic substances in soil and, therefore, serves as the main component in the cycles of carbon and nitrogen. Microbial communities (MC) are characterized as highly diverse and extremely complex structures. This allows them to adapt to any affection and provide all the necessary biospheric functions. Hence, the study of their functional diversity and adaptivity of microbiota provides the key to the understanding of the ecosystems' functioning and their adaptivity to the human impact. The formation of MC at the initial stage is regulated by the fluxes of substrates and biologically active substances (BAS), which vary greatly in soils under different vegetations. These fluxes are presented by: low molecular weights organic substances (LMWOS), which can be directly included in metabolism of microbes; polymers, that can be decomposed to LMWOS by exoenzymes; and more complex compounds, having different "drug effects" (e.g. different types of phenolic acids) and regulating growth and enzymatic properties of microbiota. Therefore, the main hypothesis of the research was formulated as follows: penetration of different types of substrates and BAS into soil leads to the emergence of MC varying in enzymatic properties and structure. As a soil matrix we used the soil from the untreated variant of the lysimeter model experiment taking place in the faculty of Soil Science of the MSU for over the last 40 years. It was sieved with a 2mm sieves, humidified and incubated at 25C during one week. Subsequently, the samples were air-dried with occasional stirring for one more week. Thereafter, aliquots of the prepared soil were taken for the different experimental variants. The samples were rewetted with solutions of various substrates (glucose, cellulose, starch, etc.) and thoroughly mixed. The control variant was established with addition of deionised water. The samples were incubated at the 25C. During the

  6. Soil erosion-vegetation interactions in Mediterranean-dry reclaimed mining slopes

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Merino-Martín, Luis; Espigares, Tíscar; Nicolau, José M.

    2014-05-01

    Mining reclamation in Mediterranean-dry environments represents a complex task. Reclaimed mining slopes are particularly vulnerable to the effects of accelerated soil erosion processes, especially when these processes lead to the formation of rill networks. On the other hand, encouraging early vegetation establishment is perceived as indispensable to reduce the risk of degradation in these man-made ecosystems. This study shows a synthesis of soil erosion-vegetation research conducted in reclaimed mining slopes at El Moral field site (Teruel coalfield, central-east Spain). Our results highlight the role of rill erosion processes in the development of reclaimed ecosystems. Runoff routing is conditioned by the development of rill networks, maximizing the loss of water resources at the slope scale by surface runoff and altering the spatial distribution of soil moisture. As a result, the availability of water resources for plant growth is drastically reduced, affecting vegetation development. Conversely, vegetation exerts a strong effect on soil erosion: erosion rates rapidly decrease with vegetation cover and no significant rill erosion is usually observed after a particular cover threshold is reached. These interactive two-way vegetation-soil erosion relationships are further studied using a novel modeling approach that focuses on stability analysis of water-limited reclaimed slopes. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. This stability-analysis also facilitates the determination of threshold values for both vegetation cover and rill erosion that drive the long-term reclamation results, assisting the identification of critical situations that require specific human

  7. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  8. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J. (Principal Investigator)

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation.

  9. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in Landsat MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS5 and MSS6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation. Previously announced in STAR as N83-14567

  10. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    PubMed

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content. PMID:19209632

  11. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Gould, W. I.; Glazar, W. S.; Fuchs, J. E.; Mcmurtrey, J. E., III

    1982-01-01

    An experiment on soil moisture remote sensing was conducted during July to September 1981 on bare, grass, and alfalfa fields at frequencies of 0.6, 1.4, 5.0, and 10.6 GHz with radiometers mounted on mobile towers. The results confirm the frequency dependence of sensitivity reduction due to the presence of vegetation cover. For the type of vegetated fields reported here, the vegetation effect is appreciable even at 0.6 GHz. Measurements over bare soil show that when the soil is wet, the measured brightness temperature is lowest at 5.0 GHz and highest at 0.6 GHz, a result contrary to the expectation based on the estimated dielectric permittivity of soil-water mixtures and the current radiative transfer model in that frequency range.

  12. Heterogeneity as an index of anthropogenic disturbance of soil and vegetation in urban Parks

    NASA Astrophysics Data System (ADS)

    Zhevelev, H.; Sarah, P.

    2012-04-01

    The conditions of urban ecosystems depend on a wide range of anthropogenic factors, one of which is visitor pressure on urban parks. This study aims: (1) to analyze soil properties and vegetation characteristics of different open areas, and (2) to determine an index of disturbance for these areas, according to their spatial heterogeneity. The study was conducted in Tel-Aviv, and addressed two scales: (1) Land Use Units (municipal parks and vacant lots); and (2) Microenvironment (under tree, under bush, herbaceous area, lawn, and path). In each type of microenvironment, soil was sampled at seven points, from layers at two depths (0-2 and 5-10 cm). Before the sampling, penetration depth, litter biomass and vegetation characteristics (vegetation cover, number of species, and vegetation height) were determined in the field. In each soil sample gravimetric soil moisture and organic matter contents were determined, and pH, electrical conductivity and soluble-ion contents were measured in a 1:1 water extraction. The level of disturbance by visitors was scored for each microenvironment according to field evidence of trampling, such as lack of vegetation cover and litter biomass. The results show strong differences in soil properties among the various microenvironments: penetration depth ranged from a few millimeters up to ~ 3 cm; organic matter content from less than 1% to 10%; soil moisture content from a few percents to ~ 30%; electrical conductivity from ~ 0.3 to ~2 dS/m; sodium content from ~ 1 to 7.5 meq/kg; chlorine content from ~ 0.5 to ~9 meq/kg; and litter biomass from 0.5 to 1.4 kg/m2. The vegetation characteristics also varied among the microenvironments: vegetation cover ranged from 11 to 99 %; number of species from 2 to11; and vegetation height from 5 to 35 cm. In order to assess the level of heterogeneity of soil and vegetation, an integral index, based on the number of Duncan groups, has been calculated. Regarding the Scale of Land Use unit, it was found

  13. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  14. The Effects of Drought on Predictions of Air Quality in Texas: Vegetation and Biogenic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    McDonald-Buller, E.; Huang, L.; McGaughey, G.; Kimura, Y.; Allen, D.

    2014-12-01

    Biogenic hydrocarbons, primarily isoprene and monoterpenes, are important precursors for tropospheric ozone and secondary organic aerosol formation. Annual biogenic emissions in Texas ranked first within the continental United States in the 2011 National Emission Inventory. In recent years, the effects of drought in Texas have been among the most severe in the southern United States; during 2011, more than 80% of the state was under exceptional drought. Understanding the effects of drought on vegetation and biogenic emissions is important as the state concurrently faces requirements to achieve and maintain attainment with the National Ambient Air Quality Standard (NAAQS) for ozone in several large metropolitan areas. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been utilized extensively for the estimation of biogenic emissions on global and regional scales. This research investigates the interannual variability in leaf area index and isoprene and monoterpene emissions estimates from MEGAN in eastern Texas climate regions with diverse climatology and land cover. In MEGAN, the adjustment to emissions from a standardized set of environmental conditions is determined using a multiplication of individual activity factors for leaf age, soil moisture, and the canopy environment. The research also interprets and quantifies differences in environmental activity factors between years with extreme to exceptional drought and average to above average precipitation in eastern Texas and identifies influences on biogenic emissions estimates from MEGAN.

  15. Soil carbon storage and temperature sensitivity associated with shrub and graminoid vegetation in Kangerlussuaq, Greenland

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Petrenko, C. L.; Friedland, A. J.; Virginia, R. A.

    2014-12-01

    The Arctic tundra is experiencing rapid change, including warming temperatures, shrub expansion and shifts in precipitation patterns. Environmental conditions and vegetation cover are strong controls on soil carbon storage, respiration, and temperature sensitivity of decomposition. Temperature control of soil organic matter processing is particularly important in permafrost soils, which contain more than two times the carbon in the atmosphere and exist at the freeze-thaw threshold. To investigate sensitivity of decomposition to abiotic controls in a heterogeneous landscape, we conducted a laboratory incubation experiment on mineral soils collected in shrub and graminoid vegetation types near Kangerlussuaq, Greenland. We crossed temperature and moisture treatments and measured soil respiration rates over a seven-week incubation period. We measured soil carbon and nitrogen concentrations through elemental analysis and conducted sequential chemical extractions to measure carbon fractions and quantify soil carbon quality. Results show soils overlain by graminoids have higher carbon concentrations at shallow depth and respiration rates than soils overlain by shrub (mean ± 1 s.e. organic carbon concentration, 0-10 cm: graminoid = 68.7 ± 8.1 mg C * g soil-1, shrub = 48.8 ± 2.9 mg C * g soil-1). Temperature sensitivity was higher in graminoid soils, with no effect from soil moisture level. Carbon fractions and quality varied by vegetation type and profile depth. This study informs our understanding of the relationship between carbon quality and the temperature and moisture sensitivity of decomposition in western Greenland and demonstrates the importance of landscape heterogeneity in understanding soil carbon response to environmental drivers.

  16. Integrated Field Lysimetry and Porewater Sampling for Evaluation of Chemical Mobility in Soils and Established Vegetation

    PubMed Central

    Gannon, Travis W.; Polizzotto, Matthew L.

    2014-01-01

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment. PMID:25045915

  17. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the <2 mm mesh in order to remove the coarse material. Subsequently were placed in petri dishes and exposed to a controlled laboratory environment (temperature of 20C and 50% of air relative humidity) for one week to avoid potential impacts of the atmospheric conditions on SWR (Doerr, 1998). The persistence of SWR was measured using the water drop penetration time (WDPT) (Wessel, 1998). The classification of WDPT was according to Bisdom et al. (1993) <5 (wettable), 5-60 (slightly water repellent), 60-600 (strongly water repellent), 600-3600 (severely water repellent) and >3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, p<0.001). The WDPT soil median values collected under Pine, Birch, Penduculate Oak, forest trails and soils from planted grass were significantly higher than Platanus

  18. Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China

    PubMed Central

    Zeng, Quanchao; Dong, Yanghong; An, Shaoshan

    2016-01-01

    Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation

  19. Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China.

    PubMed

    Zeng, Quanchao; Dong, Yanghong; An, Shaoshan

    2016-01-01

    Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation

  20. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    PubMed

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction. PMID:24308243

  1. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils.

    PubMed

    Nabulo, G; Young, S D; Black, C R

    2010-10-15

    Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a 'hazard quotient' (HQ(M)), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking. PMID:20739044

  2. Uptake of 137Cs by Leafy Vegetables and Grains from Calcareous Soils

    SciTech Connect

    Robison, W; Hamilton, T; Conrado, C; Kehl, S

    2004-04-19

    Cesium-137 was deposited on Bikini Island at Bikini Atoll in 1954 as a result of nuclear testing and has been transported and cycled in the ecosystem ever since. Atoll soils are of marine origin and are almost pure CaCO{sub 3} with high concentrations of organic matter in the top 40 cm. Data from previous experiments with mature fruit trees show very high transfer factors (TF's), [Bq g{sup -1} plant/ Bq g{sup -1} soil, both in dry weight] into fruits from atoll calcareous soil. These TF's are much higher than reported for continental, silica-based soils. In this report TF's for 5 types of leafy vegetable crops and 2 types of grain crops are provided for use in predictive dose assessments and for comparison with other data from other investigators working with other types of soil in the IAEA CRP ''The Classification of Soil Systems on the Basis of Transfer Factors of Radionuclides from Soil to Reference Plants''. Transfer factors for plants grown on calcareous soil are again very high relative to clay-containing soils and range from 23 to 39 for grain crops and 21 to 113 for leafy vegetables. Results from these experiments, in this unique, high pH, high organic content, low potassium (K) soil, provide a boundary condition for models relating soil properties to TF.

  3. Effect of Soil and Vegetation Heterogeneity on Runoff in a Semi-arid Grassland

    NASA Astrophysics Data System (ADS)

    Bedford, D. R.; Small, E. E.; Tucker, G. E.; Pockman, W. T.

    2006-12-01

    Vegetation in drylands is typically patchy, and surface soil properties tend to covary with this pattern. For example, infiltration rates tend to be relatively high under plant canopies, and decrease as a function of distance away from canopies. Vegetation also tends to exist on raised mounds of microtopography, and adjacent interspaces are topographically lower as a function of distance from vegetation patches. These patterns will clearly affect the locations where overland flow is generated and how it is routed on the landscape. Predicting soil erosion from overland flow therefore requires the ability to quantify how vegetation and soil properties covary over small-scales (i.e. decimeter to tens of meters). We use a two-dimensional numerical model that simulates overland flow using spatially variable vegetation, microtopography, and infiltration (saturated conductivity). We use a diffusion wave approximation for the shallow overland flow equations and green-ampt infiltration dynamics to simulate overland flow and infiltration at 5-cm grid cells. We calibrate unknown parameters such as roughness, and test the model with known spatial fields of surface properties and observed rainfall and runoff from eight ~100 m2 plots at the Sevilleta LTER in Central New Mexico. We interpolate measured surface properties with cokriging determined by geostatistical relationships to the vegetation pattern. We measure rainfall with tipping buckets and runoff at 5-second resolution from runoff gutters and flumes below the gently sloped grassland plots. Experiments indicate that bulk runoff volume is approximated as a function of surface depression volume and the mean and variance of microtopography and infiltration. We then simulate overland flow and erosion on plots that have experienced three years of vegetation reduction due to enforced drought in a controlled experiment. We quantify change in vegetation cover and pattern, and show how runoff discharge and patterns of overland

  4. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  5. Influence of vegetation spatial heterogeneity on soil enzyme activity in burned Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Mayor, Á. G.; Goirán, S.; Bautista, S.

    2009-04-01

    Mediterranean ecosystems are commonly considered resilient to wildfires. However, depending on fire severity and recurrence, post-fire climatic conditions and plant community type, the recovery rate of the vegetation can greatly vary. Often, the post-fire vegetation cover remains low and sparsely distributed many years after the wildfire, which could have profound impacts on ecosystem functioning. In this work, we studied the influence of vegetation patchiness on soil enzyme activity (acid phosphatase, β-glucosidase and urease), at the patch and landscape scales, in degraded dry Mediterranean shrublands affected by wildfires. At the patch scale, we assessed the variation in soil enzyme between bare soils and vegetation patches. At the landscape scale, we studied the relationships between soil enzyme activity and various landscape metrics (total patch cover, average interpatch length, average patch width, and patch density). The study was conducted in 19 sites in the Valencia Region (eastern Spain), which had been affected by large wildfires in 1991. Site selection aimed at capturing a wide range of the variability of post-fire plant recovery rates in Mediterranean areas. The activities of the three enzymes were significantly higher in soils under the vegetation canopies than in adjacent bare areas, which we attributed to the effect of plants on the soil amount of both enzyme substrates and enzymes. The differences between bare and plant microsites were larger in the case of the acid phosphatase and less marked for urease. The activity of acid phosphatase was also higher under patches of resprouter species than under patches of seeder species, probably due to the faster post-fire recovery and older age of resprouter patches in fire-prone ecosystems. Soil enzyme activities of β-glucosidase and urease in both bare soils and vegetation patches showed no relationships with any of the landscape metrics analysed. However, the activity of acid phosphatase increased

  6. Can SMAP radar observations be used to determine vegetation moisture status and root zone soil moisture?

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Friesen, J.; van de Giesen, N.

    2010-12-01

    Recently, large differences in backscatter between the ascending (evening) and descending (morning) tracks of the wind scatterometer onboard the ERS-1 and ERS-2 satellites have been identified in times and locations of vegetation water stress. This suggests that vegetation might be considered as a source of information rather than a barrier to soil moisture retrieval. The goal here is to develop a quantitative relationship between the magnitude of the diurnal variation in backscatter and the vegetation water status. In turn, this will lead to information on the availability of water in the root zone. Diurnal variation in the backscatter response of vegetation was identified as early as the 1970s and was first observed from space in Seasat-1 scatterometer data in 1982. Subsequent field and laboratory experiments, primarily those of Ulaby and McDonald, have demonstrated that the variation is largely driven by changes in the dielectric properties of vegetation, which in turn depend on vegetation moisture content, sap chemistry and temperature. The magnitude of the diurnal variation in dielectric constant varies considerably within the vegetation itself. Furthermore, the contribution of individual vegetation components to backscatter depends on polarization and frequency. A combination of microwave theory and a numerical study will be used to argue that the morning and evening passes of the L-band radar on the SMAP satellite could be combined to yield information on vegetation water stress and root zone soil moisture. An innovative data assimilation strategy will be presented that could be used to merge the SMAP radar observations with a microwave backscatter model and a resistance-capacitance model to estimate vegetation moisture status and infer root zone soil moisture.

  7. SOIL AIR CARBON DIOXIDE CONCENTRATIONS IN A NEW ENGLAND SPRUCE-FIR FORESTS

    EPA Science Inventory

    Research and modeling efforts to evaluate soil-soil solution chemical interactions must take into account solution equilibria with soil air CO2. Measurements of soil air CO2 and soil temperature were made in the major horizons of a forest soil in eastern Maine through the 1985 gr...

  8. An Intercomparison of Vegetation Products from Satellite-based Observations used for Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter

    2013-04-01

    Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid

  9. Measuring and Modelling water related soil - vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Cassiani, Giorgio; Deiana, Rita; Vignoli, Giulio; Boaga, Jacopo

    2013-04-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objective of this study was to test the potential of integrated non invasive geophysics and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during an infiltration experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of the experimental data evidenced a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the site.

  10. Variation in Soil Respiration Across an Alpine Soil Moisture and Vegetation Community Gradient at Niwot Ridge, Colorado

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Blanken, P.; Williams, M. W.

    2014-12-01

    The alpine tundra is a mosaic of comingled vegetation communities that vary predominantly as a function of landscape position, micro-scale topography, subsurface permeability, and resultant soil moisture availability. We characterized the spatio-temporal variability of soil respiration from 17 alpine tundra sites across an irregular soil moisture gradient within the footprint of ongoing eddy covariance measurements over the 2011 (wet year) and 2012 (dry year) growing seasons. We then used a soil moisture threshold as a proxy to separate the sites into fellfield, dry/moist meadow, and wet meadow tundra vegetation communities. Soil moisture and soil respiration were significantly correlated across all communities (p << 0.001), but increasing soil moisture invoked a bidirectional response from fellfield and dry/moist meadow communities (directly proportional) relative to wet meadow communities (inversely proportional). Soil temperature and soil respiration were not significantly correlated. Linearly interpolating between sampling dates, the cumulative soil respiration flux over the two growing seasons ranged from 595 to 3177 g CO2 m-2, and median fluxes were 1114, 1679, and 1400 g CO2 m-2 for fellfield, dry/moist meadow, and wet meadow sites, respectively. Ecosystem respiration from nighttime eddy covariance measurements was 618 g CO2 m-2 over the same period, suggesting that soil respiration fluxes from very dry fellfield tundra disproportionately influenced the eddy covariance data. Overall, cumulative soil respiration was 50% greater in the wet year (2011) relative to the dry year (2012); therefore increased precipitation has the potential to increase soil respiration from alpine tundra as a whole.

  11. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  12. Evolution of hydrological pathways in engineered hillslopes due to soil and vegetation development

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Ireson, Andrew M.; McDonnell, Jeffrey J.; Barbour, S. Lee

    2015-04-01

    The structure and hydraulic properties of soils and bedrock within a hillslope combined with the timing and rates of water availability control the partitioning of precipitation into vertical and lateral flowpaths. In natural hillslope sites, heterogeneity in both soil texture and structure are the result of long-term landscape evolution processes and consequently can be assumed to be static relative to the timescale of rainfall-runoff processes. However; engineered hillslopes, constructed commonly as reclamation covers overlying mine waste, have been observed to undergo rapid changes in hydraulic properties over relatively short timescales (i.e. 3-5 years) as a result of weathering (e.g. freeze-thaw and wet-dry cycles) and vegetation growth (e.g. increasing rooting depth and density). Rainfall-runoff responses on such hillslopes would therefore not only be expected to reflect seasonal dynamics, but also the evolution of the system from a relatively homogeneous initial condition to a system with increasing heterogeneity of soil texture and structure. We present results of a combined field and modeling study of three prototype soil covers on a saline-sodic shale overburden dump at the Syncrude Canada Ltd. Mildred Lake mine, north of Fort McMurray, Canada. Since their construction in 1999, soil properties, hydrological response to atmospheric and vegetative demands, and vegetation properties have been extensively monitored. The three covers have undergone substantial evolution due to freeze-thaw processes and aggrading vegetation. In this work, we quantify hydrological processes in the reclamation covers, focusing on inter- and intra-annual patterns. To this purpose we analyzed the long-term hydrometric data with field sampling of the distribution of salts and the stable isotopes of water within soil water and subsurface flow in the base of the cover. We use a 2D Hydrus model to explore the co-evolution of soil and vegetation and quantify its effect on flow

  13. Soil Moisture Monitoring Network Using Multi-Sensor Capacitance Probes in a Thick Vadose Zone Under Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Solis, J. A.; Rajaram, H.

    2011-12-01

    Soil moisture profile measurements are an integral component of water balance estimation networks, especially in thick vadose zones and fine-grained soil environments. At field sites with silty and stiff clayey soils, installation of sensors at multiple depths poses a challenge. One approach that has gained popularity is a multi-sensor capacitance (EniroSCAN) probe system manufactured by Sentek technologies. This requires only a single borehole where a 56.5 mm PVC access tube is installed. A very attractive feature of this system is that the sensors can be positioned at different depths without having to disturb the soil since the sensors are located on a cartridge unit that rides within the access tube and can be moved in 10 cm increments. We report the design and installation of a distributed soil moisture sensor network in a riparian zone within the Whitewater Basin in Central Kansas. The soil-moisture monitoring network used in this study is compromised of 6 profilers (each covering a depth of 2 m) with 4-5 sensors per profile, located at different depths. The network is connected to a centralized data logger, from which it can be accessed remotely through a telemetry system in real-time. The network obtains distributed soil moisture measurements every 15 minutes. All profilers exhibit a rapid response to precipitation events at depths < 1m. During the leaf-out stage, sensors at depths < 1.5 m exhibit diurnal fluctuations in response to plant water uptake. The temporal trends and response to rainfall/plant uptake is significantly different at the different profile locations, illustrating the significant heterogeneity at the site. The moisture profiles clearly demonstrate the gradual replenishment of soil moisture both by precipitation and capillary rise during fall and winter, followed by depletion (with diurnal variations superimposed) during the leaf-out stage of riparian vegetation. We describe the calibration efforts needed to convert the dielectric

  14. Shallow Subsurface Soil Moisture Dynamics in the Root-Zone and Bulk Soil of Sparsely Vegetated Land Surfaces as Impacted by Near-Surface Atmospheric State

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Illangasekare, T. H.; Tilton, N.

    2015-12-01

    Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.

  15. Monitoring soil-vegetation interactions using non-invasive geophysical techniques

    NASA Astrophysics Data System (ADS)

    Perri, M.; Cassiani, G.; Boaga, J.; Rossi, M.; Vignoli, G.; Deiana, R.; Ursino, N.; Putti, M.; Majone, B.; Bellin, A.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.

    2012-12-01

    The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT

  16. Water based microwave assisted extraction of thiamethoxam residues from vegetables and soil for determination by HPLC.

    PubMed

    Karmakar, Rajib; Singh, Shashi Bala; Kulshrestha, Gita

    2012-02-01

    A microwave assisted extraction (MAE) method for determination of thiamethoxam residues in vegetable and soil samples was standardized. Insecticide spiked vegetable and soil samples were extracted by MAE using water as an extraction solvent, cleaned up by solid phase extraction and analysed by high performance liquid chromatography on photodiode array detector. The recoveries of the insecticide from various vegetable (tomato, radish, brinjal, okra, French been, sugarbeet) and soil (sandy loam, silty clay loam, sandy clay loam, loamy sand) samples at 0.1 and 0.5 μg g(-1) spiking levels ranged from 79.8% to 86.2% and from 82.1% to 87.0%, respectively. The recoveries by MAE were comparable to those obtained by the conventional blender and shake-flask extraction techniques. The precision of the MAE method was demonstrated by relative standard deviations of <3% for the insecticide. PMID:22065124

  17. Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Blanchard, B. J.; Newton, R. W.

    1984-01-01

    A technique is presented by means of which visible/near-IR data are used to develop corrections in remotely sensed microwave soil moisture signals, in order to account for vegetation effects. Visible/IR data collected with the NASA NS001 Thematic Mapper Simulator were used to calculate the Perpendicular Vegetation Index (PVI), which was then related to the change of sensitivity of the microwave measurement to surface soil moisture. Effective estimation of soil moisture in the presence of vegetation can be made with L-band microwave radiometers and visible/IR sensors when the PVI is lower than 4.3. This technique offers a means for the estimation of moisture from a space platform over many agricultural areas, without expensive ground data collection.

  18. Does vegetation type matter? Plant-soil interactions change urban rain garden hydrology

    NASA Astrophysics Data System (ADS)

    Johnston, M. R.; Balster, N. J.

    2009-12-01

    Residential infiltration basins or rain gardens are being installed at an ever-increasing rate across the urban landscape, yet their impact on the urban hydrologic cycle remains largely untested. Specifically, because rain garden design varies considerably, we know little about how plant-soil dynamics control their hydrologic function. In a controlled field experiment with closed-system rain gardens, we tested the hydrologic response of three vegetation treatments common in rain garden design (shrubs, wet-mesic prairie, turfgrass). We used a complete, randomized block design in which each vegetative treatment was replicated three times. Each rain garden represented 17% of a contributing roof area where stormwater was collected and then applied following precipitation events. We continuously monitored stormwater input, soil water content, and soil exfiltration to assess differences in the hydrologic function of each rain garden. Overall, vegetation type significantly changed the magnitude and timing of the hydrologic response. During the months of June and July, 2009, the rain gardens planted with shrubs, prairie, and turfgrass all reduced the volume of soil exfiltration by 50%, 30%, and 17%, respectively, relative to the non-vegetated controls. Similarly, depending on storm magnitude and antecedent soil moisture, vegetation type significantly decreased the mean peak flow rate of exfiltration (p < 0.001), as well as the duration of the exfiltration response (p < 0.0001). The flashiest hydrologic responses (i.e. shortest lag time, highest peak flow rate) were observed in the turfgrass gardens. We explain these vegetative-mediated responses in hydrology relative to differences in infiltration, aboveground dry mass, root dynamics, and transpirative loss. Our data suggest that changing the vegetation type of urban rain gardens yields marked differences in the hydrologic budget via shifts in ecohydrological processes.

  19. Coincidence and spatial variability of geology, soils, and vegetation, Mill Run watershed, Virginia.

    USGS Publications Warehouse

    Olson, C.G.; Hupp, C.R.

