Science.gov

Sample records for air sparging remediation

  1. Physical modeling of air flow during air sparging remediation.

    PubMed

    Hu, Liming; Wu, Xiaofeng; Liu, Yan; Meegoda, Jay N; Gao, Shengyan

    2010-05-15

    Air sparging (AS) is one of the most efficient techniques for remediating saturated soils and groundwater contaminated with volatile organic compounds. A series of physical modeling tests for different sizes of porous media under varied injection pressure were conducted to investigate the effect of particle size and air injection pressure on size and shape of the zone of influence (ZOI). The test results show that ZOI can be expressed by two components: the horizontal expansion due to pneumatic fracture or preferential intrusion around the injection point and the angle of ZOI which is the angle between the vertical line and the boundary of ZOI. There exists a limited angle of ZOI for each type of porous media. The measured minimum and maximum air injection pressures in 1g tests are compared with corresponding theoretical values, and it is found that the measured minimum injection pressure is slightly lower than the theoretical value, while the measured maximum injection pressure is much higher than the theoretical maximum injection pressure. Centrifugal test results confirmed nonapplicability of theoretical maximum injection pressure to air sparging design. All of the above provide valuable information for design and theoretical modeling of air sparging for groundwater remediation.

  2. [Study on the groundwater petroleum contaminant remediation by air sparging].

    PubMed

    Wang, Zhi-Qiang; Wu, Qiang; Zou, Zu-Guang; Chen, Hong; Yang, Xun-Chang; Zhao, Ji-Chu

    2007-04-01

    The groundwater petroleum contaminant remediation effect by air sparging was investigated in an oil field. The results show that the soil geological situation has great influence on the air distribution, and the shape of air distribution is not symmetrical to the air sparging (AS) well as axis. The influence distance in the left of AS well is 6 m, and only 4 m in the right. The petroleum removal rate can reach 70% in the zone with higher air saturation, but only 40% in the zone with lower air saturation, and the average petroleum removal rate reaches 60% in the influence zone for 40 days continuous air sparging. The petroleum components in groundwater were analyzed by GC/MS (gas chromatogram-mass spectrograph) before and after experiments, respectively. The results show that the petroleum removal rate has relationship with the components and their properties. The petroleum components with higher volatility are easily removed by volatilization, but those with lower volatility are difficult to remove, so a tailing effect of lingering residual contaminant exists when the air sparging technology is adopted to treat groundwater contaminated by petroleum products.

  3. Advanced fuel hydrocarbon remediation national test location - in situ air sparging system (revised)

    SciTech Connect

    Health, J.; Lory, E.

    1997-03-01

    Air sparging is the process of injecting clean air directly into an aquifer for remediation of contaminated groundwater. For removing contaminants, air sparging relies on two basic mechanisms working either alone or in tandem: biodegradation and volatilization. The objective of air sparging is to force air through contaminated aquifer materials to provide oxygen for bioremediation and/or to strip contaminants out of the aquifer.

  4. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    PubMed

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  5. Air distribution and size changes in the remediated zone after air sparging for soil particle movement.

    PubMed

    Tsai, Yih-Jin

    2008-10-30

    In an unconsolidated porous medium, soil particles can be mobilized by physical perturbation. In model systems of fluids flowing over spherical particles attached to flat surfaces, the hydrodynamic shear force depends on the fluid viscosity, particle radius, and flow velocity. Soil particles can be reasonably expected to be transported by flowing water during air sparging when the particle-size distribution does not fit the densest possible particle arrangement. If soil particles are transported during air sparging, then the distribution of the porosity and reservoir permeability will change. The remediated zone changes because of the changes in soil characteristics. This study applied some mathematical models to elucidate the mobilization process of soil particles during in situ air sparging. The changes in the characteristics of the soil and the swept volume of injected air during air sparging were also investigated. The results demonstrated that particle movement reduced the radius of influence (ROI) and the swept volume of injected air. In this case study, the maximum reducing rates in ROI and the swept volume were 24% and 26% for the zone where the gas saturation exceeded 10%.

  6. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.

    PubMed

    Rahbeh, M E; Mohtar, R H

    2007-05-01

    The design and operation of air sparging and soil vapor extraction (AS/SVE) remediation systems remains in large an art due to the absence of reliable physically based models that can utilize the limited available field data. In this paper, a numerical model developed for the design and operation of air sparging and soil vapor extractions systems was used to simulate two field case studies. The first-order mass transfer kinetics were incorporated into the model to account for contaminant mass transfer between the water and air (stripping), NAPL and water (dissolution), NAPL and air (volatilization), and water and soil (sorption/desorption), the model also accounted for soil heterogeneity. Benzene, toluene, ethyl benzene and xylenes (BTEX) were the contaminants of concern in both case studies. In the second case study, the model was used to evaluate the effect of pulsed sparging on the removal rate of BTEX compounds. The pulsed sparging operation was approximated assuming uniform contaminant redistribution at the beginning of the shut-off period. The close comparison between the observed and simulated contaminant concentration in the aqueous phase showed that the approximation of the pulsed sparging operation yielded reasonable prediction of the removal process. Field heterogeneity was simulated using Monte Carlo analysis. The model predicted about 80-85% of the contaminant mass was removed by air-water mass transfer, which was similar to the average removal obtained by Monte Carlo analysis. The analysis of the removal/rebound cycles demonstrated that removal rate was controlled by the organic-aqueous distribution coefficient K(oc). Due to the lack of site-specific data, the aerobic first-order biodegradation coefficients (k(bio)) were obtained from a literature survey, therefore, uncertainty analysis of the k(bio) was conducted to evaluate the contribution of the aerobic biodegradation to total contaminant removal. Results of both case studies showed that

  7. Air Sparging Decision Tool

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  8. Predictive models and airflow distribution associated with the zone of influence (ZOI) during air sparging remediation.

    PubMed

    Song, Xinglong; Zhao, Yongsheng; Wang, Hefei; Qin, Chuanyu

    2015-12-15

    Laboratory two-dimensional airflow visualisation model tests were conducted to assess the effect of particle size and air injection pressure on airflow patterns, physical characteristics of the zone of influence (ZOI) and the airflow rate distribution within the ZOI. The results indicate that the pattern transitions from chamber flow to channelized flow and then to bubbly flow occurred at effective particle sizes (D10) in the ranges 0.22-0.42 mm and 1.42-2.1mm, respectively. The ZOI is shaped like a conical frustum, and there exists a "stable ZOI" for each type of porous medium in channelised and bubbly flow during sparging tests. A formula for calculating the size of the ZOI radius was established based on the conical frustum-shaped results and the "stable ZOI", and comparing the calculated results with field data demonstrated that the formula has application value, except in large-scale heterogeneous aquifers. The distribution of the airflow rate within the ZOI, which is quite uneven, varies from the maximum rate (which occurred just above the sparger) to zero with the increase of the lateral distance from the sparger. Moreover, the airflow distribution can be fitted using a unified dimensionless Gaussian function under different sparging pressures for a given porous medium. All of the results described above provide valuable information for the design and theoretical modelling of air sparging for groundwater remediation.

  9. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  10. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.

    PubMed

    Mohamed, A M I; El-menshawy, Nabil; Saif, Amany M

    2007-05-01

    Pollutants in the form of non-aqueous phase liquids (NAPLs), such as petroleum products, pose a serious threat to the soil and groundwater. A mathematical model was derived to study the unsteady pollutant concentrations through water saturated contaminated soil under air sparging conditions for different NAPLs and soil properties. The comparison between the numerical model results and the published experimental results showed acceptable agreement. Furthermore, an experimental study was conducted to remove NAPLs from the contaminated soil using the sparging air technique, considering the sparging air velocity, air temperature, soil grain size and different contaminant properties. This study showed that sparging air at ambient temperature through the contaminated soil can remove NAPLs, however, employing hot air sparging can provide higher contaminant removal efficiency, by about 9%. An empirical correlation for the volatilization mass transfer coefficient was developed from the experimental results. The dimensionless numbers used were Sherwood number (Sh), Peclet number (Pe), Schmidt number (Sc) and several physical-chemical properties of VOCs and porous media. Finally, the estimated volatilization mass transfer coefficient was used for calculation of the influence of heated sparging air on the spreading of the NAPL plume through the contaminated soil.

  11. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.

    PubMed

    Yang, Xiaomin; Beckmann, Dennis; Fiorenza, Stephanie; Niedermeier, Craig

    2005-09-15

    Recent laboratory-scale studies strongly suggested an advantage to operating air-sparging systems in a pulsed mode; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale pulsed air-sparging system during a short-term pilot test and during long-term system operation. The air-sparging system consisted of 32 sparging points and had been previously operated in a continuous mode for two years before the field study was performed. The field study used instruments with continuous data logging capabilities to monitor the dynamic responses of groundwater and soil vapor parameters to air injection. The optimum pulsing frequency was based on the evidence that the hydrocarbon volatilization and oxygen dissolution rates dramatically dropped after the air-sparging system reached steady state. The short-term pilot test results indicated a substantial increase in hydrocarbon volatilization and biodegradation in pulsed operation. On the basis of the results of the pilottest, the air-sparging system was set to operate in a pulsed mode at an optimum pulsing frequency. Operation parameters were collected 2, 8, and 12 months after the start of the pulsed operation. The long-term monitoring results showed thatthe pulsed operation increased the average hydrocarbon removal rate (kg/day) by a factor of up to 3 as compared to the previous continuous operation. The pulsed air sparging has resulted in higher reduction rates of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) than were observed during the continuous operation. Among BTEX, benzene's reduction rate was the highest during the pulsed air-sparging operation. PMID:16201659

  12. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.

    PubMed

    Yang, Xiaomin; Beckmann, Dennis; Fiorenza, Stephanie; Niedermeier, Craig

    2005-09-15

    Recent laboratory-scale studies strongly suggested an advantage to operating air-sparging systems in a pulsed mode; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale pulsed air-sparging system during a short-term pilot test and during long-term system operation. The air-sparging system consisted of 32 sparging points and had been previously operated in a continuous mode for two years before the field study was performed. The field study used instruments with continuous data logging capabilities to monitor the dynamic responses of groundwater and soil vapor parameters to air injection. The optimum pulsing frequency was based on the evidence that the hydrocarbon volatilization and oxygen dissolution rates dramatically dropped after the air-sparging system reached steady state. The short-term pilot test results indicated a substantial increase in hydrocarbon volatilization and biodegradation in pulsed operation. On the basis of the results of the pilottest, the air-sparging system was set to operate in a pulsed mode at an optimum pulsing frequency. Operation parameters were collected 2, 8, and 12 months after the start of the pulsed operation. The long-term monitoring results showed thatthe pulsed operation increased the average hydrocarbon removal rate (kg/day) by a factor of up to 3 as compared to the previous continuous operation. The pulsed air sparging has resulted in higher reduction rates of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) than were observed during the continuous operation. Among BTEX, benzene's reduction rate was the highest during the pulsed air-sparging operation.

  13. Factors affecting air sparging remediation systems using field data and numerical simulations.

    PubMed

    Benner, Michael L; Mohtar, Rabi H; Lee, Linda S

    2002-12-01

    Field data from five air sparging sites were used to assess the effect of several soil, contaminant, and air sparging system factors on the removal time and associated costs required to reach specified clean-up criteria. Numerical simulations were also performed to better assess the field data and to expand the data sets beyond the five field sites. Ten factors were selected and evaluated individually over a range of values based on information from practitioners and the literature. Trends in removal time and removal cost to reach a specified clean-up criterion were analyzed to ascertain the conditions controlling contaminant removal with variations in each factors' value. A linear sensitivity equation was used to quantify system dynamics controlling the observed contaminant removal trends for each factor. Factors found most critical across all field sites in terms of removal time and/or cost were contaminant type, sparge pulsing schedule, number of wells, maximum biodecay rate, total soil porosity, and aquifer organic carbon content. Factors showing moderate to low effect included the depth of the sparge point below the water table, air injection rate/pressure, horizontal air conductivity, and anisotropy ratio. At each field site, subsurface coverage of sparged air, sparged air residence time, contaminant equilibrium in the system, contaminant phase distribution, oxygen availability to microbes, and contaminant volatility seem to control the system responses and were affected by one or more of the 10 factors evaluated.

  14. In-Situ Remediation of Mixed Radioactive Tank Waste, Via Air Sparging and Poly-Acrylate Solidification

    SciTech Connect

    Farnsworth, R.K.; Edgett, S.M.; Eaton, D.L.

    2007-07-01

    This paper describes remediation activities performed in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) on an underground storage tank (UST) from the Idaho National Laboratory's Test Area North (TAN) complex. The UST had been used to collect radioactive liquid wastes from and for the TAN evaporator. Recent analyses had found that the residual waste in Tank V-14 had contained quantities of tetrachloroethylene (PCE) in excess of F001 treatment standards. In addition, the residual waste in Tank V-14 was not completely solidified. As a result, further remediation and solidification of the waste was required before the tank could be properly disposed of at the Idaho CERCLA Disposal Facility (ICDF). Remediation of the PCE-contaminated waste in Tank V-14 was performed by first adding sufficient water to fluidize the residual waste in the tank. This was followed by high-volume, in-situ air sparging of the fluidized waste, using air lances that were inserted to the bottom of V-14. The high-volume air sparging removed residual PCE from the fluidized waste, collecting it on granular activated carbon filters within the off-gas system. The sparged waste was then solidified by educting large-diameter crystals of an acrylic acrylate resin manufactured by WaterWorks America{sup TM} into the fluidized waste, via the air-sparging lances. To improve solidification, the air-sparging lances were rotated during the eduction step, while continuing to provide high-volume air flow into the waste. Eduction was continued until the waste had solidified sufficiently to not allow for further eduction of WaterWorks{sup TM} crystals into the waste. The tank was then disposed of at the ICDF, with the residual void volume in the tank filled with cement. (authors)

  15. Air-Based Remediation Workshop - Section 4 In Situ Air Sparging

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  16. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  17. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  18. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.

    PubMed

    Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang

    2005-01-01

    Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  19. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction.

    PubMed

    Qin, Chuan-Yu; Zhao, Yong-Sheng; Su, Yan; Zheng, Wei

    2013-02-01

    A two-dimensional laboratory sand tank was installed to study the remediation efficiency of surfactant-enhanced air sparging (-SEAS) coupled with soil vapor extraction (SVE) in nonaqueous phase liquid (NAPL) polluted sites. During initial stages of remediation, it was more reasonable to use conventional air sparging coupled with SVE. When most free NAPLs were removed and contaminant removal rate was maintained at a relatively low level, surfactant was added to the groundwater. During enhanced remediation, lower interfacial tension caused residual NAPLs in the porous media to slightly migrate, making the downstream contaminant concentration somewhat higher. The polluted area, however, was not more enlarged than before. The decrease in surface tension resulted in increased air saturation in the groundwater and the extent of the air influence zone. After 310 hours, 78.7% of the initial chlorobenzene mass had volatilized, 3.3% had migrated out of the sand profile, 17.5% was in the vadose zone, and 0.5% remained in the groundwater, thus revealing that SEAS/SVE can effectively improve the remediation of NAPL polluted sites.

  20. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  1. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill.

    PubMed

    Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations.

  2. Centrifugal study of zone of influence during air-sparging.

    PubMed

    Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng

    2011-09-01

    Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.

  3. Performance of air sparging systems: a review of case studies.

    PubMed

    Bass, D H; Hastings, N A; Brown, R A

    2000-02-25

    Fluor Daniel GTI (now IT Corporation) has compiled a database of 49 completed in-situ air sparging case studies. Air sparging is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination in groundwater and saturated zone soil. The air sparging database was compiled to address questions regarding the effectiveness and permanence of air sparging, and to provide predictive indicators of air sparging success to aid in optimization of existing and future air sparging systems. In each case study, groundwater concentrations were compared before sparging was initiated, just before sparging was terminated, and in the months following shutdown of the sparging system. The case studies included both chlorinated solvents and petroleum hydrocarbon contamination, and covered a wide range of soil conditions and sparge system parameters. In many cases, air sparging achieved a substantial and permanent decrease in groundwater concentrations. Successful systems were achieved with both chlorinated and petroleum contamination, both sandy and silty soils, and both continuous and pulsed flow sparging. In other cases, however, a significant rebound of groundwater concentrations was observed after sparging was terminated. Rebound sometimes required 6 to 12 months to develop fully. Rebound was more frequently observed at sites contaminated with petroleum hydrocarbons than with chlorinated solvents. Petroleum-contaminated sites were more likely to rebound when initial groundwater contamination levels were high enough to suggest the presence of LNAPL or a smear zone of residual LNAPL. Rebound at petroleum sites appeared to be minimized by a high density of sparge wells addressing the entire source area and a high sparge air injection rate. In some cases, rebound appeared to be related to a rising water table.

  4. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.

    PubMed

    Schubert, Michael; Schmidt, Axel; Müller, Kai; Weiss, Holger

    2011-02-01

    A common approach for remediation of groundwater contamination with volatile organic compounds (VOCs) is contaminant stripping by means of in situ air sparging (IAS). For VOC stripping, pressurized air is injected into the contaminated groundwater volume, followed by the extraction of the contaminant-loaded exhaust gas from the vadose soil zone and its immediate on-site treatment. Progress assessment of such remediation measure necessitates information (i) on the spatial range of the IAS influence and (ii) on temporal variations of the IAS efficiency. In the present study it was shown that the naturally occurring noble gas radon can be used as suitable environmental tracer for achieving the related spatial and temporal information. Due to the distinct water/air partitioning behaviour of radon and due to its straightforward on-site detectability, the radon distribution pattern in the groundwater can be used as appropriate measure for assessing the progression of an IAS measure as a function of space and time. The presented paper discusses both the theoretical background of the approach and the results of an IAS treatment accomplished at a VOC contaminated site lasting six months, during which radon was applied as efficiency indicator.

  5. FIELD TEST OF AIR SPARGING COUPLED WITH SOIL VAPOR EXTRACTION

    EPA Science Inventory

    A controlled field study was designed and conducted to assess the performance of air sparging for remediation of petroleum fuel and solvent contamination in a shallow (3-m deep) groundwater aquifer. Sparging was performed in an insolation test cell (5 m by 3 m by 8-m deep). A soi...

  6. Hydrogeo-chemical impacts of air sparging remediation on a semi-confined aquifer: evidences from field monitoring and modeling.

    PubMed

    Fan, W; Yang, Y S; Lu, Y; Du, X Q; Zhang, G X

    2013-01-01

    Air sparging (AS) was explored for remediation of a petroleum contaminated semi-confined groundwater system in NE China. Physical, hydro-chemical and hydraulic behaviors in subsurface environment during AS were investigated with support of modeling to understand the hydrogeo-chemical impacts of AS on the aquifer. The responses of groundwater, dissolved oxygen and temperature indicated that the radius of influence of AS was up to 8-9 m, and a 3D boundary of the zone of influence (ZOI) was accordingly obtained with volume of 362 m(3). Water mounding unlike normal observations was featured by continuous up-lift and blocked dissipation. AS induced water displacement was calculated showing no obvious spreading of contaminant plume under this AS condition. Slug tests were employed before and after AS to reveal that the physical perturbation led to sharp increase in permeability and porosity. Modeling indicated that the regional groundwater flow field was not affected by AS except the physical perturbation in ZOI. Hydro-chemically increase of pH and Eh, and reduction of TDS, electrical conductivity and bicarbonate were observed in ZOI during AS. PHREEQC modeling inferred that these chemical phenomena were induced by the inorganic carbon transfer during air mixing.

  7. Air sparging of organic compounds in groundwater

    SciTech Connect

    Hicks, P.M.

    1994-12-31

    Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ``packing``. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel.

  8. Air sparging in low permeability soils

    SciTech Connect

    Marley, M.C.

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.

  9. Conceptual air sparging decision tool in support of the development of an air sparging optimization decision tool

    SciTech Connect

    1995-09-01

    The enclosed document describes a conceptual decision tool (hereinafter, Tool) for determining applicability of and for optimizing air sparging systems. The Tool was developed by a multi-disciplinary team of internationally recognized experts in air sparging technology, lead by a group of project and task managers at Parsons Engineering Science, Inc. (Parsons ES). The team included Mr. Douglas Downey and Dr. Robert Hinchee of Parsons ES, Dr. Paul Johnson of Arizona State University, Dr. Richard Johnson of Oregon Graduate Institute, and Mr. Michael Marley of Envirogen, Inc. User Community Panel Review was coordinated by Dr. Robert Siegrist of Colorado School of Mines (also of Oak Ridge National Laboratory) and Dr. Thomas Brouns of Battelle/Pacific Northwest Laboratory. The Tool is intended to provide guidance to field practitioners and environmental managers for evaluating the applicability and optimization of air sparging as remedial action technique.

  10. Use of combined air sparging and soil vacuum extraction (AS/SVE) and groundwater recovery and treatment as remedial alternatives for dissolved DNAPL recovery

    SciTech Connect

    Sturdivant, R. Jr.; Fulton, G.A. Jr.; Bains, F.E.

    1995-10-01

    Corrective action has been implemented to address a dissolved dense non-aqueous phase liquid (DNAPL) plume in the vicinity of a former waste impoundment at the Paxon Polymer Company facility, located north of Baton Rouge, Louisiana. Assessment activities focused on the characterization of the geologic and hydrologic properties of the sediments underlying the area of investigation and the impact of the dissolved DNAPL plume to the soils and groundwater. Geologic characterization revealed that the facility is underlain by Quaternary age sediments consisting of mixtures of fine-grained sands, silt, and clay. Two hydrologic units were identified within the shallow sediments which are referred to as the Upper Permeable Zone and Second Permeable Zone. The investigation focused on the impacted soils and groundwater of the Upper and Second Permeable Zones. The Upper and Second Permeable Zones were characterized hydrologically to determine the most applicable remedial alternative for addressing the dissolved DNAPL plume. Pilot tests consisting of soil vacuum extraction (SVE), combined air sparging with SVE (AS/SVE), and groundwater recovery were performed. Evaluation of these remedial technology alternatives resulted in the selection of the combined AS/SVE system alternative for the Upper Permeable Zone and the groundwater recovery alternative for the Second Permeable Zone. Recovered off-gas from the combined AS/SVE treatment system from the Upper Permeable Zone is treated through use of a granular activated carbon unit, while recovered groundwater form the Second Permeable Zone is treated by use of a low-profile air stripper.

  11. Estimating the change of porosity in the saturated zone during air sparging.

    PubMed

    Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih

    2006-01-01

    Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.

  12. Existing air sparging model and literature review for the development of an air sparging optimization decision tool

    SciTech Connect

    1995-08-01

    The objectives of this Report are two-fold: (1) to provide overviews of the state-of-the-art and state-of-the-practice with respect to air sparging technology, air sparging models and related or augmentation technologies (e.g., soil vapor extraction); and (2) to provide the basis for the development of the conceptual Decision Tool. The Project Team conducted an exhaustive review of available literature. The complete listing of the documents, numbering several hundred and reviewed as a part of this task, is included in Appendix A. Even with the large amount of material written regarding the development and application of air sparging, there still are significant gaps in the technical community`s understanding of the remediation technology. The results of the literature review are provided in Section 2. In Section 3, an overview of seventeen conceptual, theoretical, mathematical and empirical models is presented. Detailed descriptions of each of the models reviewed is provided in Appendix B. Included in Appendix D is a copy of the questionnaire used to compile information about the models. The remaining sections of the document reflect the analysis and synthesis of the information gleaned during the literature and model reviews. The results of these efforts provide the basis for development of the decision tree and conceptual decision tool for determining applicability and optimization of air sparging. The preliminary decision tree and accompanying information provided in Section 6 describe a three-tiered approach for determining air sparging applicability: comparison with established scenarios; calculation of conceptual design parameters; and the conducting of pilot-scale studies to confirm applicability. The final two sections of this document provide listings of the key success factors which will be used for evaluating the utility of the Decision Tool and descriptions of potential applications for Decision Tool use.

  13. Air sparging/high vacuum extraction to remove chlorinated solvents in groundwater and soil

    SciTech Connect

    Phelan, J.M.; Gilliat, M.D.

    1998-11-01

    An air sparging and high vacuum extraction was installed as an alternative to a containment pump and treat system to reduce the long-term remediation schedule. The site is located at the DOE Mound facility in Miamisburg, Ohio, just south of Dayton. The air sparging system consists of 23 wells interspersed between 17 soil vapor extraction wells. The SVE system has extracted about 1,500 lbs of VOCs in five months. The air sparging system operated for about 6 weeks before shutdown due to suspected biochemical fouling. Technical data are presented on the operating characteristics of the system.

  14. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.

    PubMed

    Braida, W J; Ong, S K

    2001-10-12

    Air sparging in conjunction with soil vapor extraction is one of many technologies currently being applied for the remediation of groundwater contaminated with volatile organic compounds (VOCs). Mass transfer at the air-water interface during air sparging is affected by various soil and VOC properties. In this study with a single air-channel apparatus, mass transfer of VOCs was shown to occur within a thin layer of saturated porous media next to the air channel. In this zone, the VOCs were found to rapidly deplete during air sparging resulting in a steep concentration gradient while the VOC concentration outside the zone remained fairly constant. The sizes of the mass transfer zone were found to range from 17 to 41 mm or 70d(50) and 215d(50) (d(50)=mean particle size) for low organic carbon content media (<0.01% OC). The size of the mass transfer zone was found to be proportional to the square root of the aqueous diffusivity of the VOC, and was affected by the mean particle size, and the uniformity coefficient. Effects of the volatility of the VOCs as represented by the Henry's law constants and the airflow rates on the mass transfer zone were found to be negligible but VOC mass transfer from air-water interface to bulk air phase seems to play a role. A general correlation for predicting the size of the mass transfer zone was developed. The model was developed using data from nine different VOCs and verified by two other VOCs. The existence of the mass transfer zone provides an explanation for the tailing effect of the air phase concentration under prolonged air sparging and the rebound in the VOC air phase concentration after the sparging system is turned off.

  15. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    SciTech Connect

    Roth, R.J.; Bianco, P.; Kirshner, M.; Pressly, N.C.

    1996-12-31

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes.

  16. Field and numerical analysis of in-situ air sparging: a case study.

    PubMed

    Benner, M L; Stanford, S M; Lee, L S; Mohtar, R H

    2000-02-25

    An in-situ air sparging operation was used to remediate the sandy subsurface soils and shallow groundwater under a drum storage site near Chicago, IL, where either periodic or random spillage of a light non-aqueous phase liquid (LNAPL) occurred between 1980 and 1987. Both field measurements and model simulations using commercially available computer software suggested that microbial degradation was the most significant contributor to the removal of contaminant mass. Toluene, ethylbenzene and total xylenes (TEX), which were of major concern with regards to reaching clean-up criteria at the site, were observed to decline by 88% in concentration. Furthermore, up to 97% of the total mass removed through microbial degradation consisted of TEX. Of the total contaminant spill, up to 23% of initial organic chemical mass was removed through microbial degradation compared to less than 6% by physical stripping. Greater loss to microbial degradation is most likely attributed to the relatively low air injection rate used during the course of the air sparging remediation. Evaluation of air sparging at the site using model simulations supported this analysis by estimating 140 and 620 kg of total contaminant mass being removed through volatilization and biodegradation, respectively. An evaluation of several system design parameters using model simulations suggested that only the type of sparging operation (i.e. pulsed or continuous) was significant in terms of total contaminant removal time, while both the sparging operation and air injection rate were significant in terms of removal of a critical species, total xylenes.

  17. PULSED AIR SPARGING IN AQUIFERS CONTAMINATED WITH DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was ...

  18. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia.

    PubMed

    Johnston, C D; Rayner, J L; Briegel, D

    2002-11-01

    In situ air sparging has the potential to augment the removal of nonaqueous phase liquid (NAPL) contaminants in soil vapour extraction (SVE) systems when the NAPL is present in the capillary fringe or below the water table. NAPL removal can also be enhanced from above the water table by improving air access. Results are presented from a pilot-scale field trial aimed at evaluating the performance of such a remediation strategy where in situ air sparging was used in conjunction with a soil vapour extraction system to remove weathered gasoline NAPL from an unconfined sandy aquifer. A simple analysis that partitions extracted soil vapour between air injected through the sparge well and air drawn from the atmosphere across the soil surface, together with petroleum hydrocarbon concentrations in the extracted soil vapour, was used to interpret the effectiveness of air sparging. The composition and mass of the NAPL in the aquifer were also monitored along with observations on the distribution of air in the aquifer. Results showed that sparged air constituted 42% of the extracted soil vapour but contributed the majority of the petroleum hydrocarbons removed. For the first 5 days of sparging, hydrocarbon concentrations in the sparged air were in equilibrium with the NAPL in the aquifer leading to total petroleum hydrocarbon concentrations in the combined system being three to four times greater than for soil vapour extraction alone. Petroleum hydrocarbon concentrations in the extracted soil vapour decreased over time as a result of the depletion of the more volatile constituents from the NAPL, possible development of mass transfer limitations and increased fraction of clean air from depleted zones. Overall, 65% of the 673 kg of petroleum hydrocarbons extracted in soil vapour over a period of 30 days was carried in sparged air from the single sparge well. Percentages of the mass carried in the sparged air were even higher (median 70%) for individual aromatic hydrocarbons

  19. TECHNOLOGY ASSESSMENT OF SOIL VAPOR EXTRACTION AND AIR SPARGING

    EPA Science Inventory

    Air sparging, also called "in situ air stripping and in situ volatilization" injects air into the saturated zone to strip away volatile organic compounds (VOCs) dissolved in groundwater and adsorbed to soil. hese volatile contaminants transfer in a vapor phase to the unsaturated ...

  20. Bio-polymer slurry trench method for installation of in-situ air sparging system

    SciTech Connect

    Linneman, D.M.

    1996-08-01

    An investigation was conducted at a site in Greenville Country, South Carolina which detected contaminants in the groundwater. It was then decided that remedial action was required. The contaminants and their location in the groundwater led to the selection of an in-situ air sparging system to be installed at approximately thirty-four feet deep. Due to design depth requirements and other site conditions, the bio-polymer slurry trench (B-P drain) Method was utilized in the air sparging system installation. The two trenches were installed using a biodegradable slurry in lieu of the bentonite slurry commonly utilized in the more traditional slurry trench technique. The slurry temporarily supported the trench walls while the air sparging components were submerged and set at the proper elevations Once backfilled with stone, the slurry in both trenches was broken by introducing a breaker solution which reduced the slurry to sugar water. The trenching, air sparging piping installation, and backfilling operations were completed in about six weeks.

  1. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  2. Mobilizing particles in a saturated zone during air sparging.

    PubMed

    Tsai, Yih-Jin; Lin, Da-Feng

    2004-01-15

    The mobilization of soil particles changes the porosity of saturated zone during air sparging. Soil porosity is shown to be correlated with soil electrical resistivity. This study performs porosity-resistivity tests to establish the relationship between porosity and resistivity of quartz sand. Experiments, involving a large sandbox to simulate the saturated zone, are then performed to compare the resistivity of compacted sand before air injection with that after air injection. The relevant data enable the mobilization of quartz sand particles to be quantified. Results of the experiments indicate the mobilization of sand particles and an increase in porosity directly proportional to the rate at which air is injected. Besides, a layer of fine-grained particles covered the compacted sand at the upper boundary of sandbox after each air injection experiment. This is direct evidence that finer particles were transported upward during air sparging. Two methods were applied to verify the results of this study. The first verification method indicated that changes in porosity increased directly proportional to the air injection rate, which is consistent with shear theory. The other validation method indicated that the mass of sand in the tank did not change after air sparging, which indicates that the resistivity-porosity method is unbiased.

  3. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  4. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  5. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  6. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. PMID:25462638

  7. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  8. Application Evaluation of Air-Sparging and Aerobic Bioremediation in PAM(Physical Aquifer Model) with Advanced and Integrated Module

    NASA Astrophysics Data System (ADS)

    Hong, U.; Ko, J.; Park, S.; Kim, Y.; Kwon, S.; Ha, J.; Lim, J.; Han, K.

    2010-12-01

    It is generally difficult for a single process to remediate contaminated soil and groundwater contaminated with various organic compounds such as total petroleum hydrocarbon (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), chlorinated aliphatic hydrocarbons (CAHs) because those contaminants show different chemical properties in two phases (e.g. soil and groundwater). Therefore, it is necessary to design an in-situ remediation system which can remove various contaminants simultaneously. For the purpose, we constructed integrated well module which can apply several remediation process such as air sparging, soil vapor extraction, and bioventing. The advanced integrated module consisted of three main parts such as head, body, and end cap. First of all, head part has three 3.6-cm-diameter stainless lines and can simultaneously inject air or extract NAPL, respectively. Secondly, body part has two 10-cm-height screen intervals with 100-mesh stainless inserts for unsaturated and smear zone. Lastly, we constructed three different sizes of end caps for injection and extraction from a saturated zone. We assumed that the integrated module can play bioremediation, air sparging, cometabolic sparging, chemical oxidation. In this study, we examined application of air sparing and aerobic bioremediation of toluene in Physical Aquifer Model (PAM) with an integrated well module. During air sparging experiments, toluene concentration decreased by injection of air. In addition, we accomplished bioremediation experiment to evaluate removal of toluene by indigenous microbes in PAM with continuous air injection. From the two experiments result, we confirmed that air sparging and aerobic bioremediation processes can be simultaneously carried out by an intergrated well module.

  9. Air sparging: Much ado about mounding

    SciTech Connect

    Lundegard, P.D.

    1995-12-31

    Groundwater mounding is the upward movement of the water table that can occur in association with air injection into the saturated zone. Multiphase flow simulations are here used to define general mounding behavior and dynamics under simplified subsurface conditions. Field observations at three sites are then used to describe a range of expected groundwater mounding responses for subsurface conditions, ranging from relatively homogeneous to highly heterogeneous. Results show that mounding (1) is a transient response that is usually negligible at steady state, (2) dissipates by radial wavelike spreading, and (3) occurs well beyond the saturated zone region of airflow.

