Science.gov

Sample records for air spray gun

  1. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  2. Miniature paint-spray gun for recessed areas

    NASA Technical Reports Server (NTRS)

    Vanasse, M. A.

    1968-01-01

    Miniature spray gun regulates paints and other liquids to spray at close range, facilitating spraying of remote or recessed areas. Individual valves for regulating air pressure and paint maximizes atomization for low pressure spraying.

  3. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  4. Comparison of a laboratory and a production coating spray gun with respect to scale-up.

    PubMed

    Mueller, Ronny; Kleinebudde, Peter

    2007-01-01

    A laboratory spray gun and a production spray gun were investigated in a scale-up study. Two Schlick spray guns, which are equipped with a new antibearding cap, were used in this study. The influence of the atomization air pressure, spray gun-to tablet bed distance, polymer solution viscosity, and spray rate were analyzed in a statistical design of experiments. The 2 spray guns were compared with respect to the spray width and height, droplet size, droplet velocity, and spray density. The droplet size, velocity, and spray density were measured with a Phase Doppler Particle Analyzer. A successful scale-up of the atomization is accomplished if similar droplet sizes, droplet velocities, and spray densities are achieved in the production scale as in the laboratory scale. This study gives basic information for the scale-up of the settings from the laboratory spray gun to the production spray gun. Both spray guns are highly comparable with respect to the droplet size and velocity. The scale-up of the droplet size should be performed by an adjustment of the atomization air pressure. The scale-up of the droplet velocity should be performed by an adjustment of the spray gun to tablet bed distance. The presented statistical model and surface plots are convenient and powerful tools for scaling up the spray settings if the spray gun is changed from laboratory spray gun to the production spray gun. PMID:17408226

  5. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  6. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  7. Automatic targeting of plasma spray gun

    DOEpatents

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  8. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  9. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  10. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  11. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  12. Air gun test evaluation

    SciTech Connect

    Carleton, J.J. II; Fox, L.; Rudy, C.R.

    1992-01-15

    A mechanical shock testing apparatus is used for testing the response of components subject to large accelerations in hostile environments. The test acceleration is provided by the impact of a bullet against a plate on which the component to be tested is mounted. This report describes a series of experiments that were performed to determine the dependence of the air gun test apparatus performance on incremental changes in the hardware configurations, changes in the pressure used to drive the bullet, and different accelerometers. The effect of variation of these experimental factors on the measured acceleration was determined using a Taguchi screening experimental design. Experimental settings were determined that can be used to operate the tester with a measured output within acceleration specifications.

  13. Gas detonation gun for thermal spraying

    SciTech Connect

    Kadyrov, E.; Kadyrov, V.

    1995-08-01

    High-velocity oxy-fuel and gas detonation are competing spray coating processes well known for providing premium quality coatings with low porosity and high adhesion. They are favored for applications in environments of extreme wear, heat, and aggressive corrosion. Nevertheless, they both have limitations. For the HVOF process, these include excessive gas consumption, high rate of heat transfer to the sprayed substrate, and the short life of the (supersonic) Laval nozzle. On the other hand, the traditional gas detonation gun also has drawbacks, and the purpose of this article is to outline some factors that led to the design of an improved gas detonation coating process called Demeton, produced by Demeton USA Inc., Garden City Park, N.Y.

  14. Preventing Clogging In A Vacuum Plasma Spray Gun

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  15. Development of spray guns for the application of rigid foam insulation

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    The paper describes the activities initiated to improve the existing spray gun system used for spraying insulating foam on the External Tank of the Space Shuttle, due to the quality variations of the applied foam noted in the past. Consideration is given to the two tasks of the project: (1) investigations of possible improvements, as an interim measure, to the spray gun currently used to apply the large acreage spray-on-foam insulation and the evaluation of other commercial equipment; and (2) the design and fabrication of a new automatic spray gun. The design and operation of the currently used Binks 43 PA spray gun are described together with several new breadboard spray guns designed and fabricated and the testing procedures developed. These new guns include the Modular Automatic Foam spray gun, the Ball Valve spray gun, and the Tapered Plug Valve (TPV) gun. As a result of tests, the TPV spray gun is recommended to replace the currently used automatic spray gun.

  16. Influence of the Spray Gun Type on Microstructure and Properties of HVAF Sprayed Fe-Based Corrosion Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2015-10-01

    The aim of this study is to evaluate the microstructural details and corrosion properties of novel Fe-based coatings prepared using two different generations of HVAF spray guns. These two generations of HVAF guns are Activated Combustion HVAF (AC-HVAF, 2nd generation) M2 gun and Supersonic Air Fuel HVAF (SAF, 3rd generation) M3 gun. Structural details were analysed using x-ray diffractometry and field-emission scanning electron microscope. Higher denseness with homogeneous microstructure was achieved for Fe-based coating deposited by the M3 process. Such coatings exhibit higher particle deformation and lower oxide content compared to coatings manufactured with M2 gun. Corrosion properties were studied by open-cell potential measurements and electrochemical impedance spectroscopy. The lower porosity and higher interlamellar cohesion of coating manufactured with M3 gun prevent the electrolyte from penetrating through the coating and arriving to the substrate, enhancing the overall corrosion resistance. This can be explained by the improved microstructures and coating performance.

  17. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  18. Pneumatic colon injury following high pressure blow gun dust cleaner spray to the perineum

    PubMed Central

    Sy, Edgar D.; Chiu, Yin-I.; Shan, Yan-Shen; Ong, Roger L.

    2014-01-01

    Introduction A pneumatic tool or air tool such as blow gun dust cleaner is a tool driven by compressed air and spraying of the perineum can insufflate the colon due to its high pressure and high flow rate. Presentation of case We present a case of 4 year old boy who developed sudden onset of tense abdominal distention and developed peritonitis. Patient’s family initially denied a history of trauma. Radiologic examination showed pneumoperitoneum and colon dilatation. Exploratory laparotomy revealed a tension pneumoperitoneum, bloody ascitic fluid, multiple site of ecchymosis and serosal tear of the colon and a minute perforation of transverse colon. Postoperative reinvestigation revealed that the patient’s perineum was sprayed, using blow gun dust cleaner. Discussion Air from pneumatic tools produces column of air at pressure of 3.5–8.8 kg/cm2 and pressure greater than the resting anal pressure of 0.109 kg/cm2 force air to enter the colon when the perineum is sprayed. Different degree of colon injury results when airflow is greater than 1.46 L/m, and/or intraluminal pressure greater than 0.109 kg/cm2. In most children, initial anxiety to tell the truth result in difficulty to obtain good history. Conclusion Spraying of the perianal with excessive pneumatic force of greater than the resting anal pressure and high air flow rate causes multiple site colon injury and tension pneumoperitoneum due to colon perforation. Parent should be caution in children playing with high pressure pneumatic tool, and the importance of history is emphases for early correct diagnosis. PMID:25544492

  19. ENVIORNMENTAL TECHNOLOGY VERIFICATION REPORT: ANEST IWATA CORPORATION LPH400-LV HVLP SPRAY GUN

    EPA Science Inventory

    This Enviornmental Technology Verification reports on the characteristics of a paint spray gun. The research showed that the spray gun provided absolute and relative increases in transfer efficiency over the base line and provided a reduction in the use of paint.

  20. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements...

  1. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements...

  2. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a)...

  3. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements...

  4. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a)...

  5. Nozzle Extension for Safety Air Gun

    NASA Technical Reports Server (NTRS)

    Zumbrun, H. N.; Croom, Delwin R., Jr.

    1986-01-01

    New nozzle-extension design overcomes problems and incorporates original commercial nozzle, retaining intrinsic safety features. Components include extension tube, length of which made to suit application; adaptor fitting, and nozzle adaptor repinned to maintain original safety features. Design moves conical airstream to end of extension to blow machine chips away from operator. Nozzle-extension modification allows safe and efficient operation of machine tools while maintaining integrity of orginial safety-air-gun design.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ANEST IWATA CORPORATION W400-LV SPRAY GUN

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SHARPE MANUFACTURING TITANIUM T1-CG SPRAY GUN

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...

  8. Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Kobayashi, A.

    2007-06-01

    Hydroxyapatite (HA) is a bioactive material because its chemical structure is close to the natural bone. Its bioactive properties make it attractive material in biomedical applications. Gas tunnel type plasma spraying (GTPS) technique was employed in the present study to deposit HA coatings on SUS 304 stainless steel substrate. GTPS is composed of two plasma sources: gun which produces internal low power plasma (1.3-8 kW) and vortex which produces the main plasma with high power level (10-40 kW). Controlling the spraying parameters is the key role for spraying high crystalline HA coatings on the metallic implants. In this study, the arc gun current was changed while the vortex arc current was kept constant at 450 A during the spraying process of HA coatings. The objective of this study is to investigate the influence of gun current on the microstructure, phase crystallinity and hardness properties of HA coatings. The surface morphology and microstructure of as-sprayed coatings were examined by scanning electron microscope. The phase structure of HA coatings was investigated by X-ray diffraction analysis. HA coatings sprayed at high gun current (100 A) are dense, and have high hardness. The crystallinity of HA coatings was decreased with the increasing in the gun current. On the other hand, the hardness was slightly decreased and the coatings suffer from some porosity at gun currents 0, 30 and 50 A.

  9. Air pollution: a smoking gun for cancer

    PubMed Central

    Zhang, Wei; Qian, Chao-Nan; Zeng, Yi-Xin

    2014-01-01

    Once considered a taboo topic or stigma, cancer is the number one public health enemy in the world. Once a product of an almost untouchable industry, tobacco is indisputably recognized as a major cause of cancer and a target for anticancer efforts. With the emergence of new economic powers in the world, especially in highly populated countries such as China, air pollution has rapidly emerged as a smoking gun for cancer and has become a hot topic for public health debate because of the complex political, economic, scientific, and technologic issues surrounding the air pollution problem. This editorial and the referred articles published in this special issue of the Chinese Journal of Cancer discuss these fundamental questions. Does air pollution cause a wide spectrum of cancers? Should air pollution be considered a necessary evil accompanying economic transformation in developing countries? Is an explosion of cancer incidence coming to China and how soon will it arrive? What must be done to prevent this possible human catastrophe? Finally, the approaches for air pollution control are also discussed. PMID:24636233

  10. Quick-hardening problems are eliminated with spray gun modification which mixes resin and accelerator liquids during application

    NASA Technical Reports Server (NTRS)

    Johnson, O. W.

    1964-01-01

    A modified spray gun, with separate containers for resin and additive components, solves the problems of quick hardening and nozzle clogging. At application, separate atomizers spray the liquids in front of the nozzle face where they blend.

  11. The Internal Ballistics of an Air Gun

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2011-02-01

    The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder deflagration, or burning), which greatly complicates the analysis. A simple case is provided by air guns, for which we can make reasonable approximations that permit a derivation of muzzle speed. It is perhaps surprising that muzzle speed depends upon barrel length (artillerymen debated this dependence for centuries, until it was established experimentally and, later, theoretically ). Here we see that a simple physical analysis, accessible to high school or freshmen undergraduate physics students, not only derives realistic muzzle speed but also shows how it depends upon barrel length.

  12. Air gun pellet: cardiac penetration and peripheral embolization.

    PubMed

    Işık, Onur; Engin, Çağatay; Daylan, Ahmet; Şahutoğlu, Cengiz

    2016-05-01

    Use of high-velocity air guns can to lead to serious injuries. Management options of cardiac pellet gun injuries are based on patient stability, and course and location of the pellet. Presently reported is the case of a boy who was shot with an air gun pellet. Following right ventricular entry, the pellet lodged in the left atrium and embolized to the right iliac and femoral artery. Following pellet localization, right ventricular injury was repaired, and the pellet was removed successfully. PMID:27598599

  13. Comparison of different hard, metal-like coatings sprayed by plasma and detonation gun processes

    SciTech Connect

    Vuoristo, P.; Niemi, K.; Maentylae, T.; Berger, L.M.; Nebelung, M.