    1986-01-01

    The Mill Run watershed is a structurally-controlled synclinal basin on the eastern limb of the Massanutten Mountain complex of NW Virginia. Bedrock contacts are obscured by coarse sandstone debris from exposures near basin divides. Colluvium blankets more than half the basin, masking geomorphic surfaces, affecting vegetation patterns, and contributing to the convexity of the alluvial, terrace, pediment and erosion surfaces. Vegetation is strongly interdependent with geomorphology, bedrock geology, and soils. - from Authors

  20. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  1. Estimation of effective hydrologic properties of soils from observations of vegetation density

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.; Eagleson, P. S.

    1980-01-01

    A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  2. Soils under conservation agriculture with vegetables in Siem Reap, Cambodia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smallholder vegetable farmers in Siem Reap, Cambodia experienced declining crop productivity. It could be a result of a mixture of factors such as nutrient and pest problems and extreme weather events such as droughts and/or heavy rains. The no-till, continuous mulch and diverse species principles o...

  3. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan

    PubMed Central

    Bhat, Nagesh; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan

    2015-01-01

    Background As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. Objective To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Materials and Methods Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 – 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. Results The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 – 1.5 ppm and 1.8 – 1.9 ppm respectively. Conclusion The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter. PMID:26557620

  4. The effect of bullet removal and vegetation on mobility of Pb in shooting range soils.

    PubMed

    Fayiga, Abioye O; Saha, Uttam

    2016-10-01

    Lead (Pb) contamination at shooting ranges is a public health concern because Pb is a toxic metal. An experiment was conducted to determine the effect of two best management practices; bullet removal and vegetation, on bioavailability and leachability of Pb in three shooting range (SR) soils. St. Augustine grass was grown in sieved (2 mm) and un-sieved SR soils for 8 weeks after which leachates, soil and plant samples were analyzed. Bullet removal reduced total soil Pb, increased Mehlich-3 Pb in unvegetated soils and increased dissolved organic carbon (DOC) in all soils. Bullet removal increased leaching in two SR soils while grasses reduced leaching but increased water soluble Pb in two SR soils. The roots of the grasses were able to accumulate more Pb in the root (1893-5021 mg kg(-1)) than the aboveground biomass (252-880 mg kg(-1)) due to mobilization of Pb in the rhizosphere. Grasses had a higher plant biomass in unsieved soils suggesting tolerance to the presence of bullets in the unsieved soils. Results suggest that bullet removal probably increased microbial activity and Pb bioavailability in the soil. The leaching and bioavailability of Pb in shooting range soils depends on biological activities and chemical processes in the soil. PMID:27391048

  5. A Broad Approach to Abrupt Boundaries: Looking Beyond the Boundary at Soil Attributes within and Across Tropical Vegetation Types

    PubMed Central

    Warman, Laura; Bradford, Matt G.; Moles, Angela T.

    2013-01-01

    Most research on boundaries between vegetation types emphasizes the contrasts and similarities between conditions on either side of a boundary, but does not compare boundary to non-boundary vegetation. That is, most previous studies lack suitable controls, and may therefore overlook underlying aspects of landscape variability at a regional scale and underestimate the effects that the vegetation itself has on the soil. We compared 25 soil chemistry variables in rainforest, sclerophyll vegetation and across rainforest-sclerophyll boundaries in north-eastern Queensland, Australia. Like previous studies, we did find some contrasts in soil chemistry across vegetation boundaries. However we did not find greater variation in chemical parameters across boundary transects than in transects set in either rainforest or woodland. We also found that soil on both sides of the boundary is more similar to “rainforest soil” than to “woodland soil”. Transects in wet sclerophyll forests with increasing degrees of rainforest invasion showed that as rainforest invades wet sclerophyll forest, the soil beneath wet sclerophyll forest becomes increasingly similar to rainforest soil. Our results have implications for understanding regional vegetation dynamics. Considering soil-vegetation feedbacks and the differences between soil at boundaries and in non-boundary sites may hold clues to some of the processes that occur across and between vegetation types in a wide range of ecosystems. Finally, we suggest that including appropriate controls should become standard practice for studies of vegetation boundaries and edge effects worldwide. PMID:23593312

  6. Vegetation-induced spatial variability of soil redox properties in wetlands

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in

  7. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    PubMed

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. PMID:25261818

  8. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    PubMed Central

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m−2 s−1), followed by the Suaeda salsa site (0.77 µmol CO2 m−2 s−1) and the bare soil site (0.41 µmol CO2 m−2 s−1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  9. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, Roshanak; Skidmore, Andrew; Atzberger, Clement; van Wieren, Sip

    2008-09-01

    The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI-reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSE cv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.

  10. Arsenic and Lead Uptake by Vegetable Crops Grown on Historically Contaminated Orchard Soils

    PubMed Central

    2015-01-01

    Transfer of Pb and As into vegetables grown in orchard soils historically contaminated by Pb arsenate pesticides was measured in the greenhouse. Lettuce, carrots, green beans and tomatoes were grown on soils containing a range of total Pb (16.5–915 mg/kg) and As (6.9–211 mg/kg) concentrations. The vegetables were acid-digested and analyzed for total Pb and As using ICP-mass spectrometry. Vegetable contamination was dependent on soil total Pb and As content, pH, and vegetable species. Arsenic concentrations were highest in lettuce and green beans, lower in carrots, and much lower in tomato fruit. Transfer of Pb into lettuce and beans was generally lower than that of As, and Pb and As were strongly excluded from tomato fruit. Soil metal concentrations as high as 400 mg/kg Pb and 100 mg/kg As produced vegetables with concentrations of Pb and As below the limits of international health standards. PMID:26949393

  11. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NASA Astrophysics Data System (ADS)

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-03-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions.

  12. The soil biota composition along a progressive succession of secondary vegetation in a karst area.

    PubMed

    Zhao, Jie; Li, Shengping; He, Xunyang; Liu, Lu; Wang, Kelin

    2014-01-01

    Karst ecosystems are fragile and are in many regions degraded by anthropogenic activities. Current management of degraded karst areas focuses on aboveground vegetation succession or recovery and aims at establishing a forest ecosystem. Whether progressive succession of vegetation in karst areas is accompanied by establishment of soil biota is poorly understood. In the present study, soil microbial and nematode communities, as well as soil physico-chemical properties were studied along a progressive succession of secondary vegetation (from grassland to shrubland to forest) in a karst area in southwest China. Microbial biomass, nematode density, ratio of fungal to bacterial biomass, nematode structure index, and nematode enrichment index decreased with the secondary succession in the plant community. Overall, the results indicated a pattern of declines in soil biota abundance and food web complexity that was associated with a decrease in soil pH and a decrease in soil organic carbon content with the progressive secondary succession of the plant community. Our findings suggest that soil biota amendment is necessary during karst ecosystem restoration and establishment and management of grasslands may be feasible in karst areas. PMID:25379741

  13. The Soil Biota Composition along a Progressive Succession of Secondary Vegetation in a Karst Area

    PubMed Central

    He, Xunyang; Liu, Lu; Wang, Kelin

    2014-01-01

    Karst ecosystems are fragile and are in many regions degraded by anthropogenic activities. Current management of degraded karst areas focuses on aboveground vegetation succession or recovery and aims at establishing a forest ecosystem. Whether progressive succession of vegetation in karst areas is accompanied by establishment of soil biota is poorly understood. In the present study, soil microbial and nematode communities, as well as soil physico-chemical properties were studied along a progressive succession of secondary vegetation (from grassland to shrubland to forest) in a karst area in southwest China. Microbial biomass, nematode density, ratio of fungal to bacterial biomass, nematode structure index, and nematode enrichment index decreased with the secondary succession in the plant community. Overall, the results indicated a pattern of declines in soil biota abundance and food web complexity that was associated with a decrease in soil pH and a decrease in soil organic carbon content with the progressive secondary succession of the plant community. Our findings suggest that soil biota amendment is necessary during karst ecosystem restoration and establishment and management of grasslands may be feasible in karst areas. PMID:25379741

  14. Advances in modelling the coevolving soils, landforms and vegetation in semiarid regions: a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.; Moreno-de las Heras, Mariano; Willgoose, Garry R.

    2014-05-01

    Semiarid landscapes exhibit highly nonlinear interactions between coevolving physical and biological processes. Coevolution in these systems leads to the emergence of remarkable soil, landform and vegetation patterns. Growing concern over ecosystem resilience to climate and land use perturbations that could result in irreversible degradation imposes a pressing need for research, aiming at elucidating the processes, feedbacks, and dynamics leading to these coevolving patterns. This is particularly important since degradation in drylands has been frequently linked to feedback effects between soils, biota and erosion processes. In many dryland regions, feedbacks are responsible for the emergence of areas with low infiltration in unvegetated soil patches (due to surface crusting) and high infiltration rates in the vegetated soil patches (due to improved soil aggregation and macroporosity). This variable infiltration field gives rise to runoff-runon redistribution which determines areas of soil erosion and deposition. We have combined a coupled landform-soil-vegetation model with remote sensing and field data to capture these feedbacks and improve our knowledge of these coevolving biotic-abiotic processes. We discuss and present results showing that the dynamics of the individual processes and their response to climatic and anthropic disturbances cannot be fully understood or predicted if nonlinear feedbacks and coevolution are not considered. Implications for management and restoration efforts are illustrated using data and observations from agricultural sites in central Australia and reclaimed mining sites in Spain.

  15. Anthropogenic impact on the presence of L. monocytogenes in soil, fruits, and vegetables.

    PubMed

    Szymczak, Barbara; Szymczak, Mariusz; Sawicki, Wojciech; Dąbrowski, Waldemar

    2014-01-01

    The aim of this study was to determine the prevalence of Listeria sp. and Listeria monocytogenes in soil samples with reference to type of fertilizers (natural and artificial) and distance from places intensively exploited by men, as well as to determine the relationship between the presence of L. monocytogenes in the soil and in fruits and vegetables. The examined 1,000 soil samples originated from 15 different areas, whilst 140 samples of fruits and 210 samples of vegetables were collected from those areas. L. monocytogenes was isolated only from 5.5 % of all soil samples coming exclusively from meadows intensively grazed by cattle (27.8 %) and areas near food processing plants (25 %) and wild animal forests (24 %). Listeria sp. and L. monocytogenes were not present on artificially fertilized areas and wastelands. L. monocytogenes was detected in 10 % of samples of strawberry, 15 % of potato samples, and 5 % of parsley samples. Our data indicate that Listeria spp. and particularly L. monocytogenes were found in the soil from (1) arable lands fertilized with manure, (2) pasture (the land fertilized with feces of domestic animals), and (3) forests (again, the land fertilized with feces of animals, not domestic but wild). The bacteria were not detected in the soil samples collected at (1) artificially fertilized arable lands and (2) wastelands (the lands that were not fertilized with manure or animal feces). Moreover, a correlation was determined in the presence of L. monocytogenes between soil samples and samples of the examined fruits and vegetables. PMID:23775320

  16. Spatio-temporal soil moisture patterns across gradients of vegetation and topography

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2014-05-01

    Soil moisture dynamics control hydrological processes on various scales: changes in local water storage and potential activation of preferential flow paths influence connectivity and runoff from hillslopes and ultimately the discharge response of the stream. The spatio-temporal patterns of soil moisture, however, are dependent on a combination of local parameters such as soil type, vegetation and topography as well as meteorological conditions, antecedent moisture and seasonality. In an integrative monitoring study carried out within the CAOS observatory in Luxemburg (http://www.caos-project.de/), soil moisture was measured at 21 sites with 3 soil moisture profiles each. These sites include grassland as well as forest on the one hand and cover different hillslope positions on the other hand. This setup allows us to study both vegetation and topographic effects. The spatio-temporal patterns of soil moisture were analysed using two approaches: 1) we examined temporal persistence of soil moisture patterns with rank stability plots and addressed the variability within and between sites for contrasting meteorological conditions. 2) In a next step we focused on specific hydrologic events: two periods during summer recession were distinguished, first the drying out of the soils during a period of no precipitation, but also the continuing decline even after summer rains have started. Furthermore, the soil moisture response to three different rainfall events was examined, varying in intensity and antecedent moisture conditions. The emerging contrasts in patterns were put into context of site-specific characteristics such as vegetation and topographical position to identify controls on soil moisture dynamics for our range of sites. Ultimately, linking similarity in soil moisture response in landscapes to these controls can elucidate the hydrological functioning of landscape units and thus facilitate modelling efforts.

  17. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils

    USGS Publications Warehouse

    Neff, J.C.; Hooper, D.U.

    2002-01-01

    Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape-scale controls on potential production of these compounds using a one-year laboratory incubation at two temperatures (10?? and 30??C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80-370 mg CO2-C g soil C-1 and 5-46 mg DOC g soil C-1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than

  18. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    SciTech Connect

    Rowntree, R.A.

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  19. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    PubMed

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P < 0.01). Soil quality, salt vegetation and soil fungi were influenced by each other. PMID:27449214

  20. Estimating photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions using Landsat and MODIS data: Effects of site heterogeneity, soil properties and land cover

    NASA Astrophysics Data System (ADS)

    Guerschman, J. P.; Scarth, P.; McVicar, T.; Malthus, T. J.; Stewart, J.; Rickards, J.; Trevithick, R.; Renzullo, L. J.

    2013-12-01

    Vegetation fractional cover is a key indicator for land management monitoring, both in pastoral and agricultural settings. Maintaining adequate vegetation cover protects the soil from the effects of water and wind erosion and also ensures that carbon is returned to soil through decomposition. Monitoring vegetation fractional cover across large areas and continuously in time needs good remote sensing techniques underpinned by high quality ground data to calibrate and validate algorithms. In this study we used Landsat and MODIS reflectance data together with field measurements from 1476 observations across Australia to produce estimates of vegetation fractional cover using a linear unmixing technique. Specifically, we aimed at separating fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (B). We used Landsat reflectance averaged over a 3x3 pixel window representing the area actually measured on the ground and also a 'degraded' Landsat reflectance 40x40 pixel window to simulate the effect of a coarser sensor. Using these two Landsat reflectances we quantified the heterogeneity of each site. We used data from two MODIS-derived reflectance products: the Nadir BRDF-Adjusted surface Reflectance product (MCD43A4) and the MODIS 8-day surface reflectance (MOD09A1). We derived endmembers from the data and estimated fractional cover using a linear unmixing technique. Log transforms and band interaction terms were added to account for non-linearities in the spectral mixing. For each reflectance source we investigated if the residuals were correlated with site heterogeneity, soil colour, soil moisture and land cover type. As expected, the best model was obtained when Landsat data for a small region around each site was used. We obtained root mean square error (RMSE) values of 0.134, 0.175 and 0.153 for PV, NPV and B respectively. When we degraded the Landsat data to an area of ~1 km2 around each site the model performance decreased to

  1. EMISSIONS FROM THE BURNING OF VEGETATIVE DEBRIS IN AIR CURTAIN DESTRUCTORS

    EPA Science Inventory

    Although no data has been published on emissions from construction and demolition (C&D) debris burned in an air curtain destructor (ACD), a few studies provide information on emissions from combustion of vegetative debris. These results are compared to studies of open burning of...

  2. Wind Tunnel Evaluation of Vegetative Buffer Effects on Air Flow near Swine Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing concerns about generation and transport of swine odor constituents have substantiated wind tunnel simulation studies on air flow dynamics near swine production facilities. A possible odor mitigation strategy is a forest vegetative buffer as a windbreak barrier near swine facilities becaus...

  3. Roadside vegetation barrier designs to mitigate near-road air pollution impacts

    EPA Science Inventory

    With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to re...

  4. The role of vegetation in mitigating air quality impacts from traffic emissions--journal

    EPA Science Inventory

    On Apri1 27-28, 2019, a multi-disciplinary group of researchers and po1icymakers met to discuss the state-of-the-science regarding the potential of roadside vegetation to mitigate near-road air quality impacts. Concerns over population exposures to traffic-generated pollutants ne...

  5. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  6. Evaluation of Thematic Mapper for detecting soil properties under grassland vegetation

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.

    1984-01-01

    Analysis of Thematic Mapper data acquired November 15, 1982, over a vegetated site located in the East Texas Timberlands and Claypan area of Texas has indicated that montmorillonitic clay textured soils can be separated from soils with different textures. The difference of TM band 4 (0.76-0.90 micron) and band 7 (2.08-2.35 microns) had an agreement of 55.8 percent with the USDA soil survey for upland clay soils. This compared to 55.9-percent agreement when all six bands (excluding the thermal) were used. The disagreement occurred at the boundary lines as defined by the USDA soil survey and the spectral data. This result is considered to be fairly good, considering the difficulty in placement of soil boundaries by the soil scientist in the field. While the exact influence on the vegetation, and thus the spectral response observed by TM, is not understood at this time, it appears that TM band 7 is responding to the type of mineralogy of the soil and that soil properties important to the plant can be detected using TM.

  7. [Distribution and Risk Assessment of Sulfonamides Antibiotics in Soil and Vegetables from Feedlot Livestock].

    PubMed

    Jin, Cai-xia; Si, Xiao-wei; Wang, Zi-ying; Zhang, Qin-wen

    2016-04-15

    Soil and vegetable samples were collected from 13 different livestock farms of different sizes in Xinxiang of China, and the residues of three sulfonamides including sulfadiazine, sulfamonomethoxine, and sulfamethoxazole were analyzed by HPLC with a fluorimetric detector, The results indicated that the total concentration ranges of the three sulfonamides in soil and vegetable were 7.60-176.26 µg · kg⁻¹ and ND-32, 70 µg · kg⁻¹, respectively. The mean concentrations were 70.73 µg · kg⁻¹ and 7.08 µg · kg⁻¹ for soil and vegetables. The residue levels in soil were all lower than the ecotoxic effect trigger value (100 µg · kg⁻¹) set by the Veterinary Medicine International Coordination Commission, indicating the low risk for organisms in soil. The concentrations of three sulfonamides varied significantly in different kinds of vegetables and were all lower than the acceptable daily intake values [50 µg · (kg ·d)⁻¹] set by Joint FAO/WHO Expert CommIttee on Food Additives. But we cannot neglect the potential ecotoxicity and resistance for human via food chain. PMID:27548983

  8. Distinguishing vegetation from soil background information. [by gray mapping of Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.

    1977-01-01

    In aircraft and satellite multispectral scanner data, soil background signals are superimposed on or intermingled with information about vegetation. A procedure which accounts for soil background would, therefore, make a considerable contribution to an operational use of Landsat and other spectral data for monitoring the productivity of range, forest, and crop lands. A description is presented of an investigation which was conducted to obtain information for the development of such a procedure. The investigation included a study of the soil reflectance that supplies the background signal of vegetated surfaces. Landsat data as recorded on computer compatible tapes were used in the study. The results of the investigation are discussed, taking into account a study reported by Kauth and Thomas (1976). Attention is given to the determination of Kauth's plane of soils, sun angle effects, vegetation index modeling, and the evaluation of vegetation indexes. Graphs are presented which show the results obtained with a gray mapping technique. The technique makes it possible to display plant, soil, water, and cloud conditions for any Landsat overpass.

  9. The effect of soil surface sealing on vegetation water uptake along a dry climatic gradient

    NASA Astrophysics Data System (ADS)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2015-09-01

    Soil surface sealing is a widespread natural process occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water uptake (VWU). This effect is investigated here using experimental data, 2-D physically based modeling, and a long-term climatic data set from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes VWU parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using lysimeter experiments. The results indicate that during the season surface sealing could either increase or decrease VWU depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on interannual variability of the seal layer effect on VWU, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. The seal layer was found to reduce the period where the vegetation was under water stress by 31% compared with unsealed conditions. This effect was more pronounced for seasons with total rainfall depth higher than 10 cm/yr, and was affected by interseasonal climatic variability. These results shed light on the importance of surface sealing in dry environments and its contribution to the resilience of woody vegetation.

  10. Radiostrontium contamination of soil and vegetation within the Semipalatinsk test site.

    PubMed

    Howard, B J; Semioschkina, N; Voigt, G; Mukusheva, M; Clifford, J

    2004-12-01

    The Semipalatinsk nuclear test site (STS) in the Republic of Kazakhstan was an important site for testing atomic bombs and other civil and military nuclear devices of the former Soviet Union. Results are presented from investigations on the extent of radiostrontium contamination in soils and vegetation at the technical areas of the STS, where the tests were conducted and in pastures used by farmers for grazing animals or for hay production. Our data are compared with those reported largely in the recent Russian language literature that has been reviewed. The extent of (90)Sr contamination of soil is highly variable over the STS with the highest values associated with the technical areas, particularly the Degelen mountains. Recently measured values in both the present data and the Russian language literature confirm the relatively high current contamination of soil and vegetation in the vicinity of tunnels and associated watercourses in the Degelen area. The proportion of (90)Sr in soil which could not be extracted with 6 M HCl was only an average of 20%, which is low compared to other test site areas and possibly indicates a relatively high mobility in this area, because the (90)Sr is derived from leakage from explosion tunnels along watercourses rather than being associated with fused silicates. A comparison of relative activity concentrations in soil and vegetation suggests that the transfer of (90)Sr to vegetation on the STS is high compared to that of (137)Cs and plutonium. PMID:15645315

  11. Lead contamination and its potential sources in vegetables and soils of Fujian, China.

    PubMed

    Huang, Zhi-Yong; Chen, Ting; Yu, Jiang; Qin, De-Ping; Chen, Lan

    2012-02-01

    Lead (Pb) contents and partition in soils collected from eleven vegetable-growing lands in Fujian Province, China, were investigated using a modification of the BCR (Community Bureau of Reference) sequential extraction procedure coupled with the Pb isotope ratio technique. Pb contents in Chinese white cabbage (B. Chinensis L.) grown on the lands for this study were also measured. Results showed that Pb concentrations in fifty samples of topsoil ranged from 456 to 21.5 mg kg(-1), with each mean concentration of six sampling lands exceeding the national standard (50 mg kg(-1)); while Pb concentrations in edible portions of thirty-two vegetable samples ranged from 0.009 to 2.20 mg kg(-1), with four sampling sites exceeding the national sanitary standard (0.2 mg kg(-1)). A significant correlation (r = 0.971, P < 0.01) of Pb contents in the acid-extractable fractions by BCR approach and the vegetables was observed, which indicates that the acid-extractable Pb is useful for evaluating the metal bioavailability for plants and potential risk for human health in soils. The determination of lead isotope ratios in different chemical forms of soils by BCR sequential extraction procedures provides useful information on the Pb isotopic composition associated with different soil fractions (especially in the acid-extractable fractions), and the result is helpful for the further study on controlling and reducing Pb contamination in vegetable-growing soils. PMID:21541794

  12. A comparison of soil properties under four vegetation units from six metalliferous hills in Katanga

    NASA Astrophysics Data System (ADS)

    Kaya, Donato; Gregory, Mahy; Michel, Ngongo; Gilles, Colinet

    2013-04-01

    In Katanga (Democratic Republic of Congo), numerous metalliferous hills are distributed along what is called the copperhill belt from Kolwezi to Lubumbashi. Very specific vegetation developed on these hills within the miombo forest in response to very specific soil conditions, among which the copper content. Previous studies have already shown the existence of gradients of copper from the mineralized rocks outcropping at the top of the hills to the foot slopes on colluviums. After a characterization of the vertical variability of soil properties in pits distributed along the main slopes, we investigated the soil-vegetation relationships in six hills located between the towns of Tenke and Fungurume. Observation 1-square meter plots were installed in four vegetation units and sixty of them were selected according to their relative importance on the six hills. The soil from the top 10cm was sampled and analyzed for pH, Total Organic Carbon, available P, K, Mg, Ca, Cu, Co and Mn and soluble Cu and Co. Analysis of variance was performed in order to assess whether the effects of the "Hill" and of the "Vegetation Unit" were significant to explain soil chemical variability. Additionally, short transects were sampled at the boundaries from adjacent vegetation units in order to evaluate the gradual or rough nature of change in soil properties under these units. The results indicate that the six hills can not be considered as different for pH and available nutrients, excepted K, nor for the available Cu and Mn. Only TOC and Co contents were differing, mainly from one hill compared to the other five. The vegetation effect is significant for almost every studied soil characteristics, to the exception of Ca and Mn. Soluble Cu and Co significantly correlate to available Cu and Co, respectively. The pH variations however explain local departures from linear regression. The ANOVA models take into account 30 to 60% of the variations of soil properties. The study of the boundaries

  13. Runoff loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems.

    PubMed

    Rice, P J; McConnell, L L; Heighton, L P; Sadeghi, A M; Isensee, A R; Teasdale, J R; Abdul-Baki, A A; Harman-Fetcho, J A; Hapeman, C J

    2001-01-01

    Current vegetable production systems use polyethylene (plastic) mulch and require multiple applications of agrochemicals. During rain events, runoff from vegetable production is enhanced because 50 to 75% of the field is covered with an impervious surface. This study was conducted to quantify off-site movement of soil and pesticides with runoff from tomato (Lycopersicon esculentum Mill.) plots containing polyethylene mulch and a vegetative mulch, hairy vetch (Vicia villosa Roth). Side-by-side field plots were instrumented with automated flow meters and samplers to measure and collect runoff, which was filtered, extracted, and analyzed to determine soil and pesticide loss. Seasonal losses of two to four times more water and at least three times as much sediment were observed from plots with polyethvlene mulch (55.4 to 146 L m(-2) and 247 to 535 g m(-2), respectively) versus plots with hairy vetch residue (13.7 to 75.7 L m(-2) and 32.8 to 118 g m(-2), respectively). Geometric means (+/-standard deviation) of total pesticide loads for chlorothalonil (tetrachloroisophthalonitrile) and alpha-and beta-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro6,9-methano-2,4,3-benzodioxathiepin 3-oxide) for a runoff event were 19, 6, and 9 times greater from polyethylene (800+/-4.6, 17.6+/-3.9, and 39.1+/-4.9 microg m(-2), respectively) than from hairy vetch mulch plots (42+/-6.0, 2.8+/-5.0, and 4.3+/-4.6 microg m(-2), respectively) due to greater concentrations and larger runoff volumes. The increased runoff volume, soil loss, and off-site loading of pesticides measured in runoff from the polyethylene mulch suggests that this management practice is less sustainable and may have a harmful effect on the environment. PMID:11577890

  14. Effect of VOC emissions from vegetation on urban air quality during hot periods

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Kuik, Friderike; Bonn, Boris; Lauer, Axel; Grote, Ruediger; Butler, Tim

    2016-04-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase of carbon storage, storm water control, and recreational space, as well as at poverty alleviation. These urban greening programs, however, do not take into account how closely human and natural systems are coupled in urban areas. Compared with the surroundings of cities, elevated temperatures together with high anthropogenic emissions of air and water pollutants are quite typical in urban systems. Urban and sub-urban vegetation respond to changes in meteorology and air quality and can react to pollutants. Neglecting this coupling may lead to unforeseen negative effects on air quality resulting from urban greening programs. The potential of emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions of air pollutants to produce ozone has long been recognized. This ozone formation potential increases under rising temperatures. Here we investigate how emissions of VOC from urban vegetation affect corresponding ground-level ozone and PM10 concentrations in summer and especially during heat wave periods. We use the Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in the Berlin-Brandenburg region, Germany during the two summers of 2006 (heat wave) and 2014 (reference period). VOC emissions from vegetation are calculated by MEGAN 2.0 coupled online with WRF-CHEM. Our preliminary results indicate that the contribution of VOCs from vegetation to ozone formation may increase by more than twofold during heat wave periods. We highlight the importance of the vegetation for urban areas in the context of a changing climate and discuss potential tradeoffs of urban greening programs.