  10. Site 5 air sparging pilot test, Naval Air Station Cecil Field, Jacksonville, Florida.

    PubMed

    Murray, W A; Lunardini, R C; Ullo, F J; Davidson, M E

    2000-02-25

    A 72-h air sparging pilot test was conducted at Site 5 (Operable Unit 2), Naval Air Station Cecil Field, Jacksonville, FL, to determine performance parameters necessary for full-scale design. The sparge well was completed to a depth of 29 ft, several feet below the groundwater plume contaminated with volatile organic compounds (VOCs), primarily benzene, toluene, ethylbenzene, and xylenes (BTEX). Air flow rates supplied to the sparge well were 3 cubic feet/min (cfm) during the first day, 2 cfm during the second day, and 1 cfm during the third day. Water levels in monitoring wells initially rose approximately 2 ft during the first 4-5 h of the test, then receded back to pre-test equilibrium levels over the next 15 h, for a total duration of water mounding of about 20 h. A small (approximately 0.5 ft) water table drop, with subsequent recovery to equilibrium level, occurred each time the air sparging rate was decreased. Although there is considerable variation depending on direction from the sparge well, the average radius of influence varied from approximately 30 ft at 1 cfm to 50 ft at 3 cfm. The air sparge system was capable of increasing the dissolved oxygen from 0 to 6 or 7 mg/l within 12-15 h of air channels reaching a given location. A lag time of approximately 13 h was observed before air channels reached a radius of 30 ft and dissolved oxygen levels began to increase at that radius. CO(2) (stripped out of the groundwater by the sparging) decreased from a pre-test concentration of 150 to 20 mg/l at r=5 ft, and from 150 to 50 mg/l at r=30 ft, within a period of about 24 h. The rate of VOC mass removal during the pilot test was 0.06 lb/day at a sparge rate of 3 cfm, and it appears that air sparging will effect a rapid cleanup of the VOCs in the Site 5 groundwater plume.

  11. Mechanisms of surfactant-enhanced air sparging in different media.

    PubMed

    Qin, Chuan Y; Zhao, Yong S; Li, Lu L; Zheng, Wei

    2013-01-01

    This article presents the results of a laboratory investigation of the mechanisms of surfactant-enhanced air sparging (SEAS) in different media. Two kinds of media (medium sand and gravel) were used in one-dimensional column experiments, designed to determine (1) the functional relationship between the air saturation and surface tension of water during SEAS, and (2) the contaminant removal mechanisms in different air travel modes (channels and bubbles) under different surface tension values. The results demonstrated that when air traveled in the form of channels, a decrease in surface tension accordingly reduced capillary pressure in porous media. Air saturation therefore increased, thereby considerably improving contaminant removal. The variations in removal efficiency under different surface tension values coincide with the trend of air saturation change. When air traveled in the form of bubbles, the SEAS-induced air saturation in the column was directly affected by foam stability and foamability, rather than by the surface tension of water. Surfactant addition improved only the contaminant removal rate, but the decrease in lingering concentration was insignificant. The results of this study can serve as theoretical bases for SEAS application in contaminated sites.

  12. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-01

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  13. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.

    PubMed

    Burns, S E; Zhang, M

    2001-01-01

    Air sparging is a relatively new, cost-effective technology for the remediation of soil and groundwater contaminated with volatile organic compounds (VOCs). While the method has met with reasonable success at a large number of field sites, implementation of the technique is restricted to relatively coarse-grained soils with large values of air permeability, which significantly limits its applicability. An understanding of the fundamental parameters that control the formation and distribution of air in the sparging process is useful for optimizing the system implementation and extending its range of applicability. This work presents the results of an experimental investigation into the effect of process control parameters on the size and size distribution of air bubbles produced in aqueous and idealized saturated porous media systems. The experiments used digital image analysis to image and quantify the physical characteristics of the bubbles generated in a bench scale test cell. Results demonstrated that the average bubble size and range of size distribution increased as the injection pressure and size of the injection orifice were increased. Larger diameter bubbles with wider size distributions were produced in the presence of particles when compared to aqueous systems. As the particle size was decreased, the size of bubbles produced increased. Finally, the presence of trace quantities of the surfactant Triton X100 led to uniformly small diameter bubbles under all experimental conditions. The presence of the surfactant coating produced bubbles with physical characteristics that are more suited to in situ stripping of VOCs than the bubbles produced in the absence of a surfactant. PMID:11352012

  14. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.

    PubMed

    Burns, S E; Zhang, M

    2001-01-01

    Air sparging is a relatively new, cost-effective technology for the remediation of soil and groundwater contaminated with volatile organic compounds (VOCs). While the method has met with reasonable success at a large number of field sites, implementation of the technique is restricted to relatively coarse-grained soils with large values of air permeability, which significantly limits its applicability. An understanding of the fundamental parameters that control the formation and distribution of air in the sparging process is useful for optimizing the system implementation and extending its range of applicability. This work presents the results of an experimental investigation into the effect of process control parameters on the size and size distribution of air bubbles produced in aqueous and idealized saturated porous media systems. The experiments used digital image analysis to image and quantify the physical characteristics of the bubbles generated in a bench scale test cell. Results demonstrated that the average bubble size and range of size distribution increased as the injection pressure and size of the injection orifice were increased. Larger diameter bubbles with wider size distributions were produced in the presence of particles when compared to aqueous systems. As the particle size was decreased, the size of bubbles produced increased. Finally, the presence of trace quantities of the surfactant Triton X100 led to uniformly small diameter bubbles under all experimental conditions. The presence of the surfactant coating produced bubbles with physical characteristics that are more suited to in situ stripping of VOCs than the bubbles produced in the absence of a surfactant.

  15. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid.

    PubMed

    Mun, Melissa; Khoo, Stefanie; Do Minh, Aline; Dvornicky, James; Trexler-Schmidt, Melody; Kao, Yung-Hsiang; Laird, Michael W

    2015-04-01

    During the scale-up of several Chinese Hamster Ovary (CHO) cell monoclonal antibody production processes, significant reduction of the antibody interchain disulfide bonds was observed. The reduction was correlated with excessive mechanical cell shear during the harvest operations. These antibody reduction events resulted in failed product specifications and the subsequent loss of the drug substance batches. Several methods were recently developed to prevent antibody reduction, including modifying the cell culture media, using pre- and post-harvest chemical additions to the cell culture fluid (CCF), lowering the pH, and air sparging of the harvested CCF (HCCF). The work described in this paper further explores the option of HCCF air sparging for preventing antibody reduction. Here, a small-scale model was developed using a 3-L bioreactor to mimic the conditions of a manufacturing-scale harvest vessel and was subsequently employed to evaluate several air sparging strategies. In addition, these studies enabled further understanding of the relationships between cell lysis levels, oxygen consumption, and antibody reduction. Finally, the effectiveness of air sparging for several CHO cell lines and the potential impact on product quality were assessed to demonstrate that air sparging is an effective method in preventing antibody reduction.

  16. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  17. In situ treatment of arsenic-contaminated groundwater by air sparging.

    PubMed

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible.

  18. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology.

    PubMed

    Bokotko, Romuald P; Hupka, Jan; Miller, Jan D

    2005-02-15

    Laboratory results from an initial study on the removal of SO2 from gas mixtures are reported using air-sparged hydrocyclone (ASH) technology. Tap water and alkaline solutions were used for absorption, and the influence of gas flow rate, water flow rate, and length of the ASH unit were investigated. The research results indicate thatthe air-sparged hydrocyclone can be used as a highly efficient absorber for SO2 emissions. The ASH allows for 97% SO2 removal using water alone for sulfur dioxide content in the gas phase of 5 g/m3. All SO2 is removed in weakly alkaline solution (0.01 mol NaOH/dm3).

  19. The influence zone of surfactant-enhanced air sparging in different media.

    PubMed

    Chuan-Yu, Qin; Yong-Sheng, Zhao; Wei, Zheng

    2014-01-01

    This paper presents the results of a laboratory investigation of the influence zone (IZ) of air sparging (AS) in different media at different surface tension. Different kinds of media were used in two-dimensional tank experiments, designed to determine (1) the effect of surface tension reduction on the airflow pattern during AS in different air travelling modes (channels and bubbles) in homogeneous aquifer and (2) the airflow distribution and migration characteristics in heterogeneous aquifer at different surface tension during AS. The results demonstrated that in homogeneous gravel aquifer, the IZ was almost identical with or without surfactant addition into groundwater, the air saturation, however, was increased with decreasing surface tension. In homogeneous coarse sand tank saturated with 500 mg/L sodium dodecyl benzene sulphonate (SDBS) solution, the IZ was approximately 1.3 times larger than that in the same medium saturated with distilled water. In addition, the density of airflow channels was much larger in medium saturated with SDBS solution. In heterogeneous subsurface saturated with distilled water, when the permeability ratio between two adjoining layers was 8:1, air would bypass low-permeable soils. In contrast, the air would infiltrate into low-permeable soils when SDBS concentration in groundwater was 1000 mg/L. The results indicate that surfactant-enhanced air sparging can effectively improve the volatile organic compounds removal both in homogeneous and heterogeneous media.

  20. Lipids and Molecular Tools as Biomarkers in Monitoring Air Sparging Bioremediation Processes

    NASA Astrophysics Data System (ADS)

    Heipieper, Hermann J.; Fischer, Janett

    2010-05-01

    The fluctuation of membrane lipids offers a promising tool as biomarkers for the analysis of microbial population changes as well as for the physiological status of micro-organisms. The investigation of changes in lipid composition is of common use for the assessment of physiological conditions in pure cultures. However, as lipid composition does not show drastic diversity among living organisms the use of lipids as biomarkers in mixed cultures and environmental samples has certain limitations. Therefore, special marker phospholipid fatty acids as well as modern statistical analysis of the results are necessary to receive certain information about the qualitative and quantitative changes of e.g. a soil microflora due to a contamination with organic compounds and its bioremediation. The use of lipids as biomarker in monitoring bioremediation are shown at the Hradčany site, a former Russian air force base in the Czech Republic that operated until 1990. In this time in an area of 32 ha soil and groundwater were contaminated with kerosene and BTEX compounds in an amount of 7,150 tons. This highly contaminated site is treated with the so-called air sparging method to clean-up the contamination by aerobic biodegradation. The results of PLFA analysis demonstrated a community shift to a gram-negative bacterial biomass with time. The results, including a principal component analysis (PCA) of the obtained fatty acid profiles, showed that the air sparging leads to substantial differences in microbial communities depending on the contamination levels and length of treatment, respectively. Obviously, the length of air sparging treatment controlling the BTEX concentration in soils causes temporal changes of bacterial community and adaptations of its respective members. This work was supported by the project BIOTOOL (Contract No. 003998) of the European Commission within its Sixth Framework Programme. Kabelitz N., Machackova J., Imfeld G., Brennerova M., Pieper D.H., Heipieper H

  1. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  2. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  3. Field Application of Modified In Situ Soil Flushing in Combination with Air Sparging at a Military Site Polluted by Diesel and Gasoline in Korea

    PubMed Central

    Lee, Hwan; Lee, Yoonjin; Kim, Jaeyoung; Kim, Choltae

    2014-01-01

    In this study the full-scale operation of soil flushing with air sparging to improve the removal efficiency of petroleum at depths of less than 7 m at a military site in Korea was evaluated. The target area was polluted by multiple gasoline and diesel fuel sources. The soil was composed of heterogeneous layers of granules, sand, silt and clay. The operation factors were systemically assessed using a column test and a pilot study before running the full-scale process at the site. The discharged TPH and BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations in the water were highest at 20 min and at a rate of 350 L/min, which was selected as the volume of air for the full-scale operation in the pilot air sparging test. The surfactant-aid condition was 1.4 times more efficient than the non-surfactant condition in the serial operations of modified soil flushing followed by air sparging. The hydraulic conductivity (3.13 × 10−3 cm/s) increased 4.7 times after the serial operation of both processes relative to the existing condition (6.61 × 10−4 cm/s). The removal efficiencies of TPH were 52.8%, 57.4%, and 61.8% for the soil layers at 6 to 7, 7 to 8 and 8 to 9 m, respectively. Therefore, the TPH removal was improved at depth of less than 7 m by using this modified remediation system. The removal efficiencies for the areas with TPH and BTEX concentrations of more than 500 and 80 mg/kg, were 55.5% and 92.9%, respectively, at a pore volume of 2.9. The total TPH and BTEX mass removed during the full-scale operation was 5109 and 752 kg, respectively. PMID:25166919

  4. Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea.

    PubMed

    Lee, Hwan; Lee, Yoonjin; Kim, Jaeyoung; Kim, Choltae

    2014-08-27

    In this study the full-scale operation of soil flushing with air sparging to improve the removal efficiency of petroleum at depths of less than 7 m at a military site in Korea was evaluated. The target area was polluted by multiple gasoline and diesel fuel sources. The soil was composed of heterogeneous layers of granules, sand, silt and clay. The operation factors were systemically assessed using a column test and a pilot study before running the full-scale process at the site. The discharged TPH and BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations in the water were highest at 20 min and at a rate of 350 L/min, which was selected as the volume of air for the full-scale operation in the pilot air sparging test. The surfactant-aid condition was 1.4 times more efficient than the non-surfactant condition in the serial operations of modified soil flushing followed by air sparging. The hydraulic conductivity (3.13 × 10-3 cm/s) increased 4.7 times after the serial operation of both processes relative to the existing condition (6.61 × 10-4 cm/s). The removal efficiencies of TPH were 52.8%, 57.4%, and 61.8% for the soil layers at 6 to 7, 7 to 8 and 8 to 9 m, respectively. Therefore, the TPH removal was improved at depth of less than 7 m by using this modified remediation system. The removal efficiencies for the areas with TPH and BTEX concentrations of more than 500 and 80 mg/kg, were 55.5% and 92.9%, respectively, at a pore volume of 2.9. The total TPH and BTEX mass removed during the full-scale operation was 5109 and 752 kg, respectively.

  5. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site.

    PubMed

    Hall, B L; Lachmar, T E; Dupont, R R

    2000-06-30

    In situ air sparging (IAS) has been used since the mid-1980s, but few carefully designed field studies have been performed to evaluate its effectiveness. In this study, 27 discrete monitoring points (MPs) were installed at a gasoline-contaminated site to investigate the efficacy of IAS. Each MP was instrumented with a pressure transducer and a Technalithics dissolved oxygen (DO) probe, and located so they could be used to characterize subsurface changes in total head and DO with depth, distance and orientation around a central injection well. Because the blower over-heated and automatically shut down after approximately 30 min and short-circuiting of air into two MPs occurred within 2 min, the study was designed as three sets of three 30-min trials. Longer trials would not have yielded different nor more insightful results. A volume of soil was not oxygenated during any injection. Instead, air traveled directly to at least four of seven different MPs during eight of the nine trials, probably as a result of an air bubble forming beneath a confining layer. The order of air arrival at the MPs varied during the first few trials, but once a preferential pathway was established, it did not collapse between trials and provided the shortest distance to the vadose zone during subsequent trials. Oxygen uptake rates estimated for MPs that received air during any trial exceeded the consumption rates of the Technalithics DO probes, and indicate that the probes could be used for estimating oxygen transfer during system operation or for oxygen uptake measurements during shut-down tests. The data from the monitoring system indicate that IAS is infeasible for remediation of soil and groundwater at this site due to its low horizontal hydraulic conductivity. Similar behavior is anticipated when IAS is applied at other sites with low hydraulic conductivity materials. PMID:10794912

  6. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site.

    PubMed

    Hall, B L; Lachmar, T E; Dupont, R R

    2000-06-30

    In situ air sparging (IAS) has been used since the mid-1980s, but few carefully designed field studies have been performed to evaluate its effectiveness. In this study, 27 discrete monitoring points (MPs) were installed at a gasoline-contaminated site to investigate the efficacy of IAS. Each MP was instrumented with a pressure transducer and a Technalithics dissolved oxygen (DO) probe, and located so they could be used to characterize subsurface changes in total head and DO with depth, distance and orientation around a central injection well. Because the blower over-heated and automatically shut down after approximately 30 min and short-circuiting of air into two MPs occurred within 2 min, the study was designed as three sets of three 30-min trials. Longer trials would not have yielded different nor more insightful results. A volume of soil was not oxygenated during any injection. Instead, air traveled directly to at least four of seven different MPs during eight of the nine trials, probably as a result of an air bubble forming beneath a confining layer. The order of air arrival at the MPs varied during the first few trials, but once a preferential pathway was established, it did not collapse between trials and provided the shortest distance to the vadose zone during subsequent trials. Oxygen uptake rates estimated for MPs that received air during any trial exceeded the consumption rates of the Technalithics DO probes, and indicate that the probes could be used for estimating oxygen transfer during system operation or for oxygen uptake measurements during shut-down tests. The data from the monitoring system indicate that IAS is infeasible for remediation of soil and groundwater at this site due to its low horizontal hydraulic conductivity. Similar behavior is anticipated when IAS is applied at other sites with low hydraulic conductivity materials.

  7. Air stripping of ammonia in a water-sparged aerocyclone reactor.

    PubMed

    Quan, Xuejun; Wang, Fuping; Zhao, Qinghua; Zhao, Tiantao; Xiang, Jinxin

    2009-10-30

    Air stripping of ammonia is a widely used process for the pretreatment of wastewater. Scaling and fouling on the packing surface in packed towers and a lower stripping efficiency are the two major problems in this process. New equipment that is suitable for the air stripping of wastewater with suspended solids has been developed. Air stripping of ammonia from water with Ca(OH)2 was performed in the newly designed gas-liquid contactor, a water-sparged aerocyclone (WSA). WSA exhibited a higher air stripping efficiency and an excellent mass transfer performance, it also consumed less air compared with stripping tanks and packed towers. In addition, no scaling and fouling was observed in the inner structure of the WSA. During the stripping process, the stripping efficiency and mass transfer coefficient naturally increases with the liquid phase temperature and air flow rate. There is a critical value for the air flow rate over which stripping efficiency and the mass transfer coefficient increases rapidly. An efficient air stripping of ammonia should be conducted at a higher ambient temperature (>25 degrees C), and a higher air flow rate (>1.4 l/s).

  8. ASSESSING UST CORRECTIVE ACTION TECHNOLOGIES: LESSONS LEARNED ABOUT IN SITU AIR SPARGING AT THE DENISON AVENUE SITE - CLEVELAND, OH

    EPA Science Inventory

    In situ air sparging (IAS) has been proposed and installed at an increasing number of sites to address contamination in both the saturated and unsaturated zones. Because of the lack of experimental and substantive performance data, however, the actual performance and effectivene...

  9. Tracer studies for evaluation of in situ air sparging and in-well aeration system performance at a gasoline-contaminated site.

    PubMed

    Berkey, Jennifer S; Lachmar, Thomas E; Doucette, William J; Ryan Dupont, R

    2003-03-17

    Field-scale tracer studies were conducted at a gasoline-contaminated site in order to evaluate the effectiveness of in situ air sparging (IAS) and in-well aeration (IWA) in controlling the movement of soil gas and groundwater in the subsurface. The field site was comprised of silty sand (SM) and silty clay (CL), underlain by a clay layer at approximately 7.6 m. Depth to groundwater ranged from 2.4 to 3 m. Soil permeability and the natural hydraulic gradient were both low. Helium was used to trace the movement of soil gas in the unsaturated zone during the IAS field study, and successfully confirmed short-circuit pathways for injected air and demonstrated the limited distribution of injected gases at this site. Fluorescein, bromide, and rhodamine were used to trace the movement of groundwater during the IWA system field study, and successfully documented the inability of the IWA system to recirculate enough groundwater to enhance subsurface dissolved oxygen levels or to remediate groundwater by air stripping at this site. The inability of the systems to remediate the site was likely due to site conditions which consist of low-permeability soils and decreasing permeability with depth. As a result, relatively impermeable layers exist at the depth of the IAS screen and the lower IWA screen. These site conditions are not conducive to successful performance of either remediation system.

  10. Testing of the 15-inch air-sparged hydrocyclone for fine coal flotation at the Homer City preparation plant

    SciTech Connect

    Miller, J.D.; Yi, Y.; Gopalakrishnan, S.; Battista, J.J.

    1993-12-31

    Previous plant testing had been limited to the processing of minus 100 mesh classifier overflow (Upper Freeport Coal {approximately} 20% ash) with the 6-inch air-sparged hydrocyclone (ASH-6C) as reported at Coal Prep 92. The ASH-6C unit was found to provide separation efficiencies equivalent, or superior, to separations with the ASH-2C system. During the summer of 1992 the construction of the first 15-inch air-sparged hydrocyclone prototype was completed by the Advanced Processing Technologies, Inc. Installation at the Homer City Coal Preparation Plant was accomplished and testing began in October 1992. The ASH-15C unit can operate at a flowrate as high as 1,000 gpm. Experimental results are reported with respect to capacity, combustible recovery and clean coal quality.

  11. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis.

    PubMed

    Vermaas, David A; Kunteng, Damnearn; Veerman, Joost; Saakes, Michel; Nijmeijer, Kitty

    2014-01-01

    Renewable energy can be generated using natural streams of seawater and river water in reverse electrodialysis (RED). The potential for electricity production of this technology is huge, but fouling of the membranes and the membrane stack reduces the potential for large scale applications. This research shows that, without any specific antifouling strategies, the power density decreases in the first 4 h of operation to 40% of the originally obtained power density. It slowly decreases further in the remaining 67 days of operation. Using antifouling strategies, a significantly higher power density can be maintained. Periodically switching the feedwaters (i.e., changing seawater for river water and vice versa) generates the highest power density in the first hours of operation, probably due to a removal of multivalent ions and organic foulants from the membrane when the electrical current reverses. In the long term, colloidal fouling is observed in the stack without treatment and the stack with periodic feedwater switching, and preferential channeling is observed in the latter. This decreases the power density further. This decrease in power density is partly reversible. Only a stack with periodic air sparging has a minimum of colloidal fouling, resulting in a higher power density in the long term. A combination of the discussed antifouling strategies, together with the use of monovalent selective membranes, is recommended to maintain a high power density in RED in short-term and long-term operations.

  12. TREATMENT OF CYANIDE SOLUTIONS AND SLURRIES USING AIR-SPARGED HYDROCYCLONE (ASH) TECHNOLOGY

    SciTech Connect

    Jan D. Miller; Terrence Chatwin; Jan Hupka; Doug Halbe; Tao Jiang; Bartosz Dabrowski; Lukasz Hupka

    2003-03-31

    The two-year Department of Energy (DOE) project ''Treatment of Cyanide Solutions and Slurries Using Air-Sparged Hydrocyclone (ASH) Technology'' (ASH/CN) has been completed. This project was also sponsored by industrial partners, ZPM Inc., Elbow Creek Engineering, Solvay Minerals, EIMCO-Baker Process, Newmont Mining Corporation, Cherokee Chemical Co., Placer Dome Inc., Earthworks Technology, Dawson Laboratories and Kennecott Minerals. Development of a new technology using the air-sparged hydrocyclone (ASH) as a reactor for either cyanide recovery or destruction was the research objective. It was expected that the ASH could potentially replace the conventional stripping tower presently used for HCN stripping and absorption with reduced power costs. The project was carried out in two phases. The first phase included calculation of basic processing parameters for ASH technology, development of the flowsheet, and design/adaptation of the ASH mobile system for hydrogen cyanide (HCN) recovery from cyanide solutions. This was necessary because the ASH was previously used for volatile organics removal from contaminated water. The design and modification of the ASH were performed with the help from ZPM Inc. personnel. Among the modifications, the system was adapted for operation under negative pressure to assure safe operating conditions. The research staff was trained in the safe use of cyanide and in hazardous material regulations. Cyanide chemistry was reviewed resulting in identification of proper chemical dosages for cyanide destruction, after completion of each pilot plant run. The second phase of the research consisted of three field tests that were performed at the Newmont Mining Corporation gold cyanidation plant near Midas, Nevada. The first field test was run between July 26 and August 2, 2002, and the objective was to demonstrate continuous operation of the modified ASH mobile system. ASH units were applied for both stripping and absorption, to recover cyanide

  13. FIELD ASSESSMENT OF MULTIPLE DNAPL REMEDIATION TECHNIQUES

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated in constructed test cells at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor...

  14. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.

    PubMed

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  15. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.

    PubMed

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  16. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D.

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5 h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2 h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  17. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX.

    PubMed

    Kabelitz, Nadja; Machackova, Jirina; Imfeld, Gwenaël; Brennerova, Maria; Pieper, Dietmar H; Heipieper, Hermann J; Junca, Howard

    2009-03-01

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches.

  18. Advantages, applications, and interpretations of continuous monitoring data collected at a direct sparge/vapor extraction site

    SciTech Connect

    Hartman, B.; Beckett, G.D.

    1995-09-01

    In situ sparging (IAS) is an increasingly popular ground water remediation method. The technique involves introduction of clean air into a hydrocarbon impacted aquifer. Through volatilization and enhanced biodegradation, the aquifer remediation is expedited over passive approaches. Sparging present a complex remedial design problem consisting of three important considerations: (1) immiscible phase flow of up to three phases (water, product, vapor); (2) dissolution, volatilization, and biodegradation kinetics; (3) system controls to mitigate potential impacts. An automated gas chromatograph configured to analyze for total petroleum hydrocarbons (TPH), carbon dioxide, oxygen, and a tracer (sulfur hexafluoride) every 10 minutes was used to collect round-the-clock data from a direct sparge/vapor extraction site. TPH values in the VES effluent increased by a factor of 10 upon initiation of sparging. After injection in the sparge feed line, the SF{sub 6} tracer appeared in the VES effluent after approximately 30 minutes and showed a normal decay profile for the first eight hours. After approximately eight hours, a second breakthrough of the tracer occurred in the VES effluent coincident with an increase in the TPH. Due to the large amount of continuous data, quantitative models of the site hydrogeology were able to be prepared and used to optimize the remediation effort.

  19. Air-Based Remediation Workshop - Section 7 Sustainable Remediation And Air-Based Technologies

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites, " the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Enviro...

  20. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  1. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    SciTech Connect

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  2. AN EXPERIMENTAL ASSESSMENT OF THE IMPACTS OF PARTIAL DNAPL SOURCE ZONE DELETION USING SPARGING AS A REMEDIATION TECHNIQUE

    EPA Science Inventory

    The contamination of the subsurface environment by dense non-aqueous phase liquids (DNAPL) is a wide-spread problem that poses a significant threat to soil and groundwater quality. Implementing different remediation techniques can lead to the removal of a high fraction of the DNA...

  3. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  4. Analysis of the remediation systems on the contaminant plume at the Plainville landfill

    SciTech Connect

    Woodworth, R.L.

    1999-06-01

    The Plainville landfill, located in Plainville, Massachusetts, has been the subject of study by several groups in recent years. A contaminant plume, exiting from the southwest corner of the landfill, is contaminating the groundwater downgradient and may affect drinking water wells located there. A two-phase remediation scheme, consisting of an interim overburden air sparging system and a final proposed pump and treat and air sparging system, has been proposed to mitigate the groundwater contaminant plume. This thesis assesses these remediation systems to determine their ability to remediate the contaminants in the groundwater plume. The interim and final proposed air sparging systems were analyzed using existing quarterly reports and a literature review. A MODFLOW groundwater flow model was used to analyze the pump and treat system. These analyses were then compared to the model utilized to design the remediation scheme. Several discrepancies in the design of the remediation scheme were noted as a result of this analysis. First, the presence of till lenses throughout the remediation zone was not addressed. Also, the extraction of water from the competent bedrock layer appears counterproductive. In addition, the air sparging system was not field tested to ascertain the flow pattern in the subsurface. Finally, the installation of the bedrock air sparging wells appears redundant. These discrepancies, however, will only decrease the projected efficiency of the proposed remediation schemes and increase clean up time. Consequently, the results of this study seem to indicate that the proposed remediation scheme is adequately designed.

  5. SUCCESSFUL APPLICATION OF AIR SPARGING TO REMEDIATE ETHYLENE DEBROMIDE (EDB) IN GROUND WATER INKANSAS

    EPA Science Inventory

    Although Ethylene Dibromide (EDB) was banned in conventional motor fuel in the USA by 1990, EDB continues to contaminate ground water at many old gasoline service station sites. Although EDB contamination is widespread, there is little performance data on technology to remediat...

  6. Innovative technology summary report: in situ air stripping using horizontal wells

    SciTech Connect

    1995-04-01

    In situ air stripping (ISAS) technology was developed to remediate soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISAS employs horizontal wells to inject (sparge) air into the ground water and vacuum extract VOCs from vadose zone soils. The innovation is creation of a system that combines two somewhat innovative technologies, air sparging and horizontal wells, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  7. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  8. Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT. Final report, 14 August 1990--13 August 1994

    SciTech Connect

    Miller, J.D.

    1994-10-18

    Air sparged hydrocyclone (ASH) flotation is a new particle separation technology that has been developed at the University of Utah. This technology combines froth flotation principles with the flow characteristics of a hydrocyclone such that the ASH system can perform flotation separations in less than a second. This feature provides the ASH with a high specific capacity, 100 to 600 times greater than the specific capacity of conventional flotation machines. In an effort to develop a more detailed understanding of ASH flotation, multiphase flow characteristics of the air sparged hydrocyclone were studied and the relationship of these characteristics with flotation performance was investigated. This investigation was divided into four phases. In the first phase, the time-averaged multiphase flow characteristics of the ASH during its steady state operation were studied using x-ray computed tomography (x-ray CT). In this regard, a model system, mono-sized quartz flotation with dodecyl amine as collector, using a 2 in. diameter ASH unit (ASH-2C), was selected for study. Various flow regimes, namely, the air core, the froth phase, and the swirl layer, were identified and their spatial extent established for different experimental conditions by x-ray CT analysis. In the second phase, a detailed parametric study of flotation response of the ASH for the same system was carried out in order to establish the effect of various operating variables on flotation response. The findings of this phase of investigation were then correlated with the multiphase flow characteristics as revealed by x-ray CT in the first phase. Thus, the impact of various operating variables on the flow regimes, and hence, on flotation response was established.

  9. Air-Base Remediation Workshop - Section 3 Bioventig

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  10. Air-Based Remediation Workshop - Section 2 Soil Vapor Extraction

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sties," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  11. Air-Based Remediation Workshop - Section 6 Thermal Systems

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  12. Air-Based Remediation Workshop - Section 1 Sampling And Analysis Revelant To Air-Based Remediation Technologies

    EPA Science Inventory

    Pursant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Force Air Remediation Workshop in Taipei to deliver expert training to the Environme...

  13. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation

    PubMed Central

    Brennerova, Maria V; Josefiova, Jirina; Brenner, Vladimir; Pieper, Dietmar H; Junca, Howard

    2009-01-01

    The extradiol dioxygenase diversity of a site highly contaminated with aliphatic and aromatic hydrocarbons under air-sparging treatment was assessed by functional screening of a fosmid library in Escherichia coli with catechol as substrate. The 235 positive clones from inserts of DNA extracted from contaminated soil were equivalent to one extradiol dioxygenase-encoding gene per 3.6 Mb of DNA screened, indicating a strong selection for genes encoding this function. Three subfamilies were identified as being predominant, with 72, 55 and 43 fosmid inserts carrying genes, related to those encoding TbuE of Ralstonia pickettii PK01 (EXDO-D), IpbC of Pseudomonas sp. JR1 (EXDO-K2) or DbtC of Burkholderia sp. DBT1 (EXDO-Dbt), respectively, whereas genes encoding enzymes related to XylE of Pseudomonas putida mt-2 were not observed. Genes encoding oxygenases related to isopropylbenzene dioxygenases were usually colocalized with genes encoding EXDO-K2 dioxygenases. Functional analysis of representative proteins indicated a subcluster of EXDO-D proteins to show exceptional high affinity towards different catecholic substrates. Based on Vmax/Km specificity constants, a task-sharing between different extradiol dioxygenases in the community of the contaminated site can be supposed, attaining a complementary and community-balanced catalytic power against diverse catecholic derivatives, as necessary for effective degradation of mixtures of aromatics. PMID:19575758

  14. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-01

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  15. Power Law Tailing in Column Air-sparging Experiments and Invasion-percolation Model for Calculating Diffusion Rates in the Liquid Phase.

    NASA Astrophysics Data System (ADS)

    Kawanishi, T.; Ninagawa, K.; Hayashi, Y.

    2006-12-01

    Power law tailings are often seen in removal of pollutants from soil or ground water. We have found that the power law tailing can also be seen in laboratory scale column air-sparging experiments. Researchers so far have found that power law tailings can occur due to the distribution of the micro-pore diffusion rates, or Freundlich type adsorption equilibrium. In addition to that we propose the following hypothesis. Introducing gas to the water saturated glass bead column causes some fractal-like gas flow path, which causes the power law distribution of distance that solute has to travel until it reaches the gas-water interface, this causes the power law tailing. In order to prove this, we constructed a model for removal of solute by diffusion to gas/water interface based on the invasion percolation. In a simple cubic bond lattice, invasion percolation is performed, assuming that the invading phase is gas and remaining phase is water. Then, set the initial concentration in water uniformly unity, set the boundary conditions as the concentration of the solute at the gas/water interfacial nodes is zero. Then diffusion calculation is performed by assuming that in the local scale (in a bond) the diffusion is Fickian. The model successfully reproduced the power law tailings. In the 80x80x80 and 100x100x100 node-lattice, the estimated slope in double-log plots raged from -1.08 to -0.72. The values are different from the normal diffusion in infinite media, -0.50, suggesting that the non-uniform shape of gas/water interface caused this kind of power law tailing. In the column experiments, we found the slope in double-log plots ranging from -0.77 to - 0.54, these values lie mostly between the calculated results and Fickian diffusion, 0.5. This, we consider, is reasonable that the real flow paths should be somewhere between the invading cluster and the straight line.

  16. Air stripping & photocatalytic oxidation: A winning team for groundwater remediation

    SciTech Connect

    Kittrell, J.R.; Quinlan, C.W.

    1995-09-01

    The Dover AFB Groundwater Reclamation Project demonstrated advanced technologies to control groundwater contamination, including comparisons of traditional countercurrent air atrippers to a crossflow air stripping technology. Another demonstration involved an advanced photocatalytic VOC destruction technology, which operates on the effluent air from the stripper. The combination of air stripping and photocatalytic destruction was shown to be effective for remediation of groundwater contaminated with chlorinated organic compounds, both because of its low cost and its ability to prevent toxic air emissions. A detailed performance comparison of stripper designs shows that the crossflow air stripper design was comparable in effectiveness to the conventional countercurrent air stripper at high air-to-water ratios, but at a substantially lower pressure drop.

  17. Nitrogen sparging and blanketing of water storage tanks

    SciTech Connect

    Jonas, O.

    2000-04-01

    In many industrial processes, including most utility and industrial steam systems, good deaerated makeup and condensate water is stored in open-to-air storage tanks where it is contaminated by oxygen, carbon dioxide (CO{sub 2}), and dirt before it is used. This contamination can be prevented by nitrogen sparging and blanketing of storage tanks.

  18. Air-Based Remediation Workshop - Section 5 Multi-Phase Extraction And Product Recovery

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  19. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.

  20. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  1. Applying membrane technology to air stripping effluent for remediation of groundwater contaminated with volatile organic compounds

    SciTech Connect

    Brown, J.J.; Erickson, M.D.; Beskid, N.J.