    1995-12-31

    Structure and wear properties of atmospheric plasma sprayed and detonation gun sprayed coatings prepared from an experimental (Ti,Mo)C-28.4%NiCo powder were compared to coatings sprayed from commercially available WC-12%Co and Cr{sub 3}C{sub 2}-25%NiCr powders. All powders had an agglomerated (spray dried) and sintered structure and nearly the same content of the metallic binder of approximately 20 vol.-%. The powders were characterized by SEM (morphology and cross-sections) and X-ray diffraction (phase composition). The coatings were studied by optical microscope, microhardness measurements, X-ray diffraction analysis and by abrasion and erosion wear tests. The X-ray diffraction patterns of the coatings show that the (Ti,Mo)C-28.4%NiCo powder is characterized by high phase stability in both spray processes, whereas the WC-12%Co powder is prone to significant phase transformations during spraying. The results clearly show the high potential of the experimental (Ti,Mo)C-28.4%NiCo coatings in substituting the conventional systems in wear applications. For instance, it was found that plasma spraying of the (Ti,Mo)C-28.4%NiCo powder with an Ar-H{sub 2} plasma gas resulted in coatings with wear resistance comparable to WC-12%Co coatings. However, detonation gun sprayed WC-12%Co coatings showed somewhat better abrasion wear resistance.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DEVILBISS JGHV-531-46FF HVLP SPRAY GUN

    EPA Science Inventory

    This report presents the results of the verification test of the DeVilbiss JGHV-531-46FF high-volume, low-pressure pressure-feed spray gun, hereafter referred to as the DeVilbiss JGHV, which is designed for use in industrial finishing. The test coating chosen by ITW Industrial Fi...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HVLP COATING EQUIPMENT, SHARPE MANUFACTURING COMPANY PLATINUM 2012 HVLP SPRAY GUN

    EPA Science Inventory

    This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...

  16. Corrosion Behavior of Detonation Gun Sprayed Al Coating on Sintered NFeB

    NASA Astrophysics Data System (ADS)

    Ma, Jizhao; Liu, Xiaofang; Qu, Wentao; Zhou, Chungen

    2015-02-01

    Pure Al coating was prepared by a detonation gun (D-gun) spraying process to protect sintered NdFeB magnets. The detonation gun sprayed coating is very uniform and has a low porosity of 0.77%. The thickness of the Al coating is approximately 16 μm. The corrosion current density for the coated sample was 1.30 × 10-5 A/cm2 immediately after immersion in 3.5% NaCl solution, compared to 6.54 × 10-5 A/cm2 for the uncoated sample. X-ray photoelectron spectrometry results indicate that the formation of Al2O3 film contributes to the increased corrosion resistance of Al coating. Meanwhile, electrochemical impedance spectroscopy with equivalent electrical circuit was used to ascertain the corrosion process of the Al coatings. Results show the corrosion procedure consists of two stages which agree with the potentiodynamic polarization test. It can be concluded that the Al coating deposited by the D-gun spray process can improve the corrosion resistance of sintered NdFeB.

  17. Microencapsulation of Bioactive Principles with an Airless Spray-Gun Suitable for Processing High Viscous Solutions

    PubMed Central

    Cocchietto, Moreno; Blasi, Paolo; Lapasin, Romano; Moro, Chiara; Gallo, Davide; Sava, Gianni

    2013-01-01

    Purpose: to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs) by processing highly viscous feed solutions (FSs). Methods: the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle’s dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L) and the range of practicable feed solution (FS) viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. Results: according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. Conclusions: the novel prototype of production plant is suitable to process large amounts (2 L or more) of FSs, characterized by a high viscosity, to produce MPs suitable for

  18. Air gun--a deadly toy?: A case report.

    PubMed

    Kuligod, F S; Jirli, Prasanna S; Kumar, Pradeep

    2006-04-01

    Air guns (air rifles) are used throughout the world as instruments of amusement such as toys in funfairs, for bird hunting and firearms training. In India and in many other countries, this instrument neither comes under the purview of the Arms Act, nor is there is any restriction on the user's age. This enables a person to gain access to this instrument quite easily. Sometimes serious and fatal injuries result when it is used by an ignorant person or by a criminal. There are reports which suggest that these 'toys' can cause painful injuries but only a few cases of death have been reported. There is no literature about the features of injuries that help to establish the range of fire by an air gun. Here we report a case where a boy was accidentally shot to death while watching bird shooting. We attempt to correlate the injury with the range of fire. PMID:16683474

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    EPA Science Inventory

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  20. Serious air gun injuries in children: update of injury statistics and presentation of five cases.

    PubMed

    Myre, L E; Black, R E

    1987-09-01

    There were over 70,000 injuries to children caused by air guns reported from 1981 to 1984. The majority of these injuries were minor; however, serious injury resulted in eight deaths. Reported injuries include corneal perforation, liver laceration, stomach and intestinal perforation, intracranial bleeding, cardiac perforation, and hemopneumothorax. Primary care physicians must be aware of the potentially serious or lethal nature of air gun injury and educate their patients accordingly. Legislation is also needed to restrict the sale of these guns, or increase the safety of air gun use. We report five cases of potentially life-threatening injury caused by air guns, three of which required emergency laparotomy. PMID:3313302

  1. A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes

    SciTech Connect

    Sundararajan, G.; Rao, D.S.; Prasad, K.U.M.; Joshi, S.V.

    1998-06-01

    In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, Al{sub 2}O{sub 3}, and Cr{sub 3}C{sub 2}-NiCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. Among all the coating materials studied, D-gun sprayed WC-12% Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al{sub 2}O{sub 3} shows least wear resistance to every wear mode.

  2. Quality optimization of thermally sprayed coatings produced by the JP-5000 (HVOF) gun using mathematical modeling

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1994-01-01

    Currently, thermal barrier coatings (TBC) of gas-turbine blades and similar applications have centered around the use of zirconia as a protective coating for high thermal applications. The advantages of zirconia include low thermal conductivity and good thermal shock resistance. Thermally sprayed tungsten carbide hardface coatings are used for a wide range of applications spanning both the aerospace and other industrial markets. Major aircraft engine manufacturers and repair facilities use hardface coatings for original engine manufacture (OEM), as well as in the overhaul of critical engine components. The principle function of these coatings is to resist severe wear environments for such wear mechanisms as abrasion, adhesion, fretting, and erosion. The (JP-5000) thermal spray gun is the most advanced in the High Velocity Oxygen Fuel (HVOF) systems. Recently, it has received considerable attention because of its relative low cost and its production of quality coatings that challenge the very successful but yet very expensive Vacuum Plasma Spraying (VPS) system. The quality of thermal spray coatings is enhanced as porosity, oxidation, residual stress, and surface roughness are reduced or minimized. Higher densification, interfacial bonding strength, hardness and wear resistance of coating are desirable features for quality improvement.

  3. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  4. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  5. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  6. Effects of Seismic Air Guns on Pallid Sturgeon and Paddlefish.

    PubMed

    Popper, Arthur N; Carlson, Thomas J; Gross, Jackson A; Hawkins, Anthony D; Zeddies, David; Powell, Lynwood; Young, John

    2016-01-01

    Pallid sturgeon and paddlefish were placed at different distances from a seismic air gun array to determine the potential effects on mortality and nonauditory body tissues from the sound from a single shot. Fish were held 7 days postexposure and then necropsied. No fish died immediately after sound exposure or over the postexposure period. Statistical analysis of injuries showed no differences between the experimental and control animals in either type or severity of injuries. There was also no difference in injuries between fish exposed closest to the source compared with those exposed furthest from the source. PMID:26611044

  7. Air gun injury with deadly aftermath--case report.

    PubMed

    Stankov, Aleksandar; Jakovski, Zlatko; Pavlovski, Goran; Muric, Nedzat; Dwork, Andrew J; Cakar, Zdravko

    2013-01-01

    In Republic of Macedonia the use of air guns is quite widespread. They are used mainly for target practice. They are regulated by the Law of Arms, where they are defined as pneumatic weapons. There is no legal limit on type or quantity of ammunition that one may possess. Our Institute performs at least 90% of the forensic autopsies in Macedonia. In this report we describe the only fatality by pneumatic weapon to come to our attention over the past 10 years. A 6-year-old girl was accidentally wounded by her brother when he and his father were trying a new air gun, a 4.5mm single shot, break barrel, spring piston air rifle manufactured in China under the brand "Westlake". She died within minutes. Autopsy showed cardiac tamponade due to penetration of the aorta. A 0.5g metal projectile, 4.5mm in diameter, with a pointed, conical shape, was recovered from the pericardial sac. PMID:23017978

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: HVLP COATING EQUIPMENT, ITW AUTOMOTIVE REFINISHING, DEVILBISS FLG-631-318 HVLP SPRAY GUN

    EPA Science Inventory

    This report presents the results of the verification test of the DeVilbiss FLG-631-318 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss FLG, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refi...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: HVLP COATING EQUIPMENT, ITW AUTOMOTIVE REFINISHING, DEVILBISS GTI-600G, HVLP SPRAY GUN

    EPA Science Inventory

    This report presents the results of the verification test of the DeVilbiss GTi-600G high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss GTi, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refinis...

  10. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator. PMID:20211450

  11. Sprayed Coating Renews Butyl Rubber

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1982-01-01

    Damaged butyl rubber products are renewed by spray technique originally developed for protective suits worn by NASA workers. A commercial two-part adhesive is mixed with Freon-113 (or equivalent) trichlorotrifluoroethane to obtain optimum viscosity for spraying. Mix is applied with an external-air-mix spray gun.

  12. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  13. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    NASA Astrophysics Data System (ADS)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  14. A Study on the Cyclic Oxidation Behavior of Detonation-Gun-Sprayed Ni-5Al Coatings on Inconel-718 at 900 °C

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2014-12-01

    Cyclic oxidation behavior of detonation-gun-sprayed Ni-5Al coating on Inconel-718 is discussed in the present study. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 °C for 100 cycles. The thermogravimetric technique was used to establish kinetics of oxidation. X-ray diffraction, FESEM/EDAX, and x-ray mapping techniques were used to analyze the oxidation products of bare and coated samples. The weight gain of bare superalloy was higher than the Ni-5Al-coated superalloy. Both bare and Ni-5Al-coated superalloys followed nearly parabolic oxidation behavior. The Ni-5Al coating was able to reduce the overall weight gain by 26.2% in comparison with bare superalloy in the given environment. The better oxidation resistance of Ni-5Al coating may be due the formation of protective oxides phases such as NiO, Al2O3, and NiAl2O4 on the oxidized coating and Cr2O3 at the coating-substrate interface. The Ni-5Al coatings obtained from detonation-gun-spraying process showed very little porosity and low surface roughness values.

  15. Numerical Investigation of Combustion and Flow Dynamics in a High Velocity Oxygen-Fuel Thermal Spray Gun

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Song, Qiuzhi; Yu, Zhiyi

    2016-02-01

    The combustion and flow behavior within a high velocity oxygen-fuel (HVOF) thermal spray gun is very complex and involves multiphase flow, heat transfer, chemical reactions, and supersonic/subsonic transitions. Additionally, this behavior has a significant effect on the formation of a coating. Non-premixed combustion models have been developed and are able to provide insight into the underlying physics of the process. Therefore, this investigation employs a non-premixed combustion model and the SST k - ω turbulence model to simulate the flow field of the JP5000 (Praxair-TAFA, US) HVOF thermal spray gun. The predicted temperature and velocity have a high level of agreement with experimental data when using the non-premixed combustion model. The results are focused on the fuel combustion, the subsequent gas dynamics within the HVOF gun, and the development of a supersonic free jet outside the gun. Furthermore, the oxygen/fuel inlet turbulence intensity, the fuel droplet size, and the oxygen/fuel ratio are investigated to determine their effect on the supersonic flow characteristics of the combustion gas.