  15. Infrared temperature measurements over bare soil and vegetation - A HAPEX perspective

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Perry, Eileen M.; Taconet, Odile

    1987-01-01

    Preliminary analyses of aircraft and ground measurements made in France during the HAPEX experiment show that horizontal radiometric surface temperature variations, as viewed by aircraft, can reflect the vertical profile of soil moisture (soil versus root zone) because of horizontal variations in vegetation density. Analyses based on one day's data show that, although horizontal variations in soil moisture were small, the vertical differences between a dry surface and a wet root zone were large. Horizontal temperature differences between bare soil, corn and oats reflect differences in the fractional vegetation cover, as seen by the radiometer. On the other hand, these horizontal variations in radiometric surface temperature seem to reflect real horizontal variations in surface turbulent energy fluxes.

  16. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    NASA Astrophysics Data System (ADS)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff < 0.5) and volatilization ( ff > 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  17. River basin soil-vegetation condition assessment applying mathematic simulation methods

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Trifonova, Tatiana; Shirkin, Leonid

    2013-04-01

    Meticulous attention paid nowadays to the problem of vegetation cover productivity changes is connected also to climate global transformation. At the same time ecosystems anthropogenic transformation, basically connected to the changes of land use structure and human impact on soil fertility, is developing to a great extent independently from climatic processes and can seriously influence vegetation cover productivity not only at the local and regional levels but also globally. Analysis results of land use structure and soil cover condition influence on river basin ecosystems productive potential is presented in the research. The analysis is carried out applying integrated characteristics of ecosystems functioning, space images processing results and mathematic simulation methods. The possibility of making permanent functional simulator defining connection between macroparameters of "phytocenosis-soil" system condition on the basis of basin approach is shown. Ecosystems of river catchment basins of various degrees located in European part of Russia were chosen as research objects. For the integrated assessment of ecosystems soil and vegetation conditions the following characteristics have been applied: 1. Soil-productional potential, characterizing the ability of natural and natural-anthropogenic ecosystem in certain soil-bioclimatic conditions for long term reproduction. This indicator allows for specific phytomass characteristics and ecosystem produce, humus content in soil and bioclimatic parameters. 2. Normalized difference vegetation index (NDVI) has been applied as an efficient, remotely defined, monitoring indicator characterizing spatio-temporal unsteadiness of soil-productional potential. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Coefficients values defining in the designed static model of phytoproductivity distribution has been

  18. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  19. Soil, water, and vegetation conditions in South Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Reflectance measurements with a field spectroradiometer on nine dates (between December 9 and April 8) during the growing season of two wheat varieties, Milam and Penjamo, showed that the reflectance curves had the characteristic shape of vegetated surfaces by 4 weeks after the emergence. Green light (0.55 micron) reflectance was maximal and between water absorption bands (1.65 and 2.2 microns) reflectance was minimal when green vegetation development was greatest. Computer classification was accomplished for 81,000 hectare coastal rangeland area for October 13 and December 10, 1975, overpass dates. A hard freeze occurred between these two dates and many of the deciduous woody species defoliated so that more light penetrated to the herbaceous understory in December than in October.

  20. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    PubMed

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. PMID:23624425

  1. Air sparging in low permeability soils

    SciTech Connect

    Marley, M.C.

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.

  2. Effects of vegetation on radon transport processes in soil

    SciTech Connect

    Borak, T.B.

    1991-02-01

    Radon concentrations in soil gas were measured on a weekly schedule. Samples were extracted through the tubes used for measuring pressure differentials at depths of 30, 100, 180 cm. From November to March, the concentrations increase with depth and are for the most part constant over time. The situation is similar from May through August. There is a pronounced increase in the soil radon concentration in early March. This is followed by a decrease to pre March levels at 30 cm. However, at 100 and 180 cm the radon concentrations remain elevated. Attempts were made to explain this data. The average soil moisture content measured with the neutron gauge are shown in Figure 2. Also shown is a history of precipitation events. The period from November to March was relatively dry. On March 6 there was a heavy rain deposited 3 cm of water. This was followed by a snow storm that contained over 5 cm of moisture. Precipitation events during the summer months did not seem to have a large effect on the moisture profile because these rainfall events are typical of short duration with a large amount of runoff. Other soil parameters and meteorological data were analyzed in order to determine their influence on soil radon concentrations.

  3. The Effects of Topography, Vegetation and Soil Properties on Hillslope Hydrology in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Franklin, M. R.; Mota, P.

    2015-12-01

    Soil water dynamics, especially on hillslopes, is mainly controlled by conditions defined by topography, climate, vegetation cover and soil properties. In many areas of northeastern Brazil, semi-arid tropical soils are being rapidly modified by land-use changes which usually lead to a decrease in infiltration rates and to an increase in surface runoff and soil erosion, as well as to a reduction in groundwater recharge. This study focus on the effects of these land-use changes on the main hydrological processes close to the soil surface, especially on the soil infiltration rates and hillslope hydrology dynamics on highly weathered thick tropical soils at the southwestern portion of the Bahia state. The Caetité experimental basin (CEB) presents portions with natural savanna, agriculture, grazing, as well as those resulting from a uranium mining and milling activities. The watershed (75 km2) has an average total annual rainfall is about 710 mm, with a long dry period. Bedrock is comprised by gneisses and granites with a gentle topography covered by thick (>3m) soils. In order to assess the role played by topography, soil properties and vegetation cover in controlling soil water infiltration and redistribution along a typical hillslope, 6 soil matrix potential nests (SMPN) were installed along a 1.4 km long transect. Each nest is composed by 7 soil matrix potential sensors (installed up to 3.0 m depth), 1 soil temperature sensor and a datalogger. In parallel, field experiments were carried out at different points of the CEB in order to estimate soil infiltration rates and field-saturated hydraulic conductivities. At these points, undisturbed soil samples were collected to characterize soil texture, porosity (micro and macro), bulk density, as well as to define the soil water retention curves. The results show that dense savanna presents the highest infiltration capacity values, independently of soil and topography conditions. Besides, maximum infiltration rates may be

  4. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes

    USGS Publications Warehouse

    Jorgenson, M. Torre; Harden, Jennifer; Kanevskiy, Mikhail; O'Donnell, Jonathan; Wickland, Kim; Ewing, Stephanie; Manies, Kristen; Zhuang, Qianlai; Shur, Yuri; Striegl, Robert; Koch, Josh

    2013-01-01

    The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly–sandy lowlands on ice-poor eolian sand and (4) peaty–silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly–sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty–silty lowlands, 2–4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly–sandy lowlands in response to fire and lake drainage, over decades to

  5. Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar

    2010-05-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes

  6. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records.

  7. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Simunek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil-plant-atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001-December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments. ?? Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.

  8. Vegetation, soil property and climatic controls over greenhouse gas fluxes in a blanket peatland hosting a wind farm

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Waldron, Susan; Ostle, Nick; Whitaker, Jeanette

    2013-04-01

    Peatlands are important carbon (C) stores, with boreal and subarctic peatlands containing 15-30 % of the world soil carbon stock (Limpens et al., 2008). Research has demonstrated that greenhouse gas (GHG) fluxes in peatlands are influenced by vegetation, soil property and climatic variables, including plant functional type (PFT), water table height and temperature. In this paper we present data from Black Law Wind Farm, Scotland, where we examined the effect of a predicted wind turbine-induced microclimatic gradient and PFT on carbon dioxide (CO2) and methane (CH4) fluxes. Moreover, we determined the role of vegetation, soil property and climatic variables as predictors of the variation in CO2 and CH4 emissions. We measured CO2 and CH4 at 48 plots within Black Law Wind Farm at monthly intervals from May 2011 to April 2012. Four sampling sites were located along a predicted wind turbine-induced microclimatic gradient. At each site four blocks were established, each with plots in areas dominated by mosses, sedges and shrubs. Plant biomass and PFT (vegetation factors); soil moisture, water table height, peat depth, C content, nitrogen (N) content and C:N (soil properties); and soil temperature and photosynthetically active radiation (PAR) (climatic variables) were measured. Analysis of variance (ANOVA) models based on the microclimatic gradient site, PFT and season when measurements were made explained 58 %, 44 % and 49 % of the variation in ecosystem respiration, photosynthesis and CH4, respectively. Site, PFT, season and their interactions were all significant for respiration and photosynthesis (with the exception of the PFT*site interaction) but for CH4 only the main effects were significant. Parsimonious ANOVA models using the biotic, soil property and climatic explanatory data explained 62 %, 55 % and 49 % of the variation in respiration, photosynthesis and CH4, respectively. Published studies (Baidya Roy and Traiteur 2010; Zhou et al., 2012) and preliminary

  9. Air-soil exchange of mercury from background soils in the United States.

    PubMed

    Ericksen, J A; Gustin, M S; Xin, M; Weisberg, P J; Fernandez, G C J

    2006-08-01

    The air-surface exchange of mercury (Hg) was measured, using a dynamic polycarbonate flux chamber, for soils with low or "background" Hg concentrations (<0.1 mg/kg) at eleven locations across the contiguous United States. Sampling locations included agricultural, desert, grassland, mixed and pine forest ecosystems (n=1326 soil flux measurements at 46 individual sites). An overall soil Hg flux of 0.9+/-0.2 ng/m2/h for these background soils was obtained by averaging the means for the different locations. Soil Hg fluxes were significantly lower in dark conditions than in the light for all but the grassland sites. Mean inlet air Hg concentrations were 1.0+/-0.1 ng/m3 in the dark and 1.3+/-0.2 ng/m3 in the light. Soil temperature inside and outside of the chamber, air temperature, relative humidity, and irradiance were measured concurrently with soil Hg flux. Soil-air Hg exchange was weakly predicted by environmental variables (R2 from 0.07 to 0.52). For a single location, flux was better correlated with soil moisture than other measured environmental parameters, suggesting that soil moisture might be an important driver for Hg emissions from background soils. In addition, based on data collected we suggest some quality control measures for use of Tekran 2537A analyzers when measuring low mercury fluxes. Using basic scaling procedures, we roughly estimate that natural emissions from soils in the contiguous U.S. release approximately 100 Mg/yr of Hg to the atmosphere. PMID:16181661

  10. Vegetation and soil water interactions on a tailings sand storage facility in the athabasca oil sands region of Alberta Canada

    NASA Astrophysics Data System (ADS)

    Naeth, M. A.; Chanasyk, D. S.; Burgers, T. D.

    The relationship between vegetation and soil water was studied on the Syncrude South West Sand Storage facility in the Athabasca Oil Sands region of Alberta, Canada. Soil water and relevant soil chemical and physical properties were measured at the soil surface, as well as above and below the reclamation soil and tailings sand interface, in areas of low and high vegetation cover. The interface between the reclamation soil and the tailings sand acted as a capillary barrier. Water content was highest under low vegetation cover but soil water conditions above field capacity were rare and unlikely to have impacted vegetation. Periods of water stress occurred, where volumetric water content was below wilting point; these periods were of short duration and generally typical of ecosystems in the study area. Differences in surface soil water between the two vegetation covers were attributed to evapotranspiration and/or canopy interception. Differences above and below the interface were attributed to variation in canopy cover at the surface and resulting quantities of water available for percolation through the soil profiles. At the interface of the reclamation soil and tailings sand, water movement was restricted. High and low canopy covers responded differently to precipitation events; low vegetation cover areas had greater fluctuations in volumetric water content at all depths. The occurrence of a capillary barrier effect will need to be accounted for in developing reclamation soil profiles.

  11. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    PubMed Central

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  12. [Effect of vegetation types on soil respiration characteristics on a smaller scale].

    PubMed

    Yan, Jun-Xia; Li, Hong-Jian; Tang, Yi; Zhang, Yi-Hui

    2009-11-01

    Soil respiration was measured from April 2005 to December 2007 using a LICOR-6400-09 chamber connecting a LiCor-6400 portable photosynthesis system at 3 sites with same elevation and soil texture but different vegetation types. The results indicated that seasonal trend of soil respiration showed a distinct temporal change with the higher values in summer and autumn months and the lower values in winter and spring. Annual means (March to December) of soil respiration for 3 the sampling sites were(3.58 +/- 2.50), (3.82 +/- 2.75) and (4.42 +/- 3.38) micromol x (m2 x s)(-1) (p > 0.05), respectively. Released annual amount (March to December) of CO2 efflux from 3 sites was from 854.9 to 1 297.2 g x (m2 x a)(-1) and the amount was no difference between sites and among years. The fitted exponential equations of soil respiration and soil temperature for 3 sites were all significant with the R2 from 0.61 to 0.81, and the Q10 and R10 calculated from fitted parameters of the equations ranged from 2.60 to 4.50, and from 1.70 to 3.02 micromol x (m2 x s)(-1). The relationships between soil respiration and soil water content were not significant for all 3 sites with a maximum R2 of the regression equations only 0.12 (p > 0.05). However, when the soil temperature was above 10 degrees C, the relationships between soil respiration and soil water content was significant (p < 0.05). Four combined regression equations including soil temperature and soil water content could be used to model relationships between soil respiration and both soil temperature and soil water content together, with the R2 most above 0.7, and maximum of 0.91. PMID:20063717

  13. Soil-vegetation feedbacks in dynamic landscapes: Implications for restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State changes from perennial grasslands to shrub-dominated systems characterize much of the arid regions of the world, including the American Southwest. Where this conversion is associated with a change in soil surface texture, near-surface water availability can be increased or reduced with importa...

  14. Soil changes after four years of organic vegetable production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, scientists at the Lane Agricultural Center in southeastern Oklahoma began a study to explore the potential for organic agricultural production. Land was certified as organic according to the guidelines of the National Organic Program. At the beginning of the study, soil samples were taken...

  15. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2.

    PubMed

    Zhang, Xueyan; Ma, Xin; Zhao, Zhi; Wu, Yang; Li, Yue

    2016-04-15

    To assess the potential risks of carbon capture and storage (CCS), studies have focused on vegetation decline caused by leaking CO2. Excess soil CO2 caused by leakage can affect soil O2 concentrations and soil pH, but how these two factors affect plant development remains poorly understood. This hinders the selection of appropriate species to mitigate potential negative consequences of CCS. Through pot experiments, we simulated CO2 leakage to examine its effects on soil pH and soil O2 concentrations. We subsequently assessed how maize growth responded to these changes in soil pH and O2. Decreased soil O2 concentrations significantly reduced maize biomass, and explained 69% of the biomass variation under CO2 leakage conditions. In contrast, although leaked CO2 changed soil pH significantly (from 7.32 to 6.75), it remained within the optimum soil pH range for maize growth. This suggests that soil O2 concentration, not soil pH, influences plant growth in these conditions. Therefore, in case of potential CO2 leakage risks, hypoxia-tolerant species should be chosen to improve plant survival, growth, and yield. PMID:26899305

  16. Contamination of vegetables, fruits and soil with geohelmints eggs on organic farms in Poland.

    PubMed

    Kłapeć, Teresa; Borecka, Anna

    2012-01-01

    The objective of this study was to evaluate the contamination of vegetables, fruits and soil with zoonotic parasite eggs on organic and conventional farms in south-eastern Poland. To evaluate the contamination with eggs of zoonotic parasites, examinations were conducted on 8 conventional and 11 organic farms in south-eastern Poland from May-October in 2008 and 2009. The following fruit and vegetables were selected for the experiment: strawberry, leek, onion, carrot, zucchini, beetroot, parsley, potatoes, celery, rhubarb, lettuce, cabbage, broccoli, pumpkin, young beetroot leaves, cauliflower, French beans, turnip, fennel and sorrel. A total of 187 samples of vegetables, fruits and soil were examined by means of a modified flotation method according to Quinn et al. (1980). Contamination with Ascaris, Trichuris and Toxocara eggs was found, with a higher number of positive samples revealed on conventional (34.7%), compared to organic farms (18.9%). The level of contamination in soil samples from conventional farms was higher (88.5% positive samples), than of those from organic farms (32.8%). Of the 15 geohelmints eggs, positive samples were found in vegetables: 9 Toxocara eggs, 4 Ascaris eggs and 2 Trichuris eggs. No geohelmints eggs were observed in the strawberry samples. The consumption of vegetables and fruits contaminated with the eggs of parasites may be the cause of parasitoses in humans. Stricter sanitary standards on farms of all types may limit the incidence of parasitic zoonoses. PMID:23020033

  17. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-07-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems.

  18. Variations in Soil Salinity and Riparian Vegetation Coverage as Indicators of Stress in an Arid Watershed

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Mickus, K.; Johnson, E.

    2003-12-01

    Soil salinity and riparian vegetation coverages of an arid area in northern Mexico through time were investigated. The study area comprises a 10 km segment of the lower Rio Conchos and surrounding undeveloped, non-irrigated land. The amount of area affected by salinity and the type of salinity were determined using EC (electrical conductivity) in conjunction with satellite images and corroborated by field analysis. The soil salinity derived from the remote sensing data was tied to precipitation, greenness of vegetation and water level of a nearby reservoir. The most appropriate method to assess soil salinity was found to be the selective principal component (SPCA) technique of Chavez and Kwarteng while the techniques utilized to discriminate vigorously-growing vegetation were tasseled cap transformation and the normalized difference vegetation index (NDVI). With this region undergoing a severe drought for the last ten years, the response of different parts of the ecosystem and changes in vegetation that so closely affect wildlife and other natural resources in this area can be better evaluated.

  19. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    PubMed Central

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-01-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems. PMID:27403714

  20. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests.

    PubMed

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y H

    2016-01-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon's index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems. PMID:27403714

  1. Relationships between soil microbial communities and soil carbon turnover along a vegetation and moisture gradient in interior Alaska

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.; Turetsky, M. R.; Petersen, D. G.; McGuire, A. D.; Briones, M. J.; Churchill, A. C.; Doctor, D. H.; Pruett, L. E.

    2010-12-01

    Boreal landscapes are characterized by a mosaic of uplands and lowlands, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Boreal ecosystems, from upland black spruce stands to lowland fens, are structured largely by water table position and contain quantitatively and qualitatively different forms of soil organic matter. Differences in carbon (C) availability among ecosystems likely translate to differences in the structure of soil microbial communities, which in turn could affect rates of organic matter decomposition and turnover. We examined relationships between microbial communities and soil C turnover in near-surface soils along a topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that upland black spruce sites would be dominated by soil fungi and have slow rates of C turnover, whereas lowland ecosystems would be dominated by bacteria and mesofauna (enchytraeids) and have more rapid rates of C turnover. We utilized several isotopic measures of soil C turnover including bomb radiocarbon techniques, the δ15N of SOM, and the difference between δ13C of SOM, DOC, and respired CO2. All three measures indicated greater C turnover rates in the surface soils of the lowland fen sites compared to the more upland locations. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraed counts, confirmed that surface soils from the lowland fen ecosystems had the highest abundances of these functional groups. Fungal biomass was highly variable and tended to be more abundant in the upland forest sites. Soil enzymatic results were mixed: potential cellulase activities were higher in the more upland soils even though rates of microbial activity were generally lower. Oxidative enzyme activities were higher in fens, even though these ecosystems are saturated and partly anaerobic. Overall our data support soil food web theory which argues that rapidly cycling systems

  2. GeoInformation studies of soil and vegetation patterns along Climatic Gradients: A Review

    NASA Astrophysics Data System (ADS)

    Shoshany, M.

    2009-04-01

    , spectral reflectance at the visible, NIR and SWIR ranges and emissions in the thermal spectrum. However, despite the magnitude of these projects very few of the methods were proved to be operational yet. The main shortcomings of exiting methods are: - They are highly dependent on accurate calibration which for large region is impractical. - Most of the methods are semi-empirical: case dependent rather than representing robust physical indicators. - There is no one imagery source which is good for all mapping purposes, most of the methods use single imagery source and there is relatively little synergy (fusion) between imagery sources. - Data continuity for long time periods exits mainly for low resolution sources which are limited in supporting modeling of processes. - Difficulties in scaling-up results and methods from the local to the broad-regional scales Within the scope of interest here the most important shortcoming concern the fact that relatively little work treated explicitly regions of high climatic gradient partly due to their high spatio-temporal heterogeneity. Three areas of recent advancements in studying explicitly transition zones between humid and arid regions : - Mapping bio-physical properties of vegetation forms (herbaceous, dwarf-shrubs and shrubs): cover proportions, biomass, primary productivity using synergy between optical (phonologies) and SAR imagery. - Mapping chemical and physical soil properties and estimating their erodibility using hyper and multi spectral methods, and SAR backscattering. - Mapping soil and vegetation patch patterns and their changes within the last decades using historical air-photographs. These advancement s lead to the detection of threshold zones between regions along these gradients according to following indicators: - Life-forms compositions, biomass and primary productivity. Analysis of relationships between biomass and rainfall allow differentiation between cases were vegetation compositions and properties which

  3. Reflectance of vegetation, soil, and water. [Hidalgo County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The majority of the rangelands of Hidalgo County, Texas are used in cow-calf operations. Continuous year-long grazing is practiced on about 60% of the acreage and some type of deferred system on the rest. Mechanical brush control is used more than chemical control. Ground surveys gave representative estimates for 15 vegetable crops produced in Hidalgo County. ERTS-1 data were used to estimate the acreage of citrus in the county. Combined Kubleka Munk and regression models, that included a term for shadow areas, gave a higher correlation of composite canopy reflectance with ground truth than either model alone.

  4. Radionuclide concentrations in terrestrial vegetation and soil on and around the Hanford Site, 1983 through 1993

    SciTech Connect

    Poston, T.M.; Antonio, E.J.; Cooper, A.T.

    1995-08-01

    This report reviews concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs, U isotopes, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soil and vegetation samples collected from 1983 through 1993 during routine surveillance of the Hanford Site. Sampling locations were grouped in study areas associated with operational areas on the Site. While radionuclide concentrations were very low and representative of background concentrations from historic fallout, some study areas on the Site contained slightly elevated concentrations compared to other study areas onsite and offsite. The 100 Areas had concentrations of {sup 60}Co comparable to the minimum detectable concentration of 0.02 pCi/g in soil. Concentrations of {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in 200 Area soils were slightly elevated. The 300 Area had a slight elevation of U in soil. These observations were expected because many of the sampling locations were selected to monitor specific facilities or operations at the operational areas. Generally, concentrations of the radionuclides studied were greater and more readily measured in soil samples compared to vegetation samples. The general pattern of concentrations of radionuclide concentrations in vegetation by area mirrored that observed in soil. Declines in {sup 90}Sr in soil appear to be attributed to radioactive decay and possibly downward migration out of the sampling horizon. The other radionuclides addressed in this report strongly sorb to soil and are readily retained in surface soil. Because of their long half-lives compared to the length of the study period, there was no significant indication that concentrations of U isotopes and Pu isotopes were decreasing over time.

  5. GeoInformation studies of soil and vegetation patterns along Climatic Gradients: A Review

    NASA Astrophysics Data System (ADS)

    Shoshany, M.

    2009-04-01

    , spectral reflectance at the visible, NIR and SWIR ranges and emissions in the thermal spectrum. However, despite the magnitude of these projects very few of the methods were proved to be operational yet. The main shortcomings of exiting methods are: - They are highly dependent on accurate calibration which for large region is impractical. - Most of the methods are semi-empirical: case dependent rather than representing robust physical indicators. - There is no one imagery source which is good for all mapping purposes, most of the methods use single imagery source and there is relatively little synergy (fusion) between imagery sources. - Data continuity for long time periods exits mainly for low resolution sources which are limited in supporting modeling of processes. - Difficulties in scaling-up results and methods from the local to the broad-regional scales Within the scope of interest here the most important shortcoming concern the fact that relatively little work treated explicitly regions of high climatic gradient partly due to their high spatio-temporal heterogeneity. Three areas of recent advancements in studying explicitly transition zones between humid and arid regions : - Mapping bio-physical properties of vegetation forms (herbaceous, dwarf-shrubs and shrubs): cover proportions, biomass, primary productivity using synergy between optical (phonologies) and SAR imagery. - Mapping chemical and physical soil properties and estimating their erodibility using hyper and multi spectral methods, and SAR backscattering. - Mapping soil and vegetation patch patterns and their changes within the last decades using historical air-photographs. These advancement s lead to the detection of threshold zones between regions along these gradients according to following indicators: - Life-forms compositions, biomass and primary productivity. Analysis of relationships between biomass and rainfall allow differentiation between cases were vegetation compositions and properties which

  6. Exploring cover crops as carbon sources for anaerobic soil disinfestation in a vegetable production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a raised-bed plasticulture vegetable production system utilizing anaerobic soil disinfestation (ASD) in Florida field trials, pathogen, weed, and parasitic nematode control was equivalent to or better than the methyl bromide control. Molasses was used as the labile carbon source to stimulate micr...

  7. Microbial Communities in Cerrado Soils under Native Vegetation Subjected to Prescribed Fires and Under Pasture

    EPA Science Inventory

    The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerra...

  8. Impact of soil type on vegetation response to prairie dog herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prairie dogs and their impact on vegetation have been the focus of numerous research projects. However, the effect of soil from this interaction has been less thoroughly documented. We evaluated prairie dog colonies (on-colony) and nearby sites without prairie dogs (off-colony) on Wayden, Cabba an...

  9. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance and metabolic footprints of soil nematodes were quantified during four of eight years of an intensive organic vegetable production system. Treatment variables included cover crop mixtures and frequency, and compost application rates. The abundances of bacterivore and fungivore nematode...

  10. A three-tiered approach for coupled vegetation and soil sampling to develop ecological descriptions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological site descriptions (ESDs), alongside similar land classification systems, are used to describe the breadth of plant community types, community changes, and soil surface conditions that can occur within a particular land area. Vegetation dynamic processes and management may change the ident...

  11. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examines the evolution of several model-based and satellite-derived drought metrics sensitive to soil moisture and vegetation conditions during the extreme flash drought event that impacted major agricultural areas across the central U.S. during 2012. Standardized anomalies from the remo...

  12. FLUE GAS DESULFURIZATION SLUDGE: ESTABLISHMENT OF VEGETATION ON PONDED AND SOIL-APPLIED WASTE

    EPA Science Inventory

    The report gives results of research to identify and evaluate forms of vegetation and methods of their establishment for reclaiming retired flue gas desulfurization sludge ponds. Also studied were the soil liming value of limestone scrubber sludge (LSS) and plant uptake and perco...