    1993-12-31

    Remediation groundwater contaminated by volatile organic compounds (VOCs) requires cost- and technically-effective solutions. This paper reviews the options for VOC removal from remediation air streams, focusing on membrane separation. The basic separation science and technology, results of performance tests, and results of cost studies for membrane separation are presented. Competing technologies are discussed and compared with membrane separation. Membrane separation combined with air stripping will provide an economically and environmentally safe technology for remediation of VOC-contaminated groundwater and, as it matures, may become the preferred method. 9 refs., 6 figs., 2 tabs.

  2. The air quality monitoring program for the 1100-EM-1 remedial investigation

    SciTech Connect

    Glantz, C.S.; Laws, G.L.

    1990-09-01

    Air quality monitoring for the remedial investigation of the Hanford Site's 1100-EM-1 operable unit was conducted in the spring and fall of 1989 and during January 1990. The monitoring program was divided into two phases. The first phase examined the air quality impact of routine atmospheric emissions at three of the operable unit's waste sites before the beginning of intrusive remedial investigation activities. The second phase of monitoring examined the air quality impact of routine atmospheric emissions from two of the operable unit's waste sites during intrusive remedial investigation activities. Each phase of the program consisted of a series of monitoring events that measured pollutant concentrations at key locations upwind and downwind of individual waste sites. During each monitoring event, sampling was conducted to determine the air concentrations of a wide variety of volatile organic compounds and semivolatile organic compounds. Monitoring for heavy metals and asbestos was also conducted during some monitoring events. 8 refs., 15 figs., 9 tabs.

  3. Performance assessment of the phased remediation of a former gas manufacturing plant

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Shields, A.

    2003-04-01

    The remediation of a former manufactured gas plant in the north of England is the subject of a multi-disciplinary research programme into the hydro-biological controls on the transport and remediation of organic pollutants. Production of town gas at the 0.7ha site started in the 1850s and was operational for about a hundred years, with production on site ceasing forty years ago. The aquifer beneath the site is an unconfined fine grained sand, with depth to groundwater of approximately 1m. Following an initial remedial phase, which involved the removal of major contaminant sources (tar tanks and gasholder bases), groundwater contamination remains. Target contaminants include phenols, BTEX and light fraction polynuclear aromatic hydrocarbons (PAH's). A second phase of remedial work involved pilot scale testing of both air sparging and oxygen releasing technologies. Two pilot scale air-sparging tests were carried out. In both cases the tests lasting between 3 days and one week showed significant reductions in dissolved BTEX, phenol and naphthalene concentrations. Maximum concentration reduction rates at the end of sparging were 1.3 mg.L-1day-1 BTEX range hydrocarbons, 0.78 mg.L-1day-1 naphthalene and 0.9 mg.L-1day-1 phenol. As a result of the pilot scale trials, a full scale air sparging aeration barrier was installed at the site, and has been operational since August 1999. Periodic measurements of dissolved organic and inorganic components, along with highly detailed time series of temperature, electrical conductivity, Eh, pH, dissolved oxygen along with groundwater heads have been obtained for the sparge system. These data have been supplemented with measurements of PAH and BTEX biodegradative activity using sediment 14C mineralisation assays and monitoring of the temporal variation in both biodegradative activity and diversity through the application of Filters for the Recovery Of Groundwater Samples (FROGS). FROGS enable the extraction of nucleic acids from

  4. In-situ remediation system for volatile organic compounds with deep recharge mechanism

    DOEpatents

    Jackson, Jr., Dennis G.; Looney, Brian B.; Nichols, Ralph L.; Phifer, Mark A.

    2001-01-01

    A method and apparatus for the treatment and remediation of a contaminated aquifer in the presence of an uncontaminated aquifer at a different hydraulic potential. The apparatus consists of a wellbore inserted through a first aquifer and into a second aquifer, an inner cylinder within the wellbore is supported and sealed to the wellbore to prevent communication between the two aquifers. Air injection is used to sparge the liquid having the higher static water level and, to airlift it to a height whereby it spills into the inner cylinder. The second treatment area provides treatment in the form of aeration or treatment with a material. Vapor stripped in sparging is vented to the atmosphere. Treated water is returned to the aquifer having the lower hydraulic potential.

  5. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    EPA Science Inventory

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  6. ERT monitoring of environmental remediation processes

    NASA Astrophysics Data System (ADS)

    La Brecque, D. J.; Ramirez, A. L.; Daily, W. D.; Binley, A. M.; Schima, S. A.

    1996-03-01

    The use of electrical resistance tomography (ERT) to monitor new environmental remediation processes is addressed. An overview of the ERT method, including design of surveys and interpretation, is given. Proper design and lay-out of boreholes and electrodes are important for successful results. Data are collected using an automated collection system and interpreted using a nonlinear least squares inversion algorithm. Case histories are given for three remediation technologies: Joule (ohmic) heating, in which clay layers are heated electrically; air sparging, the injection of air below the water table; and electrokinetic treatment, which moves ions by applying an electric current. For Joule heating, a case history is given for an experiment near Savannah River, Georgia, USA. The target for Joule heating was a clay layer of variable thickness. During the early stages of heating, ERT images show increases in conductivity due to the increased temperatures. Later, the conductivities decreased as the system became dehydrated. For air sparging, a case history from Florence, Oregon, USA is described. Air was injected into a sandy aquifer at the site of a former service station. Successive images clearly show the changes in shape of the region of air saturation with time. The monitoring of an electrokinetic laboratory test on core samples is shown. The electrokinetic treatment creates a large change in the core resistivity, decreasing near the anode and increasing near the cathode. Although remediation efforts were successful both at Savannah River and at Florence, in neither case did experiments progress entirely as predicted. At Savannah River, the effects of heating and venting were not uniform and at Florence the radius of air flow was smaller than expected. Most sites are not as well characterized as these two sites. Improving remediation methods requires an understanding of the movements of heat, air, fluids and ions in the sub-surface which ERT can provide. The

  7. Ground water and soil remediation: In situ air stripping using horizontal wells

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Eddy, C.A.; Hazen, T.C.

    1990-12-31

    An innovative environmental restoration technology, in situ air stripping, has been demonstrated at the US Department of Energy (DOE) Savannah River Site (SRS) in South Carolina. This process, using horizontal wells, is designed to concurrently remediate unsaturated-zone soils and ground water containing Volatile Organic Compounds (VOC). In situ technologies have the potential to substantially reduce costs and time required for remediation as well as improve effectiveness of remediation. Horizontal wells were selected to deliver and extract fluids from the subsurface because their geometry can maximize the efficiency of a remediation system and they have great potential for remediating contaminant sources under existing facilities. The first demonstration of this new technology was conducted for a period of twenty weeks. A vacuum was first drawn on the vadose zone well until a steady-state removal of VOCs was obtained. Air was then injected at three different rates and at two different temperatures. An extensive characterization program was conducted at the site and an extensive monitoring network was installed prior to initiation of the test. Significant quantities of VOCs have been removed from the subsurface (equivalent to an eleven-well, 500-gpm, pump-and-treat system at the same site). Concentrations of VOCs in the ground water have been significantly reduced in a number of the monitoring wells.

  8. Ground water and soil remediation: In situ air stripping using horizontal wells

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Eddy, C.A.; Hazen, T.C.

    1990-01-01

    An innovative environmental restoration technology, in situ air stripping, has been demonstrated at the US Department of Energy (DOE) Savannah River Site (SRS) in South Carolina. This process, using horizontal wells, is designed to concurrently remediate unsaturated-zone soils and ground water containing Volatile Organic Compounds (VOC). In situ technologies have the potential to substantially reduce costs and time required for remediation as well as improve effectiveness of remediation. Horizontal wells were selected to deliver and extract fluids from the subsurface because their geometry can maximize the efficiency of a remediation system and they have great potential for remediating contaminant sources under existing facilities. The first demonstration of this new technology was conducted for a period of twenty weeks. A vacuum was first drawn on the vadose zone well until a steady-state removal of VOCs was obtained. Air was then injected at three different rates and at two different temperatures. An extensive characterization program was conducted at the site and an extensive monitoring network was installed prior to initiation of the test. Significant quantities of VOCs have been removed from the subsurface (equivalent to an eleven-well, 500-gpm, pump-and-treat system at the same site). Concentrations of VOCs in the ground water have been significantly reduced in a number of the monitoring wells.

  9. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Remedial investigation and feasibility study. Bullen Point Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-03-18

    The United States Air Force (Air Force) has prepared this Remedial investigation/Feasibility Study (RI/FS) report as part of the Installation Restoration Program (IRP) to present results of RI/FS activities at five sites at the Bullen Point radar installation. The IRP provides for investigating, quantifying, and remediating environmental contamination from past waste management activities at Air Force installations throughout the United States.

  10. Design and use of a sparged platform for energy flux measurements over lakes

    NASA Astrophysics Data System (ADS)

    Gijsbers, S.; Wenker, K.; van Emmerik, T.; de Jong, S.; Annor, F.; Van De Giesen, N.

    2012-12-01

    Energy flux measurements over lakes or reservoirs demand relatively stable platforms. Platforms can not be stabilized by fixing them on the bottom of the lake when the water body is too deep or when water levels show significant fluctuations. We present the design and first operational results of a sparged platform. The structure consists of a long PVC pipe, the sparge, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The overall volume of displacement is small in this sparged design. The combination of large second momentum of the water plane and small displacement ensure a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. The instrumentation load consisted of a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. The platform had a wind vane and the sparge could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. The stability was measured with an accelerometer. In addition to the design and its stability, some first energy flux results will be presented.

  11. Recommendations for Remedial Action at Everest, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2007-02-15

    On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE). This document suggested possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE included the following: (1) Hydraulic control by groundwater extraction with aboveground treatment; (2) Air sparging-soil vapor extraction (SVE) in large-diameter boreholes; and (3) Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to the proposed CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a); (2) A field investigation in early 2006 (Argonne 2006c), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property; (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further constrain

  12. Crosshole shear-wave seismic monitoring of an in situ air stripping waste remediation process

    SciTech Connect

    Elbring, G.J.

    1992-02-01

    Crosshole shear-wave seismic surveys have been used to monitor the distribution of injected air in the subsurface during an in situ air stripping waste remediation project at the Savannah River site in South Carolina. To remove the contaminant, in this case TCE's from a leaking sewer line, two horizontal wells were drilled at depths of 20 m and 52 m. Air was pumped into the lower well and a vacuum was applied to the upper well to extract the injected air. As the air passed through the subsurface, TCE's were dissolved into the gas and brought out the extraction well. Monitoring of the air injection by crosshole shear wave seismics is feasible due to the changes in soil saturation during injection resulting in a corresponding change in seismic velocities. Using a downhole shear-wave source and clamped downhole receiver, two sets of shear-wave data were taken. The first data were taken before the start of air injection, and the second taken during. The difference in travel times between the two data sets were tomographically inverted to obtain velocity differences. Velocity changes ranging up to 3% were mapped corresponding to saturation changes up to 24%. The distribution of these changes shows a desaturation around the position of the injection well with a plume extending in the direction of the extraction well. Layers with higher clay content show distinctively less change in saturation than the regions with higher sand content.

  13. Crosshole shear-wave seismic monitoring of an in situ air stripping waste remediation process

    SciTech Connect

    Elbring, G.J.

    1992-02-01

    Crosshole shear-wave seismic surveys have been used to monitor the distribution of injected air in the subsurface during an in situ air stripping waste remediation project at the Savannah River site in South Carolina. To remove the contaminant, in this case TCE`s from a leaking sewer line, two horizontal wells were drilled at depths of 20 m and 52 m. Air was pumped into the lower well and a vacuum was applied to the upper well to extract the injected air. As the air passed through the subsurface, TCE`s were dissolved into the gas and brought out the extraction well. Monitoring of the air injection by crosshole shear wave seismics is feasible due to the changes in soil saturation during injection resulting in a corresponding change in seismic velocities. Using a downhole shear-wave source and clamped downhole receiver, two sets of shear-wave data were taken. The first data were taken before the start of air injection, and the second taken during. The difference in travel times between the two data sets were tomographically inverted to obtain velocity differences. Velocity changes ranging up to 3% were mapped corresponding to saturation changes up to 24%. The distribution of these changes shows a desaturation around the position of the injection well with a plume extending in the direction of the extraction well. Layers with higher clay content show distinctively less change in saturation than the regions with higher sand content.

  14. Radio frequency heating for soil remediation

    SciTech Connect

    Price, S.L.; Kasevich, R.S.; Marley, M.C.

    1997-12-31

    Radio frequency heating (RFH) for soil remediation brings controlled heating to the subsurface, increasing the rate of removal of contaminants from the soil. RFH alone does not remove contaminants; it eases contaminant removal by enhancing the performance of other technologies such as Soil Vapor Extraction (SVE), Groundwater Venting (Air Sparging), Groundwater Pump and Treat, and Bioremediation. In general, heating soils and groundwater makes the physical, chemical and biological properties of the soil, groundwater and contaminants more amenable to remediation efforts, reducing time on-site. RFH technology for environmental remediation by KAI Technologies Inc. (KAI) began in the early 1990s when an RFH system was deployed to an East Coast Naval Shipyard and tested on a {number_sign}2 fuel oil spill. RFH was then employed by KAI at the Department of Energy`s Savannah River Site (SRS) in 1993 and at Kelly Air Force Base in 1994. This paper discusses the spring 1996 RFH demonstration conducted with DAHL and Associates of St. Paul, Minnesota which employed SVE and Groundwater Venting at the site of a former gasoline station near St. Paul, Minnesota. Currently, RFH is assisting SVE at a jet fuel spill within Kirtland Air Force Base in Albuquerque, New Mexico. This paper provides a general overview of RFH technology for soil remediation by reviewing the theory and computer modeling of RFH and presenting results on the efficacy of RFH with SVE for soil remediation from a bench-scale study and the field demonstration mentioned previously. The bench-scale study evaluated effectiveness of RFH for enhancing SVE removal of tetrachloroethylene from a Burlington, Massachusetts site. Data from Finite-Difference Time Domain (FDTD) computer modeling of the field demonstration provides insight into the shape of the subsurface heating pattern.

  15. Remediation of the Wells G & H Superfund Site, Woburn, Massachusetts.

    PubMed

    Bair, E Scott; Metheny, Maura A

    2002-01-01

    Remediation of ground water and soil contamination at the Wells G & H Superfund Site, Woburn, Massachusetts, uses technologies that reflect differences in hydrogeologic settings, concentrations of volatile organic compounds (VOCs), and costs of treatment. The poorly permeable glacial materials that overlie fractured bedrock at the W.R. Grace property necessitate use of closely spaced recovery wells. Contaminated ground water is treated with hydrogen peroxide and ultraviolet (UV) oxidation. At UniFirst, a deep well completed in fractured bedrock removes contaminated ground water, which is treated by hydrogen peroxide, UV oxidation, and granular activated carbon (GAC). The remediation system at Wildwood integrates air sparging, soil-vapor extraction, and ground water pumping. Air stripping and GAC are used to treat contaminated water; GAC is used to treat contaminated air. New England Plastics (NEP) uses air sparging and soil-vapor extraction to remove VOCs from the unsaturated zone and shallow ground water. Contaminated air and water are treated using separate GAC systems. After nine years of operation at W.R. Grace and UniFirst, 30 and 786 kg, respectively, of VOCs have been removed. In three years of operation, 866 kg of VOCs have been removed at Wildwood. In 15 months of operation, 36 kg of VOCs were removed at NEP. Characterization work continues at the Olympia Nominee Trust, Whitney Barrel, Murphy Waste Oil, and Aberjona Auto Parts properties. Risk assessments are being finalized that address heavy metals in the floodplain sediments along the Aberjona River that are mobilized from the Industri-Plex Superfund Site located a few miles upstream.

  16. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign. PMID:26476769

  17. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  18. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Wang, Li; Ai, Zhihui; Zhang, Lizhi

    2015-07-15

    In this study, we demonstrate that pentachlorophenol contaminated soil can be efficiently remediated with tetrapolyphosphate washing and subsequent zerovalent iron (ZVI)/Air treatment. 2 mmol L(-1) of tetrapolyphosphate could wash away 52.8% of pentachlorophenol (PCP) at pH 7.0 and 84.2% of pentachlorophenol at pH 11.0 from contaminated soil owing to the promotion effect of tetrapolyphosphate on the soil matrix dispersion and the subsequent solubilization of pentachlorophenol. More importantly, tetrapolyphosphate ions remained in the washing effluent could greatly enhance the molecular oxygen activation by ZVI to oxidize the desorbed PCP without any pH adjustment, and also avoid the competitive consumption of reactive oxygen species, as caused by the common organic surfactants in the washing effluent. Therefore, 85.1% of pentachlorophenol could be aerobically removed from the washing effluent by merely using 5 g L(-1) of ZVI. We also interestingly found that the dissolved iron ions released from the soil could enhance the oxidation of pentachlorophenol in the washing effluent, but the dissolved organic matter had the opposite effect. This study suggests the coupling tetrapolyphosphate washing and subsequent ZVI/Air treatment is an optional approach to remediate pentachlorophenol contaminated soil in view of its low cost and environmental benign.

  19. Multiphase fluid simulation tools for winning remediation solutions

    SciTech Connect

    Deschaine, L.M.

    1997-07-01

    Releases of petroleum product such as gasoline and diesel fuels from normal operating practices to aquifers are common. The costs to remediate these releases can run in the billions of dollars. Solutions to remediate these releases usually consist of some form of multiphase (air, water, oil) fluid movement, whether it be a multiphase high vacuum extraction system, bioslurping, groundwater pump and treat system, an air sparging system, a soil vapor extraction system, a free product recovery system, bioremediation or the like. The software being tested in Test Drive, Multiphase Organic Vacuum Enhanced Recovery Simulator (MOVER) is a computer simulation tool that will give the practitioner the ability to design high vacuum enhanced multiple phase recovery systems and bioslurping systems, which are often the low cost effective remediation approach. It will also allow for the comparison of various proposed remediation approaches and technologies so the best solution can be chosen for a site. This is a key competitive advantage to translate conceptual ideas into winning bids.

  20. United States Air Force 611th Air Support Group Civil Engineering Squadron, Elmendorf AFB, Alaska. Remedial investigation and feasibility study Point Lay Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-03-04

    The United States Air Force (Air Force) has prepared this Remedial Investigation/Feasibility Study (RI/FS) report to present the results of RI/FS activities at four sites located at the Point Lay radar installation. The remedial investigation (RI) field activities were conducted at the Point Lay radar installation during the summer of 1993. The four sites at Point Lay were investigated because they were suspected of being contaminated with hazardous substances. RI activities were conducted using methods and procedures specified in the RI/FS Work Plan, Sampling and Analysis Plan (SAP), and Health and Safety Plan.

  1. Investigation of remediation of soil contaminated with diesel fuel using air venting

    SciTech Connect

    Fotinich, A.; Joo, Y.; Dhir, V.K.

    1996-12-31

    Soil venting is an effective and widely used method to remediate hydrocarbonically contaminated soils. A non-isothermal model, proposed by Lingineni and Dhir (1992) to predict evaporation rates of organic contaminants in an unsaturated non-sorbing soil, was incorporated into a computer code capable of numerically analyzing multi-component diesel fuel. The program accounts for 14 major components of diesel fuel as well as for temperature variation due to evaporation of the contaminant, preheating of the venting air, and heat loss. Experiments to verify the model performance were conducted in a one-dimensional column. Temperature readings from thermocouples located in the test section were recorded during the experiment and the composition of hydrocarbons in the effluent air was also monitored. The effluent gas samples were extracted at the selected times and analyzed with the help of a gas chromatograph. The experimental temperature readings and vapor composition in the extracted samples are in general agreement with the predictions from the computer program. The results show that the diesel components are removed according to their volatility with the higher volatility components being removed first. It is also found that preheating of the venting air can significantly increase the removal rates of the components.

  2. Superfund Record of Decision (EPA Region 10): Eielson Air Force Base, AK. (First remedial action), September 1992

    SciTech Connect

    Not Available

    1992-09-29

    The 19,700-acre Eielson Air Force Base (EAFB) site, located 26 miles southeast of Fairbanks, Alaska, is primarily a tactical air support installation. Constructed in 1944, EAFB was originally a satellite installation of Fort Wainwright. Used jointly by the Army and Air Force, the site was designated Eielson AFB in 1948. Many industrial operations were conducted at the base, which generated waste oils, contaminated fuels and sludge, and spent solvents and cleansers. The selected remedial action for the site includes in situ bioventing of BTEX contaminated soil in the vadose zone, with monitoring of soil gases; collecting floating petroleum hydrocarbons from the ground water through wells, culverts, or trenches; incinerating recovered product onsite or transporting the offsite for recycling or disposal; treating extracted ground water, as needed, using air stripping, oil-water separation, or carbon filtration, as determined during the remedial design stage; and discharging the residual water onsite; monitoring petroleum product levels; collecting BTEX-LNAPLS using vacuum extraction wells, with carbon adsorption, followed by offsite disposal of carbon residuals; treating collected liquids using an oil and water separator, air stripper, or carbon adsorption; destroying air emissions using tip flare incineration; and monitoring ground water. The estimated capital cost for the remedial action is $3,867, with an annual O M cost of $3,375 for 5 years.

  3. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    SciTech Connect

    Gilmore, T.J.; Fruland, R.M.; Liikala, T.L.

    1994-06-01

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT.

  4. Installation restoration program final remedial investigation report IRP sites 8 and 10. 151st air refueling group Utah Air National Guard, Salt Lake City, Utah. Final report

    SciTech Connect

    1996-06-01

    This report presents the results from a Remedial Investigation (RI) for two sites at the Utah Air National Guard (UANG) Base located in Salt Lake City, Utah. The two sites investigated are identified as Installation Restoration Program (IRP) Site 8, a former underground storage tank (UST) location, and IRP Site 10, an existing petroleum, oil, and lubricants (POL) yard. The RI was conducted as outlined in the Remedial Investigation/Feasibility Study (RI/FS) Work Plan prepared by Stone Webster and submitted to and approved by the ANG in May 1993. The field work associated with the RI was performed in June, July, and August 1995.

  5. CIM5 bubbler: Effect of sparge rate and duration on homogeneity to Am/Cm glass

    SciTech Connect

    Stone, M. E.

    2000-01-20

    The current flowsheet for the Am/Cm program requires that the glass pool be sparged with argon during the soaking period immediately prior to draining the melter. The effect of varying sparge rate and duration on the homogeneity of the final glass product was evaluated using the full scale 5-inch Cylindrical Induction Melter (CIM5) pilot facility. The tests showed that the homogeneity of the glass product is maintained provided the sparge rate is at least 1.5 scfh and the sparge duration is at least 45 minutes or the flowrate is at least 1.0 scfh and the sparge duration is 60 minutes. SRTC recommends that the melt pool be sparged for 75 minutes with an argon flowrate of 1.5 scfh and a sparge dip tube located 1-inch from the melter bottom. In addition, pour flowrate was found to be a reliable indication of glass homogeneity.

  6. Physical and biological remediation of oil-polluted river bed and hillside sediments resulting from a ruptured oil pipeline in

    SciTech Connect

    Bonfa, I.; Mcintosh, R.S.; Gambera

    1993-12-31

    An oil spill of several tens of thousands of liters ocurred when an underground pipeline ruptured next to the Rio Barca, a torrential mountain stream in Italy. The spill ocurred during a time when the Rio Barca was almost totally dry, therefore allowing the fuel-oil to saturate the sediments which form the bed of the watercourse. This paper describes the feasibility study performed to determine the possibility of conducting in situ remediation. In addition, a two-step strategy was developed to remove the hydrocarbons in the stream: (1) Mechanical liberation and recovery of the free-phase hydrocarbon trapped in the sediments; (2) In situ treatment via an Enhanced Natural Bioremediation program. The residual hydrocarbon contamination in the hillside soils were addressed by in situ remediation incorporating air sparging below the water table, soil vapor extraction of the vadose zone and nutrient addition to the soils via infiltration trenches.

  7. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans; R. Daniels; R. Olsen

    2000-01-13

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC.-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. Membrane Technology and Research, Inc. (NITR) proposes an alternative treatment technology, based on permselective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. The technology we propose to develop can be applied to all of these off-gas streams and is not tied to a particular off-gas generating source. We propose to develop a completely self-contained system because remediation projects are frequently in remote locations where access to trained operators and utilities is limited. The system will be a turnkey unit, skid-mounted and completely automatic, requiring power but no other utilities. The system will process the off-gas, producing a concentrated liquid VOC stream and a purified gas containing less than 10 ppm VOC that can be discharged or recycled to the gas-generating process.

  8. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    NASA Technical Reports Server (NTRS)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  9. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    SciTech Connect

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.; Frumer, B.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treated by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.

  10. Superfund record of decision (EPA Region 1): Pease Air Force Base, Site 45, NH, August 9, 1995

    SciTech Connect

    1996-03-01

    The decision document presents a selected remedial action designed to protect human and ecological receptors at Site 45, the Old Jet Engine Test Stand (OJETS), Pease AFB, New Hampshire. The selected remedy involves in situ air sparging treatment of contaminated soil below the water table; in situ soil vapor extraction treatment of contaminated vadose zone soil; and installation of a low-permeability membrane on the ground surface in the source area. In addition, delineation, and if necessary excavation and off-site disposal of surface soils contaminated above cleanup goals for inorganics will be conducted. Following remediation of the contaminated soil (the source of groundwater contamination), natural physical and chemical attentuation processes will remove residual contamination in groundwater.

  11. Progress in remediation of groundwater at petroleum sites in California.

    PubMed

    McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J; Connor, John A; Garg, Sanjay

    2014-01-01

    Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert-butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half-lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.

  12. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    PubMed

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters.

  13. STEAM INJECTION REMEDIATION IN FRACTURED BEDROCK AT LORING AIR FORCE BASE

    EPA Science Inventory

    Contaminated groundwater occurs at many Superfund, RCRA, and Brownfields sites. Chlorinated solvents which can form a dense nonaqueous phase (DNAPL) when released to the subsurface can pose an extreme challenge for remediation, as DNAPLs are often difficult to locate and even ha...

  14. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column. PMID:27575348

  15. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column.

  16. Trial of a negative ion generator device in remediating problems related to indoor air quality

    SciTech Connect

    Daniell, W.; Camp, J.; Horstman, S. )

    1991-06-01

    It has been suggested that supplementation of indoor air with negative ions can improve air quality. This study examined the effects of a negative ion-generator device on air contaminants and symptom reporting in two office buildings. Separate sets of functional and nonfunctional negative ion generators were monitored using a double blind, crossover design involving two 5-week exposure periods. There were no detectable direct or residual effects of negative ion generator use on air ion levels, airborn particulates, carbon dioxide levels, or symptom reporting. Symptom reporting declined at both sites initially and appeared to be consistent with placebo effect. Job dissatisfaction was an apparent contributor to symptom reporting, with a magnitude comparable to presumed effects of air quality. Further testing of such devices is needed before they should be considered for office air quality problems.

  17. Sparging and agitation-induced injury of cultured animals cells: Do cell-to-bubble interactions in the bulk liquid injure cells?

    PubMed

    Michaels, J D; Mallik, A K; Papoutsakis, E T

    1996-08-20

    It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. (c) 1996 John

  18. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    SciTech Connect

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-12-31

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone` The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS).

  19. Membrane System for Recovery of Volatile Organic Compounds from Remediation Off-Gases.: Phase 1.

    SciTech Connect

    Wijmans, J.G.; Goakey, S.; Wang, X.; Baker, R.W.; Kaschemekat, J.H.

    1997-04-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. This report covers the first phase of a two-phase project. The first phase involved the laboratory demonstration of the water separation section of the unit, the production and demonstration of new membrane modules to improve the separation, the design studies required for the demonstration system, and initial contacts with potential field sites. In the second phase, the demonstration system will be built and, after a short laboratory evaluation, will be tested at two field sites.

  20. Uranium (III) precipitation in molten chloride by wet argon sparging

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  1. Remediation of MTBE from drinking water: air stripping followed by off-gas adsorption.

    PubMed

    Ramakrishnan, Balaji; Sorial, George A; Speth, Thomas F; Clark, Patrick; Zaffiro, Alan; Patterson, Craig; Hand, David W

    2004-05-01

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-gas treatment often is required in conjunction with it. This study evaluated the combined treatment technologies of air stripping followed by off-gas adsorption on a pilot scale for the treatment of MTBE-contaminated water. The effect of air/water ratios on the treatment efficiency was studied, and the mass transfer coefficient was determined. Air/water ratios of 105:1, 151:1, 177:1, 190:1, 202:1, and 206:1 were used, and a treatment efficiency of >99% was achieved for all the runs conducted. The depth of packing required to achieve maximum treatment efficiency decreased with increasing air/water ratio. Relative humidity (RH) impacts on the MTBE adsorption capacity of a granular activated carbon (GAC) and carbonaceous resin were determined from pilot plant studies. Breakthrough profiles obtained from the pilot plant studies conducted at 20, 30, and 50% RH indicated that GAC has a higher adsorptive capacity than resin. The adsorptive capacity of GAC decreased with increasing RH, whereas RH did not impact the resin adsorptive capacity.

  2. Limitations of pump and treat remediation in a common New England hydrogeologic environment

    SciTech Connect

    Maclean, D.A.; Marin, P.A. )

    1993-03-01

    A common hydrogeologic setting in New England consists of a thin layer of permeable glacial outwash (0--20 ft.) which overlays dense contact till deposited directly by glacial ice. These settings provide quite a challenge for hydrogeologists attempting to contain and remediate ground water contamination. Average linear migration velocities are often high because of the high permeability of the outwash (ranging from 1 to 100 ft/day or more). Spills in these environments can quickly create contaminated ground water plumes of large size threatening drinking water wells and other sensitive receptors. Pump and treat'' systems (consisting of a pumped recovery well with a treatment system to clean pumped water prior to discharge) are commonly installed in these environments, but they often fail to contain and remediate ground water contamination. Data from several case studies and from analytical models used to evaluate pump and treat options demonstrate that pumping rates are limited by the available drawdown in the shallow outwash unit and by the low hydraulic conductivity of the lower till unit. Therefore, pump and treat systems often fail to develop effective capture zones in these environments even though highly permeable outwash sands are present. Combined air sparging and soil venting techniques (AS/SV) may provide an effective alternative to pump and treat remediation systems in these environments. Data from cases studies show that AS/SV can remove more contaminant mass than pump and treat while treating soil and ground water in place.

  3. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans

    2003-11-17

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  4. Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications

    NASA Astrophysics Data System (ADS)

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-09-01

    The present manuscript presents a convenient method for the synthesis of iron/carbon (Fe/C) nanoparticles (NPs) coated with much smaller Pd NPs for the removal of halogenated organic pollutants. For this purpose, iron oxide/polyvinylpyrrolidone (IO/PVP) NPs were first prepared by the thermal decomposition of ferrocene mixed with PVP at 350 °C under an inert atmosphere. IO,Fe/C and Fe/C NPs coated with graphitic and amorphous carbon layers were then produced by annealing the IO/PVP NPs at 500 and 600 °C, respectively, under an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area and magnetic properties of the IO/PVP, IO,Fe/C and Fe/C NPs has been elucidated. Air-stable Fe/C/Pd NPs were produced by mixing the precursor palladium acetate with the air-stable Fe/C NPs in ethanol. The obtained Fe/C/Pd NPs demonstrated significantly higher environmental activity than the Fe/C NPs on eosin Y, a model halogenated organic pollutant. The environmental activity of the Fe/C/Pd NPs also increased with their increasing Pd content.

  5. The influence of electrodialytic remediation on dioxin (PCDD/PCDF) levels in fly ash and air pollution control residues.

    PubMed

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Jensen, Pernille E

    2016-04-01

    Fly ash and Air Pollution Control (APC) residues collected from three municipal solid waste incinerators in Denmark and Greenland were treated by electrodialytic remediation at pilot scale for 8-10 h. This work presents for the first time the effect of electrodialytic treatment on polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), and how these levels impact on the valorization options for fly ash and APC residue. PCDD/PCDF levels in the original residues ranged between 4.85 and 197 ng g(-1), being higher for the electrostatic precipitator fly ash. The toxic equivalent (TEQ) varied ten fold, ranging 0.18-2.0 ng g(-1) I-TEQ, with penta and hexa-homologs being most significant for toxicity. After the electrodialytic treatment PCDD/PCDF levels increased in the residues (between 1.4 and 2.0 times). This does not mean PCDD/PCDF were synthesized, but else that soluble materials dissolve, leaving behind the non-water soluble compounds, such as PCDD/PCDF. According to the Basel Convention, PCDD/PCDF levels in these materials is low (<15 μg WHO-TEQ kg(-1)) and the fly ash and APC residue could eventually be valorized, for instance as construction material, provided end-of-waste criteria are set and that a risk assessment of individual options is carried out, including the end-of-life stage when the materials become waste again.

  6. The influence of electrodialytic remediation on dioxin (PCDD/PCDF) levels in fly ash and air pollution control residues.

    PubMed

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Jensen, Pernille E

    2016-04-01

    Fly ash and Air Pollution Control (APC) residues collected from three municipal solid waste incinerators in Denmark and Greenland were treated by electrodialytic remediation at pilot scale for 8-10 h. This work presents for the first time the effect of electrodialytic treatment on polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), and how these levels impact on the valorization options for fly ash and APC residue. PCDD/PCDF levels in the original residues ranged between 4.85 and 197 ng g(-1), being higher for the electrostatic precipitator fly ash. The toxic equivalent (TEQ) varied ten fold, ranging 0.18-2.0 ng g(-1) I-TEQ, with penta and hexa-homologs being most significant for toxicity. After the electrodialytic treatment PCDD/PCDF levels increased in the residues (between 1.4 and 2.0 times). This does not mean PCDD/PCDF were synthesized, but else that soluble materials dissolve, leaving behind the non-water soluble compounds, such as PCDD/PCDF. According to the Basel Convention, PCDD/PCDF levels in these materials is low (<15 μg WHO-TEQ kg(-1)) and the fly ash and APC residue could eventually be valorized, for instance as construction material, provided end-of-waste criteria are set and that a risk assessment of individual options is carried out, including the end-of-life stage when the materials become waste again. PMID:26826780

  7. In situ air stripping using horizontal wells. Innovative technology summary report

    SciTech Connect

    1995-04-01

    In-situ air stripping employs horizontal wells to inject or sparge air into the ground water and vacuum extract VOC`S from vadose zone soils. The horizontal wells provide better access to the subsurface contamination, and the air sparging eliminates the need for surface ground water treatment systems and treats the subsurface in-situ. A full-scale demonstration was conducted at the Savannah River Plant in an area polluted with trichloroethylene and tetrachloroethylene. Results are described.

