Science.gov

Sample records for air solar collector

  1. Preliminary design of an air solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report containing performance specifications and engineering drawings of concentric-tube air solar collector show details of collector and subcomponents that indicate efficiency surpassing predetermined performance baseline for air collectors.

  2. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  3. Solar Air Collectors: How Much Can You Save?

    DOE R&D Accomplishments Database

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  4. Performance verification of an air solar collector

    NASA Technical Reports Server (NTRS)

    Miller, D. C.; Romaker, R. F.

    1979-01-01

    Procedures and results of battery of qualification tests performed by independent certification agency on commercial solar collector are presented in report. Reported results were used as basis in judging collector suitable for field installation in residential and commerical buildings.

  5. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  6. Performance evaluation of an air solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Indoor tests on signal-glazed flat-plate collector are described in report. Marhsall Space Flight Center solar simulator is used to make tests. Test included evaluations on thermal performance under various combinations of flow rate, incident flux, inlet temperature, and wind speed. Results are presented in graph/table form.

  7. Development and testing of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1979-01-01

    Summarized report on development and testing of hot-air flat-plate solar collector includes structural details, coating selection, and spacing between coating and glass plate. Report gives complete performance specifications and extensive certifications test report.

  8. Thermal efficiency of single-pass solar air collector

    SciTech Connect

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  9. Thermal performance of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Report contains procedures and results of thermal-performance tests on double-glazed air solar collector. Four types of tests were carried out including thermal-efficiency and stagnation tests, collector time-constant tests to assess effects of transients, and incident-angle modifier tests. Data are presented in tables and as graphs and are discussed and analyzed.

  10. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  11. Evaluation of an air solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Performance verification under simulated conditions tested by using Marshall Space Flight Center solar simulator is presented. Evaluation included thermal performance tests, time constant tests, and incident angle modifier tests.

  12. Prototype air flat-plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Four reports trace development from preliminary design through delivery of hardware. Developmental test, including airflow, air temperature, and efficiency are discussed in reports, as are qualification tests on prototypes and final acceptance tests. Qualification test program includes measurements tests, and structural analysis.

  13. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  14. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  15. A hybrid air conditioner driven by a hybrid solar collector

    NASA Astrophysics Data System (ADS)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  16. Development of prototype air/liquid solar collector subsystem

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Testing of the evacuated tubular air collector in conjunction with air/liquid heat exchange and liquid storage elements was completed. Test results emphasize matching of heat exchanger and collector characteristics with specific attention to the dynamic response of each of the elements.

  17. Solar collectors

    SciTech Connect

    Uroshevich, M.

    1981-09-22

    The disclosure illustrates a solar collector of the focusing type comprising a trough like element with an interior reflective surface that faces a main reflector of the collector. A tubular receiver providing a passage for heat transfer fluid is positioned in the trough like element generally along the focal line of the main reflector. A flat glass plate covers the trough along a perimeter seal so that subatmospheric conditions may be maintained within the trough like element to minimize convection heat losses.

  18. Design data brochure for the Owens-Illinois Sunpak (TM) air-cooled solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design and installation of the Owens-Illinois Sunpak TM Air-Cooled Solar Collector is presented. Information includes collector features, fluid flow, thermal performance, installation and system tips. The collector utilizes a highly selective wavelength coating in combination with vacuum insulation, which virtually eliminates conduction and convention losses.

  19. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  20. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  1. Performance Study of a Double-Pass Thermoelectric Solar Air Collector with Flat-Plate Reflectors

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2012-06-01

    In this paper the results of the influence of flat-plate reflectors made of aluminum foil on the performance of a double-pass thermoelectric (TE) solar air collector are presented. The proposed TE solar collector with reflectors was composed of transparent glass, an air gap, an absorber plate, TE modules, a rectangular fin heat sink, and two flat-plate reflectors. The flat-plate reflectors were placed on two sides of the TE solar collector (east and west directions). The TE solar collector was installed on a one-axis sun-tracking system to obtain high solar radiation. Direct and reflected incident solar radiation heats up the absorber plate so that a temperature difference is created across the TE modules to generate a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. Ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel, where it receives additional heating from the absorber plate. Improvements to the thermal energy and electrical power outputs of the system can be achieved by the use of the double-pass collector system with reflectors and TE technology. It was found that the optimum position of the reflectors is 60°, which gave significantly higher thermal energy and electrical power outputs compared with the TE solar collector without reflectors.

  2. Indoor test for thermal performance evaluation on the Sunworks (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a Sunworks single glazed air solar collector under simulated conditions are described. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  3. Theoretical and Experimental Investigations of Cylindrical Air-Heating Solar Collector

    NASA Astrophysics Data System (ADS)

    Pelece, I.; Shipkovs, P.

    2016-06-01

    Solar energy is used not only at low latitudes, where it is available at large amounts, but also at higher latitudes, where height of sun and irradiance are significantly lower. On the other hand, the length of day at higher latitudes is longer in summer than at low latitudes, and also the path of the sun is longer. The present research deals with seeking for new shapes of solar collectors capable of receiving more solar energy. For designing and evaluating new shapes of solar collectors, it is necessary to have new methods for simple calculations of energy received from the sun by surface of any shape and direction. Such a method is explained in the present paper. Based on calculations by the proposed method, a new form of solar collector - a cylindrical collector - has been worked out. This collector is intended for air heating, but main principles can also be used for water heating, and even for photovoltaics. A cylindrical collector receives more energy in the morning and evening than a flat one, but at midday power of both collectors is equal, if effective areas are equal. Daily energy sum of the cylindrical solar collector is 1.5 times greater than that of the flat one.

  4. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  5. Models for New Corrugated and Porous Solar Air Collectors under Transient Operation

    NASA Astrophysics Data System (ADS)

    Adnan Abed, Qahtan; Badescu, Viorel; Ciocanea, Adrian; Soriga, Iuliana; Bureţea, Dorin

    2017-01-01

    Mathematical models have been developed to evaluate the dynamic behavior of two solar air collectors: the first one is equipped with a V-porous absorber and the second one with a U-corrugated absorber. The collectors have the same geometry, cross-section surface area and are built from the same materials, the only difference between them being the absorbers. V-corrugated absorbers have been treated in literature but the V-porous absorbers modeled here have not been very often considered. The models are based on first-order differential equations which describe the heat exchange between the main components of the two types of solar air heaters. Both collectors were exposed to the sun in the same meteorological conditions, at identical tilt angle and they operated at the same air mass flow rate. The tests were carried out in the climatic conditions of Bucharest (Romania, South Eastern Europe). There is good agreement between the theoretical results and experiments. The average bias error was about 7.75 % and 10.55 % for the solar air collector with "V"-porous absorber and with "U"-corrugated absorber, respectively. The collector based on V-porous absorber has higher efficiency than the collector with U-corrugated absorber around the noon of clear days. Around sunrise and sunset, the collector with U-corrugated absorber is more effective.

  6. Indoor test for thermal performance evaluation on life sciences engineering (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a life sciences double-glazed air solar collector under simulated conditions is discussed. These tests were made using the Marshall Space Flight Center's solar simulator. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  7. A numerical study of a vertical solar air collector with obstacle

    NASA Astrophysics Data System (ADS)

    Moumeni, A.; Bouchekima, B.; Lati, M.

    2016-07-01

    Because of the lack of heat exchange obtained by a solar air between the fluid and the absorber, the introduction of obstacles arranged in rows overlapping in the ducts of these systems improves heat transfer. In this work, a numerical study using the finite volume methods is made to model the dynamic and thermal behavior of air flow in a vertical solar collector with baffles destined for integration in building. We search essentially to compare between three air collectors models with different inclined obstacles angle. The first kind with 90° shows a good performance energetic and turbulent.

  8. Long term weathering effects on the thermal performance of the solaron (air) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures and the results obtained during the evaluation test program on the Solaron Corporation air-type solar collector are presented. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The Solaron Model 2001, air-type solar collector has a gross area of 19 square feet and the weight is 160 pounds. The absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  9. Heat transfer and energy analysis of a solar air collector with smooth plate

    NASA Astrophysics Data System (ADS)

    Chabane, Foued; Moummi, Noureddine

    2014-04-01

    The heat transfer and thermal performance of a single pass solar air heater a smooth plate was investigated experimentally. In the present paper, energy and heat transfer analysis of a solar air collector with smooth plate, this technique is used to determine the optimal thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different mass flow rate varying in the array 0.0108-0.0202 kg/s with five values, solar intensity; tilt angle and ambient temperature. We discuss the thermal behavior of this type of collector with new design and with my proper construction. An experimental study was carried out on a prototype installed on the experimental tests platform within the University of Biskra in the Algeria. The effects of air mass flow rate, emissivity of channel plates and wind heat transfer coefficient on the accuracy of the criterion are also investigated.

  10. Indoor test for thermal performance evaluation of the Solaron (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  11. Hot-air flat-plate solar collector-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  12. Conversion of a swamp-cooler to solar air collector. Final technical report

    SciTech Connect

    Olavson, L.

    1982-12-31

    The winter conversion of a typical swamp-cooler to a solar air collector was studied and constructed for a Salt Lake City location. Design studies were performed and a design selected, constructed and briefly tested. The work performed points to a technical feasibility for suitable house types and locations. Economic feasibility appears marginal.

  13. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  14. Owens-Illinois subsystem design package for the SEC-601 air-cooled solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The subsystem design of the SEC-601 solar collector was evaluated. The collector is of modular design and is approximately 12 feet three inches wide and eight feet seven inches tall. It contains 72 collector tube elements and weighs approximately 300 pounds. Included in this report are the subsystem performance specifications and the assembly and installation drawings of the solar collectors and manifold.

  15. Outdoor test for thermal performance evaluation of the Owens-Illinois Sunpack SEC-601 (air) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the test results obtained during the performance of an evaluation test program on the Owens-Illinois Sunpak, model SEC-601, air solar collector under natural outdoor weather conditions are presented. All testing activities were performed on a single module. The test was performed and the data evaluated as applicable to outdoor testing of solar collectors.

  16. Low cost, bare plate solar air collector. Semi-annual progress report

    SciTech Connect

    Not Available

    1980-01-01

    A low cost, bare plate solar collector that is specifically designed to preheat ambient air with solar energy is discussed. Two prototype solar collector test systems have been designed, fabricated and assembled. Each system has been instrumented to provide instantaneous and average thermal performance data by means of a computerized data logger system. This data logger system is currently being made operational. Data collection is scheduled to begin March 1, 1980 and continue until the project completion date of June 17, 1980. Some preliminary test data have been obtained for both prototype systems. The results showed that ambient air was preheated between 5/sup 0/F and 10/sup 0/F with the systems achieving a thermal performance of between 15% and 30% efficiency.

  17. High-performance solar collector

    NASA Technical Reports Server (NTRS)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  18. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  19. Indoor tests of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Data taken relating indoor testing using solar simulator at Marshall Space Center has been compared with data taken during outdoor tests in previous studies. Data includes tests on thermal performance, time constance, and incidence-angle modifier tests in table/graph form.

  20. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  1. Bi-coolant flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Chon, W. Y.; Green, L. L.

    The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.

  2. Foamglass solar window collector

    NASA Astrophysics Data System (ADS)

    Grande, P. C.

    Solar heating of a living area by means of a foamglass window collector is reported. The collector was built with readily available materials available at most local hardware stores. The payback period was found to be 3.7 years, slightly longer than anticipated.

  3. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  4. Installation package for Sunpak solar collectors

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A subsystem (air/liquid vacuum collector) was developed for use with solar combined heating and cooling subsystems. The collector is modular in design, is approximately twelve-feet-three-inches wide and is eight-feet-seven-inches high. The module contains 72 collector tube elements and weighs approximately 300 pounds.

  5. All-glass solar collector

    NASA Technical Reports Server (NTRS)

    Wisnewski, J. P.

    1980-01-01

    Proposed all tempered glass solar collector uses black collection fluid and mirrored bottom to reduce energy loss and overall costs associated with conventional collectors. Collector is more efficient and practically maintenance-free.

  6. Solar thermal collectors

    NASA Astrophysics Data System (ADS)

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  7. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  8. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  9. Flatplate Solar Energy Collector

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A small truck body fabricator in Florida became producer of flatplate solar collectors after having an inexpensive literature search performed by the NASA IAC in Research Triangle Park, NC. The center provided him with 314 abstracts of which he requested 15 full length articles. His total cost, $100.00, was sufficient to launch his new venture OEM Products, Inc. Flatplate collector design incorporates new black paint developed by Dow-Corning Corporation but not yet commercially available.

  10. Preliminary design review package on air flat plate collector for solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  11. Direct expansion solar collector and heat pump

    NASA Astrophysics Data System (ADS)

    1982-05-01

    A hybrid heat pump/solar collector combination in which solar collectors replace the outside air heat exchanger found in conventional air-to-air heat pump systems is discussed. The solar panels ordinarily operate at or below ambient temperature, eliminating the need to install the collector panels in a glazed and insulated enclosure. The collectors simply consist of a flat plate with a centrally located tube running longitudinally. Solar energy absorbed by exposed panels directly vaporizes the refrigerant fluid. The resulting vapor is compressed to higher temperature and pressure; then, it is condensed to release the heat absorbed during the vaporization process. Control and monitoring of the demonstration system are addressed, and the tests conducted with the demonstration system are described. The entire heat pump system is modelled, including predicted performance and costs, and economic comparisons are made with conventional flat-plate collector systems.

  12. Development of Mobile Solar Evaluation Laboratory & Technical and Economic Performance of the Goldade Site-Built Air Collector

    NASA Astrophysics Data System (ADS)

    Goldade, Travis D.

    The Great Basin climate type is ideal for the utilization of solar winter space heat from air collectors; perhaps the most economically viable option for solar space heating is that of site built air collectors (SBAC). Unfortunately SBACs are a rarely utilized technology primarily because there is presently no standard method to test these types of collectors. This thesis provides a viable testing method for SBACs and the theoretical calculations required to develop testing and provide ratings based on industry standards. This leads to development of the Mobile Solar Evaluation Laboratory (MSEL). The Goldade Family built a 128 ft2 solar air heater for winter space heating, and the MSEL was employed to evaluate the technical and economic performance of that system. Theory and field testing correlated well, and it was proven that the MSEL accurately predicts SBAC performance. In most Northern Nevada households solar space heating can be cost effective. Solar space heating also reduces substantial CO2 from being added to the atmosphere.

  13. The multiple layer solar collector

    NASA Astrophysics Data System (ADS)

    Kenna, J. P.

    1983-01-01

    An analytical model is developed for obtaining numerical solutions for differential equations describing the performance of separate layers in a multiple layer solar collector. The configurations comprises heat transfer fluid entering at the top of the collector and travelling down through several layers. A black absorber plate prevents reemission of thermal radiation. The overall performance is shown to depend on the number of layers, the heat transfer coefficient across each layer, and the absorption properties of the working fluid. It is found that the multiple layer system has a performance inferior to that of flat plate selective surface collectors. Air gaps insulating adjacent layers do not raise the efficiency enough to overcome the relative deficiency.

  14. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  15. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  16. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  17. Qualification test and analysis report: Solar collectors

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  18. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  19. Textile solar collector

    SciTech Connect

    Guadard, Y.; Guillemaud, H.

    1982-04-27

    Disclosed is a solar collector employing a liquid collecting medium. A textile collection surface of which the thickness possesses different densities is employed to carry the medium. These densities are such that the densities increase from the surface exposed to the sun to the opposite surface, in order to enable the liquid to run in the upper thickness. The textile collecting surface consists of at least one nonwoven textile thickness.

  20. Solar energy collector

    SciTech Connect

    Penney, R.J.

    1980-09-02

    A sun tracking solar energy collector assembly having both a longitudinally extending flat plate absorber and a tube absorber spaced from and extending longitudinally generally parallel to the flat plate absorber. In one form a parabolic reflector focuses direct rays of solar radiation on the tube absorber and directs diffused rays of solar radiation onto the plate absorber. In another form a fresnel lens plate focuses direct rays of solar radiation on the tube absorber and flat reflector surfaces direct diffused solar radiation passing through the lens plate onto the plate absorber. In both forms a fluid is first heated as it circulates through passages in the flat plate absorber and then is further heated to a higher temperature as it passes through the tube absorber.

  1. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  2. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  3. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  4. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  5. Directory of S. R. C. C. certified solar collector ratings. Supplement to Spring 1983 edition

    SciTech Connect

    Not Available

    1983-01-01

    This directory is divided into four sections representing the four main generic categories of collector panels currently certified and rated by SRCC. These four categories are: (1) Unglazed flat-plate liquid-type solar collectors: (2) Glazed flat-plate liquid-type solar collectors; (3) Air-type collectors; and (4) Linear tracking concentrator solar collectors.

  6. Solar optical energy collector

    SciTech Connect

    Mori, K.

    1983-10-18

    A solar optical energy collector is disclosed having a lens system for concentrating sun beams and a sun beams receiving system for introducing said sun beams being concentrated into a optical-conductor cable. In order to obtain the most effective arrangement of the lens system, said lens system comprises a plurality (N) of Fresnel lenses each formed in the shape of a hexagon, i.e. N=3n(+1) Fresnel lenses are disposed around one Fresnel lens so that each side of the one Fresnel lens positioned in the center of the lens system adjoins to one side of each respective surrounding Fresnel lenses in a concentric-circular relationship, wherein (n) stands for a natural number.

  7. Solar energy collector

    SciTech Connect

    Kellberg, H.; Wilder, A.

    1980-07-01

    A description is given of a solar energy collector structure comprising: a plurality of partially evacuated tublar members substantially transparent to incident solar radiation, said tubular members having opposed lateral ends being arranged in a first and second group and lying adjacent one another in parallel axial alignment, means for joining each tubular member next to each adjacent tubular member of the group to form a first and second respective tube sheet structure; said tube sheets arranged adjacent each other in tendem to form at least one flow channel therebetween in a self-supporting structure; an absorber member disposed within said flow channel for intercepting and absorbing solar energy; and an insulating film having deposited theron a radiation reflecting substance located behind said absorber member disposed over and conforming closely to a surface of said second tube sheet for forming an insulating space between the insulating film and the second tube sheet to thereby suppress radiation, conduction and convection from said absorber in a direction out of the interior of the flow channel.

  8. Experimental study of the influence of collector height on the steady state performance of a passive solar air heater

    SciTech Connect

    Ryan, D.; Burek, S.A.M.

    2010-09-15

    Passive solar air heaters, such as solar chimneys and Trombe Walls, rely on solar-induced buoyancy-driven (natural) convection to produce the flow of air. Although buoyancy-driven convection is well understood for a single vertical plate, buoyancy-driven convection in an asymmetrically-heated channel is more problematic, and in particular, the effects of the channel height on the flow rate and heat transfer. This paper reports on experiments on test rigs resembling lightweight passive solar air-heating collectors. The test rigs were of heights 0.5, 1.0 and 2.0 m, with adjustable channel depths (20-150 mm) and heat inputs (up to 1000 W/m{sup 2}). Measurements were made of the air, plate and cover temperatures, and air velocities. Results are presented as dimensionless correlations of mass flow (as Reynolds number) and efficiency against heat input (as Rayleigh number), channel depth and height. Thermal efficiency is shown to be a function of the heat input and the system height, but not of the channel depth; mass flow is shown to be a dependent on all three parameters. (author)

  9. Shenandoah parabolic dish solar collector

    SciTech Connect

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  10. Heat Pumps With Direct Expansion Solar Collectors

    NASA Astrophysics Data System (ADS)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  11. A vacuum tube vee-trough collector for solar heating and air conditioning applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    An analysis is conducted of the performance of a vee-trough vacuum tube collector proposed for use in solar heating and cooling applications. The vee-trough reflector is a triangular sectioned, flat surfaced reflector, whose axis is laid in the East-West direction. A vacuum tube receiver placed at the bottom of the vee-trough collects solar heat most efficiently since convection is completely eliminated. Radiation losses are reduced by use of selective coatings on the absorber. Owing to its high temperature capabilities (300-400 F), the proposed scheme could also be used for power generation applications in combination with an organic Rankine conversion system. It is especially recommended for unattended pumping stations since the reflectors only require reversal once every six months.

  12. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  13. Turning collectors for solar radiation

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  14. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  15. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  16. Indoor thermal performance evaluation of the SEPCO air collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procedures used and the results obtained during the evaluation test program on the Solaron solar air collector, model EF-212, under simulated conditions for comparison with data collected in outdoor tests on the same collector are given. The test article was a single glazed collector with a nonsensitive absorber plate, aluminum box frame, and one inch isocyanurate foam insulation.

  17. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  18. Solar-collector test report

    SciTech Connect

    Stoney, W. E.

    1981-06-01

    Activities to evaluate the commercial readiness and potential of an all plastic solar hot water collector are summarized. The results of tests at the Florida Solar Energy Center are reported. The collector is described and data are given including the efficiency curve, incident angle modifier, raw test data, and the results of static tests. A meeting is also described which was called to obtain an outside evaluation of the collector and recommendations as to future activities. It was agreed that the design demonstrated that a thin-film plastic absorber could be built to produce performance at least equal to the mid-range of conventional copper or aluminum absorbers and that production costs could probably be at least half that of currently available collectors. (LEW)

  19. Selective coating for solar collectors

    SciTech Connect

    Schardein, D.J.

    1983-03-15

    A selective solar coating for solar collectors is disclosed. The coating is characterized by its high absorptance and low emittance. The coating comprises an organic compound or substance having a high molecular weight and a high carbon content, such as a petroleum, vegetable or animal oil, fat or wax, which is pyrolyzed to produce a carbon black pigmented varnish.

  20. Solar collector testing in the European community

    NASA Astrophysics Data System (ADS)

    Gillett, W. B.; Moon, J. E.; Aranovitch, E.

    Recent work by the Commission of the European Communities Solar Collector Testing Group at the Joint Research Centre in Ispra, Italy, is reviewed. Five test methods for liquid-heating collectors are described. Data scatter in the results of round-robin outdoor thermal-performance tests (performed at each Group-member laboratory) is analyzed in terms of environmental effects not accounted for in the linear performance model, calibration and precision differences, and real differences due to manufacturing variations. Comparative data on solar-irradiance-pyranometer calibration is presented. Solar-simulator test devices are reported to provide reproducible measurements which accord with outdoor results. Preliminary findings of studies of collector durability, including inspection reports, natural aging observations, development of qualification criteria (high-temperature stagnation, rain/wind penetration, absorber internal pressure, and external thermal shock), and round-robin solar-absorptance and thermal-emittance measurements, are presented. Future work will be directed to the testing of air collectors, installed domestic hot-water systems, and high-perormance evacuated-tube collectors.

  1. Fiber reinforced concrete solar collector

    SciTech Connect

    Slemmons, A. J.; Newgard, P. J.

    1985-05-07

    A solar collector is disclosed comprising a glass member having a solar selective coating thereon, and a molded, glass-reinforced concrete member bonded to the glass member and shaped to provide a series of passageways between the glass member and the fiber-reinforced concrete member capable of carrying heat exchanging fluid therethrough. The fiber-reinforced concrete member may be formed by spraying a thin layer of concrete and chopped fibers such as chopped glass fibers onto a mold to provide an inexpensive and lightweight, thin-walled member. The fiber-reinforced concrete member may have a lightweight cellular concrete backing thereon for insulation purposes. The collector is further characterized by the use of materials which have substantially matching thermal coefficients of expansion over the temperature range normally encountered in the use of solar collectors.

  2. Solar collector method and apparatus

    SciTech Connect

    Sadler, C.

    1989-09-19

    This patent describes a solar collector system. It comprises: an extruded solar collector with a plurality of orifices longitudinally extending therethrough; an input manifold having a central conduit member with male and female ends and a plurality of radially extending nipples corresponding to the plurality of orifices; an output manifold having a central conduit member with male and female ends and a plurality of radially extending nipples corresponding to the plurality of orifices; means for positioning the nipples of the input manifold into one end of the plurality of orifices and for positioning the nipples of the output manifold into the other end of the plurality of orifices such that a fluid flowing into the input manifold flows through the nipples of the input manifold into the plurality of orifices and then through the nipples of the output manifold into the output manifold; a sheet of transparent material affixed in a spaced-apart position above the solar collector by means of a stand-off material; an insulated material positioned above the manifolds; and an arcuate member adhered between the sheet of transparent material and the strip of material and positioned over one of the manifolds to prevent debris from being deposited between the manifold and the solar collector. Also described is a nipple formed in a cylindrical configuration with an exterior surface and a free end. Also described is coupling apparatus between a manifold having a cylindrical nipple and a solar collector having a cylindrical orifice. Also described is a manifold for connection to a solar collector having a plurality of orifices extending longitudinally therethrough.