  16. Wire Whip Keeps Spray Nozzle Clean

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  17. Impact of air gun noise on the behaviour of marine fish and squid.

    PubMed

    Fewtrell, J L; McCauley, R D

    2012-05-01

    In this study various species of captive marine fish and one species of squid were exposed to the noise from a single air gun. Six trials were conducted off the coast of Western Australia with each trial using a different noise exposure regime. Noise levels received by the animals ranged between 120 and 184 dB re 1 μPa(2).s (SEL). Behavioural observations of the fish and squid were made before, during and after air gun noise exposure. Results indicate that as air gun noise levels increase, fish respond by moving to the bottom of the water column and swimming faster in more tightly cohesive groups. Significant increases in alarm responses were observed in fish and squid to air gun noise exceeding 147-151 dB re 1 μPa SEL. An increase in the occurrence of alarm responses was also observed as noise level increased. PMID:22385754

  18. Influence of pellet seating on the external ballistic parameters of spring-piston air guns.

    PubMed

    Werner, Ronald; Schultz, Benno; Frank, Matthias

    2016-09-01

    In firearm examiners' and forensic specialists' casework as well as in air gun proof testing, reliable measurement of the weapon's muzzle velocity is indispensable. While there are standardized and generally accepted procedures for testing the performance of air guns, the method of seating the diabolo pellets deeper into the breech of break barrel spring-piston air guns has not found its way into standardized test procedures. The influence of pellet seating on the external ballistic parameters was investigated using ten different break barrel spring-piston air guns. Test shots were performed with the diabolo pellets seated 2 mm deeper into the breech using a pellet seater. The results were then compared to reference shots with conventionally loaded diabolo pellets. Projectile velocity was measured with a high-precision redundant ballistic speed measurement system. In eight out of ten weapons, the muzzle energy increased significantly when the pellet seater was used. The average increase in kinetic energy was 31 % (range 9-96 %). To conclude, seating the pellet even slightly deeper into the breech of spring-piston air guns might significantly alter the muzzle energy. Therefore, it is strongly recommended that this effect is taken into account when accurate and reliable measurements of air gun muzzle velocity are necessary. PMID:27448569

  19. Effect of atomization air on droplet dynamics of spray flames

    SciTech Connect

    Presser, C.; Semerjian, H.G. . Center for Chemical Technology); Gupta, A.K. . Dept. of Mechanical Engineering)

    1988-01-01

    Fuel spray combustions is an important part of a wide variety of propulsion and power systems such as furnaces and gas turbine combustors, afterburners, fuel-injection internal combustion engines, liquid rocket engines, etc. Recent studies using air-assist nozzles have shown that the design and fabrication of these nozzles can directly influence spray circumferential uniformity, i.e., the presence of asymmetrical fuel flux profiles in combustors. The practical implications of these fuel flux nonuniformities are that they seriously alter the spray structure, which subsequently affects droplet/air interactions, local fuel/air mixing, overall flame characteristics and combustor performance, and pollutant emission levels. In addition, the effect of aerodynamic factors on spray characteristics has been investigated. This paper discusses the effect of atomization air on the droplet dynamics of spray flames formed by an air-assist nozzle. Presented are spatial distributions of mean droplet velocity and their probability distributions, which provide quantitative information for examination of the observed spray flame features.

  20. Country made scare gun vs. air gun--a comparative study of terminal ballistics using gelatine blocks.

    PubMed

    Hallikeri, Vinay R; Gouda, Hareesh S; Kadagoudar, Shivanand A

    2012-01-10

    Country made scare gun also called as bandook in the vernacular language designed with an intention of scaring away the menacing animals is not only unique and effective but also potentially lethal and has found wide spread usage in the rural parts of India. Here an attempt has been made to study the characteristic features such as physical dimensions, mechanism of action of this weapon and to compare its penetrating ability with that of air gun, whose potential lethality is a well-documented fact, using the ballistic gelatine blocks at various ranges. It is hoped that keeping the existence of such firearms in mind by the forensic experts might help to solve the unexplained and bizarre firearm injuries encountered in day to day practice. PMID:21839595

  1. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  2. Influence of Detonation Gun Spraying Conditions on the Quality of Fe-Al Intermetallic Protective Coatings in the Presence of NiAl and NiCr Interlayers

    NASA Astrophysics Data System (ADS)

    Senderowski, Cezary; Bojar, Zbigniew

    2009-09-01

    The paper presents results of detailed research of the application of detonation gun (D-gun) spraying process for deposition of Fe-Al intermetallic coatings in the presence of NiAl and NiCr interlayers. A number of D-gun experiments have been carried out with significant changes in spraying parameters which define the process energy levels (changes in volumes of the working and fuel gases, and the distance and frequency of spraying). These changes directly influenced the quality of the coatings. The initial results underlay the choice of the process parameters with the view to obtain the most advantageous of geometric and physical-mechanical properties of the coating material, interlayer and substrate. The metallurgical quality of the coatings was considered by taking into account grain morphology, the inhomogeneity of chemical content and phase structure, the cohesive porosity in the coating volume, and adhesive porosity in the substrate/interlayer/coating boundaries. The surface roughness level was also considered. It was found that the D-gun sprayed coatings are in all cases built with flat lamellar splats. The splats develop from powder particles which are D-gun transformed in their plasticity and geometry. A significant result of the optimization of D-gun spraying parameters is the lack of signs of melting of the material (even in microareas) while the geometry of the subsequently deposited grains is considerably changed and the adhesivity and cohesion of the layers proves to be high. This is considered as an undeniable proof of high plasticity of the D-gun formed Fe-Al intermetallic coating.

  3. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-12-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation.

  4. Experimental and numerical evaluation of the performance of supersonic two-stage high-velocity oxy-fuel thermal spray (Warm Spray) gun

    NASA Astrophysics Data System (ADS)

    Katanoda, H.; Morita, H.; Komatsu, M.; Kuroda, S.

    2011-03-01

    The water-cooled supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray gun was developed to make a coating of temperature-sensitive material, such as titanium, on a substrate. The gun has a combustion chamber (CC) followed by a mixing chamber (MC), in which the combustion gas is mixed with the nitrogen gas at room temperature. The mixed gas is accelerated to supersonic speed through a converging-diverging (C-D) nozzle followed by a straight passage called the barrel. This paper proposes an experimental procedure to estimate the cooling rate of CC, MC and barrel separately. Then, the mathematical model is presented to predict the pressure and temperature in the MC for the specific mass flow rates of fuel, oxygen and nitrogen by assuming chemical equilibrium with water-cooling in the CC and MC, and frozen flow with constant specific heat from stagnant condition to the throat in the CC and MC. Finally, the present mathematical model was validated by comparing the calculated and measured stagnant pressures of the CC of the two-stage HVOF gun.

  5. An experimental study of air-assist atomizer spray flames

    NASA Technical Reports Server (NTRS)

    Mao, Chien-Pei; Wang, Geng; Chigier, Norman

    1988-01-01

    It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.

  6. Characterization and Evaluation of Cyclic Hot Corrosion Resistance of Detonation-Gun Sprayed Ni-5Al Coatings on Inconel-718

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti V.; Prakash, Satya

    2015-06-01

    The high temperature hot corrosion behavior of bare and detonation-gun-sprayed Ni-5Al coatings on Ni-based superalloy Inconel-718 is comparatively discussed in the present study. Hot corrosion studies were carried out at 900 °C for 100 cycles in Na2SO4-60% V2O5 molten salt environment under cyclic heating and cooling conditions. The thermo-gravimetric technique was used to establish the kinetics of hot corrosion. X-ray diffraction, SEM/EDAX, and X-ray mapping techniques were used to analyze the hot corrosion products of bare and coated superalloys. The results indicate that Ni-5Al-coated superalloy showed very good hot corrosion resistance. The overall weight gain and parabolic rate constant of Ni-5Al-coated superalloy were less in comparison with the bare superalloy. The D-gun-sprayed Ni-5Al coating was found to be uniform, adherent, and dense in hot corrosion environment. The formation of nickel- and aluminum-rich oxide scale might have contributed for the better hot corrosion resistance of the coated superalloy.

  7. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  8. Auditory Effects of Multiple Impulses from a Seismic Air Gun on Bottlenose Dolphins (Tursiops truncatus).

    PubMed

    Schlundt, Carolyn E; Finneran, James J; Branstetter, Brian K; Trickey, Jennifer S; Bowman, Victoria; Jenkins, Keith

    2016-01-01

    Auditory thresholds were measured in three bottlenose dolphins before and after exposure to ten impulses from a seismic air gun. Thresholds were measured using behavioral and electrophysiological methods to determine the amount of temporary threshold shift induced. The results suggest that the potential for seismic surveys using air guns to cause auditory effects on dolphins may be lower than previously predicted; however, two of the three dolphins exhibited "anticipatory" behavioral changes at the highest exposure condition that suggested they were attempting to mitigate the effects of the exposures. PMID:26611059

  9. Settlement Reached in Air Gun Use in Ocean-based Seismic Research

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Science Foundation and the Center for Biological Diversity have settled a lawsuit brought against NSF that had threatened to scuttle the use of air gun arrays for use in NSF-sponsored seismic and geological studies at sea. The parties agreed to a 14 April dismissal of the suit. The CBD, an environmental organization based in Idyllwild, California, brought the suit in the U.S. District Court in San Francisco out of concern that the use of the air gun arrays may harm some marine mammals. CBD also claimed that NSF was not in compliance with several U.S. federal environmental regulations.

  10. Penetrated sigmoid colon by air gun pellet could be life threatening: A case report

    PubMed Central

    Krasniqi, Avdyl S.; Hamza, Astrit R.; Zejnullahu, Valon A.; Sada, Fatos E.; Bicaj, Besnik X.

    2014-01-01

    INTRODUCTION Air and paintball guns have been in existence for over 400 year. Although serious injury or death can result from the use of such guns, previous literature has not mentioned the issue of the penetration of the sigmoid colon by an air gun pellet. PRESENTATION OF CASE We report a rare case of a 44-year-old Caucasian woman referred to abdominal surgery after an accidental small wound had occurred in the lower left abdominal quadrant that was caused by an air gun pellet. The blood and biochemical analyses were normal but the CT scan revealed the presence of a foreign body – an air gun pellet in the left iliac region of the abdomen. Clinically, during the initial 24 h significant changes were not noticed. After 42 h, however, pain and local tenderness in the lower left abdominal quadrant was expressed. A laparotomy revealed a retained pellet in the wall of the sigmoid colon and a small leak with colonic content with consecutive local peritonitis also occurred. The foreign body was removed and the opening edges in the colon were excised and closed with the primary suture. DISCUSSION The hollow organs of the digestive tract, albeit very rarely penetrated by an air gun pellet, do not typically show all signs of an acute abdomen in the early posttraumatic phase. Such injuries can lead to a pronounced infection, which may cause septic shock if not appropriately treated. CONCLUSION For correct diagnosis, a careful approach and several daily clinical observations are required. PMID:25437671

  11. Air-assisted ultrasonic spray pyrolysis for nanoparticles synthesis

    NASA Astrophysics Data System (ADS)

    Tsai, Shirley C.; Song, Yu L.; Chen, C. Y.; Tseng, T. K.; Tsai, Chen S.