  8. A review of centrifugal testing of gasoline contamination and remediation.

    PubMed

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  9. A review of centrifugal testing of gasoline contamination and remediation.

    PubMed

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced. PMID:21909320

  10. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    PubMed Central

    Meegoda, Jay N.; Hu, Liming

    2011-01-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced. PMID:21909320

  11. US Air Force installation restoration program: Remedial investigation of former herbicide storage site at Johnston Island, Pacific Ocean

    SciTech Connect

    Not Available

    1988-09-01

    This report represents a synthesis and reformatting of six primary documents and other related materials on soils, ocean sediments, air, and biota investigations conducted at Johnston Island (JI), Pacific Ocean, to characterize contamination resulting from storage of 1.37 million gallons of Herbicide Orange (HO) from 1972 through 1977. The individual study components comprise the Remedial Investigation (RI) of the former HO storage site at JI. This report describes the procedures, results, and conclusions of the sampling and analysis programs conducted at JI. Samples of site soils, ocean sediments, airborne particulates, dust, sweepings, and aquatic organisms were collected and analyzed for HO-derived 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), and 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD). Environmental media other than soils at the storage facility itself were found to be free of contamination or to contain very low contaminant concentrations. No contamination was found in ocean sediments, indicating possible dispersion of contaminants due to erosion. A few of the biological specimens collected were found to contain TCDD levels below the guidelines of 25 to 50 parts per trillion established by the US Food and Drug Administration; TCDD in all other biota samples was nondetectable. Analysis of samples of airborne particulates and of soils, dust, and sweepings from high-use and residential areas outside the boundaries of the former storage site indicated that there is little or no concern of adverse impacts from airborne transport and deposition of TCDD.

  12. [Case study on groundwater health risk assessment and remediation strategy based on exposure pathway].

    PubMed

    Jiang, Lin; Zhong, Mao-Sheng; Jia, Xiao-Yang; Xia, Tian-Xiang; Yao, Jue-Jun; Fan, Yan-Ling; Zhang, Li-Na; Tang, Zhen-Qiang

    2012-10-01

    The carcinogenic risk originated from benzene in contaminated groundwater of a large-scale coke plant in Beijing was analyzed and assessed for different land use zones according to the site redevelopment plan. The results revealed that indoor vapor inhalation was the key exposure pathway for all the three zones. The carcinogenic risk in zone A as commercial area was 6.37 x 10(-8), below the maximum allowable level (1.0 x 10(-6)), but was 2.20 x 10(-4) in zone B as industrial park and 7.49 x 10(-5) in zone C as residential/commercial area, both beyond the acceptable level. Further, the remediation target for benzene was calculated at 118 microg x L(-1) and the corresponding remediation area was contoured to be 165 000 m2. Given the high permeability of the aquifer and the excellent volatility of benzene, air-sparging with a combination of engineering control measure was recommended to mitigate the risk of the groundwater contamination.

  13. Remediation of NAPL source zones: lessons learned from field studies at Hill and Dover AFB.

    PubMed

    McCray, John E; Tick, Geoffrey R; Jawitz, James W; Gierke, John S; Brusseau, Mark L; Falta, Ronald W; Knox, Robert C; Sabatini, David A; Annable, Michael D; Harwell, Jeffrey H; Wood, A Lynn

    2011-01-01

    Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexing-sugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of small-scale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts.

  14. Superfund record of decision (EPA Region 1): Pease Air Force Base, Zone 2, NH, September 18, 1995

    SciTech Connect

    1996-03-01

    This decision document presents a selected remedial action designed to protect human and ecological receptors at Zone 2, Pease AFB, New Hampshire. Zone 2 includes the following six sites: Site 1 (Landfill 1 or LF-1), Site 7 (Fire Department Training Area 1 or FDTA-1), Site 10 (Leaded Fuel Tank Sludge Area or LFTS), Site 22 (Burn Area 1 or BA-1), Site 37 (Burn Area 2 or BA-2), and Site 43 (McIntyre Road Drum Disposal Area or MRDDA). Site 24 (Peverly Ponds and Bass Pond) also is addressed as part of the Zone 2 action. The selected remedy includes in situ treatment of BA-1 source area light, nonaqueous-phase liquids (LNAPLs) and residual LNAPL with enhancement of soil vapor extraction (SVE) by air sparging, which involves injection of air below the water table. The selected remedy also includes establishment of institutional controls restricting future use of Zone 2 groundwater, including a Groundwater Management Zone (GMZ) and performance of long-term monitoring. The selected remedy for Zone 2 also includes natural attenuation of groundwater contamination. No action is proposed for source control under CERCLA for LF-1, FDA-1, LFTS, BA-2, and MRDDA.

  15. Risks to children from exposure to lead in air during remedial or removal activities at Superfund sites: a case study of the RSR lead smelter Superfund site.

    PubMed

    Khoury, Ghassan A; Diamond, Gary L

    2003-01-01

    Superfund sites that are contaminated with lead and undergoing remedial action generate lead-enriched dust that can be released into the air. Activities that can emit lead-enriched dust include demolition of lead smelter buildings, stacks, and baghouses; on-site traffic of heavy construction vehicles; and excavation of soil. Typically, air monitoring stations are placed around the perimeter of a site of an ongoing remediation to monitor air lead concentrations that might result from site emissions. The National Ambient Air Quality (NAAQ) standard, established in 1978 to be a quarterly average of 1.5 microg/m(3), is often used as a trigger level for corrective action to reduce emissions. This study explored modeling approaches for assessing potential risks to children from air lead emissions from the RSR Superfund site in West Dallas, TX, during demolition and removal of a smelter facility. The EPA Integrated Exposure Uptake Biokinetic (IEUBK) model and the International Commission of Radiologic Protection (ICRP) lead model were used to simulate blood lead concentrations in children, based on monitored air lead concentrations. Although air lead concentrations at monitoring stations located in the downwind community intermittently exceeded the NAAQ standard, both models indicated that exposures to children in the community areas did not pose a significant long-term or acute risk. Long-term risk was defined as greater than 5% probability of a child having a long-term blood lead concentration that exceeded 10 microg/dl, which is the CDC and the EPA blood lead concern level. Short-term or acute risk was defined as greater than 5% probability of a child having a blood lead concentration on any given day that exceeded 20 microg/dl, which is the CDC trigger level for medical evaluation (this is not intended to imply that 20 microg/dl is a threshold for health effects in children exposed acutely to airborne lead). The estimated potential long-term and short-term exposures

  16. Physics of DNAPL migration and remediation in the presence of heterogeneities. 1998 annual progress report

    SciTech Connect

    Conrad, S.; Glass, R.J.

    1998-06-01

    porous media: Conduct a suite of physical experiments within controlled and systematically varied heterogeneous porous media at scales up to one meter that consider surfactant and alcohol flushing and possibly air sparging remediation treatments. Accomplishing objective 2 will allow the authors to consider the efficacy of several promising DNAPL remediation techniques under realistic yet well-controlled conditions. They consider this work to be of the type of broad-based, initial studies needed to better understand the intricacies associated with various remedial processes. They expect that the results of this work will be used to focus subsequent research on those remedial approaches or combination of approaches that appear to offer the most promise. This report summarizes work after 21 months of a 36-month project.'

  17. Characterization and remediation of 91B radioactive waste sites under performance based contracts at Lackland Air Force Base, San Antonio, Texas

    SciTech Connect

    Trujillo, P.A.; Anderson, K.D.

    2007-07-01

    This paper describes the challenges behind the implementation of the characterization, remediation, and the Site Closure for three 91b Radioactive Wastes under a Performance Based Contract at Lackland Air Force Base, San Antonio, Texas. The Defense Environmental Restoration Program (DERP) was established by Section 211 of the Superfund Amendments and Reauthorization Act of 1986 (SARA). A part of the DERP provides for the cleanup of hazardous substances associated with past Department of Defense (DoD) activities and is consistent with the provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). It is the Air Force Installation Restoration Program (IRP) that has responsibility for the cleanup activities associated with CERCLA. Under contract to the Air Force Center for Environmental Excellence (AFCEE), the ECC Project Team, that included ECC, Cabrera Services, and Malcolm Pirnie, was responsible for the implementation of the actions at three sites. The three IRP (91b) sites included RW015, a 0.02 square kilometer (5.5 acre) site, RW017 a 0.003 square kilometer (0.9 acre) site, and RW033 an 0.356 square kilometer (88 acre) site. Adding to the complexities of the project were issues of archaeological areas of interest, jurisdictional wetlands, land open to hunting, issues of security as well as compliance to the myriad of air force base rules, regulations, and Air Force Instructions (AFI). The award of the project task order was July of 2005, the project plan phase started in July of 2005 followed by the remedy implementation that included characterization and remediation as required reached completion in June of 2006. The project closure including the development and approval final status survey reports, proposed plans, and decision documents that parallel the CERCLA process was initiated in June of 2006 and is expected to reach completion in August of 2007. This paper will focus on the issues of working to achieve radiological

  18. CaBr{sub 2} hydrolysis for HBr production using a direct sparging contactor.

    SciTech Connect

    Yang, J.; Panchal, C. B.; Doctor, R. D.; Energy Systems

    2009-09-01

    The calcium-bromine cycle being investigated is a novel continuous hybrid cycle for hydrogen production employing both heat and electricity. Calcium bromide (CaBr{sub 2}) hydrolysis generates hydrogen bromide (HBr) which is electrolyzed to produce hydrogen. The CaBr{sub 2} hydrolysis at 1050 K (777 C) is endothermic with the heat of reaction {delta}G{sub T} = 181.5 KJ/mol (43.38 kcal/mol) and the Gibbs free energy change is positive at 99.6 kJ/mol (23.81 kcal/mol). What makes this hydrolysis reaction attractive is both its rate and that well over half the thermodynamic requirements for water-splitting heat of reaction of {delta}G{sub T} = 285.8 KJ/mol (68.32 kcal/mol) are supplied at this stage using heat rather than electricity. Molten-phase calcium bromide reactors may overcome the technical barriers associated with earlier hydrolysis approaches using supported solid-phase calcium bromide studied in the Japanese UT-3 cycle. Before constructing the experiment two design concepts were evaluated using COMSOL{trademark} multi-physics models; (1) the first involved sparging steam into a calcium-bromide melt, while (2) the second considered a 'spray-dryer' contactor spraying molten calcium bromide counter-currently to upward-flowing steam. A recent paper describes this work. These studies indicated that sparging steam into a calcium-bromide melt is more feasible than spraying molten calcium bromide droplets into steam. Hence, an experimental sparging hydrolysis reactor using a mullite tube (ID 70 mm) was constructed capable of holding 0.3-0.5 kg (1.5-2.5 x 10{sup -3} kg mol) CaBr{sub 2} forming a melt with a maximum 0.08 m (8 cm) depth. Sparging steam at a steam rate of 0.02 mol/mol of CaBr{sub 2} per minute (1.2-2.3 x 10{sup -5} kg/s), into this molten bath promptly yielded HBr in a stable operation that converted up to 25% of the calcium bromide. The kinetic constant derived from the experimental data was 2.17 x 10{sup -12} kmol s{sup -1} m{sup -2} MPa{sup -1} for

  19. Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy.

    PubMed

    Bhattacharyya, Jessica; Read, David; Amos, Sean; Dooley, Stephen; Killham, Kenneth; Paton, Graeme I

    2005-04-01

    Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5alpha), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations.

  20. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  1. PERFORMANCE OF CONVENTIONAL REMEDIAL TECHNOLOGY FOR TREATMENT OF MTBE AND BENZENE AT UST SITES IN KANSAS

    EPA Science Inventory

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, air sparging, and excavation are the most common treatment technologies in Kansas. To compare the relati...

  2. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

    PubMed

    Liang, Chenju; Lee, I-Ling

    2008-09-10

    In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

  3. Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater.

    PubMed

    Teerakun, Mullika; Reungsang, Alissara; Lin, Chien-Jung; Liao, Chih-Hsiang

    2011-01-01

    This study attempted to construct a three series barrier system to treat high concentrations of trichloroethylene (TCE; 500 mg/L) in synthetic groundwater. The system consisted of three reactive barriers using iron fillings as an iron-based barrier in the first column, sugarcane bagasse mixed with anaerobic sludge as an anaerobic barrier in the second column, and a biofilm coated on oxygen carbon inducer releasing material as an aerobic barrier in the third column. In order to evaluate the extent of removal of TCE and its metabolites in the aquifer down gradient of the barrier system, a fourth column filled with sand was applied. Residence time of the system was investigated by a bromide tracer test. The results showed that residence time in the column system of the control set and experimental set were 23.62 and 29.99 days, respectively. The efficiency of the three series barrier system in removing TCE was approximately 84% in which the removal efficiency of TCE by the iron filling barrier, anaerobic barrier and aerobic barrier were 42%, 16% and 25%, respectively, cis-Dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene and chloride ions were observed as metabolites following TCE degradation. The presence of chloride ions in the effluent from the column system indicated the degradation of TCE. However, cis-DCE and VC were not fully degraded by the proposed barrier system which suggested that another remediation technology after the barrier treatment such as air sparging and adsorption by activated carbon should be conducted.

  4. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  5. THERMAL REMEDIATION

    EPA Science Inventory

    Thermal remediation is being proposed by Region I for remediation of the overburden soil and groundwater at the Solvent Recovery Services New England Superfund site. This presentation at the public meeting will acquaint area residents with thermal remediation. The two types of ...

  6. Advanced fuel hydrocarbon remediation national test location. Demonstration of hot air vapor extraction for fuel hydrocarbon cleanup

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Hot air vapor extration (HAVE) is a fast track, innovative environmental cleanup technolgy that uses a combination of thermal, heap pile, and vapor extraction techniques to remove and destroy hydrocarbon contamination in soil. This technology is very effective in cleaning soils contaminated with gasoline, diesel, heavy oil, and polycyclic aromatic hydrocarbons (PAH).

  7. Using specialized adsorbents for remediation

    SciTech Connect

    Hochmuth, D.P.; Grant, A.

    1995-11-01

    This paper describes two remediation case studies in which specialized adsorbents were used. In one case, the adsorbents were used to treat effluent from a soil vapor extraction system. In the other case, the adsorbents were used to treat air from a groundwater air stripper. The specialized adsorbents effectively removed volatile organic compounds from each air stream.

  8. Tungsten carbide production from ore concentrates by molten salt-natural gas sparging treatment

    SciTech Connect

    Carnahan, T.G.; Kazonich, G.; Raddatz, A.E.

    1988-01-01

    The U.S. Bureau of Mines conducted a bench-scale study to delineate the important parameters in a three-step process to produce commercial-quality tungsten carbide (WC) directly from tungsten minerals. In the process, tungsten concentrates of wolframite or wolframite and scheelite are decomposed at 1,050{sup 0}C in a molten mixture of NcCl and Na{sub 2}SiO{sub 3} that forms two immiscible phases. Tungsten, as sodium tungstate, reports to the halide phase and is separated from the gangue constituents, which report to the silicate phase. After decanting to separate the two phases, natural gas is sparged into the molten halide phase a 1,070{sup 0}C. Submicrometer crystals of WC are initially produced. These crystals grow into thin triangular-shaped plates up to 100 {mu}m on a side or into popcorn-shaped conglomerates. Sparged WC was examined for its suitability for use in sintered carbide products. In physical evaluations, sparged WC ground to an average particle size of 1.52 {mu}m and compacted with 10 pct Co binder into standard 6-by 22-mm test bars had a density of 14.35 and a Rockwell A hardness of 89.6. This compared favorably with 14.39 and 89.7 respectively, for test bars made from a standard commercial 1.52-{mu}m WC powder. Test bars made from Bureau of Mines WC had no C'' porosity or eta phase.

  9. Formation of tungsten monocarbide from a molten tungstate-halide phase by gas sparging

    SciTech Connect

    Gomes, J.M.; Raddatz, A.E.; Baglin, E.G.

    1988-02-23

    A process for preparation of tungsten monocarbide is described comprising: (a) providing a molten composition comprising an alkali metal halide and an oxygen compound of tungsten; (b) sparging the composition with a gas comprising a gaseous hydrocarbon which is selected from the group consisting of natural gas, methane, ethane, acetylene, propane, butane, mixtures thereof, and admixtures of these gases with H/sub 2/ or CO, at a temperature of about 900/sup 0/ to 1100/sup 0/C for a sufficient time for the tungsten compound to be substantially converted to tungsten carbide; and (c) decanting the molten halide from the tungsten carbide product.

  10. Development of remedial process options: Phase II, Feasibility study: Installation Restoration Program, Naval Air Station Fallon, Fallon, Nevada

    SciTech Connect

    Cronk, T.A.; Smuin, D.R.; Schlosser, R.M.

    1991-11-01

    This technical memorandum develops process options which are appropriate for environmental restoration activities at Naval Air Station Fallon (NAS Fallon), Nevada. Introduction of contaminants to the environment has resulted from deliberate disposal activities (both through dumping and landfilling) and accidental spills and leaks associated with normal activities at NAS Fallon over its lifetime of operation. Environmental sampling results indicate that the vast majority of contaminants of concern are petroleum hydrocarbon related. These contaminants include JP-4, JP-5, leaded and unleaded gasoline, waste oils and lubricants, hydraulic fluids, and numerous solvents and cleaners. The principal exposure pathways of concern associated with NAS Fallon contaminants appear to be the surface flows and shallow drainage systems to which the base contributes. Available data indicate NAS Fallon IR Program sites are not contributing excessive contamination to surface flows emanating from the base. Contaminants appear to be contained in a relatively immobile state in the shallow subsurface with little or no contaminant migration off site.

  11. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  12. Remediation; An overview

    SciTech Connect

    Bishop, J.

    1988-09-01

    The U.SD. government began committing the nation legally and financially in the last decade to the ultimate remediation of virtually all of the hazardous wastes that were produced in the past and remain to threaten human health and the environment, all that continue to be generated, and all that will be created in the future. Whether engendered by acts of God or human industry, the laws and regulations mandate, hazardous wastes and the threats they pose will be removed or rendered harmless. As mobilization for tackling the monumental task implied by those commitments has progressed, key concepts have changed in meaning. The remedy of remediation once literally meant burying our hazardous waste problems in landfills, for example, a solution now officially defined as the least desirable-although still commonly chosen - course of action. The process of identifying hazardous substances and determining in what quantities they constitute health and environmental hazards continues apace. As measurement technologies become increasingly precise and capable to detecting more 9s to the right of the decimal point, acceptable levels of emissions into the air and concentrations in the ground or water are reduced. This article is intended as a sketch of where the national commitment of remediation currently stands, with examples of implications for both generators of hazardous wastes and those who have entered-or seek to enter-the rapidly growing business of remediation.

  13. Concerning Remediation

    ERIC Educational Resources Information Center

    Pace, John P.

    1977-01-01

    The author argues that the key to teaching remedial mathematics is to persuade students to believe that they will advance intellectually by learning mathematics, and that this advance will increase the possibilities open to them. (SD)

  14. Use of Borehole-Radar Methods to Monitor a Steam-Enhanced Remediation Pilot Study at a Quarry at the Former Loring Air Force Base, Maine

    USGS Publications Warehouse

    Gregoire, Colette; Joesten, Peter K.; Lane, Jr., John W.

    2007-01-01

    Single-hole radar reflection and crosshole radar tomography surveys were used in conjunction with conventional borehole-geophysical methods to evaluate the effectiveness of borehole-radar methods for monitoring the movement of steam and heat through fractured bedrock. The U.S. Geological Survey, in cooperation with U.S. Environmental Protection Agency (USEPA), conducted surveys in an abandoned limestone quarry at the former Loring Air Force Base during a field-scale, steam-enhanced remediation (SER) pilot project conducted by the USEPA, the U.S. Air Force, and the Maine Department of Environmental Protection to study the viability of SER to remediate non-aqueous phase liquid contamination in fractured bedrock. Numerical modeling and field experiments indicate that borehole-radar methods have the potential to monitor the presence of steam and to measure large temperature changes in the limestone matrix during SER operations. Based on modeling results, the replacement of water by steam in fractures should produce a decrease in radar reflectivity (amplitude of the reflected wave) by a factor of 10 and a change in reflection polarity. In addition, heating the limestone matrix should increase the bulk electrical conductivity and decrease the bulk dielectric permittivity. These changes result in an increase in radar attenuation and an increase in radar-wave propagation velocity, respectively. Single-hole radar reflection and crosshole radar tomography data were collected in two boreholes using 100-megahertz antennas before the start of steam injection, about 10 days after the steam injection began, and 2 months later, near the end of the injection. Fluid temperature logs show that the temperature of the fluid in the boreholes increased by 10?C (degrees Celsius) in one borehole and 40?C in the other; maximum temperatures were measured near the bottom of the boreholes. The results of the numerical modeling were used to interpret the borehole-radar data. Analyses of the

  15. Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors.

    PubMed

    Garcia-Ochoa, Felix; Gomez, Emilio

    2005-12-20

    Oxygen mass transfer in sparged stirred tank bioreactors has been studied. The rate of oxygen mass transfer into a culture in a bioreactor is affected by operational conditions and geometrical parameters as well as the physicochemical properties of the medium (nutrients, substances excreted by the micro-organism, and surface active agents that are often added to the medium) and the presence of the micro-organism. Thus, oxygen mass transfer coefficient values in fermentation broths often differ substantially from values estimated for simple aqueous solutions. The influence of liquid phase physicochemical properties on kLa must be divided into the influence on k(L) and a, because they are affected in different ways. The presence of micro-organisms (cells, bacteria, or yeasts) can affect the mass transfer rate, and thus kLa values, due to the consumption of oxygen for both cell growth and metabolite production. In this work, theoretical equations for kLa prediction, developed for sparged and stirred tanks, taking into account the possible oxygen mass transfer enhancement due to the consumption by biochemical reactions, are proposed. The estimation of kLa is carried out taking into account a strong increase of viscosity broth, changes in surface tension and different oxygen uptake rates (OURs), and the biological enhancement factor, E, is also estimated. These different operational conditions and changes in several variables are performed using different systems and cultures (xanthan aqueous solutions, xanthan production cultures by Xanthomonas campestris, sophorolipids production by Candida bombicola, etc.). Experimental and theoretical results are presented and compared, with very good results.

  16. Ultralow Level Mercury Treatment Using Chemical Reduction and Air Stripping: Scoping Report

    SciTech Connect

    Looney, B.B.

    2000-08-18

    Data collected during the first stage of a Savannah River Technology Center (SRTC) Strategic Research and Development Project confirmed the efficacy of chemical reduction and air stripping/sparging as an ultralow level mercury treatment concept for waters containing Hg(II). The process consists of dosing the water with low levels of stannous chloride to convert the mercury to Hg. This form of mercury can easily be removed from the water by air stripping or sparging. Samples of Savannah River Site (SRS) groundwater containing approximately 130 ng/L of total mercury (as Hg(II)) were used for the study. In undosed samples, sparging removed 0 percent of the initial mercury. In the dosed samples, all of the removals were greater than 94 percent, except in one water type at one dose. This sample, which was saturated with dissolved oxygen, showed a 63 percent reduction in mercury following treatment at the lowest dose. Following dosing at minimally effective levels and sparging, treated water contained less than 10 ng/L total mercury. In general, the data indicate that the reduction of mercury is highly favored and that stannous chloride reagent efficiently targets the Hg(II) contaminant in the presence of competing reactions. Based on the results, the authors estimated that the costs of implementing and operating an ultralow level mercury treatment process based on chemical reduction and stripping/sparging are 10 percent to 20 percent of traditional treatment technologies.

  17. Multidisciplinary investigation of the fate, transport, and remediation of chlorinated solvents in fractured rocks at the former Naval Air Warfare Center (NAWC): Scientific and management challenges, and strategies for a successful research program

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Goode, D. J.; Shapiro, A. M.; Lacombe, P. J.; Chapelle, F. H.; Bradley, P. M.; Imbrigiotta, T. E.; Williams, J. H.; Curtis, G. P.; Hsieh, P. A.

    2008-12-01

    At the former Naval Air Warfare Center (NAWC) in West Trenton NJ, the U.S. Geological Survey, in cooperation with the U.S. Navy and under support from the Strategic Environmental Research and Development Program (SERDP), is investigating the fate, transport, and remediation of trichloroethylene (TCE) and its daughter products in dipping, fractured mudstones underlying the site. TCE concentrations in ground water are as high as ~100 mg/L. Objectives of multidisciplinary research at the NAWC include (1) understanding the physical, chemical, and microbiological processes and properties affecting the fate, transport, and removal of chlorinated solvents in fractured rocks, (2) assessing the efficiency of different remediation methods (pump and treat, natural and enhanced biodegradation), and (3) transferring the results to help remediate other contaminated fractured rock aquifers. There are numerous scientific and technical challenges to meeting these goals, including the extreme spatial variability of flow and transport properties at the NAWC and the complex distribution of contaminants, geochemical constituents, and microorganisms in fractures and the rock matrix. In addition, there are management challenges that are equally important to address in order to achieve a successful research program. These include balancing the requirements of the many parties involved at the site, including researchers, the site owner, and regulatory agencies; and ensuring that limited research funds are directed towards work that addresses the most important scientific questions as well as stakeholder concerns. Strategies for the scientific challenges at NAWC include developing a carefully planned program to characterize spatial variability in rock properties and groundwater constituents so that the data obtained are applicable to solving research questions focused on remediation. Strategies for the management challenges include fostering open lines of communication among all parties and

  18. United States Air Force 611th Air Support Group/Civil Engineering Squadron, Elmendorf AFB, Alaska. Remedial investigation and feasibility study: Oliktok Point Radar Installation, Alaska. Volume 1. (Includes appendices a - b)

    SciTech Connect

    1996-04-15

    This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Oliktok Point radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.

  19. From the utilization point of view, the two approaches seem to United States Air Force 611th Air Support Group/Civil Engineering Squadron, Elmendorf AFB, Alaska. Remedial investigation and feasibility study Point Barrow Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-02-19

    This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Point Barrow radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.

  20. Reimagining Remediation

    ERIC Educational Resources Information Center

    Handel, Stephen J.; Williams, Ronald A.

    2011-01-01

    In 2007, the College Board's Community College Advisory Panel--a group of college presidents that advises the organization's membership on community college issues--asked these authors to write a paper describing effective remedial education programs. They never wrote the paper. The problem was not the lack of dedicated faculty and staff working…

  1. Toxic remediation

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1994-01-01

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  2. Ultralow Concentration Mercury Treatment Using Chemical Reduction and Air Stripping

    SciTech Connect

    Looney, B.B.

    2001-05-21

    Field, laboratory and engineering data confirmed the efficacy of chemical reduction and air stripping as an ultralow concentration mercury treatment concept for water containing Hg(II). The simple process consists of dosing the water with low levels of stannous chloride (Sn(II)) to cover the mercury to Hg degrees. This mercury species can easily be removed from the water by air stripping or sparging.

  3. Ore formation in porphyry-type deposits during incrementally built magma chamber and fluid sparging

    NASA Astrophysics Data System (ADS)

    Vigneresse, J. L.; Bachmann, O.; Huber, C.; Parmigiani, A.; Dufek, J.; Campos, E.

    2012-04-01

    Porphyry-type mineralizations are commonly associated with an underlying magma chamber from which a volatile phase exsolves from the crystallizing magma. We suggest a model of fluid sparging during multiple successive intrusions yielding metals concentration within the gas phase. Metals enrichment by 3-4 orders of magnitude takes place during the magmatic stage prior to hydrothermal effects, resulting from a competition between diffusion and advection of the volatile phase. The model explains why a single intrusion is not efficient enough to lead to economically viable ore deposit, though it also involves a gas phase percolating within a crystalline mush. During multiple intrusions, metals segregate from the new melt to the gas phase by diffusion, as long as the gas has not overcome a critical saturation level (about 20 % gas). Adding gas exsolved, about 4 % at each new magma recharge, overcomes this level. Then, the diffusion process switches toward advection, since the bubbles get interconnected, enhancing the transport of a gas phase enriched in metals. Once advected, the enriched gas phase turns into hydrothermal circulation during which metals condensate. Two non-dimensional numbers, Péclet and Stefan numbers, respectively rule diffusion and advection of elements while heat is lost through cooling. The model also examines the total duration of the process that re-establishes after 4-6 recharges in magma. It also provides an explanation why intrusions are barren or enriched, although they result from similar conditions of magma genesis. Development of a zoned alteration pattern may serve as a guide for prospection.

  4. Modeling Air Stripping of Ammonia in an Agitated Vessel

    SciTech Connect

    Kofi, Adu-Wusu; Martino, Christopher J.; Wilmarth, William R.; Bennett, William M.; Peters, Robert s.

    2005-11-29

    A model has been developed to predict the rate of removal of ammonia (NH{sub 3}) from solution in a sparged agitated vessel. The model is first-order with respect to liquid-phase concentration of NH{sub 3}. The rate constant for the first-order equation is a function of parameters related to the vessel/impeller characteristics, the air/liquid properties as well as the process conditions. However, the vessel/impeller characteristics, the air/liquid properties, and the process conditions reduce the rate constant dependence to only three parameters, namely, the air sparge rate, the liquid volume or batch size, and the Henry's law constant of NH{sub 3} for the liquid or solution. Thus, the rate of removal is not mass-transfer limited. High air sparge rates, high temperatures, and low liquid volumes or batch sizes increase the rate of removal of NH{sub 3} from solution. The Henry's law constant effect is somewhat reflected in the temperature since Henry's law constant increases with increasing temperature. Data obtained from actual air stripping operation agree fairly well with the model predictions.

  5. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  6. Effect of sparging rate on permeate quality in a submerged anaerobic membrane bioreactor (SAMBR) treating leachate from the organic fraction of municipal solid waste (OFMSW).

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2016-03-01

    This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM.

  7. Acute and sub-lethal toxicity of landfill leachate towards two aquatic macro-invertebrates: demonstrating the remediation potential of air stripping.

    PubMed

    Bloor, M C; Banks, C J

    2005-10-01

    A specific leachate that contained 1.036 mg l(-1) of 2-chlorobiphenyl was used in the study (255 mg l(-1) COD and 133 mg l(-1) BOD5). Bench scale (20 l) air stripping trials were used to simulate on a small-scale the treatment potential of this method. Air stripping effectively reduced the leachates COD concentration. Regardless of the volume of air supplied (1-5 l of air per minute) the leachates COD reached a <50 mg l(-1) equilibrium after 96-h exposure, however, increasing the volume of air accelerated the process. In untreated leachate, the LC50 for Asellus aquaticus was 57% v/v leachate in deionised water and 5% for Gammarus pulex (96-h, static LC50 tests without nutrition and oxygen depleting conditions). After being exposed to air stripping, these values rose from 90% to below the LC50 threshold for Asellus when 1-5 l of air per minute were applied and 30-90% for Gammarus. Furthermore, in sub-lethal concentrations of air stripped leachate (leachate that had been exposed to 5-l of air per minute for 96-h) the population dynamics of both test species remained unaltered.

  8. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.

    PubMed

    Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F

    2015-06-01

    In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates.

  9. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.

    PubMed

    Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F

    2015-06-01

    In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. PMID:25770473

  10. Superfund record of decision (EPA Region 10): Naval Air Station Whidbey Island - Ault Field, (Operable unit 1, area 6), Oak Harbor, WA. (First remedial action), April 1992. Interim report

    SciTech Connect

    Not Available

    1992-04-21

    The 260-acre waste site, a multiple use waste disposal area, is located on Naval Air Station (NAS) Whidbey Island-Ault Field, which is an active airbase northeast of the City of Oak Harbor, Island County, Washington. The northwest sector of the airbase, known as Area 6, maintains and provides support to naval aircraft and aviation facilities. From 1969 to 1988, hazardous wastes were dumped and stored at various pits, trenches, and landfills located in Area 6. The ROD addresses interim remediation of the ground water to prevent the spread of the contaminated plume in the aquifer to drinking water wells while other locations on the airbase are evaluated. The primary contaminants of concern affecting the ground water are VOCs, including TCE; and metals, including chromium and lead.

  11. Home Assessment and Remediation.

    PubMed

    Barnes, Charles S; Horner, W Elliott; Kennedy, Kevin; Grimes, Carl; Miller, J David

    2016-01-01

    Awareness of the relationship of fungi to asthma in indoor air is very old and well documented. There is substantial evidence that mold and dampness exacerbate asthma in sensitized individuals. Many governmental and nongovernmental organizations around the world have issued guidelines to the effect that the elimination of moisture intrusion and the removal of moldy items from living space can improve respiratory health. The process of home assessment for moisture and mold presence is discussed along with factors that can be used to guide fungal exposure reduction efforts. An approach to the assessment process itself is outlined, and common causes of moisture and mold damage are described. Points that should be included in a report resulting from a home assessment and rudimentary elements of report interpretation are discussed. Emphasis is that interpretation of sampling for moisture and fungal presence should be provided by the person performing the assessment. We conclude that multifaceted remediation contributes to fungal allergen avoidance. The use of an indoor environmental professional to generate evaluation reports and remediation activities can be a valuable contribution to an overall allergen avoidance strategy.

  12. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R.C.; Cherry, R.S.

    2000-09-30

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced {approximately}7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe{reg_sign} rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The

  13. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R. E.; Cherry, Robert Stephen

    2000-09-01

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced ~7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe® rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The system was tested in a

  14. FIELD EVALUATION OF DNAPL EXTRACTION TECHNOLOGIES: PROJECT OVERVIEW

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor extraction. The effectiv...

  15. Reinventing Remedial Education

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2009-01-01

    Remedial education, although widely used and disguised with other names, was rarely talked about for it could tarnish a school's reputation if widely discussed. Today, more and more colleges and universities are ditching the old stigma associated with remedial education, reinventing their remedial education and retention programs and, in the…

  16. Put risk-based remediation to work

    SciTech Connect

    Johl, C.J.; Feldman, L.; Rafferty, M.T.

    1995-09-01

    Risk-based site cleanups are gaining prominence in environmental remediation. In particular, the ``brownfields`` program in the US--designed to promote the redevelopment of contaminated industrial sites rather than the development of pristine sites--is bringing this new remediation approach to the forefront on a national basis. The traditional approach to remediating a contaminated site is dubbed the remedial investigation and feasibility study (RI-FS) approach. Using an RI-FS approach, site operators and environmental consultants conduct a complete site characterization, using extensive air, water and soil sampling, and then evaluate all potential remediation alternatives. In many cases, the traditional remediation goal has been to return contaminant levels to background or ``non-detect`` levels--with little or no regard to the potential future use of the site. However, with cleanup costs on the rise, and a heightened awareness of the ``how clean is clean`` debate, nay are beginning to view the RI-FS approach as excessive. By comparison, the goal for a focused, risk-based site remediation is to protect human health and the environment in a manner that is consistent with the planned use of the site. Compared to a standard RI-FS cleanup, the newer method can save time and money, by prioritizing site-restoration activities based on risk analysis. A comparison of the to approaches for metals-laden soil is presented.