  3. High efficiency flat plate solar energy collector

    SciTech Connect

    Butler, R. F.

    1985-04-30

    A concentrating flat plate collector for the high efficiency collection of solar energy. Through an arrangement of reflector elements, incoming solar radiation, either directly or after reflection from the reflector elements, impinges upon both surfaces of a collector element.

  4. Solar collector with altitude tracking

    DOEpatents

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  5. Test results: SEGS LS-2 solar collector

    NASA Astrophysics Data System (ADS)

    Dudley, Vernon E.; Kolb, Gregory J.; Mahoney, A. Roderick; Mancini, Thomas R.; Matthews, Chauncey W.; Sloan, Michael; Kearney, David

    1994-12-01

    A SEGS LS-2 parabolic trough solar collector was tested to determine the collector efficiency and thermal losses with two types of receiver selective coatings, combined with three different receiver configurations: glass envelope with either vacuum or air in the receiver annulus, and glass envelope removed from the receiver. As expected, collector performance was significantly affected by each variation in receiver configuration. Performance decreased when the cermet selective coating was changed to a black chrome coating, and progressively degraded as air was introduced into the vacuum annulus, and again when the glass envelope was removed from the receiver. For each receiver configuration, performance equations were derived relating collector efficiency and thermal losses to the operating temperature. For the bare receiver (no glass envelope) efficiency and thermal losses are shown as a function of wind speed. An incident angle modifier equation was also developed for each receiver case. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature. Results from the experiments were compared with predictions from a one-dimensional analytical model of the solar receiver. Differences between the model and experiment were generally within the band of experimental uncertainty.

  6. Solar collector and arrangements thereof

    SciTech Connect

    Nguyen, H.N.

    1985-03-19

    In an all liquid flat plate type solar collector having risers therein, the risers having inlet and outlet portions, the improvement comprises providing a single header for servicing the risers and arranging the risers inlet and outlet portions within the header so as to obtain flow through the risers using the velocity effect or dynamic effect of flow through the header.

  7. Inverted flat plate solar collector. Final report

    SciTech Connect

    Brown, M.A.

    1981-08-26

    Construction and testing of an inverted flat plate solar collector are described. Heat transfer and economic analysis were performed to optimize the collector design. The newly designed collector was tested against two other flat plate collectors and the results and comparison of efficiencies are presented. (BCS)

  8. High performance flat plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  9. Sea shell solar collector

    DOEpatents

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  10. Installation package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  11. Cleaner for Solar-Collector Covers

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Cleland, E. L.

    1983-01-01

    Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.

  12. Evaluation of a Line-Concentrating Solar Collector

    NASA Technical Reports Server (NTRS)

    1982-01-01

    45-page report contains results of performance evaluation of line-concentrating solar collector. Collector employs parabolic trough to direct Sunlight to line along its focal axis, along which lies a black-chrome plated receiver tube covered by a glass tube containing still air. Reflective trough has aluminum-mirror surface covered with metallized acrylic film. Array of four collectors, positioned end to end was used for evaluation. Array was driven by single drive mechanism which was controlled by electronic tracking device.

  13. Thermal performances of vertical hybrid PV/T air collector

    NASA Astrophysics Data System (ADS)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  14. Localized solar collectors

    SciTech Connect

    Ghasemi, Hadi; Marconnet, Amy Marie; Chen, Gang; Ni, George Wei

    2016-10-04

    A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m.sup.3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.

  15. Investigation of a hybrid PVT air collector system

    NASA Astrophysics Data System (ADS)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  16. A high performance porous flat-plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Clarke, V.; Reynolds, R.

    1979-01-01

    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  17. Evaluation of solar collectors for heat pump applications

    NASA Astrophysics Data System (ADS)

    Skartvedt, G.; Pedreyra, D.; McMordie, R.; Kidd, J.; Anderson, J.; Jones, R.

    1980-08-01

    The potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump was evaluated. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single family residences in eight US cities. The performance of each system was measured against that of a conventional air to air heat pump operating against the same loads. In addition to evaluation of solar collector options, water tanks and buried pipe grids to provide thermal storage was considered. A determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors was included. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area.

  18. Automated solar collector installation design

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  19. Transpired Air Collectors - Ventilation Preheating

    SciTech Connect

    Christensen, C.

    2006-06-22

    Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

  20. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  1. Line-focus concentrating solar collectors

    SciTech Connect

    Leonard, J. A.; Dugan, V. L.

    1980-01-01

    An overview of the line-focus concentrating solar collector technology and applications is presented. Included are a description of the collectors, some of the key features of the engineering approach, instantaneous and all-day performance and operating data, temperature capabilities and limitations for selected collectors, projected future capabilities for peak and annual performance. Projected system capital costs and annualized life cycle costs for thermal energy produced are discussed. Several existing application projects which employ line concentrating collectors are reviewed, and finally, plans for future DOE-funded line concentrating collector projects are described.

  2. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  3. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  4. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  5. Solar collectors. I - Fundamentals and collectors of the past and present

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    The paper is a state-of-the-art review aiming to familiarize those who are new in the solar energy field with past accomplishment in solar energy utilization. Consideration is given to the design features and performance definition of solar collectors. The characteristics of planar collectors, line focusing collectors, and point focusing collectors (including the central receiver concept) are briefly discussed.

  6. A mobile apparatus for solar collector testing

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    The design, construction, and operation of a mobile apparatus for solar collector testing (MASCOT) is described. The MASCOT is a self-contained test unit costing about $10,000 whose only external requirement for operation is electrical power and which is capable of testing two water-cooled flat-plate solar collectors simultaneously. The MASCOT is small enough and light enough to be transported to any geographical site for outdoor tests at the location of collector usage. It has been used in both indoor solar simulator tests and outdoor tests.

  7. A reliable method for rating solar collectors

    NASA Astrophysics Data System (ADS)

    Loef, G. O. G.; Jones, D.; Shaw, L. E.

    A method is outlined which accurately and meaningfully rates solar collectors in all parts of the country. The basis for the rating is a first order efficiency curve developd from test results obtained in an accredited laboratory by methods prescribed in the ASHRAE 93-77 procedure. Annual solar heat delivery per square foot of collector is then calculated for standard hot water and space heating applications in cities throughout the U.S. by use of the F-Chart procedure. Four collectors are analyzed by the FCHART method for space heating applications in five U.S. cities at five solar load fractions. It is shown that although all the collectors have comparable outputs under some conditions, they perform quite differently in different parts of the country and at different ratios of collector area to heating load.

  8. Desiccant cooling using unglazed transpired solar collectors

    SciTech Connect

    Pesaran, A.A. ); Wipke, K. )

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

  9. Desiccant cooling using unglazed transpired solar collectors

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  10. Evacuated flat-plate solar collectors

    SciTech Connect

    Whittemore, P.G.

    1981-09-15

    A structural support system is disclosed for use in an evacuated, flat-plate, solar collector to eliminate the problem of stress fractures in a glass cover plate. Nonlinearly spaced supports are used within the collector to dampen vibrations in the glass cover and to prevent overdeflection before buckling or stress fractures occur.

  11. Performance of a solar-thermal collector

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1975-01-01

    Possible means of achieving the technology required for field application of solar thermal power systems are discussed. Simplifications in construction techniques as well as in measurement techniques for parabolic trough collectors are described. Actual measurement data is also given.

  12. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  13. Concentrating solar collector-installation package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains general description of concentrating solar collector and tracking system kit, along with comprehensive drawings, instructions, and guidelines to assist in field assembly, installation, operation, and maintenance of system.

  14. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  15. A reliable method for rating solar collectors

    NASA Astrophysics Data System (ADS)

    Lof, G. O. G.; Jones, D.; Shaw, L. E.

    Features of a solar flat plate collector system rating scheme which can be used by either technical or nontechnically trained persons are described and compared with other rating systems. Performance curves from the ASHRAE 93-77 technique are taken as the basic indicator of collector heat delivery capability, and can be combined with data on the type of climate, heating demand the collector serves, and the solar fraction of the load. The rating method comparisons covered calculations of heat delivery, for space heating applications, for four different collectors supplying four different load fractions in five locations. F-Chart simulations were run for the test, considering commercially available systems. Useful heat from the collectors varied with location, as did relative performance. The ARI rating system was found to be useless as a performance predictor, and recommendations are provided for an adequate rating system.

  16. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  17. A test program for solar collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Rigorous environmental and performance tests qualify solar collector for use in residential solar-energy systems. Testing over 7 month period examined pressurized effects, wind and snow loading, hail damage, solar and thermal degradation, effects of pollutants, efficiency, and outgassing. Test procedures and results are summarized in tables, graphs, and text.

  18. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  19. Wind loading on solar collectors

    NASA Astrophysics Data System (ADS)

    Bhaduri, S.; Murphy, L. M.

    1985-06-01

    The present design methodology for the determination of wind loading on the various solar collectors were reviewed and assessed. The total force coefficients of flat plates of aspect ratios 1.0 and 3.0, respectively, at various angles of attack obtained by using the guidelines of the ANSI A58.1-1982, were compared with those obtained by using the methodology of the ASCE Task Committee, 1961, and the experimental results of the full-scale test of heliostats by Peglow. The turbulent energy spectra, currently employed in the building code, are compared with those of Kaimal et al., Lumley, and Ponofsky for wind velocities of 20.0 m/s and 40.24 m/s at an elevation of 9.15 m. The longitudinal spectra of the building code overestimates the Kaimal spectra in the frequency range of 0.007 Hz to 0.08 Hz and underestimates beyond the frequency of 0.08 Hz. The peak angles of attack, on the heliostat, stowed in horizontal position, due to turbulent vertical and lateral components of wind velocity, were estimated by using Daniel's methodology for three wind velocities and compared with the value suggested by the code. The experimental results of a simple test in the laboratory indicate the feasibility of decreasing the drag forces of the flat plate by reducing the solidity ratio.

  20. Recommendations for European solar collector test methods (Liquid heating collectors)

    NASA Astrophysics Data System (ADS)

    Derrick, A.; Gillett, W. B.

    Standardized testing formats, equipment, conditions, and tests defined as part of the solar flat plate collector testing program performed by the Commission of the European Communities are detailed. The work is a product of efforts at 20 laboratories, and alternative methods have been characterized for tailoring tests to particular locations and climatic conditions. The testing methods are intended for collectors using a liquid as the heat transfer medium. Procedures have been defined for examining steady state and transient performance, heat loss, thermal capacity, pressure drop, and anemometry. Instrumentation types and accuracies have been defined, and a standardized format for presentation of results has been developed. The tests are tailored for determining the durability of the flat plate systems under simulated solar radiation conditions.

  1. Solar system employing ground level heliostats and solar collectors

    SciTech Connect

    Blake, F.A.; Northrup, L.L.

    1981-07-07

    This specification discloses an improvement in a solar system having one or more collectors for receiving and using radiant energy from the sun and at least one and preferably a plurality of respective reflector means for reflecting the radiant energy onto the collectors. The improvement is characterized by having towerless collectors and towerless reflectors that are disposed at ground level or substantially the same level, to eliminate the major expense of a collector tower, which is inefficient and nonfunctional in a solar system. Also disclosed is a complete system, or combination, for generating power employing solar energy and the improvement delineated above; as well as structural details of preferred arrangements and equipment.

  2. Performance of solar collector arrays and collector controllers in the National Solar Data Network

    NASA Astrophysics Data System (ADS)

    Logee, T. L.; Kendall, P. W.

    1984-07-01

    The accumulated National Solar Data Network (NSDN) data has been analyzed with regard to collector and collector control performance. The collector data is presented in the ASHRAE format as efficiency vs. operating points, (Tinlet - Tambient)/insolation. Collector controls were analyzed by determining the losses caused by control problems common to the NSDN solar systems. This study of collectors and collector controls has several objectives which are: (1) to compare actual and predicted collector performance; (2) to determine which generic types of components performed well and which performed poorly; (3) to determine why predicted performance was not achieved in the field; (4) to determine the types and causes of failures; (5) to determine the reliability weaknesses; and (6) to determine whether there are any component integration problems.

  3. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  4. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  5. Next Generation Solar Collectors for CSP

    SciTech Connect

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  6. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  7. Step tracking program for concentrator solar collectors

    NASA Astrophysics Data System (ADS)

    Ciobanu, D.; Jaliu, C.

    2016-08-01

    The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.

  8. Solar air heaters and their applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  9. Evaluation of solar collectors for heat pump applications. Final report

    SciTech Connect

    Skartvedt, Gary; Pedreyra, Donald; McMordle, Dr., Robert; Kidd, James; Anderson, Jerome; Jones, Richard

    1980-08-01

    The study was initiated to evaluate the potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single-family residences in eight US cities. The performance of each system was measured against that of a conventional air-to-air heat pump operating against the same loads. In addition to evaluation of solar collector options, the study included consideration of water tanks and buried pipe grids to provide thermal storage. As a supplement to the analytical tasks, the study included an experimental determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area. (MHR)

  10. Two-axis movable concentrating solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.

  11. The optimum flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Hassan, K.-E.

    The solar fluid heater problem is formulated as an unsteady, two-dimensional conduction problem. Simplified to a steady, one-dimensional problem provides a direct formulation far more flexible than the formulation hitherto in use, without any loss of generality. This flexibility is used to determine the geometry of optimum collectors, and to determine the performance of fan-shaped ones. An optimum collector would have a uniform effectiveness along the fluid path and, hence, effect a required fluid temperature rise with the least possible area. A fan-shaped collector of about the same geometrical proportions is shown to be nearly as effective as the corresponding optimum collector. The performance of either shape is determined for certain conditions. It shows that for this case a saving of some 6 to 13 percent could be obtained in comparison with the corresonding usual 'parallel-tube' design.

  12. A self-tractable solar collector

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M.; Ghorayeb, F.

    2006-06-01

    An analytical experimental investigation into the thermal performance of a tubeless hemispherical (a spherical cap) solar collector for use in heating and cooling purposes is presented. The receiver plate surface temperature was estimated at the prevailing steady-state conditions from the energy balance equation on the absorber plate. From the experimental analytical investigation, the present collector was found to be much more efficient than a flat-plate collector. Fluid outlet temperatures over 95°C could be provided on mid clear shining sunny days. Remembering the easiness of building a complex of such a collector, it follows that plenty of residential and industrial implementations, mostly in heating and cooling refrigeration absorption cycles, could be undertaken.

  13. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  14. Performance evaluation of a liquid solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes thermal performance and structural-load tests on commercial single glazed flat-plate solar collector with gross area of 63.5 sq ft that uses water as heat-transfer medium. Report documents test instrumentation and procedures and presents data as tables and graphs. Results are analyzed by standard data-reduction methods.

  15. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  16. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  17. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  18. Support for solar energy collectors

    DOEpatents

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  19. Comparative performance of twenty-three types of flat plate solar energy collectors

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    Report compares efficiencies of 23 solar collectors for four different purposes: operating a Rankine-cycle engine, heating or absorption air conditioning, heating hot water, and heating a swimming pool.

  20. Passive integral solar heat collector system

    SciTech Connect

    Feldman Jr., K. T.

    1985-04-30

    The present invention relates to an improved apparatus for collecting, absorbing, transferring, and storing solar heat energy, economically and passively, without pumps or electric power. The apparatus comprises a solar collector with a flat finned heat pipe absorber and an attached integral insulated storage tank with a double wall heat exchanger. The absorber, made of one or more slightly tilted gravity assisted heat pipes with flat absorber fins, absorbs and transfers solar heat by evaporation, vapor transport, and condensation to the slightly elevated heat storage tank. The one or more heat pipes turn on when the sun is shining and turn off automatically when the sun is not shining.

  1. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  2. Solar energy utilisation and evacuated tubular solar collectors

    NASA Astrophysics Data System (ADS)

    Parand, Foroutan

    Four types of evacuated tubular solar collectors have been constructed and their performance evaluated. The characteristics of the collectors are then compared and their design strengths assessed. One of the designs, a flat absorber with a single glass cover using glass to metal seals was found to have the best performance among the four designs which included a dewar vessel type collector, a heat pipe collector and a black liquid collector with an optical efficiency of 87.7 pct. and an overall heat loss coefficient of 12.3 Wm(exp -2)/C. The performance of the dewar vessel type and black liquid collectors was found to be comparable to the glass to metal seal collector. A detailed analysis of the optical and thermal processes in evacuated tubular collectors was made. On the basis of this analysis a computer simulation model using a finite difference technique has been developed to predict the performance of evacuated tubular collectors. The computer simulation results are then compared with the test results. For the majority of the tests the discrepancy between the simulation and the test results was within the error band of the test results (maximum 12 pct.). For the published test results the maximum discrepancy for operating temperature below 100 C was found to be 6 pct. The computer simulation model was compared with other published models and its advantages and disadvantages discussed. In some analytical and semi-analytical simulation models the energy absorbed by the glass cover and the heat loss from joints and supports has to be ignored. The present model has none of these deficiencies and more complex designs can be simulated. The developed computer simulation program might be used as an aid in the design of evacuated tubular collectors. Using the computer simulation, a parametric study of the three commmercially available collectors was made. The results are discussed and the areas of improvement are identified.

  3. Flat-plate solar-collector performance evaluation with a solar simulator as a basis for collector selection and performance prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    This paper reports the measured thermal efficiency and evaluation of 23 collectors which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, anti-reflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors are given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance is made possible by tests at different incident angles. The solar performance rankings are made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  4. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  5. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  6. Performance correlations of five solar collectors tested simultaneously outdoors

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    Collector thermal efficiency, and efficiency degradation with time were measured for 5 flat-plate solar collectors tested simultaneously in an outdoor solar collector test facility. Results indicate that by using collector performance parameters which account for diffuse insolation, outdoor data recorded on 'cloudy' days can be used as a measure of performance, as long as the ratio of direct to total insolation exceeds approximately 0.6. These outdoor results also show good agreement with thermal efficiency data obtained indoors in a solar simulator. Significant efficiency degradation occurred on only one of the five collectors exposed to outdoor conditions for a period of one to two years.

  7. Performance correlations of five solar collectors tested simultaneously outdoors

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    Collector thermal efficiency, and efficiency degradation with time were measured for 5 flat-plate solar collectors tested simultaneously in an outdoor solar collector test facility. Results indicate that by using collector performance parameters which account for diffuse isolation, outdoor data recorded on cloud days can be used as a measure of performance, as long as the ratio of direct to total insolation exceeds approximately 0.6. These outdoor results also show good agreement with thermal efficiency data obtained indoors in a solar simulator. Significant efficiency degradation occurred on only one of the five collectors exposed to outdoor conditions for a period of one to two years.

  8. Hybrid thermoelectric solar collector design and analysis

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  9. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  10. Glass heat pipe evacuated tube solar collector

    SciTech Connect

    McConnell, R.D.; Vansant, J.H.

    1984-10-02

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  11. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  12. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, S.W.

    1981-01-16

    An active solar collector having increased energy rejection during stagnation is disclosed. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintan lower temperatures when the collector is not in operation.

  13. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, Stanley W.

    1983-07-12

    The disclosure relates to an active solar collector having increased energy rejection during stagnation. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintain lower temperatures when the collector is not in operation.

  14. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  15. Thermal performance of honeywell double covered liquid solar collector

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test procedures and results obtained during an evaluation test program to determine the outdoor performance characteristics of the Honeywell liquid solar collector are presented. The program was based on the thermal evaluation of a Honeywell double covered liquid solar collection. Initial plans included the simultaneous testing of a single covered Honeywell collector. During the initial testing, the single covered collector failed due to leakage; thus, testing continued on the double covered collector only. To better define the operating characteristics of the collector, several additional data points were obtained beyond those requested.

  16. Building-integrated fluorescent solar collector

    SciTech Connect

    Neuroth, N.

    1987-02-24

    This patent describes a building wall wherein the building wall includes windows, window parapets and areas below the window parapets. The window parapets include overhanging lips defining slots with the areas beneath the parapets. Fluorescent solar collectors are received in the slots to form an exterior facing over the area beneath the parapets. A photoelectric cell means is arranged with the fluorescent panels and has leads thereon for conducting electric current therefrom, the photoelectric cell means being positioned within the slots so as to be protected thereby.

  17. Flat solar energy collector with low heat contact between absorber and edge of collector

    SciTech Connect

    Hussmann, E.

    1981-10-27

    The present invention relates to a flat, gas-tight solar energy collector having a novel absorber means consisting of an absorber plate and an edge connecting means attached thereto for connecting the absorber to the edge structure of the collector. No direct thermal contact exists between the edge of the absorber plate and the edge structure means. Thus, heat losses on the sides of the collector are kept to a minimum.

  18. Performance evaluation of the solar kinetics T-700 line concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A performance evaluation of the solar kinetics T-700 line concentrating solar collector is reported. Collector descriptions, summary, test conditions, test equipment, test requirements and procedures, and an analysis of the various tests performed are described.

  19. Weathering of a liquid-filled solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes procedures and results of tests for effects of weathering on flat-plate liquid solar collector. Thermal performance was measured before and after natural weathering for 15-1/2 months by using Marshall Space Flight solar simulator.

  20. Glycol/water evacuated-tube solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

  1. Design package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  2. Solar radiation on a catenary collector

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  3. Baseline performance of solar collectors for NASA Langley solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Johnson, S. M.

    1977-01-01

    The solar collector field contains seven collector designs. Before operation in the field, the experimental performances (thermal efficiencies) of the seven collector designs were measured in an indoor solar simulator. The resulting data provided a baseline for later comparison with actual field test data. The simulator test results are presented for the collectors as received, and after several weeks of outdoor exposure with no coolant (dry operation). Six of the seven collector designs tested showed substantial reductions in thermal efficiency after dry operation.

  4. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  5. Development of flat - plate solar plate collector - evaporator. Summary report

    SciTech Connect

    Abramzon, B.; Yaron, I.

    1981-11-01

    In the present study the thermal performance of a flat plate solar collector is analyzed theoretically for the case in which the working fluid may undergo a phase change within the tubes of the collector. In addition to the common domestic applications, such a collector - evaporator may be used as a generator of vapors for the production of mechanical or electrical energy, e.g. solar water pumps, solar power stations, etc., as well as for solar - powered absorption refrigeration machines, distillation installations, etc.

  6. On optimizing solar collectors orientation under daily nonrandom cloudiness conditions

    SciTech Connect

    Segal, M.; Pielke, R.A.; Ookouchi, Y.

    1988-11-01

    Seasonal daily nonrandom cloudiness is typical in many geographical locations. Optimization of flat-plate solar collectors orientation in such situations requires azimuth and tilt modifications from those when daily cloudiness is random. The present study evaluates the significance of optimizing solar radiation gains, while considerating an illustrative case of nonrandom afternoon-morning cloudiness. Results suggest that for fixed flat-plate collectors the related gain in solar energy is practically insignificant. For nonfixed collectors the solar energy gains can be improved on a monthly basis by up to --6 percent.

  7. High Performance Flat Plate Solar Thermal Collector Evaluation

    SciTech Connect

    Rockenbaugh, Caleb; Dean, Jesse; Lovullo, David; Lisell, Lars; Barker, Greg; Hanckock, Ed; Norton, Paul

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  8. Analysis of a solar collector field water flow network

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  9. Genesis Solar Wind Array Collector Cataloging Status

    NASA Technical Reports Server (NTRS)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  10. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  11. Increasing thermal efficiency of solar flat plate collectors

    NASA Astrophysics Data System (ADS)

    Pona, J.

    A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.

  12. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  13. Large-scale solar thermal collector concepts

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1975-01-01

    Thermal collector could be used ultimately to power steamplant to produce electricity. Collector would consist of two major subsystems: (1) series of segmented tracking mirrors with two axes of rotation and (2) absorber mounted on centrally located tower.

  14. Numerical Investigation of Nanofluid-based Solar Collectors

    NASA Astrophysics Data System (ADS)

    Karami, M.; Raisee, M.; Delfani, S.