  13. The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands.

    PubMed

    Braskerud, B C

    2001-01-01

    When initiatives to mitigate soil erosion are insufficient or fail, constructed surface flow wetlands (CWs) could be a final buffer to reduce pollution before reaching recipients. The objective of this study was to determine the influence of CW vegetation on the retention of soil particles from arable land. Retention was measured with water flow-proportional sampling systems in the inlet and outlet, sedimentation traps, and sedimentation plates in four small CWs over a period of 5 yr. The surface area of the CWs was 265 to 900 m2, and the average hydraulic loads were 1.2 to 3.4 m d(-1). Watershed areas were 0.5 to 1.5 km2. Annual soil particle retention was 30 to 80% or 14 to 121 kg m(-2). Results show that macrophytes stimulate sediment retention by mitigating resuspension of CW sediment. Five years after construction, resuspension had decreased approximately 40% and was negligible. As vegetation cover increases, the influence of macrophytes on soil particle retention reaches a level where other factors, such as hydraulic load and sediment load, were more important. Macrophytes increased the hydraulic efficiency by reducing short-circuit or preferential flow. However, vegetation did not have any influence on the clay concentration in the sediment. Hence, a possible stimulation of particle flocculation was not detected. Vegetation makes it possible to use the positive effect of a short particle settling distance in shallow ponds by hindering resuspension. PMID:11476524

  14. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  15. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation patches in arid and semiarid areas are important in the regulation of surface hydrological processes. Canopy and ground cover in these fertility islands develop a natural cushion against the impact energy of rainfall, and the higher levels of organic matter improve soil physicochemical pr...

  16. Environmental behavior of technetium in soil and vegetation: implications for radiological impact assessment

    SciTech Connect

    Hoffman, F.O.

    1982-04-01

    Significant radiological exposures have been estimated for hypothetical atmospheric releases of Tc-99 from gaseous diffusion facilities when vegetation-to-soil concentration ratios representative of laboratory experiments are substituted for generic default values assumed in current regulatory models. To test the relevancy of these laboratory ratios, field investigations were conducted to obtain measurements of the vegetation-to-soil concentration ratio for Tc-99 in samples collected near operating gaseous diffusion facilities and to observe the dynamic behavior of technetium in soil and vegetation following a single application of a sprayed solution of /sup 95m/TcO/sub 4//sup -/ Comparison of observed field concentration ratios and calculated steady-state concentration ratios with ratios obtained from previous laboratory experiments indicates that concentration ratios obtained from field data are one to two orders of magnitude less than those obtained from the laboratory. Furthermore, a substantial accumulation of technetium in soil and vegetation may not occur over long periods of time, since concentrations of technetium in both environmental media were observed to decrease with time subsequent to initial application of /sup 95m/TcO/sub 4//sup -/.

  17. Decadal predictability of soil water, vegetation, and wildfire frequency over North America

    NASA Astrophysics Data System (ADS)

    Chikamoto, Yoshimitsu; Timmermann, Axel; Stevenson, Samantha; DiNezio, Pedro; Langford, Sally

    2015-10-01

    The potential decadal predictability of land hydrological and biogeochemical variables in North America is examined using a 900-year-long pre-industrial control simulation, conducted with the NCAR Community Earth System Model (CESM) version 1.0.3. The leading modes of simulated North American precipitation and soil water storage are characterized essentially by qualitatively similar meridional seesaw patterns associated with the activity of the westerly jet. Whereas the corresponding precipitation variability can be described as a white noise stochastic process, power spectra of vertically integrated soil water exhibit significant redness on timescales of years to decades, since the predictability of soil water storage arises mostly from the integration of precipitation variability. As a result, damped persistence hindcasts following a 1st order Markov process are skillful with lead times of up to several years. This potential multi-year skill estimate is consistent with ensemble hindcasts conducted with the CESM for various initial conditions. Our control simulation further suggests that decadal variations in soil water storage also affect vegetation and wildfire occurrences. The long-term potential predictability of soil water variations in combination with the slow regrowth of vegetation after major disruptions leads to enhanced predictability on decadal timescales for vegetation, terrestrial carbon stock, and fire frequency, in particular in the Southern United States (US)/Mexico region. By contrast, the prediction skill of fire frequency in the Northern US is limited to 1 year. Our results demonstrate that skillful decadal predictions of soil water storage, carbon stock, and fire frequency are feasible with proper initialization of soil conditions. Although the potential predictability in our idealized modeling framework would overestimate the real predictability of the coupled climate-land-vegetation system, the decadal climate prediction may become

  18. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils.

    PubMed

    Fismes, Joëlle; Perrin-Ganier, Corinne; Empereur-Bissonnet, Pascal; Morel, Jean Louis

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are possible contaminants in some former industrial sites, representing a potential risk to human health if these sites are converted to residential areas. This work was conducted to determine whether PAHs present in contaminated soils are transferred to edible parts of selected vegetables. Soils were sampled from a former gasworks and a private garden, exhibiting a range of PAH concentrations (4 to 53 to 172 to 1263 and 2526 mg PAHs kg-1 of dry soil), and pot experiments were conducted in a greenhouse with lettuce (Lactuca sativa L. var. Reine de Mai), potato (Solanum tuberosum L. var. Belle de Fontenay), and carrot (Daucus carota L. var. Nantaise). At harvest, above- and below ground biomass were determined and the PAH concentrations in soil were measured. In parallel, plates were placed in the greenhouse to estimate the average PAH-dust deposition. Results showed that the presence of PAHs in soils had no detrimental effect on plant growth. Polycyclic aromatic hydrocarbons were detected in all plants grown in contaminated soils. However, their concentration was low compared with the initial soil concentration, and the bioconcentration factors were low (i.e., ranging from 13.4 x 10(-4) in potato and carrot pulp to 2 x 10(-2) in potato and carrot leaves). Except in peeled potatoes, the PAH concentration in vegetables increased with the PAH concentration in soils. The PAH distribution profiles in plant tissues and in soils suggested that root uptake was the main pathway for high molecular weight PAHs. On the opposite, lower molecular weight PAHs were probably taken up from the atmosphere through the leaves as well as by roots. PMID:12371182

  19. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  20. [Effects of land use and vegetation restoration on soil quality in a small catchment of the Loess Plateau].

    PubMed

    Gong, Jie; Chen, Liding; Fu, Bojie; Li, Yanmei; Huang, Zhilin; Huang, Yilong; Peng, Hongjia

    2004-12-01

    Soil quality improvement plays an important role in sustaining global biosphere. This paper studied the changes of soil quality after 25 years' land use and vegetation restoration at the Anjiapo catchment of western Loess Plateau. The analyses of soil characteristics of wasteland, almond land, farmland, pineland, shrub land and fallow land showed that different land use and vegetation restoration had different effects on soil integrated fertility index. Soil organic matter content was increased due to planting shrubs and forests. Both vegetation restoration and fallow could improve soil quality. Cultivation practice could decrease soil nutrient levels, and cropland soil was degraded. Shrub soil formed "fertile island" in the semi-arid region. Fallow could improve soil fertility to some extent. Human activities and vegetation restoration could affect soil nutrient contents after land use pattern was changed. With the launch out into the "Grand development of Western China", "Grain for Green Project" and ecological restoration, both shrub planting and fallow (natural restoration) should be the optional choices to restore soil fertility, as they could decrease soil erosion and improve soil condition at catchment scale, especially in the hilly and gully loess area. Integrative control of small catchment may be the best way for the sustainable development of the semi-arid hilly area of Loess Plateau. PMID:15825444

  1. Quantification of the uncertainties in soil and vegetation parameterizations for regional climate predictions

    NASA Astrophysics Data System (ADS)

    Breil, Marcus; Schädler, Gerd

    2016-04-01

    The aim of the german research program MiKlip II is the development of an operational climate prediction system that can provide reliable forecasts on a decadal time scale. Thereby, one goal of MiKlip II is to investigate the feasibility of regional climate predictions. Results of recent studies indicate that the regional climate is significantly affected by the interactions between the soil, the vegetation and the atmosphere. Thus, within the framework of MiKlip II a workpackage was established to assess the impact of these interactions on the regional decadal climate predictability. In a Regional Climate Model (RCM) the soil-vegetation-atmosphere interactions are represented in a Land Surface Model (LSM). Thereby, the LSM describes the current state of the land surface by calculating the soil temperature, the soil water content and the turbulent heat fluxes, serving the RCM as lower boundary condition. To be able to solve the corresponding equations, soil and vegetation processes are parameterized within the LSM. Such parameterizations are mainly derived from observations. But in most cases observations are temporally and spatially limited and consequently not able to represent the diversity of nature completely. Thus, soil and vegetation parameterizations always exhibit a certain degree of uncertainty. In the presented study, the uncertainties within a LSM are assessed by stochastic variations of the relevant parameterizations in VEG3D, a LSM developed at the Karlsruhe Institute of Technology (KIT). In a first step, stand-alone simulations of VEG3D are realized with varying soil and vegetation parameters, to identify sensitive model parameters. In a second step, VEG3D is coupled to the RCM COSMO-CLM. With this new model system regional decadal hindcast simulations, driven by global simulations of the Max-Planck-Institute for Meteorology Earth System Model (MPI-ESM), are performed for the CORDEX-EU domain in a resolution of 0.22°. The identified sensitive model

  2. Soil and vegetation carbon in urban ecosystems: The importance of urban definition and scale

    NASA Astrophysics Data System (ADS)

    Raciti, S. M.; Hutyra, L.; Rao, P.; Finzi, A. C.

    2011-12-01

    There is conflicting evidence about the importance of soils and vegetation in urban carbon metabolism that is caused, in part, by inconsistent definitions of 'urban' land use. In Massachusetts, the US census estimates that 36% of the state is 'urban', yet remote sensing observations reveal that 50% of this urban area is forest or forested wetlands. While both of these estimates can be correct, the importance of soils and vegetation on the carbon metabolism of urban areas is clearly dependent on whether municipal, physical, or social definitions of urban are applied. We quantified urban ecosystem contributions to terrestrial C pools in the Boston Metropolitan Statistical Area (MSA) using several alternative urban definitions. Aboveground biomass (DBH ≥ 5 cm) for the MSA was 7.2 ± 0.4 kg C/m2, reflecting a high proportion of forest cover. Vegetation C was highest in forest (11.6 ± 0.5 kg C/m2) followed by residential (4.6 ± 0.5 kg C/m2) and then other developed (2.0 ± 0.4 kg C/m2) land uses. Soil C (0 to 10 cm) followed the same pattern of decreasing C concentration from forest, to residential, to other developed land uses (4.1 ± 0.1, 4.0 ± 0.2, and 3.3 ± 0.2 kg C/m2, respectively). Soil N concentrations were higher in urban areas than non-urban areas of the same land use type, except for residential areas, which had similarly high soil N concentrations. Urban soil (1 m depth) and vegetation C stocks spanned a wide range, from 14.4 to 54.5 Tg C and from 4.2 to 27.3 Tg C, respectively, depending on the urban definition that was used. Conclusions about the importance of soils and vegetation in urban ecosystems are very sensitive to the definition of urban used by the investigators. Urban areas are rapidly expanding in their extent; a systematic understanding of how our development patterns influence urban carbon metabolism, including vegetation and soils, is necessary to inform future development choices.

  3. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  4. Trampling resistance of tropical rainforest soils and vegetation in the wet tropics of north east Australia.

    PubMed

    Talbot, L M; Turton, S M; Graham, A W

    2003-09-01

    Controlled trampling was conducted to investigate the trampling resistance of contrasting high fertility basaltic and low fertility rhyolitic soils and their associated highland tropical rainforest vegetation in north east Australia's Wet Tropics. Although this approach has been taken in numerous studies of trampling in a variety of ecosystem types (temperate and subtropical forest, alpine shrubland, coral reef and seagrass beds), the experimental method does not appear to have been previously applied in a tropical rainforest context. Ground vegetation cover and soil penetration resistance demonstrated variable responses to trampling. Trampling, most noticeably after 200 and 500 passes reduced organic litter cover. Bulk density increased with trampling intensity, particularly on basalt soils as rhyolite soils appeared somewhat resistant to the impacts of trampling. The permeability of the basalt and rhyolite soils decreased markedly with increased trampling intensity, even after only 75 passes. These findings suggest physical and hydrological changes may occur rapidly in tropical rainforest soils following low levels of trampling, particularly on basalt soils. PMID:12927152

  5. Scaling relationships for soil formation and edaphic controls on vegetation growth

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Ghanbarian, B.

    2015-12-01

    Critical path analysis (CPA) is suited to calculating the hydraulic conductivity, K, of heterogeneous porous media by quantifying of paths of least resistance. Whenever CPA could be used to calculate K, advective transport scaling relationships from percolation theory should describe solute transport. Two solute transport relationships are applied to predict soil development and edaphic constraints on natural vegetation growth. These results use known exponents from percolation theory and known subsurface flow velocities. The typical flow velocity itself constrains optimal growth rates of cultivars. The percolation scaling relationship constraining vegetation growth is shown to be in accord with data over time scales from hours to 100,000 years, including over a dozen studies (and two models) of tree growth. The scaling function for soil development explains time scales for formation of soils from years to hundreds of millions of years. Data on soil development comes from 23 different studies. The key unification is the common origin of the time and space coordinates for all three relationships in the time of transport through a single pore of roughly micron size at a typical subsurface pore-scale flow velocity. The distinction in evolving time scales is primarily a result of the hierarchical nature of vascular plant root systems, which speed up nutrient access relative to physical transport rates in the soil. The results help explain reduction in forest productivity with age, diminishing soil production with time, and the temporal distinction between the relevance of chemical and biological processes in soils to the global carbon cycle.

  6. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  7. Estimating Sahelian and East African soil moisture using the Normalized Difference Vegetation Index

    NASA Astrophysics Data System (ADS)

    McNally, A.; Funk, C.; Husak, G. J.; Michaelsen, J.; Cappelaere, B.; Demarty, J.; Pellarin, T.; Young, T. P.; Caylor, K. K.; Riginos, C.; Veblen, K. E.

    2013-06-01

    Rainfall gauge networks in Sub-Saharan Africa are inadequate for assessing Sahelian agricultural drought, hence satellite-based estimates of precipitation and vegetation indices such as the Normalized Difference Vegetation Index (NDVI) provide the main source of information for early warning systems. While it is common practice to translate precipitation into estimates of soil moisture, it is difficult to quantitatively compare precipitation and soil moisture estimates with variations in NDVI. In the context of agricultural drought early warning, this study quantitatively compares rainfall, soil moisture and NDVI using a simple statistical model to translate NDVI values into estimates of soil moisture. The model was calibrated using in-situ soil moisture observations from southwest Niger, and then used to estimate root zone soil moisture across the African Sahel from 2001-2012. We then used these NDVI-soil moisture estimates (NSM) to quantify agricultural drought, and compared our results with a precipitation-based estimate of soil moisture (the Antecedent Precipitation Index, API), calibrated to the same in-situ soil moisture observations. We also used in-situ soil moisture observations in Mali and Kenya to assess performance in other water-limited locations in sub Saharan Africa. The separate estimates of soil moisture were highly correlated across the semi-arid, West and Central African Sahel, where annual rainfall exhibits a uni-modal regime. We also found that seasonal API and NDVI-soil moisture showed high rank correlation with a crop water balance model, capturing known agricultural drought years in Niger, indicating that this new estimate of soil moisture can contribute to operational drought monitoring. In-situ soil moisture observations from Kenya highlighted how the rainfall-driven API needs to be recalibrated in locations with multiple rainy seasons (e.g., Ethiopia, Kenya, and Somalia). Our soil moisture estimates from NDVI, on the other hand, performed

  8. Distribution of gamma-ray emitting radionuclides in the environment of Burullus Lake: I. Soils and vegetations.

    PubMed

    El-Reefy, H I; Sharshar, T; Zaghloul, R; Badran, H M

    2006-01-01

    The concentrations and distribution of gamma-ray emitting isotopes in Burullus Lake were investigated with the aim of evaluating the environmental radioactivity. Particularly in wetlands, natural properties of the environment can cause the actual inventory to be different from the activity originally deposited. The mean concentrations of (226)Ra, (232)Th and (40)K were 14.3, 15.5 and 224 Bq/kg, respectively, in the coastal soils. On the other hand, soil samples from the islands had mean concentrations of 13.5, 17.4 and 341 Bq/kg for (226)Ra, (232)Th and (40)K, respectively. Samples from coast and islands show evidence of possible transfer and accumulation of the (137)Cs radionuclide. The mean (137)Cs activity concentrations in the soil samples were 1.2 and 15.1 Bq/kg in the coast and islands, respectively. The vertical migration of (137)Cs was studied based on its content in the consequently located three soil layers down to 30 cm depth. The radium equivalent, dose rate in air and annual dose equivalent from the terrestrial natural gamma-radiation were evaluated. The mean activity concentrations of the gamma-ray emitting radionuclides in vegetation were relatively low. PMID:16427723

  9. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  10. Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill.

    PubMed

    Sanchís, Josep; Cabrerizo, Ana; Galbán-Malagón, Cristóbal; Barceló, Damià; Farré, Marinella; Dachs, Jordi

    2015-04-01

    Volatile methyl siloxanes (VMS) are high-production synthetic compounds, ubiquitously found in the environment of source regions. Here, we show for the first time the occurrence of VMS in soils, vegetation, phytoplankton, and krill samples from the Antarctic Peninsula region, which questions previous claims that these compounds are "flyers" and do not significantly reach remote ecosystems. Cyclic VMS are the predominant compounds, with concentrations ranging from the limits of detection to 110 ng/g in soils. Concentrations of cyclic VMS in phytoplankton are negatively correlated with sea surface salinity, indicating a source from ice and snow melting and consistent with snow depositional inputs. After the summer snow melting, VMS accumulate in the Southern Ocean and Antarctic biota. Therefore, once introduced into the marine environment, VMS are eventually trapped by the biological pump and, thus, behave as "single hoppers". Conversely, VMS in soils and vegetation behave as "multiple hoppers" due to their high volatility. PMID:25658133

  11. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  12. Concentrations of Radionuclides and Trace Elements in Soils and Vegetation Around the DARHT Facility during 2004

    SciTech Connect

    P.R. Fresquez

    2004-10-01

    Samples of soil, sediment, and unwashed overstory and understory vegetation were collected at four locations around the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL). All samples were analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. These results, which represent five years since the start of operations, were compared with baseline statistical reference level (BSRL) data established over a four-year-long preoperational period prior to DARHT operations, and to LANL and U.S. Environmental Protection Agency Screening Action Levels (SALs). Most radionuclides and trace elements in soil, sediment, and vegetation were below BSRL values and those soils/sediments that were above BSRLs were far below SALs.

  13. Sampling dynamic soil properties and vegetation for soil survey and ecological site descriptions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic soil property data can be collected during soil survey updates to add value to soil survey products and meet users needs for ecological site descriptions. Producers and land managers need information about soil and ecosystem change in order to plan for long-term productivity, conduct monito...

  14. CLASSIFICATION OF COAL SURFACE MINE SOIL MATERIAL FOR VEGETATION MANAGEMENT AND SOIL WATER QUALITY

    EPA Science Inventory

    An Alabama minesoil classification system was developed based on soil texture, soil color value and soil pH. Only five different soil classes were found in this study. However, the classification scheme allows for the inclusion of any minesoil that occurs on the basis of its text...

  15. Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California

    USGS Publications Warehouse

    Oze, C.; Skinner, C.; Schroth, A.W.; Coleman, R.G.

    2008-01-01

    Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg-1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants' roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of

  16. Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography

    NASA Astrophysics Data System (ADS)

    Silvestri, Sonia; Marani, Marco; Marani, Alessandro

    The present paper deals with the relationship between vegetation patterns and salt marsh morphology in the Venice lagoon and with the use of remote sensing to infer salt marsh morphologic characteristics from vegetation mapping. Field measurements indicate that salt marsh vegetation species (halophytes) are reliable indicators of ground elevation and live within typical elevation ranges characterised by standard deviations of less than 5 cm. A model is then developed which uses vegetation as a morphological indicator of soil topography to estimate ground elevation from fractional cover values of each vegetation type. The use of data from an airborne remote hyperspectral sensor is presented as a means of discriminating between different salt marsh vegetation communities. Vegetation maps obtained from unmixing techniques have then been used to produce digital elevation maps (DEM) of salt marsh areas. The DEM based on halophytes cover estimates and extracted from high spatial and spectral resolution data allows a high estimation accuracy, with an error standard deviation of a few centimetres in the considered study area within the Venice lagoon. The accuracy and resolution attainable through this method are comparable and often superior to those obtained through state of the art laser altimetry.

  17. Phthalic Acid Esters in Soils from Vegetable Greenhouses in Shandong Peninsula, East China

    PubMed Central

    Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi

    2014-01-01

    Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs. PMID:24747982

  18. Vegetation mosaics in arid Australia: linked roles for climate and soils

    NASA Astrophysics Data System (ADS)

    Dunkerley, D.

    2012-04-01

    It is widely considered that quasi-regular patterns in dryland soils and vegetation reflect a process of self-organisation. In such a view, the spatial patterns emerge from multiple interactions and feedbacks among the elements of the ecogeomorphic system. In arid western NSW, Australia, key elements affecting the self-organisation of strongly banded vegetation appear to include the extreme climatic variability (related to ENSO and other global climate phenomena) and the geomorphic history of the landscape, which involves major glacial-period accessions of exotic aeolian clays of the illite family, which exhibit very marked shrink-swell behaviour. The latter may be a prerequisite for pattern emergence, and the former a key driver of emergence. A cellular model of pattern emergence was driven by a timeseries of annual rainfalls exhibiting occasional marked wet La Niña years and also multi-year El Niño droughts, in order to explore how this climatic driver affects pattern emergence. Importantly, the model incorporated the effects of drying and contraction of the deeper subsoils during multi-year droughts. In the field, extreme soil desiccation is seen to result in widespread tension cracking and collapse of the surface soils into voids in the more clay rich, and more strongly contracted, subsoil. The collapse features maintain the water trapping efficiency of the vegetation groves even when the plant cover has declined greatly. Trapping efficiency remains low within intergroves, because the subsoils there are always relatively dry, owing to their impermeable soil surfaces. Modelling excluding soil collapse during drought showed much greater loss of groves and resultant changes in grove spacing that is not seen in long-term field monitoring data. This suggests that the variability of annual rainfalls (and not just the average climatic aridity) may actually confer stability on the banded vegetation communities via a little-explored linkage of soil and climatic

  19. [Transfer characteristics of cadmium in soil-vegetable-insect food chain].

    PubMed

    Ding, Ping; Zhuang, Ping; Li, Zhi-An; Xia, Han-Ping; Tai, Yi-Ping; Lu, Huan-Ping

    2012-11-01

    Taking two kinds of vegetables (Brassica rapa and Amaranthus mangostanus) and one insect species (Prodenia litura) as test materials, a greenhouse pot experiment was conducted to study the transfer characteristics of cadmium (Cd) in soil-vegetable-insect food chain and the distribution patters of different Cd chemical forms in the organs of the two vegetables. With the increasing concentration of applied Cd in soil, the biomass of the two vegetables decreased significantly, while the Cd concentration in the vegetables had a significant increase. The Cd concentration in the vegetable organs decreased in the order of stem > root > leaf for A. mangostanus, and of stem > leaf > root for B. rapa. The Cd concentration in P. litura larvae also increased with the increasing concentration of Cd in soil, and the maximum Cd concentration in the P. litura larvae on B. rapa and A. mangostanus was 36.7 and 46.3 mg x kg(-1), respectively. In the feces of the larvae on B. rapa and A. mangostanus, the Cd concentration was up to 190 and 229.8 mg x kg(-1), respectively, suggesting that the most part of Cd absorbed by P. litura larvae was excreted out of their bodies via feces. In the organs of the two vegetables, NaCl-extractable Cd was the dominant Cd form (> 70%), followed by d-H2O- and ethanol-extractable Cd, while the HAc-extractable Cd (insoluble cadmium phosphate), HCl-extractable Cd (insoluble cadmium oxalate), and residual Cd only had a very low concentration. Such a present pattern of different Cd forms in vegetable organs could be conducive to the Cd transfer in the food chain. P. litura could ease Cd poison by excreting large amount of absorbed Cd via feces, and effectively restrict the transfer of Cd to next trophic level. Since B. rapa and A. mangostanus could accumulate large amount of Cd in their biomass, the two vegetables were suggested not to be planted in highly Cd-contaminated soil. PMID:23431799

  20. Effects of Air Drying on Soil Available Phosphorus in Two Grassland Soils

    NASA Astrophysics Data System (ADS)

    Schaerer, M.; Frossard, E.; Sinaj, S.

    2003-04-01

    Mobilization of P from the soil to ground and surface water is principally determined by the amount of P in the soil and physico-chemical as well as biological processes determining the available P-pool that is in equilibrium with soil solution. Soil available P is commonly estimated on air dry soil using a variety of methods (extraction with water, dilute acids and bases, anion exchange resin, isotopic exchange or infinite sinks). Recently, attempts have been made to use these measurements to define the potential for transport of P from soil to water by overland flow or subsurface flow. The effect of air drying on soil properties in general, and plant nutrient status in particular, have been subject of a number of studies. The main objective of this paper was to evaluate the effect of air-drying on soil properties and available P. For this experiment, grassland soils were sampled on two study sites located on slopes in the watershed of Lake Greifensee, 25 km south-east of Zurich. Both soils (0-4 cm depth) are rich in P with 1.7 and 1.3 g kg-1 total P at site I and site II, respectively. The concentrations on isotopically exchangeable P within 1 minute (E1min, readily available P) for the same depth were also very high, 58 and 27 mg P kg soil-1 for the site I and II, respectively. In the present study both field moist and air dried soil samples were analyzed for microbial P (Pmic), resin extractable P (P_r), isotopically exchangeable P (E1min) and amorphous Al and Fe (Alox, Feox). Generally, the microbial P in field moist soils reached values up to 120 mg P/kg soil, whereas after drying they decreased by 73% in average for both soils. On the contrary to Pmic, available P estimated by different methods strongly increased after drying of the soil samples. The concentration of phosphate ions in the soil solution c_p, E1min and P_r were 4.2, 2.2 and 2 times higher in dry soils than in field moist soils. The increase in available P shows significant semilogarithmic

  1. Soil, Water, and Vegetation Conditions in South Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Reflectance differences between the dead leaves of six crops (corn, cotton, sorghum, sugar cane, citrus, and avocado) and the respective bare soils where the dead leaves were lying on the ground were determined from laboratory spectrophotometric measurements over the 0.5- to 2.5 micron wavelength interval. The largest differences were in the near infrared waveband 0.75- to 1.35 microns. Leaf area index was predicted from plant height, percent ground cover, and plant population for irrigated and nonirrigated grain sorghum fields for the 1975 growing season.