  17. Duct Remediation Program: Remediation operations and implementation

    SciTech Connect

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Plutonium holdup material has accumulated in the process ventilation duct systems at Rocky Flats. Non-Destructive Assay (NDA) measurements identified ducts containing this material. The Defense Nuclear Facility Safety Board and the Department of Energy established the criteria for remediation of these ducts. A remediation team was assembled and a program plan created. This program plan included activities such as fissile material accumulation identification, criticality safety assessments, radiation dose determinations, facility safety evaluations, prevention of future accumulation, and removal of holdup material. Several operational considerations had to be evaluated in determining completion of remediation.

  18. Experimental studies and statistical analysis of membrane fouling behavior and performance in microfiltration of microalgae by a gas sparging assisted process.

    PubMed

    Javadi, Najvan; Ashtiani, Farzin Zokaee; Fouladitajar, Amir; Zenooz, Alireza Moosavi

    2014-06-01

    Response surface methodology (RSM) and central composite design (CCD) were applied for modeling and optimization of cross-flow microfiltration of Chlorella sp. suspension. The effects of operating conditions, namely transmembrane pressure (TMP), feed flow rate (Qf) and optical density of feed suspension (ODf), on the permeate flux and their interactions were determined. Analysis of variance (ANOVA) was performed to test the significance of response surface model. The effect of gas sparging technique and different gas-liquid two phase flow regimes on the permeate flux was also investigated. Maximum flux enhancement was 61% and 15% for Chlorella sp. with optical densities of 1.0 and 3.0, respectively. These results indicated that gas sparging technique was more efficient in low concentration microalgae microfiltration in which up to 60% enhancement was achieved in slug flow pattern. Additionally, variations in the transmission of exopolysaccharides (EPS) and its effects on the fouling phenomenon were evaluated.

  19. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    PubMed

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  20. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  1. ENHANCED REMEDIATION DEMONSTRATIONS AT HILL AFB: INTRODUCTION

    EPA Science Inventory

    Nine enhanced aquifer remediation technologies were demonstrated side-by-side at a Hill Air Force Base Chemical Disposal Pit/Fire Training Area site. The demonstrations were performed inside 3 x 5 m cells isolated from the surrounding shallow aquifer by steel piling. The site w...

  2. QUALITY MANAGEMENT DURING SELECTION OF TECHNOLOGIES EXAMPLE SITE MARCH AIR FORCE BASE, USA

    EPA Science Inventory

    This paper describes the remedial approach, organizational structure and key elements facilitating effective and efficient remediation of contaminated sites at March Air Force Base (AFB), California. The U.S. implementation and quality assurance approach to site remediation for ...

  3. QUALITY MANAGEMENT DURING SELECTION OF TECHNOLOGIES; EXAMPLE SITE MARCH AIR FORCE BASE, USA

    EPA Science Inventory

    This paper describes the remedial approach, organizational structure and key elements facilitating effective and efficient remediation of contaminated sites at March Air Force Base (AFB), California. The U.S. implementation and quality assurance approach to site remediation for a...

  4. Response surface methodology for the modeling and optimization of oil-in-water emulsion separation using gas sparging assisted microfiltration.

    PubMed

    Fouladitajar, Amir; Zokaee Ashtiani, Farzin; Dabir, Bahram; Rezaei, Hamid; Valizadeh, Bardiya

    2015-02-01

    Response surface methodology (RSM) and central composite design (CCD) were used to develop models for optimization and modeling of a gas sparging assisted microfiltration of oil-in-water (o/w) emulsion. The effect of gas flow rate (Q G ), oil concentration (C oil ), transmembrane pressure (TMP), and liquid flow rate (Q L ) on the permeate flux and oil rejection were studied by RSM. Two sets of experiments were designed to investigate the effects of different gas-liquid two-phase flow regimes; low and high gas flow rates. Two separate RSM models were developed for each experimental set. The oil concentration and TMP were found to be the most significant factors influencing both permeate flux and rejection. Also, the interaction between these parameters was the most significant one. At low Q G , the more the gas flow rate, the higher the permeate flux; however, in the high gas flow rate region, higher Q G did not necessarily improve the permeate flux. In the case of rejection, gas and liquid flow rates were found to be insignificant. The optimum process conditions were found to be the following: Q G  = 1.0 (L/min), C oil  = 1,290 (mg/L), TMP = 1.58 (bar), and Q L  = 3.0 (L/min). Under these optimal conditions, maximum permeate flux and rejection (%) were 115.9 (L/m(2)h) and 81.1 %, respectively.

  5. The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor.

    PubMed

    Garcia-Ochoa, F; Gomez, E; Alcon, A; Santos, V E

    2013-07-01

    The specific growth and the xanthan production rates by the bacterium Xanthomonas campestris under different shear levels in shake flasks and in a stirred and sparged tank bioreactor have been studied. The shake flask has been used as a reference for studying the shear effects. An effectiveness factor expressed by the ratio of the observed growth rate and the growth rate without oxygen limitation or cell damage was calculated in both modes of cultures. It was observed that the effectiveness factor was strongly dependent on the operational conditions. A strong oxygen transfer limitation at low stirring rates, indicated by a 54 % decrease in the effectiveness factor was observed. In contrast, at higher stirrer speed, cell damage was caused by hydrodynamic stress in the turbulent bulk of the broth, yielding again a decrease in the effectiveness factor values for stirrer speeds higher than 500 rpm. Cell morphological changes were also observed depending on the agitation conditions, differences in morphology being evident at high shear stress.

  6. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    SciTech Connect

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  7. Nitrogen as an indicator of mass transfer during in-situ gas sparging.

    PubMed

    Balcke, Gerd U; Hahn, M; Oswald, Sascha E

    2011-09-25

    Aiming at the stimulation of intrinsic microbial activity, pulses of pure oxygen or pressurized air were recurrently injected into groundwater polluted with chlorobenzene. To achieve well-controlled conditions and intensive sampling, a large, vertical underground tank was filled with the local unconfined sandy aquifer material. In the course of two individual gas injections, one using pure oxygen and one using pressurized air, the mass transfer of individual gas species between trapped gas phase and groundwater was studied. Field data on the dissolved gas composition in the groundwater were combined with a kinetic model on gas dissolution and transport in porous media. Phase mass transfer of individual gas components caused a temporary enrichment of nitrogen, and to a lower degree of methane, in trapped gas leading to the formation of excess dissolved nitrogen levels downgradient from the dissolving gas phase. By applying a novel gas sampling method for dissolved gases in groundwater it was shown that dissolved nitrogen can be used as a partitioning tracer to indicate complete gas dissolution in porous media.

  8. Designing Clinical Remediation Programs.

    ERIC Educational Resources Information Center

    Oleszewski, Susan C.

    1989-01-01

    Elements and considerations in the provision of effective remediation for optometry students not achieving in clinical competence are discussed. Remediation of technical, cognitive, and noncognitive skills are included. A course in professional communication offered by the Pennsylvania College of Optometry is described. (MSE)

  9. Preventing remediation problems

    SciTech Connect

    Fleming, W.H.

    1994-12-31

    Remediation, the design and construction of a remedy, typically represents the most significant portion of the cleanup process. The cost may be 5 to 10 times the cost of earlier investigation and feasibility efforts. Furthermore, the risks associated with remediation activities and their ability to meet ultimate cleanup goals and objectives are far greater than those associated with earlier efforts. Often times there are unrealistic expectations interjected throughout the design and construction process in the remediation field. The simple fact that most problems are buried, and one cannot see all that is below the ground surface provides sufficient uncertainty to result in problems. There are three key points during the remediation process which provide opportunities to prevent and avoid problems. These are: (1) during design; (2) during procurement and contracting; and (3) during construction. This paper examines actions which the author has found or believes will assist in providing a formula for success.

  10. In situ soil remediation speeds site closure

    SciTech Connect

    Not Available

    1994-03-01

    An automotive parts manufacturing site in Madison, Wisconsin contaminated primarily with 1,1,1-trichloroethane (TCA) achieved closure in 15 months using an in situ soil remediation technology that improved soil conditions nearly a thousand fold. TCA concentrations were as high as 19,600 ppb. However, TCA levels dropped to 20 ppb after one year of system operation, prompting the state agency to grant closure for the remediation project in late 1992, following 15 months of operation. The groundwater remediation system is a packed-to-wet air stripper. It includes two groundwater extraction wells, each pumping 30 gallons per minute, and three soil vadose zone wells with a total design capacity of 100 cubic feet per minute. The soil-vapor extraction system included two 15-foot-deep wells and a 40-foot-deep well connected to a blower with condensate-recovery equipment.

  11. Cognitive Remediation in Schizophrenia

    PubMed Central

    Kaneko, Yoshio

    2012-01-01

    Cognitive deficits in schizophrenia are pervasive, severe, and largely independent of the positive and negative symptoms of the illness. These deficits are increasingly considered to be core features of schizophrenia with evidence that the extent of cognitive impairment is the most salient predictor of daily functioning. Unfortunately, current schizophrenia treatment has been limited in addressing the cognitive deficits of the illness. Alterations in neuroplasticity are hypothesized to underpin these cognitive deficits, though preserved neuroplasticity may offer an avenue towards cognitive remediation. Key neuroplastic principles to consider in designing remediation interventions include ensuring sufficient intensity and duration of remediation programs, "bottom-up" training that proceeds from simple to complex cognitive processes, and individual tailoring of remediation regimens. We discuss several cognitive remediation programs, including cognitive enhancement therapy, which embrace these principles to target neurocognitive and social cognitive improvements and which havebeen demonstrated to be effective in schizophrenia. Future directions in cognitive remediation research include potential synergy with pharmacologic treatment, non-invasive stimulation techniques, and psychosocial interventions, identification of patient characteristics that predict outcome with cognitive remediation, and increasing the access to these interventions in front-line settings. PMID:23430145

  12. 40 CFR 63.7943 - How do I determine the average VOHAP concentration of my remediation material?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Site... remediation material stream; or (2) Two or more remediation material streams that are combined prior to,...

  13. 40 CFR 63.7943 - How do I determine the average VOHAP concentration of my remediation material?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Site... remediation material stream; or (2) Two or more remediation material streams that are combined prior to,...

  14. Unconventional cancer remedies.

    PubMed Central

    Danielson, K J; Stewart, D E; Lippert, G P

    1988-01-01

    Unproven and disproven remedies continue to abound for illnesses for which conventional treatment is only partially effective. This is particularly true with cancer, for which up to 50% of patients may be receiving unorthodox therapy. This article examines unconventional cancer remedies, their adverse effects, their common factors and the basis for their appeal, as well as what motivates and characterizes patients who choose these treatments. Also discussed is an approach that may be used by the conventional physician for patients who are likely to seek unorthodox treatment. This approach will help patients make the best decision about their treatment and protect them from the hazards of unconventional remedies. PMID:3285984

  15. Evidence of remediation-induced alteration of subsurface poly- and perfluoroalkyl substance distribution at a former firefighter training area.

    PubMed

    McGuire, Meghan E; Schaefer, Charles; Richards, Trenton; Backe, Will J; Field, Jennifer A; Houtz, Erika; Sedlak, David L; Guelfo, Jennifer L; Wunsch, Assaf; Higgins, Christopher P

    2014-06-17

    Poly- and perfluoroalkyl substances (PFASs) are a class of fluorinated chemicals that are utilized in firefighting and have been reported in groundwater and soil at several firefighter training areas. In this study, soil and groundwater samples were collected from across a former firefighter training area to examine the extent to which remedial activities have altered the composition and spatial distribution of PFASs in the subsurface. Log Koc values for perfluoroalkyl acids (PFAAs), estimated from analysis of paired samples of groundwater and aquifer solids, indicated that solid/water partitioning was not entirely consistent with predictions based on laboratory studies. Differential PFAA transport was not strongly evident in the subsurface, likely due to remediation-induced conditions. When compared to the surface soil spatial distributions, the relative concentrations of perfluorooctanesulfonate (PFOS) and PFAA precursors in groundwater strongly suggest that remedial activities altered the subsurface PFAS distribution, presumably through significant pumping of groundwater and transformation of precursors to PFAAs. Additional evidence for transformation of PFAA precursors during remediation included elevated ratios of perfluorohexanesulfonate (PFHxS) to PFOS in groundwater near oxygen sparging wells.

  16. Mold remediation in a hospital.

    PubMed

    Lee, Tang G

    2009-01-01

    As occupants in a hospital, patients are susceptible to air contaminants that can include biological agents dispersed throughout the premise. An exposed patient can become ill and require medical intervention. A consideration for patients is that they may have become environmentally sensitive and require placement in an environment that does not compromise their health. Unfortunately, the hospital environment often contains more biological substances than can be expected in an office or home environment. When a hospital also experiences water intrusion such as flooding or water leaks, resulting mold growth can seriously compromise the health of patients and others such as nursing staff and physicians (Burge, Indoor Air and Infectious Disease. Occupational Medicine: State of the Art Reviews, 1980; Lutz et al., Clinical Infectious Diseases 37: 786-793, 2003). Micro-organism growth can propagate if the water is not addressed quickly and effectively. Immunocompromised patients are particularly at risk when subjected to fungal infection such that the US Center for Disease Control issued guideline for building mold in health care facilities (Centers for Disease and Control [CDC], Centers for Disease and Control: Questions and Answers on Stachybotrys chartarum and Other Molds, 2000). This paper is based on mold remediation of one portion of a hospital unit due to water from construction activity and inadequate maintenance, resulting in mold growth. A large proportion of the hospital staff, primarily nurses in the dialysis unit, exhibited health symptoms consistent with mold exposure. Unfortunately, the hospital administrators did not consider the mold risk to be serious and refused an independent consultant retained by the nurse's union to examine the premise (Canadian Broadcasting Corporation [CBC], Nurses file complaints over mold at Foothills. Canadian Broadcasting Corporation, 2003). The nurse's union managed to have the premise examined by submitting a court order of

  17. Characterization technologies for environmental remediation

    SciTech Connect

    Pruett, J.G.

    1991-01-01

    Improved site characterization technologies are being developed at Martin Marietta Energy Systems for the US Department of Energy (DOE) Office of Technology Development (OTD) in support of environmental restoration activities throughout the DOE complex. Since site characterization is an expensive and time consuming process that must be performed prior to, during, and following remediation efforts, an obvious way to reduce the overall cost of remediation is to develop improved characterization methods. For example, the Derivative Ultraviolet Absorption Spectrometer (DUVAS), which is being field tested as part of the OTD program, is a fiberoptic device for in situ, real time measurement of aromatic organic compounds in groundwater. A transportable, direct sampling Ion Trap Mass Spectrometer (ITMS) is being developed for continuous monitoring of hazardous organic compounds in air. In areas where the environment is hazardous to human health, it is desirous to perform site characterization remotely; if robotics are to be employed, the Ultrasonic Ranging and Data System (USRADS) can be used to provide telemetry information on robot location as well as sensor measurements. Once fully developed, these technologies can be transferred to the private sector. 19 refs., 2 tabs.

  18. Feasibility study of contamination remediation at Naval Weapons Station, Concord, California. Volume 1. Remedial-action alternatives. Final report

    SciTech Connect

    Cullinane, M.J.; Lee, C.R.; O'Neil, L.J.

    1988-09-01

    This report identifies and describes potential remedial actions to eliminate or mitigate the release of hazardous substances onto lands of the Naval Weapons Station, Concord, CA. Hazardous substances identified as necessitating remedial actions include lead, cadmium, zinc, copper, selenium, and arsenic. The proposed remedial actions are designed to address existing or potential impacts identified in a separate study. These identified impacts include: contamination of soil with metals; contamination and toxicity in plants and soil invertebrates; reduced plant growth; increased soil acidity; surface water contamination; air contamination; loss of quantity and quality of wildlife habitat; loss of wetland function; and loss of ultimate land use. The release of hazardous substances at seven sites was identified in the remedial investigation. The seven individual areas were consolidated into four remedial action subsites (RASS's) based on an analysis of the topography and nature of the habitat.

  19. Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives.

    PubMed

    Michaels, J D; Nowak, J E; Mallik, A K; Koczo, K; Wasan, D T; Papoutsakis, E T

    1995-08-20

    To investigate the mechanisms of cell protection provided by medium additives against animal cell injury in sparged bioreactors, we have analyzed the effect of various additives on the cell-to-bubble attachment process using CHO cells in suspension. Cell-to-bubble attachment was examined using three experimental techniques: (1) cell-bubble induction time analysis (cell-to-bubble attachment times); (2) forming thin liquid films and observing the movement and location of cells in the thin films; and (3) foam flotation experiments. The induction times we measured for the various additives are as follows: no additive (50 to 500 ms), polyvinyl pyrrolidone (PVP: 20 to 500 ms), polyethylene glycol (PEG: 200 to 1000 ms), 3% serum (500 to 1000 ms), polyvinyl alcohol (PVA: 2 to 10 s), Pluronic F68 (5 to 20 s), and Methocel (20 to 60 s). In the thin film formation experiments, cells in medium with either F68, PVA, or Methocel quickly flowed out of draining thin liquid films and entered the plateau border. When using media with no additive or with serum, the flow of cells out of the thin liquid film and film drainage were slower than for media containing Pluronic F68. PVA, or Methocel. With PVP and PEG, the thin film drainage was much slower and cells remained trapped in the film. For the foam flotation experiments, a separation factor (ratio of cell concentration in the foam catch to that in the bubble column) was determined for the various additives. In the order of increasing separation factors (i.e., increasing cell attachment to bubbles), the additives are as follows: Methocel, PVA, Pluronic F68, 3% serum, serum-free medium with no additives, PEG, and PVP. Based on the results of these three different cell-to-bubble attachment experiments, we have classified the cell-protecting additives into three groups: (1) Pluronic F68, PVA, and Methocel (reduced cell-to-bubble attachment); (2) PEG and PVP (high or increased cell-to-bubble attachment); and (3) FBS (reduced cell

  20. 40 CFR 63.7886 - What are the general standards I must meet for my affected remediation material management units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the remediation material management unit is an oil-water or organic-water separator, then you control... meet for my affected remediation material management units? 63.7886 Section 63.7886 Protection of... Hazardous Air Pollutants: Site Remediation General Standards § 63.7886 What are the general standards I...

  1. Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0

    SciTech Connect

    Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H.

    1994-02-01

    This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

  2. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Remedial investigation and feasibility study. Barter Island Radar Installation, Alaska. Volume 1 (includes appendices a through c). Revision 1. Final report, January 1995-January 1996

    SciTech Connect

    Karmi, S.; Madden, J.; Borsetti, R.

    1996-01-05

    This report presents the findings of Remedial Investigations and Feasibility Studies at sites located at the Barter Island radar installation in northern Alaska. The sites were characterized based on sampling and analyses conducted during Remedial Investigation activities performed during August and September 1993.

  3. Remedial design/remedial action strategy report

    SciTech Connect

    Dieffenbacher, R.G.

    1994-06-30

    This draft Regulatory Compliance Strategy (RCS) report will aid the ER program in developing and implementing Remedial Design/Remedial Action (RD/RA) projects. The intent of the RCS is to provide guidance for the implementation of project management requirements and to allow the implementation of a flexible, graded approach to design requirements depending on the complexity, magnitude, schedule, risk, and cost for any project. The RCS provides a functional management-level guidance document for the identification, classification, and implementation of the managerial and regulatory aspects of an ER project. The RCS has been written from the perspective of the ER Design Manager and provides guidance for the overall management of design processes and elements. The RCS does not address the project engineering or specification level of detail. Topics such as project initiation, funding, or construction are presented only in the context in which these items are important as sources of information or necessary process elements that relate to the design project phases.

  4. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  5. Microbial Remediation of Metals in Soils

    NASA Astrophysics Data System (ADS)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  6. Modularizing Remedial Mathematics

    ERIC Educational Resources Information Center

    Wong, Aaron

    2013-01-01

    As remedial mathematics education has become an increasingly important topic of conversation in higher education. Mathematics departments have been put under increased pressure to change their programs to increase the student success rate. A number of models have been introduced over the last decade that represent a wide range of new ideas and…

  7. COST OF MTBE REMEDIATION

    EPA Science Inventory

    Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these cost, cost information for 311 sites was furnished by U.S. EPA Office of Undergr...

  8. 2014 Ohio Remediation Report

    ERIC Educational Resources Information Center

    Ohio Board of Regents, 2014

    2014-01-01

    In fulfillment of Ohio Revised Code 3333.041 (A) (1) the Chancellor has published a listing by school district of the number of the 2013 high school graduates who attended a state institution of higher education in academic year 2013-2014 and the percentage of each district's graduates required by the institution to enroll in a remedial course in…

  9. [Cognitive remediation and nursing care].

    PubMed

    Schenin-King, Palmyre; Thomas, Fanny; Braha-Zeitoun, Sonia; Bouaziz, Noomane; Januel, Dominique

    2016-01-01

    Therapies based on cognitive remediation integrate psychiatric care. Cognitive remediation helps to ease cognitive disorders and enable patients to improve their day-to-day lives. It is essential to complete nurses' training in this field. This article presents the example of a patient with schizophrenia who followed the Cognitive Remediation Therapy programme, enabling him to access mainstream employment. PMID:27615702

  10. Remediation Technologies Eliminate Contaminants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  11. Deposit control in ground water remediation equipment

    SciTech Connect

    Horn, B.; Soeder, K.

    1995-12-31

    Remedial actions at all types of hazardous waste sites require the implementation of various water treatment technologies. Though the many groundwater treatment technologies are constantly developing, some age-old problems associated with handling any water remains. These operating problems include deposition of naturally occurring inorganic solutes such as iron, manganese, calcium and fouling by indigenous micro-organisms. Fouling of air stripping towers is a common example of this phenomenon. Virtually all groundwater treatment systems experience some degree of operating impediment from this cause. Some systems may take years for deposits to become problems, but many systems become inoperable within weeks or months. Recently released studies by the American Petroleum Institute show that deposit control is the most common operation problem causing remediation system failure. Such failures result in greatly increased operation & maintenance costs and non compliance with regulatory mandates.

  12. Characterization of airborne fungal levels after mold remediation.

    PubMed

    Kleinheinz, G T; Langolf, B M; Englebert, E

    2006-01-01

    The overall objective of this project was to evaluate levels of airborne fungi present after a mold remediation project and determine the effectiveness of this remediation using airborne mold levels to determine the success of these projects. Andersen N6 (viable) and Air-O-Cell (non-viable) sampling techniques were utilized. Both test methodologies demonstrated that levels of mold in the successfully remediated portions of buildings were significantly different (p<0.05) from the levels found in non-complaint and outdoor samples from the same building, respectively. Conversely, levels in unsuccessful remediation projects were not significantly different (p>0.05) to non-complaint and outdoor samples. Both techniques showed high variability in the overall mold levels found between sites; however, the ratios of specific mold groups in each area tested, within the same site, were remarkably similar. The use of either viable or non-viable mold sampling techniques after mold remediation is essential for determining the success of such projects. This project demonstrates the relationship between mold levels and the success of a mold remediation projects, and will assist in the interpretation of data collected at the conclusion of a mold remediation project.

  13. Remediation technologies for contaminated sediments

    SciTech Connect

    Swanson, L.M.

    1995-09-01

    Although soil and groundwater remediation has been conducted for many years, sediment remediation is still in its infancy. Regulatory agencies are now beginning to identify areas where contaminated sediments exist and evaluate their environmental impact. As these evaluations are completed, the projects must shift focus to how these sediments can be remediated. Also as the criteria for aquatic disposal of dredged sediments become more stringent, remediation technologies must be developed to address contaminated sediments generated by maintenance dredging.This report describes the various issues and possible technologies for sediment remediation.

  14. Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  15. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  16. Remediating MGP brownfields

    SciTech Connect

    Larsen, B.R.

    1997-05-01

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example.

  17. Remedial Action Assessment System

    1997-02-01

    RAAS1.1 is a software-based system designed to assist remediation professionals at each stage of the environmental analysis process. RAAS1.1 provides a template for environmental restoration analysis, and provides the user with key results at each step in the analysis. RAAS1.1 assists the user to develop a coherent and consistent site description, estimate baseline and residual risk to public health from the contaminated site, identify applicable environmental restoration technologies, and formulate feasible remedial response alternatives. Inmore » addition, the RAAS1.1 methodology allows the user to then assess and compare those remedial response alternatives across EPA criteria, including: compliance with objectives; short-term and long-term effectiveness; extent of treatment; and implementability of the technologies. The analytic methodology is segmented and presented in a standardized, concise, easy-to-use format that can be viewed on the personal computer screen, saved and further manipulated, or printed for later use. Each screen and analytic step is accessed via a user-friendly personal computer graphical interface. Intuitively-designed buttons, menus, and lists help the user focus in on the particular information and analysis component of interest; the corresponding results are presented in a format that facilitates their use in decision-making.« less

  18. In situ remediation of a shallow BTEX plume using vertical groundwater circulation (CGC) technology

    SciTech Connect

    Wasp, R.G.; Desrosiers, R.J.

    1997-12-31

    Remediation of a BTEX plume at a gasoline service station located adjacent to a waterway in lower Westchester County, New York, required the design, installation and operation of two Coaxial Groundwater Circulation (CGC) wells. The CGC units induce a vertical groundwater circulation cell around the well, drawing in contamination into the lower portion of the well for treatment and releasing treated groundwater back into the aquifer. The technique is hydraulically balanced and does not rely on extraction and surface treatment, as required by many conventional technologies. The presence of a 3-dimensional flow field provides soil flushing of the plume through heterogeneous soils. This flushing action mobilizes more contamination to the CGC wells for treatment and reduces rebound effects. This leads to quicker remediation times and shorter post monitoring of the plume. CGC systems use considerably lower injection pressures than conventional sparging wells, eliminating increases in heat. This leads to reduced fouling and reduced energy consumption. The data collected as part of the remediation effort included pressure transducer tests to verify the presence of the circulation cell and geochemical data to demonstrate chemical reductions by the CGC units. Data collected was used to validate the initial mathematical modeling used to predict the radius of influence of the vertical circulation cell. The results indicated that the radius of influence was 25 feet with an effective upgradient capture area of 80 feet in the shallow portion of the plume. Chemical reduction over the first 60 days indicated a 30% reduction in BTEX and a 54% reduction in Benzene. The two CGC units effectively captured the upgradient plume between the units without impacting the adjacent waterway.

  19. Flexible remediation design lowers total cost

    SciTech Connect

    Struttman, T.; Towarnicky, J.

    1995-08-01

    Most groundwater remediation systems are built to operate for many years. Predicting time to cleanup is difficult due to unforeseeable problems and changes in underground conditions. As a result, many treatment systems tend to be over-designed, with multiple built-in safety factors and excessive capital costs. Total time in operation also is unnecessarily long because upfront assumptions often fail to match future realities. A Superfund site remediation in Arizona illustrates how a flexible, ongoing design approach can significantly reduce life cycle costs. The site is a municipal airport where degreasing activities from the 1940s through the 1970s left trichloroethylene (TCE) in the soil and in two aquifers beneath the site. The soil is being remediated in five areas, representing approximately 10 acres. The upper aquifer plume covers approximately 400 acres, and the two lower aquifer plumes cover 10 and 30 acres. The cleanup involves extraction of groundwater in a pump-and-treat system of 16 extraction wells, followed by treatment with an air stripper for the upper aquifer and liquid-phase high-pressure carbon on the lower aquifer. The treated/clean water is reinjected to augment hydraulic control.

  20. Integrated in-situ remediation

    SciTech Connect

    Fustos, V.; Lieberman, P.

    1996-01-01

    This article presents an integrated approach to ex-situ and in-situ remediation. A sequence of processes, used successfully in their own right, but used synergistically in this approach, have achieved short-term, economic remediation. In addition the range of contaminants that can be treated is extended. The Process uses ozone, compressed oxygen, water vapor, heat, bioaugmentation and vapor extraction to remediate lower molecular weight hydrocarbons and higher molecular weight hydrocarbons. 3 figs.

  1. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  2. Electrokinetic remediation prefield test methods

    NASA Technical Reports Server (NTRS)

    Hodko, Dalibor (Inventor)

    2000-01-01

    Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.

  3. Saxton soil remediation project

    SciTech Connect

    Holmes, R.D.

    1995-12-31

    The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

  4. Rehabbing for remediation

    SciTech Connect

    Banton, D.; Anderson, R. )

    1994-03-01

    This article examines how rehabilitating contaminated city water wells in Moses Lake, Wash. took care of the problem for less than half the price of conventional remediation techniques. Wells located in similar hydrogeology, often found in the Western and Plains states, may benefit from this approach. Moses Lake is located on the Columbia Plateau in central Washington. The wells are between 700 and 800 ft deep, cased through 100--200 ft of alluvium, and completed open holes stretch across multiple basalt flows of the Wanapum formation of the Columbia River basalt group.

  5. Avoiding costly remediation

    SciTech Connect

    Scheels, R.H.

    1997-10-01

    Some oil and gas pipeline operations require equipment with hydraulic or oil circulation systems. These are subject to oil leaks or spills due to equipment malfunctions as well as normal operation. The potential liability and actual remediation and shutdown costs helped create the need for more environmentally friendly hydraulic fluids. Mobil has developed readily biodegradable, virtually nontoxic hydraulic fluids, Mobil EAL 224H and Mobil EAL Syndrajoc Series oils (EAL stands for Environmental Awareness Lubricants). The first is vegetable oil-based, while the others are formulated from high viscosity-index synthetic ester base stocks. Both use virtually nontoxic additive packages. These hydraulic fluids are described.

  6. Glucocorticoid-remediable aldosteronism.

    PubMed

    Halperin, Florencia; Dluhy, Robert G

    2011-06-01

    Glucocorticoid-remediable aldosteronism (GRA) is a hereditary form of primary hyperaldosteronism and the most common monogenic cause of hypertension. A chimeric gene duplication leads to ectopic aldosterone synthase activity in the cortisol-producing zona fasciculata of the adrenal cortex, under the regulation of adrenocorticotropin (ACTH). Hypertension typically develops in childhood, and may be refractory to standard therapies. Hypokalemia is uncommon in the absence of treatment with diuretics. The discovery of the genetic basis of the disorder has permitted the development of accurate diagnostic testing. Glucocorticoid suppression of ACTH is the mainstay of treatment; alternative treatments include mineralocorticoid receptor antagonists.

  7. Demonstration of optimization techniques for groundwater plume remediation

    SciTech Connect

    Finsterle, Stefan

    2000-09-01

    We examined the potential use of standard optimization algorithms for the solution of aquifer remediation problems. Costs for the removal of dissolved or free-phase contaminants depend on aquifer properties, the chosen remediation technology, and operational parameters (such as number of wells drilled and pumping rates). A cost function must be formulated that may include actual costs and hypothetical penalty costs for incomplete cleanup; the total cost function is therefore a measure of the overall effectiveness and efficiency of the proposed remediation scenario. In this study, the cost function is minimized by automatically adjusting certain operational parameters. The impact of these operational parameters on remediation is evaluated using a state-of-the-art three-phase, three-component flow and transport simulator, which is linked to nonlinear optimization routines. The report demonstrates that methods developed for automatic model calibration are capable of minimizing arbitrary cost functions. Two illustrative examples are presented. While hypothetical, these examples demonstrate that remediation costs can be substantially lowered by combining simulation and optimization techniques. The second example on co-injection of air and steam also make evident the need for coupling optimization routines with an accurate state-of-the-art process simulator. Simplified models are likely to miss significant system behaviors such as increased downward mobilization due to recondensation of contaminants during steam flooding, which can be partly suppressed by the co-injection of air.

  8. Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N₂ and H₂ sparging of open-batch cultures of Clostridium thermocellum ATCC 27405.

    PubMed

    Carere, Carlo R; Rydzak, Thomas; Cicek, Nazim; Levin, David B; Sparling, Richard

    2014-03-01

    Growth, end-product synthesis, enzyme activities, and transcription of select genes associated with the "malate shunt," pyruvate catabolism, H2 synthesis, and ethanol production were studied in the cellulolytic anaerobe, Clostridium thermocellum ATCC 27405, during open-batch fermentation of cellobiose to determine the effect of elevated N2 and H2 gas sparging on metabolism using a 14-L fermenter with a 7-L working volume. The metabolic shift from acetate, H2, and CO2 to ethanol and formate in response to high H2 versus high N2 sparging (20 mL s(-1)) was accompanied by (a) a 2-fold increase in nicotinamide adenine dinucleotide (NADH)-dependent alcohol dehydrogenase (Adh) activity, (b) a 10-fold increase in adhE transcription, and (c) a 3-fold decrease in adhZ transcription. A similar, but less pronounced, metabolic shift was also observed when the rate of N2 sparging was decreased from 20 to 2 mL s(-1), during which (a) NADH-dependent ADH and pyruvate: ferredoxin oxidoreductase (PFOR) activities increased by ∼1.5-fold, (b) adhY transcription increased 6-fold, and (c) transcription of selected pfor genes increased 2-fold. Here we demonstrate that transcription of genes involved in ethanol metabolism is tightly regulated in response to gas sparging. We discuss the potential impacts of dissolved H2 on electron carrier (NADH, NADPH, ferredoxin) oxidation and how these electron carriers can redirect carbon and electron flux and regulate adhE transcription. PMID:24463715

  9. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development.