    2014-08-01

    Solar thermal collectors are applicable in the water heating or space conditioning systems. Due to the low efficiency of the conventional collectors, some suggestions have been presented for improvement in the collector efficiency. Adding nanoparticles to the working fluid in direct absorption solar collector, which has been recently proposed, leads to improvement in the working fluid thermal and optical properties such as thermal conductivity and absorption coefficient. This results certainly in collector efficiency enhancement. In this paper, the radiative transfer and energy equations are numerically solved. Due to laminar and fully developed flow in the collector, the velocity profile is assumed to be parabolic. As can be observed from the results, outlet temperature of collector is lower than that obtained using uniform velocity profile. Furthermore, a suspension of carbon nanohorns in the water is used as the working fluid in the model and its effect on the collector efficiency is investigated. It was found that the presence of carbon nanohorns increases the collector efficiency by about 17% compared to a conventional flat-plate collector. In comparison with the mixture of water and aluminium nanoparticles, a quite similar efficiency is obtained using very lower concentration of carbon nanohorns in the water.

  15. Libbey-Owens-Ford solar collector static load test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test article is a flat plate solar collector that uses liquid as the heat transfer medium. The absorber plate is copper and has a double tempered glass cover. Test requirements and procedures are described and results are presented in a table. Results demonstrate that the collector performed satisfactorily.

  16. Third generation flat plate solar collector. Final report

    SciTech Connect

    Not Available

    1983-01-01

    The design of a flat plate solar collector that meets an allowable cost constraint is studied. The cost constraint is $5 to 6 per square foot. A medium-temperature collector prototype with a non-thin film absorber was constructed and tested. (BCS)

  17. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  18. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  19. Low-cost solar collector test and evaluation. Final report

    SciTech Connect

    Benjamin, C M

    1983-01-01

    Project was to test and evaluate a highly efficient low cost solar collector and to make this technology available to the average homeowner. The basic collector design was for use in mass production, so approximately forty collector panels were made for testing and to make it simple to be hand built. The collectors performed better than expected and written and visual material was prepared to make construction easier for a first time builder. Publicity was generated to make public aware of benefits with stories by Associated Press and in publications like Popular Science.

  20. Solar internal lighting using optical collectors and fibers

    NASA Astrophysics Data System (ADS)

    Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.

    2006-08-01

    A system exploiting solar energy, by means of optical collectors and fibres, has been applied for indoor illumination. The project has been called "The Sunflowers" for the property of solar collectors to track solar position during the day. Every "sunflower" contains several solar collectors, each of which is coupled to an optical fibre. The "Sunflower" is provided of mechanical systems and electric accessories for solar tracking. The light focused by the solar collector can be used in two possible ways: for internal illumination with direct solar light; otherwise it can be accumulated for lighting when the sun is not present. The first function is obtained coupling the optical collector to an optical fibre, which transports the solar light in selected points within the showcases. The second one consists in focusing solar light on a photovoltaic cell of the last generation type with high efficiency. In this configuration the photovoltaic cell converts the focused light into electric energy to be used for illumination in case of sun absence. A demonstrative installation has been realised applying this solar illumination system to museum lighting: a prototype has been tested in a prestigious museum in Florence.

  1. Yearly average performance of the principal solar collector types

    SciTech Connect

    Rabl, A.

    1981-01-01

    The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

  2. The transient thermal response of a tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1976-01-01

    A special analytical solution is provided for the timewise response of the circulating fluid temperatures when a sudden step change of the input solar radiation is imposed and remains constant thereafter. An example which demonstrates the transient temperatures at the exit section of a single collector with two different flow patterns is presented. This study is used to supplement some numerical solutions to provide a fairly complete coverage for this type of solar collector.

  3. Solar thermal collectors using planar reflector

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  4. Performance test procedures for thermal collectors - Solar simulators

    NASA Astrophysics Data System (ADS)

    Gillett, W. B.

    The design and use of solar simulators is reviewed in the light of the experience reported by participants in the collaborative collector testing programmes of Commission of the European Communities and the International Energy Agency. Experience with the Compact Source Iodide lamp at Cardiff is used to illustrate the need for correcting both outdoor and solar simulator test results to reference conditions of solar and thermal irradiance. It is suggested that further work is required on the development of procedures for predicting typical outdoor performance from solar simulator measurements where collectors contain new materials or complex geometries.

  5. Solar collector with improved thermal concentration

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.

  6. Theory of the geyser-pump solar collector. Final report

    SciTech Connect

    Haines, E.

    1985-01-01

    The geyser-pump solar collector is a self-controlling, self-pumping active collector having no moving or electronic parts, drawing its mechanical pump energy from boiling in the collector's risers. The only use of the geyser-pump principle reported in patents and the open literature is only for circulating the fluid in the collector plate. Computer simulations show that most design and algorithm parameters have only negligible impact on solar fraction, F. The only parameter which affects F is the length of the storage heat exchanger. Episodic cloud cover does not hamper the geyser-pump collector's ability to restart. Daylong simulations show that the energy cost of geyser-pumping is only about 3% of the absorbed insolation. The geyser-pump collector is found to be as efficient as an electrically pumped collector. Initial costs are estimated to be about the same for the geyser-pump and conventional collectors, but lifetime costs of the geyser-pump are substantially lower, perhaps only half, because of low maintenance.

  7. Improved mathematical models of flat-plate solar collectors

    SciTech Connect

    Siegler, M.

    1986-01-01

    This thesis examines various mathematical models of flat-plate solar collectors with the intent of analyzing their strengths and weaknesses and investigating various possible improvements. The purpose is to seek the simplest models that can provide sufficient accuracy for efficient control and design of the collector and for reliable estimation of system parameters. The first part of the thesis investigates the effects of the diffusivity of the collector fluid under steady-state operating conditions. It is shown that under zero flow conditions this diffusivity must be included in the model to accurately describe the rapid changes in the temperatures between adjacent components of the system. The second part of the thesis investigates the relationship between two well-known models for the temperature within the flat-plate solar collector. The simpler of the two models determines the temperature of the collector fluid alone and assumes the collector plate is at the same temperature as the fluid. The other model was separate state equations for the fluid and the collector. Finally, through a frequency analysis of these two different models for the flat-plate collector, it is shown how the thermal effects of the two-temperature model can be imitated by the one-temperature model by adding an artificial diffusion term into the one-temperature model.

  8. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  9. Quality and efficiency of solar collectors in Sweden

    NASA Astrophysics Data System (ADS)

    Wennerholm, H.

    Transparent or translucent insulation materials (TIM's) represent a new class of materials with a high potential for increasing the efficiency of solar thermal conversion systems. A large number of materials have been subjected to theoretical and experimental investigation. If materials that suppress heat losses are transparent to solar radiation, vacuum, certain gases, convection barriers, etc., then they can be regarded as TIM's. Exploratory field and laboratory studies of degraded FEP-film convection barriers in flat plate thermal solar collectors are described. The study related to collectors that had been operating in Sweden for periods of one year to ten years. Both physical, functional (thermal) and chemical aspects of degradation were considered. The report identifies the mistakes made so that they need not be repeated by the solar collector manufacturers in the future.

  10. Owens-Illinois liquid solar collector materials assessment

    NASA Technical Reports Server (NTRS)

    Nichols, R. L.

    1978-01-01

    From the beginning, it was noted that the baseline drawings for the liquid solar collector exhibited a distinct weakness concerning materials specification where elastomers, plastics, and foam insulation materials were utilized. A relatively small effort by a competent design organization would alleviate this deficiency. Based on results obtained from boilout and stagnation tests on the solar simulator, it was concluded that proof testing of the collector tubes prior to use helps to predict their performance for limited service life. Fracture mechanics data are desirable for predicting extended service life and establishing a minimum proof pressure level requirement. The temperature capability of this collector system was increased as the design matured and the coating efficiency improved. This higher temperature demands the use of higher temperature materials at critical locations in the collector.

  11. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  12. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  13. Modified Evacuated-Tube Collector Tested in Solar Simulator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    According to report, particular commercial evacuated-tube solar collector performs slightly more efficiently with larger manifold. Tests were performed with Marshall Space Flight Center solar simulator. Report describes test conditions and procedures, provides analysis of results, and presents tables and graphs of data, both measured and calculated.

  14. Analysis and performance of flat-plate solar collector arrays

    SciTech Connect

    Wang, X.A.; Wu, L.G. )

    1990-01-01

    A new discrete numerical model is proposed to calculate the flow and temperature distribution in solar collector arrays. The flow nonuniformity, the longitudinal heat conduction, and the buoyancy effect are all taken into account in the analysis. The numerical results of pressure and temperature distribution are found in agreement with the experimental results. It is found that the flow nonuniformity has detrimental effect on the thermal performance of collector array.

  15. NBS solar collector durability/reliability test program

    NASA Astrophysics Data System (ADS)

    Waksman, D.; Thomas, W. C.; Streed, E. R.

    1984-09-01

    Efforts in the development of reliability/durability tests for solar collectors and their materials have been hampered by the lack of real time conditions. Research undertaken at the National Bureau of Standards (NBS) to help generate the data required to develop methods for predicting the long term durability and reliability of flat plate solar collectors and their materials is discussed. Eight different types of flat plate solar collectors were exposed outdoors at four sites located in different climatic regions. Small scale cover and absorbed materials coupon specimens consisting of samples taken from a collector of each of the eight types used and a number of additional materials were exposed concurrently with the full size collectors. Periodic measurements were made of collector and materials performance as a function of outdoor exposure time. Indoor laboratory aging tests were conducted concurrently on specimens of the same materials to provide a basis for comparison with the outdoor exposure tests. The results obtained in this test program are presented.

  16. Ray-tracing software comparison for linear focusing solar collectors

    NASA Astrophysics Data System (ADS)

    Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice

    2016-05-01

    Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".

  17. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  18. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  19. Flat plate solar collector with a cantilevered mirror

    SciTech Connect

    Cohen, S.; Larson, D.C.

    1981-01-01

    The use of flat booster mirrors with flat plate collectors provides moderate solar flux concentration and enhanced performance especially when the mirrors are seasonally adjusted. Curved mirrors provide higher flux concentration and a practical system has been developed where the booster mirror is bent elastically. The system employs a single cantilever mirror which is located below a conventional flat plate collector. The mirror is clamped at the base of the collector panel and its free end is deflected upward; a smaller deflection is used in the fall and winter than in the spring and summer. The prototype system consists of a 0.9 by 2.5 m collector panel mounted on its side (horizontal fluid flow) and a 2.7 by 2.5 m elastic mirror. The mirror is made with aluminum sheet with an adherent aluminized acrylic film. The system has been designed for mounting on horizontal surfaces at latitudes of 10 to 50/sup 0/.

  20. Wind effects in solar fields with various collector designs

    NASA Astrophysics Data System (ADS)

    Paetzold, Joachim; Cochard, Steve; Fletcher, David F.; Vassallo, Anthony

    2016-05-01

    Parabolic trough power plants are often located in areas that are subjected to high wind speeds, as an open terrain without any obstructions is beneficial for the plant performance. The wind impacts both the structural requirements and the performance of the plant. The aerodynamic loads from the wind impose strong requirements on the support structure of the reflectors, and they also impact the tracking accuracy. On a thermal level the airflow around the glass envelope of the receiver tube cools its outer surface through forced convection, thereby contributing to the heat loss. Based on previous studies at the level of an individual row of collectors, this study analyses the wind effects in a full-scale solar field of different continuous and staggered trough designs. The airflow around several rows of parabolic trough collectors (PTC) is simulated at full scale in steady state simulations in an atmospheric boundary layer flow using the commercial computational fluid dynamics software ANSYSO® CFX 15.0. The effect of the wake of a collector row on the following collectors is analysed, and the aerodynamic loads are compared between the different geometries. The outermost collectors of a solar field experience the highest wind forces, as the rows in the interior of the solar field are protected from high wind speeds. While the aerodynamic forces in the interior of the solar field are almost independent of the collector shape, the deeper troughs (with large rim angles) tested in this study show a lower heat loss due to forced convection on the outer surface of the receiver tube than the shallower ones (with small rim angles) in most of the solar field.

  1. Thermal performance evaluation of the Calmac (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  2. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  3. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various

  4. Extra focal convective suppressing solar collector. Final technical progress report

    SciTech Connect

    1996-05-01

    This progress report describes work done on the Extra Focal Convective Suppressing Solar Collector. The topics of the report include sensor refinement for the tracking electronics, tracking controller refinement, system optics evaluation, absorber system material evaluation and performance, tracking hardware evaluation and refinement, and full scale prototype construction and testing.

  5. Testing of a solar collector with concentrating mirrors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Commerical flat-plate solar collector with concentrating mirrors has been tested for thermal performance, structured behavior under static load, and effects of long-term natural weathering. Report documents results of testing and concludes that absorptivity was degraded by weathering.

  6. Evaluation of an evacuated-tube liquid solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Indoor and outdoor thermal performances of collectors are compared in report. Tests conducted on indoor solar simulator with data from both diffuse and specular reflectors are presented graphically and in tables. Comparisons with previous data for prototype show effects of improved mainfold.

  7. Evacuated-tube solar collector--performance evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report gives thermal performance test procedures and results for commercially produced, water-filled, 8-tube collectors. Tests include efficiency, time constant for temperature drop after solar flux is cut, change in efficiency as function of sun angle, and test to see if tubes break when filled with hot water.

  8. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  9. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  10. Determining non-linear characteristics of a concentrating solar collector according to the experiment design

    NASA Astrophysics Data System (ADS)

    Nemś, M.; Kasperski, J.

    2016-09-01

    A linear concentrating solar air collector with internal multiple-fin array was built. The collector was designed as an air heater for the system of house heating with an all-year-round heat accumulation. In order to conduct transient type numerical simulations of the yearlong work cycle of the system, it was necessary to know the working characteristic of the solar collector. To determine the characteristics, some factors for experimental research were selected. The authors decided to conduct experimental research on the basis of fractional 3k factorial design for three factors. A set-up was built and then, a series of experiments were conducted according to the adopted experiment design. A working characteristic in the form of a quadratic polynomial was determined, and a diagram was prepared. The obtained results were then discussed. The obtained research method and the determined formula met the needs of further numerical modelling of the year-long work of the heating system containing the examined solar collector.

  11. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  12. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  13. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  14. Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells

    DOEpatents

    Carrie, Peter J.; Chen, Kingsley D. D.

    2000-10-24

    A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.

  15. A low cost high temperature sun tracking solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    The design and economic evaluation of a low cost high temperature two-axis, sun tracking solar energy collector is described. The collector design was specifically intended for solar energy use with the freedom of motion about its two control axes limited only to the amplitude required to track the sun. An examination of the performance criteria required in order to track the sun and perform the desired solar energy conversion was used as the starting point and guide to the design. This factor, along with its general configuration and structural aspect ratios, was the significant contributor to achieving low cost. The unique mechanical design allowed the control system to counter wide tolerances specified for the fabrication of the azimuth frame and to perform within a small tracking error.

  16. A low cost high temperature sun tracking solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    The design and economic evaluation of a low cost high temperature two axis sun tracking solar energy collector are described. The collector design is specifically intended for solar energy use with the freedom of motion about its two control axes being limited only to the amplitude required to track the sun. An examination of the performance criteria required in order to track the sun and perform the desired solar energy conversion is used as the starting point and guide to the design. This factor, along with its general configuration and structural aspect ratios, is the significant contributor to achieving low cost. The unique mechanical design allows the control system to counter wide tolerances that will be specified for the fabrication of the azimuth frame and perform within a small tracking error.

  17. Weathering performance of cover materials for flat plate solar collectors

    NASA Astrophysics Data System (ADS)

    Clark, E. J.; Roberts, W. E.

    1982-11-01

    Weathering studies were performed to obtain data on the performance and durability of cover plate materials for flat plate solar collectors used in solar heating and cooling systems. Ten materials were evaluated to assess their durability after natural weathering and artificial weathering with a xenon arc light. The materials were weathered for four years on small mini-collectors in Arizona, Florida, and Maryland after which the solar energy transmittance and the effect of dirt on the transmittance were measured. The tensile properties of selected film materials were also assessed after weathering. The effects of the natural weathering are compared for materials exposed as inner and outer cover plates for each weathering site, for the three weathering sites, and with materials artificially weathered with a xenon arc light.

  18. Low-cost evacuated-tube solar collector. Final report

    SciTech Connect

    Beecher, D. T.

    1981-02-10

    A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

  19. Transient response of a concentric evacuated tubular solar collector

    NASA Astrophysics Data System (ADS)

    Al-Khalil, Kamel M.; Jakubowski, Gerald S.; Springman, Richard A.

    The transient and the steady state performances of an evacuated coaxial tubular solar collector were investigated. A purely implicit central finite differencing numerical technique was used to determine the time-varying temperature distributions in the collector components as well as the fluid exit temperature. Experimental indoor transient tests were conducted in which step inputs of insolation were used. Close agreeement between the experimental and the theoretical results was obtained. The computer model was found to be useful to carry out a complete parametric study. The latter showed that the fluid flow rate had the largest effect on the performance of the collector tube. Lower flow rates resulted in lower efficiencies and longer response times.

  20. Survey of coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1975-01-01

    Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel.

  1. Solar Wind Elemental Abundances from GENESIS Collectors

    NASA Astrophysics Data System (ADS)

    Burnett, D. S.; Woolum, D. S.; Jurewicz, A. J. G.; McKeegan, K. D.; Guan, Y.

    2007-03-01

    GENESIS bulk solar wind analyses were made by SIMS on Si, Sandia diamond-like-C, and epitaxial Si on sapphire (SoS). Preliminary Fe, Mg, Ca, Cr and Na fluences are calculated. The eventual goal is to test for fractionation (or lack thereof) of solar-wind

  2. Performance testing of the Acurex solar-collector Model 3001-03

    SciTech Connect

    Dudley, V.E.; Workhoven, R.M.

    1982-03-01

    Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

  3. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  4. Thin polymer film collectors as a contribution to the solar industry

    SciTech Connect

    Wilhelm, W.G.

    1984-06-01

    Achievements made in research on thin polymer film solar flat-plate collectors using monocoque construction techniques are briefly discussed. The significance of these achievements for cost reduction of flat-plate collectors without compromising performance is briefly discussed.

  5. A reference heat source for solar collector thermal testing

    NASA Astrophysics Data System (ADS)

    Harrison, S. J.; Bernier, M. A.

    1984-12-01

    A direct-comparison reference heat source (RHS), used for testing liquid-based solar collectors, is described. A major advantage of the RHS is its capability to measure the product of mass flow and specific heat directly in the test loop. Calibration tests are performed on two reference heat sources over a range of flowrates and inlet temperatures normally encountered in flat-plate solar collector testing (10 C to 95 C). It is shown that at low flowrates (less than or equal to 0.008 kg/s), localized boiling may introduce errors if the heater power density is not reduced as well, whereas operation at flowrates greater than 0.05 kg/s reduces the temperature rise across the RHS, increasing temperature measurement uncertainty. To achieve satisfactory results with an RHS, a stable inlet temperature, good flowrate control, and regulation of the power supplied to the heater are required.

  6. Joint German-Argentine project: Comparative testing of solar flat plate collectors

    NASA Astrophysics Data System (ADS)

    Leiner, W.

    1986-01-01

    Six different water or air collectors were tested using ASHRAE Standards and BSE Guidelines. Results vary, owing to differences in wind speed and global radiation, especially for single-glazed collectors. In heating collectors, leakages between ambient air and heat-transferring air occur. The resulting errors of calculated efficiency may be greater than the relative change of mass flow from collector inlet to outlet by the leak. Modifications of standardized test procedures are suggested.

  7. The Solar Collector on Clementine Street.

    ERIC Educational Resources Information Center

    Stranix, Edward; Fleishman, Michael

    1980-01-01

    Listed are 12 energy activities, experiments, and projects which some eighth-grade students performed in their classroom and local community before they helped install a solar heating system on the roof of an old house during school time and on Saturdays. The building conversion project is described. (KC)

  8. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  9. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  10. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  11. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  12. Evaluation of flat-plate collector efficiency under controlled conditions in a solar simulator

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Simon, F. F.

    1976-01-01

    The measured thermal efficiencies of 35 collectors tested with a solar simulator, along with the correlation equations used to generalize the data, are presented in this report. The single correlation used is shown to apply to all the different types of collectors tested, including one with black paint and one cover, one with a selective surface coating and two covers, and an evacuated-tube collector. The test and correlation technique is also modified by using a shield so that collectors larger than the simulator test area can also be tested. This technique was verified experimentally for a shielded collector for which the collector shielded area was 31% of the solar simulator radiation area. A table lists all the collectors tested, the collector areas, and the experimental constants used to correlate the data for each collector.

  13. Evaluation of flat-plate collector efficiency under controlled conditions in a solar simulator

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Simon, F. F.

    1976-01-01

    The measured thermal efficiencies of 35 collectors tested with a solar simulator, along with the correlation equations used to generalize the data, are presented. The single correlation used is shown to apply to all the different types of collectors tested, including one with black paint and one cover, one with a selective surface coating and two covers, and an evacuated-tube collector. The test and correlation technique is also modified by using a shield so that collectors larger than the simulator test area can also be tested. This technique was verified experimentally for a shielded collector for which the collector shielded area was 31% of the solar simulator radiation area. A table lists all the collectors tested, the collector areas, and the experimental constants used to correlate the data for each collector.

  14. Key aspects of cost effective collector and solar field design

    NASA Astrophysics Data System (ADS)

    von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus

    2016-05-01

    A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.

  15. Evaluating the Performance and Economics of Transpired Solar Collectors for Commercial Applications: Preprint

    SciTech Connect

    Kozubal, E.; Deru, M.; Slayzak, S.; Norton, P.; Barker, G.; McClendon, J,

    2008-07-01

    Using transpired solar collectors to preheat ventilation air has recently become recognized as an economic alternative for integrating renewable energy into commercial buildings in heating climates. The collectors have relatively low installed costs and operate on simple principles. Theory and performance testing have shown that solar collection efficiency can exceed 70% of incident solar. However, implementation and current absorber designs have adversely affected the efficiency and associated economics from this initial analysis. The National Renewable Energy Laboratory has actively studied this technology and monitored performance at several installations. A calibrated model that uses typical meteorological weather data to determine absorber plate efficiency resulted from this work. With this model, an economic analysis across heating climates was done to show the effects of collector size, tilt, azimuth, and absorptivity. The analysis relates the internal rate of return of a system based on the cost of the installed absorber area. In general, colder and higher latitude climates return a higher rate of return because the heating season extends into months with good solar resource.

  16. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are presented. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating, and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  17. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are reported. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  18. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  19. Research and Development of a Low Cost Solar Collector

    SciTech Connect

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  20. Glass-heat-pipe evacuated-tube solar collector

    SciTech Connect

    McConnell, R.D.; VanSant, J.H.

    1981-08-06

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  1. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  2. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  3. Lightweight, low-cost solar energy collector

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Costen, Michael K. (Inventor)

    2006-01-01

    A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of identical tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two identical spaced anchorplates, each containing a plurality of holes which lie on the desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers which control the shape and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.

  4. Parabolic dish collectors - A solar option

    NASA Astrophysics Data System (ADS)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  5. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  6. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  7. Design optimization studies for nonimaging concentrating solar collector tubes

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1983-09-01

    The Integrated Stationary Evacuated Concentrator or ISEC solar collector panel which achieved the best high temperature performance ever measured with a stationary collector was examined. A development effort review and optimize the initial proof of concept design was completed. Changes in the optical design to improve the angular response function and increase the optical efficiency were determined. A recommended profile design with a concentration ratio of 1.55x and an acceptance angle of + - 35(0) was identified. Two alternative panel/module configurations are recommended based on the preferred double ended flow through design. Parasitic thermal and pumping losses show to be reducible to acceptable levels, and two passive approaches to the problem of ensuring stagnation survival are identified.

  8. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    ERIC Educational Resources Information Center

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  9. Comparison of Proportional and On/Off Solar Collector Loop Control Strategies Using a Dynamic Collector Model

    SciTech Connect

    Schiller, Steven R.; Warren, Mashuri L.; Auslander, David M.

    1980-11-01

    In this paper, common control strategies used to regulate the flow of liquid through flat-plate solar collectors are discussed and evaluated using a dynamic collector model. Performance of all strategies is compared using different set points, flow rates, insolation levels and patterns, and ambient temperature conditions. The unique characteristic of the dynamic collector model is that it includes the effect of collector capacitance. Short term temperature response and the energy-storage capability of collector capacitance are shown to play significant roles in comparing on/off and proportional controllers. Inclusion of these effects has produced considerably more realistic simulations than any generated by steady-state models. Finally, simulations indicate relative advantages and disadvantages of both types of controllers, conditions under which each performs better, and the importance of pump cycling and controller set points on total energy collection.