    2002-11-01

    This paper presents new findings regarding the effects of precursor drop size and concentration on product particle size and morphology in ultrasonic spray pyrolysis of zirconium hydroxyl acetate solutions. Large precursor drops (diameter >30μm) generated by ultrasonic atomization at 120kHz yielded particles with holes. Precursor drops 6-9 μm in diameter, generated by an ultrasonic nebulizer at 1.65MHz and 23.5W electric drive power, yielded uniform spherical particles 150nm in diameter under proper control of heating rate and precursor concentration. Moreover, air-assisted ultrasonic spray pyrolysis at 120kHz and 2.3W yielded spherical particles of which nearly half were smaller than those produced by the ultrasonic spray pyrolysis of the 6-9 μm precursor drops, desprite the much larger precursor drop sizes (28 μm peak diameter versus 7 μm mean diameter). These particles are much smaller than those predicted by the conventional one particle per drop mechanism, suggesting that a vapor condensation mechanism may also be involved in spray pyrolysis. It may be concluded that through this new mechanism air-assisted ultrasonic spray pyrolysis can become a viable process for mass production of nanoparticles.

  12. Impact of Sea Spray on Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Mueller, James

    2013-11-01

    The contributions of sea spray drops to the total air-sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution: the number of drops formed at the ocean surface and the per-drop contribution to the fluxes. To estimate these per-droplet fluxes, we present results from a large number of drop trajectories, which are simulated with a recently developed Lagrangian Stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. Then, using commonly accepted spray generation functions we present estimates of spray fluxes which account for the mediating feedback effects from the droplets on the atmosphere. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate. We further show that the spray fluxes may be especially sensitive to the size distribution of the drops. The total effective air-sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds. Funded by grants OCE-0850663 and OCE-0748767 from the National Science Foundation.

  13. Ambient Air Sampling During Quantum-dot Spray Deposition

    SciTech Connect

    Jankovic, John Timothy; Hollenbeck, Scott M

    2010-01-01

    Ambient air sampling for nano-size particle emissions was performed during spot spray coating operations with a Sono-Tek Exactacoat Benchtop system (ECB). The ECB consisted of the application equipment contained within an exhaust enclosure. The enclosure contained numerous small access openings, including an exhaust hook-up. Door access comprised most of the width and height of the front. The door itself was of the swing-out type. Two types of nanomaterials, Cadmium selenide (Cd-Se) quantum-dots (QDs) and Gold (Au) QDs, nominally 3.3 and 5 nm in diameter respectively, were applied during the evaluation. Median spray drop size was in the 20 to 60 micrometer size range.1 Surface coating tests were of short duration, on the order of one-half second per spray and ten spray applications between door openings. The enclosure was ventilated by connection to a high efficiency particulate aerosol (HEPA) filtered house exhaust system. The exhaust rate was nominally 80 ft3 per minute producing about 5 air changes per minute. Real time air monitoring with a scanning mobility particle size analyzer (SMPS ) with a size detection limit of 7 nm indicated a significant increase in the ambient air concentration upon early door opening. A handheld condensation particle counter (CPC) with a lower size limit of 10 nm did not record changes in the ambient background. This increase in the ambient was not observed when door opening was delayed for 2 minutes (~10 air changes). The ventilated enclosure controlled emissions except for cases of rapid door opening before the overspray could be removed by the exhaust. A time delay sufficient to provide 10 enclosure air changes (a concentration reduction of more than 99.99 %) before door opening prevented the release of aerosol particles in any size.2 Scanning-transmission electron microscopy (STEM) and atomic force microscopy (AFM) demonstrated the presence of agglomerates in the surfaces of the spray applied deposition. A filtered air sample of

  14. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  15. Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals.

    PubMed

    Bémer, Denis; Régnier, Roland; Subra, Isabelle; Sutter, Benjamin; Lecler, Marie T; Morele, Yves

    2010-08-01

    The ultrafine aerosol emitted by thermal spraying of metals using flame and electric arc processes has been characterized in terms of particle size distribution and emission rates based on both particle number and mass. Thermal spraying of Zn, Zn/Al, and Al was studied. Measurements taken using an electrical low pressure impactor and a condensation nucleus counter reveal an aerosol made up of very fine particles (80-95% of number distribution <100 nm). Ultrafine particle emission rates produced by the electric arc process are very high, the largest values being recorded during spraying of pure aluminium. This process generates high particle emissions and therefore requires careful consideration and possible rethinking of currently implemented protection measures: ventilated cabins, dust collectors, and personal protective equipment. PMID:20685717

  16. Optical observation of ultrafine droplets and air flows from newly designed supersonic air assist spray nozzles

    NASA Astrophysics Data System (ADS)

    Miyashiro, Seiji S.; Mori, H.; Takechi, H.

    2001-04-01

    One of the authors developed a new spray drying nozzle (special quadruplet fluid spray nozzle) for drug manufacturing and it has succeeded in manufacturing fine particles of 2 micrometer diameter of 1/15 ratios to those currently in use. The flow visualization results show that the two air jets become under-expanded on both edge sides of the nozzle, generate shock and expansion waves alternately on each side and reach the edge tip, where they collide, unite, and spout out while shock and expansion waves are again formed in the mixed jet. When the edge surfaces are supplied with water, the water is extended into thin film by the air jet and intensely disturbed. At the nozzle tip it is torn into droplets, which are further atomized afterwards in shock waves. At the spray tip, the friction with ambient air shears the droplets furthermore, and they decrease further in size.

  17. Development of a Model to Assess Masking Potential for Marine Mammals by the Use of Air Guns in Antarctic Waters.

    PubMed

    Wittekind, Dietrich; Tougaard, Jakob; Stilz, Peter; Dähne, Michael; Clark, Christopher W; Lucke, Klaus; von Benda-Beckmann, Sander; Ainslie, Michael A; Siebert, Ursula

    2016-01-01

    We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi-continuous sound. Propagation modeling to estimate the received waveform was conducted. A leaky integrator was used as a hearing model to assess communication masking in three species due to intermittent/continuous air gun sounds. Air gun noise is most probably changing from impulse to continuous noise between 1,000 and 2,000 km from the source, leading to a reduced communication range for, e.g., blue and fin whales up to 2,000 km from the source. PMID:26611093

  18. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: A tool for conservation?

    USGS Publications Warehouse

    Cox, B.S.; Dux, A.M.; Quist, M.C.; Guy, C.S.

    2012-01-01

    The detrimental impacts of nonnative lake trout Salvelinus namaycush in the western USA have prompted natural resource management agencies in several states to implement lake trout suppression programs. Currently, these programs rely on mechanical removal methods (i.e., gill nets, trap nets, and angling) to capture subadult and adult lake trout. We conducted a study to explore the potential for using high-intensity sound from a relatively small (655.5 cm3 [40 in3]) seismic air gun to reduce survival of lake trout embryos. Lake trout embryos at multiple stages of development were exposed to a single discharge of the seismic air gun at two depths (5 and 15 m) and at two distances from the air gun (0.1 and 2.7 m). Control groups for each developmental stage, distance, and depth were treated identically except that the air gun was not discharged. Mortality in lake trout embryos treated at 0.1 m from the air gun was 100% at 74 daily temperature units in degrees Celsius (TU°C) at both depths. Median mortality in lake trout embryos treated at 0.1 m from the air gun at 207 TU°C (93%) and 267 °C (78%) appeared to be higher than that of controls (49% and 48%, respectively) at 15-m depth. Among the four lake trout developmental stages, exposure to the air gun at 0.1 m resulted in acute mortality up to 60% greater than that of controls. Mortality at a distance of 2.7 m did not appear to differ from that of controls at any developmental stage or at either depth. Our results indicate that seismic air guns have potential as an alternative tool for controlling nonnative lake trout, but further investigation is warranted.

  19. Front surface thermal property measurements of air plasma spray coatings

    SciTech Connect

    Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand

    2009-04-15

    A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

  20. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    NASA Astrophysics Data System (ADS)

    Cazon, L.

    2013-06-01

    Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  1. Air and spray mixture temperature effects on atomization of agricultural sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray drift associated with agrochemical operations is highly dependent upon the physical properties of the spray solution with respect to how they influence atomization. This study examined effects on spray atomization with two spray solutions across a wide range of solution temperatures for two n...

  2. Atmospheric loss of pesticides above an artificial vineyard during air-assisted spraying

    NASA Astrophysics Data System (ADS)

    Gil, Yvan; Sinfort, Carole; Brunet, Yves; Polveche, Vincent; Bonicelli, Bernard

    A procedure to assess pesticide emission to the air and characterise possible air pollution sources was carried out using a tracer dye and 2 mm PVC lines during air-assisted spraying of an artificial vineyard. Three experiments were performed to evaluate the method feasibility, quantify upward movements of sprayed droplets and investigate the influence of microclimatic variables on pesticide emission. During each experiment two test series were carried out with two droplet size distributions (very fine and fine spray, according to the BCPC classification). The amount of sprayed liquid collected at 2.5 m above ground varied between 9.0% and 10.7% of the total dose applied for very fine spray and between 5.6% and 7.3% for fine spray. In stable atmospheric conditions the spray drifted along the mean wind direction over the crop whereas in unstable conditions the sprayed liquid plume was larger, with a greater amount of material sent to higher levels. A statistical model based on a simple multiple regression featuring droplet characteristics and microclimatic variables (wind speed, temperature, stability parameter and relative humidity) provided a robust estimate of spray loss just above the crop, with an acceptable determination coefficient ( R2=0.84). This method is therefore suitable for quantifying spray drift and provides a way to study the influence of several variables on the amount of pesticide released into the atmosphere by air-assisted spraying, with suitable accuracy.

  3. First assessment of effects of air-gun seismic shooting on marine resources in the central Adriatic sea

    SciTech Connect

    La Bella, G.; Cannata, S.; Froglia, C.

    1996-11-01

    A series of investigations were carried out to test the effects of air-gun seismic shooting on main fishery resources of the Adriatic Sea during summer 1995. The energy source used for the trial was formed by one air-gun array made up by two sub-arrays consisting in 8 air-guns each developing a total volume of c.a. 2500 i{sup 3} at 2000 psi with an amplitude of 60 bar/m. The interval between two was of 25 s. The intensity was of 210 dB re 1 mPa-m/Hz. Acoustical and spectral analysis were performed simultaneously in the surveyed areas to correlate fishery and behavior observations with sound pattern of the energization. Main results were: (1) Analysis of trawl catch data evidenced no significant changes before and after the air-gun seismic profiling. (2) Echosurvey relative estimate of pelagic biomass, performed simultaneously to trawling operations, failed to evidence any significant change in the pelagic biomass subsequent to the seismic shooting. (3) Small differences were observed in the trammel net catch composition, but one single set of pre-post fishing operations could be done in the study period. (4) Similar density estimate were obtained from dredge surveys performed by an hydraulic dredger before and after air-gun seismic profiling over a clam bed in 14 in depth. (5) Video recording of captive fish, kept into cages moored on the sea bottom at 12 in depth, evidenced a Behavioral response to the approach of the sound source; but no lethal event was recorded on captive sea-bass immediately after the seismic shooting. (6) Biochemical and histological analysis were performed to verify if it is to be related to the captive condition or is somewhat consequent to the air-gun energization. These results confirm that no relevant effects are induced on fishery resources by seismic air-gun shooting.

  4. Air Assisted Sprayer for Improved Spray Penetration in Greenhouse Floriculture Crops

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin V.; Mathur, Shailendra M.; Dhande, Kishor G.; Jadhav, Pravin P.; Gholap, Babasaheb S.