  10. Development of a green remediation tool in Japan.

    PubMed

    Yasutaka, Tetsuo; Zhang, Hong; Murayama, Koki; Hama, Yoshihito; Tsukada, Yasuhisa; Furukawa, Yasuhide

    2016-09-01

    The green remediation assessment tool for Japan (GRATJ) presented in this study is a spreadsheet-based software package developed to facilitate comparisons of the environmental impacts associated with various countermeasures against contaminated soil in Japan. This tool uses a life-cycle assessment-based model to calculate inventory inputs/outputs throughout the activity life cycle during remediation. Processes of 14 remediation methods for heavy metal contamination and 12 for volatile organic compound contamination are built into the tool. This tool can evaluate 130 inventory inputs/outputs and easily integrate those inputs/outputs into 9 impact categories, 4 integrated endpoints, and 1 index. Comparative studies can be performed by entering basic data associated with a target site. The integrated results can be presented in a simpler and clearer manner than the results of an inventory analysis. As a case study, an arsenic-contaminated soil remediation site was examined using this tool. Results showed that the integrated environmental impacts were greater with onsite remediation methods than with offsite ones. Furthermore, the contributions of CO2 to global warming, SO2 to urban air pollution, and crude oil to resource consumption were greater than other inventory inputs/outputs. The GRATJ has the potential to improve green remediation and can serve as a valuable tool for decision makers and practitioners in selecting countermeasures in Japan. PMID:26803220

  11. Development of a green remediation tool in Japan.

    PubMed

    Yasutaka, Tetsuo; Zhang, Hong; Murayama, Koki; Hama, Yoshihito; Tsukada, Yasuhisa; Furukawa, Yasuhide

    2016-09-01

    The green remediation assessment tool for Japan (GRATJ) presented in this study is a spreadsheet-based software package developed to facilitate comparisons of the environmental impacts associated with various countermeasures against contaminated soil in Japan. This tool uses a life-cycle assessment-based model to calculate inventory inputs/outputs throughout the activity life cycle during remediation. Processes of 14 remediation methods for heavy metal contamination and 12 for volatile organic compound contamination are built into the tool. This tool can evaluate 130 inventory inputs/outputs and easily integrate those inputs/outputs into 9 impact categories, 4 integrated endpoints, and 1 index. Comparative studies can be performed by entering basic data associated with a target site. The integrated results can be presented in a simpler and clearer manner than the results of an inventory analysis. As a case study, an arsenic-contaminated soil remediation site was examined using this tool. Results showed that the integrated environmental impacts were greater with onsite remediation methods than with offsite ones. Furthermore, the contributions of CO2 to global warming, SO2 to urban air pollution, and crude oil to resource consumption were greater than other inventory inputs/outputs. The GRATJ has the potential to improve green remediation and can serve as a valuable tool for decision makers and practitioners in selecting countermeasures in Japan.

  12. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.

    PubMed

    Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason

    2015-01-01

    The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. PMID:25886880

  13. Remediating Remediation: From Basic Writing to Writing across the Curriculum

    ERIC Educational Resources Information Center

    Faulkner, Melissa

    2013-01-01

    This article challenges faculty members and administrators to rethink current definitions of remediation. First year college students are increasingly placed into basic writing courses due to a perceived inability to use English grammar correctly, but it must be acknowledged that all students will encounter the need for remediation as they attempt…

  14. Managing soil remediation problems.

    PubMed

    Okx, J P; Hordijk, L; Stein, A

    1996-12-01

    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  15. Soil Remediation Test

    SciTech Connect

    Manlapig, D. M.; Williamsws

    2002-04-01

    Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

  16. Interpersonal Needs of Remedial Readers.

    ERIC Educational Resources Information Center

    Cochran, Judith

    A study sought to determine the effects of reading deficiency on the interpersonal relationship needs of regular and remedial readers as composite groups and on elementary and secondary school remedial and regular readers as age groups. Elementary and secondary school students were randomly selected and tested on the Gates-MacGinitie Reading Tests…

  17. Innovative Technologies for Chlorinated Solvent Remediation

    NASA Astrophysics Data System (ADS)

    Pennell, Kurt D.; Cápiro, Natalie L.

    2014-07-01

    The following sections are included: * INTRODUCTION * TRADITIONAL REMEDIATION TECHNOLOGIES (1980s) * RESEARCH AND DEVELOPMENT OF INNOVATIVE REMEDIATION TECHNOLOGIES (1990s-2000s) * CURRENT TRENDS IN CHLORINATED SOLVENT REMEDIATION (2010s) * CLOSING THOUGHTS * REFERENCES

  18. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  19. Sub-critical filtration conditions of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system: the effect of gas sparging intensity.

    PubMed

    Robles, A; Ruano, M V; García-Usach, F; Ferrer, J

    2012-06-01

    A submerged anaerobic MBR demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was operated using municipal wastewater at high levels of mixed liquor total solids (MLTS) (above 22 g L(-1)). A modified flux-step method was applied to assess the critical flux (J(C)) at different gas sparging intensities. The results showed a linear dependency between J(C) and the specific gas demand per unit of membrane area (SGD(m)). J(C) ranged from 12 to 19 LMH at SGD(m) values of between 0.17 and 0.5 Nm(3) h(-1) m(-2), which are quite low in comparison to aerobic MBR. Long-term trials showed that the membranes operated steadily at fluxes close to the estimated J(C), which validates the J(C) obtained by this method. After operating the membrane for almost 2 years at sub-critical levels, no irreversible fouling problems were detected, and therefore, no chemical cleaning was conducted.

  20. Monitoring success of remediation: seven case studies of moisture and mold damaged buildings.

    PubMed

    Haverinen-Shaughnessy, Ulla; Hyvärinen, Anne; Putus, Tuula; Nevalainen, Aino

    2008-07-25

    Based on seven case studies of buildings that underwent different degrees of moisture and mold damage remediation, we aimed to develop methodology for assessment of the success of the remediation process. Methods used in gauging the success included technical monitoring of performance of building structures and heating, ventilation and air conditioning (HVAC) systems, microbial monitoring of indoor air quality (IAQ), and health effects studies of building occupants. The assessment was based on measurable change in the situations before and after remediation. Based on technical monitoring, remediation was successful in three cases, with partial improvement noted in three cases, whereas no remediation was conducted in one case. Based on microbial monitoring, improvement was detected in one, partial improvement in two and no improvement in two cases, whereas no follow-up was conducted in two cases. Health effect studies (mainly self-reported health status) showed improvement in one case, partial improvement in two cases, and no improvement in two cases, whereas no follow-up was conducted in one case, and in one case, follow-up failed due to low response rate. The results illustrate that it is possible to monitor the effects of remediation using various metrics. However, in some cases, no improvement could be observed in IAQ or occupant health, even if the remediation was considered technically successful, i.e. the remediation was fully completed as recommended. This could be due to many reasons, including: 1) all damage may not have been addressed adequately; 2) IAQ or health may not have been perceived improved regardless of remediation; and/or 3) the methods used may not have been sensitive/specific enough to detect such improvement within the 6-12 months follow-up periods after completion of the remediation. There is a need to further develop tools for monitoring and assessment of the success of moisture damage remediation in buildings.

  1. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    NASA Astrophysics Data System (ADS)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  2. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Notice to manufacturer of nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES...

  3. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Notice to manufacturer of nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES...

  4. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Notice to manufacturer of nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES...

  5. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Notice to manufacturer of nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES...

  6. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Notice to manufacturer of nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES...

  7. Remediation of contaminated soils

    SciTech Connect

    Radhakrishnan, R.; Ariza, C.H.

    1997-07-01

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated.

  8. ICDF Complex Remedial Action Report

    SciTech Connect

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  9. A Framework for Remediating Number Combination Deficits

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Powell, Sarah R.; Seethaler, Pamela M.; Fuchs, Douglas; Hamlett, Carol L.; Cirino, Paul T.; Fletcher, Jack M.

    2010-01-01

    This article introduces a framework for the remediation of number combination (NC) deficits. Research on the remediation of NC deficits is summarized, and research program studies are used to illustrate the 3 approaches to remediation. The Framework comprises a 2-stage system of remediation. The less intensive stage implementing 1 of 3…

  10. Assessment of a biological in situ remediation

    SciTech Connect

    Wuerdemann, H.; Lund, N.C.; Gudehus, G.

    1995-12-31

    A field experiment using a bioventing technique has been conducted at the center of contamination at a former gasworks site for 3 years. The emphasis of this investigation is to determine the efficiency of in situ remediation. Due to an extremely heterogeneous distribution of contamination it was impossible to satisfactorily quantify the reduction of hydrocarbons. However, a comparison of highly contaminated soil samples shows a qualitative alteration. The analyses of pollutant composition reveal a significant decrease of low condensed PAHs up to anthracene. The relative increase of high condensed PAHs in the contaminant composition indicates a PAH degradation of 54%. Soil respiration is used to assess the course of remediation. Continuous monitoring of O{sub 2} and CO{sub 2} in the used air leads to an amount of about 2,400 kg of decomposed organics. Large-scale elution tests show a reduction of the sum parameters for the organic pollution of the flushing water of 80%. The PAHs have dropped about 97%. The Microtox test indicates a detoxification of 98%.

  11. PCB remediation in schools: a review.

    PubMed

    Brown, Kathleen W; Minegishi, Taeko; Cummiskey, Cynthia Campisano; Fragala, Matt A; Hartman, Ross; MacIntosh, David L

    2016-02-01

    Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods. PMID:25994266

  12. Remedial activities effectiveness verification in tailing areas.

    PubMed

    Kluson, J; Thinova, L; Neznal, M; Svoboda, T

    2015-06-01

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code.

  13. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  14. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource. (authors)

  15. Cognitive remediation and vocational rehabilitation.

    PubMed

    McGurk, Susan R; Wykes, Til

    2008-01-01

    Persons with severe mental illness (SMI) who are striving to improve their work prospects are often hindered in work endeavors because of difficulties with cognitive skills, such as paying attention or concentrating, learning and remembering information, responding in a reasonable amount of time to environmental demands, and planning ahead and solving problems. In addition to limiting work functioning, cognitive impairments are obstacles to receiving the full benefits of vocational rehabilitation, including supported employment. Efforts to improve cognition in people with SMI, or cognitive remediation, have produced modest but consistent gains in a variety of cognitive domains. More recent efforts have focused on combining cognitive remediation with vocational rehabilitation in order to improve work functioning. Initial results from four published studies of combined cognitive remediation and vocational programs are encouraging, indicating improvements in both cognitive and work functioning. The approaches to cognitive remediation used in these studies vary considerably, as do the characteristics of participants, the vocational rehabilitation models, and the methods of combining cognitive and vocational therapies. The differences in key components of programs combining cognitive remediation and vocational rehabilitation indicate the need to replicate findings, and raise important questions about what aspects of the programs are associated with improvements in work.

  16. Practical methods for meeting remediation goals at hazardous waste sites.

    PubMed

    Schulz, T W; Griffin, S

    2001-02-01

    Risk-based cleanup goals or preliminary remediation goals (PRGs) are established at hazardous waste sites when contaminant concentrations in air, soil, surface water, or groundwater exceed specified acceptable risk levels. When derived in accordance with the Environmental Protection Agency's risk assessment guidance, the PRG is intended to represent the average contaminant concentration within an exposure unit area that is left on the site following remediation. The PRG, however, frequently has been used inconsistently at Superfund sites with a number of remediation decisions using the PRG as a not-to-exceed concentration (NTEC). Such misapplications could result in overly conservative and unnecessarily costly remedial actions. The PRG should be applied in remedial actions in the same manner in which it was generated. Statistical methods, such as Bower's Confidence Response Goal, and mathematical methods such as "iterative removal of hot spots," are available to assist in the development of NTECs that ensure the average postremediation contaminant concentration is at or below the PRG. These NTECs can provide the risk manager with a more practical cleanup goal. In addition, an acute PRG can be developed to ensure that contaminant concentrations left on-site following remediation are not so high as to pose an acute or short-term health risk if excessive exposure to small areas of the site should occur. A case study demonstrates cost savings of five to ten times associated with the more scientifically sound use of the PRG as a postremediation site average, and development of a separate NTEC and acute PRG based on the methods referenced in this article.

  17. Remedial Action Contacts Directory - 1997

    SciTech Connect

    1997-05-01

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  18. Bioelectrical Perchlorate Remediation

    NASA Astrophysics Data System (ADS)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    low-level perchlorate (100 μg.L-1) influent as well as mixed-waste influents more typically found in the environment containing both nitrate and perchlorate. Through extended periods of operation (>70 days), no loss in treatment efficiency was noted and no measurable growth in biomass was observed. Gas phase analysis indicated that low levels of H2 produced at the cathode surface through electrolysis can provide enough reducing equivalents to mediate this metabolism. The results of these studies demonstrate that perchlorate remediation can be facilitated through the use of a cathode as the primary electron donor, and that continuous treatment in such a system approaches current industry standards. This has important implications for the continuous treatment of this critical contaminant in industrial waste streams and drinking water. Such a process has the advantage of long-term, low-maintenance operation with ease of online monitoring and control while limiting the injection of additional chemicals into the water treatment process and outgrowth of the microbial populations. This would negate the need for the continual removal and disposal of biomass produced during treatment and also the downstream issues associated with corrosion and biofouling of distribution systems and the production of toxic disinfection byproducts.

  19. Research issues for thermal remediation

    SciTech Connect

    Davis, E.L.; Heron, G.

    1998-06-01

    In order to optimize thermal remediation techniques, all of the effects of the heat on the subsurface system must be understood and taken into consideration during the remediation. Research is needed to provide a better understanding of the effects of temperature on capillarity in soils. This should include laboratory data on the effect of temperature on capillarity in soils. This should include laboratory data on the effect of temperature on displacement pressures which is needed to determine the potential for downward movement of DNAPLS.

  20. A well-developed cleanup technology

    SciTech Connect

    Schrauf, T.W.

    1996-05-01

    This article describes a new in-well aeration systems (density-driven convection-DDC) which remediates hydrocarbons in ground water and soil by injecting oxygen into well to promote natural aerobic activity. Topics include biodegradation process; in situ pump and treat method; advantages over conventional air sparging; how the DDC works.

  1. Growth of the Obligate Anaerobe Desulfovibrio vulgaris Hildenborough under Continuous Low Oxygen Concentration Sparging: Impact of the Membrane-Bound Oxygen Reductases

    PubMed Central

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  2. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    PubMed

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  3. Innovative technologies for contaminated site remediation: focus on bioremediation.

    PubMed

    Gabriel, P F

    1991-12-01

    Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development. This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site. These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.

  4. Re/Mediating Adolescent Literacies.

    ERIC Educational Resources Information Center

    Elkins, John, Ed.; Luke, Allan, Ed.

    Suggesting that teaching in New Times requires that educators read and re/mediate the social relations, the cultural knowledges, and the relationships of power between adolescents and their social, biological, and semiotic universes, this collection of essays offers new ways of seeing and talking about adolescents and their literacies. Most of the…

  5. Cooperative Learning for Remedial Students.

    ERIC Educational Resources Information Center

    Stiers, Darlene

    1989-01-01

    Offers cooperative learning instructional techniques for teaching the historical novel "The Root Cellar" in a remedial reading classroom. Recommends cooperative learning as a means through which the student can succeed academically while developing interpersonal skills. Suggests that the lesson can be adapted to match the ability level of…

  6. Toxic Remediation System And Method

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1996-07-23

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  7. Remedial Mathematics for Quantum Chemistry

    ERIC Educational Resources Information Center

    Koopman, Lodewijk; Brouwer, Natasa; Heck, Andre; Buma, Wybren Jan

    2008-01-01

    Proper mathematical skills are important for every science course and mathematics-intensive chemistry courses rely on a sound mathematical pre-knowledge. In the first-year quantum chemistry course at this university, it was noticed that many students lack basic mathematical knowledge. To tackle the mathematics problem, a remedial mathematics…

  8. Green Chemistry and Environmental Remediation

    EPA Science Inventory

    Abstract: Nutrient remediation and recovery is a growing concern for two key reasons: (i) the prevention of harmful algal bloom proliferation, and (ii) the recycling of nutrients (e.g., phosphates) as they are non-renewable resources which are quickly being depleted. A wide range...

  9. Adolescent Literacy: More than Remediation

    ERIC Educational Resources Information Center

    Biancarosa, Gina

    2012-01-01

    The challenge of adolescent literacy involves more than providing remediation for students who have not mastered basic reading skills. To become successful learners, adolescents must master complex texts, understand the diverse literacy demands of the different content areas, and navigate digital texts. In this article, Biancarosa reviews what the…

  10. Preferential Remedies for Employment Discrimination

    ERIC Educational Resources Information Center

    Edwards, Harry T.; Zaretsky, Barry L.

    1975-01-01

    An overview of the problem of preferential remedies to achieve equal employment opportunities for women and minority groups. Contends that "color blindness" will not end discrimination but that some form of "color conscious" affirmative action program must be employed. Temporary preferential treatment is justified, according to the author, by the…

  11. Recent trends in nanomaterials applications in environmental monitoring and remediation.

    PubMed

    Das, Sumistha; Sen, Biswarup; Debnath, Nitai

    2015-12-01

    Environmental pollution is one of the greatest problems that the world is facing today, and it is increasing with every passing year and causing grave and irreparable damage to the earth. Nanomaterials, because of their novel physical and chemical characteristics, have great promise to combat environment pollution. Nanotechnology is being used to devise pollution sensor. A variety of materials in their nano form like iron, titanium dioxide, silica, zinc oxide, carbon nanotube, dendrimers, polymers, etc. are increasingly being used to make the air clean, to purify water, and to decontaminate soil. Nanotechnology is also being used to make renewable energy cheaper and more efficient. The use of nanotechnology in agriculture sector will reduce the indiscriminate use of agrochemicals and thus will reduce the load of chemical pollutant. While remediating environment pollution with nanomaterials, it should also be monitored that these materials do not contribute further degradation of the environment. This review will focus broadly on the applications of nanotechnology in the sustainable development with particular emphasis on renewable energy, air-, water-, and soil-remediation. Besides, the review highlights the recent developments in various types of nanomaterials and nanodevices oriented toward pollution monitoring and remediation.

  12. 49 CFR 193.2637 - Remedial measures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Remedial measures. 193.2637 Section 193.2637 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2637 Remedial measures. Prompt corrective or remedial...

  13. 49 CFR 193.2637 - Remedial measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures. 193.2637 Section 193.2637 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2637 Remedial measures. Prompt corrective or remedial...

  14. 40 CFR 85.1803 - Remedial Plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Remedial Plan. 85.1803 Section 85.1803... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... manufacturer shall submit a plan to the Administrator to remedy such nonconformity. The plan shall contain...

  15. 40 CFR 92.705 - Remedial plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Remedial plan. 92.705 Section 92.705... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... manufacturer or remanufacturer shall submit a plan to the Administrator to remedy such nonconformity. The...

  16. 40 CFR 85.1803 - Remedial Plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Remedial Plan. 85.1803 Section 85.1803... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... manufacturer shall submit a plan to the Administrator to remedy such nonconformity. The plan shall contain...

  17. 40 CFR 85.1803 - Remedial Plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Remedial Plan. 85.1803 Section 85.1803... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... manufacturer shall submit a plan to the Administrator to remedy such nonconformity. The plan shall contain...

  18. 40 CFR 92.705 - Remedial plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Remedial plan. 92.705 Section 92.705... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... manufacturer or remanufacturer shall submit a plan to the Administrator to remedy such nonconformity. The...

  19. 40 CFR 92.705 - Remedial plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Remedial plan. 92.705 Section 92.705... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... manufacturer or remanufacturer shall submit a plan to the Administrator to remedy such nonconformity. The...

  20. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    EPA Science Inventory

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  1. Remediation: Higher Education's Bridge to Nowhere

    ERIC Educational Resources Information Center

    Complete College America, 2012

    2012-01-01

    The intentions were noble. It was hoped that remediation programs would be an academic bridge from poor high school preparation to college readiness. Sadly, remediation has become instead higher education's "Bridge to Nowhere." This broken remedial bridge is travelled by some 1.7 million beginning students each year, most of whom will…

  2. 45 CFR 77.4 - Remedial actions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Remedial actions. 77.4 Section 77.4 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION REMEDIAL ACTIONS APPLICABLE TO LETTER OF CREDIT ADMINISTRATION § 77.4 Remedial actions. If, after the conclusion of the procedures set forth...

  3. Removing Remediation Requirements: Effectiveness of Intervention Programs

    ERIC Educational Resources Information Center

    Fine, Anne; Duggan, Mickle; Braddy, Linda

    2009-01-01

    Remediation of incoming college freshman students is a national concern because remediated students are at higher risk of failing to complete their degrees. Some Oklahoma higher education institutions are working to assist K-12 systems in finding ways to reduce the number of incoming college freshman students requiring remediation. This study…

  4. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

    SciTech Connect

    Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.

    2007-02-26

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants included strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for

  5. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    PubMed Central

    Germani, José Carlos

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100 μm), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R), enrichment ratio (E), and purification factor (P) of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate. PMID:23738054

  6. Prompt remediation of water intrusion corrects the resultant mold contamination in a home.

    PubMed

    Rockwell, William

    2005-01-01

    More patients are turning to their allergists with symptoms compatible with allergic rhinitis, allergic sinusitis, and/or bronchial asthma after exposure to mold-contaminated indoor environments. These patients often seek guidance from their allergists in the remediation of the contaminated home or office. The aim of this study was to determine baseline mold spore counts for noncontaminated homes and report a successful mold remediation in one mold-contaminated home. Indoor air quality was tested using volumetric spore counts in 50 homes where homeowners reported no mold-related health problems and in one mold-contaminated home that was remediated. The health of the occupant of the mold-contaminated home also was assessed. Indoor volumetric mold spore counts ranged from 300 to 1200 spores/m3 in the baseline homes. For the successful remediation, the mold counts started at 300 spores/m3, increased to 2800 spores/m3 at the height of the mold contamination, and then fell to 800 spores/m3 after remediation. The occupant's allergic symptoms ceased on complete remediation of the home. Indoor volumetric mold counts taken with the Allergenco MK-3 can reveal a potential indoor mold contamination, with counts above 1000 spores/m3 suggesting indoor mold contamination. Once the presence of indoor mold growth is found, a prompt and thorough remediation can bring mold levels back to near-baseline level and minimize negative health effects for occupants.

  7. SIMPLE ANALYTICAL MODEL FOR HEAT FLOW IN FRACTURES-APPLICATION TO STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...

  8. SIMPLE ANALYTICAL MODEL FOR HEAT FLOW IN FRACTURES - APPLICATION TO STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...

  9. Heterogeneous Photocatalysis Applied to Concrete Pavement for Air Remediation

    NASA Astrophysics Data System (ADS)

    Ballari, M. M.; Hunger, M.; Hüsken, G.; Brouwers, H. J. H.

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of nitric oxide (NO) in a standard flow laminar photoreactor irradiated with UV lamps. In addition the influence of several parameters that can affect the performance of these stones under outdoor conditions are investigated, such as irradiance, relative humidity and wind speed. The kinetic parameters present in the NO reaction rate are estimated employing experimental data obtained in the photoreactor. The obtained model predictions employing the determined kinetic constants are in good agreement with the experimental results of NO concentration at the reactor outlet.

  10. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  11. Environmental Remediation Data Management Tools

    SciTech Connect

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-02-26

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning planning of any scale and for recording

  12. Volumetric scale-up of smouldering remediation of contaminated materials.

    PubMed

    Switzer, Christine; Pironi, Paolo; Gerhard, Jason I; Rein, Guillermo; Torero, Jose L

    2014-03-15

    Smouldering remediation is a process that has been introduced recently to address non-aqueous phase liquid (NAPL) contamination in soils and other porous media. Previous work demonstrated this process to be highly effective across a wide range of contaminants and soil conditions at the bench scale. In this work, a suite of 12 experiments explored the effectiveness of the process as operating scale was increased 1000-fold from the bench (0.003m(3)) to intermediate (0.3m(3)) and pilot field-scale (3m(3)) with coal tar and petrochemical NAPLs. As scale increased, remediation efficiency of 97-99.95% was maintained. Smouldering propagation velocities of 0.6-14×10(-5)m/s at Darcy air fluxes of 1.54-9.15cm/s were consistent with observations in previous bench studies, as was the dependence on air flux. The pilot field-scale experiments demonstrated the robustness of the process despite heterogeneities, localised operation, controllability through airflow supply, and the importance of a minimum air flux for self-sustainability. Experiments at the intermediate scale established a minimum-observed, not minimum-possible, initial concentration of 12,000mg/kg in mixed oil waste, providing support for the expectation that lower thresholds for self-sustaining smouldering decreased with increasing scale. Once the threshold was exceeded, basic process characteristics of average peak temperature, destructive efficiency, and treatment velocity were relatively independent of scale.

  13. Volumetric scale-up of smouldering remediation of contaminated materials.

    PubMed

    Switzer, Christine; Pironi, Paolo; Gerhard, Jason I; Rein, Guillermo; Torero, Jose L

    2014-03-15

    Smouldering remediation is a process that has been introduced recently to address non-aqueous phase liquid (NAPL) contamination in soils and other porous media. Previous work demonstrated this process to be highly effective across a wide range of contaminants and soil conditions at the bench scale. In this work, a suite of 12 experiments explored the effectiveness of the process as operating scale was increased 1000-fold from the bench (0.003m(3)) to intermediate (0.3m(3)) and pilot field-scale (3m(3)) with coal tar and petrochemical NAPLs. As scale increased, remediation efficiency of 97-99.95% was maintained. Smouldering propagation velocities of 0.6-14×10(-5)m/s at Darcy air fluxes of 1.54-9.15cm/s were consistent with observations in previous bench studies, as was the dependence on air flux. The pilot field-scale experiments demonstrated the robustness of the process despite heterogeneities, localised operation, controllability through airflow supply, and the importance of a minimum air flux for self-sustainability. Experiments at the intermediate scale established a minimum-observed, not minimum-possible, initial concentration of 12,000mg/kg in mixed oil waste, providing support for the expectation that lower thresholds for self-sustaining smouldering decreased with increasing scale. Once the threshold was exceeded, basic process characteristics of average peak temperature, destructive efficiency, and treatment velocity were relatively independent of scale. PMID:24468525

  14. Remediation plans in family medicine residency

    PubMed Central

    Audétat, Marie-Claude; Voirol, Christian; Béland, Normand; Fernandez, Nicolas; Sanche, Gilbert

    2015-01-01

    Abstract Objective To assess use of the remediation instrument that has been implemented in training sites at the University of Montreal in Quebec to support faculty in diagnosing and remediating resident academic difficulties, to examine whether and how this particular remediation instrument improves the remediation process, and to determine its effects on the residents’ subsequent rotation assessments. Design A multimethods approach in which data were collected from different sources: remediation plans developed by faculty, program statistics for the corresponding academic years, and students’ academic records and rotation assessment results. Setting Family medicine residency program at the University of Montreal. Participants Family medicine residents in academic difficulty. Main outcome measures Assessment of the content, process, and quality of remediation plans, and students’ academic and rotation assessment results (successful, below expectations, or failure) both before and after the remediation period. Results The framework that was developed for assessing remediation plans was used to analyze 23 plans produced by 10 teaching sites for 21 residents. All plans documented cognitive problems and implemented numerous remediation measures. Although only 48% of the plans were of good quality, implementation of a remediation plan was positively associated with the resident’s success in rotations following the remediation period. Conclusion The use of remediation plans is well embedded in training sites at the University of Montreal. The residents’ difficulties were mainly cognitive in nature, but this generally related to deficits in clinical reasoning rather than knowledge gaps. The reflection and analysis required to produce a remediation plan helps to correct many academic difficulties and normalize the academic career of most residents in difficulty. Further effort is still needed to improve the quality of plans and to support teachers.

  15. Comparison of measurements with PetroSense{reg_sign} Portable Hydrocarbon Analyzer (PHA 100) and laboratory analysis of bailed samples (EPA method 8015M) when used in monitoring sparging process

    SciTech Connect

    Saini, D.P.; Wing, T.; Dandge, D.K.; Leclerc, R.; Sword, M.A.; Havens, S.; Worland, J.R.

    1995-12-31

    The PetroSense{reg_sign} PHA-100 is a portable hydrocarbon analyzer that can measure total hydrocarbons in real time, in-situ, in water, vapor and the water vapor interface. The performance of the PetroSense{reg_sign} PHA-100 in the field when used to monitor the levels of hydrocarbons in a monitoring well at an Under Ground Storage (UST) site in Las Vegas is discussed, and compared to the lab analysis of the water samples taken at the same time. The authors also discuss its use for monitoring the progress of a sparging process at another site in Las Vegas. In both cases the PHA-100 showed excellent correlation with lab analyzed samples.

  16. FIELD-SCALE EVALUATION OF IN SITU COSOLVENT FLUSHING FOR ENCHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    A comprehensive, field-scale evaluation of in situ cosolvent flushing for enhanced remediation of nonaqueous phase liquid (NAPL)-contaminated aquifers was performed in a hydraulically isolated test cell (about 4.3 m x 3.6 m) constructed at a field site at Hill Air Force Base, Uta...

  17. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.'' The overall objectives of this project are to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.'' This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  18. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the ``Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.`` The overall objectives of this project are ``to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.`` This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  19. Palmerton Zinc Superfund Site remediation strategy

    SciTech Connect

    Tan, P.M.

    1988-01-01

    The Palmerton Zinc Superfund Site is a former zinc smelting operation located in Palmerton, PA. Operation of this plant since the turn of the century has caused large quantities of zinc, cadmium, lead and copper to be emitted into the atmosphere in the vicinity of the plant. As a result of these emissions significant concentrations of these heavy metals in the soil have been measured within a large area surrounding the plant. Public health concerns related to these concentrations has, in part, caused the EPA to list this area as a superfund site on the National Priorities List (NPL). To perform an efficient Remedial Investigation/Feasibility Study at this site EPA needed to determine the extent and magnitude of the problem. In order to help in the design of the actual locations where soil samples should be taken certain quantitative and qualitative air pollution meteorological analyses were performed. In addition to the soil sampling, other media including groundwater and surface water were also analyzed. Also, studies which documented the chronic effects of heavy metal contamination on aquatic and terrestrial animals were initiated.

  20. Remediation tradeoffs addressed with simulated annealing optimization

    SciTech Connect

    Rogers, L. L., LLNL

    1998-02-01

    Escalation of groundwater remediation costs has encouraged both advances in optimization techniques to balance remediation objectives and economics and development of innovative technologies to expedite source region clean-ups. We present an optimization application building on a pump-and-treat model, yet assuming a prior removal of different portions of the source area to address the evolving management issue of more aggressive source remediation. Separate economic estimates of in-situ thermal remediation are combined with the economic estimates of the subsequent optimal pump-and-treat remediation to observe tradeoff relationships of cost vs. highest remaining contamination levels (hot spot). The simulated annealing algorithm calls the flow and transport model to evaluate the success of a proposed remediation scenario at a U.S.A. Superfund site contaminated with volatile organic compounds (VOCs).

  1. [Natural remedies during pregnancy and lactation].

    PubMed

    Gut, E; Melzer, J; von Mandach, U; Saller, R

    2004-10-01

    Up to date there is a lack of systematically gathered data on the use of natural remedies (phytotherapeutic, homeopathic, anthroposophic, spagyric, Bach and Schussler remedies) during pregnancy and lactation. The aim of this non-representative pilot study on 139 women, who came for delivery to three institutions between mid-1997 and the beginning of 1998, was to receive data about how often and within which spectrum natural remedies are used during pregnancy and lactation. During pregnancy 96% and within the lactation period 84% of the women consumed at least 1 natural remedy. Phytotherapeutic drugs were used most frequently. In contrast to the widespread use of natural remedies by pregnant women and nursing mothers in this study, little information on the effectiveness and possible risks is available. Therefore it seems necessary to examine and evaluate natural remedies used during pregnancy and lactation.

  2. Environmental remediation of the 200 Areas, Hanford Site, Washington

    SciTech Connect

    Johnson, W.L.; Wittreich, C.D.

    1993-04-01

    The Hanford Site, established in 1943, was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment. This has resulted in extensive contamination in several types of environmental media including air, vadose zone, groundwater, surface water, ground surface, and biota. Efforts are currently underway to remediate chemical and nuclear processing areas of the Hanford Site. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study, referred to as the 200 Aggregate Area Management Study (AAMS) Program, of waste disposal and environmental monitoring data with field investigations was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup process.

  3. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect

    Not Available

    1989-09-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  4. 40 CFR 300.435 - Remedial design/remedial action, operation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Hazardous Substance Response § 300.435 Remedial design/remedial...

  5. 40 CFR 300.435 - Remedial design/remedial action, operation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Hazardous Substance Response § 300.435 Remedial design/remedial...

  6. 40 CFR 300.435 - Remedial design/remedial action, operation and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Hazardous Substance Response § 300.435 Remedial design/remedial...

  7. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) - IN SITU REMEDIATION OF CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    This Innovative Technology Evaulation Report summarizes the results of the evaluation of the Electrochemical Remediation Technologies (ECRTs) process, developed by P2-Soil Remediation, Inc. (in partnership with Weiss Associates and Electro-Petroleum, Inc.). This evaluation was co...

  8. 40 CFR 300.435 - Remedial design/remedial action, operation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS... remedial action objectives and remediation goals in the ROD, and is determined to be operational...

  9. NEUROPSYCHOLOGICAL REMEDIATION OF HYPERACTIVE CHILDREN

    PubMed Central

    Agarwal, Neena; Rao, Shobini L.

    1997-01-01

    Hyperkinesis is associated with deficits of attention (poor allocation of attention resources, susceptibility to interference and perseveration); vigilance and perceptual sensitivity. Three boys aged 7-8 years with simple hyperkinesis were given cognitive tasks to improve the above functions in daily one hour sessions for a month. The children improved significantly in the above functions and behaviour. Three other children aged 5-8 years with simple hyperkinesis who were on medication improved only slightly in their behaviour during this period. Behavioural intervention and parental counselling were additional inputs to the children in both groups. Neuropsychological remediation combined with parental counselling and behavioural intervention shows promise in treating hyperactive children. PMID:21584098

  10. Night Blindness and Ancient Remedy

    PubMed Central

    Al Binali, H.A. Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  11. Electrokinetic remediation of oil-contaminated soils.

    PubMed

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  12. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  13. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  14. Groundwater remediation at a wood preservatives site

    SciTech Connect

    Mital, H.K.; Damera, R.

    1994-12-31

    A wood treatment facility in Pennsylvania allegedly discharged about a million gallons of spent wood preservatives containing pentachlorophenol into a well from 1947 to 1963. Contaminated water was noticed in a creek adjacent to the site and was reported by the residents in 1972. Subsequently this site was placed on the National Priorities List (NPL) by the EPA in 1982. Tetra Tech, Inc. has performed Remedial Investigations (RI), Feasibility Studies (FS), Remedial Designs (RD) and Remedial Action (RA) at this Superfund site, for five years. This paper presents an overview of RI, FS, RD and treatability studies related to groundwater remediation.

  15. [Assessment of TVOC and odor in the remediation site of contaminated soil and groundwater using electronic nose].

    PubMed

    Tian, Xiu-Ying; Cai, Qiang; Liu, Rui; Zhang, Yong-Ming

    2013-02-01

    According to the conditions of a contaminated soil and groundwater remediation site in Shanghai, the self-built electronic nose was applied to detect VOCs and odor of previously remedied soil and groundwater, remedying soil and groundwater, and the air above and around the site. Combining the formula of TPI and OPI, the value of each point was got and was shown in figures. Results showed: 1. Comparing the determination results of previously remedied with remedying contaminated soil and groundwater, the concentration of TVOC and odor was overall declined. The result was consistent with the fact. The detection result of electronic nose was proved to be right; 2. In the remediation process of soil and groundwater, the volatilization of VOCs and odor was inflected by temperature and works of crushing, adding medicine and turning the soil on time. The concentration showed a trend of overall decline with stage rising, so the electronic noses can be used for dynamic monitoring of the whole remediation process; 3. Combined with the GIS, the electronic noses can preliminary assess space pollution situation caused by the remediation of contaminated soil and groundwater and the influence on the residence in the surrounding region. However, further study on the refined classification of the impact degree is needed.