  10. Design and installation package for the Sunmat Flat Plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  11. An analysis of a flat-plate solar collector with internal boiling

    SciTech Connect

    Abramzon, B.; Borde, I.; Yaron, I.

    1983-11-01

    The extended mathematical model of a flat-plate solar collector-evaporator permits prediction of the effects of boiling of the working fluid in the collector tubes on the efficiency of the collector. The efficiency increases sharply and approaches the ideal on transition from single phase flow to the subcooled and saturated boiling regimes, regardless of the nature of the working fluid.

  12. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  13. Attaching solar collectors to a structural framework utilizing a flexible clip

    SciTech Connect

    Kruse, John S

    2014-03-25

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged by the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.

  14. Design and evaluation of a computer controlled solar collector simulator

    NASA Astrophysics Data System (ADS)

    Kotas, J. F.; Wood, B. D.

    1980-11-01

    A computer-controlled system has been developed to simulate the thermal processes of a flat-plate solar collector. The simulator is based on four water heaters of capacities of 1.5, 2.5, 5.0 and 5.0 kW providing a maximum design output of 14.0 kW which are controlled by a Nova 3 minicomputer, which also monitors temperatures in the fluid stream. Measurements have been obtained of the steady-state operating values and time constants of the individual heaters at different flow rates in order to utilize effectively their thermal outputs. Software was designed to control the heater system so the total thermal output closely approximates that of an actual heater array, utilizing steady-state or dynamic control modes. Simulation of the heat output of a previously tested collector has resulted in simulated values differing from actual output by a maximum of 3% under identical operating conditions, thus indicating that the simulator represents a viable alternative to the testing of a large field of collectors.

  15. Simulation of a solar evacuated collector with black fluid

    SciTech Connect

    Samano, A.; Fernandez, A.

    1983-06-01

    The use of black fluids in an evacuated tube solar collector for intermediate temperatures is analyzed, and an operation mathematical model is proposed. The model is unidimensional and the integral equation for the mass, momentum and energy conservation balances are used. An expression for the pressure drop in the tube is obtained by integrating the momentum equation. The energy conservation equation is integrated analytically for constant insolation and numerically for transient insolation. An adjustment in the global emissivity value for the black fluid was made to make the representation in the mathematical model, and a discussion between the calculated and the experimental results is made.

  16. Heat transfer characteristics of a linear solar collector.

    PubMed

    Seraphin, B O

    1973-02-01

    The heat transfer characteristics of a linear solar energy collector are calculated as functions of dimensions, spectral quality of the selective absorber surface, optical flux concentration of the optical configuration, and thermal parameters and flow rate of the heat transfer medium. Carnot efficiency, exit temperature, and an upper limit to the amount of heat extracted are determined for systems in which liquid sodium serves as the heat transfer medium. The performance is evaluated for selective absorber surfaces representing the state of the art as well as for surfaces requiring a more mature thin-film technology.

  17. A generalized correlation of experimental flat-plate collector performance. [solar collectors, performance tests, energy policy

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Miller, D. R.

    1975-01-01

    A generalized collector performance correlation was derived and shown by experimental verification to be of the proper form to account for the majority of the variable conditions encountered both in outdoor and in indoor collector tests. This correlation permits a determination of collector parameters which are essentially nonvarying under conditions which do vary randomly (outdoors) or conditions which vary in a controlled manner (indoors - simulator). It was shown that correlation of the experimental performance of collectors allows the following: (1) comparisons of different collector designs; (2) collector performance prediction under conditions that differ from the conditions of the test program; and (3) monitoring performance degradation effects.

  18. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  19. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  20. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  1. Development of flat-plate solar collectors for the heating and cooling of buildings: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An efficient, low cost, flat-plate solar collector was developed. Computer aided mathematical models of the heat process in the collector were used in defining absorber panel configuration; determining insulation thickness; and in selecting the number, spacing, and material of the covers. Prototypes were built and performance tested. Data from simulated operation of the collector are compared with predicted loads from a number of locations to determine the degree of solar utilization.

  2. Flat plate solar collector design and performance. Citations from the Engineering Index data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-09-01

    Citations on the design, thermal performance, and optimization of air and liquid type flat plate collectors are covered. Topic areas include heat loss and heat transfer, effect of orientation, corrosion protection, optical coatings, enhancement of performance through the use of planar reflectors, and the effect of honeycomb layers on collector performance. A few studies pertain to grooved, corrugated, or V-trough collectors. Methods of measuring the performance of flat plate collectors and computer optimization studies are included.

  3. Low-cost, high-performance solar flat-plate collectors for applications in northern latitudes

    SciTech Connect

    Wilhelm, W.G.

    1981-01-01

    Solar flat plate collector designs have been developed which incorporate high performance polymer film and laminate technology that have a projected manufacturing cost approaching $15/m/sup 2/ and potential thermal performance consistent with the best commercial solar flat plate collectors available today.

  4. Qualification test procedures and results for Honeywell solar collector subsystem, single-family residence

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The test procedures and results in qualifying the Honeywell single family residence solar collector subsystem are presented. Testing was done in the following areas: pressure, service loads, hail, solar degradation, pollutants, thermal degradation, and outgassing.

  5. Design and fabrication of air- and liquid-cooled photovoltaic/thermal collectors

    NASA Astrophysics Data System (ADS)

    Nowlan, M. J.

    1981-09-01

    A liquid type photovoltaic/thermal collector and a photovoltaic cell panel for an air type photovoltaic/thermal collector were constructed. The evelopment of residential photovoltaic/thermal collectors was pursued as an alternative to side by side photovoltaic module and thermal collector systems for applications with high heating loads and limited roof area. The units were designed to demonstrate the feasibility of high performance photovoltaic/thermal units.

  6. First-generation hybrid solar lighting collector system development and operating experience

    NASA Astrophysics Data System (ADS)

    Beshears, David; Earl, D. D.; Muhs, Jeff; Maxey, L. Curt; Capps, Gary; Stellern, Scott; Bayless, David; Switzer, Shyler

    2004-01-01

    Research is underway at Oak Ridge National Laboratory (ORNL) that could lead to entirely new, highly energy-efficient ways of lighting buildings using the power of sunlight. In addition to providing light, the hybrid lighting system will convert sunlight to electricity much more efficiently than conventional solar technologies using thermo-photovoltaic cells. In commercial buildings today, lighting consumes more electric energy than any other building end-use. It accounts for more than a third of all electricity consumed for commercial use in the United States. Typically, less than 25% of that energy actually produces light; the rest generates heat that increases the need for air-conditioning. ORNL is developing a system to reduce the energy required for lighting and the air-conditioning loads associated with it, while generating power for other uses. The system uses roof-mounted concentrators to collect and separate the visible and infrared portions of sunlight. The visible portion is distributed through large-diameter optical fibers to hybrid luminaires. (Hybrid luminaires are lighting fixtures that contain both electric lamps and fiber optics for direct sunlight distribution.) When sunlight is plentiful, the fiber optics in the luminaries, provide all or most of the light needed in an area. Unlike conventional electric lamps, they produce little heat. During times of little or no sunlight, sensor-controlled electric lamps will operate to maintain the desired illumination level. A second use of the hybrid lighting collector system is to provide sunlight for enhanced practical photosynthesis carbon dioxide mitigation. In this project the hybrid lighting collector system is being used to provide sunlight to a lab-scale photobioreactor for growing algae that is being used for CO2 mitigation. The end goal of this project is to provide a photobioreactor that can be used to mitigate CO2 in fossil fuel fire power plants. This paper will discuss the development and

  7. Piping Effects on the Heat Transfer Characteristics of an Evacuated Tubular Solar Collector

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Miyazawa, Nobuyuki

    Effects on the heat transfer characteristics of a vacuum type solar collector system by connecting piping sections were discussed experimentally and analytically. Experiments were carried out under various solar radiation intensities, water flow rates, inlet water temperatures, periods of the solar intensity fluctuations and the insulating specifications for the piping section. Simulations were also performed by the finite difference calculations which were proved to agree well with the experimental results. As the results, it was found that the slight water temperature decrease at the entrance of the collector, by connecting the piping section, did not affect the collector efficiency seriously, although the whole collector plate temperature was lowered. It was also found that the heat loss from the collector plate to the pipe was negligible, if the piping section was insulated properly, and the effects appeared only in the limited edge sections of the collector plate, lowering the plate temperature.

  8. Performance evaluation of two black nickel and two black chrome solar collectors

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.

  9. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  10. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  11. Solar swimming pool heating -- A copper collector after 26 years

    SciTech Connect

    Winter, F. de

    1999-07-01

    This paper is a progress report and a technology overview for a do-it-yourself solar swimming pool heater built by the author. Since March 1973 the heater has operated successfully day in day out for over 26 years, as a simple component in the pool circulation system, for three successive homeowners. The heater project was sponsored by the Copper Development Association (CDA), and used a copper flat plate collector design mounted on a small building, which provided both the roofing and the solar collection function. The heater was built in Pasadena, California, at 34.2 degrees north latitude and 118.2 degrees west longitude. A do-it-yourself manual was written so others could build such heaters, and about 100,000 copies of this manual have been distributed. The manual has helped many to get a better understanding of solar energy, has allowed many around the world to build similar swimming pool heater, and caused this author to get into the solar energy field.

  12. Summer performance results obtained from simultaneously testing ten solar collectors outdoors

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1977-01-01

    Ten solar collectors were simultaneously tested outdoors. Efficiency data were correlated using a method that separates solar variables (flux, incident angle) from the desired performance parameters (heat loss, absorbtance, transmittance) which are unique to a given collector design. Tests were conducted on both clear and moderately cloudy days. Correlating data in the above manner, a 2-glass, black paint collector exhibited a decrease in efficiency of 5 percentage points relative to the baseline data for an exposure time of 2 years, 4 months. Condensation on the collector glazing was thought to be a contributing factor in this efficiency change.

  13. Optimization of Dish Solar Collectors with and without Secondary Concentrators

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.

  14. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  15. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, L.M.

    1984-01-09

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  16. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  17. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  18. Focusing solar collector and method for manufacturing same

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the two sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.

  19. Focusing solar collector and method for manufacturing same

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.

  20. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  1. Development of polymer film solar collectors: A status report

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. G.; Andrews, J. W.

    1982-08-01

    Solar energy collector panels using polymer film and laminate technology were developed which demonstrate low cost and high thermal performance for residential and commercial applications. This device uses common water in the absorber/heat exchanger which is constructed with polymer film adhesively laminated to aluminum foil as the outer surfaces. Stressed polymer films are also used for the outer window and back surface of the panel forming a high strength structural composite. Rigid polymer foam complements the design by contributing insulation and structural definition. This design resulted in very low weight (3.5 kg/m(2)), potentially very low manufacturing cost (aprox. $11/m(2)), and high thermal performance. The development of polymer materials for this technology will be a key to early commercial success.

  2. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  3. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  4. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  5. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator.

    PubMed

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-12-04

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid's temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  6. Uncertainty in determining thermal performance of liquid-heating flat-plate solar collectors

    NASA Astrophysics Data System (ADS)

    Streed, E. R.; Waksman, D.

    1981-05-01

    Thermal performance measurements of eight types of liquid-heating flat-plate solar collectors were conducted with two to four collectors of each type at four outdoor test sites. Tests were performed in accordance with the procedure prescribed by ASHRAE Standard 93-77. Statistical analysis of data sets for each collector type within test sites and between test sites was done using ASTM recommended methods to evaluate test method measurement uncertainty.

  7. Methods of testing to determine the thermal performance of solar collectors

    NASA Astrophysics Data System (ADS)

    This Standard has been prepared by a committee drawn primarily from the membership of ASHRAE. The Committee's objective was to formulate a test procedure whereby solar energy collectors can be tested both indoors and outdoors, to rate the collectors in accordance with their thermal performance, and to determine their time constant and the variation of their efficiency with changes in the angle of incidence between the Sun's direct rays and the normal to the collector aperture.

  8. Optimization of Thin-Film Transparent Plastic Honeycomb Covered Flat-Plate Solar Collectors. Phase 2.

    DTIC Science & Technology

    2007-11-02

    the former preferred for high-temperature collectors since it is opaque in the longer wavelength region and hence improves the efficiency by reducing re...different temperature regions . The analyses show that collectors equipped with Lexan honeycomb are more cost ef- fective than comparable nonhoneycomb...Contract E(04-3)- 1081. " REFERENCES 1. Francia , G., "A New Collector of Solar Energy -- Theory and Experimental Verification -- Calculation of the

  9. Solar collector performance evaluation with the NASA-Lewis solar simulator-results for an all-glass-evacuated-tubular selectively-coated collector with a diffuse reflector

    NASA Technical Reports Server (NTRS)

    Simon, F.

    1975-01-01

    A solar collector was tested in a solar simulator for inlet temperatures of temperatures of 70 to 200 F, flux levels of 230 and rate of 7 lb/(hr)(sq. ft), and incident angles of 0 deg, 33 deg, and 52 deg. Test results plotted in a form suggested by analysis indicate a very low heat loss coefficient. The collector shows excellent performance on an all-day performance basis, and also for conditions corresponding to temperatures required in solar Rankine systems and/or for low flux level radiation.

  10. Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector

    NASA Astrophysics Data System (ADS)

    Schlutter, D. J.; Pepin, R. O.

    2005-12-01

    The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.

  11. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  12. Thermal performance evaluation of the Suncatcher SH-11 (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures used and the results obtained during the evaluation test program on the Solar Unlimited, Inc., Suncatcher SH-11 (liquid) solar collector are presented. The flat-plate collector case assembly is made of .08 inch aluminum 3003 H14 riveted with fiberglass board insulation. The absorber consists of collared aluminum fins mechanically bonded to 3/8 inch copper tubing and coated with 3M Nextel black. Water is used as the working fluid. The glazing is made of a single glass, 1/8 inch water white, tempered and antireflective. The collector weight is 85 pounds with overall external dimensions of about 35.4 in x 82.0 in x 4.0 in. Thermal performance data on the Solar Unlimited Suncatcher SH-11 solar collector under simulated conditions were conducted using the MSFC Solar Simulator.

  13. OFFSET - RAY TRACING OPTICAL ANALYSIS OF OFFSET SOLAR COLLECTOR FOR SPACE STATION SOLAR DYNAMIC POWER SYSTEM

    NASA Technical Reports Server (NTRS)

    Jefferies, K.

    1994-01-01

    OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at

  14. Flat-plate solar-collector performance data base and user's manual

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, D. L.; Kolar, W. A.

    1983-07-01

    The reader is provided with a thorough understanding on the type of collector thermal performance information which is required in active system design and analysis. Thermal performance test data on 109 commercially available solar collectors which were evaluated in a single, uniform test program, the Interim Solar Collector Test (ISCT) Program are given. In addition to recounting the ISCT program and its results, the an introduction is given on the engineering and physics of a flat-plate solar collector operation. A step-by-step analysis of heat gains and losses is provided to help the reader understand both the source and applicability of the parameters used to describe collector thermal performance. A brief description of the engineering basis for the ASHRAE Standard 93-77 test procedure and the method are included. To demonstrate the sensitivity to variations of collector performance parameters of the annual output of representative solar heating systems, three sets of F-Chart (4.0) system performance predictions are given. Finally, a sensitivity analysis study is presented which considers the heat loss and optical gain parameters of flat-plate collectors, in terms of how they affect the overall solar heating system solar fraction.

  15. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    NASA Astrophysics Data System (ADS)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  16. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  17. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  18. Improvement of flat plate collectors for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Boeck, H.; Hallermayer, R.; Schoelkopf, W.; Sizman, R.

    1984-03-01

    Selective absorption for thermal conversion of radiative energy was investigated. Improvement and operation of various measuring devices for absorption and emission are presented. Selective coatings were produced by vapor deposition and galvanic treatment. Calculations of the transmittance of turbular collector fields are presented. Operational Characteristics of Collector were examined. A collector test field with simultaneous recording of data from 24 collectors or uncovered absorbers was built and connected to a high performance microprocessor system. The transient behavior of collectors by variation of the irradiation and the collector inlet temperature were investigated. A mechanism for stratification of hot water of fluctuating inlet temperature in a storage tank was studied. The operating conditions of a heat pump installed in the collector test plant are investigated. A large domestic hot water system is equipped with temperature sensors and flowmeters for computer recording.

  19. A high absorbance material for solar collectors' applications

    NASA Astrophysics Data System (ADS)

    Oliva, A. I.; Maldonado, R. D.; Díaz, E. A.; Montalvo, A. I.

    2013-06-01

    In this work, we proposed a low cost material to be used as an excellent absorber for solar collectors, to increase its thermal efficiency by the high capacity to absorb solar radiation. The material, known as "smoke black" (soot) can be obtained by the incomplete combustion of organic materials, such as the oxygen-acetylene, paraffin, or candles. A comparative analysis between the optical properties (reflectance, absorbance, and emissivity) measured on three covered copper surfaces (without paint, with a commercial matte black paint, and with smoke black) shows amazing optical results for the smoke black. Reflectance values of the smoke black applied over copper surfaces improves 56 times the values obtained from commercial black paints. High values of emissivity (E=0.9988) were measured on the surface covered with smoke black by spectrophotometry in the UV-VIS range, which represents about 7% of increment as compared with the value obtained for commercial black paints (E=0.938). The proposed high absorbance material can be easily applied on any kind of surfaces at low cost.

  20. Carbon Nanotube Charge Collectors in Doped Hybrid Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Olds, Zane; Haroldson, Ross; Mielczarek, Kamil; Zakhidov, Anvar

    2015-03-01

    Hybrid organo-metallic solar cells based on perovskite crystals have had steadily improved power conversion efficiencies over the past two years, and within this period have achieved efficiencies over 19%. We show that additions of Metal-Halide dopants, such as Cobalt (II) Iodide or Indium and Bismuth materials, can cause substitutional doping at the Lead atom. This may result in structural distortions (as in isovalent Co-doping) within the lattice causing change in the spatial distribution of charge carriers. We show that Co-doping results in an increased open circuit voltage upon light soaking due to possible higher charge accumulation. We also have investigated effects of p-doping the hole transport layer. We also incorporate composite sheets of MW carbon nanotubes and silver nanowires as charge collectors. These sheets provide a transparent and flexible electrode with lower sheet resistance due to integration of Ag nanowires. This has an effect on the work function of the sheet, making it more versatile as an electrode for use in a variety of device structures. This allows us a semi-transparent perovskite device, where incident light can be absorbed from either side of the device. This is beneficial towards achieving multi-junction perovskite solar cells. Undergraduate Research Assistant

  1. Low-cost evacuated-tube solar collector appendices. Final report

    SciTech Connect

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  2. Thermal performance evaluation of the Solargenics solar collector at outdoor conditions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

  3. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    PubMed Central

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  4. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  5. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid

    NASA Astrophysics Data System (ADS)

    Faizal, M.; Saidur, R.; Mekhilef, S.

    2013-06-01

    Flat-plate solar collector is the most popular type of collector for hot water system to replace gas or electric heater. Solar thermal energy source is clean and infinite to replace fossil fuel source that is declining and harmful to the environment. However, current solar technology is still expensive, low in efficiency and takes up a lot of space. One effective way to increase the efficiency is by applying high conductivity fluid as nanofluid. This paper analyzes the potential of size reduction of solar collector when MWCNT nanofluid is used as absorbing medium. The analysis is based on different mass flow rate, nanoparticles mass fraction, and presence of surfactant in the fluid. For the same output temperature, it can be observed that the collector's size can be reduced up to 37% of its original size when applying MWCNT nanofluid as the working fluid and thus can reduce the overall cost of the system.

  6. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  7. Results of thermal performance evaluation of the Owens-Illinois sunpack liquid solar collector at indoor conditions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Test procedures and results of the thermal performance of a liquid, evacuated tube, solar collector under simulated conditions are presented. The collector tested was a module used on the early demonstration projects.

  8. Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

  9. Analysis of heat-pipe absorbers in evacuated-tube solar collectors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.

    1986-02-01

    Heat transfer in evacuated-tube solar collectors with heat-pipe absorbers is compared with that for similar collectors with flow-through absorbers. In systems that produce hot water or other heated fluids, the heat-pipe absorber suffers a heat transfer penalty compared with the flow-through absorber, but in many cases the penalty can be minimized by proper design at the heat-pipe condenser and system manifold. The heat transfer penalty decreases with decreasing collector heat loss coefficient, suggesting that evacuated tubes with optical concentration are more appropriate for use with heat pipes than evacuated or nonevacuated flat-plate collectors. When the solar collector is used to drive an absorption chiller, the heat-pipe absorber has better heat transfer characteristics than the flow-through absorbers.

  10. Fixed or tracking solar collectors? Helping the decision process with the Solar Resource Enhancement Factor

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.

    2008-08-01

    The Solar Resource Enhancement Factor (SREF) method is proposed here to help solar system designers optimize their installations and decrease their risk. The method is based on solar radiation data from 239 sites in the United States to evaluate the variance in collected irradiation when using flat-plate and concentrating solar collectors (thermal or PV) mounted on fixed or tracking structures of various geometries. SREF can be predicted from readily available solar resource indicators and latitude for winter, summer or annual usage. An estimate of the year-to-year variability of the annual collected energy is also provided. The method should be accurate enough for use in most areas of the world.

  11. Indoor test for thermal performance evaluation of Sunworks (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    Test procedures used and test results obtained from an evaluation test program conducted on a single covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using water as the heat transfer medium. The absorber plate was copper with copper tubes bonded by soft solder. The plate was coated with Enthone selective black with an absorptivity factor of .87 approximately .92 and an emissivity factor of .10 approximately .20. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  12. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  13. Analytical predictions of liquid and air photovoltaic/thermal, flat-plate collector performance

    SciTech Connect

    Raghuraman, P.

    1981-11-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate, photovoltaic/thermal (PV/T) collectors. The results of the analyses are compared with test measurements, and therefrom design recommendations are made to maximize the total energy extracted from the collectors. 16 refs.

  14. A didactic experiment and model of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    Agliolo Gallitto, Aurelio; Fiordilino, Emilio

    2011-05-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should be included in school programmes to give students the opportunity to gain experience with solar energy and increase their awareness of the benefits that can be obtained from this remarkable and renewable energy source.

  15. Experiments and simulations on a thermosyphon solar collector with integrated storage

    NASA Astrophysics Data System (ADS)

    Toninelli, P.; Mariani, A.; Del, D., Col

    2015-11-01

    This paper deals with the thermal behaviour of a new type of flat solar collector that integrates the fluid storage tank. Often the main limitation of the solar thermosyphon installations is the prohibition to adopt external storage tanks due to their impact, especially for historical centres of particular architectural significance. To avoid this issue, a new system, that includes the collector and the storage, has been developed. This new apparatus works as a thermosyphon: it is possible to take advantage of the natural convection to avoid using a pump. Experimental tests have been conducted in such a collector with and without the absorbing plate. Furthermore, CFD simulations are reported to analyze in detail the dynamic thermal performance of the innovative solar collector and a good-agreement with the experimental tests has been found. Finally, both in numerical simulations and in experimental data the thermosyphon effect has been verified, obtaining the desired water temperature for domestic applications.

  16. Thermal performance of MSFC hot air collectors under natural and simulated conditions

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The procedures used and the results obtained from an evaluation test program conducted to determine the thermal performance and structural characteristics of selected MSFC--designed hot air collectors under both real and simulated environmental conditions are described. Five collectors were tested in the three phased program. A series of outdoor tests were conducted to determine stagnation temperatures on a typical bright day and to determine each collector's ability to withstand these temperatures. Two of the collectors experienced structural deformation sufficient to eliminate them from the remainder of the test program. A series of outdoor tests to evaluate the thermal performance of collector S/N 10 under certain test conditions were performed followed by a series of indoor tests to evaluate the thermal performance of the collector under closely controlled simulated conditions.

  17. Indoor test for thermal performance evaluation of Lenox-Honeywell solar collector. [conducted using Marshall Space Flight Center Solar Simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  18. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  19. Incidence angle modifiers in cylindrical solar collector design. Final report, June 1996--May 1997

    SciTech Connect

    Ryan, J.P.