  2. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  3. Vegetation stress from soil moisture and chlorophyll fluorescence: synergy between SMAP and FLEX approaches

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Moran, Susan

    2014-05-01

    Vegetation stress detection continues being a focal objective for remote sensing techniques. It has implications not only for practical applications such as irrigation optimization or precision agriculture, but also for global climate models, providing data to better link water and carbon exchanges between the surface and the atmospheric and improved parameterization of the role of terrestrial vegetation in the coupling of water and carbon cycles. Traditional approaches to map vegetation stress using remote sensing techniques have been based on measurements of soil moisture status, canopy (radiometric) temperature and, to a lesser extent, canopy water content, but new techniques such as the dynamics of vegetation fluorescence emission, are also now available. Within the context of the preparatory activities for the SMAP and FLEX missions, a number of initiatives have been put in place to combine modelling activities and field experiments in order to look for alternative and more efficient ways of detecting vegetation stress, with emphasis on synergistic remote sensing approaches. The potential of solar-induced vegetation fluorescence as an early indicator of stress has been widely demonstrated, for different type of stress conditions: light amount (excess illumination) and conditions (direct/diffuse), temperature extremes (low and high), soil water availability (soil moisture), soil nutrients (nitrogen), atmospheric water vapour and atmospheric CO2 concentration. The effects caused by different stress conditions are sometimes difficult to be decoupled, also because different causes are often combined, but in general they then to change the overall fluorescence emission (modulating amplitude) or changing the relative contributions of photosystems PSI and PSII or the relative fluorescence re-absorption effects caused by modifications in the structure of pigment bed responsible for light absorption, in particular for acclimation for persistent stress conditions. While

  4. Soil, vegetation and total organic carbon stock development in self-restoring abandoned vineyards

    NASA Astrophysics Data System (ADS)

    József Novák, Tibor; Incze, József; Spohn, Marie; Giani, Luise

    2016-04-01

    Abandoned vineyard's soil and vegetation development was studied on Tokaj Nagy-Hill, which is one of the traditional wine-producing regions of Hungary, it is declared as UNESCO World Heritage site as cultural landscape. Spatial distribution and pattern of vineyards were changing during the last several hundreds of years, therefore significant part of abandoned vineyards were subjected to long-term spontaneous secondary succession of vegetation and self-restoration of soils in absence of later cultivation. Two chronosequences of spontaneously regenerating vineyard abandonments, one on south (S-sequence) and one on southwest (SW-sequence) slope with differing times since their abandonment (193, 142, 101, 63, 39 and 14 years), were compiled and studied. The S-sequence was 25-35% sloped and strongly eroded, and the SW-sequence was 17-25% sloped and moderately eroded. The sites were investigated in respect of vegetation characteristics, soil physico-chemical characteristics, total organic carbon stocks (TOC stocks), accumulation rates of total organic carbon (TOC accumulation rates), and soil profiles, which were classified according to the World Reference Base (WRB) 2014. Vegetation development resulted in shrub-grassland mosaics, supplemented frequently by protected forb species and forest development at the earliest abandonment in S-sequence, and predominantly to forest vegetation in SW-sequence, where trees were only absent at the 63 and 14 years old abandonment sites. In all sites soils on level of reference groups according to WRB were classified, and Cambisols, Regosols, Calcisols, Leptosols, Chernozems and Phaeozems were found. Soils of the S-sequence show shallow remnants of loess cover with colluvic and redeposited soil materials containing 15-65% skeletal volcanic rock of weathering products coated by secondary calcium carbonates. The SW-sequence profiles are developed on deep loess or loess derivatives. The calcium-carbonate content was higher in profiles of

  5. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    SciTech Connect

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  6. The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens

    NASA Astrophysics Data System (ADS)

    Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.

    2014-12-01

    The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.

  7. Effects of varying soil moisture contents and vegetation canopies on microwave emissions

    NASA Technical Reports Server (NTRS)

    Burke, H.-H. K.; Schmugge, T. J.

    1982-01-01

    Results of NASA airborne passive microwave scans of bare and vegetated fields for comparison with ground truth tests are discussed and a model for atmospheric scattering of radiation by vegetation is detailed. On-board radiometers obtained data at 21, 2.8, and 1.67 cm during three passes over each of 46 fields, 28 of which were bare and the others having wheat or alfalfa. Ground-based sampling included moisture in five layers down to 15 cm in addition to soil temperature. The relationships among the brightness temperature and soil moisture, as well as the surface roughness and the vegetation canopy were examined. A model was developed for the dielectric coefficient and volume scattering for a vegetation medium. L- to C-band data were found useful for retrieving soil information directly. A surface moisture content of 5-35% yielded an emissivity of 0.9-0.7. The data agreed well with a combined multilayer radiative transfer model with simple roughness correction.

  8. Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables.

    PubMed

    Ding, Changfeng; Ma, Yibing; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2016-02-13

    The combination of food quality standard and soil-plant transfer models can be used to derive critical limits of heavy metals for agricultural soils. In this paper, a robust methodology is presented, taking the variations of plant species and cultivars and soil properties into account to derive soil thresholds for lead (Pb) applying species sensitivity distribution (SSD). Three species of root vegetables (four cultivars each for radish, carrot, and potato) were selected to investigate their sensitivity differences for accumulating Pb through greenhouse experiment. Empirical soil-plant transfer model was developed from carrot New Kuroda grown in twenty-one soils covering a wide variation in physicochemical properties and was used to normalize the bioaccumulation data of non-model cultivars. The relationship was then validated to be reliable and would not cause over-protection using data from field experimental sites and published independent studies. The added hazardous concentration for protecting 95% of the cultivars not exceeding the food quality standard (HC5add) were then calculated from the Burr Type III function fitted SSD curves. The derived soil Pb thresholds based on the added risk approach (total soil concentration subtracting the natural background part) were presented as continuous or scenario criteria depending on the combination of soil pH and CEC. PMID:26513560

  9. Impact of air pollution on vegetation near the Columbia Generating Station - Wisconsin power plant impact study

    SciTech Connect

    Tibbitts, T.W.; Will-Wolf, S.; Karnowsky, D.F.; Olszyk, D.M.

    1982-06-01

    The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was undertaken before and after initiation of generating station operations. Controlled environmental exposures were undertaken with separate cultivars of crop species grown in the vicinity of the generating station. Alfalfa, carrots, mint, peas, beans, and trembling aspen were exposed to SO2 and O3 to establish minimum threshold pollutant levels for injury from these pollutants.

  10. Structure and condition of soil-vegetation cover in the Klyazma river basin applying remote sensing data

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Trifonova, Tatiana; Repkin, Roman

    2015-04-01

    Constant observation of vegetation and soil cover is one of the key issues of river basins ecologic monitoring. It is necessary to consider that observation objects have been continuously changing and these changes are comprehensive and depend on temporal and dimensional parameters. Remote sensing data, embracing vast areas and reflecting various interrelations, allow excluding accidental and short-term changes though concentrating on the transformation of the observed river basin ecosystem environmental condition. The research objective is to assess spatial-temporal peculiarities of soil-vegetation structure formation in the Klyazma basin as a whole and minor river basins within the area. Research objects are located in the centre of European Russia. Data used in our research include both statistic and published data, characterizing soil-vegetation cover of the area, space images Landsat. Research methods: Remote data analysis for assessing land utilization structure and soil-vegetation condition according to NDVI. Laying soil-geobotanic landscape profiles river valleys slopes. Phytomass reserve, phytoproductivity, soil fertility characteristics assessment. NDVI computation for each image pixel helped to map general condition of the Klyazma vegetation cover and to determine geographic ranges without vegetation or with depressed vegetation. For instance high vegetation index geographic range has been defined which corresponded to Vladimir Opolye characterized with the most fertile grey forest soil in the region. Comparative assessment of soil vegetation cover of minor river basins within the Klyazma basin, judging by the terrestrial data, revealed its better condition in the Koloksha basin which is also located in the area of grey forest soil. Besides here the maximum value of vegetation index for all phytocenosis was detected. In the research the most dynamically changing parts of the Klyazma basin have been determined according to NDVI dynamics analysis

  11. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, Jennifer W.; Turetsky, M.R.; Petersen, D.G.; McGuire, A.D.; Briones, M.J.I.; Churchill, A.C.; Doctor, D.H.; Pruett, L.E.

    2012-01-01

    Boreal wetlands are characterized by a mosaic of plant communities, including forests, shrublands, grasslands, and fens, which are structured largely by changes in topography and water table position. The soil associated with these plant communities contain quantitatively and qualitatively different forms of soil organic matter (SOM) and nutrient availability that drive changes in biogeochemical cycling rates. Therefore different boreal plant communities likely contain different soil biotic communities which in turn affect rates of organic matter decomposition. We examined relationships between plant communities, microbial communities, enchytraeids, and soil C turnover in near-surface soils along a shallow topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that as soil moisture increases along the gradient, surface soils would become increasingly dominated by bacteria and mesofauna and have more rapid rates of C turnover. We utilized bomb radiocarbon techniques to infer rates of C turnover and the 13C isotopic composition of SOM and respired CO2 to infer the degree of soil humification. Soil phenol oxidase and peroxidase enzyme activities were generally higher in the rich fen compared with the forest and bog birch sites. Results indicated greater C fluxes and more rapid C turnover in the surface soils of the fen sites compared to the wetland forest and shrub sites. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraeid counts, indicated that surface soils from the lowland fen ecosystems had higher abundances of these microbial and mesofaunal groups. Fungal abundance was highly variable and not significantly different among sites. Microbial data was utilized in a food web model that confirmed that rapidly cycling systems are dominated by bacterial activity and enchytraeid grazing. However, our results also suggest that oxidative enzymes play an important role in the C mineralization process in

  12. Decadal Potential Predictability of Soil Water, Vegetation, and Wildfire Frequency over North America

    NASA Astrophysics Data System (ADS)

    Chikamoto, Y.; Timmermann, A.; Stevenson, S. L.; Di Nezio, P. N.; Langford, S.

    2014-12-01

    The potential decadal predictability of land hydrological and biogeochemical variables in North America is examined using a 900-year-long pre-industrial control simulation, conducted with the NCAR Community EarthSystem Model (CESM). The leading modes of simulated North American precipitation and soil water storage are characterized by qualitatively similar meridional seesaw patterns associated with the downstream activity of the westerly jet. Whereas the corresponding precipitation variability can be described as a white noise stochastic process, power spectra of vertically integrated soil water exhibit significant redness on timescales of years to decades since the predictability of soil water storage arises mostly from the integration of precipitation variability. As a result, our ensemble hindcasts conducted with the CESM for various initial conditions are skillful with lead times of up to several years due to the long-term memory of damped persistence. Our control simulation further suggests that decadal variations in soil water storage also affect vegetation and wildfire occurrences. Our results demonstrate that skillful decadal predictions of soil water storage, carbon stock, and fire frequency are feasible with proper initialization of soil conditions. Although the potential predictability in our idealized modeling framework would overestimate the real predictability of the coupled climate-land-vegetation system, the decadal climate prediction may become beneficial for water resource management, forestry, and agriculture.

  13. Uptake of explosives from contaminated soil by existing vegetation at the Iowa Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Zellmer, S.D.; Tomczyk, N.A.; Rastorier, J.R.; Chen, D.; Banwart, W.L.

    1995-02-01

    This study examines the uptake of explosives by existing vegetation growing in soils contaminated with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-3,5-triazine (RDX) in three areas at the Iowa Army Ammunition Plant (IAAP). To determine explosives uptake under natural environmental conditions, existing plant materials and soil from the root zone were sampled at different locations in each area, and plant materials were separated by species. Standard methods were used to determine the concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. The compound TNT was not detected in the aboveground portion of plants, and vegetation growing on TNT-contaminated soils is not considered a health hazard. However, soil and plant roots may contain TNT degradation products that may be toxic; hence, their consumption is not advised. The compound RDX was found in the tops and roots of plants growing on RDX-contaminated soils at all surveyed sites. Although RDX is not a listed carcinogen, several of its potentially present degradation products are carcinogens. Therefore, the consumption of any plant tissues growing on RDX-contaminated sites should be considered a potential health hazard.

  14. Contribution of Vegetation to the Microbial Composition of Nearby Outdoor Air

    PubMed Central

    Adams, Rachel I.

    2016-01-01

    ABSTRACT Given that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate. IMPORTANCE This paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute

  15. Contamination of commonly consumed raw vegetables with soil transmitted helminth eggs in Mazandaran province, northern Iran.

    PubMed

    Rostami, Ali; Ebrahimi, Maryam; Mehravar, Saeed; Fallah Omrani, Vahid; Fallahi, Shirzad; Behniafar, Hamed

    2016-05-16

    Soil-transmitted helminth (STH) infections are responsible for significant burden of morbidity and mortality worldwide. Consumption of raw vegetables without proper washing is one of the major routes of such infections. We evaluate the prevalence of STH contamination in commonly used vegetables in Mazandaran province, northern Iran. A total of 772 fresh raw vegetables were obtained from retail markets. Each sample was divided into two groups. One group was used as the unwashed sample and the second group was washed with standard washing procedures. Then, samples were examined for helminth eggs by using standard methods. Data analysis was performed using SPSS20. The overall prevalence of STHs was 14.89% (115/772). The rate of STH contamination was significantly higher in warm seasons (20.5%, 79/386) than in cold seasons (9.32%, 36/386) among the unwashed vegetables (OR=2.50; CI 95%=1.64-3.8; P<0.001). No parasites were observed in standard washed samples (OR=271.40; CI 95%=16.84-4373.64; P<0.001). Prevalence of STH contamination was significantly higher in leafy vegetables than root vegetables (OR=1.67; CI 95%=1.09-2.55; P<0.05). The prevalence of STHs species in all the vegetables were as follows: Ascaris lumbricoides (3.36%), Trichuris trichiura (2.2%), hookworms (2.9%), Toxocara spp. (1.68%), Trichostrongylus spp. (1.55), Taenia sp. (0.9%) and Hymenolepis nana (2.2%). The results of the present study emphasized that vegetables are potential risk factor for transmission of helminth infection to human in northern Iran. It is necessary that health authorities trained the consumers to proper and standard washing of vegetables before consumption. PMID:26999768

  16. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd. PMID:26013654

  17. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization for Root-Knot Nematode Control in Vegetable and Ornamental Crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic soil disinfestation (ASD) combined with soil solarization continues to be evaluated for management of plant-parasitic nematodes in vegetable and ornamental crops in Florida. ASD combines organic amendments and soil saturation to stimulate microbial activity and create anaerobic conditions...

  18. Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth

    NASA Astrophysics Data System (ADS)

    Gevaert, A. I.; Parinussa, R. M.; Renzullo, L. J.; van Dijk, A. I. J. M.; de Jeu, R. A. M.

    2016-03-01

    Space-borne passive microwave radiometers are used to derive land surface parameters such as surface soil moisture and vegetation optical depth (VOD). However, the value of such products in regional hydrology is limited by their coarse resolution. In this study, the land parameter retrieval model (LPRM) is used to derive enhanced resolution (∼10 km) soil moisture and VOD from advanced microwave scanning radiometer (AMSR-E) brightness temperatures sharpened by a modulation technique based on high-frequency observations. A precipitation mask based on brightness temperatures was applied to remove precipitation artefacts in the sharpened LPRM products. The spatial and temporal patterns in the resulting products are evaluated against field-measured and modeled soil moisture as well as the normalized difference vegetation index (NDVI) over mainland Australia. Results show that resolution enhancement accurately sharpens the boundaries of different vegetation types, lakes and wetlands. Significant changes in temporal agreement between LPRM products and related datasets are limited to specific areas, such as lakes and coastal areas. Spatial correlations, on the other hand, increase over most of Australia. In addition, hydrological signals from irrigation and water bodies that were absent in the low-resolution soil moisture product become clearly visible after resolution enhancement. The increased information detail in the high-resolution LPRM products should benefit hydrological studies at regional scales.

  19. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh.

    PubMed

    Ahmad, Jasim Uddin; Goni, Md Abdul

    2010-07-01

    Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined. PMID:19521788

  20. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  1. The effects of soil moisture, surface roughness, and vegetation on L-band emission and backscatter

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, J. C.; Engman, Edwin T.; Schmugge, Thomas J.; Mo, Tsan

    1987-01-01

    Measurements performed with SIR-B at 1.28 GHz and an airborne multiple-beam push-broom radiometer at 1.4 GHz over agricultural fields near Fresno, California are examined. A theoretical model (Kirchhoff approximation) was used to assess the effects of surface roughness and vegetation (alfalfa and lettuce) with respect to the responses of microwave emission and backscatter to soil-moisture variations. It is found that the surface roughness plays a dominant role compared to the vegetation cover in the microwave backscatter.

  2. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index

    NASA Astrophysics Data System (ADS)

    Holzman, M. E.; Rivas, R.; Piccolo, M. C.

    2014-05-01

    Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12% to 13% for soybean and 14% to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale.

  3. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses.

    PubMed

    Wang, Jun; Chen, Gangcai; Christie, Peter; Zhang, Manyun; Luo, Yongming; Teng, Ying

    2015-08-01

    Phthalate esters (PAEs) are suspected of having adverse effects on human health and have been frequently detected in soils and vegetables. The present study investigated their occurrence and composition in plastic film greenhouse soil-vegetable systems and assessed their potential health risks to farmers exposed to these widespread pollutants. Six priority control phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP), were determined in 44 plastic film greenhouse vegetables and corresponding soils. Total PAEs ranged from 0.51 to 7.16mgkg(-1) in vegetables and 0.40 to 6.20mgkg(-1) in soils with average concentrations of 2.56 and 2.23mgkg(-1), respectively. DnBP, DEHP and DnOP contributed more than 90% of the total PAEs in both vegetables and soils but the proportions of DnBP and DnOP in vegetables were significantly (p<0.05) higher than in soils. The average concentrations of PAEs in pot herb mustard, celery and lettuce were >3.00mgkg(-1) but were <2.50mgkg(-1) in the corresponding soils. Stem and leaf vegetables accumulated more PAEs. There were no clear relationships between vegetable and soil PAEs. Risk assessment indicates that DnBP, DEHP and DnOP exhibited elevated non-cancer risk with values of 0.039, 0.338 and 0.038, respectively. The carcinogenic risk of DEHP was about 3.94×10(-5) to farmers working in plastic film greenhouses. Health risks were mainly by exposure through vegetable consumption and soil ingestion. PMID:25863503

  4. Mucilaginibacter yixingensis sp. nov., isolated from vegetable soil.

    PubMed

    Jing, Yi-Ting; Wang, Ping; Zhang, Hao; Dong, Wei-Liang; Jing, Yin-Juan; Xiao, Yong-Liang; Cao, Hui

    2016-04-01

    A Gram-reaction-negative, aerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated YX-36T, was isolated from a vegetable plot in Yixing, Jiangsu province, China. The strain grew at 15-37 °C (optimally at 37 °C), at pH 6.0-9.5 (optimally at pH 6.5) and in the presence of 0-1 % (w/v) NaCl (optimally without NaCl). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YX-36T was related most closely to Mucilaginibacter herbaticus DR-9T (96.88 % similarity), followed by Mucilaginibacter sabulilitoris SMS-12T (95.78 %), Mucilaginibacter polysacchareus DR-f3T (95.77 %) and Mucilaginibacter polysacchareus DRP28T (95.77 %). The DNA G+C content of strain YX-36T was 47.2 mol%. The only isoprenoid quinone was menaquinone 7 (MK-7). The major polar lipids were phosphatidylethanolamine and aminophospholipid. The major fatty acids were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) and iso-C17 : 0 3-OH. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain YX-36T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter yixingensis sp. nov. is proposed. The type strain is YX-36T ( = DSM 26809T = CCTCC AB 2012880T). PMID:26827674

  5. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  6. Measurement of directional thermal infrared emissivity of vegetation and soils

    SciTech Connect

    Norman, J.M.; Balick, L.K.

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  7. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  8. Soil characteristics and vegetation features of abandoned and artificially revegetated surface mines in the Cumberland Mountains

    SciTech Connect

    Rafaill, B.L.

    1989-01-01

    Soil characteristics and vegetational features of four 15-to-20-year-old contour coal surface mines in the Cumberland Mountains were compared. Two of the mines were abandoned after mining and are located in Campbell County, Tennessee. The other two mines, located in Bell County, Kentucky, were reclaimed after mining. The soils at all four sites were found to be in early stages of soil development. Chemical and physical soil factors were not detrimental to plant growth. Total overstory density at the abandoned sites was similar to that on the reclaimed mines, but one and one-half times as many tree size stems and twice as much basal area coverage were found on the abandoned sites as compared to the reclaimed mines. Many features resulting from prelaw contour mining practices benefited the development of plant communities on the mined land. Information should be sought from the study of plant communities which develop over the years on surface mines.

  9. Uptake of explosives from contaminated soil by vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.; Banwart, W.L.; Houser, W.P.

    1994-06-01

    This study examines the uptake of explosives by vegetation growing on soils contaminated by 2,4,6-trinitrotoluene (TNT) in Group 61 at the Joliet Army Ammunition Plant (JAAP). Plant materials and soil from the root zone were sampled and analyzed to determine TNT uptake under natural field conditions. Standard USATHAMA methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. No- explosives were detected in the aboveground portion of any plant sample. However, results indicate that TNT, 2-aminodinitrotoluene (2-ADNT), and/or 4-ADNT were present in some root samples. The presence of 2-ADNT and 4-ADNT increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  10. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  11. Constructing vegetation productivity equations by employing undisturbed soils data: An Oliver County, North Dakota case study

    SciTech Connect

    Burley, J.B.; Polakowski, K.J.; Fowler, G.

    1996-12-31

    Surface mine reclamation specialists have been searching for predictive methods to assess the capability of disturbed soils to support vegetation growth. We conducted a study to develop a vegetation productivity equation for reclaiming surface mines in Oliver County, North Dakota, thereby allowing investigators to quantitatively determine the plant growth potential of a reclaimed soil. The study examined the predictive modeling potential for both agronomic crops and woody plants, including: wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), corn (Zea mays L.), grass and legume mixtures, Eastern red cedar (Juniperus virginiana L.), Black Hills spruce (Picea glauca var. densata Bailey), Colorado spruce (Picea pungens Engelm.), ponderosa pine (Pinus ponderosa var. scope Engelm.), green ash (Fraxinus pennsylvanica Marsh.), Eastern cottonwood Populus deltoides (Bart. ex Marsh.), Siberian elm (Ulmus pumila L.), Siberian peashrub (Caragana arborescens Lam), American plum (Prunus americans Marsh.), and chokecherry ( Prunus virginiana L.). An equation was developed which is highly significant (p<0.0001), explaining 81.08% of the variance (coefficient of multiple determination=0.8108), with all regressors significant (p{le}0.048, Type II Sums of Squares). The measurement of seven soil parameters are required to predict soil vegetation productivity: percent slope, available water holding capacity, percent rock fragments, topographic position, electrical conductivity, pH, and percent organic matter. While the equation was developed from data on undisturbed soils, the equation`s predictions were positively correlated (0.71424, p{le}0.0203) with a small data set (n=10) from reclaimed soils.

  12. Salmonella enterica Serovar Typhimurium and Escherichia coli Contamination of Root and Leaf Vegetables Grown in Soils with Incorporated Bovine Manure

    PubMed Central

    Natvig, Erin E.; Ingham, Steven C.; Ingham, Barbara H.; Cooperband, Leslie R.; Roper, Teryl R.

    2002-01-01

    Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10°C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum

  13. [Contamination of soil with geohelminth eggs on vegetable organic farms in the Lublin voivodeship, Poland].

    PubMed

    Kłapeć, Teresa

    2009-01-01

    Organic farming, despite being more difficult and labour consuming than traditional farming, gains increasingly more followers among farmers. Currently in Poland there are approximately 10 000 organic farms. Pure, uncontaminated soil in the Lublin voivodeship makes this area an ideal location for organic agriculture production. In 2006-2007, 102 soil samples were examined from 40 organic farms specializing in vegetables and berries. Farms for the study were selected by ecology- and food-production specialists from the Lublin Agriculture Advisory Centre in Końskowola. The following plants were cultivated on the farms examined: berry-bearing plants, carrots, parsley, zucchini, cabbage, lettuce, cucumbers, cauliflowers, leeks, onions, kidney beans, beetroots, potatoes, pumpkins, broad beans, rhubarb and herbs. The presently reported parasitological survey was performed on 102 soil samples. Each sample consisted of 100 g of soil and the methodology followed that of the Polish Standard PN-Z-19000-4 (flotation method by Quinn et al.). The survey yielded eggs of parasites representing genera: Ascaris, Trichuris and Toxocara. Contamination with eggs of intestinal parasites was noted in 43 (42.16%) soil samples. Toxocara spp. eggs were found in 24 samples (55.81%). Eggs of Ascaris spp. were detected in 18 samples (41.86%) while eggs of Trichuris spp were present in one sample (2.32%). In total, 29 eggs of Toxocara spp., 19 eggs of Ascaris spp., and 1 egg of Trichuris spp. were found. The largest amount of soil for examination was taken across the plantations of berry-bearing plants - 57 samples. In the group examined, plantations of raspberries and strawberries dominated. The soil was contaminated with the eggs of Toxocara spp. and Ascaris spp. No eggs of Trichuris spp. were detected. The presence of eggs of intestinal parasites in soil poses a threat of geohelminthoses to people who eat contaminated fresh fruits and vegetables. PMID:20209816

  14. Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities

    NASA Astrophysics Data System (ADS)

    Álvarez-Rogel, J.; Jiménez-Cárceles, F. J.; Roca, M. J.; Ortiz, R.

    2007-07-01

    This paper reports changes in vegetation distribution and species cover in relation to soil factors and hydrology in a semiarid Mediterranean salt marsh adjacent to the Mar Menor saline lagoon. Species cover, soil salinity, and the groundwater level were monitored between 1991 and 1993 and between 2002 and 2004, and total organic carbon, total nitrogen, total phosphorus, nitrates, ammonium and exchangeable phosphorus were measured in the soils in both study periods. In addition, three soil profiles were described in August 1992 and August 2004. The results indicate an elevation of the water table throughout the 13-year period, which was attributable to water flowing from areas with intensive agriculture. Flooding increased and soil salinity dropped in the most saline sites and increased in the least saline ones. The morphology of the soil profiles reflected the increase in flooding periods, due to the appearance of a greyer matrix in the deeper horizons and a more diffuse pattern of Fe mottles. Following these environmental changes, Sarcocornia fruticosa, Phragmites australis and Juncus maritimus strongly expanded at the wettest sites, which led to the disappearance of the original zonation pattern. The cover of Limonium delicatulum, in turn, decreased with the increase in moisture but increased following the increase in salinity. Changes in soil nutrients were only very evident in the sandy soils of the beach, probably due to the influence of organic debris deposited on the shoreline by the storms and due to the strong increase in the colonisation of this habitat by perennial species. According to the results obtained, control measures are needed in order to preserve habitat diversity in this and other salt marshes of this area. Monitoring of the vegetation distribution could be a useful tool to identify environmental impacts, in order to implement remedial actions.