  16. Feasability study of contamination remediation at Naval Weapons Station, Concord, California. Final draft report

    SciTech Connect

    Cullinane, M.J.; Lee, Charles R.; O'Neil, L.J.; Clairain, E.J.

    1986-02-01

    Hazardous substances identified as necessitating remedial actions include lead, cadmium, zinc, copper, selenium, and arsenic. The proposed remedial actions are designed to address existing or potential damages identified in a separate study. These identified damages include: contamination of soil with metals; contamination and toxicity of plants and soil invertebrates; reduced plant growth; increased soil acidity; surface water contamination; air contamination; losses of wildlife food quantity and quality of habitat; loss of wetland function and loss of ultimate land use. The release of hazardous substances at seven sites is identified. Sites include both wetland and upland habitat. The sites are consolidated into three areas based on the important nature of the habitat and category of remedial action that may be appropriate. Five categories of remedial actions were evaluated for implementation at NWS, Concord including: no action, increased environmental monitoring, source removal, source isolation, and site restoration. Fourteen remedial action technologies were initially assessed with five technologies found to be applicable at NWS Concord. These five technologies were combined into ten alternative remedial actions. Seven alternatives survived the initial screening process and were subjected to a detailed evaluation using nine criteria: reliability, implementability, technical effectiveness, environmental concerns, safety, operation and maintenance, costs, regulatory requirements, and public acceptance.

  17. GROUND WATER REMEDIATION RESEARCH: PERMEABLE REACTIVE BARRIERS AND SOURCE ZONE REMEDIATION

    EPA Science Inventory

    An overview of ground water remediation research conducted at the Subsurface Protection and Remediation Division is provided. The focus of the overview is on Permeable Reactive Barriers for treatment of organic and inorganic contaminants and remediation of DNAPL source zones.

  18. Some Similarities and Differences Between Compositions Written by Remedial and Non-Remedial College Freshmen.

    ERIC Educational Resources Information Center

    House, Elizabeth B.; House, William J.

    The essays composed by 84 remedial and 77 nonremedial college freshmen were analyzed for some features proposed by Mina Shaughnessy as being characteristic of basic writers. The students were enrolled in either a beginning remedial class (098), a class at the next level of remediation (099), or a regular English class (101). The essays were…

  19. Lasagna{trademark} soil remediation

    SciTech Connect

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH.

  20. Lasagna{trademark} soil remediation

    SciTech Connect

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed by an industrial consortium consisting of Monsanto, E. I. DuPont de Nemours & Co., Inc. (DuPont), and General Electric, with participation from the Department of Energy (DOE) Office of Environmental Management, Office of Science and Technology (EM-50), and the Environmental Protection Agency (EPA) Office of Research and Development (Figure 1). Lasagna{trademark} remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured or decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration.

  1. Individualized remediation during fellowship training.

    PubMed

    Sparks, J William; Landrigan-Ossar, Mary; Vinson, Amy; Dearden, Jennifer; Navedo, Andres T; Waisel, David B; Holzman, Robert S

    2016-11-01

    The Accreditation Council for Graduate Medical Education requires medical training programs to monitor, track, and formally document a fellow's performance. If deficiencies are found, programs are expected to prepare and implement an effective plan of action for improvement and to ensure that graduates acquire the personal and professional attributes of an independent physician. We revised our evaluation policy and instituted a remediation protocol in 2008. Since that time, 130 pediatric anesthesia fellows have graduated. Seven fellows (5%) underwent departmental formal consultation for deficient behavior or poor performance. Of these 7 fellows, 4 underwent an individualized remediation program (IRP). A formal performance review and written contract, with specifically identified problems and general themes, recommendations for time-based successful behaviors, and clearly identified consequences for unsuccessful behaviors, was initiated for each fellow undergoing an IRP. All fellows who participated in this program completed their subspecialty training in pediatric anesthesia, and all eligible fellows have successfully achieved their subspecialty board certification. Our approach has the advantage of multimodality, time-based daily evaluations, and group discussions in the context of a Clinical Competency Committee. Utilization of an IRP as a metric for progress has features similar to effective cognitive behavioral therapy contracts and has ensured that our graduates are held to clearly delineated and specified skills and behaviors that allow them to work independently in the field of pediatric anesthesiology. PMID:27687433

  2. Air stripper VOC treatment using specialized adsorbents

    SciTech Connect

    Craven, C.N.; Blystone, P.G.; Grant, A.

    1994-12-31

    Abatement of volatile organic compound (VOC) emissions is required by federal, state and local regulatory agencies. Sources of VOC emissions include air stripping processes at groundwater remediation and industrial wastewater operations. The Purus A2000 system is an innovative emission control system that utilizes specialized adsorbent resins, on-site regeneration and solvent recovery for abatement of VOCs. This paper describes two applications in which air stripper off-gas is treated by the Purus A2000 Adsorption System. The first is a groundwater remediation pump-and-treat operation in which the air stripper off-gas contains chlorinated solvents. At the second site, benzene and styrene emissions from an industrial wastewater air stripper operation were successfully treated. At both sites the recovered solvent was recycled. Capital and operating costs will be compared to other treatment methods.

  3. Remediation of dichloromethane (DCM)-contaminated ground water

    SciTech Connect

    Flathman, P.E.; Jerger, D.E.; Woodhull, P.M. )

    1992-08-01

    This case history describes the physical and biological treatment of dichloromethane (DCM)-contaminated ground water following the rupture of an underground pipeline which contaminated an estimated 11,000 m[sup 3] (14,000 yd[sup 3]) of soil and ground water in the early fall of 1983. Air stripping DCM from recovered ground water was initiated and provided an estimated 97% reduction in the ground water concentration of DCM. When it became evident that physical treatment alone would no longer be effective in removing residual DCM from the ground water environment, the practice of air stripping DCM from recovered ground water was terminated. Biological treatment was initiated and provided greater than a 500,000-fold reduction in the ground water concentration of DCM. Biological treatment had far exceeded the ability of physical treatment along to remediate a ground water environment contaminated with a biodegradable contaminant. 14 refs., 12 figs., 4 tabs.

  4. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  5. 300-FF-1 remedial design report/remedial action work plan

    SciTech Connect

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  6. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    SciTech Connect

    Caravello, V.

    1998-06-03

    Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

  7. Smouldering Combustion for Soil Remediation: Two-dimensional Experiments and Modelling

    NASA Astrophysics Data System (ADS)

    Hasan, T.; Gerhard, J. I.; Hadden, R.; Pironi, P.; Rein, G.

    2013-12-01

    Smouldering combustion is an innovative approach that has significant potential for the remediation of soils contaminated with Non-Aqueous Phase liquids (NAPLs). Sustaining Treatment for Active Remediation (STAR) is a novel technology which is based upon the concept of liquid smouldering, in which NAPLs embedded in a porous medium are progressively destroyed via an exothermic oxidation reaction which propagates in a self-sustaining manner through the contaminated material. The In Situ Smouldering Model (ISSM), developed to simulate the propagation of STAR as a function of NAPL content and local air velocity, was calibrated for a suite of one-dimensional experiments (MacPhee et al., 2010). However, STAR application at field sites involves propagation of a smouldering front in multiple directions simultaneously. This study presents the further development and validation of the model against experiments for two-dimensional (2D) smouldering propagation. 2D STAR experiments were conducted to explore the simultaneous vertical (upwards), lateral (horizontal) and opposed (downwards) front propagation rates and final extent of remediation as a function of air injection rate in coal tar-contaminated sand. The model was then calibrated to the base case experiment and predictive simulations demonstrated strong agreement with the remaining experiments. This work provides some of the first evidence of multidimensional smouldering under forced, complex air flow fields and provides confidence in a tool that will be useful for designing STAR soil remediation schemes at the field scale.

  8. Waste site characterization and remediation: Problems in developing countries

    SciTech Connect

    Kalavapudi, M.; Iyengar, V.

    1996-12-31

    Increased industrial activities in developing countries have degraded the environment, and the impact on the environment is further magnified because of an ever-increasing population, the prime receptors. Independent of the geographical location, it is possible to adopt effective strategies to solve environmental problems. In the United States, waste characterization and remediation practices are commonly used for quantifying toxic contaminants in air, water, and soil. Previously, such procedures were extraneous, ineffective, and cost-intensive. Reconciliation between the government and stakeholders, reinforced by valid data analysis and environmental exposure assessments, has allowed the {open_quotes}Brownfields{close_quotes} to be a successful approach. Certified reference materials and standard reference materials from the National Institute of Standards (NIST) are indispensable tools for solving environmental problems and help to validate data quality and the demands of legal metrology. Certified reference materials are commonly available, essential tools for developing good quality secondary and in-house reference materials that also enhance analytical quality. This paper cites examples of environmental conditions in developing countries, i.e., industrial pollution problems in India, polluted beaches in Brazil, and deteriorating air quality in countries, such as Korea, China, and Japan. The paper also highlights practical and effective approaches for remediating these problems. 23 refs., 7 figs., 1 tab.

  9. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  10. SIMULATION OF SURFACTANT-ENHANCED AQUIFER REMEDIATION

    EPA Science Inventory

    Surfactant-enhanced aquifer remediation (SEAR) is currently under active investigation as one of the most promising alternatives to conventional pump-and-treat remediation for aquifers contaminated by dense nonaqueous phase organic liquids. An existing three-dimensional finite-di...

  11. Autonomy and Motivation in Remedial Mathematics

    ERIC Educational Resources Information Center

    George, Michael

    2012-01-01

    Research has shown that a significant majority of students in remedial mathematics do not remediate successfully. Such widespread failure raises the question of motivation. Some would argue that the instructor should directly compel students to commit themselves to the course and its work. This can be done by mandating attendance and/or by…

  12. Mold Remediation in Schools and Commercial Buildings.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This document describes how to investigate and evaluate moisture and mold problems in educational facilities, and presents the key steps for implementing a remediation plan. A checklist is provided for conducting mold remediation efforts along with a resource list of helpful organizations and governmental agencies. Appendices contain a glossary,…

  13. Remedial Reading Students at Moraine Valley.

    ERIC Educational Resources Information Center

    Reis, Elizabeth

    In an effort to assess the effectiveness of their remedial reading courses, Moraine Valley Community College (MVCC) in Palos Hills, Illinois, undertook a study of the retention, course completion, and graduation rates of students who completed one of three remedial reading courses: RDG-040, basic skills for students reading below the 7th grade…

  14. 30 CFR 270.7 - Remedies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Remedies. 270.7 Section 270.7 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE NONDISCRIMINATION IN THE OUTER CONTINENTAL SHELF § 270.7 Remedies. In addition to the penalties available under 30 CFR...

  15. 30 CFR 270.7 - Remedies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Remedies. 270.7 Section 270.7 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE NONDISCRIMINATION IN THE OUTER CONTINENTAL SHELF § 270.7 Remedies. In addition to the penalties available under 30 CFR...

  16. Remedial Testing and Placement in Community Colleges

    ERIC Educational Resources Information Center

    Horn, Catherine; McCoy, Zoe; Campbell, Lea; Brock, Cheryl

    2009-01-01

    Almost half of students who enter college require some sort of remedial coursework. Further, states are increasingly moving the responsibility of postsecondary remediation away from four-year campuses to two-year institutions. Scholars and policymakers have grappled with best practice for successfully filling in academic gaps and moving students…

  17. Tank waste remediation system compensatory measure removal

    SciTech Connect

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  18. READING AND WRITING, THE REMEDIAL PROGRAM.

    ERIC Educational Resources Information Center

    Euclid English Demonstration Center, OH.

    THE PAPERS IN THIS COLLECTION EXPLAIN THE JUNIOR HIGH SCHOOL REMEDIAL PROGRAM IN READING AND WRITING DEVELOPED BY THE EUCLID ENGLISH DEMONSTRATION CENTER, THEY ARE (1) "REMEDIAL CLASSES AND THE TOTAL ENGLISH PROGRAM," BY GEORGE HILLOCKS, (2) "DEFINITION, ORIGIN, AND TREATMENT OF UNDERACHIEVEMENT," BY JANE W. KESSLER, (3) "READING SKILLS IN JUNIOR…

  19. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  20. 30 CFR 570.7 - Remedies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Remedies. 570.7 Section 570.7 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE NONDISCRIMINATION IN THE OUTER CONTINENTAL SHELF § 570.7 Remedies. In addition to the penalties available under 30 CFR part 550, subpart...

  1. 30 CFR 570.7 - Remedies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Remedies. 570.7 Section 570.7 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE NONDISCRIMINATION IN THE OUTER CONTINENTAL SHELF § 570.7 Remedies. In addition to the penalties available under 30 CFR part 550, subpart...

  2. 30 CFR 570.7 - Remedies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Remedies. 570.7 Section 570.7 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE NONDISCRIMINATION IN THE OUTER CONTINENTAL SHELF § 570.7 Remedies. In addition to the penalties available under 30 CFR part 550, subpart...

  3. 18 CFR 706.103 - Remedial action.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Remedial action. 706.103 Section 706.103 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE RESPONSIBILITIES AND CONDUCT General Provisions § 706.103 Remedial action. (a) A violation of this part by...

  4. 18 CFR 706.103 - Remedial action.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Remedial action. 706.103 Section 706.103 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE RESPONSIBILITIES AND CONDUCT General Provisions § 706.103 Remedial action. (a) A violation of this part by...

  5. 48 CFR 203.906 - Remedies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Remedies. 203.906 Section 203.906 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... for Contractor Employees 203.906 Remedies. (1) Not later than 30 days after receiving a DoD...

  6. 48 CFR 203.906 - Remedies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Remedies. 203.906 Section 203.906 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... for Contractor Employees 203.906 Remedies. (1) Not later than 30 days after receiving a DoD...

  7. 32 CFR 536.36 - Related remedies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Related remedies. 536.36 Section 536.36 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.36 Related remedies. An ACO or a CPO...

  8. 18 CFR 706.103 - Remedial action.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Remedial action. 706.103 Section 706.103 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE... penalty prescribed by law; or (4) Disqualification for a particular assignment. (b) Remedial...

  9. 18 CFR 706.103 - Remedial action.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Remedial action. 706.103 Section 706.103 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE... penalty prescribed by law; or (4) Disqualification for a particular assignment. (b) Remedial...

  10. 18 CFR 706.103 - Remedial action.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Remedial action. 706.103 Section 706.103 Conservation of Power and Water Resources WATER RESOURCES COUNCIL EMPLOYEE... penalty prescribed by law; or (4) Disqualification for a particular assignment. (b) Remedial...

  11. 45 CFR 1177.3 - Other remedies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES CLAIMS COLLECTION § 1177.3 Other remedies. The remedies and sanctions available to the National Endowment for the Humanities under this part are not intended to be exclusive. The Chairperson of the National Endowment for the Humanities or his designee may impose...

  12. 45 CFR 1177.3 - Other remedies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES CLAIMS COLLECTION § 1177.3 Other remedies. The remedies and sanctions available to the National Endowment for the Humanities under this part are not intended to be exclusive. The Chairperson of the National Endowment for the Humanities or his designee may impose...

  13. Remedial Placements Found to Be Overused

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2013-01-01

    At a time when more high schools are looking to their graduates' college-remediation rates as a clue to how well they prepare students for college and careers, new research findings suggest a significant portion of students who test into remedial classes don't actually need them. Separate studies from Teachers College, Columbia University, and the…

  14. 10 CFR 1008.15 - Civil remedies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Civil remedies. 1008.15 Section 1008.15 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) RECORDS MAINTAINED ON INDIVIDUALS (PRIVACY ACT) Requests for Access or Amendment § 1008.15 Civil remedies. Subsection (g) of the Act provides that an individual may bring...

  15. 14 CFR 1212.800 - Civil remedies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Civil remedies. 1212.800 Section 1212.800... Comply With Requirements of This Part § 1212.800 Civil remedies. Failure to comply with the requirements of the Privacy Act and this part could subject NASA to civil suit under the provisions of 5...

  16. 32 CFR 310.47 - Civil remedies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Civil remedies. 310.47 Section 310.47 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Privacy Act Violations § 310.47 Civil remedies. In addition to specific...

  17. Greener and sustainable remediation using iron nanomaterials

    EPA Science Inventory

    The main goal of remediation is to protect humans and the environment. Unfortunately, many remedial actions in the past concentrated more on site-specific environmental risks and conditions completely ignoring external social and economic impacts. Thus, new approach called green ...

  18. 45 CFR 1177.3 - Other remedies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES CLAIMS COLLECTION § 1177.3 Other remedies. The remedies and sanctions available to the National Endowment for the Humanities under this part are not intended to be exclusive. The Chairperson of the National Endowment for the Humanities or his designee may impose...

  19. 49 CFR 604.47 - Remedies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of this part occurred, he or she may take one or more of the following actions: (1) Bar the recipient..., its employees, or its contractors. (b) In determining the type and amount of remedy, the Chief Counsel... office may mitigate the remedy when the recipient can document corrective action of alleged...

  20. Remedial Math: Its Effect on the Final Grade in Algebra.

    ERIC Educational Resources Information Center

    Head, L. Quinn; Lindsey, Jimmy D.

    1984-01-01

    The effectiveness of one remedial mathematics technique is examined. Results indicated that students who passed remedial math and then took college algebra had significantly higher final algebra grades than did undergraduates who failed remedial math. (MLW)

  1. Statewide Mandatory Remediation Policies: National, State, and Institutional Perspectives

    ERIC Educational Resources Information Center

    Peak, Charity S.

    2012-01-01

    Despite uncertainty related to student outcomes resulting from remediation (Bettinger & Long, 2009), eleven states mandate remedial education through common placement testing and standardized cutoff scores rather than permitting individual postsecondary institutions to establish remediation guidelines. Colorado, in particular, offers an…

  2. Heavy metals in traditional Indian remedies.

    PubMed

    Ernst, E

    2002-02-01

    The growing popularity of traditional Indian remedies necessitates a critical evaluation of risks associated with their use. This systematic review aims at summarising all available data relating to the heavy metal content in such remedies. Computerised literature searches were carried out to identify all articles with original data on this subject. Fifteen case reports and six case series were found. Their collective results suggest that heavy metals, particularly lead, have been a regular constituent of traditional Indian remedies. This has repeatedly caused serious harm to patients taking such remedies. The incidence of heavy metal contamination is not known, but one study shows that 64% of samples collected in India contained significant amounts of lead (64% mercury, 41% arsenic and 9% cadmium). These findings should alert us to the possibility of heavy metal content in traditional Indian remedies and motivate us to consider means of protecting consumers from such risks.

  3. Groundwater remediation: the next 30 years.

    PubMed

    Hadley, Paul W; Newell, Charles J

    2012-01-01

    Groundwater remediation technologies are designed, installed, and operated based on the conceptual models of contaminant hydrogeology that are accepted at that time. However, conceptual models of remediation can change as new research, new technologies, and new performance data become available. Over the past few years, results from multiple-site remediation performance studies have shown that achieving drinking water standards (i.e., Maximum Contaminant Levels, MCLs) at contaminated groundwater sites is very difficult. Recent groundwater research has shown that the process of matrix diffusion is one key constraint. New developments, such as mass discharge, orders of magnitude (OoMs), and SMART objectives are now being discussed more frequently by the groundwater remediation community. In this paper, the authors provide their perspectives on the existing "reach MCLs" approach that has historically guided groundwater remediation projects, and advocate a new approach built around the concepts of OoMs and mass discharge.

  4. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  5. When Air is Injected into Mobile Liquid-saturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Kong, X.-Z.; Kinzelbach, W.; Stauffer, F.

    2009-04-01

    The study of gas movement following injection into liquid saturated porous media is an active area of exploration for theoretical and practical reasons, e.g., in air-sparging, oil recovery, and bio-filter. Here, we report a set of two-dimensional laboratory visualization experiments by injecting air into a vertically placed granular medium. The medium is made of crushed fused silica glass and saturated with a glycerine-water solution for refractive-index-matching. We learn that: i) A previously unrecognized gas-flow instability was observed. The interaction of the injected air flow and the medium structure leads to mobilization of the medium and an instability, which causes the air channel to migrate. This instability is dominated by a dimensionless number α, which can be interpreted as a normalization of a critical velocity with a dipole velocity for saturated conditions. The channel migration appears as a sequence of previous channels collapsing and new channels opening. ii) The channel migration comes to a stop after some time, leaving one stable preferential channel for air flow. Furthermore, the grains' packing is compacted due to a rearrangement process. The compacted process is indicated by a set of tracing experiments. iii) Due to a mobilization of the granular medium, segregation on grain size occurs depending on a critical grain size, below which the coarser grains tend to accumulate at the downstream end of the preferred air pathway, and above which the finer grains tend to accumulate there.

  6. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  7. Novel sorbents for environmental remediation

    NASA Astrophysics Data System (ADS)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  8. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  9. Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work

    SciTech Connect

    D. E. Shanklin

    2007-07-25

    This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

  10. Soil remediation method and apparatus

    SciTech Connect

    McCrossan, C.

    1992-02-11

    This patent describes a method for removing volatile organic compounds (VOC's) from soil. It comprises: heating the soil in a burner-heated drum to vaporize at least a substantial portion of the VOC's, some of which may be combusted; ducting the vaporized VOC's to an air scrubber and absorbing a substantial portion of the vaporized VOC's into the scrubber water; conducting the VOC-laden scrubber water to a settling basin to permit any soil particulate to settle out of the water; withdrawing the VOC-laden water which is substantially free of soil particulates from the basin and removing the VOC's from such water by vaporizing them in an air stripper; conducting the vaporized VOC's to the burner and burning them to help heat the drum; and returning the water from which the VOC's have been stripped to the air scrubber for use in absorbing VOC's coming from the drum.

  11. [What perspectives for cognitive remediation in schizophrenia?].

    PubMed

    Correard, N; Mazzola-Pomietto, P; Elissalde, S-N; Viglianese-Salmon, N; Fakra, E; Azorin, J-M

    2011-12-01

    Cognitive deficits are routinely evident in schizophrenia, and are of sufficient magnitude to influence functional outcomes in work, social functioning and illness management. Cognitive remediation is an evidenced-based non-pharmacological treatment for the neurocognitive deficits seen in schizophrenia. Narrowly defined, cognitive remediation is a set of cognitive drills or compensatory interventions designed to enhance cognitive functioning, but from the vantage of the psychiatric rehabilitation field, cognitive remediation is a therapy which engages the patient in learning activities that enhance the neurocognitive skills relevant to their chosen recovery goals. Cognitive remediation programs vary in the extent to which they reflect these narrow or broader perspectives but a metaanalytic study reports moderate range effect sizes on cognitive test performance, and daily functioning. Reciprocal interactions between baseline ability level, the type of instructional techniques used, and motivation provide some explanatory power for the heterogeneity in patient response to cognitive remediation. Recent studies indicate that intrinsic motivation mediates the relationship between neurocognition and functional outcomes. Results of these studies suggest that intrinsic motivation should be a viable treatment target in cognitive remediation intervention. In this perspective, NEAR (Neuropsychological Educational Approach to Remediation) program was created to enhance intrinsic motivation by employing more engaging and interesting software packages for cognitive practice, involving consumers in choosing the focus of training and having the NEAR leader serve as a coach to engage the consumers in active guidance of their own treatment program.

  12. Evaluation of French Guiana traditional antimalarial remedies.

    PubMed

    Bertani, S; Bourdy, G; Landau, I; Robinson, J C; Esterre, Ph; Deharo, E

    2005-04-01

    In order to evaluate the antimalarial potential of traditional remedies used in French Guiana, 35 remedies were prepared in their traditional form and screened for blood schizonticidal activity in vitro on Plasmodium falciparum chloroquine re4sistant strain (W2). Some of these extracts were screened in vivo against Plasmodium yoelii rodent malaria. Ferriprotoporphyrin inhibition test was also performed. Four remedies, widely used among the population as preventives, were able to inhibit more than 50% of the parasite growth in vivo at around 100 mg/kg: Irlbachia alata (Gentiananceae), Picrolemma pseudocoffea (Simaroubaceae), Quassia amara (Simaroubaceae), Tinospora crispa (Menispermaceae) and Zanthoxylum rhoifolium (Rutaceae). Five remedies displayed an IC50 in vitro < 10 microg/ml: Picrolemma pseudocoffea, Pseudoxandra cuspidata (Annonaceae) and Quassia amara leaves and stem, together with a multi-ingredient recipe. Two remedies were more active than a Cinchona preparation on the ferriprotoporphyrin inhibition test: Picrolemma pseudocoffea and Quassia amara. We also showed that a traditional preventive remedy, made from Geissospermum argenteum bark macerated in rum, was able to impair the intrahepatic cycle of the parasite. For the first time, traditional remedies from French Guiana have been directly tested on malarial pharmacological assays and some have been shown to be active.

  13. Remediation of heterogeneous aquifers subject to uncertainty.

    PubMed

    Ricciardi, K L

    2009-01-01

    Optimal cost pump-and-treat ground water remediation designs for containment of a contaminated aquifer are often developed using deterministic ground water models to predict ground water flow. Uncertainty in hydraulic conductivity fields used in these models results in remediation designs that are unreliable. The degree to which uncertainty contributes to the reliability of remediation designs as measured by the characterization of the uncertainty is shown to differ depending upon the geologic environments of the models. This conclusion is drawn from the optimal design costs for multiple deterministic models generated to represent the uncertainty of four distinct models with different geologic environments. A multi scenario approach that includes uncertainty into the remediation design called the deterministic method for optimization subject to uncertainty (DMOU) is applied to these distinct models. It is found that the DMOU is a method for determining a remediation design subject to uncertainty that requires minimal postprocessing efforts. Preprocessing, however, is required for the application of the DMOU to unique problems. In the ground water remediation design problems, the orientation of geologic facies with respect to the orientation of flow patterns, pumping well locations, and constraint locations are shown to affect the preprocessing, the solutions to the DMOU problems, and the computational efficiency of the DMOU approach. The results of the DMOU are compared to the results of a statistical analysis of the effects of the uncertainty on remediation designs. This comparison validates the efficacy of the DMOU and illustrates the computational advantages to using the DMOU over statistical measures.

  14. Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study.

    PubMed

    Kim, Do-Hyung; Yoo, Jong-Chan; Hwang, Bo-Ram; Yang, Jung-Seok; Baek, Kitae

    2014-05-01

    In this study, an environmental assessment on an electrokinetic (EK) system for the remediation of a multimetal-contaminated real site was conducted using a green and sustainable remediation (GSR) tool. The entire EK process was classified into major four phases consisting of remedial investigations (RIs), remedial action construction (RAC), remedial action operation (RAO), and long-term monitoring (LTM) for environmental assessment. The environmental footprints, including greenhouse gas (GHG) emissions, total energy used, air emissions of criteria pollutants, such as NOx, SOx, and PM10, and water consumption, were calculated, and the relative contribution in each phase was analyzed in the environmental assessment. In the RAC phase, the relative contribution of the GHG emissions, total energy used, and PM10 emissions were 77.3, 67.6, and 70.4%, respectively, which were higher than those of the other phases because the material consumption and equipment used for system construction were high. In the RAO phase, the relative contributions of water consumption and NOx and SOx emissions were 94.7, 85.2, and 91.0%, respectively, which were higher than those of the other phases, because the water and electricity consumption required for system operation was high. In the RIs and LTM phases, the environmental footprints were negligible because the material and energy consumption was less. In conclusion, the consumable materials and electrical energy consumption might be very important for GSR in the EK remediation process, because the production of consumable materials and electrical energy consumption highly affects the GHG emissions, total energy used, and air emissions such as NOx and SOx. PMID:24515871

  15. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.

    PubMed

    Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing

    2011-02-28

    Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. PMID:21227581

  16. Superfund investigation at a DOD site: Focus on remediation over investigation saves time and money

    SciTech Connect

    Kiger, G.W.; Mangold, D.

    1995-12-31

    Marine Corps Air Station Yuma, Arizona, placed on the NPL in 1990, was faced in 1993 with a two year slippage in the FFA investigation schedule. An aggressive and innovative program was developed to achieve schedule recovery and focus on remediation over investigation. The remedial investigation was designed to rapidly evaluate the environmental condition of 18 sites and identify those sites that warrant remediation. The Navy, in partnership with the US EPA and Arizona Department of Environmental Quality, developed a strategy that eliminated the phased sampling approach and integrated CPT soil sample collection techniques, on-site mobile laboratory analysis, and geostatistical modeling to accelerate decision making during the field investigation. Soil samples were collected and rapidly analyzed by the on-site laboratory to determine the concentrations of selected classes of chemicals. The on-site laboratory analytical results were constantly monitored to coordinate the collection of additional samples as necessary to complete a generalized definition of contaminant plumes. Results were modeled geostatistically to predict the location of contaminant ``hot spots``. Evaluation of the ``hot spot`` data was conducted to determine if the concentrations represent an unacceptable level of risk that warrants remediation. The successful implementation of this investigation program resulted in: (1) recovery of over 20 months of schedule slippage; (2) a savings of an estimated $5 million in investigation funds; and (3) the ability to accelerate planning and implementation of remedial actions.

  17. Remediation using nested, horizontal wells

    SciTech Connect

    Desantis, P.J.; Andrilenas, J.S.; Cheng, S.; Esler, C.; Miller, R.S.; Lew, K.V.

    1995-11-01

    A pair of nested, horizontal wells (one for vapor extraction, one for groundwater extraction) were utilized to remediate a mixed aromatic volatile organic compound (AVOC) and halogenated volatile organic compound (HVOC) soil and groundwater plume. The project site is an operating gasoline service station located in Portland, Oregon. The site has low permeability soils, a thin unconfined aquifer, with a relatively steep groundwater gradient. Each of the nested horizontal wells was drilled using the continuous borehole directional drilling method. The wells are each 110 meters long employing 73 meters of pre-packed well screen. The groundwater extraction well was pumped via vacuum-enhanced methods utilizing a two-pump configuration to eliminate the need for installation of a pump within the horizontal well and to increase both flow and radius of influence in fine-grained soils. Two groundwater models, a 2D analytical model and a finite element model, were utilized to analyze the potential and actual performance of the well. Of the two models used, the finite element model has produced results closely matching the actual performance of the well. After one year of operation, both AVOCs and HVOCs concentrations have been reduced by between 70 to 100%. All but two downgradient site wells have met cleanup standards for AVOCs; all have met substantial compliance for HVOCs.

  18. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  19. Luminescence study of homeopathic remedies

    NASA Astrophysics Data System (ADS)

    Lobyshev, Valentin I.; Tomkevitch, Marie

    2001-06-01

    It was shown in our recent papers that distilled water possesses intrinsic luminescence at wavelength of about 400 nm with excitation wavelength 300 nm, which is very sensitive to small amount of dissolved substances. This phenomena was chosen to study homeopathic remedies. Pronounced difference in the intensity of luminescence between several commercial preparations with the same potency and one preparation with various potencies was obtained. Long scale evolution of the spectra was registered and final result was dependent on preparation and its potency. Systematic study of homeopathic preparations of halit (natural sodium chloride) from 1 to 30 decimal dilution was done. A stepwise dilution with mechanical agitation between the dilution steps, the so-called potentisation, was produced specially by homeopathic company Weleda. Luminescence intensity against concentration (potency) of halit is non monotonous function with several maxima, the main maximum is located at 13-14-th dilution. Evolution of the spectra was registered during several months. The analogous potentisation treatment of water without additional substances results also in changes of the luminescence spectra, depending on the number of potentisation. The obtained differences of luminescence spectra at ultra high dilutions and potentisation show that the collective properties of water are really changed in homeopathic preparations.

  20. List of Contractors to Support Anthrax Remediation

    SciTech Connect

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  1. Remedial Mathematics in the College: A Bibliography

    ERIC Educational Resources Information Center

    Akst, Geoffrey

    1978-01-01

    References dealing specifically with college remedial mathematics programs fall into several categories: descriptions of programs at individual colleges, regional surveys, and comparative studies on the relative effectiveness of various modes of instruction. (MN)

  2. A Model for Teaching College Remedial Mathematics.

    ERIC Educational Resources Information Center

    Friedman, Mordechai

    1986-01-01

    A model for teaching college remedial mathematics is presented, with information on the background, the development of the model, and the model itself, as well as a discussion of how the model is used. (MNS)

  3. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  4. Porous graphene materials for water remediation.

    PubMed

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation.

  5. Burnout--Is Alcohol a Remedy?

    ERIC Educational Resources Information Center

    Royce, James E.

    1982-01-01

    The remedy for school personnel who drink too much is not dismissal but an understanding examination of the problem and encouragement to get help under the rules that apply for sick leave and medical insurance coverage. (Author/MLF)

  6. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  7. 40 CFR 92.705 - Remedial plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... intact. (3) The label shall contain: (i) The recall campaign number; and (ii) A code designating...

  8. 40 CFR 85.1803 - Remedial Plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is...: (i) The recall campaign number; and (ii) A code designating the campaign facility at which the...

  9. 40 CFR 85.1803 - Remedial Plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is...: (i) The recall campaign number; and (ii) A code designating the campaign facility at which the...

  10. School Finance Reform: Acceptable Remedies for Serrano

    ERIC Educational Resources Information Center

    Guthrie, James W.

    1974-01-01

    Article examined the remedies available to states in the wake of Serrano and its progeny. As well, it analyzed the strengths and weaknesses of "district power equalizing" and "full state assumption" as alternative methods of financing schools. (Editor/RK)

  11. Remediation Evaluation Model for Chlorinated Solvents (REMChlor)

    EPA Science Inventory

    A new analytical solution has been developed for simulating the transient effects of groundwater source and plume remediation. This development was performed as part of a Strategic Environmental Research and Development Program (SERDP) research project, which was a joint effort ...

  12. 42 CFR 51.10 - Remedial actions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Basic Requirements § 51.10 Remedial... with 45 CFR Part 74 and 42 CFR Part 50, as appropriate. Effective Date Note: At 62 FR 53564, Oct....

  13. 42 CFR 51.10 - Remedial actions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Basic Requirements § 51.10 Remedial... with 45 CFR Part 74 and 42 CFR Part 50, as appropriate. Effective Date Note: At 62 FR 53564, Oct....