    1997-05-01

    This thesis presents an analysis of the thermal performance of cylindrical solar collectors. A major contributor to performance is optics, the principle focus of this work. A tool used to compute the incidence angle modifiers (IAM`s) for cylindrical solar collectors is presented. The Monte Carlo Method is employed in a Fortran 90 computer code to compute the hemispheric IAM`s of cylindrical solar collectors. Using concentric cylinders, the tubes are modeled with and without back plane reflectors of varying size. The computed IAM`s are verified both analytically and experimentally. Outdoor experiments on an array of cylindrical tubes with various back planes and two different tube spacings are described. Agreement with TRNSYS runs in daily energy gain is excellent. Over the 38 data sets, taken on different days, a maximum error of 11.2% is observed, with an average error of 3%. Heat loss tests, used to calculate an overall heat loss coefficient for the collector, are also described. A parametric variation study is used to illustrate the effect of varying many of the collector parameters. This study provides insight into the significant design parameters for cylindrical solar collectors. This insight is used to analyze the effect of these design parameters on the annual energy delivered by the collector. In addition, a simple cost analysis illustrates the benefits of varying the design parameters. The use of this new program and a detailed Life Cycle Cost analysis are the tools needed for optimizing the design of a cylindrical solar collector. 27 figs., 9 tabs.

  20. Long-term weathering effects on the thermal performance of the solargenics (liquid) solar collector at outdoor conditions. [Marshall Space Flight Center Solar test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures and the results obtained during the evaluation of a single-covered liquid solar collector are presented. The tests were performed under outdoor natural conditions. The collector was under stagnation conditions for a total of approximately ten months. The solar collector is a liquid, single-glazed, flat plate collector, and is about 240 inches long, and 3.8 inches in depth.

  1. Indoor test for the thermal performance evaluation of the DEC 8A large manifold sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Sunmaster DEC 8A Large Manifold solar collector using simulated conditions was evaluated. The collector provided 17.17 square feet of gross collector area. Test conditions, test requirements, an analysis of results, and tables of test data are reported.

  2. Outdoor thermal efficiency evaluation of the Ying solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the test results obtained during an evaluation test program to obtain thermal efficiency performance data are presented. The flat plate collector used water/prestone antifreeze solution as the working fluid.

  3. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  4. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1977-02-15

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  5. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  6. Development of mass-producible line-focus tracking concentrating solar collectors. Category 2: Control systems

    NASA Astrophysics Data System (ADS)

    Hickman, T. E.

    1984-08-01

    The system design criteria and concept of a mass producible modular electronic control system for solar industrial process heating installations are discussed. The control system consists of: the master controller; the weather tower, including a solar tracking angle reference; and overtemperature switch, group control box, tracker/controller, and drive motor for each group of single axis tracking parabolic trough solar collectors. System automatic operation is outlined for unattended installations. The production approach and cost estimates, both based on a production rate of 5 million ft(2) of collector aperature per year, are discussed here. The potential for further development of the system is also presented.

  7. The rise of non-imaging optics for rooftop solar collectors

    NASA Astrophysics Data System (ADS)

    Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom

    2016-09-01

    In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.

  8. Indoor test for thermal performance evaluation of seven Elcam fin-tube solar collector configurations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on seven Elcam fin-tube solar collector configurations under simulated conditions are described. These tests were made using the Marshall Space Flight Center solar facilities. The Elcam fin-tube (liquid) solar collectors each consist of an absorber plate 5.9 inches wide by 83 inches long and a type M copper tube of 0.569 inch nominal inside diameter. No cover plate was used with any of the specimens. The uniqueness of each of the seven configurations is described, and tests were performed on each separate configuration.

  9. Long term weathering effects on the thermal performance of the sunworks (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program of the Sunworks single-covered liquid solar collector are presented. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The sunworks collector is a flat-plate solar collector. The absorber plate is copper with copper tubes bonded by soft solder, and is coated with Enthon selective black with an absorptivity factor of .87 similar to .92 and an emissivity factor of .10 similar to .20. It has a single glass cover of 3/16 inches tempered glass and weighs about 115 pounds. The overall dimensions of the collector are 36 x 84 x 4 inches.

  10. Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices. NBS Technical Note 899.

    ERIC Educational Resources Information Center

    Hill, James E.; And Others

    A study has been made at the National Bureau of Standards of the different techniques that are or could be used for testing solar collectors and thermal storage devices that are used in solar heating and cooling systems. This report reviews the various testing methods and outlines a recommended test procedure, including apparatus and…

  11. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  12. Evaluation of the chromium oxide arc spraying treatment on solar energy collectors

    NASA Astrophysics Data System (ADS)

    Fernandezarroyo, Gloria; Gonzalezgarcia-Conde, Antonio; Moralespoyato, Francisco; Arrerajaraiz, Jose Maria; Blancotemprano, Cristina; Camonalvarez, Francisco

    Accelerated aging tests were performed on steel specimens coated with plasma gun Cr2O3 arc sprays. The chromium oxide coating is attractive due to its radiation absorptance characteristic, especially for solar thermal energy absorption applications. The use of plasma blowpipes gives low porosity coatings. Collector efficiency curves were determined and compared to the curves of conventional black paint collectors. The efficiency is close to conventional painting. The excellent behavior at high temperatures makes this treatment applicable to concentrated radiation absorbers.

  13. A two-dimensional thermal analysis of a new high-performance tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Yung, C. S.

    1979-01-01

    The first of two articles are presented which describe and analyze the thermal performance of a vacuum tube solar collector. The assumptions and mathematical modeling are presented. The problem is reduced to the formulation of two simultaneous linear differential equations characterizing the collector thermal behavior. After applying the boundary conditions, a general solution is obtained which is found similar to the general Hottel, Whillier and Bliss form but with a complex flow factor.

  14. Experimental Study of the Thermal Performance Parameters of a Liquid-heating Flat Plate Solar Collector.

    DTIC Science & Technology

    1980-09-01

    a key ingredient to any industrialized society. Whether it be from petroleum, natural gas, wood , nuclear, or solar, energy com- mands ever increasing...Tubes Insulation Figure 1 Basic Components of a Liquid Flat Plate Collector emittance in the long wavelength range) as well as a cover system which...collector shown in Figure 1 are the absorber plate, covers, insulation , tubes, and frame. Each component has a special purpose. The transparent covers

  15. An analytical investigation of the performance of solar collectors as nighttime heat radiators in airconditioning cycles

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.

  16. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  17. Midtemperature solar systems test facility predictions for thermal performance based on test data: solar kinetics T-600 solar collector with FEK 244 reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-04-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics T-600 solar line-focusing parabolic trough collector are presented for three output temperatures at five cities in the US. (WHK)

  18. Indoor test for thermal performance evaluation of Libbey-Owens-Ford solar collector. [using a solar simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.

  19. Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors

    SciTech Connect

    Harrison, T.D.

    1980-11-01

    The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

  20. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    SciTech Connect

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  1. Performance study of unglazed cylindrical solar collector for adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Mahesh, A.; Kaushik, S. C.; Kumaraguru, A. K.

    2013-12-01

    In the present communication, the unglazed cylindrical solar adsorber module is suggested for refrigeration and theoretical models for the heat and mass transfer in the cylindrical adsorber with heat balance equations in the collector components have been developed. It has been found that, both the SCP and COPsolar raises with increasing the evaporation temperature and drop off with the increase of the condensation temperature. The COPsolar increased from 0.15 to 0.52 with the increase of the total solar energy absorbed by the collector while the COPcycle varied in the range of 0.57-0.73. The efficiency of unglazed solar collector varied from 36 to 44 %. The cost of current unglazed adsorption refrigeration system is compared with the glazed system, and it is 33 to 50 % less than the cost of glazed system.

  2. Towards standardization of in-site parabolic trough collector testing in solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Sallaberry, Fabienne; Valenzuela, Loreto; de Jalón, Alberto García; Leon, Javier; Bernad, Ignacio David

    2016-05-01

    This paper presents a summary of the testing procedure and a validation of the methodology of parabolic trough collector in solar thermal power plants. The applied testing methodology is the one proposed within the Spanish standardization sub-committee AEN/CTN 206/SC117 working group WG2 related to the components for solar thermal power plants. This methodology is also proposed within the international committee IEC TC 117 (Standard draft IEC 62862-3-2 Ed. 1.0). This study is done at Plataforma Solar de Almería (PSA) in Almeria within the European project STAGE-STE. This paper presents the results of the optical and thermal efficiency of a large-size parabolic trough collector. The obtained values are similar to the previous analysis on this collector by PSA. The results of the tracking system have a good accuracy compared to the acceptance angle of the concentrator.

  3. Thermal performance evaluation of Solar Energy Products Company (SEPCO) 'Soloron' collector tested outdoors

    NASA Technical Reports Server (NTRS)

    Chiou, J., Sr.

    1977-01-01

    The test article, Model EF-212, Serial Nr. 002, is a single glazed collector with a nonselective absorber plate, using flowing air as the heat transfer medium. The absorber plate and box frame are aluminum and the insulation is one inch isocyanurate foam board with thermal conductivity of 0.11 (BTU/sq ft Hr0/ft.) The tests included the following. (1) time constant test, (2) collector efficiency test, (3) collector stagnation test, (4) incident angle modifier test, (5) load test, (6) weathering test, and (7) absorber plate optical properties test. The results of these tests are tabulated, graphed, or otherwise recorded.

  4. Revisiting the BCS, a measurement system for characterizing the optics of solar collectors

    NASA Astrophysics Data System (ADS)

    Strachan, J. W.

    The Beam Characterization System is being employed at the Sandia's National Solar Thermal Test Facility to characterize the optical performance of heliostats, point-focus solar collectors, and their optical sub-elements as part of the on-going task to develop solar thermal technologies. With this measurement system, images of concentrated solar flux are acquired using digital imaging and processed to obtain such measures of the collector's optical performance as beam power, flux distribution, and beam diameter. Key system elements are a diffusely reflective target for imaging collector beams, meteorological instrumentation including a flux gauge to measure flux at one point in the beam, and a calibration technique to establish a pixel-intensity to flux-density conversion factor for the image. The system is employed in a variety of collector tests such as beam quality, tracking error, and wind effects. The paper describes the Beam Characterization System and its components and presents, for illustration, sample test results. An analysis of the Beam Characterization System's sources of measurement error is presented. Lastly, measurement techniques that employ the BCS to align heliostats and to measure or estimate collector surface slope errors are described.

  5. Thermal performance evaluation of the Semco (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  6. Porous absorber for solar air heaters

    SciTech Connect

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  7. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  8. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  9. Impurity characterization of solar wind collectors for the genesis discovery mission by resonance ionization mass spectrometry.

    SciTech Connect

    Calaway, W. F.

    1999-02-01

    NASA's Genesis Discovery Mission is designed to collect solar matter and return it to earth for analysis. The mission consists of launching a spacecraft that carries high purity collector materials, inserting the spacecraft into a halo orbit about the L1 sun-earth libration point, exposing the collectors to the solar wind for two years, and then returning the collectors to earth. The collectors will then be made available for analysis by various methods to determine the elemental and isotopic abundance of the solar wind. In preparation for this mission, potential collector materials are being characterized to determine baseline impurity levels and to assess detection limits for various analysis techniques. As part of the effort, potential solar wind collector materials have been analyzed using resonance ionization mass spectrometry (RIMS). RIMS is a particularly sensitivity variation of secondary neutral mass spectrometry that employs resonantly enhanced multiphoton ionization (REMPI) to selectively postionize an element of interest, and thus discriminates between low levels of that element and the bulk material. The high sensitivity and selectivity of RIMS allow detection of very low concentrations while consuming only small amounts of sample. Thus, RIMS is well suited for detection of many heavy elements in the solar wind, since metals heavier than Fe are expected to range in concentrations from 1 ppm to 0.2 ppt. In addition, RIMS will be able to determine concentration profiles as a function of depth for these implanted solar wind elements effectively separating them from terrestrial contaminants. RIMS analyses to determine Ti concentrations in Si and Ge samples have been measured. Results indicate that the detection limit for RIMS analysis of Ti is below 100 ppt for 10{sup 6} averages. Background analyses of the mass spectra indicate that detection limits for heavier elements will be similar. Furthermore, detection limits near 1 ppt are possible with higher

  10. Computer-aided analysis of thermal images of solar cells and solar PV/T collectors

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Rao, K. H. S.; Tscharner, R.

    Infrared thermography (IRT) was used to measure IR emissivities of various types of solar cells and to analyze temperature distributions of solar cell arrays mounted in photovoltaic (PV) panels and hybrid photovoltaic/thermal (PV/T) collectors. In the first case, IR images of samples of mono-crystalline and poly-crystalline cells at fixed temperature were recorded, and emissivity values ranging from 0.21 to 0.58 were found. In the second case, a commercial PV panel was operated in reversed bias mode, thus heating up the individual cells. A 'chessboard' pattern in the temperature distribution detected by the IRT imaging system made it possible to visualize differences in cell performance without needing access to the cells themselves. Finally, a 'hot spot' was produced by shadowing one of the cells. Within a few minutes the cell temperature rose from the normal panel temperature of 45 C to 56 C due to reversed bias heating.

  11. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1983-01-01

    In parabolic dish solar collectors, walk-off of the spot of concentrated sunlight is a hazard if a malfunction causes the concentrator to stop following the Sun. Therefore, a test program was carried out to evaluate the behavior of various ceramics, metals, and polymers under solar irradiation of about 7000 kW/sq m. (peak) for 15 minutes. The only materials that did not slump or shatter were two grades of medium-grain extruded graphite. High purity, slip-cast silica might be satisfactory at somewhat lower flux. Oxidation of the graphite appeared acceptable during tests simulating walk-off, acquisition (2000 cycles on/off Sun), and spillage (continuous on-Sun operation).

  12. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems

    SciTech Connect

    McGarity, A.E.; Allen, J.W.; Schertz, W.W.

    1983-10-01

    Three liquid-based solar heating systems employing different types of solar collectors were tested side by side near Chicago, Illinois for one year. The three different types of collectors were: a flat plate collector with a black-chrome coated absorber plate and one low-iron glass cover; an evacuated-tube compound parabolic concentrator (CPC) with a concentration ratio of 1.1, oriented with tubes and troughs along a north-south axis; and an evacuated-tube CPC collector with a concentration ratio of 1.3 and one low-iron glass cover, with tubes and troughs oriented along an east-west axis. Results indicate that the flat plate collector system was the most efficient during warm weather, but the CPC systems were more efficient during cold weather, but the CPC systems were more efficient during cold weather, and the CPC systems operated under conditions too adverse for the flat plate collector. The computer simulation model ANSIM was validated by means of the side-by-side tests. The model uses analytical solutions to the storage energy balance. ANSIM is compared with the general simulation TRNSYS. (LEW)

  13. Development of 400 F sealants for flat plate solar collector construction and installation

    NASA Astrophysics Data System (ADS)

    Morris, L.; Schubert, R. J.

    1980-03-01

    Twenty candidate sealants representing ten different polymer types were evaluated as potential solar collector sealants. Polymer types tested included epichlorohydrin rubber, EPDM rubber, silicone, polysulfide, acrylate rubber, and a fluoroelastomer. Initial screening of sealants consisted of measuring high temperature stability and adhesion retention. Several sealant compositions exhibited satisfactory performance in these tests and were selected for further evaluation. These materials were based on an EPDM rubber, a Viton fluoroelastomer, and silicone polymers. Further testing of these candidate materials included determination of adhesion retention under uv/water/heat conditions, fogging temperature, low temperature flexibility, and physical properties. Four silicone-based materials appeared to be suitable candidates for sealing solar collectors.

  14. Development of a low-temperature, low-cost, black liquid solar collector, phase 2

    NASA Astrophysics Data System (ADS)

    Landstrom, D. K.; Talbert, S. G.; McGinniss, V. D.

    1980-03-01

    The long-term durability of various plastic materials and solar collector designs was evaluated and sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application were obtained. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities were built. One unit was in use for about two winter months in Columbus, Ohio, and the other unit is ready for testing in Phoenix, Arizona. Extruded polycarbonate panels and extruded acrylic panel designs were investigated.

  15. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect

    Raghuraman, P.; Hendrie, S. D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  16. Genesis Solar Wind Collector Cleaning Assessment: 60366 Sample Case Study

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Gonzalez, C. P.; Kuhlman, K. R.; Burnett, D. S.; Woolum, D.; Jurewicz, A. J.; Allton, J. H.; Rodriguez, M. C.; Burkett, P. J.

    2014-01-01

    In order to recognize, localize, characterize and remove particle and thin film surface contamination, a small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques [1-5]. Here we present preliminary results for sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C).

  17. Certification and verification for Calmac flat plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.

  18. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    Herrero Martín, R.; García, A.; Pérez-García, J.

    2012-11-01

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  19. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.

    PubMed

    Moradi, A; Sani, E; Simonetti, M; Francini, F; Chiavazzo, E; Asinari, P

    2015-05-01

    Direct solar absorption has been often considered in the past as a possible solution for solar thermal collectors for residential and small commercial applications. A direct absorption could indeed improve the performance of solar collectors by skipping one step of the heat transfer mechanism in standard devices and having a more convenient temperature distribution inside the collector. Classical solar thermal collectors have a metal sheet as absorber, designed such that water has the minimum temperature in each transversal section, in order to collect as much solar thermal energy as possible. On the other hand, in a direct configuration, the hottest part of the system is the operating fluid and this allows to have a more efficient conversion. Nanofluids, i.e., fluids with a suspension of nanoparticles, such as carbon nanohorns, could be a good and innovative family of absorbing fluids owing to their higher absorption coefficient compared to the base fluid and stability under moderate temperature gradients. Moreover, carbon nanohorns offer the remarkable advantage of a reduced toxicity over other carbon nanoparticles. In this work, a three-dimensional model of the absorption phenomena in nanofluids within a cylindrical tube is coupled with a computational fluid dynamics (CFD) analysis of the flow and temperature field. Measured optical properties of nanofluids at different concentrations have been implemented in the model. Heat losses due to conduction, convection and radiation at the boundaries are considered as well.

  20. Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.

    2012-01-01

    The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.

  1. Automated solar collector installation design including ability to define heterogeneous design preferences

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-04-29

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

  2. Automated solar collector installation design including ability to define heterogeneous design preferences

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2013-01-08

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

  3. Experimental investigation and modeling of a direct-coupled PV/T air collector

    SciTech Connect

    Shahsavar, A.; Ameri, M.

    2010-11-15

    Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

  4. Long-term weathering effects on the thermal performance of the Lennox/Honeywell (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedures used and the results obtained during the evaluation test program of the Lennox/Honeywell double covered liquid solar collector. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The Lennox/Honeywell collector is a flat-plate solar collector. The absorber plate is steel with copper tubes bonded on the upper surface, and is coated with black chrome. Visual inspection of the collector indicated slight discoloration of the absorber plate. Results indicate that performance degradation had occurred. Absorptivity and/or transmissivity decreased as a result of the weathering.

  5. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  6. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  7. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  8. Solar Collector Design Optimization: A Hands-on Project Case Study

    ERIC Educational Resources Information Center

    Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.

    2012-01-01

    A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…

  9. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  10. Investigation of solar water heater by using flat plate collector and evacuated tubes

    NASA Astrophysics Data System (ADS)

    Jayakanth, J. J.; Ramasubramanian, S.; Chandrasekaran, M.; Manavalan, S.

    2017-03-01

    Collection, storage and utilization of solar energy by solar water heating by flat plate collector and evacuated tube is cheapest and effective renewable energy technologies. This solar water heater design uses a nonconventional source of energy which can be used for house hold applications. The cost of production will be comparatively low in cost and high in capacity. The G.I. sheet collector boxes are replaced by copper tube, stainless steel water tank, thick costly PUF insulations and toughened glass etc. Pebbles are used as a medium of heat storage this increases the capacity of solar water heater by using this method natural source of energy can be used instead of depending on electric water heaters.

  11. Thermal analysis of five outdoor swimming pools heated by unglazed solar collectors

    SciTech Connect

    Molineaux, B.; Lachal, B.; Guisan, O. )

    1994-07-01

    We have analysed measurement from five outdoor swimming pools located in Switzerland and heated by unglazed solar collectors. The main contributions to the daily energy balance of the swimming pools are evaluated. They include the active and passive solar gains, as well as the heat losses related to radiation, evaporation, convection, and water renewal (in order of importance). Coherent results are obtained using multilinear regressions in order to determine the best fitting values of the empirical parameters involved in the thermal equations.

  12. Monte Carlo simulation of the performance of PMMA luminescent solar collectors

    NASA Astrophysics Data System (ADS)

    Carrascosa, M.; Agullo-Lopez, F.; Unamuno, S.

    1983-10-01

    A Monte Carlo method has been developed to simulate the performance of luminescent solar collectors (LSC) consisting of a PMMA plate with an attached film (or multiple-film stack) of dye-activated PMMA. Rhodamine 6G and Fluorol 555 have been considered as dopant dyes. Direct and diffuse solar spectra have been simulated in order to compare extreme insolation conditions. Efficiency factors have been determined as a function of the main geometrical and optical parameters of the LSC.

  13. 3X compound parabolic concentrating (CPC) solar energy collector. Final technical report

    SciTech Connect

    Ballheim, R.W.

    1980-04-25

    Chamberlain engineers designed a 3X compound parabolic concentrating (CPC) collector for the subject contract. The collector is a completely housed, 105.75 x 44.75 x 10.23-inch, 240-pound unit with six each evacuated receiver assemblies, a center manifold and a one-piece glass cover. A truncated version of a CPC trough reflector system and the General Electric Company tubular evacuated receiver have been integrated with a mass producible collector design suitable for operation at 250 to 450/sup 0/F. The key criterion for optimization of the design was minimization of the cost per Btu collected annually at an operating temperature of 400/sup 0/F. The reflector is a 4.1X design truncated to a total height of 8.0 inches with a resulting actual concentration ratio of 2.6 to 1. The manifold is an insulated area housing the fluid lines which connect the six receivers in series with inlet and outlet tubes extending from one side of the collector at the center. The reflectors are polished, anodized aluminum which are shaped by the roll form process. The housing is painted, galvanized steel, and the cover glass is 3/16-inch thick tempered, low iron glass. The collector requires four slope adjustments per year for optimum effectiveness. Chamberlain produced ten 3X CPC collectors for the subject contract. Two collectors were used to evaluate assembly procedures, six were sent to the project officer in Albuquerque, New Mexico, one was sent to Argonne National Laboratory for performance testing and one remained with the Company. A manufacturing cost study was conducted to estimate limited mass production costs, explore cost reduction ideas and define tooling requirements. The final effort discussed shows the preliminary design for application of a 3X CPC solar collector system for use in the Iowa State Capitol complex.

  14. Modeling Spatio-Temporal Dynamics of Optimum Tilt Angles for Solar Collectors in Turkey

    PubMed Central

    Ertekin, Can; Evrendilek, Fatih; Kulcu, Recep

    2008-01-01

    Quantifying spatial and temporal variations in optimal tilt angle of a solar collector relative to a horizontal position assists in maximizing its performance for energy collection depending on changes in time and space. In this study, optimal tilt angles were quantified for solar collectors based on the monthly global and diffuse solar radiation on a horizontal surface across Turkey. The dataset of monthly average daily global solar radiation was obtained from 158 places, and monthly diffuse radiation data were estimated using an empirical model in the related literature. Our results showed that high tilt angles during the autumn (September to November) and winter (December to February) and low tilt angles during the summer (March to August) enabled the solar collector surface to absorb the maximum amount of solar radiation. Monthly optimum tilt angles were estimated devising a sinusoidal function of latitude and day of the year, and their validation resulted in a high R2 value of 98.8%, with root mean square error (RMSE) of 2.06°. PMID:27879857

  15. Midtemperature solar systems test facility predictions for thermal performance based on test data: AAI solar collector with pressure-formed glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)

  16. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  17. State of the art of performance evaluation methods for concentrating solar collectors

    NASA Astrophysics Data System (ADS)

    Hofer, Annie; Valenzuela, Loreto; Janotte, Nicole; Burgaleta, Juan Ignacio; Arraiza, Jaime; Montecchi, Marco; Sallaberry, Fabienne; Osório, Tiago; Carvalho, Maria João; Alberti, Fabrizio; Kramer, Korbinian; Heimsath, Anna; Platzer, Werner; Scholl, Stephan

    2016-05-01

    For the development and establishment of concentrating solar thermal collectors a reliable and comparable performance testing and evaluation is of great importance. To ensure a consistent performance testing in the area of low- temperature collectors a widely accepted and commonly used international testing standard (ISO 9806:2013) is already available. In contrast to this, the standard ISO 9806:2013 has not completely penetrated the testing sector of concentrating collectors yet. On that account a detailed literature review has been performed on published testing procedures and evaluation methodologies as well as existing testing standards. The review summarizes characteristics of the different steady-state, quasi-dynamic and fully dynamic testing methods and presents current advancements, assets and drawbacks as well as limitations of the evaluation procedures. Little research is published in the area of (quasi-) dynamic testing of large solar collectors and fields. As a complementary a survey has been conducted focusing on currently implemented evaluation procedures in this particular field. Among the ten participants of the survey were project partners of relevant industry and research institutions within the European project STAGE-STE (Work package 11 - Linear focusing STE technologies). The survey addressed general aspects of the systems under test, as well as required process conditions and detailed characteristics of the evaluation procedures. In congruence with the literature review, the survey shows a similar tendency: the quasi-dynamic testing method according ISO 9806:2013 presents the most common and advanced evaluation procedure mainly used in the context of tracking concentrating collectors for the performance assessment of parabolic trough collectors operating with thermal oil or pressurized water. These common solar systems can be evaluated with minor adaptions to the testing standard. Evaluation procedures focused on in-situ measurements in solar

  18. Liquid temperature determination in a seasonal heat storage at joint operation with a solar collector and thermal energy consumer

    SciTech Connect

    Sivoraksha, V.E.; Zolotko, K.E.; Markov, V.L.; Petrov, B.E.; Lyagushyn, S.F.