  15. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia

    NASA Astrophysics Data System (ADS)

    Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.

    2001-08-01

    An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.

  16. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil

    SciTech Connect

    Evanylo, G.K.; Abaye, A.O.; Dundas, C.; Zipper, C.E.; Lemus, R.; Sukkariyah, B.; Rockett, J.

    2005-10-01

    The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha{sup -1} (dry weight). The high rate of biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.

  17. [Effect of the vegetative cover on the biological activity of the soil of Chaco Arido].

    PubMed

    Abril, A; Acosta, M; Bachmeier, O; Rollan, A

    1993-01-01

    Vegetation plays a primal role in arid ecosystems, since it creates microclimate conditions that moderate the characteristics of the region whereby the rational use of vegetal resources is fundamental. Felling, clearing and overgrazing lead to decrease in organic contribution and stimulate soil compaction, causing an alteration of microbial activity, with losses in nutrient turnover. The global biological activity is a soil parameter easy to obtain and indicates the presence and diversity of soil life as well as substrate availability and is useful in order to characterize soil potential fertility. This work was carried out in Natural Forest Reserve Chancaní, Province of Córdoba (Argentina), which is representative of Argentine Dry Chaco. Dominant tree species are: Prosopis flexuosa and Aspidosperma quebracho blanco. The global biological activity (GBA) was measured along one year, under trees, under shrubs and in interspaces. Soil samples were taken monthly from plots with four management systems: 1) forest, ii) selective clearing (only dominant species remain), iii) bush (clearing invaded by Larrea sp) and iv) grazing (cleared area, neither trees nor shrubs). GBA was evaluated using the CO2 release method, after ten days of incubation. It is concluded that in the plots with grasses and under the trees GBA was higher than with other treatments. The lesser GBA was detected in bushes and interspaces. All differences were more prominent during extreme temperature months. No significant difference between both species of dominant trees was observed. PMID:8210407

  18. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  19. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Fang, Xuening; Zhao, Wenwu; Wang, Lixin; Feng, Qiang; Ding, Jingyi; Liu, Yuanxin; Zhang, Xiao

    2016-08-01

    Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80-500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120-140 and 480-500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80-220 cm); (ii) a transition layer (220-400 cm); and (iii) a stable layer (400-500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially

  20. The influence of biological soil crusts on successional vegetation patterns in a revegetated desert area in the Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Zhi-shan, Zhang; Xin-rong, Li

    2014-05-01

    Biological soil crusts (BSCs) are an important cover in arid desert landscapes, and have a profound effect on the soil water redistribution, plant growth and vegetation succession. Although a large number of studies have focused on the single-process of BSCs experimentally, relatively few studies have examined the eco-hydrological mechanisms of BSCs influence on successional vegetation patterns in revegetated desert areas. In this study, based on the long term monitoring and focused research on sand-binding vegetation in the Shapotou region (southeastern edge of the Tengger Desert, China) since the 1950s, the characteristics of plant community and BSCs at different successional stages, and the soil water dynamics were investigated. Then a simplified mathematical model describing the coupled dynamics of soil moisture and vegetation in drylands was developed. And finally the role of BSCs on soil water dynamics and vegetation patterns were discussed. Results have showed that BSCs was closely associated with the vegetation succession, such as in the Caragana korshinskii community, moss crusts were the dominate species and in the Artemisia ordosica community, algae crusts were the dominate species. BSCs had a significant effect on soil water infiltration and it was one of the main driving forces to vegetation pattern formations, as algae crusts would induced the tiger bush stripes and moss crusts would lead to the leopard bush spots in arid ecosystems.

  1. The applicability of ERTS-1 data covering the major landforms of Kenya. [landforms, vegetation, soils, forests

    NASA Technical Reports Server (NTRS)

    Omino, J. H. O. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Five investigators report on the applicability of ERTS-1 data covering the major landforms of Kenya. Deficiencies due to lack of equipment, repetitive coverage and interpretation know-how are also reported on. Revision of lake shorelines is an immediate benefit. Basement system metasediments are rapidly differentiated, but dune areas are not readily distinguishable from sandy soils. Forest, moorland, high altitude grass, tea, and conifer plantations are readily distinguished, with podocarpus forest especially distinguishable from podocarpus/juniperus forest. In the arid areas physiographic features, indicating the major soil types, are readily identified and mapped. Preliminary vegetation type analysis in the Mara Game Reserve indicates that in a typical savannah area about 36% of the vegetation types are distinguishable at a scale of 1:1 million as well as drainage patterns and terrain features.

  2. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  3. The effects of vegetation and soil hydraulic properties on passive microwave sensing of soil moisture: Data report for the 1982 fiels experiments

    NASA Technical Reports Server (NTRS)

    Oneill, P.; Jackson, T.; Blanchard, B. J.; Vandenhoek, R.; Gould, W.; Wang, J.; Glazar, W.; Mcmurtrey, J., III

    1983-01-01

    Field experiments to (1) study the biomass and geometrical structure properties of vegetation canopies to determine their impact on microwave emission data, and (2) to verify whether time series microwave data can be related to soil hydrologic properties for use in soil type classification. Truck mounted radiometers at 1.4 GHz and 5 GHz were used to obtain microwave brightness temperatures of bare vegetated test plots under different conditions of soil wetness, plant water content and canopy structure. Observations of soil moisture, soil temperature, vegetation biomass and other soil and canopy parameters were made concurrently with the microwave measurements. The experimental design and data collection procedures for both experiments are documented and the reduced data are presented in tabular form.

  4. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    NASA Astrophysics Data System (ADS)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry

  5. Evaluation and development of tools to quantify the impacts of roadside vegetation barriers on near-road air quality

    EPA Science Inventory

    Regulatory and urban planning programs require an accurate evaluation of how traffic emissions transport and disperse from roads to fully determine exposures and health risks. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; ...

  6. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass.

    PubMed

    Roberts, David A; Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky

    2015-09-15

    In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing. PMID:26172107

  7. Evaluation of the assimilation of As by vegetables in contaminated soils submitted to a remediation process

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez Sanchez, Maria Jose; Agudo, Ines; Belen Martinez, Lucia; Bech, Jaume

    2016-04-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of plants (lettuce, onion and broccoli), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). The experiments were carried out to check the validity of the use of calcareous materials to recover soils contaminated with heavy metals. The aim of this work was to apply a technology for decontamination to ensure that As do not enter into the trophic chain at risky levels and analyze and to assess the risk pre and post operational of the different treatments proposed. The materials used was a soils to be remediated (mining soils) and the materials used for remediation were lime filler and Construction and Demolition Waste (CDW). The plants were cultivated in greenhouse with several types of soil. Five experiments were used, namely, Tc (contaminated soil), T1 (uncontaminated soil (blank soil)), T2 (50% T1 + 50% Tc), T3 (Tc + (25%) lime residues coming from quarries) and T4 (Tc + (25%) residues coming from demolition and construction activities). The entire project involves twenty experiments which were prepared from soils highly contaminated mixed with two types of calcareous materials. The total As content of the soils samples, rhizosphere and vegetable samples, were measured and the translocation factor (TF), which is defined as the ratio of metal concentration in the leaves or shoots to the roots, and the Bioconcentration factor (BCF), which is defined as the ratio of metal concentration in the roots to that in soil were calculated. The use of CDR is shown to be a suitable way for remediating soils contaminated by metals. The methodology permits a revalorization of CDW.

  8. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.

  9. Development of a New Land Data Assimilation System for Improvement of Forecasting both Soil Moisture and Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2014-12-01

    To improve the skill of reproducing land-atmosphere interactions in weather, seasonal, and climate prediction systems, it is necessary to simulate correctly and simultaneously the soil moisture and terrestrial biomass in land surface models. Despite the importance of the interactions between subsurface soil moisture and vegetation dynamics on the climate system both in global and regional scales, a land data assimilation approach that can effectively address these water and vegetation growth interactions has yet to be established. We develop a new land data assimilation system that can improve to simultaneously simulate surface and subsurface soil moisture and vegetation growth by assimilating a microwave observation that is sensitive to both surface soil moisture and terrestrial biomass. Our new system, Coupled Land and Vegetation Data Assimilation System (CLVDAS) comprises an eco-hydrological model that has a physically-based and sophisticated soil hydrology scheme and dynamic vegetation model that can estimate vegetation growth and senescence, and radiative transfer model that can convert land surface conditions into brightness temperatures in the microwave region. The CLVDAS firstly optimizes hydrological and ecological unknown parameters in the model at the same time by using the shuffled complex evolution method. Secondly, the model states of surface soil moisture, root-zone soil moisture, and leaf area index are adjusted by using genetic particle filter. We can justify to adjust the root-zone soil moisture from a microwave observation of the earth surface since we explicitly model subsurface water - vegetation dynamics interactions. From the point-scale evaluation at the in-situ observation sites in Mali, Mongolia, the United States, and Australia, we confirm the CLVDAS significantly improve the skill of simulating vertical soil moisture distribution and vegetation dynamics by assimilating microwave brightness temperatures from Advanced Microwave Scanning

  10. An Assessment of Spontaneous Vegetation Recovery in Aggregate Quarries in Coastal Sand Dunes in Buenos Aires Province, Argentina

    NASA Astrophysics Data System (ADS)

    Fernández Montoni, María Victoria; Fernández Honaine, Mariana; del Río, Julio Luis

    2014-08-01

    Sand dune quarries are a location of common aggregate mining activity developed in coastal areas, especially in the southeast Buenos Aires province, Argentina. In this article, spontaneous plant development after extraction activity ceased was evaluated. Five areas (three quarried and two natural/conservation areas) were sampled for plant cover and composition as well as sediment characterization. Different indexes, principal component analysis, and cluster analyses were applied to compare the areas. The dominant families observed in four of the five areas were Asteraceae, Poaceae, and Cyperaceae, and most of the species are commonly found in sandy and humid soils and/or modified/anthropized ones. Percentages of plant cover increased with time because of the cessation of active aggregate extraction. Indexes and multivariate analyses showed that it was possible to distinguish quarried and natural areas based on composition and vegetation cover. The distribution of plant species among the four areas responded to the presence of mining activity, but it also responded to the topographical position and consequently the depth of the groundwater level. Besides these differences, the four areas shared many native species. The results might indicate that once the activity has ceased, quarried areas may spontaneously and quickly develop a plant community with some similarities to those present in the nonquarried areas. However, given that the extracting activity involves the removal of the soil, revegetation of this type of environment depends on the presence of natural areas in the surroundings, which can serve as a source of seeds and propagules for plant regeneration.

  11. Feasibility of using LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1985-01-01

    Research activities conducted from February 1, 1985 to July 31, 1985 and preliminary conclusions regarding research objectives are summarized. The objective is to determine the feasibility of using LANDSAT data to estimate effective hydraulic properties of soils. The general approach is to apply the climatic-climax hypothesis (Ealgeson, 1982) to natural water-limited vegetation systems using canopy cover estimated from LANDSAT data. Natural water-limited systems typically consist of inhomogeneous vegetation canopies interspersed with bare soils. The ground resolution associated with one pixel from LANDSAT MSS (or TM) data is generally greater than the scale of the plant canopy or canopy clusters. Thus a method for resolving percent canopy cover at a subpixel level must be established before the Eagleson hypothesis can be tested. Two formulations are proposed which extend existing methods of analyzing mixed pixels to naturally vegetated landscapes. The first method involves use of the normalized vegetation index. The second approach is a physical model based on radiative transfer principles. Both methods are to be analyzed for their feasibility on selected sites.

  12. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    PubMed

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  13. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India.

    PubMed

    Pandey, J; Pandey, Usha

    2009-01-01

    Increasing consciousness about future sustainable agriculture and hazard free food production has lead organic farming to be a globally emerging alternative farm practice. We investigated the accumulation of air-borne heavy metals in edible parts of vegetables and in cultivated soil horizon in organic farming system in a low rain fall tropical region of India. The factorial design of whole experiment consisted of six vegetable crops (tomato, egg plant, spinach, amaranthus, carrot and radish) x two treatments (organic farming in open field and organic farming in glasshouse (OFG)) x seven independent harvest of each crop. The results indicated that except for Pb, atmospheric deposition of heavy metals increased consistently on time scale. Concentrations of heavy metals in cultivated soil horizon and in edible parts of open field grown vegetables increased over time and were significantly higher than those recorded in OFG plots. Increased contents of heavy metals in open field altered soil porosity, bulk density, water holding capacity, microbial biomass carbon, substrate-induced respiration, alkaline phosphatase and fluorescein diacetate hydrolytic activities. Vegetable concentrations of heavy metal appeared in the order Zn > Pb > Cu > Ni > Cd and were maximum in leaves (spinach and amaranths) followed by fruits (tomato and egg plant) and minimum in roots (carrot and radish). Multiple regression analysis indicated that the major contribution of most heavy metals to vegetable leaves was from atmosphere. For roots however, soil appeared to be equally important. The study suggests that if the present trend of atmospheric deposition is continued, it will lead to a destabilizing effect on this sustainable agricultural practice and will increase the dietary intake of toxic metals. PMID:18202901

  14. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures.

    PubMed

    Zhang, Haibo; Zhou, Yang; Huang, Yujuan; Wu, Longhua; Liu, Xinghua; Luo, Yongming

    2016-06-01

    The protected vegetable farming is a style of high frequent rotation farming which requires a huge amount of fertilizers to maintain soil fertility. A total of 125 surface soils covering from east to west of China were sampled for the analysis of 17 antibiotics in order to identify antibiotics contamination caused by long-term manures application. The results indicate that the agricultural land has accumulated a statistically significantly higher antibiotics concentration than conventional open croplands. The maximum oxytetracycline concentration was 8400 μg kg(-1), the highest level that has ever been reported for oxytetracycline in soils. The residual concentration is decided by both plant duration and manure type. Short-term (<5 years) planting shows the highest residues of tetracyclines and fluoroquinolones in the soils. The organic farming characteristic of applying commercial compost as a single fertilizer in planting shows the lowest antibiotics residue in the soils on the whole. Principal component analysis suggests that the various combinations of antibiotic compounds in the soil may be used to trace the manure source. The antibiotics in soil may threaten water quality through contamination by diffusion. Ciprofloxacin and sulfachinoxalin are calculated to be a higher migration risk to surface waters, hence their environmental fate requires further study. PMID:26971176

  15. Municipal composts reduce the transfer of Cd from soil to vegetables.

    PubMed

    Al Mamun, Shamim; Chanson, Guilhem; Muliadi; Benyas, Ebrahim; Aktar, Munmun; Lehto, Niklas; McDowell, Richard; Cavanagh, Jo; Kellermann, Liv; Clucas, Lynne; Robinson, Brett

    2016-06-01

    Cadmium (Cd) is a non-essential trace element that accumulates in agricultural soils through the application of Cd-rich phosphate fertiliser. Vegetables can accumulate Cd to concentrations that sometimes exceed food safety standards. We investigated the potential of low-cost soil amendments to reduce Cd uptake by spinach (Spinacia oleracea L.), lettuce (Lactuca sativa L.) and onion (Allium cepa L.). Batch sorption experiments revealed the relative sorption of Cd by biosolids, charcoal, lignite, sawdust, two types of compost, bentonite and zeolite. Lignite and compost had the greatest ability to sorb Cd and were subsequently selected for pot trials, which elucidated their effect on Cd uptake by onions, spinach and lettuce in two market garden soils with native Cd concentrations of 1.45 mg/kg and 0.47 mg/kg. The addition of 2.5% (dry w/w) municipal compost reduced the Cd concentration in onions, spinach and lettuce by up to 60% in both soils. The addition of lignite gave variable results, which depended on the soil type and rate of addition. This Cd immobilisation was offset by soil acidification caused by the lignite. The results indicate that municipal compost is a low-cost soil conditioner that is effective in reducing plant Cd uptake. PMID:26874314

  16. Remote Sensing of Soil Moisture based on Dynamic Vegetation Scattering Properties for AMSR sensors

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Jones, L. A.

    2015-12-01

    Accurate mapping of soil moisture and its spatial-temporal variations are of great significance to scientific studies on global water, energy and carbon cycles as well as operational applications including flood and drought monitoring, water resources management and crop yield forecasts. An approach for deriving volumetric soil moisture using satellite passive microwave radiometry from the Advanced Microwave Scanning Radiometers AMSR-E and AMSR2 was developed in this study. The algorithm adopts a weighted averaging strategy for soil moisture estimation based on a dynamic selection of empirically determined vegetation single-scatter albedo values. The resulting soil moisture retrievals demonstrate more realistic global patterns and seasonal dynamics relative to the baseline University of Montana (UMT) soil moisture product. Quantitative analysis of the new approach against in situ soil moisture measurements over four global study regions also indicates significant improvement over the baseline algorithm, with coefficients of determination (R2) between the retrievals and in-situ measurements increasing by approximately 16.9% and 41.5% respectively; and bias-corrected RMSEs decreasing by about 25.0% and 38.2% for respective ascending and descending orbital data records. Initial comparisons between soil moisture retrievals from AMSR2 and SMAP indicate coherent global and seasonal patterns.

  17. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  18. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is

  19. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization as a Methyl Bromide Alternative: Vegetable Crop Performance and Soil Nutrient Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil treatment by anaerobic soil disinfestation (ASD) combined with soil solarization can effectively control soilborne plant pathogens and plant-parasitic nematodes in specialty crop production systems. At the same time, research is limited on the impact of soil treatment by ASD + solarization on c...

  20. Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partition ratios and a molecular connectivity index

    SciTech Connect

    Dowdy, D.L.; McKone, T.E.

    1997-12-01

    A bioconcentration ratio (BCR) represents the ratio of the concentration of a chemical found in an exposed biological system, such as a plant or fish, to the concentration in the exposure medium (water, soil, or air). A comparison is made of the precision and accuracy of the molecular connectivity index (MCI) and the octanol/water partition coefficient (K{sub ow}) as predictors of BCRs from the soil matrix into above- or below-ground vegetation tissues. Calculated octanol/air partition coefficient (K{sub oa}) values are compared with calculated K{sub ow} and MCI values as predictors of measured air-to-plant BCRs. Based on a statistical evaluation of explained variance, residual error, and cross-validation, this evaluation reveals that the MCI provides higher precision, greater ease of use, and a more cost-effective method for predicting the potential bioconcentration of a chemical from soil into above-ground vegetation. Statistical analyses of the various methods reveal that both the K{sub ow} and MCI approaches have a similar level of precision for predicting BCRs from soil solution into roots and, among MCI, K{sub oa} and K{sub ow}; K{sub oa} is somewhat more precise and valid than MCI and K{sub ow} for estimating uptake, but all have limited accuracy as bioconcentration predictors. These latter results are derived mainly from the paucity of both reliable K{sub oa} values and measured air-to-plant BCRs and indicate a need for more experimental measurements from which more accurate models may be developed.

  1. Soil Trace Gas Flux for Wetland Vegetation Zones in North Dakota Prairie Pothole Basins

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Beeri, O.; Dekaiser, E. S.

    2003-12-01

    Wetland ecosystems are considered a source for radiatively trace gases [methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O)] but flux data for these greenhouse gases are lacking for depressional wetlands that comprise the Prairie Pothole Region. This region is characterized by thousands of small, closed basins that extend along the Missouri Coteau from north central Iowa to central Alberta. Surrounding each body of water are conspicuous zonation patterns given by specific vegetation life-forms and soil properties that are predominately formed by basin hydrology. Basin vegetation zones include deep marsh, shallow marsh, wet meadow, low prairie, and cropland (Stewart and Kantrud,1971). Our primary objective was to determine if net greenhouse gas flux for soils in these wetland basins [mg/m2/day CO2 equivalent (IPCC, 2000)] vary with vegetative zone for prairie pothole ecosystems. These data may then be used to map estimates for total basin greenhouse gas (GHG) flux. Additionally, we aimed to find the relative contribution of each of the 3 trace gases (CO2, CH4 and N2O) to net GHG flux. We hypothesized that flux would be greatest for marsh areas and lowest for upland areas. We selected a semi-permenant prairie pothole research site in Max, ND and mapped respective vegetative zones for 3 adjacent basins. Sample points were randomly selected for each basin and zone using aerial imagery. Samples of soil gases were collected using the static chamber method on August 3, 2003, and these were analyzed using gas chromatography for CO2, CH4 and N2O the following day. Soil moisture, clay content, organic matter, and temperature data were also collected. Net greenhouse gas flux for the cropped zone soils was significantly lower (p<0.01) than flux for the deep marsh, shallow marsh and wet meadow zone soils. Average flux measurement by zone (mg CO2 equivalent/m2/day) was 283 for cropland, 677 for low prairie, 1067 for wet meadow, 2572 for shallow marsh, and 6686 for deep

  2. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables

    PubMed Central

    Lawson, Patrick G.; Daum, Diemo; Czauderna, Roman; Meuser, Helmut; Härtling, Joachim W.

    2015-01-01

    Iodine (I) biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI) and potassium iodate directly before planting (0, 1.0, 2.5, 7.5, and 15 kg I ha-1) increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desired iodine content [50–100 μg I (100 g FM)-1] was obtained or exceeded at a fertilizer rate of 7.5 kg IO3--I ha-1 without a significant yield reduction or impairment of the marketable quality. In contrast, supplying KI at the same rate resulted in a much lower iodine enrichment and clearly visible growth impairment. Soil applied iodine was phytoavailable only for a short period of time as indicated by a rapid decline of CaCl2-extractable iodine in the top soil. Consequently, long-term effects of a one-time iodine soil fertilization could not be observed. A comparison between the soil and the foliar fertilization revealed a better performance of iodine applied aerially to butterhead lettuce, which reached the desired iodine accumulation in edible plant parts at a fertilizer rate of 0.5 kg I--I ha-1. In contrast, the iodine content in the tuber of sprayed kohlrabi remained far below the targeted range. The results indicate that a sufficient spreading of iodine applied on the edible plant parts is crucial for the efficiency of the foliar approach and leafy vegetables are the more suitable target crops. The low iodine doses needed as well as the easy and inexpensive application may favor the implementation of foliar sprays as the preferred iodine biofortification strategy in practice. PMID:26157445

  3. Grazing effects on soil characteristics and vegetation of grassland in northern China

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Johnson, D. A.; Rong, Y.; Wang, K.

    2016-01-01

    Large areas of grassland in the agro-pastoral region of northern China were converted into cropland for grain production, and the remaining grasslands are being overgrazed and seriously degraded. The objective of this study was to evaluate how reductions in grazing intensity affect the soil and vegetation characteristics in grasslands of northern China. Soil heterogeneity and vegetation characteristics were evaluated for ungrazed (UG), moderate grazing (MG), and heavy grazing (HG) sites. Grazing increased diversity, but heavy grazing decreased aboveground biomass and increased the non-grass component. The non-grass proportion of total biomass increased with grazing intensity, which was 8, 16 and 48 % for UG, MG and HG sites, respectively. Species richness at the MG and HG sites was significantly higher than at the UG site (P< 0.05) with 3.6, 5.5 and 5.7 for UG, MG and HG sites, respectively. Strong spatial dependence of the examined soil properties at 10 m scale for all grazed sites was revealed by the ratio of nugget to total variation (0-23 %). Overgrazing homogenized soil characteristics at a 10 m scale. The ranges of spatial autocorrelation for soil organic C (SOC) and total N were both > 120 m at the HG site, which was considerably larger than that at the MG and UG sites with corresponding distances of 17.3 and 20.8 m for the MG site and 8.6 and 15.0 m for the UG site, respectively. The sampling density and sampling space for the HG site could be decreased under this scale sampling interval (10 m). Therefore, MG was recommended as the preferred management alternative for grasslands in northern China because of increased plant diversity without negative consequences related to decreased forage quality, forage quantity and soil heterogeneity for the investigated soil properties in northern China's grasslands.

  4. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  5. Grazing effects on soil characteristics and vegetation of grassland in northern China

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Johnson, D. A.; Rong, Y.

    2015-08-01

    Large areas of grassland in the agro-pastoral region of northern China were converted into cropland for grain production, and the remaining grasslands are being overgrazed and seriously degraded. The objective of this study was to evaluate how reductions in grazing intensity affect the soil and vegetation characteristics in grasslands of northern China. Soil heterogeneity and vegetation characteristics were evaluated for ungrazed (UG), moderate grazing (MG), and heavy grazing (HG) sites. Grazing increased diversity, but heavy grazing decreased aboveground biomass and increased the non-grass component. Vegetation biomass was greatest at the UG site (220 g m-2) followed by the MG (99 g m-2) and HG (27 g m-2) sites (P < 0.05). The non-grass proportion of total biomass increased with grazing intensity, which was 8, 16, and 48 % for UG, MG, and HG sites, respectively. Species richness at the MG and HG sites was significantly higher than at the UG site (P < 0.05) with 3.6, 5.5, and 5.7 for UG, MG, and HG sites, respectively. Over grazing homogenized soil characteristics at a 10 m scale. The ranges of spatial autocorrelation for soil organic C (SOC) and total N were both > 120 m at the HG site, which was considerably larger than that at the MG and UG sites with corresponding distances of 17.3 and 20.8 m for the MG site and 25.8 and 15.0 m for the UG site, respectively. Therefore, MG was recommended as the preferred management alternative for grasslands in northern China because of increased plant diversity without negative consequences related to decreased forage quality and forage quantity, and soil heterogeneity in northern China's grasslands.

  6. Spreading Topsoil Encourages Ecological Restoration on Embankments: Soil Fertility, Microbial Activity and Vegetation Cover

    PubMed Central

    Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M.; López-Archilla, Ana Isabel; Peco, Begoña

    2014-01-01

    The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (β-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased β-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, β-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the

  7. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

    NASA Astrophysics Data System (ADS)

    Balasooriya, W. K.; Denef, K.; Peters, J.; Verhoest, N. E. C.; Boeckx, P.

    2007-10-01

    Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; textit{Caricetum gracilis} at the wet depression and textit{Arrhenatherum elatioris} at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria was significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

  8. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

    NASA Astrophysics Data System (ADS)

    Balasooriya, W. K.; Denef, K.; Peters, J.; Verhoest, N. E. C.; Boeckx, P.