  14. 42 CFR 51.10 - Remedial actions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Basic Requirements § 51.10 Remedial... with 45 CFR Part 74 and 42 CFR Part 50, as appropriate. Effective Date Note: At 62 FR 53564, Oct....

  15. 42 CFR 51.10 - Remedial actions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Basic Requirements § 51.10 Remedial... with 45 CFR Part 74 and 42 CFR Part 50, as appropriate. Effective Date Note: At 62 FR 53564, Oct....

  16. 42 CFR 51.10 - Remedial actions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Basic Requirements § 51.10 Remedial... with 45 CFR Part 74 and 42 CFR Part 50, as appropriate. Effective Date Note: At 62 FR 53564, Oct....

  17. Herbal remedies and supplements for weight loss

    MedlinePlus

    ... counter remedies. Over-the-counter refers to medicines, herbs, or supplements you can buy without a prescription. ... memory loss, and mood problems. Supplements with the herb Acacia rigidula labeled on the packaging often contain ...

  18. Academic Remediation, Parole Violations, and Recidivism Rates among Delinquent Youths.

    ERIC Educational Resources Information Center

    Archwamety, Teara; Katsiyannis, Antonis

    2000-01-01

    Comparison of the records of incarcerated juvenile males (N=505) receiving remediation in either reading or mathematics with those receiving no remediation found members of the remedial groups were twice as likely to be recidivists or parole violators as members of the nonremedial group. Predictors of remedial group membership included verbal IQ,…

  19. Praying for Change: The Ignatian Examen in the "Remedial" Classroom

    ERIC Educational Resources Information Center

    Boehner, Joel

    2012-01-01

    Contradictions abound in remedial higher education. While 40% of American undergraduate students take remedial coursework (Attewell et al., 2006), remediation represents just one percent of the national higher education budget (Handel & Williams, 2011). Furthermore, the status quo in remedial teaching and learning in American higher education does…

  20. 40 CFR 209.9 - Contents of a remedial plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Contents of a remedial plan. 209.9... remedial plan. (a) The Administrator will specify the requirements of the remedial plan. This may include... detailed plan for implementing the remedies, both those proposed by the Administrator and those proposed...

  1. 40 CFR 209.8 - Submission of a remedial plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Submission of a remedial plan. 209.8... remedial plan. (a) The Administrator may require the respondent to submit a remedial plan. Notice of this... remedial plan required by the complaint need not be submitted. The final order may include a...

  2. Water as a Reagent for Soil Remediation

    SciTech Connect

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  3. Natural Remediation at Savannah River Site

    SciTech Connect

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  4. Hydraulic characterization for steam enhanced remediation conducted in fractured rock.

    PubMed

    Stephenson, Kyle M; Novakowski, Kent; Davis, Eva; Heron, Gorm

    2006-01-10

    To explore the viability of Steam Enhanced Remediation (SER) in fractured rock a small-scale steam injection and water/vapour extraction pilot study was conducted at the former Loring Air Force Base in northern Maine, USA. A detailed well testing program was undertaken to assist in the design of the injection and extraction well array, and to assess the possibility of off-site heat and contaminant migration. A structurally complex limestone having low matrix porosity and a sparse distribution of fractures underlies the study site. To characterize the groundwater and steam flow pathways, single-well slug tests and more than 100 pulse interference tests were conducted. The results of the well testing indicate that the study site is dominated by steeply dipping bedding plane fractures that are interconnected only between some wells in the injection/extraction array. The SER system was designed to take advantage of interconnected fractures located at depth in the eastern end of the site. An array of 29 wells located in an area of 60 by 40 m was used for steam injection and water/vapour extraction. The migration of heat was monitored in several wells using thermistor arrays having a 1.5 m vertical spacing. Temperature measurements obtained during and after the 3 month steam injection period showed that heat migration generally occurred along those fracture features identified by the pulse interference testing. Based on these results, it is concluded that the pulse interference tests were valuable in assisting with the design of the injection/extraction well geometry and in predicting the migration pathways of the hot water associated with the steam injection. The pulse interference test method should also prove useful in support of any other remedial method dependant on the fracture network for delivery of remedial fluid or extraction of contaminants.

  5. Desorption of a methamphetamine surrogate from wallboard under remediation conditions

    NASA Astrophysics Data System (ADS)

    Poppendieck, Dustin; Morrison, Glenn; Corsi, Richard

    2015-04-01

    Thousands of homes in the United States are found to be contaminated with methamphetamine each year. Buildings used to produce illicit methamphetamine are typically remediated by removing soft furnishings and stained materials, cleaning and sometimes encapsulating surfaces using paint. Methamphetamine that has penetrated into paint films, wood and other permanent materials can be slowly released back into the building air over time, exposing future occupants and re-contaminating furnishings. The objective of this study was to determine the efficacy of two wallboard remediation techniques for homes contaminated with methamphetamine: 1) enhancing desorption by elevating temperature and relative humidity while ventilating the interior space, and 2) painting over affected wallboard to seal the methamphetamine in place. The emission of a methamphetamine surrogate, N-isopropylbenzylamine (NIBA), from pre-dosed wallboard chambers over 20 days at 32 °C and two values of relative humidity were studied. Emission rates from wallboard after 15 days at 32 °C ranged from 35 to 1400 μg h-1 m-2. Less than 22% of the NIBA was removed from the chambers over three weeks. Results indicate that elevating temperatures during remediation and latex painting of impacted wallboard will not significantly reduce freebase methamphetamine emissions from wallboard. Raising the relative humidity from 27% to 49% increased the emission rates by a factor of 1.4. A steady-state model of a typical home using the emission rates from this study and typical residential building parameters and conditions shows that adult inhalation reference doses for methamphetamine will be reached when approximately 1 g of methamphetamine is present in the wallboard of a house.

  6. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  7. Self-sustaining smoldering combustion for NAPL remediation: laboratory evaluation of process sensitivity to key parameters.

    PubMed

    Pironi, Paolo; Switzer, Christine; Gerhard, Jason I; Rein, Guillermo; Torero, Jose L

    2011-04-01

    Smoldering combustion has been introduced recently as a potential remediation strategy for soil contaminated by nonaqueous phase liquids (NAPLs). Published proof-of-concept experiments demonstrated that the process can be self-sustaining (i.e., requires energy input only to start the process) and achieve essentially complete remediation of the contaminated soil. Those initial experiments indicated that the process may be applicable across a broad range of NAPLs and soils. This work presents the results of a series of bench-scale experiments that examine in detail the sensitivity of the process to a range of key parameters, including contaminant concentration, water saturation, soil type, and air flow rates for two contaminants, coal tar and crude oil. Smoldering combustion was observed to be self-sustaining in the range 28,400 to 142,000 mg/kg for coal tar and in the range 31,200 to 104,000 mg/kg for crude oil, for the base case air flux. The process remained self-sustaining and achieved effective remediation across a range of initial water concentrations (0 to 177,000 mg/kg water) despite extended ignition times and decreased temperatures and velocities of the reaction front. The process also exhibited self-sustaining and effective remediation behavior across a range of fine to coarse sand grain sizes up to a threshold maximum value between 6 mm and 10 mm. Propagation velocity is observed to be highly dependent on air flux, and smoldering was observed to be self-sustaining down to an air Darcy flux of at least 0.5 cm/s for both contaminants. The extent of remediation in these cases was determined to be at least 99.5% and 99.9% for crude oil and coal tar, respectively. Moreover, no physical evidence of contamination was detected in the treatment zone for any case where a self-sustaining reaction was achieved. Lateral heat losses to the external environment were observed to significantly affect the smoldering process at the bench scale, suggesting that the field

  8. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  9. An Electronic Encyclopedia of Remedial Options

    1992-10-01

    REOPT has been developed by Pacific Northwest Laboratory to provide information about remedial action technologies, including application and regulatory information for over 700 contaminants. REOPT is a user-friendly personal computer program and database that functions like an electronic encyclopedia, sorting and presenting information to quickly familiarize engineers and planners with available remediation technologies. The system will help users focus quickly on the remediation technologies most likely to be effective for a particular site and problem,more » and presents concise, easy-to-use information about those technologies, helping users identify the key factors and constraints to consider in evaluating the use of each technology. REOPT contains information on approximately 90 established (i.e., proven) remediation technologies that could potentially be used for DOE waste-site cleanup. REOPT also contains auxiliary information about hazardous and radioactive contaminants and the federal regulations that govern their disposal. REOPT contains data for approximately 90 remedial action technologies, divided into categories according to the portion of a remedial action (i.e., containment, treatment, disposal, etc.) that they relate to or perform. Technologies are also classified according to the contaminants to which they may be applied. Contaminants may be selected from a list of approximately 700 in ten organic and four inorganic categories. The information for each technology is organized into the broad categories of descriptive information, application information, and additional information sources; these are then subdivided to allow the user to access more specific information about the technology.« less

  10. California seeks new technologies for site remediation

    SciTech Connect

    Not Available

    1989-09-01

    Innovative new technologies for site remediation will be sought by the California Department of Health Services (Department), Toxic Substances Control Division, Alternative Technology Section, for assessment in the field as full-scale demonstration projects. The Remedial Technology Assessment Program (RTAP) fosters emerging technologies, which have been successfully tested in the laboratory, at bench scale, or at pilot scale and are ready for field or full-scale demonstration project testing. The Department will solicit interest from companies to conduct full-scale demonstrations of remedial treatment technologies for site remediation. The solicitation responses will be used to compile a list of treatment technologies which can be considered during the Remedial Action Plan (RAP) process for implementation at State-lead Bond Expenditure Plan sites and possibly responsible party sites. RTAP will attempt to match submitted remedial technologies to specific hazardous waste sites via the RAP process. A technical report, including an evaluation of the technical and economic feasibility, will be prepared after each demonstration project.

  11. Hazardous waste treatment and environmental remediation research

    SciTech Connect

    Not Available

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  12. Research study on horizontal well drilling and in-situ remediation: Final program plan

    SciTech Connect

    Kaback, D.S.; Looney, B.B.

    1988-02-22

    Vacuum extraction and air-stripping are new technologies that have broad applications at sites of volatile organic contaminated soils and groundwater. These types of sites are very common across the United States. A research study to test the combined effect of both technologies in an in-situ setting is planned. Vacuum extraction has been demonstrated as an effective technique to remediate the vadose zone both at SRP and at numerous sites across the country. Air stripping has also been demonstrated as an effective technique in an above-ground setting at SRP and across the country. However, to our knowledge it has not been tested as an in-situ method. The proposed research is on the leading edge of groundwater/vadose zone remediation technology and has great potential to impact available technology in this field. 3 refs., 13 figs., 1 tab.

  13. [Characteristics of gaseous pollutants distribution during remedial excavation at a volatile organic compound contaminated site].

    PubMed

    Gan, Ping; Yang, Yue-Wei; Fang, Zeng-Qiang; Guo, Shu-Qian; Yu, Yan; Jia, Jian-Li

    2013-12-01

    Volatile and semi-volatile organic compounds (VOCs/SVOCs) are commonly identified contaminants in industrial contaminated sites in China. VOCs migrate easily in the environment due to their relatively high volatilities. When disturbed during excavation, for example, VOCs in the soil release to the air in high concentrations within relatively short period of time, joepodizing the health of the sorrounding population, if not appropriately protected. In this study, distribution of gas phase VOCs was monitored during excavation of a site remediation project, using a combined method of field testing instrument and gas phase sampling tubes. Monitoring results indicated that gas phase concentration decreased with distance, exhibiting an alternating peak-and-valley pattern in the down-wind direction. The monitoring results could be stimulated using Gaussian Puff Model. Remediation site health and safety zoning method was developed combining appropriate workplace health and safety air limits and site monitoring results. Personal protection measures deemed appropriated for each safety zone were proposed.

  14. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  15. Site remediation via Dispersion by Chemical Reaction (DCR). Special report

    SciTech Connect

    Marion, G.M.; Payne, J.R.; Brar, G.S.

    1997-08-01

    The DCR (Dispersion by Chemical Reaction) technologies are a group of patented waste treatment processes using CaO (quicklime) for the immobilization of heavily oiled sludges, oil-contaminated soils, acid-tars, and heavy metals in Ca(OH)2 and CaCO3 matrices. The objectives of this project were to: (1) evaluate the DCR process for remediating soils contaminated with pesticides, petroleum hydrocarbons (oils and fuels), and heavy metals in cold regions and (2) evaluate DCR-treated oil-contaminated soil as a non-frost-susceptible (NFS) construction material. Three major studies evaluated the DCR process to remediate (1) hydrocarbons at Eareckson Air Force Station on Shemya in the Aleutians, (2) pesticide-contaminated soils from Rocky Mt. Arsenal, and (3) heavy-metal contaminated soils from a former zinc smelter site at Palmerton, Pennsylvania. The DCR process was successful in stabilizing liquid organics and heavy metals in contaminated soils. The chemical properties of soils contaminated by solid organics (asphalt tar and pesticides) were not generally improved by the DCR process, but even in these cases, the physical properties were improved for potential reuse as construction materials.

  16. HEPA/vaccine plan for indoor anthrax remediation.

    PubMed

    Wein, Lawrence M; Liu, Yifan; Leighton, Terrance J

    2005-01-01

    We developed a mathematical model to compare 2 indoor remediation strategies in the aftermath of an outdoor release of 1.5 kg of anthrax spores in lower Manhattan. The 2 strategies are the fumigation approach used after the 2001 postal anthrax attack and a HEPA/vaccine plan, which relies on HEPA vacuuming, HEPA air cleaners, and vaccination of reoccupants. The HEPA/vaccine approach leads to few anthrax cases among reoccupants if applied to all but the most heavily contaminated buildings, and recovery is much faster than under the decades-long fumigation plan. Only modest environmental sampling is needed. A surge capacity of 10,000 to 20,000 Hazmat workers is required to perform remediation within 6 to 12 months and to avoid permanent mass relocation. Because of the possibility of a campaign of terrorist attacks, serious consideration should be given to allowing or encouraging voluntary self-service cleaning of lightly contaminated rooms by age-appropriate, vaccinated, partially protected (through masks or hoods) reoccupants or owners. PMID:15705325

  17. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect

    Simpkin, Thomas J.; Favara, Paul

    2012-07-01

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this

  18. MICROBIAL RESPONSES TO IN SITU CHEMICAL OXIDATION, SIX-PHASE HEATING, AND STEAM INJECTION REMEDIATION TECHNOLOGIES IN GROUND WATER

    EPA Science Inventory

    The evaluation of microbial responses to three in situ source removal remedial technologies including permanganate-based in-situ chemical oxidation (ISCO), six-phase heating (SPH), and steam injection (SI) was performed at Cape Canaveral Air Station in Florida. The investigatio...

  19. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  20. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  1. Formerly Utilized Sites Remedial Action Program environmental compliance assessment checklists

    SciTech Connect

    Levine, M.B.; Sigmon, C.F.

    1989-09-29

    The purpose of the Environmental Compliance Assessment Program is to assess the compliance of Formerly Utilized Site Remedial Action Program (FUSRAP) sites with applicable environmental regulations and Department of Energy (DOE) Orders. The mission is to identify, assess, and decontaminate sites utilized during the 1940s, 1950s, and 1960s to process and store uranium and thorium ores in support of the Manhattan Engineer District and the Atomic Energy Commission. To conduct the FUSRAP environmental compliance assessment, checklists were developed that outline audit procedures to determine the compliance status of the site. The checklists are divided in four groups to correspond to these regulatory areas: Hazardous Waste Management, PCB Management, Air Emissions, and Water Discharges.

  2. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  3. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    SciTech Connect

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-03-01

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated.

  4. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    ERIC Educational Resources Information Center

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  5. 40 CFR 300.430 - Remedial investigation/feasibility study and selection of remedy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surveillance requirements, standard operating procedures, and a contingency plan that conforms with 29 CFR 1910... with 28 CFR 50.7. (d) Remedial investigation. (1) The purpose of the remedial investigation (RI) is to... characteristics of the site, including important surface features, soils, geology, hydrogeology, meteorology,...

  6. 40 CFR 300.430 - Remedial investigation/feasibility study and selection of remedy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surveillance requirements, standard operating procedures, and a contingency plan that conforms with 29 CFR 1910... with 28 CFR 50.7. (d) Remedial investigation. (1) The purpose of the remedial investigation (RI) is to... characteristics of the site, including important surface features, soils, geology, hydrogeology, meteorology,...

  7. 40 CFR 300.430 - Remedial investigation/feasibility study and selection of remedy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surveillance requirements, standard operating procedures, and a contingency plan that conforms with 29 CFR 1910... with 28 CFR 50.7. (d) Remedial investigation. (1) The purpose of the remedial investigation (RI) is to... characteristics of the site, including important surface features, soils, geology, hydrogeology, meteorology,...

  8. 40 CFR 300.430 - Remedial investigation/feasibility study and selection of remedy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substances, pollutants, or contaminants. Institutional controls may be used during the conduct of the...: (i) The field sampling plan, which describes the number, type, and location of samples and the type... with 28 CFR 50.7. (d) Remedial investigation. (1) The purpose of the remedial investigation......

  9. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    SciTech Connect

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  10. EDTA retention and emissions from remediated soil.

    PubMed

    Jez, Erika; Lestan, Domen

    2016-05-01

    EDTA-based remediation is reaching maturity but little information is available on the state of chelant in remediated soil. EDTA soil retention was examined after extracting 20 soil samples from Pb contaminated areas in Slovenia, Austria, Czech Republic and USA with 120 mM kg(-1) Na2H2EDTA, CaNa2EDTA and H4EDTA for 2 and 24 h. On average, 73% of Pb was removed from acidic and 71% from calcareous soils (24 h extractions). On average, 15% and up to 64% of applied EDTA was after remediation retained in acidic soils. Much less; in average 1% and up to the 22% of EDTA was retained in calcareous soils. The secondary emissions of EDTA retained in selected remediated soil increased with the acidity of the media: the TCLP (Toxicity Characteristic Leaching Procedure) solution (average pH end point 3.6) released up to 36% of EDTA applied in the soil (28.1 mmol kg(-1)). Extraction with deionised water (pH > 6.0) did not produce measurable EDTA emissions. Exposing soil to model abiotic (thawing/freezing cycles) and biotic (ingestion by earthworms Lumbricus rubellus) ageing factors did not induce additional secondary emissions of EDTA retained in remediated soil. PMID:26943741

  11. Electrokinetic soil remediation--critical overview.

    PubMed

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined. PMID:12049409

  12. ICDF Complex Remedial Action Work Plan

    SciTech Connect

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  13. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  14. Electrokinetic soil remediation--critical overview.

    PubMed

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined.

  15. Cognitive Remediation in Severe Mental Illness

    PubMed Central

    Bowie, Christopher R.

    2012-01-01

    Cognitive enhancement has received substantial recent attention because of multiple recent successes. We review the current research literature on cognitive enhancement, focusing on new developments that separate previous less successful efforts from recent successes. These innovations include increased understanding of the dosing and spacing of sessions, the need for titration of difficulty of individual sessions, and the importance of concurrent interventions. We also review the domains of functioning shown to be improved by cognitive remediation and the possibility that some biomarkers improve as well. We close by noting that current societal factors may impose limitations on the benefits accrued from cognitive remediation and also note that some pharmacological treatments, such as anticholinergic medications, may reduce or eliminate the potential benefits from cognitive remediation. PMID:22666639

  16. Technology development activities supporting tank waste remediation

    SciTech Connect

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  17. Air-nitric acid destructive oxidation of organic wastes

    SciTech Connect

    Smith, J.R.

    1993-09-01

    Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution with air sparging. Addition of 0.001M Pd{sub +2} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. The rate for aliphatic organic compounds (polyethylene, PVC, and n-dodecane) is relatively very slow. This is due to the large energy required to abstract a hydrogen atom from these compounds, 99 kcal/mole. The combination of NO{sub 2}{center_dot} and H{center_dot} to produce HNO{sub 2} releases only 88 kcal/mole. Under conditions of high NO{sub 2}{center_dot} concentration it should be possible to oxidize these aliphatic compounds.

  18. Implementation of Electrokinetic-ISCO Remediation

    NASA Astrophysics Data System (ADS)

    Wu, M. Z.; Reynolds, D.; Fourie, A.; Prommer, H.; Thomas, D.

    2011-12-01

    Significant challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. At the laboratory-scale several studies (e.g. Reynolds et al. 2008) have highlighted the potential for utilising electrokinetic transport, as induced by the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. Process-based numerical modelling of the coupled flow, transport and reaction processes can provide important insights into the prevailing controls and feedback mechanisms and therefore guide the optimisation of EK-ISCO remediation efficacy. In this study, a numerical model was developed that simulates groundwater flow and multi-species reactive transport under both hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer et al. 2003), the model was verified against analytical solutions and data from experimental studies. Using the newly developed model, the sensitivity of electrokinetic, hydraulic and engineering parameters as well as alternative configurations of the EK-ISCO treatment process were investigated. The duration and energy required for remediation was most dependent upon the applied voltage gradient and the natural oxidant demand and all investigated parameters affected the remediation process to some extent. Investigated variants of treatment configurations included several alternative locations for oxidant injection and a series of one-dimensional and two-dimensional electrode configurations.

  19. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  20. PETRO-SAFE '92 conference papers: Volume 7 (Processing and Refining 2), Volume 8 (Transportation and storage), Volume 9 (Spill control, disposal and remedial treatment 1) and Volume 10 (Spill control, disposal and remedial treatment 2)

    SciTech Connect

    Not Available

    1992-01-01

    This conference presents papers on a wide range of petroleum and petrochemical industry issues which pertain to waste disposal, waste processing, and safety issues. It presents specific papers on waste reduction and processing;fire prevention and suppression of oil and gas fires in storage and processing facilities; safety engineering and monitoring and plants and facilities;transportation and storage issues as they relate to safety and leak detection; and oil spill remediation and disposal. Spill topics include sorption techniques, bioremediation, dispersions, and air stripping. The remediation papers include both on and offshore sites and approach the topic from both safety and environmental aspects.

  1. Air pollution, acid rain and the environment

    SciTech Connect

    Mellanby, K.

    1988-01-01

    This book reports on the Watt Committee's working group on acid rain, which was set up in 1981. The authors consider the relationship between natural and the man-made factors and the effects of possible remedial strategies. In the first phase of the study, the group looked at the fate of airborne pollution, vegetation and soils, freshwater and remedial strategy. In this report, which contains the results of a further phase of study, these topics are included and have been brought up to date. The scope of the report is extended to include buildings and non-living materials. Consideration is given to the problem of acid rain and air pollution worldwide. Emphasis is placed on the United Kingdom. The main conclusion is that more research is necessary on some aspects of acid rain and air pollution, but that some of the reports widespread damage caused by acid rain cannot be confirmed.

  2. Remedial action planning for Trench 1

    SciTech Connect

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.

    1998-07-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

  3. Novel biotechnological approaches in environmental remediation research.

    PubMed

    Pletsch, M; de Araujo, B S; Charlwood, B V

    1999-12-30

    Two novel approaches, the use of Agrobacterium-transformed plant roots and mycelia cultures of fungi, are considered as research tools in the study of the remediation of soil, groundwater, and biowastes. Transformed roots are excellent model systems for screening higher plants that are tolerant of various inorganic and organic pollutants, and for determining the role of the root matrix in the uptake and further metabolism of contaminants. Edible and/or medicinal fungi may also be natural environmental remediators. Liquid cultures of fungal mycelia are appropriate model systems with which to commence screening and biochemical studies in this under-researched area of biotransformation.

  4. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    SciTech Connect

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  5. Beneficial reuse of treated media from remediation at an industrial site

    SciTech Connect

    Erdman, D.E.; Weston, A.F.; Morrissey, B.J.

    1996-12-31

    Remediation at an active PVC resin manufacturing plant in southeastern Pennsylvania has involved closure of lagoons under a RCRA plan and design of a groundwater pump and treat program under CERCLA. Both the CERCLA and RCRA programs involve beneficial reuse of the treated media, which in effect has offset some costs of the remediation. The lagoons were used to settle the PVC residual material from wastewater generated by the facility. Analysis of the residual material showed that the polymer content would allow it to be used as a low-grade PVC resin after drying. The treatment process selected for the RCRA lagoon closure involved indirect steam stripping and filter pressing which produced a filter cake that was both nonhazardous and marketable. Approximately 6,000 tons of product was sent to market from the lagoons. The groundwater, which will be remediated at the site, contains trichlorethylene (TCE), vinyl chloride monomer (VCM), and other volatile organic compounds. An average 400 gpm of groundwater will be extracted and treated by carbon absorbents and an air stripper. The groundwater will be used by the plant in the production process after it is treated by the CERCLA remediation system.

  6. Minorities and substandard air quality

    SciTech Connect

    Wernette, D.R.; Nieves, L.A.

    1994-05-01

    Scientists at Argonne National Laboratory have been studying the relative potential for exposure of minority population groups to substandard outdoor air quality. The US Environmental Protection Agency (EPA) has identified areas that have excess levels of ozone, carbon monoxide, sulfur dioxide, nitrogen dioxide, lead, or particulate matter. These areas generally consist of counties covering many square miles, and the degree to which their residents are exposed to air pollution certainly varies. However, the differences in population groups living in these areas can imply differences in potential exposure to pollutants and may suggest directions for research and remedial action. So far, the scientists have examined these differences for African-Americans, Hispanics, and Whites (non-Hispanic).

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  8. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  9. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  10. PERFORMANCE MONITORING FOR NATURAL ATTENUATION REMEDIES IN GROUND WATER

    EPA Science Inventory

    Environmental monitoring is the major component of any remedy that relies on natural attenuation processes. The objective of this document is to identify data needs and evaluation methods useful for designing monitoring networks and determining remedy effectiveness. Effective mon...

  11. Improving Hazardous Waste Remediation and Restoration Decisions Using Ecosystem Services

    EPA Science Inventory

    Hazardous site management in the US includes remediation of contaminated environmental media and restoration of injured natural resources. Site remediation decisions are informed by ecological risk assessment (ERA), while restoration and compensation decisions are informed by the...

  12. Single-Concept Videotapes for College Remedial Learning

    ERIC Educational Resources Information Center

    Utz, Peter

    1973-01-01

    More than 100 videotapes form part of a new remedial algebra program developed by Kingsborough Community College at Manhattan Beach, Brooklyn. Project aim was to improve remedial education in a difficult subject during a budget crisis. (Author)

  13. Shared Poetry: A Whole Language Experience Adapted for Remedial Readers.

    ERIC Educational Resources Information Center

    Wicklund, LaDonna K.

    1989-01-01

    Describes how a shared poetry exercise, combining whole language experiences with process writing techniques, motivates remedial readers. Notes that this technique helps remedial readers achieve success in writing, build sight and meaning vocabularies, and improve reading fluency. (MM)

  14. 45 CFR 94.6 - Remedies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Remedies. (a) If the failure of an Investigator to comply with an Institution's financial conflicts of..., conduct, or reporting of the PHS-funded research, the Institution shall promptly notify the PHS Awarding... situation and, as necessary, take appropriate action, or refer the matter to the Institution for...

  15. 45 CFR 1177.3 - Other remedies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Other remedies. 1177.3 Section 1177.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL FOUNDATION ON THE ARTS AND THE... appropriate sanctions upon a debtor for prolonged or repeated failure to pay a debt. For example,...

  16. 45 CFR 1177.3 - Other remedies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Other remedies. 1177.3 Section 1177.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL FOUNDATION ON THE ARTS AND THE... appropriate sanctions upon a debtor for prolonged or repeated failure to pay a debt. For example,...

  17. Remedial Math and College Algebra Grades.

    ERIC Educational Resources Information Center

    Head, L. Quinn

    This investigation tried to determine if a statistically significant relationship exists between different sequences of enrollment in remedial mathematics and grades obtained in college algebra classes at Jacksonville State University. Groups consisting of five different enrollment sequences in mathematics were studied. The data collected supports…

  18. Ethics and Motivation in Remedial Mathematics Education

    ERIC Educational Resources Information Center

    George, Michael

    2010-01-01

    This article examines motivational potentialities in remedial mathematics education within an ethical context, applying a model for ethical decision making in education developed by Shapiro and Stefkovich, in which three broad ethical categories are discussed: the ethic of justice, the ethic of care, and the ethic of critique. These ethical…

  19. 48 CFR 3.906 - Remedies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Remedies. 3.906 Section 3.906 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL IMPROPER BUSINESS... (including attorneys' fees and expert witnesses' fees) that were reasonably incurred by the complainant...

  20. 48 CFR 3.906 - Remedies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Remedies. 3.906 Section 3.906 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL IMPROPER BUSINESS... (including attorneys' fees and expert witnesses' fees) that were reasonably incurred by the complainant...

  1. 48 CFR 1803.906 - Remedies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Remedies. 1803.906 Section 1803.906 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL... expert witnesses' fees) that were reasonably incurred by the complainant for, or in connection...

  2. Acoustically enhanced remediation, Phase 2: Technology scaling

    SciTech Connect

    Iovenitti, J.L.; Hill, D.G.; Rynne, T.M.; Spadaro, J.F.; Hutchinson, W.; Illangasakere, T.

    1996-12-31

    Weiss Associates is conducting the following three phase program investigating the in-situ application of acoustically enhanced remediation (AER) of contaminated unconsolidated soil and ground water under both saturated and unsaturated conditions: Phase I-- laboratory scale parametric investigation; Phase II--technology Scaling; and Phase III--large scale field tests. AER addresses the need for NAPL (either lighter or denser than water: LNAPL or DNAPL, respectively) in high and low permeability sediments, and the remediation of other types of subsurface contaminants (e.g., metals, radionuclides) in low permeability soils. This program has been placed in the U.S. Department of Energy`s (DOE`s) DNAPL product. Phase I indicated that AER could be used to effectively remediate NAPL in high permeability soil, and that removal of NAPL from low permeability soil could be increased since the water flux through these soils was significantly increased. Phase II, Technology Scaling, the subject of this paper, focused on (1) evaluating the characteristics of an AER field deployment system, (2) developing DNAPL flow and transport performance data under acoustic excitation, (3) predicting the effect of acoustic remediation in three-dimensional unconsolidated hydrogeologic conditions, (4) conducting an engineering analysis of acoustical sources, and (5) identifying candidate field site(s) for large-scale field testing of the technology.

  3. Remediating Hyperkinetic Behavior with Inpulse Control Procedures.

    ERIC Educational Resources Information Center

    Berger, Mike

    1981-01-01

    This case study reviews a remediation program developed for a hyperkinetic school child. An important element of the program is the verbal portion of the therapist-student interaction. This consists of training in physical skills, encouragement, challenges, and conditioning the hand and verbal signals. (Author/AL)

  4. Evaluation of Remedial Programs at UC Davis.

    ERIC Educational Resources Information Center

    Hunziker, Celeste M.

    Efforts at the University of California, Davis, (UC Davis) to develop standard evaluation models for remedial programs are described, and three UC Davis evaluation studies are considered. A standard evaluation model entails a formal orientation, a singular values perspective, and a primary audience of program funders and oversight agencies. The…

  5. Some aspects of remediation of contaminated soils

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  6. Regulatory Aspects Of Implementing Electrokinetic Remediation

    EPA Science Inventory

    A better understanding of the environmental impact of hazardous waste management practices has led to new environmental laws and a comprehensive regulatory program. This program is designed to address remediation of past waste management practices and to ensure that the hazardou...

  7. 10 CFR 431.386 - Remedies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Remedies. 431.386 Section 431.386 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT... not comply with an applicable energy conservation standard: (a) The Secretary will notify...

  8. 24 CFR 4.38 - Administrative remedies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... by this section whether or not the Ethics Law Division refers a case under 24 CFR part 30, and... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Administrative remedies. 4.38 Section 4.38 Housing and Urban Development Office of the Secretary, Department of Housing and...

  9. Gamma Ray Imaging for Environmental Remediation

    SciTech Connect

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  10. Community College Presidents' Attitudes toward Remedial Education

    ERIC Educational Resources Information Center

    Mazzarelli, Carla L.

    2010-01-01

    Community colleges are the primary providers of remedial/developmental education. The cost, an ongoing values debate and varied institutional ideologies have led to a standard array of programs and services whose administration and efficacy vary from institution to institution. While leadership can be exercised at all levels of an institution, the…

  11. Tank waste remediation system mission analysis report

    SciTech Connect

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  12. 22 CFR 213.4 - Other remedies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Relations AGENCY FOR INTERNATIONAL DEVELOPMENT CLAIMS COLLECTION General § 213.4 Other remedies. (a) This... contract, statute, regulation or other Agency procedures, e.g., resolution of audit findings under grants or contracts, informal grant appeals, formal appeals, or review under a procurement contract. (b)...

  13. COSTS TO REMEDIATE MTBE-CONTAMINATED SITES

    EPA Science Inventory

    The extensive contamination of methyl tert-butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sites wa...

  14. 49 CFR 228.333 - Remedial action.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.333 Remedial action. A railroad shall, within 24 hours after receiving a good faith notice from a camp car occupant or an employee labor organization representing camp car occupants or notice from a...

  15. 49 CFR 228.333 - Remedial action.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.333 Remedial action. A railroad shall, within 24 hours after receiving a good faith notice from a camp car occupant or an employee labor organization representing camp car occupants or notice from a...

  16. Acid mine drainage prediction and remediation

    SciTech Connect

    Robb, G.; Robinson, J.

    1996-12-31

    The use of constructed wetlands for treatment of acid mine drainage is discussed in the article. Drainage characteristics and mine water flow rate are identified as important predictors of remediation success. Aerobic and anaerobic chemical reaction processes are described. Problems and potential uses of wetlands are briefly described.

  17. Integrating Remedial Writing into Reading Programs.

    ERIC Educational Resources Information Center

    Giordano, Gerard

    1983-01-01

    Seven remedial exercises designed to integrate reading and writing skills for learning disabled students are presented. The exercises, part of a model communicative writing program, focus on copying, automatic writing, restoring deleted words, outlining, paraphrasing, projection, and correspondence. Examples of student writing are included. (CL)

  18. 48 CFR 3.906 - Remedies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Remedies. 3.906 Section 3.906 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL IMPROPER BUSINESS... (including attorneys' fees and expert witnesses' fees) that were reasonably incurred by the complainant...

  19. Tank waste remediation system program plan

    SciTech Connect

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  20. Dairy livestock methane remediation and global warming.

    PubMed

    Nusbaum, Neil J

    2010-10-01

    One of the major greenhouse gases is the methane released from ruminants. Greenhouse gas emissions in the agricultural portion of the economy may benefit from biologically based remediation strategies, including potential use of probiotics in animal husbandry. A broad range of disciplines (including climatologists, microbiologists, biochemists, physical chemists, agricultural economists) can assist in biological strategies to reduce agricultural methane emissions.