    2015-03-01

    Air assisted spraying is considered as one of the better pesticide application technique. Incorporation of air assistance in the spraying system improves the deposition uniformity in the entire plant canopy structure and spray deposition on the lower part of the plant leaves. In the view of this, an air assisted sleeve boom sprayer was developed for greenhouse floricultural crops. The developed sprayer consisted of air delivery system and spray delivery system. Air delivery system consisted of blower, lance assembly and a tapered air sleeve. Spray delivery system consisted of a pesticide tank, horizontal triplex pump, pressure hose and nozzles. Blower and pump were operated by 5 HP electric motor. Air sleeve and nozzles were supported on horizontal boom. The whole assembly of the sprayer was mounted on the trolley. The developed sprayer was tested in the laboratory to study the effect of different air velocity (9, 12, 16 and 20 m/s) and pump discharge (2.5, 4.5, 7 and 9 L/min) levels on droplet size (VMD), droplet density and uniformity coefficient at six different positions of the artificial plant canopy. Test results revealed that an increase in air velocity resulted in better spray penetration and uniform spray coverage. The optimum results of droplet size (100-150 µm), droplet density (25-35 droplets per cm2) and uniformity coefficient at all plant positions were observed for air velocity of 20 m/s and pump discharge of 2.5 L/min.

  5. MODE IDENTIFICATION OF AN ARCH DAM BY A DYNAMIC AIR-GUN TEST.

    USGS Publications Warehouse

    Liu, Hsi-Ping; Fedock, Joseph J.; Fletcher, Jon B.

    1986-01-01

    Thirteen natural frequencies of a concrete arch dam (Monticello Dam near Sacramento, California) have been identified by using a dynamic testing method which employs an air gun firing in the reservoir as the excitation source. These vibrations modes are determined from the peak responses in the Fourier amplitude spectra of the free-vibration data recorded at three crest locations using three-component geophones. Comparisons of the first five natural frequencies with results obtained by forced vibration tests using rotating mass shakers show good agreement. The next eight higher-frequency modes, not previously identified, are determined from data of the present tests.

  6. The simulation of far-field wavelets using frequency-domain air-gun array near-field wavelets

    NASA Astrophysics Data System (ADS)

    Song, Jian-Guo; Deng, Yong; Tong, Xin-Xin

    2013-12-01

    Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marineseismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.

  7. A piloted simulation investigation of yaw dynamics requirements for turreted gun use in low-level helicopter air combat

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Morris, Patrick M.; Williams, Jeffrey N.

    1988-01-01

    A piloted, fixed-base simulation study was conducted to investigate the handling qualities requirements for helicopter air-to-air combat using turreted guns in the near-terrain environment. The study used a version of the helicopter air combat system developed at NASA Ames Research Center for one-on-one air combat. The study focused on the potential trade-off between gun angular movement capability and required yaw axis response. Experimental variables included yaw axis response frequency and damping and the size of the gun-movement envelope. A helmet position and sighting system was used for pilot control of gun aim. Approximately 340 simulated air combat engagements were evaluated by pilots from the Army and industry. Results from the experiment indicate that a highly-damped, high frequency yaw response was desired for Level I handling qualities. Pilot preference for those characteristics became more pronounced as gun turret movement was restricted; however, a stable, slow-reacting platform could be used with a large turret envelope. Most pilots preferred to engage with the opponent near the own-ship centerline. Turret elevation restriction affected the engagement more than azimuth restrictions.

  8. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  9. Organometallic Polymer Coatings for Geothermal-Fluid-Sprayed Air-Cooled Condensers: Preprint

    SciTech Connect

    Gawlik, K.; Sugama, T.; Jung, D.

    2002-08-01

    Researchers are developing polymer-based coating systems to reduce scaling and corrosion of air-cooled condensers that use a geothermal fluid spray for heat transfer augmentation. These coating systems act as barriers to corrosion to protect aluminum fins and steel tubing; they are formulated to resist the strong attachment of scale. Field tests have been done to determine the corrosion and scaling issues related to brine spraying and a promising organometallic polymer has been evaluated in salt spray tests.

  10. Spray droplet sizes with additives discharged from an air-assisted variable-rate nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding droplet size distributions is essential to achieve constant spray quality for real-time variable-rate sprayers that synchronize spray outputs with canopy structures. Droplet sizes were measured for a custom-designed, air-assisted, five-port nozzle coupled with a pulse width modulated (...

  11. Experimental effect of shots caused by projectiles fired from air guns with kinetic energy below 17 J.

    PubMed

    Smędra-Kaźmirska, Anna; Barzdo, Maciej; Kędzierski, Maciej; Antoszczyk, Łukasz; Szram, Stefan; Berent, Jarosław

    2013-09-01

    Pursuant to the Polish Weapons and Ammunitions Law (Legal Gazette No 53/1999 item 549 with subsequent amendments), air guns with kinetic energy of the fired projectiles below 17 J are not regarded as weapons. The aim of the study was to assess the potential effect of shots caused by projectiles of various mass and structure fired from air guns with kinetic energy below 17 J on human soft tissues. As a model of soft tissue, we used 20% gelatin blocks. After shooting, we measured the depth of gelatin block penetration by pellets fired from various distances and compared these results with autopsy findings. The results demonstrated that examined pneumatic guns may cause serious injuries, including damage to the pleura, pericardium, liver, spleen, kidneys, femoral artery, and thoracic and abdominal aorta. Experiment shown that gelatin blocks do not reflect fully the properties of the human body. PMID:23919403

  12. Quantitative measures of air-gun pulses recorded on sperm whales (Physeter macrocephalus) using acoustic tags during controlled exposure experiments.

    PubMed

    Madsen, P T; Johnson, M; Miller, P J O; Aguilar Soto, N; Lynch, J; Tyack, P

    2006-10-01

    The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing. PMID:17069331

  13. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  14. Comparison of cooling criteria with a cryogen spray and water/air spray

    NASA Astrophysics Data System (ADS)

    Exley, Jonathan; Dickinson, Mark R.; King, Terence A.; Charlton, Andrew; Falder, Sian; Kenealy, John

    1999-06-01

    Skin cooling using a cryogen spray (tetrafluoroethane) has been shown to dramatically reduce the skin surface temperature whilst predictions show that the underlying dermal tissue is unaffected. This technique is repeated with a chilled water spray, along with a continuous airflow to enhance evaporation. Radiometric skin surface temperature measurements are recorded during trials utilizing this technique and the results are compared with theoretical predictions in order to determine the mechanism by which the heat is removed from the skin. The optimum spray conditions are achieved when the water is chilled to around 2 degrees Celsius with a continuous airflow of 50 liters/minute. Under these conditions skin surface temperature reduction is about 8 degrees Celsius - 10 degrees Celsius. The measured radiometric skin surface temperature change indicates that the mechanism by which this process removes heat from the skin is predominantly evaporation. Predictions of skin temperature change with varying skin depth indicate that the optimum spray time is around 100 ms.

  15. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  16. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  17. Ultra fast cooling of hot steel plate by air atomized spray with salt solution

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya S.; Ravikumar, Satya V.; Jha, Jay M.; Singh, Akhilendra K.; Bhattacharya, Chandrima; Pal, Surjya K.; Chakraborty, Sudipto

    2014-05-01

    In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the "finish rolling temperature" in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

  18. Spray drift and off-target loss reduction with a precision air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray drift and off-target losses are inherent problems of conventional air-assisted sprayers. Their low efficiencies cause environmental pollutions resulting in public anxieties. A new drift reduction technology incorporating laser scanning capabilities with a variable-rate air-assisted sprayer w...

  19. The inner ears of Northern Canadian freshwater fishes following exposure to seismic air gun sounds.

    PubMed

    Song, Jiakun; Mann, David A; Cott, Peter A; Hanna, Bruce W; Popper, Arthur N

    2008-08-01

    An earlier study examined the effects of exposure to seismic air guns on the hearing of three species of fish from the Mackenzie River Delta in Northern Canada [Popper et al. (2005). "Effects of exposure to seismic airgun use on hearing of three fish species," J. Acoust. Soc. Am. 117, 3958-3971]. The sound pressure levels to which the fishes were exposed were a mean received level of 205-209 dB re 1 microPa (peak) per shot and an approximate received mean SEL of 176-180 dB re 1 microPa(2) s per shot. In this report, the same animals were examined to determine whether there were effects on the sensory cells of the inner ear as a result of the seismic exposure. No damage was found to the ears of the fishes exposed to seismic sounds despite the fact that two of the species, adult northern pike and lake chub, had shown a temporary threshold shift in hearing studies. PMID:18681621

  20. The inner ears of Northern Canadian freshwater fishes following exposure to seismic air gun sounds

    PubMed Central

    Song, Jiakun; Mann, David A.; Cott, Peter A.; Hanna, Bruce W.; Popper, Arthur N.

    2008-01-01

    An earlier study examined the effects of exposure to seismic air guns on the hearing of three species of fish from the Mackenzie River Delta in Northern Canada [Popper et al. (2005). “Effects of exposure to seismic airgun use on hearing of three fish species,” J. Acoust. Soc. Am. 117, 3958–3971]. The sound pressure levels to which the fishes were exposed were a mean received level of 205–209 dB re 1 μPa (peak) per shot and an approximate received mean SEL of 176–180 dB re 1 μPa2 s per shot. In this report, the same animals were examined to determine whether there were effects on the sensory cells of the inner ear as a result of the seismic exposure. No damage was found to the ears of the fishes exposed to seismic sounds despite the fact that two of the species, adult northern pike and lake chub, had shown a temporary threshold shift in hearing studies. PMID:18681621

  1. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  2. Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique

    NASA Astrophysics Data System (ADS)

    Afzal, M.; Ajmal, M.; Nusair Khan, A.; Hussain, A.; Akhter, R.

    2014-03-01

    Tungsten carbide cermet powder with 12%Co was deposited on stainless steel substrate by air plasma spraying method. Two types of coatings were produced i.e. thick (430 µm) and thin (260 µm) with varying porosity and splat morphology. The coated samples were treated with CO2 laser under the shroud of inert atmosphere. A series of experimentation was done in this regard, to optimize the laser parameters. The plasma sprayed coated surfaces were then laser treated on the same parameters. After laser melting the treated surfaces were characterized and compared with as-sprayed surfaces. It was observed that the thickness of the sprayed coatings affected the melt depth and the achieved microstructures. It was noted that phases like Co3W3C, Co3W9C4 and W were formed during the laser melting in both samples. The increase in hardness was attributed to the formation of these phases.

  3. Homemade Firearm Suicide With Dumbbell Pipe Triggering by an Air-Compressed Gun: Case Report and Review of Literature.

    PubMed

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Berthezene, Jean Marie; Morbidelli, Philippe; Hédouin, Valéry

    2015-12-01

    Firearm suicides are frequent and well described in the forensic literature, particularly in Europe and the United States. However, the use of homemade and improvised firearms is less well described. The present case reports a suicide with an original improvised gun created using an air-compressed pellet gun and a dumbbell pipe. The aims of this study were to describe the scene, the external examination of the corpse, the body scan, and the autopsy; to understand the mechanism of death; and to compare the results with a review of the forensic literature to highlight the epidemiology of homemade firearm use, the tools used for homemade and improvised firearms in suicides versus homicides, and the manners in which homemade firearms are used (homicide or suicide, particularly in complex suicide cases). PMID:26375571

  4. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  5. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  6. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  7. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  8. Symmetry assessment of an air-blast atomizer spray

    NASA Technical Reports Server (NTRS)

    Mcdonnell, V. G.; Cameron, C. D.; Samuelsen, G. S.