    1998-07-01

    Usual solar thermal systems include a solar collector providing solar power conversion into the thermal form and a heat storage accumulating thermal energy, the great capacity of storage systems allows heating and hot water supply during the cold season. The joint operation of the solar collector and a seasonal heat storage has a cyclic mode day by day. The following operation scheme is analyzed in the paper: in night liquid (water) does not circulate; after sunrise the solar collector is warmed up and after its temperature reaching the temperature of water in the thermal energy storage TTS circulation is switched on and thermal power is transferred to the heat storage; after midday water temperature in the solar collector decreases and circulation stops when it becomes equal to the heat storage temperature. TTS increase results in the reduction of the duration of the joint operation of the solar collector and the energy storage and in the decrease of the heat power input. A functional connection between the daily input of power from the solar collector and an average temperature in the heat storage is of importance for technological calculations. The moments of the beginning and end of circulation and daily heat input from the solar collector are determined under the assumption of the sinusoidal law of solar radiation coming in the day-time. Then the heat balance equation is solved for the whole power system with taking into account power consumption and heat losses. The polynomial approximation for the dependence of heat input upon heat carrier temperature permits obtaining an analytical solution for the seasonal behavior of the liquid temperature in the thermal energy storage. The obtained dependence of TTS upon time allows calculation of this parameter with admissible accuracy at the stage of the project development proceeding from the performance of the solar collector and heat storage and from the averaged meteorological data.

  19. Copper corrosion and its relationship to solar collectors:a compendium.

    SciTech Connect

    Menicucci, David F.; Mahoney, Alan Roderick

    2007-07-01

    Copper has many fine qualities that make it a useful material. It is highly conductive of both heat and electricity, is ductile and workable, and reasonably resistant to corrosion. Because of these advantages, the solar water heating industry has been using it since the mid-1970s as the material of choice for collectors, the fundamental component of a solar water heating system. In most cases copper has performed flawlessly, but in some situations it has been known to fail. Pitting corrosion is the usual failure mode, but erosion can also occur. In 2000 Sandia National Laboratories and the Copper Development Association were asked to analyze the appearance of pin-hole leaks in solar collector units installed in a housing development in Arizona, and in 2002 Sandia analyzed a pitting corrosion event that destroyed a collector system at Camp Pendleton. This report includes copies of the reports and accounts of these corrosion failures, and provides a bibliography with references to many papers and articles that might be of benefit to the solar community. It consolidates in a single source information that has been accumulated at Sandia relative to copper corrosion, especially as it relates to solar water heaters.

  20. Solar energy collector including a weightless balloon with sun tracking means

    DOEpatents

    Hall, Frederick F.

    1978-01-01

    A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.

  1. Flat plate solar collector design and performance. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-09-01

    Federally funded research on the design and thermal efficiency of air and liquid type flat plate collectors is discussed. Topic areas cover convection characteristics, methods to reduce heat loss, optical coatings, and corrosion control. Emphasis of the bibliography is on basic research studies. This updated bibliography contains 196 citations, 36 of which are new entries to the previous edition.

  2. Thermal performance trade-offs for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Wen, L.

    1978-01-01

    Solar thermal conversion performance is assessed in this paper for representative point focusing distributed systems. Trade-off comparisons are made in terms of concentrator quality, solar receiver operating temperature, and power conversion efficiency. Normalized system performance is presented on a unit concentrator area basis for integrated annual electric energy production.

  3. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Astrophysics Data System (ADS)

    Jaffe, L. D.

    1984-03-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the Sun, motion of the concentrator may stop. As the Sun moves relative to the Earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  4. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Astrophysics Data System (ADS)

    Jaffe, L. D.

    1984-11-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  5. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Astrophysics Data System (ADS)

    Jaffe, L. D.

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  6. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  7. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  8. Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the Sun, motion of the concentrator may stop. As the Sun moves relative to the Earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  9. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  10. Design approaches for solar industrial process-heat systems: Nontracking and line-focus collector technologies

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.; Davenport, R. L.; Dougherty, D. A.; Gee, R. C.; Masterson, P. M.; May, E. K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer generated graphs are supplied that allow the user to select a collector type. Energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start up details, economics, and safety and environmental issues are explained.

  11. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  12. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    SciTech Connect

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  13. Survey of coatings for solar collectors. [ceramic enamels and chromium

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Ceramic enamel is found to be more solar selective, (i.e., has high solar absorptance in combination with low infrared emittance) than organic enamel, but neither is as solar selective as black chrome, black copper, black zinc, or black nickel. Ceramic enamel is matched only by black chrome in durability and wide availability. Ceramic enamel and organic enamel have approximately the same cost, and both are currently slightly lower in cost than black chrome, black copper, or black zinc. Black nickel is relatively unavailable and, because of that, realistic cost comparisons are not possible.

  14. Implementation of a large solar collector for electric charge generation

    NASA Astrophysics Data System (ADS)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper evaluates use of solar flux concentrator systems with photovoltaic cells, it provides analysis on overall economic feasibility based on cost/benefit considerations. Properties evaluated include launch volume/mass, efficiency once in a functioning configuration and service life. Production time will also be discussed considering research on existing technology to expedite integration. Solar energy is primarily harvested via solar panels. With the utilization of a large mirrored dish, solar energy can be concentrated to maximize the efficiency of photovoltaic systems form a cost/benefit standpoint. The design concepts for these systems include fully rigid, tensioned over frame, and inflatable approaches. The efficiency of such systems will be discussed. Pre-existing systems, such as the photovoltaic blanket arrays on the international space station, will be considered. Areas of consideration include cost/output ratio, the efficiency of the array, and the system's service life. Prior work on ridged, tensioned, and inflatable mirrored systems will be presented.

  15. Solar collector panels (process-method). Rainwater collection and storage

    SciTech Connect

    Mowery, J.W.

    1981-10-15

    A process for producing panels for solar heating of potable water is described. The panels have PVC tubing flat-coiled into square or rectangular shapes. Also described is a cistern for collecting and storing rainwater. (LEW)

  16. SOLERAS - Solar-Powered Water Desalination Project at Yanbu: PKI collectors performance

    SciTech Connect

    Hamad, G.

    1987-04-01

    The seawater desalination pilot plant at Yanbu in Saudi Arabia is a unique experiment in which an indirect bulk freeze desalination process is integrated with a stand-alone solar cogeneration power plant. Thermal energy is stored in molten salt and is converted into shaft power required for primary refrigeration by a conventional steam engine. An absorption refrigeration unit is thermally driven by the exhaust steam of the engine to produce additional refrigeration. Crystallization of water molecules from the brine into essentially pure water ice is accomplished by the freeze desalination process, which employs indirect heat transfer technique. Solar energy concentrated by the dish collector is transferred to a silicone polymer low-viscosity liquid circulated through the receiver, which is a monotube cavity mounted at the concentrator focal area in a stainless steel encased housing. A flux trap mounted at the mouth of the cavity receiver deflects stray radiation into the cavity. This document concerns itself with the solar collector and the solar collector field subsystem and presents the results of scientific investigations during the past 18 months since the plant installation. 13 refs., 206 figs.

  17. Experimental evaluation of a stationary spherical reflector tracking absorber solar energy collector

    NASA Technical Reports Server (NTRS)

    Steward, W. G.; Kreider, J. F.; Caruso, P. S., Jr.; Kreith, F.

    1976-01-01

    This article presents experimental data for the thermal performance of a stationary, spherical-reflector, tracking-absorber solar energy collector (SRTA). The principle of operation and details of thermal performance of such an SRTA have previously been described. These experimental results were compared with the predictions of a thermal analysis previously published. Experimental results were compared with the prediction of Kreider's computer model. Within the range of the temperature of the experiments, the predicted performance of the unit agreed well with experimental data collected under clear sky conditions. In addition, the extrapolation of the efficiency to higher temperature is shown so that the potential of an SRTA solar collector as a means of providing high temperature steam to operate an electric power facility or for process heat can be evaluated. As a result of the tests conducted by NASA, and an economic analysis not yet publicly available, it appears that the SRTA solar collector concept will be economically viable in competition with any other existing solar system in providing electrical energy.

  18. Design optimization of sinusoidal glass honeycomb for flat plate solar collectors

    NASA Technical Reports Server (NTRS)

    Mcmurrin, J. C.; Buchberg, H.

    1980-01-01

    The design of honeycomb made of sinusoidally corrugated glass strips was optimized for use in water-cooled, single-glazed flat plate solar collectors with non-selective black absorbers. Cell diameter (d), cell height (L), and pitch/diameter ratio (P/d) maximizing solar collector performance and cost effectiveness for given cell wall thickness (t sub w) and optical properties of glass were determined from radiative and convective honeycomb characteristics and collector performance all calculated with experimentally validated algorithms. Relative lifetime values were estimated from present materials costs and postulated production methods for corrugated glass honeycomb cover assemblies. A honeycomb with P/d = 1.05, d = 17.4 mm, L = 146 mm and t sub w = 0.15 mm would provide near-optimal performance over the range delta T sub C greater than or equal to 0 C and less than or equal to 80 C and be superior in performance and cost effectiveness to a non-honeycomb collector with a 0.92/0.12 selective black absorber.

  19. ETRANS: an energy transport system optimization code for distributed networks of solar collectors

    SciTech Connect

    Barnhart, J.S.

    1980-09-01

    The optimization code ETRANS was developed at the Pacific Northwest Laboratory to design and estimate the costs associated with energy transport systems for distributed fields of solar collectors. The code uses frequently cited layouts for dish and trough collectors and optimizes them on a section-by-section basis. The optimal section design is that combination of pipe diameter and insulation thickness that yields the minimum annualized system-resultant cost. Among the quantities included in the costing algorithm are (1) labor and materials costs associated with initial plant construction, (2) operating expenses due to daytime and nighttime heat losses, and (3) operating expenses due to pumping power requirements. Two preliminary series of simulations were conducted to exercise the code. The results indicate that transport system costs for both dish and trough collector fields increase with field size and receiver exit temperature. Furthermore, dish collector transport systems were found to be much more expensive to build and operate than trough transport systems. ETRANS itself is stable and fast-running and shows promise of being a highly effective tool for the analysis of distributed solar thermal systems.

  20. Solar receiver performance of point focusing collector system

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Wen, L. C.

    1978-01-01

    The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.

  1. Design of solar cells for use in photovoltaic/thermal collectors

    NASA Astrophysics Data System (ADS)

    Cox, C. H., III

    1980-11-01

    A promising design development for combined photovoltaic/thermal (PV/T) collectors is one in which the photovoltaic cell is both the conversion device for electrical energy and the absorber of thermal energy. To accomplish this, the PV cell design is modified to use the approximately 25 percent of the air mass 1 spectrum at lambda greater than 1.1 micrometers that is currently rejected by the cell. The parameters investigated are: cell back metallization, back surface field, texture etching and anti-reflective coating. A model indicating the increase in absorptance as a function of these parameters is presented, together with the results of experimental measurements. Discussion closes with the presentation of a PV/T collector design that incorporates the improved cells, has 10 percent greater thermal output than current PV/T collectors, and exhibits no degradation in electrical output.

  2. Materials issues in solar detoxification of air and water

    NASA Astrophysics Data System (ADS)

    Blake, Daniel M.; Magrini-Bair, Kim; Wolfrum, Edward; May, E. K.

    1997-10-01

    The technical feasibility of photocatalytic oxidation and reduction technology for the removal of hazardous chemicals or micro-organisms from contaminated water and air is well established. The heterogeneous process based on titanium dioxide photocatalysts is the most developed but homogeneous systems are also under development. Treatment equipment using fluorescent lamps as the photon source and supported heterogeneous photocatalysts are commercially available and one-sun and parabolic solar reactor designs have been demonstrated. Cost and performance of the solar processes have not yet reached levels that make them attractive relative to conventional alternatives. Cost reductions and increased performance require improvements in optical materials for reactors, reactor/collector design and materials of construction, durable catalyst materials and support structures, and significant improvement in the utilization of the solar spectrum in the photochemical processes. The current state of the art for solar reactors for treatment of contaminated air and water are presented and the opportunities for improvement are identified.

  3. Methods of testing to determine the thermal performance of unglazed flat-plate liquid-type solar collectors. (ASHRAE standard)

    SciTech Connect

    1989-01-28

    The purpose of this standard is to provide test methods for determining the thermal performance of unglazed flat-plate liquid-type solar energy collector modules which heat a liquid for low temperature applications.

  4. An Optical Characterization Technique for Parabolic Trough Solar Collectors Using Images of the Absorber Reflection

    NASA Astrophysics Data System (ADS)

    Owkes, Jeanmarie Kathleen

    As the concentrating solar power industry competes to develop a less-expensive parabolic trough collector, assurance is needed that new parabolic trough collectors maintain accurate optical alignment. Previous optical characterization techniques are either too slow, ill-suited for field testing, or do not allow the collector to be tested in realistic orientations. The Observer method presented here enables the rapid optical characterization of parabolic trough collectors in any orientation in the field. The Observer method directly measures the combined optical angular errors in the reflector surface shape and the absorber position, which can be separated into its two components: reflector surface slope and absorber misalignment. The data acquisition requires the placement of photogrammetry targets on and around the collector. Multiple photographs of the absorber and its reflection are taken with a digital camera from different angles with respect to the collector. The images are processed to determine the camera location of each image using photogrammetry bundle analysis. The absorber and its reflection are found in the photographs using image-processing techniques. A Monte Carlo uncertainty model was developed to determine the uncertainty in the Observer measurements. The uncertainty was estimated for a wide array of measurement test scenarios to demonstrate the user's control over the measurement uncertainty. To validate the Observer method, the absorber alignment technique was compared to traditional photogrammetry; the absorber position measured with the two methods compared with a root-mean-square difference of 1.5 mm in the transverse direction and 0.86 mm along the optical axis. The reflector surface slope error measurement was compared to both VSHOT and SOFAST, two well-established optical characterization tools, by measuring a single reflector panel in the laboratory. The VSHOT and SOFAST measurements agreed with the Observer with a root

  5. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    PubMed

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found.

  6. Status of Reconstruction of Fragmented Diamond-on-Silicon Collector From Genesis Spacecraft Solar Wind Concentrator

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Calaway, M. C.; McNamara, K. M.; Hittle, J. D.

    2009-01-01

    In addition to passive solar wind collector surfaces, the Genesis Discovery Mission science canister had on board an electrostatic concave mirror for concentrating the solar wind ions, known as the concentrator . The 30-mm-radius collector focal point (the target) was comprised of 4 quadrants: two of single crystal SiC, one of polycrystalline 13C diamond and one of diamond-like-carbon (DLC) on a silicon substrate. [DLC-on-silicon is also sometimes referenced as Diamond-on-silicon, DOS.] Three of target quadrants survived the hard landing intact, but the DLC-on-silicon quadrant fractured into numerous pieces (Fig. 1). This abstract reports the status of identifying the DLC target fragments and reconstructing their original orientation.

  7. Plan for Subdividing Genesis Mission Diamond-on-Silicon 60000 Solar Wind Collector

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Allton, J. A.; Clemett, S. J.; Gonzales, C. P.; Lauer, H. V., Jr.; Nakamura-Messenger, K.; Rodriquez, M. C.; See, T. H.; Sutter, B.

    2013-01-01

    NASA's Genesis solar wind sample return mission experienced an off nominal landing resulting in broken, albeit useful collectors. Sample 60000 from the collector is comprised of diamond-like-carbon film on a float zone (FZ) silicon wafer substrate Diamond-on-Silicon (DOS), and is highly prized for its higher concentration of solar wind (SW) atoms. A team of scientist at the Johnson Space Center was charged with determining the best, nondestructive and noncontaminating method to subdivide the specimen that would result in a 1 sq. cm subsample for allocation and analysis. Previous work included imaging of the SW side of 60000, identifying the crystallographic orientation of adjacent fragments, and devising an initial cutting plan.

  8. Parabolic trough collector power plant performance simulation for an interactive solar energy Atlas of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Frasquet, Miguel; Al Rished, Abdulaziz; Tuomiranta, Arttu; Gasim, Sami; Ghedira, Hosni

    2016-05-01

    The collaboration between the Research Center for Renewable Energy Mapping and Assessment (ReCREMA) at Masdar Institute of Science and Technology and the King Abdullah City for Atomic & Renewable Energy (KACARE) aims to create an interactive web tool integrated in the Renewable Resource Atlas where different solar thermal electricity (STE) utility-scale technologies will be simulated. In this paper, a methodology is presented for sizing and performance simulation of the solar field of parabolic trough collector (PTC) plants. The model is used for a case study analysis of the potential of STE in three sites located in the central, western, and eastern parts of Saudi Arabia. The plant located in the north (Tayma) has the lowest number of collectors with the best production along the year.

  9. Development of a microprocessor-based Sun-tracking system for solar collectors

    NASA Astrophysics Data System (ADS)

    Kohler, S. M.; Wilcoxen, J. L.

    1980-04-01

    The development of a prototype Sun-tracking system and the tests performed on it on an east-west trough solar collector array are described. The system includes a controller built around an RCA1802 microprocessor, a digital shaft encoder, and a heat flux sensor. The heat flux sensor consists of a fine resistance wire wrapped around the receiver tube. The wire is used to correct errors in calculated tracking angles arising from reflector imperfections and misalignments.

  10. Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering

    SciTech Connect

    Houser, R.; Strachan, J.

    1995-02-01

    In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

  11. Measurement of optical absorption by calorimetry and analysis of a solar collector

    NASA Astrophysics Data System (ADS)

    Allen, L. C.; Wallace, J.; Deutscher, G.; Lindenfeld, P.

    1988-01-01

    An apparatus is described for the measurement of absorptance, emittance, and selectivity. It can be used to illustrate the relative importance of heat losses by radiation, conduction, and convection in a solar collector, as well as the effects of selectivity and of full or partial evacuation on the efficiency. The apparatus can be constructed in a reasonably well-equipped departmental machine shop, and is suitable for projects or experiments by advanced undergraduate students.

  12. Numerical simulation of a parabolic trough solar collector for hot water and steam generation

    NASA Astrophysics Data System (ADS)

    Hachicha, Ahmed Amine

    2016-05-01

    Parabolic trough solar collectors (PTCs) are currently one of the most mature and prominent solar technology for the production of electricity. In order to reduce the electricity cost and improve the overall efficiency, Direct Steam generation (DSG) technology can be used for industrial heat process as well as in the solar fields for electricity production. In the last decades, this technology is experiencing an important development last decades and it is considered as one of the most feasible process for the next generation of power plants using PTCs. A numerical model based on Finite Volume Method (FVM) balance is presented to predict the thermal behavior of a parabolic trough solar collector used for hot water and steam generation. The realistic non-uniform solar flux is calculated in a pre-processing task and inserted to the general model. A numerical-geometrical method based on ray trace and FVM techniques is used to determine the solar flux distribution around the absorber tube with high accuracy.

  13. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  14. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    SciTech Connect

    Geissbühler, Jonas Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain; Ballif, Christophe

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  15. The design of a vehicle-mounted test system for the thermal performance of solar collector

    NASA Astrophysics Data System (ADS)

    Wen, S. R.; Wu, X. H.; Zhou, L.; Zheng, W.; Liu, L.; Yan, J. C.

    2016-08-01

    To increase the test efficiency of thermal performance of solar collector, a vehicle- mounted test system with high automation, simple operation, good mobility and stability is proposed in this paper. By refitting a medium bus, design of mechanical system and test loop, and using PC control technology, we implemented the vehicle-mounted system and realized effective integration between vehicle and test equipment. A number of tests have been done, and the results show that the vehicle-mounted test system has good parameters and performance and can be widely used to provide door-to-door testing services in the field of solar thermal application.

  16. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  17. Effect of operating temperature on the HWB model for solar-collector design

    NASA Astrophysics Data System (ADS)

    Huang, H.; Howell, J. R.

    1983-02-01

    The Hottel-Whillier-Bliss (HWB) Model for the thermal efficiency of a flat plate solar collector plots as a straight line in an esa/sub c/ approx. (T/sub f,in/ - T/sub a/)/g/sub s/ coordinate system under the following assumptions: (1) the effect of the thermal capacity in the collector is negligible; (2) F/sub R/, U/sub L/ are constant in the range of operating temperature. These assumptions simplify the model and make it convenient to use. Because of the intermittance of insulation and the variation of ambient temperature and wind speed, the thermal capacity of the collector may affect the transient efficiency of the collector. In addition, the values of F/sub R/ and U/sub L/ are actually not constant and cause deviation of the efficiency curve from a straight line. The concern is with the deviation of the confidence level for a specific operating range. The effect of operating temperature of the values of F/sub R/ and U/sub L/ is discussed.

  18. Integral: collector solar greenhouse using solar membrane and external rock storage

    SciTech Connect

    Droll, P.W.

    1980-12-31

    The results of a three-year study to evaluate engineering aspects of converting a commercial greenhouse to more effectively used solar energy as a heating source are summarized. The solar retrofit greenhouse and nine other similar buildings are located in northern California. They are large Quonset style greenhouses glazed on all curved surfaces with a conventional corrugated fiberglass covering. The solar retrofit building was modified in 1978 by installing on the inside surface of the original corrugated fiberglass three air-separated layers of a material called Solar Membrane which reduces convective losses through the overlapping fiberglass panels and effectively prevents long wave infrared transmission out of the greenhouse. A large above-ground rock storage bin was also constructed. Two control buildings were also monitored, one for two years, and the second for only the second year. The measured values of electrical and gas consumption indicate that the modified solar building: (1) used less than 50% of the gas by the two-year control building, and (2) used 40% less gas than the one-year control building. Detailed mechanical design data are included, along with a development of the computer program used to predict actual modified and unmodified greenhouse performance. Good agreement was obtained between actual performance and the theoretical values predicted by the simulation. (LEW)

  19. Wind loads and local pressure distributions on parabolic dish solar collectors

    NASA Astrophysics Data System (ADS)

    Peterka, J. A.; Derickson, R. G.; Cermak, J. E.

    1990-05-01

    The research and development described in this document was conducted within the U.S. Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and the establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the U.S. Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and collector drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on parabolic dish collectors. The tests investigated the mean and peak forces, moments and local pressure distributions. A significant increase in the understanding and prediction of peak parabolic dish wind loads and their reduction within a field was achieved.

  20. High-performance, low-cost solar collectors for disinfection of contaminated water.

    PubMed

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  1. Sensitivity analysis of thermal performances of flat plate solar air heaters

    NASA Astrophysics Data System (ADS)

    Njomo, Donatien; Daguenet, Michel

    2006-10-01

    Sensitivity analysis is a mathematical tool, first developed for optimization methods, which aim is to characterize a system response through the variations of its output parameters following modifications imposed on the input parameters of the system. Such an analysis may quickly become laborious when the thermal model under consideration is complex or the number of input parameters is high. In this paper, we develop a mathematical model to analyse the heat exchanges in four different types of solar air collectors. When building this thermal model we show that for each collector, at quasi-steady state, the energy balance equations of the components of the collector cascade into a single first-order non-linear differential equation that is able to predict the thermal behaviour of the collector. Our heat transfer model clearly demonstrates the existence of an important dimensionless parameter, referred to as the thermal performance factor of the collector, that compares the useful thermal energy which can be extracted from the heater to the overall thermal losses of that collector for a given set of input parameters. A sensitivity analysis of our thermal model has been performed for the most significant input parameters such as the incident solar irradiation, the inlet fluid temperature, the air mass flow rate, the depth of the fluid channel, the number and nature of the transparent covers in order to measure the impact of each of these parameters on our model. An important result which can be drawn from this study is that the heat transfer model developed is robust enough to be used for thermal design studies of most known flat plate solar air heaters, but also of flat plate solar water collectors and linear solar concentrators.