    2008-02-01

    Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were distinguished along the hydrological gradient; Caricetum gracilis at the wet depression and Arrhenatheretum elatioris at the drier upper site. Microbial community structural changes were studied by a combined in situ 13CO2 pulse labeling and phospholipid fatty acid (PLFA) based stable isotope probing approach, which identifies the microbial groups actively involved in assimilation of newly photosynthesized, root-derived C in the rhizosphere soils. Gram negative bacterial communities were relatively more abundant in the surface soils of the drier upper site than in the surface soils of the wetter lower site, while the lower site and the deeper soil layers were relatively more inhabited by gram positive bacterial communities. Despite their large abundance, the metabolically active proportion of gram positive bacterial and actinomycetes communities was much smaller at both sites, compared to that of the gram negative bacterial and fungal communities. This suggests much slower assimilation of root-derived C by gram positive and actinomycetes communities than by gram negative bacteria and fungi at both sites. Ground water depth showed a significant effect on the relative abundance of several microbial communities. Relative abundance of gram negative bacteria significantly decreased with increasing ground water depth while the relative abundance of gram positive bacteria and actinomycetes at the surface layer increased with increasing ground water depth.

  9. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  10. Soil bacterial community shifts in response to vegetation and soil temperature change in moist acidic tundra of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Ricketts, M. P.; Gonzalez-Meler, M. A.

    2013-12-01

    The effects of rising temperatures on Earth's ecosystems remain largely unknown and are an active area of research. In temperate systems, plant species often respond directly to climate forcing factors causing complex cascading effects in ecosystem C and nutrient cycling. Similarly, in the Arctic tundra, shifts in aboveground species composition and distribution have been observed in response to warming and other climate change factors, following increases in active layer depth and soil temperature. These abiotic changes provide soil microorganisms access to previously unavailable soil organic matter via thawing soils and increases soil microbial mineralization rates, suggesting that soil microorganisms may be eliciting the plant response. It is hypothesized that this release of nutrients may be providing a competitive advantage to N rich woody species, such as dwarf birch and diamond-leaf willow, over grassy species such as cottongrass tussock. Here we examine how microbial communities respond to increases in soil thermal insulation and vegetative change caused by the accumulation of winter precipitation at a snowfence installed in 1998 at Toolik Field Station, Alaska. In addition to soil temperature, increased snow depth also results in increased surface moisture, soil temperature, and active layer depth. Bacterial phylogenies and relative abundances from soils collected in August of 2012 were determined by sequencing 16S rRNA genes and analyzed using the QIIME software package. We found many significant relative abundance shifts between snow depth treatments (deep, intermediate, low) and soil depths (organic, transition, mineral), most notable of which include in an increase in Deltaproteobacteria in the deep treatment zones, a decrease in Alphaproteobacteria with increased soil depth, and a marked increase in Chloroflexi Anaerolineae (a green non-sulfur bacteria found in a wide range of habitats) in the deep treatment and mineral layers. Other interesting

  11. Ozone flux to vegetation and its relationship to plant response and ambient air quality standards

    NASA Astrophysics Data System (ADS)

    Musselman, Robert C.; Massman, William J.

    The National Ambient Air Quality Standard (NAAQS) for ozone is based on occurrences of the maximum 8 h average ambient ozone concentration. However, biologists have recommended a cumulative ozone exposure parameter to protect vegetation. In this paper we propose a third alternative which uses quantifiable flux-based numerical parameters as a replacement for cumulative ambient parameters. Herein we discuss the concept of ozone flux as it relates to plant response and the NAAQS, and document information needed before a flux-based ozone NAAQS for vegetation can be implemented. Additional research is needed in techniques for determining plant uptake and in the quantification of plant defensive mechanisms to ozone. Models which include feedback mechanisms should be developed to relate ozone flux, loading, and detoxification with photosynthesis and plant productivity.

  12. Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands.

    PubMed

    Shao, Yuanhu; Zhang, Weixin; Liu, Zhanfeng; Sun, Yuxin; Chen, Dima; Wu, Jianping; Zhou, Lixia; Xia, Hanping; Neher, Deborah A; Fu, Shenglei

    2012-11-01

    Both soil nematodes and microorganisms have been shown to be sensitive bioindicators of soil recovery in metal-contaminated habitats; however, the underlying processes are poorly understood. We investigated the relationship among soil microbial community composition, nematode community structure and soil aluminum (Al) content in different vegetated aluminum-rich ecosystems. Our results demonstrated that there were greater soil bacterial, fungal and arbuscular mycorrhizal fungal biomass in Syzygium cumini plantation, greater abundance of soil nematodes in Acacia auriculiformis plantation, and greater abundance of soil predatory and herbivorous nematodes in Schima wallichii plantation. The concentration of water-soluble Al was normally greater in vegetated than non-vegetated soil. The residual Al and total Al concentrations showed a significant decrease after planting S. cumini plantation onto the shale dump. Acid extractable, reducible and oxidisable Al concentrations were greater in S. wallichii plantation. Stepwise linear regression analysis suggests the concentrations of water-soluble Al and total Al content explain the most variance associated with nematode assembly; whereas, the abundance of early-successional nematode taxa was explained mostly by soil moisture, soil organic C and total N rather than the concentrations of different forms of Al. In contrast, no significant main effects of either Al or soil physico-chemical characteristics on soil microbial biomass were observed. Our study suggests that vegetation was the primary driver on soil nematodes and microorganisms and it also could regulate the sensitivity of bio-indicator role mainly through the alteration of soil Al and physico-chemical characteristics, and S. cumini is effective for amending the Al contaminated soils. PMID:22732942

  13. Ozone-vegetation interaction in the Earth system: implications for air quality, ecosystems and agriculture

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.

    2015-12-01

    Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.

  14. Mapping vegetation water content in the Red river basin during the soil moisture active passive validation experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture remote sensing requires an accurate assessment of moisture sources at the surface to account for attenuation to the radiometric signal. Vegetation water content is the most signficant store of moisture at the surface for most vegetated surfaces, greater than intercepted precipitation o...

  15. Improving Space-borne Radiometer Soil Moisture Retrievals with Alternative Aggregation Rules for Ancillary Parameters in Highly Heterogeneous Vegetated Areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retrieving soil moisture from space-borne microwave radiometer observations often requires ancillary parameters such as surface vegetation opacity or vegetation water content. The conventional approach for deriving representative footprint-scale values of these parameters is to simply average the co...

  16. Impacts of experimentally applied mountain biking and hiking on vegetation and soil of a deciduous forest.

    PubMed

    Thurston, E; Reader, R J

    2001-03-01

    Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed. PMID:11148765

  17. Technical note monitoring native vegetation on a dumpsite of PCB-contaminated soil.

    PubMed

    Pavlíková, Daniela; Macek, Tomas; Macková, Martina; Pavlík, Milan

    2007-01-01

    Composition of native vegetation on a polychlorinated biphenyls (PCB)-contaminated soil dumpsite at Lhenice, South Bohemia (Czech Republic), was determined and species variability in the accumulation of PCBs in plant biomass was investigated. Soil stripping contaminated by PCBs originated at a factory producing electrical transformers that mostly used the commercial PCB mixture Delor 103 and 106. The PCB content of soil in the most contaminated part of the dumpsite reached 153 mg kg(-1) dry soil. Low diversity of plant species was found on the dumpsite. Results showed three grass species, Festuca arundinacea Schreb., Phalaroides arundinacea (L.) Rauschert., and Calamagrostis epigeios (L.) Roth., to be the major components of the vegetation and confirmed their high tolerance toward PCB contamination. The highest content of PCB in plant biomass--813.2 microg kg(-1) dry biomass--was determined in Festuca aboveground biomass. For phytoextraction purposes especially, Festuca can be recommended due to its high biomass yield, but its bioconcentration factor was very low (0.006). Tripleurospermum maritimum (L.) Sch. Bip. and Cirsium arvense (L.) Scop. grew mainly at the margins of the most contaminated part of the dumpsite. The PCB content determined in their aboveground biomass-278.7 and 289.5 microg kg(-1) dry biomass, respectively--was nonsignificantly lower compared to grass species Phalaroides and Calamagrostis. Salix (Salix viminalis L. and Salix caprea L.) was monitored among plant species composition at this site as a representative of woody species. PMID:18246716

  18. [Characteristics of soil salinity profiles and their electromagnetic response under various vegetation types in coastal saline area].

    PubMed

    Yang, Jing-Song; Yao, Rong-Jiang; Zou, Ping; Liu, Guang-Ming

    2008-10-01

    Aiming at the intrinsic relationships between vegetation type and soil salinity in coastal saline area, and by using electromagnetic induction EM38 and field sampling method, the characteristics of soil salinity profiles under various vegetation types in typical coastal saline region of the Yellow River Delta were analyzed, and the electromagnetic response characters of the salinity profiles were compared. The results showed that across the study area, soil salinity exhibited the characteristics of top enrichment and strong spatial variation. The horizontal electromagnetic conductivity EM(h) responded well to soil salinity at upper layers, and the response of vertical electromagnetic conductivity EM(v) to soil salinity at deeper layers was superior to that of EM(h). Soil salinity profiles were classified into inverted, normal, and uniform types. The vegetation types of inverted salinity profiles were mainly bare land and Suaeda salsa, while those of normal and uniform salinity profiles were cotton and weed, respectively. The sequence of top enrichment intensity was bare land > S. salsa land > weed land > cotton land. With the change of vegetation type of cotton-weed-S. salsa-bare land, the EM(v)/EM(h) value of salinity profiles decreased gradually. Nonparametric test results showed that there was a significant correlation between vegetation type and electromagnetic response characters, and the distribution characters of EM(v)/EM(h) under various vegetation types varied significantly. PMID:19123343

  19. Soil-vegetation relationships on a banded ironstone 'island', Carajás Plateau, Brazilian Eastern Amazonia.

    PubMed

    Nunes, Jaquelina A; Schaefer, Carlos E G R; Ferreira Júnior, Walnir G; Neri, Andreza V; Correa, Guilherme R; Enright, Neal J

    2015-01-01

    Vegetation and soil properties of an iron-rich canga (laterite) island on the largest outcrop of banded-iron formation in Serra de Carajás (eastern Amazonia, Brazil) were studied along a topographic gradient (738-762 m asl), and analyzed to test the hypothesis that soil chemical and physical attributes play a key role in the structure and floristic composition of these plant communities. Soil and vegetation were sampled in eight replicate plots within each of the four vegetation types. Surface (0-10 cm) soil samples from each plot were analyzed for basic cations, N, P and plant species density for all species was recorded. CCA ordination analysis showed a strong separation between forest and non-forest sites on the first axis, and between herbaceous and shrubby campo rupestre on the second axis. The four vegetation types shared few plant species, which was attributed to their distinctive soil environments and filtering of their constituent species by chemical, physical and hydrological constraints. Thus, we can infer that Edaphic (pedological) factors are crucial in explaining the types and distributions of campo rupestre vegetation associated with ferruginous ironstone uplands (Canga) in Carajás, eastern Amazonia, therefore the soil properties are the main drivers of vegetation composition and structure on these ironstone islands. PMID:26648541

  20. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China.

    PubMed

    Liu, Shujuan; Zhang, Wei; Wang, Kelin; Pan, Fujing; Yang, Shan; Shu, Shiyan

    2015-07-15

    Vegetation succession enhances the accumulation of carbon in the soil. However, little is known about the mechanisms underlying soil organic carbon (SOC) accumulation in different vegetation types in the karst region of Southwest China. The goal of this study was to identify and prioritize the effects of environmental parameters, including soil physico-chemical properties, microbial biomass, enzyme activities, and litter characteristics, on SOC accumulation along a vegetation succession sere (grassland, shrubland, secondary forest, and primary forest) in the karst landscape of Southwest China. Relationships between these parameters and SOC were evaluated by redundancy analysis. The results showed that SOC accumulation was significantly different among vegetation types (P<0.01) and increased with vegetation succession (from 29.10g·kg(-1) in grassland to 73.92g·kg(-1) in primary forest). Soil biochemistry and physical characteristics significantly affected the accumulation of SOC. Soil microbial biomass showed a predominant effect on SOC in each of the four vegetation types. In addition, the soil physical property (especially the silt content) was another controlling factor in the early stages (grassland), and urease activity and saccharase activity were important controlling factors in the early-middle and middle-late stages, respectively. Litter characteristics only showed mild effects on SOC accumulation. Variation partitioning analysis showed that the contribution of sole main factors to SOC variation decreased, while the interaction effect among parameters increased along the succession gradient. PMID:25828412

  1. Soil moisture status estimation over Three Gorges area with Landsat TM data based on temperature vegetation dryness index

    NASA Astrophysics Data System (ADS)

    Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang

    2011-12-01

    Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.

  2. Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces

    NASA Technical Reports Server (NTRS)

    Walthall, C. L.; Norman, J. M.; Blad, B. L.; Welles, J. M.; Campbell, G.

    1985-01-01

    A simple equation has been developed for describing the bidirectional reflectance of some vegetative canopies and bare soil surfaces. The equation describes directional reflectance as a function of zenith and azimuth view angles and solar azimuth angle. The equation works for simulated and field measured red and IR reflectance under clear sky conditions. Hemispherical reflectance can be calculated as a function of the simple equation coefficients by integrating the equation over the hemisphere of view angles. A single equation for estimating soil bidirectional reflectance was obtained using the relationships between solar zenith angles and the simple equation coefficients for medium and rough soil distributions. The equation has many useful applications such as providing a lower level boundary condition in complex plant canopy models and providing an additional tool for studying bidirectional effects on pointable sensors.

  3. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    USGS Publications Warehouse

    Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.

    2003-01-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue

  4. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  5. Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994

    SciTech Connect

    Edwards, N.T.

    1994-08-01

    Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

  6. [Effects of soil factors on vegetation community structure in an abandoned subtropical paddy wetland].

    PubMed

    Peng, Yi; Li, Yu-Yuan; Li, Zhong-Wu; Ye, Fang-Yi; Pan, Chun-Xiang; Xie, Xiao-Li

    2009-07-01

    Based on the investigation data from a subtropical wetland having been abandoned from paddy agriculture for one year, a redundancy analysis was conducted on the relationships between vegetation community and soil factors in the wetland. It was found that soil moisture regime, available K and P, and pH were the main factors affecting the distribution of plant species. The common plant species could be classified into three groups, i. e., Ludwigia prostrata - Murdannia triquetra group (G1), Hemarthria altissima - Rotala rotundifolia - Lapsana apogonoides group (G2), and Conyza canadensis - Polygonum hydropiper - Paspalum pasaloides group (G3). G1 mainly distributed on the soils with higher available K, G2 mainly distributed in periodically flooded area, while G3 mainly distributed in drainage area and was positively correlated to soil available P and pH. Species diversity and above-ground biomass had significant positive correlations with soil pH and total K, respectively, while evenness index was significantly negatively correlated with soil available N. No significant correlations were observed among other indices. PMID:19899449

  7. Uptake of explosives from contaminated soil by existing vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D.; Banwart, W.L. |

    1994-01-01

    This study examines the uptake of explosives by existing vegetation growing in TNT-contaminated soils on Group 61 at the Joliet Army Ammunition Plant (JAAP). The soils in this group were contaminated more than 40 years ago. In this study, existing plant materials and soil from the root zone were sampled from 15 locations and analyzed to determine TNT uptake by plants under natural field conditions. Plant materials were separated by species if more than one species was present at a sampling location. Standard methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. No. explosives were detected in the aboveground portion of any plant sample. However, the results indicate that TNT, 2-amino DNT, and/or 4-amino DNT were found in some root samples of false boneset (Kuhnia eupatorioides), teasel (Dipsacus sylvestris), and bromegrass (Bromus inermis). It is possible that slight soil contamination remained on the roots, especially in the case of the very fine roots for species like bromegrass, where washing was difficult. The presence of 2-amino DNT and 4-amino DNT, which could be plant metabolites of TNT, increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  8. Particulate organic carbon export from soil and vegetation in temperate mountain regions

    NASA Astrophysics Data System (ADS)

    Smith, J. C.; Hovius, N.; Galy, A.; Tye, A.; Turowski, J.

    2012-04-01

    In assessing the significance of terrestrial particulate organic carbon (POC) export in the global carbon cycle, it is essential to be able to predict the POC yield and its make-up (broadly, fossil versus non-fossil) from any given setting. Because mountains vastly dominate the physical erosion load, an understanding of the processes operating in mountains of different kinds, and what controls them, is necessary. In particular, the dynamics of POC harvest in temperate forested uplands are poorly constrained, despite the large area covered by these zones. C and N concentration and isotopic composition data (for both riverine suspended sediment and carbon stores) are presented from two contrasting temperate mountain regions with vast stocks of soil organic carbon. In the northern Swiss Alps, as discharge increases, POC is initially diluted by lithic material through in-channel clearing, but beyond a threshold POC is added. This happens under moderate flow conditions when hillslopes are activated and rain- induced overland flow delivers soil POC to channels. As a result, the proportion of non-fossil POC increases significantly as discharge and suspended sediment load increase. In contrast to the Swiss Alps, overland flow occurs rarely in the Oregon Cascades and Coast Range. There, hillslope soil is decoupled from the channel, due largely to riparian vegetation that both prevents extensive mobilisation and traps sediment before it reaches the stream. Where channels are aggrading, there is no other input mechanism for soil or bedrock, resulting in very low total sediment and POC yields (and correspondingly high POC concentrations). In the Coast Range, with largely sedimentary rather than volcanic substrate, there is some evidence for hillslope soil mobilisation, but not (under moderate meteorological conditions) on the scale observed in Switzerland. Instead, nearly all POC exported comes from vegetation. Initial dilution of POC through in-channel clearing is still

  9. Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica).

    PubMed

    Cabrerizo, Ana; Tejedo, Pablo; Dachs, Jordi; Benayas, Javier

    2016-11-01

    Two Antarctic expeditions (in 2009 and 2011) were carried out to assess the local and remote anthropogenic sources of aliphatic and aromatic hydrocarbons, as well as potential biogenic hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs), n-alkanes, biomarkers such as phytane (Ph) and pristane (Pr), and the aliphatic unresolved complex mixture (UCM), were analysed in soil and vegetation samples collected at Deception, Livingston, Barrientos and Penguin Islands (South Shetland Islands, Antarctica). Overall, the patterns of n-alkanes in lichens, mosses and grass were dominated by odd-over-even carbon number alkanes. Mosses and vascular plants showed high abundances of n-C21 to n-C35, while lichens also showed high abundances of n-C17 and n-C19. The lipid content was an important factor controlling the concentrations of n-alkanes in Antarctic vegetation (r(2)=0.28-0.53, p-level<0.05). n-C12 to n-C35 n-alkanes were analysed in soils with a predominance of odd C number n-alkanes (n-C25, n-C27, n-C29, and n-C31), especially in the background soils not influenced by anthropogenic sources. The large values for the carbon predominance index (CPI) and the correlations between odd alkanes and some PAHs suggest the potential biogenic sources of these hydrocarbons in Antarctica. Unresolved complex mixture and CPI values ~1 detected at soils collected at intertidal areas and within the perimeter of Juan Carlos research station, further supported the evidence that even a small settlement (20 persons during the austral summer) can affect the loading of aliphatic and aromatic hydrocarbons in nearby soils. Nevertheless, the assessment of Pr/n-C17 and Ph/n-C18 ratios showed that hydrocarbon degradation is occurring in these soils. PMID:27450242

  10. Predicting soil water repellency by hydrophobic organic compounds and their vegetation origin

    NASA Astrophysics Data System (ADS)

    Mao, J.; Nierop, K. G. J.; Rietkerk, M.; Dekker, S. C.

    2015-02-01

    It is widely accepted that soil water repellency (SWR) is mainly caused by plant-derived hydrophobic organic compounds in soils; such hydrophobic compounds are defined as SWR-markers. However, the detailed influence of SWR-markers on SWR is yet unclear and the knowledge of their original sources is still limited. The aims of this study are to select important SWR-markers to predict SWR based on their correlation with SWR and to determine their origin. In our study, sandy soils with different SWR were collected, along with their covering vegetation, i.e. plant leaves/needles and roots. A sequential extraction procedure was applied to the soils to obtain three organic fractions: DCM / MeOH soluble fraction (D), DCM / MeOH insoluble fraction of IPA / NH3 extract (AI) and DCM / MeOH soluble fraction of IPA / NH3 extract (AS), which were subdivided into ten dominant SWR-marker groups: (D) fatty acid, (D) alcohol, (D) alkane, (AI) fatty acid, (AI) alcohol, (AI) ω-hydroxy fatty acid, (AI) α, ω-dicarboxylic acid, (AS) fatty acid, (AS) alcohol and (AS) ω-hydroxy fatty acid. Waxes and biopolyesters of the vegetation were also sequentially extracted from plants. In short, the soils with higher SWR have significantly higher relative concentrations of (AS) alcohols. A number of indications suggest that (AS) alcohols are mainly derived from roots and most likely produced by microbial hydrolysis of biopolyesters/suberins. In addition, the strong correlation between the biomarkers of plant tissues and SWR-markers in soils suggests that it is more accurate to predict SWR of topsoils using ester-bound alcohols from roots, and to predict SWR of subsoils using root-derived ω-hydroxy fatty acids and α, ω-dicarboxylic acids. Our analysis indicates that plant roots have a primary role influencing SWR relative to plant leaves.

  11. Numerical Simulations of the Effect of Soil Moisture and Vegetation Cover on the Development of Deep Convection.

    NASA Astrophysics Data System (ADS)

    Clark, Craig A.; Arritt, Paymond W.

    1995-09-01

    A one-dimensional (column) version of a primitive equations model has been used to study the impact of soil moisture and vegetation cover on the development of deep cumulus convection in the absence of dynamical forcing. The model includes parameterizations of radiation, turbulent exchange, deep convection, shallow boundary layer convective clouds, vegetation, and soil temperature and moisture. Multiple one-dimensional experiments were performed using the average July sounding for Topeka, Kansas, as the initial condition. A range of volumetric soil moisture from one-half of the wilting point to saturation and vegetation cover ranging from bare soil to full cover were considered.Vegetation cover was found to promote convection, both by extraction of soil moisture and by shading the soil so that conduction of heat into the soil was reduced (thereby increasing the available energy). The larger values of initial soil moisture were found to delay the onset of precipitation and to increase the precipitation amount. The greatest rainfall amounts were generally predicted to occur for moist, fully vegetated surfaces. Vegetation cover also had a pronounced moderating influence, decreasing the sensitivity of the results to the soil moisture content. The general nature of the results prevailed for modest variations in the initial summertime atmospheric profile and changes in the details of the surface parameterization. The inclusion of shading by shallow cumulus clouds tended to reduce the convection for moist, bare (or partly bare) soil. The nonlinearity of the interaction between the land surface and convective precipitation implies that the effects of subgrid landscape heterogeneity in climate models cannot accurately be represented by linear averages of the contributions from the different surface types.

  12. Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in Powder River Basin, Wyoming

    USGS Publications Warehouse

    Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.

    2005-01-01

    Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.

  13. Thermoelectric Air/Soil Energy-Harvesting Device

    NASA Technical Reports Server (NTRS)

    Snyder, Jeffrey; Fleurial, Jean-Pierre; Lawrence, Eric

    2005-01-01

    A proposed thermoelectric device would exploit natural temperature differences between air and soil to harvest small amounts of electric energy. Because the air/soil temperature difference fluctuates between nighttime and daytime, it is almost never zero, and so there is almost always some energy available for harvesting. Unlike photovoltaic cells, the proposed device could operate in the absence of sunlight. Unlike a Stirling engine, which could be designed to extract energy from the air/soil temperature difference, the proposed device would contain no moving parts. The main attractive feature of the proposed device would be high reliability. In a typical application, this device would be used for low-power charging of a battery that would, in turn, supply high power at brief, infrequent intervals for operating an instrumentation package containing sensors and communication circuits. The device (see figure) would include a heat exchanger buried in soil and connected to a heat pipe extending up to a short distance above the ground surface. A thermoelectric microgenerator (TEMG) would be mounted on top of the heat pipe. The TEMG could be of an advanced type, now under development, that could maintain high (relative to prior thermoelectric generators) power densities at small temperature differentials. A heat exchanger exposed to the air would be mounted on top of the TEMG. It would not matter whether the air was warmer than the soil or the soil warmer than the air: as long as there was a nonzero temperature difference, heat would flow through the device and electricity would be generated. A study of factors that could affect the design and operation of the device has been performed. These factors include the thermal conductances of the soil, the components of the device, the contacts between the components of the device, and the interfaces between the heat exchangers and their environments. The study included experiments that were performed on a model of the device

  14. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  15. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  16. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  17. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  18. Arsenic and heavy metal concentrations in surface soils and vegetables of Feni district in Bangladesh.

    PubMed

    Karim, R A; Hossain, S M; Miah, M M H; Nehar, K; Mubin, M S H

    2008-10-01

    An investigation of various heavy metals including the arsenic (As) poisoning in soils and vegetables in five upazillas under Feni district of Bangladesh was performed by neutron activation technique using the neutron irradiation facilities of TRIGA MARK II research reactor at Bangladesh Atomic Energy Research Establishment (BAERE), Savar, Dhaka. A total of 30 samples (15 surface soils and 15 foodstuffs) were studied in five Upazillas namely as, Sonagazi, Dagan Bhuiya, Feni Sadar, Fulgazi and Parsuram of Feni district taking three samples of each kind from each upazilla. Samples of each kind together with the standard reference material (SRM) were irradiated in the same neutron flux and the gamma-rays of nuclides from the irradiated samples were assessed and screened for As, Br, U, Th, Cr, Sc, Fe, Zn and Co in soils and As, Br, Na, K, Cr, Sc, Fe, Zn and Co in vegetables (i.e; eddoe, taro, green papaya, plantain, potato, callaloo, bottle ground and carambola). The measurement of gamma-rays was carried out by means of a calibrated high resolution HPGe detector. The concentration of product nuclides containing in the irradiated samples was determined from the peak count-rates of prominent gamma-lines for the corresponding nuclides. Among all contaminants, only As, Zn and Cr for both samples were focused because of their higher values compared with the local as well as the world typical values. The present results revealed that the mean levels of As in Parsuram, Feni Sadar and Pulgazi upazillas are higher than the world typical value of 2 mg/kg. The mean values of Zn and Cr for all upazillas are higher than the world typical values 32 and 27.9 mg/kg, respectively. For the case of vegetables, the mean concentration of As is found only in Eddoe (5.33 ppm) and Taro (1.46 ppm) collected from Sonagazi and Feni Sadar upazilla; which are higher than the values in Samta (0.1 ppm for eddoe and 0.44 ppm for taro) under Jessore district of Bangladesh. The mean concentrations of

  19. Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions.