    1990-01-01

    This study represents an evaluation of the extent to which conventional and recently introduced modern diagnostics can assess the symmetry of sprays formed by three atomizers of identical design. The conventional diagnostics include sheet-lit photography, patternation, and laser diffraction. The modern diagnostic is laser interferometry (phase Doppler). Symmetry is assessed in ambient conditions for four atomizer orientations, and comparisons are made between the diagnostic techniques. The results demonstrate that conventional and modern diagnostics are consistent in the assessment of symmetry, patternation and phase Doppler are most effective in establishing symmetry of mass flux, and phase Doppler, although more tedious to employ, provides the additional information necessary to establish the sources of detected asymmetries in terms of nonuniformities in droplet velocities, size distributions, volume flux, and concentration.

  9. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  10. Miniature spray-painting booth

    NASA Technical Reports Server (NTRS)

    Fee, K. W.

    1970-01-01

    Transparent spray booth provides method for quality painting and repair of surfaces in clean room or other specialized environments. Overspray and virtually all contaminating vapor and odor can be eliminated. Touch-up painting is achieved with spray gun.

  11. Gun Play

    ERIC Educational Resources Information Center

    Mechling, Jay

    2008-01-01

    Biology and the particular gun culture of the United States come together to explain the persistent and powerful attraction of American boys to both real guns and toy guns. The 1990s saw adults begin to conflate "the gun problem" with "the boy problem," sparking attempts (largely failed) to banish toy guns from homes and…

  12. Dust Control with Use of Air-Water Spraying System / Redukcja Zapylenia Powietrza Z Wykorzystaniem Zraszania Powietrzno-Wodnego

    NASA Astrophysics Data System (ADS)

    Prostański, Dariusz

    2012-12-01

    Results from testing the dust control efficiency, when using air-water spraying system in comparison to the typical water spraying system are presented in the paper. The tests were carried out in conditions of longwall mining and at the places of run-of-mine transportation. Also the results of stand tests of different types of nozzles both for air-water and for water spaying systems carried out at KOMAG's laboratory and in real conditions are presented. The benefits resulting from air-water spraying system have been determined.

  13. Development of a new modular aerial spray system and night application capability for the U.S. Air Force

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...

  14. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  15. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  16. Quantifying the uncertainty of geoacoustic parameter estimates for the New Jersey shelf by inverting air gun data.

    PubMed

    Jiang, Yong-Min; Chapman, N Ross; Badiey, Mohsen

    2007-04-01

    This paper describes geoacoustic inversion of low frequency air gun data acquired during an experiment on the New Jersey shelf. Hybrid optimization and Bayesian inversion techniques based on matched field processing were applied to multiple shots from three air gun data sets recorded by a vertical line array in a long-range shallow water geometry. For the Bayesian inversions, full data error covariance matrix was estimated from a set of consecutive shots that had high temporal coherence and small spatial variation in source position. The effect of different data error information on the geoacoustic parameter uncertainty estimates was investigated by using the full data error covariance matrix, a diagonalized version of the full error covariance, and a diagonal matrix with identical variances. The comparison demonstrated that inversion using the full data error information provided the most reliable parameter uncertainty estimates. The inversions were highly sensitive to the near sea floor geoacoustic parameters, including sediment attenuation, of a simple single-layer geoacoustic model. The estimated parameter values of the model were consistent with depth averaged values (over wavelength scales) of a high resolution geoacoustic model developed from extensive ground truth information. The interpretation of the frequency dependence of the estimated attenuation is also discussed. PMID:17471704

  17. Inflence of air shear and adjuvants on spray atomization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Droplet size is critical to maximizing pesticide efficacy and mitigating off-target movement and correct selection and adjustment of nozzles and application equipment, as well as the use of adjuvants can aid in this process. However, in aerial applications air shear tends to be the dominate factor ...

  18. Aerodynamic study on supersonic flows in high-velocity oxy-fuel thermal spray process

    NASA Astrophysics Data System (ADS)

    Katanoda, Hiroshi; Matsuoka, Takeshi; Kuroda, Seiji; Kawakita, Jin; Fukanuma, Hirotaka; Matsuo, Kazuyasu

    2005-06-01

    To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  19. In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

  20. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  1. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).

    PubMed

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Semmens, Jayson M

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  2. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda:Palinuridae)

    PubMed Central

    Day, Ryan D.; McCauley, Robert D.; Fitzgibbon, Quinn P.; Semmens, Jayson M.

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8–12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa2·s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  3. Crystallization of spray-dried lactose/protein mixtures in humid air

    NASA Astrophysics Data System (ADS)

    Shawqi Barham, A.; Kamrul Haque, Md.; Roos, Yrjö H.; Kieran Hodnett, B.

    2006-10-01

    An in situ crystallization technique with X-ray diffraction analysis complemented by ex situ scanning electron microscopy and chromatographic analysis of the α/( α+ β) solid-state anomeric ratios has been developed to study the crystallization of lactose/protein mixtures in humid air. This technique was used to determine changes in phase composition and morphology during crystallization. Following an induction period during which water is sorbed, crystallization is rapid and the predominant phase observed using the in situ method in spray-dried lactose/sodium-caseinate, albumin and gelatin is α-lactose monohydrate. However, in the case of spray-dried lactose/whey protein isolate (WPI) the predominant phase that appears is the α/ β mixed phase with smaller amounts of α-lactose monohydrate. With pure lactose the α/ β mixed phase appears as a transient shortly after the onset of crystallization and α-lactose monohydrate and β-lactose both appear as stable crystalline phases at longer times. Another transient phase with 2 θ=12.2°, 20.7° and 21.8° was observed in spray-dried lactose/albumin. This phase decomposed as α-lactose monohydrate developed. Three phases seem to persist in the case of spray-dried lactose/gelatin, namely the phase with peaks at 2 θ=12.2°, 20.7° and 21.8°, α-lactose monohydrate and β-lactose for the duration of the in situ experiment.

  4. Environment and air pollution like gun and bullet for low-income countries: war for better health and wealth.

    PubMed

    Zou, Xiang; Azam, Muhammad; Islam, Talat; Zaman, Khalid

    2016-02-01

    The objective of the study is to examine the impact of environmental indicators and air pollution on "health" and "wealth" for the low-income countries. The study used a number of promising variables including arable land, fossil fuel energy consumption, population density, and carbon dioxide emissions that simultaneously affect the health (i.e., health expenditures per capita) and wealth (i.e., GDP per capita) of the low-income countries. The general representation for low-income countries has shown by aggregate data that consist of 39 observations from the period of 1975-2013. The study decomposes the data set from different econometric tests for managing robust inferences. The study uses temporal forecasting for the health and wealth model by a vector error correction model (VECM) and an innovation accounting technique. The results show that environment and air pollution is the menace for low-income countries' health and wealth. Among environmental indicators, arable land has the largest variance to affect health and wealth for the next 10-year period, while air pollution exerts the least contribution to change health and wealth of low-income countries. These results indicate the prevalence of war situation, where environment and air pollution become visible like "gun" and "bullet" for low-income countries. There are required sound and effective macroeconomic policies to combat with the environmental evils that affect the health and wealth of the low-income countries. PMID:26493298

  5. The Hydraulic Mechanism in the Orbital Blowout Fracture Because of a High-Pressure Air Gun Injury.

    PubMed

    Kang, Seok Joo; Chung, Eui Han

    2015-10-01

    There are 2 predominant mechanisms that are used to explain the pathogenesis of orbital blowout fracture; these include hydraulic and buckling mechanisms. Still, however, its pathophysiology remains uncertain. To date, studies in this series have been conducted using dry skulls, cadavers, or animals. But few clinical studies have been conducted to examine whether the hydraulic mechanism is involved in the occurrence of pure orbital blowout fracture. The authors experienced a case of a 52-year-old man who had a pure medial blowout fracture after sustaining an eye injury because of a high-pressure air gun. Our case suggests that surgeons should be aware of the possibility that the hydraulic mechanism might be involved in the blowout fracture in patients presenting with complications, such as limitation of eye movement, diplopia, and enophthalmos. PMID:26468824

  6. Measurements and predictions of a liquid spray from an air-assist nozzle

    NASA Technical Reports Server (NTRS)

    Bulzan, Daniel L.; Lavy, Yeshayahou; Aggarwal, Suresh K.; Chitre, Susheel

    1991-01-01

    Droplet size and gas velocity were measured in a water spray using a two-component Phase/Doppler Particle Analyzer. A complete set of measurements was obtained at axial locations from 5 to 50 cm downstream of the nozzle. The nozzle used was a simple axisymmetric air-assist nozzle. The sprays produced, using the atomizer, were extremely fine. Sauter mean diameters were less than 20 microns at all locations. Measurements were obtained for droplets ranging from 1 to 50 microns. The gas phase was seeded with micron sized droplets, and droplets having diameters of 1.4 microns and less were used to represent gas-phase properties. Measurements were compared with predictions from a multi-phase computer model. Initial conditions for the model were taken from measurements at 5 cm downstream. Predictions for both the gas phase and the droplets showed relatively good agreement with the measurements.

  7. Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

    SciTech Connect

    Helminiak, M A; Yanar, N M; Pettit, F S; Taylor, T A; Meier, G H

    2012-10-01

    The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

  8. Two-Phase PIV: Fuel-Spray Interaction with Surrounding Air

    NASA Astrophysics Data System (ADS)

    Dankers, Stefan; Gotthardt, Mark; Stengler, Thomas; Ohmstede, Gerhard; Hentschel, Werner

    The demand for improvement of combustion-engine processes leads to a great need for detailed experimental information about the complicated processes of injection, breakup and propagation of the fuel jet and the vaporization of the fuel. Thus, in the presented work it was the aim to visualize the air flow that is induced by the injected fuel jet and also to explore the air entrainment into the fuel spray. This was done using two-phase PIV (particle image velocimetry). The fuel jet was illuminated with a Nd:YAG PIV-laser and PIV analysis was done by simply measuring the elastically scattered light of the fuel droplets. For the investigation of the surrounding air propylene-carbonate doped with DCM-dye was dispersed and the droplets were added to the continuous gas flow upstream of the chamber. Scattered and fluorescence signals, respectively, were detected perpendicular to the laser sheet with a CCD camera. To detect the gas flow, the scattered light from the liquid fuel was suppressed by an OG 590 longpass filter glass that transmits the fluorescence signal of the DCM-dye. It was possible to measure both the fuel jet and the gas flow in the presence of the fuel spray and a clear separation of the two phases could be achieved. In both (fuel and air) vector pictures corresponding vortices could be identified near the air/fuel boundary layer. Maximum velocities in the jet are depending on the operation conditions up to 150ms-1 and the gas flow has typically a velocity of 1 to 10ms-1. In the region next to the injector the air was pressed away during the injection. After the end of the injection a strong fast air entrainment flow into this region can be observed that compensates the pressure difference.

  9. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  10. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  11. Microorganism levels in air near spray irrigation of municipal waste water: The Lubbock Infection Surveillance Study

    SciTech Connect

    Camann, D.E.; Moore, B.E.; Harding, H.J.; Sorber, C.A.

    1988-01-01

    The Lubbock Infection Surveillance Study (LISS) investigated possible adverse effects on human health from slow-rate land application of municipal wastewater. Extensive air sampling was conducted to characterize the irrigation site as a source of infectious microbial aerosols. Spray irrigation of poor-quality waste water received directly from the treatment plant significantly elevated air densities of fecal coliforms, fecal streptococci, mycobacteria, and coliphage above ambient background levels for at least 200 m downwind. Enteroviruses were repeatedly recovered at 44 to 60 m downwind at a higher level (geometric mean = 0.05 pfu/m3) than observed at other waste water aerosol sites in the U.S. and in Israel. Waste water storage in reservoirs reduced downwind air densities of indicator organisms by two orders of magnitude.