  2. Indoor test for thermal performance of the GE TC-100 liquid solar collector eight- and ten-tube configuration. [Marshall Space Flight Center solar simulator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal performance of a liquid solar collector was tested in eight- and ten-tube configurations under simulated conditions. A time constant test and an incident angle modifier test were also conducted to determine the transient and incident angle effects on the collector. Performance loss with accessory covers is demonstrated. The gross collector area is about 17.4 ft sq without manifold and 19.1 ft sq with manifold. The collector weight is approximately 60 pounds empty and 75 pounds with manifold.

  3. Estimation and optimization of thermal performance of evacuated tube solar collector system

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  4. Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-05-01

    Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

  5. Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-06-01

    Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

  6. Solar heating and you

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

  7. Conclusions and recommendations for the testing of flat-plate solar collector thermal performance and durability

    NASA Astrophysics Data System (ADS)

    Waksman, D.; Thomas, W. C.

    1984-12-01

    The results of studies, by the National Bureau of Standards, of the reliability and durability of eight different types of flat plate solar collectors representative of equipment available in 1977 are reported. The installations were made in four sites believed to typify various U.S. climates. The stability of the thermal performance and material properties was tracked, and measured again after moving the units inside for exposure to artificial sunlight. The stagnation measurement techniques employed to evaluate the collectors were judged adequate, provided the tests are made on-site and out of doors. It is noted that the instrumentation used to gather sufficient data for valid analyses may experience performance decrements due to the necessarily long monitoring intervals, i.e., several years.

  8. Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.

    2008-01-01

    Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].

  9. The optimal operating temperature of the collector of an irreversible solar-driven refrigerator

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing; Yan, Zijun

    1999-01-01

    A universal irreversible solar-driven refrigerator model is presented, in which not only the irreversibility of heat conduction but also the irreversibilities resulting from the friction, eddies and other irreversible effects inside the working fluid are considered. On the basis of this model and the linear heat-loss model of a solar collector, one of the important parameters, called the optimal operating temperature of the collector of a solar-driven refrigerator, is derived by using the finite-time thermodynamic theory. From the result, the maximum overall coefficient of performance of the refrigerator is determined and some significant problems are discussed. The results obtained here are quite realistic and universal, insofar as all the corresponding results derived by using the reversible and endoreversible models and the model considering only the internal irreversibility cycle can be deduced from them. Thus, they may provide some new theoretical bases for further exploitation of solar-driven refrigerators. Furthermore, some shortcoming in the related literature are pointed out.

  10. Nonimaging solar energy concentrators (CPC's) with fully illuminated flat receivers: A viable alternative to flat-plate collectors

    SciTech Connect

    Gordon, J.M.

    1986-08-01

    Low-concentration, stationary, nonimaging concentrators (CPC's) with flat receivers illuminated on both sides are considered as viable alternatives to flat-plate solar collectors. Closed-form, analytic formulae are derived for the geometric characteristics of two concentrator types of greatest interest (i.e., stationary collectors for year-round energy delivery), which enable calculations of collectible energy without computer ray-tracing stimulations. The relative merits of these concentrators in terms of energy collection and production costs are assessed with respect to each other as well as to flat-plate collectors.

  11. Reflections on solar collectors at elevated temperatures /260-1000 C/

    NASA Astrophysics Data System (ADS)

    Authier, B.

    1982-06-01

    Analytical models are developed for optical efficiencies and requirements of concentrating solar collectors, taking into account factors which affect the potentials for mass production. Reflective polyester films and a process to form large spherical mirrors from glass sheets have been crucial factors for lowering production costs. Microprocessors permit the nearly fully automated operation of parabolic dish point-focus and heliostat-central tower solar power plants, leaving only monitoring and maintenance for personnel. The use of GaAs-AsAl solar cells at the point focus of large spherical concentrators in the PERICLES project has yielded 22 percent energy conversion efficiences, although problems of cooling the cells have yet to be solved. Applications of the PERICLES concept for Indian village power supplies at 10 kWe/unit, while simultaneously supplying a drain hole at the center as a rainwater collection device, is described.

  12. Improvement of black nickel coatings. [product development for use in solar collectors

    NASA Technical Reports Server (NTRS)

    Peterson, R. E.; Lin, J. H.

    1976-01-01

    Selectively absorbing black nickel coatings are among the most optically efficient low cost coatings for use on flat plate solar collectors. However, a current Ni-Zn-S-O coating in use is quite susceptible to a humid environment, degrading badly in less than ten days at 38 C (100 F) at 95 percent relative humidity. Therefore, a black nickel formula was developed which can withstand such exposures with no loss of optical efficiency, solar absorption of 0.92 and an infrared emittance (at 100 C) of 1.00 were still present after 14 days of humidity exposure. This compares to a solar absorptance of only 0.72 for the previous formula after a similar time period. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, spectral optical properties and durability were investigated systematically.

  13. Performance evaluation of single-glazed and double glazed collectors/regenerators for an open cycle absorption solar cooling system

    SciTech Connect

    Yang, R.; Wang, P.L.

    1998-07-01

    Feasibility for an open-cycle absorption solar cooling system operated in Kaohsiung, Taiwan is studied via a computer simulation program using previous obtained experimental correlations for the collector/regenerator (C/R) performance and the TMY data of Kaohsiung, Taiwan. Three C/R models are considered in this study. They are the natural and the forced convection single-glazed Cs/Rs and the forced convection double-glazed C/R. The effects of the C/R area, the C/R solution flow rate, the solution storage, the chilled water temperature and the daily cooling demand on the system performance in terms of seasonal solar fraction are studied and discussed. The results show that the solar C/R is the key component of the cooling system and the open-cycle absorption system is a sound solar cooling system. It is shown that the double glazed forced convection C/R gives a better system performance. The simulation study is to evaluate the seasonal solar fraction, which is defined as F=(solar cooling load)/(total cooling load) Firstly, all three C/R models are simulated under the base case conditions. The seasonal averaged solar fraction for three models are found to be 0.7, 0.75 and 0.79, respectively, while the corresponding seasonal averaged C/R efficiencies are 15.7%, 18.4% and 20.6%. The double-glazed forced convection system performs better than the other two systems. This is consistent with the results of previous experimental studies for the C/R. A nearly linear relationship between the C/R efficiency and the solar fraction is shown. The solar fraction increases slightly with the solution storage volume for the natural convection case, but it is much more sensitive to the solution storage for the forced convection system. The solar fraction is relatively insensitive to the C/R area after a critical value is reached. A similar dependence is also found in other solar absorption air conditioning system alternatives.

  14. Experimental Study on Performance of a Box Solar Cooker with Flat Plate Collector to Boil Water

    NASA Astrophysics Data System (ADS)

    Sitepu, T.; Gunawan, S.; Nasution, D. M.; Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    In this study, a flat plate type solar cooker is tested by exposing in solar irradiation. The objective is to examine the performance of solar cooker in boiling water. The solar cooker is a box type with collector area and height are 100 × 100 cm and 40 cm, respectively. Vessel for water is made of aluminum plate with diameter and height of 22 cm and 15 cm. The experiments are performed by varying mass of the water. It is 2 kg and 4 kg, respectively. Every experiment starts from 10:00 AM until the boiling temperature is reached. The parameters measured are radiance intensity, ambient and solar box cooker temperatures, and wind speed. The results show that the duration of water heating up to 100°C with water mass 2 kg within 2 hours 45 minutes and water mass 4 kg within 3 hours 17 minutes. The maximum temperatur of solar box cooker is 117°C at 12:56 PM and maximum efficiency is 46.30%. The main conclusion can be drawn here is that a simple solar box cooker can be used to boil water.

  15. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).

    PubMed

    Amin, M T; Han, M Y

    2009-12-01

    The efficiency of solar disinfection (SODIS), recommended by the World Health Organization, has been determined for rainwater disinfection, and potential benefits and limitations discussed. The limitations of SODIS have now been overcome by the use of solar collector disinfection (SOCO-DIS), for potential use of rainwater as a small-scale potable water supply, especially in developing countries. Rainwater samples collected from the underground storage tanks of a rooftop rainwater harvesting (RWH) system were exposed to different conditions of sunlight radiation in 2-L polyethylene terephthalate bottles in a solar collector with rectangular base and reflective open wings. Total and fecal coliforms were used, together with Escherichia coli and heterotrophic plate counts, as basic microbial and indicator organisms of water quality for disinfection efficiency evaluation. In the SOCO-DIS system, disinfection improved by 20-30% compared with the SODIS system, and rainwater was fully disinfected even under moderate weather conditions, due to the effects of concentrated sunlight radiation and the synergistic effects of thermal and optical inactivation. The SOCO-DIS system was optimized based on the collector configuration and the reflective base: an inclined position led to an increased disinfection efficiency of 10-15%. Microbial inactivation increased by 10-20% simply by reducing the initial pH value of the rainwater to 5. High turbidities also affected the SOCO-DIS system; the disinfection efficiency decreased by 10-15%, which indicated that rainwater needed to be filtered before treatment. The problem of microbial regrowth was significantly reduced in the SOCO-DIS system compared with the SODIS system because of residual sunlight effects. Only total coliform regrowth was detected at higher turbidities. The SOCO-DIS system was ineffective only under poor weather conditions, when longer exposure times or other practical means of reducing the pH were required for the

  16. Efficiency degradation due to tracking errors for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1978-01-01

    An important parameter in the design of point focusing solar collectors is the intercept factor which is a measure of efficiency and of energy available for use in the receiver. Using statistical methods, an expression of the expected value of the intercept factor is derived for various configurations and control law implementations. The analysis assumes that a radially symmetric flux distribution (not necessarily Gaussian) is generated at the focal plane due to the sun's finite image and various reflector errors. The time-varying tracking errors are assumed to be uniformly distributed within the threshold limits and allows the expected value calculation.

  17. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  18. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater.

    PubMed

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2014-03-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  19. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  20. Wide-angle lenses and image collapsing subreflectors for nontracking solar collectors.

    PubMed

    Sletten, C J; Holt, F S; Herskovitz, S B

    1980-05-01

    This paper presents new optical methods for the design of nontracking solar energy concentrators with acceptance angles of 60 degrees in the elevation (altitude) plane and +/-50 degrees in azimuth sectors. We have designed and constructed a two-point corrected cylindrical stepped prism lens (SPL) with 30.48-cm aperture height and F/D congruent with 1, which focuses well over the acceptance interval. Image collapsing subreflector (ICS) surfaces are synthesized that reflect the incident illumination refracted by the lens onto a small fixed absorbing area or shelf ~7.6 cm wide resulting in near maximum theoretical concentration ratios for these broad acceptance angles. Nearly 100% of the incident optical rays intercept the absorber shelf. The wide-angle and image collapsing optical properties were confirmed by laser and solar experiments. Rooftop thermal tests on a 30.5 x 30.5-cm collector section using selectively absorbing tubes with water as circulant were conducted that indicate aperture efficiencies of ~60% could be exected on large area collectors based on this design.

  1. A centripetal 20 kWe turbine driven by nonconcentrating solar collectors

    NASA Astrophysics Data System (ADS)

    Gaivao, A.; Derungs, P.

    1984-09-01

    The design and analytical projection of the performance of a solar thermal centripetal turbine for distributed power stations generating 10s of kilowatts in either electrical or mechanical form are described. Solar heat captured by flat plate collectors is used to drive a Rankine cycle system using 60-80 C heat to evaporate the Freon 11 working fluid. The fluid, after condensation, returns to the collectors at 40 C. An optimization study was performed which considered the diameters of the inlet to the rotor, the rotor, and the inlet and outlet pipes, the ratio between the inlet and outlet pipe diameters, the shape of the turbine blades, and the inlet and outlet fluid speeds. The optimal geometries of a 20 kW system are detailed, noting the necessity of allowing for supersonic inlet flow, operations off the design points, and employing a 20,000 rpm rotor. All maintenance would be performed by local personnel. A maximum efficiency of 70 percent is projected.

  2. Recent developments in nonimaging secondary concentrators for linear receiver solar collectors

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.

    1991-10-01

    The energetic and economic attractiveness of linear solar concentrators can be significantly improved by the use of properly secondary non-imaging (CPC-type) concentrators. Two specific illustrative cases are analyzed. One is the optical re-design of a commercial two-stage solar concentrator which generates process steam at 150 degree(s)C. The primary is a linear Fresnel reflector with one-axis horizontal tracking. The receiver is a stationary, non- evacuated, glazed tubular receiver with secondary CPC. We have re-designed the initial, manufacturer-designed secondary so as to noticeably improve collector thermal output. Details of secondary design and system performance are presented. The other is a new concept in secondary CPC-type concentrators for parabolic trough collectors with tubular receivers and large rim angles (typically 80 degree(s)-120 degree(s)). It had been though that such large-rim- angle concentrators could not benefit from secondary concentrators, since the second-stage concentration boost goes as 1/sin(rim angle). However, by introducing multiple asymmetric CPC-type devices, we can increase the geometric concentration of a 90 degree(s) rim angle parabolic trough by roughly a factor of 3. Furthermore, certain secondary designs can be accommodated within the annulus of currently-manufactured evacuated receiver tubes, and still offer a flux concentration improvement of about a factor of 2.5. Examples of the new secondary designs, and achievable concentration gains, are presented.

  3. Exergy efficiency analysis of a flat plate solar collector using graphene based nanofluid

    NASA Astrophysics Data System (ADS)

    Said, Z.; Alim, M. A.; Janajreh, Isam

    2015-10-01

    The thermal efficiency of a flat plate solar thermal collector is largely affected by the thermal conductivity of the fluid used. In this paper, we theoretically analyzed the heat transfer performance, the entropy generation rate, and the exergy efficiency of the two different graphene based nanofluids (graphene/Acetone and graphene/water). From the analyses, it is revealed that by inserting a small amount of graphene nanoparticles in water, exergy efficiency could be enhanced by 21%, comparing to conventional fluids and entropy generation is decreased by 4%. However, the graphene/water nanofluid shows a lower entropy generation. This characteristic suggests that graphene/water nanofluid is a better candidate for flat solar thermal application.

  4. Cleaning strategies for parabolic-trough solar-collector fields; guidelines for decisions

    SciTech Connect

    Bergeron, K.D.; Freese, J.M.

    1981-06-01

    This report is intended to assist the owner or operator of a parabolic trough solar collector system to decide on a cleaning strategy (equipment, materials, procedures, and schedules). The guidelines are based on information obtained in past research studies, as well as interviews with vendors and users of cleaning and water treatment equipment. The basic procedure recommended utilizes high pressure portable washing equipment. However, since the cleaning problem is so site-specific, no single, detailed approach can be specified. A systematic procedure for evaluating the particular requirements of a site is therefore given. This will allow the solar energy system operator to develop a cleaning strategy which is cost-effective because it is suited to local conditions.

  5. Temperature control in a solar collector field using Filtered Dynamic Matrix Control.

    PubMed

    Lima, Daniel Martins; Normey-Rico, Julio Elias; Santos, Tito Luís Maia

    2016-05-01

    This paper presents the output temperature control of a solar collector field of a desalinization plant using the Filtered Dynamic Matrix Control (FDMC). The FDMC is a modified controller based on the Dynamic Matrix Control (DMC), a predictive control strategy widely used in industry. In the FDMC, a filter is used in the prediction error, which allows the modification of the robustness and disturbance rejection characteristics of the original algorithm. The implementation and tuning of the FDMC are simple and maintain the advantages of DMC. Several simulation results using a validated model of the solar plant are presented considering different scenarios. The results are also compared to nonlinear control techniques, showing that FDMC, if properly tuned, can yield similar results to more complex control algorithms.

  6. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    NASA Astrophysics Data System (ADS)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  7. Alternative energy sources IV; Proceedings of the Fourth Miami International Conference, Miami Beach, FL, December 14-16, 1981. Volume 1 - Solar Collectors Storage

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    1982-10-01

    Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume

  8. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    SciTech Connect

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  9. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    NASA Astrophysics Data System (ADS)

    Kusiolek, Richard

    Summary An array of 55,000 40-foot antennas can generate from the rays of the Sun enough electrical power to replace 50 The economic potential is huge. There are new industries that will only grow and there are different ways to collect solar energy, including wind power. The energy sources we rely on for the most part are finite - fossil fuels, coal, oil and natural gas are all limited in supply. The cost will only continue to rise as demand increases. The time of global economic crossover between the EU, Asia Pacific and North America is coming within less than five years. The biggest opportunity for solar energy entrepreneurs would seem to be in municipal contracting where 1500 40-foot stacking antennas can be hooked into a grid to power an entire city. The antenna can generate 45 kilowatts of energy, enough to satisfy the electrical needs 7x24 of ten to twenty homes. It is possible to design and build 35-by-80-foot pedestals that track the sun from morning until night to provide full efficiency. A normal solar cell looks in the sky for only four or five hours of direct sunlight. Fabrication of these pedestals would sell for USD 50, 000-70,000 each. The solar heat collected by the antennas can be bounced into a Stirling engine, creating electricity at a focal point. Water can be heated by running through that focal point. In addition, salt water passing through the focal point can be desalinated, and since the antenna can generate up to 2,000 degrees of heat at the focal point. The salt water passing through the focal point turns to steam, which separates the salt and allows the steam to be turned into fresh drinking water. Collector energy can be retained in betavoltaics which uses semiconductors to capture energy from radioactive materials and turn it into usable electricity for automobiles. In a new battery, the silicon wafers in the battery are etched with a network of deep pores. These pores vastly increase the exposure surface area of the silicon, allowing

  10. Sunlight activated lanthanide complex for luminescent solar collector applications: effect of waveguide matrix

    NASA Astrophysics Data System (ADS)

    Shahi, Praveen Kumar; Singh, Priyam; Bahadur Rai, Shyam

    2017-02-01

    The performance of Eu(DBM)3Phen complex (EDP) dispersed in PMMA poly-(methyl methacrylate) polymer matrix, as simple planner luminescent solar collectors (LSCs) is demonstrated using spectroscopic and photovoltaic (PV) measurements. The organic ligands absorb ultra-violet-blue (UV-blue) radiation (220–450 nm) very efficiently and transfer its energy to the Eu3+ ion, which gives an intense red emission even in sunlight exposure. The excellent optical properties of EDP in PMMA permit its coating on the front surface of c-Si solar cell (10  ×  10 cm2) for PV measurements. The PV characterizations reveal the improvement in the short circuit current density (J sc) of PV cell and maximum improvement is found to be 4.6% for 2.5 wt% EDP concentration in PMMA matrix. The efficiency of solar cell increases from 17.22% to 18.33% for bare and 2.5% EDP in PMMA. At a higher concentration of EDP, the thin film starts losing its transparency and hence PV efficiency decreases. These results illustrate that a EDP complex combined with a PV cell could work as a prototype of a new generation solar cell.

  11. A comparison of unglazed flat plate liquid solar collector thermal performance using the ASHRAE Standard 96-1980 and modified BSE test procedures

    NASA Astrophysics Data System (ADS)

    Jenkins, J. P.; Reed, K. A.

    1982-05-01

    The report reviews the BSE procedure and summarizes the ASHRAE Standard 96-1980 for testing unglazed solar collectors. The ASHRAE procedure consists exclusively of outdoor testing, whereas the BSE procedure requires a combination of outdoor and indoor testing (no irradiation) to determine the collector optical and thermal loss characteristics, respectively. Two unglazed flat plate liquid solar collectors were tested according to ASHRAE Standard 96-1980 and BSE procedures and the results compared. During the indoor BSE thermal loss tests blowers were used to simulate winds of 0-3.9 m/s(0-8.72 mi/hr) to investigate the wind effect upon collector thermal losses.

  12. Energy use test facility: CAC-DOE solar air heater test report

    NASA Astrophysics Data System (ADS)

    1981-11-01

    The solar air heater testing demonstrated an attractive application for residential space heating, especially appealing to the do-it-yourself market. Simple improvements in construction, such as caulking of the glazing, could increase collector performance at little cost. The operating cost of the fan was insignificant, being less than $0.05/week. Tested in its as-shipped configuration at 96.1 cfm (3 cfm/ft (2)), the useful energy delivered averaged 20,000 Btu/day for six days in December. The electrical consumption of the fan was approximately 1 kWh. Doubling the flowrate did not increase collector performance appreciably. A TRNSYS computer simulation model for this solar air heater design was validated by comparing the measured test data on Jaunary 4, 1981 with calculated values. TRNSYS predicted that measured collector outlet temperatures within +- 1.20F and the energy delivered within +- 3%. The excellent agreement was obtained by adjusting the collector loss coefficient to an unrealistically low value; therefore, a parametric study is recommended to determine the model sensitivity to varying different parameters. A first-order collector efficiency curve was derived from the TRNSYS simulations which compared well with the curve defined by the clear-day measured data.

  13. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  14. Development, testing, and certification of the Northrup, Inc., ML series concentrating solar collector model NSC-01-0732

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    A summary is presented of the additional development work on the existing ML Series concentrating solar collector for use with solar heating and cooling systems. The report discusses the intended use of the final report, describes the development hardware, lists deliverable end items, deals with problems encountered during fabrication and testing, and includes certification statements of performance. This report shows that the products developed are marketable and suitable for public use.

  15. Low-cost hot-air solar collector

    NASA Technical Reports Server (NTRS)

    Herndon, E. P.; Anthony, K. G.

    1975-01-01

    System has only three components per cell. Cell parts are fabricated from readily available materials and, following a construction procedure which requires use of only simple handtools, can be mounted in place by one person.

  16. Comparison of performance of flat plate and parabolic trough solar collectors in several US cities

    SciTech Connect

    Stromberg, R.P.; Bush, L.D.

    1981-01-01

    One very common use of the flat plate collector is residential water heating. Concentrating thermal collectors have been developed for much higher temperature uses, based on the knowledge that the upper limit on output from the flat plate collector is roughly at the boiling point of water. Total annual outputs are extensively compared. There is a significant variation in relative performance of flat plate and concentrating collectors in different climates. There is a noticeable variation in relative output from winter to summer. In some parts of the United States the weather conditions of winter favor the use of concentrating collectors over flat plate collectors for residential water heating.

  17. Optical and thermal testing of convection reduction mechanisms in a new 1.2X CPC solar collector

    NASA Astrophysics Data System (ADS)

    Carvalho, Maria J.; Collares-Pereira, Manuel; de Oliveira, Joao C.; Mendes, Joao F.; Haeberle, A.; Wittwer, Volker

    1994-09-01

    A new non-evacuated solar collector of the CPC type, developed and manufactured in Portugal, is now commercially available. Its design features are unique and deserve a careful study, both of its optical and of its thermal characteristics. The optics is interesting given the unusual shape and the opportunity to test different convection suppression schemes and determine their impacts on the collector's optical performance. As for the collector's thermal behavior it is very interesting to test how simple (and potential marketable) different convection suppression ideas can improve an already very good collector from the heat loss point of view (FUL equals 4.0 W/( degree(s)C.m2)). In the course of the paper a brief description of the collector is given and testing results are presented for the testing carried out in the following situations: (1) (i) measurement of its optical and thermal performance (instantaneous efficiency curve) measured both in E.W. and N.S. collector orientation (the collector has a very wide acceptance angle allowing it to work in N.S. orientation and, thus, function in a thermosyphon mode like any regular flat plate collector, (ii) measurement of its angular acceptance function; (2) measurement of the instantaneous efficiency curve after the introduction of (i) a thin Teflon high transmissivity film below the glass cover, (ii) transparent insulation of the capillary type, inserted also under the glass cover, (iii) measurement of the acceptance angle function in this last situation. In this paper it is shown that the addition of the film reduces the heat loss coefficient by a factor of 1.3 W/( degree(s)C.m2) and the transparent insulation leads only to an improvement of 1.0 W/( degree(s)C.m2) in that same coefficient.

  18. Performance of solar energy converters: Thermal collectors and photovoltaic cells; Lectures of the Course, Ispra, Italy, November 11-18, 1981

    NASA Astrophysics Data System (ADS)

    Beghi, G.