    PubMed

    Xiao, Jun; Wang, Ya-Feng; Shi, Peng; Yang, Lei; Chen, Li-Ding

    2014-11-01

    Long-distance pipeline construction results in marked human disturbance of the regional ecosystem and brings into question the safety of pipeline construction with respect to the environment. Thus, the direct environmental impact and proper handling of such large projects have received much attention. The potential environmental effects, however, have not been fully addressed, particularly for large linear pipeline projects, and the threshold of such effects is unclear. In this study, two typical eco-fragile areas in western China, where large linear construction projects have been conducted, were chosen as the case study areas. Soil quality indices (SQI) and vegetation indices (VI), representing the most important potential effects, were used to analyze the scope of the effect of large pipeline construction on the surrounding environment. These two indices in different buffer zones along the pipeline were compared against the background values. The analysis resulted in three main findings. First, pipeline construction continues to influence the nearby eco-environment even after a 4-year recovery period. During this period, the effect on vegetation due to pipeline construction reaches 300 m beyond the working area, and is much larger in distance than the effect on soil, which is mainly confined to within 30 m either side of the pipeline, indicating that vegetation is more sensitive than soil to this type of human disturbance. However, the effect may not reach beyond 500 m from the pipeline. Second, the scope of the effect in terms of distance on vegetation may also be determined by the frequency of disturbance and the intensity of the pipeline construction. The greater the number of pipelines in an area, the higher the construction intensity and the more frequent the disturbance. Frequent disturbance may expand the effect on vegetation on both sides of the pipeline, but not on soil quality. Third, the construction may eliminate the stable, resident plant

  20. The effect of vegetation on infiltration in shallow soils underlain by fissured bedrock

    NASA Astrophysics Data System (ADS)

    Stothoff, S. A.; Or, D.; Groeneveld, D. P.; Jones, S. B.

    1999-05-01

    Mean annual infiltration above the high-level waste repository proposed to be sited at Yucca Mountain, Nevada, has a large impact on assessments of repository performance. Ongoing investigations of infiltration processes have identified the relatively horizontal caprock environment above portions of the repository as a potentially large source of infiltrating waters, due to shallow, permeable soils above a moderately welded tuff with large soil-filled fissures. The combination of shallow soils and fissured bedrock allows rapid penetration of wetting pulses to below the rooting zone. Plant uptake can strongly reduce net infiltration in arid environments with high water storage capacity, and, despite the low water storage capacity, there is a relatively high vegetation density in this environment. The apparent discrepancy between high vegetation density and low water storage motivates the study of plant-hydrologic interactions in this semiarid environment. Field observations were coupled with plant- and landscape-scale models to provide insight into plant-hydrologic interactions. Several lines of evidence, including: (i) linear plant growth features observed on aerial photographs; (ii) comparisons of plant cover within the fissured environment and comparable environments lacking fissures; and (iii) direct excavations, all suggest that the widely spaced soil-filled fissures are conducive to plant growth even when fissures are buried at soil depths exceeding 30 cm. Results from a mechanistic simulation model for root growth into fissures suggest that the additional (sheltered) plant-available soil water within fissures provides a competitive advantage for plant establishment. Therefore, plants that germinate above a fissure are more likely to survive, in turn developing linear features above fissures. Having established that plants preferentially root within soil-filled fissures in the caprock environment, a set of simulations were performed to examine the hydrologic

  1. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment.

    PubMed

    Li, Cheng; Chen, Jiayi; Wang, Jihua; Han, Ping; Luan, Yunxia; Ma, Xupu; Lu, Anxiang

    2016-10-15

    The increased use of plastic film in greenhouse vegetable production (GVP) could result in phthalate ester (PAE) contamination in vegetables. However, limited information is currently available on their occurrence and associated potential risks in GVP systems. The present study documents the occurrence and composition of 15 PAEs in soil, plastic film, and vegetable samples from eight large-scale GVP bases in Beijing, China. Results showed that PAEs are ubiquitous contaminants in these GVP bases. Total PAE concentrations ranged from 0.14 to 2.13mg/kg (mean 0.99mg/kg) in soils and from 0.15 to 6.94mg/kg (mean 1.49mg/kg) in vegetables. Di (2-ethylhexyl) phthalate, di-n-butyl phthalate, and diisobutyl phthalate were the most abundant components, which accounted for >90% of the total PAEs. This investigation also indicated that the widespread application of plastic film in GVP systems may be the primary source of these PAEs. The non-cancer and carcinogenic risks of target PAEs were estimated based on the exposures of vegetable intake. The hazard quotients of PAE in all vegetable samples were lower than 1 and the carcinogenic risks were also at acceptable levels for consumers. The data in this study can provide valuable information to understand the status of potential pollutants, specifically PAEs, in GVP systems. PMID:27318515

  2. Detecting soil moisture pulses and associated vegetation response in a southern Arizona watershed using SMAP and MODIS

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Moran, M. S.; Scott, R. L.

    2015-12-01

    In arid and semiarid ecosystems, rainfall pulses and associated vegetation responses play a crucial role in ecosystem and hydrologic functioning. While rainfall pulses are generally correlated with increased photosynthetic activity, the effect of these rainfall pulses in the context of persistent drought is unclear. Rainfall events during drought can lead to an overall reduction in primary productivity due to reduced soil infiltration and increased erosion. To assess the effective rainfall available for initiating biological processes, measurements of soil moisture are necessary. Rainfall pulses in drylands are generally localized in time and space making them difficult to detect remotely. Our objective was to determine whether space-based observations of soil moisture have the necessary spatial and temporal resolution to detect soil moisture pulses resulting from rain events in the Walnut Gulch Experimental Watershed (WGEW) in southern Arizona. Using pre-beta-release soil moisture observations from the newly launched NASA Soil Moisture Active Passive (SMAP) observatory, we examined the effects of rainfall pulses on soil moisture over the Walnut Gulch Experimental Watershed from April to July 2015. To assess whether soil moisture pulses were associated with increased vegetation production, we monitored increases in vegetation greenness using the NASA MODIS Enhanced Vegetation Index (EVI) following increases in soil moisture. Regional-scale results were supported with local-scale in situ measurements of soil moisture, vegetation greenness from phenocams, precipitation and Net Ecosystem Exchange (NEE) associated with two eddy covariance flux towers at WGEW. In conclusion, SMAP observations have the potential to detect large rainfall pulses at the 9 km resolution, and the associated soil moisture pulses can result in increased EVI at the watershed scale. These results contribute to our understanding of the ecosystem and hydrologic functioning of dryland ecosystems.

  3. Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater dependent ecosystems

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.

    2008-12-01

    Channel incision and excessive floodplain sedimentation are major causes of riparian degradation across the country. Though the causes and consequences of these processes vary significantly, the resulting morphology in both cases is steep streambanks and a stream that is less connected with the floodplain. A case study from semi-arid, wet meadows with snow-melt driven hydrology in the Sierra Nevada of CA will be compared with one from a riparian wet prairie in the humid environment of the Driftless Area of southern Wisconsin. In the mountain meadows, 80 years of logging and overgrazing led to more flashy runoff and downcutting of the stream. This led to drainage of groundwater from the meadow and a shift in vegetation composition from sedges and rushes to dryland grasses and sagebrush in this groundwater dependent ecosystem. In the Driftless Area of WI, the introduction of agricultural practices by European settlers in the 1830s resulted in severe erosion from the cropped areas in the uplands. This sediment was transported to the stream valleys where it was deposited on the floodplain, raising this surface relative to the streambed. As a result, the water table is at a greater depth from this elevated land surface. In this ecosystem, the vegetation has shifted from wet prairie and sedge meadow communities to grasses and lowland forests dominated by box elder trees. The geomorphic result at both sites was a channel bounded by tall banks with reduced hydrologic connectivity with the floodplain. In both cases, the slope of the water table towards the stream is greater than the topographic slope across the riparian zone and the greatest depth to the water table is found adjacent to the channel. Transects exhibit a decreasing trend in soil moisture with increasing variability toward the channel. Remotely sensed imagery shows trends of drier vegetation communities adjacent to channels and wetter vegetation communities toward the margin of the riparian zones. Coupled

  4. BOREAS TE-6 1994 Soil and Air Temperatures in the NSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Norman, John; Wilson, Tim

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains measurements of the air temperature at a single height and soil temperature at several depths in the NSA from 25-May to 08-Oct- 1994. Chromel-Constantan thermocouple wires run by a miniprogrammable data logger (Model 21X, Campbell Scientific, Inc., Logan, UT) provided direct measurements of temperature. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  5. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions.

    PubMed

    Ballantyne, Mark; Pickering, Catherine Marina

    2015-12-01

    Reflecting the popularity of nature-based activities such as hiking and mountain biking, there are thousands of kilometres of recreational trails worldwide traversing a range of natural areas. These trails have environmental impacts on soils and vegetation, but where has there been research, what impacts have been found and how were they measured? Using a systematic quantitative literature review methodology, we assessed the impacts of trails on vegetation and soils, highlighting what is known, but also key knowledge gaps. Of the 59 original research papers identified on this topic that have been published in English language peer-reviewed academic journals, most were for research conducted in protected areas (71%), with few from developing countries (17%) or threatened ecosystems (14%). The research is concentrated in a few habitats and biodiversity hotspots, mainly temperate woodland, alpine grassland and Mediterranean habitats, often in the USA (32%) or Australia (20%). Most examined formal trails, with just 15% examining informal trails and 11% assessing both types. Nearly all papers report the results of observational surveys (90%), collecting quantitative data (66%) with 24% using geographic information systems. There was an emphasis on assessing trail impacts at a local scale, either on the trail itself and/or over short gradients away from the trail edge. Many assessed changes in composition and to some degree, structure, of vegetation and soils with the most common impacts documented including reduced vegetation cover, changes in plant species composition, trail widening, soil loss and soil compaction. There were 14 papers assessing how these local impacts can accumulate at the landscape scale. Few papers assessed differences in impacts among trails (7 papers), changes in impacts over time (4), species-specific responses (3) and only one assessed effects on plant community functioning. This review provides evidence that there are key research gaps

  6. Wildfire frequency and its impacts on vegetation and soil in the north-eastern Alps

    NASA Astrophysics Data System (ADS)

    Sass, O.; Heel, M.; Bayr, M.; Jüttner, M.; Friedmann, A.; Wetzel, K.-F.

    2009-04-01

    On the south-exposed slopes of the northern Austrian Alps, wildfires are surprisingly widespread. In the subalpine belt, the fires cause severe damage to vegetation and soil. The organic-rich rendzic soils may be almost completely destroyed and vegetation is degraded for decades or centuries. We investigate the role of fire on landscape dynamics in the area, which includes historical aspects, vegetation succession, soil development and chemistry as well as erosional processes. One of the pivotal questions is the fire frequency under natural and anthopogenically disturbed conditions. We are studying historical fires by investigations in archives, forest offices and neighbouring communities, by 14C dating of charcoal fragments in soils and by pollen/charcoal analysis in adjacent mires. The archive information on historical fires is very incomplete, with a strong bias of the number of fires towards the better reported and investigated 20th century. Many large burns in the study area occurred in the 1940's while in the second half of the 20th century, the number of fires markedly decreases due to improved fire fighting. However, some of the earlier fires (e.g. 1705, 1865) are reported to have had an enormous extent. Charcoal fragments are found in many positions on the slopes. Due to erosion and relocation, it is difficult to reconstruct the extent of past fires from the charcoal distribution. Even if charred fragments are reduced in size, decomposed and eroded, the biochemical signatures of pyrogenic carbon can still be found in the soils of the slopes and in adjacent talus deposits. Regardless of effects of attenuation and erosion, it seems that virtually every position in the study area has been affected by wildfires in the past. Due to a combination of historical records and 14C datings, a mean fire interval of 200-300 years (five fires in c. 1200 years) was estimated for selected slopes. This value is in the same order of magnitude as the fire frequencies reported

  7. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy

    NASA Astrophysics Data System (ADS)

    Franceschini, M. H. D.; Demattê, J. A. M.; da Silva Terra, F.; Vicente, L. E.; Bartholomeus, H.; de Souza Filho, C. R.

    2015-06-01

    Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS - Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.

  8. Impact of vegetation change on the mobility of uranium- and thorium-series nuclides in soils

    NASA Astrophysics Data System (ADS)

    Gontier, A.; Rihs, S.; Turpault, M.-P.; Chabaux, F.

    2012-04-01

    The effect of land cover change on chemical mobility and soil response was investigated using short- and long-lived nuclides from the U- and Th series. Indeed, the matching of these nuclides half-live to the pedogenic processes rates make these nuclides especially suitable to investigate either time or mechanism of transfers within a soil-water-plant system. This study was carried out from the experimental Breuil-Chenue site (Morvan mountains, France). The native forest (150 year-old) was partially clear-felled and replaced in 1976 by mono-specific plantations distributed in different stands. Following this cover-change, some mineralogical changes in the acid brown soil were recognized (Mareschal, 2008). Three soil sections were sampled under the native forest and the replanted oak and Douglas spruce stands respectively. The (238U), (234U), (230Th), (226Ra), (232Th) and (228Ra) activities were analysed by thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (MC-ICPMS) and gamma spectrometry. Significant differences in U, Th, and Ra activities were observed between the soils located under the native forest or the replanted-trees stands, mostly dominated by a large uranium mobilization from the replanted soils. Moreover, all the investigated U and Th-series activity ratios show a contrasted trend between the shallowest horizons (0-50cm) and the deepest one (below 50cm), demonstrating the chemical effect of the vegetation change on the shallow soil layers. Using a continuous open-system leaching model, the coupled radioactive disequilibria measured in the different soil layers permit to quantify the rate of the radionuclides mobilities. Reference: Mareschal, L., 2008. Effet des substitutions d'essences forestières sur l'évolution des sols et de leur minéralogie : bilan après 28 ans dans le site expérimental de Breuil (Morvan) Université Henri Poincaré, Nancy-I.

  9. VARIABILITY IN SOILS AND VEGETATION ASSOCIATED WITH HARVESTER ANT (POGONOMYRMEX RUGOSUS) NESTS ON A CHIHUAHUAN DESERT WATERSHED

    EPA Science Inventory

    The effects of harvester ant (Pogonomyrmex rugosus) nests on the density and cover of spring annual plants and on soil characteristics were measured at three locations characterized by different soils and dominant vegetation on a desert watershed. There were few differences in ve...

  10. Soil-vegetation-climate interactions in arid landscapes: Effects of the North American monsoon on grass recruitment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a daily time step, multi-layer simulation model of soil water dynamics to integrate effects of soils, vegetation, and climate on the recruitment of Bouteloua eriopoda (black grama), the historically dominant grass in the Chihuahuan Desert. We simulated landscapes at the Jornada ARS-LTER site...

  11. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  12. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area

    PubMed Central

    Wang, Jinman; Wang, Hongdan; Cao, Yingui; Bai, Zhongke; Qin, Qian

    2016-01-01

    Vegetation plays an important role in improving and restoring fragile ecological environments. In the Antaibao opencast coal mine, located in a loess area, the eco-environment has been substantially disturbed by mining activities, and the relationship between the vegetation and environmental factors is not very clear. Therefore, it is crucial to understand the effects of soil and topographic factors on vegetation restoration to improve the fragile ecosystems of damaged land. An investigation of the soil, topography and vegetation in 50 reclamation sample plots in Shanxi Pingshuo Antaibao opencast coal mine dumps was performed. Statistical analyses in this study included one-way ANOVA and significance testing using SPSS 20.0, and multivariate techniques of detrended correspondence analysis (DCA) and redundancy analysis (RDA) using CANOCO 4.5. The RDA revealed the environmental factors that affected vegetation restoration. Various vegetation and soil variables were significantly correlated. The available K and rock content were good explanatory variables, and they were positively correlated with tree volume. The effects of the soil factors on vegetation restoration were higher than those of the topographic factors. PMID:26916152

  13. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area

    NASA Astrophysics Data System (ADS)

    Wang, Jinman; Wang, Hongdan; Cao, Yingui; Bai, Zhongke; Qin, Qian

    2016-02-01

    Vegetation plays an important role in improving and restoring fragile ecological environments. In the Antaibao opencast coal mine, located in a loess area, the eco-environment has been substantially disturbed by mining activities, and the relationship between the vegetation and environmental factors is not very clear. Therefore, it is crucial to understand the effects of soil and topographic factors on vegetation restoration to improve the fragile ecosystems of damaged land. An investigation of the soil, topography and vegetation in 50 reclamation sample plots in Shanxi Pingshuo Antaibao opencast coal mine dumps was performed. Statistical analyses in this study included one-way ANOVA and significance testing using SPSS 20.0, and multivariate techniques of detrended correspondence analysis (DCA) and redundancy analysis (RDA) using CANOCO 4.5. The RDA revealed the environmental factors that affected vegetation restoration. Various vegetation and soil variables were significantly correlated. The available K and rock content were good explanatory variables, and they were positively correlated with tree volume. The effects of the soil factors on vegetation restoration were higher than those of the topographic factors.

  14. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area.

    PubMed

    Wang, Jinman; Wang, Hongdan; Cao, Yingui; Bai, Zhongke; Qin, Qian

    2016-01-01

    Vegetation plays an important role in improving and restoring fragile ecological environments. In the Antaibao opencast coal mine, located in a loess area, the eco-environment has been substantially disturbed by mining activities, and the relationship between the vegetation and environmental factors is not very clear. Therefore, it is crucial to understand the effects of soil and topographic factors on vegetation restoration to improve the fragile ecosystems of damaged land. An investigation of the soil, topography and vegetation in 50 reclamation sample plots in Shanxi Pingshuo Antaibao opencast coal mine dumps was performed. Statistical analyses in this study included one-way ANOVA and significance testing using SPSS 20.0, and multivariate techniques of detrended correspondence analysis (DCA) and redundancy analysis (RDA) using CANOCO 4.5. The RDA revealed the environmental factors that affected vegetation restoration. Various vegetation and soil variables were significantly correlated. The available K and rock content were good explanatory variables, and they were positively correlated with tree volume. The effects of the soil factors on vegetation restoration were higher than those of the topographic factors. PMID:26916152

  15. Impact of cattle grazing on soil and vegetation - a case study in a mountainous region of Austria

    NASA Astrophysics Data System (ADS)

    Bohner, Andreas; Foldal, Cecilie; Jandl, Robert

    2015-04-01

    In mountainous regions of Austria and of many other European countries, climate change may cause a further intensification of grassland management. Therefore, the effects of intensive cattle grazing on selected soil chemical and physical properties, above- and below-ground phytomass, forage quality, plant species composition and plant species richness at the scale of a representative paddock in a mountainous region of Austria were investigated. At the study site (Styrian Enns valley; 675 m a.s.l.), climate is relatively cool and humid, with a mean annual air temperature of 6.7°C and a mean annual precipitation of 970 mm, of which 66% falls during the vegetation period (April-October). The soil is a deep, base-rich Cambisol with a loamy sand texture. The paddock investigated has a total area of about 2 ha and had been grazed by dairy cows (Brown Swiss) five times per grazing season. The stocking density was 4 cows ha-1 during 180 days from early May to the end of October with a grazing time of about 8 hours per day. The strip grazed permanent pasture was manured annually for a long time, mostly with cattle slurry. Vegetation surveys were carried out using the method of Braun-Blanquet. Above- and below-ground phytomass, forage quality and mineral element concentration in the harvestable above-ground plant biomass were determined by using standard methods. During the grazing season surface soil samples (0-10 cm depth) for chemical analyses were collected before each grazing period (5 analyses of composite samples per site). At the beginning and the end of the grazing season also soil samples for physical analyses were taken from the topsoil (0-15 cm depth). Heavy cattle treading led to a substantial soil compaction especially in the 5-10 cm layer and to a deterioration of topsoil structure. The porous crumb structure was replaced by a compact platy structure. The topsoil was enriched with nutrients (mainly nitrogen, potassium, phosphorus and boron). The degree of

  16. Mechanisms Controlling CO2 Pulses upon Rewetting Dry Soils: Effects of Vegetation on Soil C Dynamics

    NASA Astrophysics Data System (ADS)

    Homyak, P. M.; Blankinship, J. C.; Schimel, J.

    2015-12-01

    Since 1958 it has been recognized that rewetting a dry soil produces a large pulse of respiration. However, the mechanisms controlling these pulses continue to be debated, with both physiological and physical mechanisms postulated. Recent studies suggest that a pool of water-extractable organic carbon (WEOC) increases as surface soils dry, concomitant with the increase in microbial biomass and the size of the rewetting CO2 pulse, but that these patterns are weakened in soils below the rooting zone. Because physically protected soil C is made available by the rewetting event itself, it is unlikely that the WEOC was generated by physical processes. Thus, we asked: i) Does the microbial decomposition of 'fresh' plant detritus during the dry season generate a pool of bioavailable WEOC, and ii) does its rapid metabolism upon rewetting control the magnitude of CO2 pulses? To answer these questions we manipulated plant inputs by thinning during the growing season, and measured CO2 emissions and WEOC concentrations for two years at a seasonally-dry California grassland. We also estimated a rapidly bioavailable WEOC (BWEOC) pool by measuring headspace CO2 after 3 hours of adding water. Opposite to our predictions, WEOC and BWEOC were most abundant in soils without plants. However, during the second year of treatment, soils with plants had higher BWEOC. Soil CO2 emissions were greater during the dry season with plants than without plants during both years, as well as upon rewetting, especially during the second year of treatment when the BWEOC accumulated during the summer drought. Apparently, WEOC was not generated by the decomposition of 'fresh' plant C, but rather, by C in various stages of decomposition. Because CO2 emissions during the dry season were higher with plants than without plants, interactions between plants and microbes appear to control the production of a BWEOC pool that influences the magnitude of CO2 pulses upon rewetting.

  17. Land surface phenologies viewed in the middle infrared: seasonal contrasts between vegetation, soils, and impervious surfaces

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Krehbiel, C.; Kovalskyy, V.

    2012-12-01

    The middle infrared (MIR) region of the electromagnetic spectrum spans 3-5 microns. It is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. This region has received very little attention in terrestrial remote sensing. Yet the MIR merits exploration of how it could be used for monitoring land surface phenologies (LSP) and seasonalities due to five characteristics. First, green vegetation is MIR-dark, reflecting just 2-5% of the incident radiation. Second, soils are MIR-bright, reflecting up to one-third of the incident radiation. Third, impervious surfaces, such as concretes, asphalts, and other building and paving materials are also MIR-bright. Fourth, the resulting seasonal contrast in MIR between vegetated and non-vegetated surfaces lets urbanized areas emerge from the vegetated landscape. Fifth, MIR wavelengths penetrate anthropogenic haze and smoke because the particle radii are smaller. Here we use MODIS (MYD02) image time series to illustrate the temporal progressions of MIR at various wavelengths and how they compare to and diverge from the more familiar NDVI and derived LSP metrics.IR portrait of the USA east of W98: maximum value composite of Aqua MODIS MIR band 23 during DOY 219-233 of 2010.

  18. Lead and Arsenic Uptake by Leafy Vegetables Grown on Contaminated Soils: Effects of Mineral and Organic Amendments

    PubMed Central

    McBride, Murray B.; Simon, Tobi; Tam, Geoffrey; Wharton, Sarah

    2015-01-01

    To assess strategies for mitigating Pb and As transfer into leafy vegetables from contaminated garden soils, we conducted greenhouse experiments using two field-contaminated soils amended with materials expected to reduce metal phytoavailability. Lettuce and mustard greens grown on these soils were analysed by ICP-MS, showing that some Pb and As transfer into the vegetables occurred from both soils tested, but plant Pb concentrations were highly variable among treatment replicates. Soil-to-plant transfer was more efficient for As than for Pb. Contamination of the leaves by soil particles probably accounted for most of the vegetable Pb, since plant Pb concentrations were correlated to plant tissue concentrations of the immobile soil elements Al and Fe. This correlation was not observed for vegetable As concentrations, evidence that most of the soil-to-plant transfer for this toxic metal occurred by root uptake and translocation into the above-ground tissues. A follow-up greenhouse experiment with lettuce on one of the two contaminated soils revealed a lower and less variable foliar Pb concentration than observed in the first experiment, with evidence of less soil particle contamination of the crop. This reduced transfer of Pb to the crop appeared to be a physical effect attributable to the greater biomass causing reduced overall exposure of the above-ground tissues to the soil surface. Attempts to reduce soil Pb and As solubility and plant uptake by amendment at practical rates with stabilizing materials including composts, peat, Ca phosphate, gypsum and Fe oxide, were generally unsuccessful. Only Fe oxide reduced soluble As in the soil, but this effect did not persist. Phosphate amendment rapidly increased soil As solubility but had no measurable effect on either soil Pb solubility or concentrations of Pb or As in the leafy vegetables. The ineffectiveness of these amendments in reducing Pb transfer into leafy vegetables is attributed in this study to the low

  19. Fall 1994 wildlife and vegetation survey, Norton Air Force Base, California

    SciTech Connect

    Not Available

    1994-12-15

    The fall 1994 wildlife and vegetation surveys were completed October 3-7, 1994, at Norton Air Force Base (AFB), California. Two biologists from CDM Federal Programs, the U.S. Environmental Protection Agency (EPA) regional biologist and the Oak Ridge National Laboratory (ORNL) lead biologist conducted the surveys. A habitat assessment of three Installation Restoration Project (IRP) sites at Norton Air Force Base was also completed during the fall survey period. The IRP sites include: Landfill No. 2 (Site 2); the Industrial Wastewater Treatment Plant (IWTP) area; and Former Fire Training Area No. 1 (Site 5). The assessments were designed to qualitatively characterize the sites of concern, identify potential ecological receptors, and provide information for Remedial Design/Remedial Action activities. A Reference Area (Santa Ana River Wash) and the base urban areas were also characterized. The reference area assessment was performed to provide a baseline for comparison with the IRP site habitats. The fall 1994 survey is the second of up to four surveys that may be completed. In order to develop a complete understanding of all plant and animal species using the base, these surveys were planned to be conducted over four seasons. Species composition can vary widely during the course of a year in Southern California, and therefore, seasonal surveys will provide the most complete and reliable data to address changes in habitat structure and wildlife use of the site. Subsequent surveys will focus on seasonal wildlife observations and a spring vegetation survey.

  20. Effects of soil conservation measures in a partially vegetated area after forest fires.

    PubMed

    Kim, Chang-Gi; Shin, Kwangil; Joo, Kwang Yeong; Lee, Kyu Song; Shin, Seung Sook; Choung, Yeonsook

    2008-07-25

    After forest fires on the east coast of Korea in 2000, some burnt areas were left untreated. Although 80% of the area was reasonably revegetated within 3 months, about 20% of the area was partially vegetated, mainly due to a low density of sprouters and poor growing conditions (eroded soil and steep slopes). Three years after the fires, the effect of soil conservation measures, such as mulching with wood chips, seeding with native plant species and log erosion barriers (LEBs), on runoff and soil erosion were examined using runoff plots. Wood chip mulching greatly reduced runoff and sediment yields and these effects were consistent regardless of the volume of rainfall. Neither seeding nor LEBs reduced runoff and sediment yields. No positive or negative effects of mulching, seeding or LEBs on ground vegetation cover were observed. The ineffectiveness of seeding and LEBs ma