  12. Laser Cladding to Improve Oxidation Behavior of Air Plasma-Sprayed Ni-20Cr Coating on Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Rauf, M. Mudassar; Shahid, Muhammad; Nusair Khan, A.; Mehmood, K.

    2015-09-01

    Air plasma-sprayed Ni-20Cr coating on stainless steel (AISI-304) substrate was re-melted using CO2 laser to remove the inherent defects, i.e., porosity, splat boundaries, and oxides of air plasma-sprayed coating. The (1) uncoated, (2) air plasma-sprayed, and (3) laser-re-melted specimens were exposed to cyclic oxidation at 900 °C for a hundred cycles run. The oxidation products were characterized using XRD and SEM. Weight changes were determined after every 4th cycle; Uncoated samples showed severe oxidation indicated by substantial weight loss, whereas air plasma-coated samples demonstrated noticeable weight gain. However, oxidation resistance of laser-cladded samples was found to be significantly improved as the samples showed negligible weight change; porosity within the coating was minimized with an improvement in interface quality causing reduction in delamination damage.

  13. An investigation of particle trajectories and melting in an air plasma sprayed zirconia

    SciTech Connect

    Neiser, R.A.; Roemer, T.J.

    1996-12-31

    The partially stabilized zirconia powders used to plasma spray thermal barrier coatings typically exhibit broad particle-size distributions. There are conflicting reports in the literature about the extent of injection-induced particle-sizing effects in air plasma-sprayed materials. If significant spatial separation of finer and coarser particles in the jet occurs, then one would expect it to play an important role in determining the microstructure and properties of deposits made from powders containing a wide range of particle sizes. This paper presents the results of a study in which a commercially available zirconia powder was fractionated into fine, medium, and coarse cuts and sprayed at the same torch conditions used for the ensemble powder. Diagnostic measurements of particle surface temperature, velocity, and number-density distributions in the plume for each size-cut and for the ensemble powder are reported. Deposits produced by traversing the torch back and forth to produce a raised bead were examined metallographically to study their shape and location with respect to the torch centerline and to look at their internal microstructure. The results show that, for the torch conditions used in this study, the fine, medium, and coarse size-cuts all followed the same mean trajectory. No measureable particle segregation effects were observed. Considerable differences in coatings microstructure were observed. These differences can be explained by the different particle properties measured in the plume.

  14. Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-ping; Xing, Ya-zhe; Zhang, Feng-ying; Hao, Jian-min

    2012-07-01

    Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrystalline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were investigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaCl solutions, indicating superior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion resistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.

  15. Spray-on electrodes enable EKG monitoring of physically active subjects

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Easily applied EKG electrodes monitor the heart signals of human subjects engaged in various physical exercises. The electrodes are formed from an air drying, electrically conductive cement mixture that can be applied to the skin by means of a modified commercially available spray gun.

  16. Gas gun dynamics

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2013-09-01

    The mechanics and thermodynamics of one- and two-stage gas guns are developed. Very high projectile muzzle speed can be obtained by the two-stage version. The physics of simple gas guns, such as air rifles, is accessible to undergraduates and the same level of presentation is used here to understand more complex designs. Numerical solutions to the equations of motion are shown, along with insightful analytic approximations.

  17. Gun Safety

    MedlinePlus

    Many U.S. households have guns, but they can cause harm if not handled properly. Here are some things you can do to keep yourself and ... safe: Teach children that they shouldn't touch guns and that if they see a gun, to ...

  18. Spray applicator for spraying coatings and other fluids in space

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Lausten, M. F. (Inventor)

    1985-01-01

    A self contained spray application is developed for one handed operation in a zero gravity vacuum environment by a free flying astronaut not attached to any spacecraft. This spray applicator eliminates contamination of the operator by back spray. This applicator includes a rigid accumulator containment of a fluid within a flexible bladder the fluid being urged out of the accumulator under pressure through a spray gun. The spray gun includes a spring loaded lockable trigger which controls a valve. When in an open position, the fluid passes through the valve into the ambient environment in the form of a spray. A spray shield is provided which directs the flow of the spray from the applicator by trapping errant particles of spray yet allowing the passage of escaping gases through its material.

  19. Effect of Electrolytes on the Decomposition of Dye by Pulsed Discharge in Air Spraying Water Droplets

    NASA Astrophysics Data System (ADS)

    Nose, Taisuke; Yokoyama, Yuzo; Minamitani, Yasushi

    Effect of electrolytes on the decolorization of indigo carmine and on the production of H2O2 by pulsed discharge in air spraying water droplets was performed in sodium chloride and magnesium sulfate solutions. Peak voltage of the discharge decreased with increasing solution conductivity, but peak current and discharge energy increased. Decolorization rate and decolorization efficiency of indigo carmine and the yield of H2O2 decreased with increasing chloride and sulfate ion concentrations. It was found that the decolorization of indigo carmine and the production of H2O2 are affected by the ion concentration even in the case of discharge in air spraying water droplets. However it was less effective than that of discharge in water. Chloride ion was more effective than sulfate ion regarding the decrease of decolorization rate and the production of H2O2. Decolorization rate of indigo carmine was strongly related to the production of H2O2. These results also indicated that decolorization of indigo carmine depends on the production of hydroxyl radical.

  20. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    The objective of this study is to investigate the local seismicity and obtain a detailed three-dimensional crustal velocity structure beneath the Marmara Sea in an area surrounding the North Anatolian Fault Zone (NAFZ) by tomographic inversion using both controlled-source (air-gun) and earthquake data. The tomographic inversion is carried out by using the local earthquake tomography code SIMUL2000. Two sets of seismological data, collected in 2006 (EOSMARMARA experiment) and 2001 (SEISMARMARA experiment), are re-processed and used in this study. A total of 441 high quality earthquakes and 452 air-gun shots recorded by a total of 53 Ocean Bottom Seismometers (OBS) are selected for the simultaneous inversion for velocity and hypocentral parameters. The OBS location and time-drift errors are identified from air-gun shot records by a grid search method and required corrections are made on the travel time data. The initial (reference) velocity model and earthquake locations required for the three dimensional tomographic inversion are derived from the one-dimensional velocity model obtained by using the VELEST algorithm in which a subset of earthquakes are selected such that phase readings were made by at least five stations and maximum azimuthal gap was 180o. The inversion results are checked for initial model dependence and the effect of damping factor. The reliability of the results is also evaluated in terms of derivative-weighted-sum, resolution-diagonal-elements values and checkerboard tests. The hypocenter locations of the local earthquakes have been remarkably improved by the three-dimensional velocity model obtained from the tomographic inversion. The three-dimensional velocity model shows that the Tekirdag, Central and Cinarcik Basins are characterized generally by lower Vp (3.0 - 3.5 km/s) values and most of the earthquakes across these regions are located at the depths of 10 to 17 km, about 5 km deeper than those obtained from the one-dimensional reference

  1. Air monitoring of aromatic hydrocarbons during automobile spray painting for developing change schedule of respirator cartridges

    PubMed Central

    2014-01-01

    In the absence of End of Service Life Indicator (ESLI), a cartridge change schedule should be established for ensuring that cartridges are changed before their end of service life. Factors effecting service life of cartridges were evaluated, including the amount of atmospheric contamination with aromatic hydrocarbon vapors in the workplace, temperature, and relative humidity of the air. A new change schedule was established based on comparing the results of air monitoring and workplace conditions, laboratory experiment, and the NIOSH MultiVapor software. Spray painters were being exposed to aromatic hydrocarbons in a range exceeding occupational exposure limits. The cartridge change schedule was not effective and could no longer provide adequate protection against organic contaminants for sprayers. Change schedules for respirator cartridges should be reduced from 16–24 hours to 4 hours. NIOSH’s service life software program could be applied to developing cartridge change schedules. PMID:24468234

  2. [Effect of air humidity on traditional Chinese medicine extract of spray drying process and prediction of its powder stability].

    PubMed

    He, Yan; Xie, Yin; Zheng, Long-jin; Liu, Wei; Rao, Xiao-yong; Luo, Xiao-jian

    2015-02-01

    In order to solve the adhesion and the softening problems of traditional Chinese medicine extract during spray drying, a new method of adding dehumidified air into spray drying process was proposed, and the storage stability conditions of extract powder could be predicted. Kouyanqing extract was taken as model drug to investigate on the wet air (RH = 70%) and dry air conditions of spray drying. Under the dry air condition, the influence of the spray drying result with different air compression ratio and the spray-dried powder properties (extract powder recovery rate, adhesion percentage, water content, angle of repose, compression ratio, particle size and distribution) with 100, 110, 120, 130, 140 °C inlet temperature were studied. The hygroscopic investigation and Tg value with different moisture content of ideal powder were determined. The water activity-equilibrium moisture content (aw-EMC) and the equilibrium moisture content-Tg (EMC-Tg) relationships were fitted by GAB equation and Gordon-Taylor model respectively, and the state diagram of kouyanqing powder was obtained to guide the rational storage conditions. The study found that in the condition of dry air, the extract powder water content decreased with the increase of air compression ratio and the spray drying effect with air compression ratio of 100% was the best performance; in the condition of wet air, the extract powder with high water content and low yield, and the value were 4.26% and 16.73 °C, while, in the dry air condition the values were 2.43% and 24.86 °C with the same other instru- ment parameters. From the analysis of kouyanqing powder state diagram, in order to keep the stability, the critical water content of 3.42% and the critical water content of 0.188. As the water decreased Tg value of extract powder is the major problem of causing adhesion and softening during spray drying, it is meaningful to aid dehumidified air during the process. PMID:26084164

  3. The US Air Force Aerial Spray Unit: a history of large area disease vector control operations, WWII through Katrina.

    PubMed

    Breidenbaugh, Mark; Haagsma, Karl

    2008-01-01

    The US Air Force has had a long history of aerial applications of pesticides to fulfill a variety of missions, the most important being the protection of troops through the minimization of arthropod vectors capable of disease transmission. Beginning in World War II, aerial application of pesticides by the military has effectively controlled vector and nuisance pest populations in a variety of environments. Currently, the military aerial spray capability resides in the US Air Force Reserve (USAFR), which operates and maintains C-130 airplanes capable of a variety of missions, including ultra low volume applications for vector and nuisance pests, as well as higher volume aerial applications of herbicides and oil-spill dispersants. The USAFR aerial spray assets are the only such fixed-wing aerial spray assets within the Department of Defense. In addition to troop protection, the USAFR Aerial Spray Unit has participated in a number of humanitarian/relief missions, most recently in the response to the 2005 Hurricanes Katrina and Rita, which heavily damaged the Gulf Coasts of Louisiana, Mississippi, and Texas. This article provides historical background on the Air Force Aerial Spray Unit and describes the operations in Louisiana in the aftermath of Hurricane Katrina. PMID:20088030

  4. Superior Performance of High-Velocity Oxyfuel-Sprayed Nanostructured TiO2 in Comparison to Air Plasma-Sprayed Conventional Al2O3-13TiO2

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Marple, B. R.

    2005-09-01

    Air plasma-sprayed conventional alumina-titania (Al2O3-13wt.%TiO2) coatings have been used for many years in the thermal spray industry for antiwear applications, mainly in the paper, printing, and textile industries. This work proposes an alternative to the traditional air plasma spraying of conventional aluminatitania by high-velocity oxyfuel (HVOF) spraying of nanostructured titania (TiO2). The microstructure, porosity, hardness (HV 300 g), crack propagation resistance, abrasion behavior (ASTM G65), and wear scar characteristics of these two types of coatings were analyzed and compared. The HVOF-sprayed nanostructured titania coating is nearly pore-free and exhibits higher wear resistance when compared with the air plasma-sprayed conventional alumina-titania coating. The nanozones in the nanostructured coating act as crack arresters, enhancing its toughness. By comparing the wear scar of both coatings (via SEM, stereoscope microscopy, and roughness measurements), it is observed that the wear scar of the HVOF-sprayed nanostructured titania is very smooth, indicating plastic deformation characteristics, whereas the wear scar of the air plasma-sprayed alumina-titania coating is very rough and fractured. This is considered to be an indication of a superior machinability of the nanostructured coating.