    The operational principles, performance results, and test and equipment designs for photovoltaic and solar flat plate collector systems are explored, with emphasis given to European programs. Attention is given to solar simulator and outdoor tests for collectors, and to indoor test calibration techniques and reliability testing procedure for photovoltaic cells and modules. The design and operation of the solar simulators at Ispra are described, together with the hybrid solar heating system for the facility and apparatus used for simulating corrosive atmospheres for testing collector panels. Simulation models being validated after development on the basis of data from previous test projects are presented, and current solar cell test programs in Europe are detailed. Finally, standardized solar cell and module and collector testing methodologies being implemented to qualify equipment to be tested in projects run by the Commission of the European Communities are reported. For individual items see A83-40521 to A83-40539

  19. Optical testing of a parabolic trough solar collector by a null screen with stitching

    NASA Astrophysics Data System (ADS)

    Moreno-Oliva, V., I.; Campos-Garcia, M.; Granados-Agustin, F.; Arjona-Pérez, M. J.; Díaz-Uribe, R.; Avendaño-Alejo, M.

    2009-06-01

    In this work we report a method for testing a parabolic trough solar collector (PTSC) based on the null screen principles. For surfaces with symmetry of revolution a cylindrical null screen is used, now, for testing the PTSC we use a flat null screen. The design of the null screen with ellipsoidal spots is described; its image, which is formed by reflection on the test surface, becomes an exact square array of circular spots if the surface is perfect. Any departure from this geometry is indicative of defects on the surface. The flat null screen design and the surface evaluation algorithm are presented. Here the surface is tested in sections and the evaluation of the shape of the surface is performed with stitching method. Results of the evaluation for a square PTSC with 1000 mm by side (F/0.49) are shown.

  20. Analysis of defects on the slopes on a parabolic trough solar collector with null-screens

    NASA Astrophysics Data System (ADS)

    Campos-García, Manuel; Huerta-Carranza, Oliver; Díaz-Uribe, Rufino; Moreno-Oliva, Víctor I.

    2015-09-01

    The null-screen method has been used to test aspheric surfaces, among them the surface of a parabolic trough solar collector (PTSC). This geometrical method measures the slope of the test surface and by a numerical integration procedure the shape of the test surface can be obtained. In this work, through some numerical simulations sinusoidal deformations with different amplitudes and spatial periods are introduced on PTSC surfaces. Then, an analysis of the deformations of the reflected images of a null-screen by the PTSC surface due to defects on the surface is performed. This procedure allows to validate the kind and magnitude of the surface deformations that can be measured with the proposed method. Also, an analysis of the advantages and limitations of the null-screen testing method will be discussed.

  1. Construction and testing of a test stand for solar cells and concentrating collectors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, H.

    1981-11-01

    A hibrid system consisting of photovoltaic cells and parabolic concentrators was built and tested in order to study the possible cost reduction of photovoltaic systems by concentration of sunlight. The test stand comprises four parabolic tracking reflectors, a cooling circuit, electrical and thermodynamical instrumentation and an electrical water pump as a load. The solar cells are mounted in the focal line of the collectors on a cooling channel designed for optimal heat transfer and their uniform illumination is carefully adjusted. The photovoltaic generator delivers electrical energy with 9.3% efficiency at 25 C. In the hybrid regime the thermal efficiency attains 45% at a temperature of 90 C, and the electrical efficiency 6%.

  2. Impact of natural cleaning on the selection of a washing system for solar collectors

    NASA Astrophysics Data System (ADS)

    Kerstein, A.

    1981-04-01

    The desired optical properties (reflectivity, transmissivity, etc.) of solar energy collector surfaces such as mirrors and photovoltaic surfaces are degraded over time by soiling. Cost benefit evaluation of alternative methods for washing the surface or retarding the optical degradation must take into account natural cleaning processes such as precipitation and frost, which impact the scheduling as well as the benefits of washing. A probabilistic method developed to address this question is used to compare truck-mounted versus mirror-mounted washing systems for central receiver plants. The comparison of these systems is shown to be sensitive to the seasonally-varying frequency and effectiveness of natural cleaning processes. The implications of this analysis for such diverse issues as cost/benefit evaluation of soil-retardant mirror coatings and formulation of plant site selection criteria are noted.

  3. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    SciTech Connect

    Ma, R.Y.

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  4. The effect of contact spacing on the efficiency of flat plate solar collector plates

    NASA Astrophysics Data System (ADS)

    Schneider, G. E.; Crha, S.

    1984-01-01

    Rather than use a continuous weld or solder for thermal contact in the attachment of an extended surface to an energy removal tube, attention is given to the use of discontinuous attachment through the uniform distribution of finite regions of contact. This scheme is applied to a solar energy collection system in which it was thought capable of yielding fabrication and reliability improvements. A nondimensional formulation and numerical solution of FEM modeling yields the sensitivity of collector thermal performance to weld-solder joint dimensions. The discontinuous weld is found to significantly degrade system performance in proportion to the fin surface Biot modulus, with the controlling parameter (with respect to weld dimensions) being the perimeter length at the weld location of contact.

  5. Impact of natural cleaning on the selection of a washing system for solar collectors

    SciTech Connect

    Kerstein, A.

    1981-04-01

    The desired optical properties (reflectivity, transmissivity, etc.) of solar energy collector surfaces such as mirrors and photovoltaic surfaces are degraded over time by soiling. Cost-benefit evaluation of alternative methods for washing the surface or retarding the optical degradation must take into account natural cleaning processes such as precipitation and frost, which impact the scheduling as well as the benefits of washing. A probabilistic method developed to address this question is used to compare truck-mounted versus mirror-mounted washing systems for central receiver plants. The comparison of these systems is shown to be sensitive to the seasonally-varying frequency and effectiveness of natural cleaning processes. The implications of this analysis for such diverse issues as cost/benefit evaluation of soil-retardant mirror coatings and formulation of plant site selection criteria are noted.

  6. Comparative evaluation of distributed-collector solar thermal electric power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.

    1978-01-01

    Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.

  7. Modeling of a second-generation solar-driven Rankine air conditioner

    NASA Astrophysics Data System (ADS)

    Denius, M. W.; Batton, W. D.

    1984-07-01

    Ten configurations of a second-generation, solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented. The generated data are also presented. Experimental work was done to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  8. Comparison of the effects of Al2O3 and CuO nanoparticles on the performance of a solar flat-plate collector

    NASA Astrophysics Data System (ADS)

    Munuswamy, Dinesh Babu; Madhavan, Venkata Ramanan; Mohan, Mukunthan

    2015-12-01

    To improve the efficiency of solar flat-plate collectors further, a study had been carried out wherein the conventional working fluid was replaced by nanofluids. A 25-L/day solar flat-plate water heater with collector area of 0.5 {m}^2 has been designed and fabricated. The thermosyphon system of the solar water heater was monitored at 15 locations using T-type thermocouples. Alumina and CuO nanoparticles were synthesized and characterized using Brunauer-Emmett-Teller and X-ray diffraction techniques and dispersed using ultrasonic mechanism. To stabilize the system at an optimum level, the collector is operated with volume fractions of 0.2% and 0.4% of synthesized Al2O3 and CuO nanoparticles mixed with distilled water and used in the solar flat-plate collector. The temperature profile was compared with different volume fractions of the nanoparticles in the flowing medium. Enhanced heat transfer was observed in the solar flat-plate collector using nanoparticles, and hence, it is inferred that addition of nanoparticles improves the efficiency of the solar water heaters. This paper details the temperature profile observed in the collectors, variation of insolation over the day, and change in efficiency both on the primary side (collector) and on the secondary side (storage tank) of the solar water heater.

  9. Indoor test and long-term weathering effects on the thermal performance of the solar energy system (liquid) solar collector. [Marshall Space Flight Center solar test facility and solar simulator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The procedures used and the results obtained during the evaluation test program on a liquid solar collector are presented. The narrow flat plate collector with reflective concentrating mirrors uses water as the working fluid. The double-covered collector weighs 137 pounds and has overall dimensions of about 35" by 77" by 6.75". The test program was conducted to obtain the following information: thermal performance data under simulated conditions, structural behavior under static load, and the effects of long term exposure to natural weathering.

  10. Design and installation of solar heating and hot water systems

    SciTech Connect

    Williams, J.R.

    1983-01-01

    A no-nonsense explanation of information on the use of solar energy for heating, cooling, and producing hot water. The work is both scholarly and practical. Background of high school algebra is the only mathematics expected. Worked examples but no exercises. Contents: Solar radiation. Heating loads. Design and analysis of flat-place liquid-heating collectors. Flat-plate air-heating collectors. Evacuated solar collectors. Solar hot water systems. Solar ponds. Active solar heating and cooling systems.

  11. [Collectors of historical, archeological, and natural science objects at municipal museums in Buenos Aires province, Argentina, during the 1950s].

    PubMed

    Pupio, María Alejandra

    2005-01-01

    Through reference to the creation and expansion of municipal museums in the province of Buenos Aires during the 1950s, the article explores some aspects of how archeological collections are compiled. The collections under study came from private hands, having been gathered by collectors who relinquished them so these museums could be formed. At the same time that these collections became public, the collectors themselves became responsible for them in the role of directors of the new institutes. Within this context, the collectors established institutional relations that allowed them to devise common strategies concerning the receipt, selection, and exhibition of archeological collections. The result was the shaping of a network of solidarity in the southern part of Buenos Aires province.

  12. The US Air Force Academy solar energy research project summary report

    NASA Astrophysics Data System (ADS)

    Cornelius, K. A.

    1980-07-01

    This report summarizes the solar energy research which was conducted by the U.S. Air Force Academy from April 1975 to January 1980. This research consisted of investigations on a retrofit space heating system which was installed on a typical Military Family Housing (MFH) unit. This summary uses a lessons learned and designer tips approach in its discussion of the solar system's operation. This discussion is organized around the many areas of solar technology which were investigated during the course of this project. Those major areas were energy conservation effects, solar collectors, thermal storage, control systems, Thermography studies, performance comparison to a design model, and homeowner and maintenance manual development. A thermal performance summary of the solar system is also presented. The report concludes with numerous recommendations regarding policy initiatives which the Air Force should take to foster conversion to solar technology.

  13. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  14. To develop a dynamic model of a collector loop for purpose of improved control of solar heating and cooling. Final technical report. [TRNSYS code

    SciTech Connect

    Herczfeld, P R; Fischl, R

    1980-01-01

    The program objectives were to (1) assess the feasibility of using the TRNSYS computer code for solar heating and cooling control studies and modify it wherever possible, and (2) develop a new dynamic model of the solar collector which reflects the performance of the collector under transient conditions. Also, the sensitivity of the performance of this model to the various system parameters such as collector time constants, flow rates, turn-on and turn-off temperature set points, solar insolation, etc., was studied. Results are presented and discussed. (WHK)

  15. CONC/11: a computer program for calculating the performance of dish-type solar thermal collectors and power systems

    SciTech Connect

    Jaffe, L. D.

    1984-02-15

    CONC/11 is a computer program designed for calculating the performance of dish-type solar thermal collectors and power systems. It is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. CONC/11 is written in Athena Extended Fortran (similar to Fortran 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers.

  16. CONC/11: A computer program for calculating the performance of dish-type solar thermal collectors and power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    The CONC/11 computer program designed for calculating the performance of dish-type solar thermal collectors and power systems is discussed. This program is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. The CONC/11 is written in Athena Extended FORTRAN (similar to FORTRAN 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers. A user's manual is also provided for this program.

  17. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  18. Study of corrosion in multimetallic systems. Task 2 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect

    Diegle, R B

    1980-04-11

    Corrosion measurements were made on candidate alloys of construction for non-concentrating solar collectors under simulated conditions of collector operation. Materials evaluated were aluminum alloys 1100, 3003, and 6061, copper alloy 122, Type 444 stainless steel, and 1018 plain carbon steel. The solutions used were equivolume mixtures of ethylene glycol and water, and propylene glycol and water. They were used without corrosion inhibitors but with addition of chloride, sulfate, and bicarbonate ions. The influences of dissolved oxygen, solution flow velocity, and heat transfer were evaluated. Corrosion morphologies investigated were general attack, pitting, crevice corrosion, and galvanic corrosion. Experimental results indicated that aluminum alloys can experience severe pitting and crevice corrosion at chloride concentrations approaching 50 ppM. The corrosion rate of copper exceeded about 100 ..mu..m/yr in ethylene glycol solutions and about 80 ..mu..m/yr in propylene glycol solutions. Crevice corrosion was not observed for copper, but severe galvanic corrosion occurred when it was coupled to T444 stainless steel. T444 steel corroded at rates of less than 1 ..mu..m/yr under all exposure conditions. During circulation at 100 C in the presence of air, ethylene glycol solutions acidified because of degradation of the glycol. The initial pH of propylene glycol solutions was already low, about 4.5. The inherent corrosivity of propylene glycol was somewhat less than that of ethylene glycol, although this difference was usually less than a factor of two in measured corrosion rates. It was concluded that he corrosion rates of aluminum alloys and copper were prohibitively high in uninhibited glycol solutions, and that corrosion inhibitors are definitely necessary in operating systems.

  19. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    NASA Astrophysics Data System (ADS)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  20. Thermal performance and stress analyses of the cavity receiver tube in the parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Cao, F.; Li, Y.; Wang, L.; Zhu, T. Y.

    2016-08-01

    A light ray tracing model and a heat transfer model were built to analyse the heat flux distribution and heat transfer in a 1m cavity receiver tube with Parabolic Trough Collectors as the concentrator. The numerical methods were used to simulate the thermal stress and deformation of the receiver tube. The temperature fields of the receiver tube and the thermal stress distribution in the steel tube at the cross section and along the fluid flowing direction were presented. It is obtained from this study that non-uniform heat flux distribution is absorbed at the receiver tube outer surface due to the structure of the cavity receiver tube. Temperature fields in the steel receiver tube at the inlet and the outlet match well with the incident solar radiation. An eccentric circle temperature gradient is observed at cross section of the outlet fluid. The equivalent stress is a complex result of solar heating flux, energy transfer inside the PTC and the fluid and steel characteristics. Highest deformation is 3.1mm at 0.82m. On increasing the fluid mass flow rate, higher fluid mass flow rate results in higher equivalent stress along the absorber tube.

  1. Ammonia thermochemical energy transport in a distributed collector solar thermal power plant

    NASA Astrophysics Data System (ADS)

    Williams, O. M.

    1981-01-01

    A thermochemical energy transport system based on ammonia dissociation/synthesis is shown to have potential for reliable cost-effective operation in a distributed collector solar thermal power plant. Liquid ammonia returned to the central plant from a shaded absorber remains inherently separated from the synthesis gas mixture returned from an exposed absorber, enabling the maintenance of a centralized fluid control. Temporal characteristics of the ammonia-based solar thermochemical absorbers are developed by numerical analysis. Sources of energy loss are examined, and it is shown that flow rates to individual absorbers may cover a 12% range of variation without degradation to the overall energy transport efficiency. Operation of the absorber array is examined under conditions of extreme insolation variation due to a scattered cloud cover. The importance of minimizing the absorber thermal capacity is discussed in relation to the available energy required to restore operation after each cloud period. It is shown that the system is relatively immune to large energy losses in this area, compared to the alternative system where both the pipelines and absorbers must be reheated.

  2. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. )

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  3. Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.

    2015-01-01

    To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.

  4. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    SciTech Connect

    Kenendy, C. E.

    2007-10-10

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  5. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  6. Design data package and operating procedures for MSFC solar simulator test facility

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.

  7. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company.

    PubMed

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad

    2012-01-01

    Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies.

  8. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  9. High performance collectors

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Hozumi, S.; Mitsumata, T.; Yoshino, K.; Aso, S.; Ebisu, K.

    1983-04-01

    Materials and structures used for flat plate solar collectors and evacuated tubular collectors were examined relative to their overall performance to project effectiveness for building heating and cooling and the feasibility of use for generating industrial process heat. Thermal efficiencies were calculated for black paint single glazed, selective surface single glazed, and selective surface double glazed flat plate collectors. The efficiencies of a single tube and central tube accompanied by two side tube collectors were also studied. Techniques for extending the lifetimes of the collectors were defined. The selective surface collectors proved to have a performance superior to other collectors in terms of the average annual energy delivered. Addition of a black chrome-coated fin system to the evacuated collectors produced significant collection efficiency increases.

  10. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems at temperatures of 90 to 100C

    NASA Astrophysics Data System (ADS)

    Allen, J. W.; Schertz, W. W.; Wantroba, A. S.

    1987-03-01

    This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.

  11. A two-dimensional finite-difference solution for the transient thermal behavior of a tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1980-01-01

    A numerical procedure was established using the finite-difference technique in the determination of the time-varying temperature distribution of a tubular solar collector under changing solar radiancy and ambient temperature. Three types of spatial discretization processes were considered and compared for their accuracy of computations and for selection of the shortest computer time and cost. The stability criteria of this technique were analyzed in detail to give the critical time increment to ensure stable computations. The results of the numerical analysis were in good agreement with the analytical solution previously reported. The numerical method proved to be a powerful tool in the investigation of the collector sensitivity to two different flow patterns and several flow control mechanisms.

  12. Modeling the absorption behavior of solar thermal collector coatings utilizing graded alpha-C:H/TiC layers.

    PubMed

    Gruber, D P; Engel, G; Sormann, H; Schüler, A; Papousek, W

    2009-03-10

    Wavelength selective coatings are of common use in order to enhance the efficiency of devices heated by radiation such as solar thermal collectors. The use of suitable materials and the optimization of coating layer thicknesses are advisable ways to maximize the absorption. Further improvement is achievable by embedding particles in certain layers in order to modify material properties. We focus on optimizing the absorption behavior of a solar collector setup using copper as substrate, a layer of amorphous hydrogenated carbon with embedded titanium carbide particles (a-C:H/TiC), and an antireflection coating of amorphous silicon dioxide (aSiO(2)). For the setup utilizing homogeneous particle distribution, a relative absorption of 90.98% was found, while inhomogeneous particle embedding yielded 98.29%. These results are particularly interesting since until now, absorption of more than 95% was found only by using embedded Cr but not by using the more biocompatible Ti.

  13. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  14. Need for and evaluation of hail protection devices for solar flat plate collectors. Final report, June 1978-March 1980

    SciTech Connect

    Armstrong, P R; Cox, M; de Winter, F

    1980-03-01

    A brief summary of the hail risk work previously done under this contract is given, and a summary evaluation of hail impact resistance standards currently being developed is presented. Simulated hail impact test data, field data, and the impact resistance of commercially available glazings are discussed. The use of screens for protection against hail and the threat of vandalism to solar flat plate collectors are discussed. (WHK)

  15. Design of a single flat null-screen for testing a parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Moreno-Oliva, Víctor Iván; Campos-García, Manuel; Román-Hernández, Edwin; Santiago-Alvarado, Agustín

    2014-11-01

    We present a null-screen design for testing the shape quality of the reflecting surface of a parabolic trough solar collector (PTSC). This technique is inexpensive, the whole surface is tested at once, and it is easy to implement. For this, we propose the design of a flat null-screen perpendicular to the optical axis of the PTSC in such a way that it allows testing of the full aperture; we compute the caustic associated with the reflected light rays on the desired surface and analyze the parameters that determine the null-screen dimensions. Additionally, we perform a numerical simulation to analyze the accuracy of the method by introducing random displacement errors into the measured data. Accuracies >0.35 mrad were found to evaluate the quality of surfaces with this method. The errors in the determination of the coordinates of the centroids of the reflected images must be measured with an accuracy >0.5 pixels, and the errors in the coordinates of the spots of the null-screen must be <0.5 mm.

  16. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  17. Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications.

    PubMed

    Singh, Priyam; Shahi, Praveen Kumar; Singh, Sunil Kumar; Singh, Akhilesh Kumar; Singh, Manish Kumar; Prakash, Rajiv; Rai, Shyam Bahadur

    2017-01-05

    We herein demonstrate novel inorganic-organic hybrid nanoparticles (HNPs) composed of inorganic NPs, NaY0.78Er0.02Yb0.2F4, and an organic β-diketonate complex, Eu(TTA)3Phen, for energy harvesting applications. Both the systems maintain their core integrity and remain entangled through weak interacting forces. HNPs incorporate the characteristic optical behaviour of both the systems i.e. they give an intense red emission under UV excitation, due to Eu(3+) in organic complexes, and efficient green upconversion emission of Er(3+) in inorganic NPs for NIR (980 nm) excitation. However, (i) an energy transfer from Er(3+) (inorganic NPs) to Eu(3+) (organic complex) under NIR excitation, and (ii) an increase in the decay time of (5)D0 → (7)F2 transition of Eu(3+) for HNPs as compared to the Eu(TTA)3Phen complex, under different excitation wavelengths, are added optical characteristics which point to an important role of the interface between both the systems. Herein, the ultra-small size (6-9 nm) and spherical shape of the inorganic NPs offer a large surface area, which improves the weak interaction force between both the systems. Furthermore, the HNPs dispersed in the PMMA polymer have been successfully utilized for luminescent solar collector (LSC) applications.

  18. Prevention of thermal buildup by controlled exterior means and solar energy collectors

    SciTech Connect

    Nevins, R.L.

    1981-09-01

    An illustrative embodiment of the invention discloses a solar energy system for a building. A plurality of interlocked thermally conductive flat solar energy collecting plates form a portion of the building's surface. Each of these plates has a web which is generally perpendicular to the web surface. This web supports a suitable tube which is received in notched rafters. The tube contains working fluid which absorbs thermal energy collected by the plates and transfers it to storage or to air flowing in a duct which is formed in the building or structure between a sheet which is attached to the opposite side of the rafters and the flat solar collecting plates which provide one surface of the building.

  19. Discrimination and quantification of contamination and implanted solar wind in Genesis collector shards using grazing incidence synchrotron x-ray techniqies: Initial results

    SciTech Connect

    Kitts, K.; Sutton, S.; Eng, P.; Ghose, S.; Burnett, D.

    2006-12-13

    Grazing incidence X-ray fluorescence is a non-destructive technique that can differentiate the embedded solar wind component from surface contamination and collector background in the Genesis shards. Initial solar Fe abundance in D30554 is 8 x 10{sup 12}/cm{sup 2}. Accurate knowledge of the composition of the Sun provides a baseline, which allows an understanding of how the solar system has evolved over time and how solar processes and solar wind mechanics behave. Unfortunately, the errors in photospheric abundances are too large for many planetary science problems and this hampers our understanding of these different processes. Analyses of solar wind implanted in meteorites or lunar soils have provided more precise data but alteration processes on these bodies may complicate such information. In response to this need for pristine solar wind samples, NASA developed and launched the Genesis Probe. Unfortunately, the probe smashed into the Utah desert shattering the 300 collector plates into 15,000+ pieces all of which are now coated in a both a fine terrestrial dust and Si and Ge powder from the disrupted collectors themselves. The solar wind penetration depth is 100-200 nm and the superposed contamination layers are typically 40-50 nm. Stringent cleaning regimes have the potential of removing the solar wind itself. The best solution is to have sufficient spatial resolution to separately analyze the surface contamination and penetrated solar wind. To that end, three Genesis collector array shards and their appropriate flight spares were characterized via grazing incidence x-ray fluorescence and x-ray reflectivity. The goals were (1) to evaluate the various cleaning methods used to eliminate contamination, (2) to identify the collector substrates most suited for this technique, (3) to determine whether the solar wind signature could be deconvolved from the collector background signature, and (4) to measure the relative abundances of Ca to Ge in the embedded solar

  20. Energy efficient lumber dry kiln using solar collectors and refrigeration system

    SciTech Connect

    Chen, P.Y.S.; Helmer, W.A.; Rosen, H.N.

    1984-02-21

    Method and apparatus to control temperature and humidity in drying a material, for example green lumber, including a chamber to receive the lumber in stacked relation with air flow space between individual lumber pieces, a refrigeration system having a refrigerant compressor, evaporator and condenser where the condenser is disposed within the chamber, blower means to circulate air from the condenser over and through a stack of lumber, conduit means to communicate with the chamber for emission of air passing over the stack of lumber where the evaporator means is disposed to selectively receive the air flowing to the first conduit, solar cell means to receive radiant heat and having an inlet communicating with the first conduit and an outlet communicating with the chamber, third chamber means communicating with the first conduit and the chamber, damper means to selectively proportion air from the first conduit to the second and third conduits, controller means responsive to the temperature of the chamber to operate the damper to select the portions of the air stream from the first conduit supplied to the second and third conduits and for means to supply air from the chamber to the first conduit.