  5. Effect of antimicrobials applied on the surface of beef subprimals via an air-assisted electrostatic spraying system(ESS)or the Sprayed Lethality in Container(SLIC)method to control Shiga toxin-producing cells of Escherichia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the efficacy of an air-assisted electrostatic spraying system (ESS) and/or the Sprayed Lethality in Container (SLIC®) method to deliver antimicrobials onto the surface of beef subprimals to reduce levels of Shiga toxin-producing cells of Escherichia coli (STEC). In brief, beef subprimal...

  6. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings

    SciTech Connect

    Helminiak, Yanar NM

    2009-12-01

    Research on the behavior of high-purity, low-density (85%) air plasma sprayed (APS) thermal barrier coatings (TBC) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The microstructure of the APS topcoats is one variable in this study intended to maximize the coating thicknesses that can be applied without spallation and to minimize the thermal conduction through the YSZ layer. The specimens were evaluated using cyclic oxidation tests and important properties of the TBCs, such as resistance to sintering and phase transformation, were determined. The high purity resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The porous topcoat microstructure also resulted in significant durability during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, CTE of the superalloy substrate and the nature of the thermal exposure.

  7. Droplet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verification of droplet size distributions is essential for the development of real-time variable-rate sprayers that synchronize spray outputs with canopy structures. Droplet sizes from a custom-designed, air-assisted, five-port nozzle coupled with a pulse-width-modulated (PWM) solenoid valve were m...

  8. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  9. Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...

  10. Air gun impactor--a novel model of graded white matter spinal cord injury in rodents.

    PubMed

    Marcol, Wiesław; Slusarczyk, Wojciech; Gzik, Marek; Larysz-Brysz, Magdalena; Bobrowski, Michał; Grynkiewicz-Bylina, Beata; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Barski, Jarosław J; Kotulska, Katarzyna; Labuzek, Krzysztof; Lewin-Kowalik, Joanna

    2012-10-01

    Understanding mechanisms of spinal cord injury and repair requires a reliable experimental model. We have developed a new device that produces a partial damage of spinal cord white matter by means of a precisely adjusted stream of air applied under high pressure. This procedure is less invasive than standard contusion or compression models and does not require surgical removal of vertebral bones. We investigated the effects of spinal cord injury made with our device in 29 adult rats, applying different experimental parameters. The rats were divided into three groups in respect to the applied force of the blast wave. Functional outcome and histopathological effects of the injury were analyzed during 12-week follow-up. The lesions were also examined by means of magnetic resonance imaging (MRI) scans. The weakest stimulus produced transient hindlimb paresis with no cyst visible in spinal cord MRI scans, whereas the strongest was associated with permanent neurological deficit accompanied by pathological changes resembling posttraumatic syringomyelia. Obtained data revealed that our apparatus provided a spinal cord injury animal model with structural changes very similar to that present in patients after moderate spinal cord trauma. PMID:22711195

  11. Oxygen partial pressure measurement in the HVOF gun tail flame

    SciTech Connect

    Korpiola, K.; Hirvonen, J.P.; Jalkanen, H.; Laas, L.; Rossi, F.

    1995-12-31

    An important aspect of the HVOF thermal spray process is the turbulent mixing of the spray jet with the surrounding air. The air mixing into the jet causes undesirable oxidation of the sprayed coating. In this paper a low cost and accurate method to determine the degree of air mixing is presented. This method was used to measure for the first time the partial pressure of oxygen in the thermal spray flame. The measuring method is based on electrochemical determination of oxygen potential in the tail flame using a solid electrolyte cell. The oxygen partial pressure in the HVOF-gun tail flame was measured with the fuel-to-oxygen ratio, the fuel flow rate and the stand-off distance as variables. The oxygen content of the tail flame was measured and found to vary between 4 to 17% depending on fuel to oxygen ratios and stand-off distances. Such high oxygen contents are several magnitudes too high if serious oxidation in the coating is to be avoided.

  12. Spatial Characteristics of Water Spray Formed by Two Impinging Jets at Several Jet Velocities in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Foster, Hampton H.; Heidmann, Marcus F.

    1960-01-01

    The spatial characteristics of a spray formed by two impinging water jets in quiescent air were studied over a range of nominal jet velocities of 30 to 74 feet per second. The total included angle between the 0.089-inch jets was 90 deg. The jet velocity, spray velocity, disappearance of the ligaments just before drop formation, mass distribution, and size and position of the largest drops were measured in a circumferential survey around the point of jet impingement. Photographic techniques were used in the evaluations. The distance from the point of jet impingement to ligament breakup into drops was about 4 inches on the spray axis and about 1.3 inches in the radial position +/-90 deg from the axis. The distance tended to increase slightly with increase in jet velocity. The spray velocity varied from about 99 to about 72 percent of the jet velocity for a change in circumferential position from the spray axis to the +/-80 deg positions. The percentages tended to increase slightly with an increase in jet velocity. Fifty percent of the mass was distributed about the spray axis in an included angle of slightly less than 40 deg. The effect of jet velocity was small. The largest observed drops (2260-micron or 0.090-in. diam.) were found on and about the spray axis. The size of the largest drops decreased for an increase in radial angular position, being about 1860 microns (0.074 in.) at the +/-90 deg positions. The largest drop sizes tended to decrease for an increase in jet velocity, although the velocity effect was small. A drop-size distribution analysis indicated a mass mean drop size equal to 54 percent of an extrapolated maximum drop size.

  13. CDS HVOF sprayed coatings: Influence of process variables on coating characteristics

    SciTech Connect

    Knight, R.; Smith, R.W.; Lugscheider, E.

    1994-12-31

    High velocity, oxyfuel (HVOF) coating processes are fast becoming one of today`s dominant thermal spray areas, particularly for the deposition of carbide coatings where HVOF spray can produce results comparable, or even superior, to vacuum and air plasma spray processes. Results and analysis of NiCr, WC/Co, and Cr3C2NiCr coatings sprayed with the continuous detonation system (CDS) HVOF gun are presented. The investigation focused the influence of spray distance, gun/part relative speed, and fuel:oxygen ratio on coating microstructure, microhardness, and phase content. Coatings were sprayed using oxygen and propane (C{sub 3}H{sub 8}) fuel, at typical flow rates of 420 I/min, and 55 I/min, respectively. Coatings were sprayed onto 25 x 75 mm (1 in. x 3in.) 1018-steel substrates, nominally 3 mm (01.25 in.) thick. The coating materials were (-45 {mu}m + 10 {mu}) 80/20 NiCr, (-45 {mu} + 11 {mu}) 88/12 WC/Co, and (-45 {mu} + 11 {mu}m) 75/25 Cr{sub 3}C{sub 2}/NiCr. The CDS HVOF sprayed coatings were analyzed by optical microscopy, microhardness (VHN{sub 300}) and X-ray diffraction techniques to determine the effects of variations in process parameters on the microstructure and characteristics of the coatings and to investigate phase changes in the coating material caused by the HVOF process.

  14. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  15. Air jet erosion test on plasma sprayed surface by varying erodent impingement pressure and impingement angle

    NASA Astrophysics Data System (ADS)

    Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.

    2015-02-01

    Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.

  16. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Fan, X. L.; Wang, T. J.

    2011-11-01

    The objective of this work is to understand the effect of interface roughness on the strain energy release rate and surface cracking behavior in air plasma sprayed thermal barrier coating system. This is achieved by a parameter investigation of the interfacial shapes, in which the extended finite element method (XFEM) and periodic boundary condition are used. Predictions for the stress field and driving force of multiple surface cracks in the film/substrate system are presented. It is seen that the interface roughness has significant effects on the strain energy release rate, the interfacial stress distribution, and the crack propagation patterns. One can see the completely different distributions of stress and strain energy release rate in the regions of convex and concave asperities of the substrate. Variation of the interface asperity is responsible for the oscillatory characteristics of strain energy release rate, which can cause the local arrest of surface cracks. It is concluded that artificially created rough interface can enhance the durability of film/substrate system with multiple cracks.

  17. Evaluation of control parameters for Spray-In-Air (SIA) aqueous cleaning for shuttle RSRM hardware

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Deweese, C. D.

    1995-01-01

    HD-2 grease is deliberately applied to Shuttle Redesigned Solid Rocket Motor (RSRM) D6AC steel hardware parts as a temporary protective coating for storage and shipping. This HD-2 grease is the most common form of surface contamination on RSRM hardware and must be removed prior to subsequent surface treatment. Failure to achieve an acceptable level of cleanliness (HD-2 calcium grease removal) is a common cause of defect incidence. Common failures from ineffective cleaning include poor adhesion of surface coatings, reduced bond performance of structural adhesives, and failure to pass cleanliness inspection standards. The RSRM hardware is currently cleaned and refurbished using methyl chloroform (1,1,1-trichloroethane). This chlorinated solvent is mandated for elimination due to its ozone depleting characteristics. This report describes an experimental study of an aqueous cleaning system (which uses Brulin 815 GD) as a replacement for methyl chloroform. Evaluation of process control parameters for this cleaner are discussed as well as cleaning mechanisms for a spray-in-air process.

  18. Water-Air Spray Cooling of Extruded Profiles: Process Integrated Heat Treatment of the Alloy EN AW-6082

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Golovko, O.; Nürnberger, F.; Frolov, I.; Schaper, M.

    2013-09-01

    Quenching by spray cooling in the press line is a promising way to harden Al-Mg-Si alloys with regard to reducing profile distortion. For alloys such as EN AW-6082, high cooling rates are required. A device for spray cooling by means of water and compressed air was integrated into a 10 MN horizontal, hydraulic, short-stroke extrusion press. Various spray parameters were investigated. By using 32 water-air nozzles having a total water deposition rate of about 15 L/min and extruding with a profile velocity of 2.5 m/min, high mechanical properties were imparted to 30 mm diameter extruded rods. This arrangement ensures the extruded alloy is cooled to almost room temperature. Comparable properties can be achieved by water quenching, although the water consumption will be tenfold higher. The distribution of water deposition density on the profiles' surfaces was determined. It was shown that an adjustment of the water-air pressure ratio allows the final temperature of the profiles to be controlled over a wide range. Minimization of temperature gradients in the cross section of complex profiles allows profile distortions to be reduced.

  19. Gun Control, Gun Ownership, and Suicide Prevention.

    ERIC Educational Resources Information Center

    Lester, David

    1988-01-01

    Explored relationship between the extent of gun ownership and the strictness of gun control laws to suicide and homicide rates in the nine major geographic regions of the United States. Found gun ownership, rather than the strictness of gun control laws, was the strongest correlate of the rates of suicide and homicide by guns. (Author)

  20. Development of Air Force aerial spray night operations: High altitude swath characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple trials were conducted from 2006 to 2014 in an attempt to validate aerial spray efficacy at altitudes conducive to night spray operations using night vision goggles (NVG). Higher altitude application of pesticide (>400 feet above ground level [AGL]) suggested that effective vector control mi...

  1. Failure of thick, low density air plasma sprayed thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the

  2. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  3. COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM

    SciTech Connect

    Uppu, N.; Mensah, P.F.; Ofori, D.

    2006-07-01

    A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC coating of 250 μm thick can reduce the temperature by up to 200° C. Air Plasma Spray Process (APS) and High Enthalpy Plasma Spray Process (100HE) were the processes used for coating the blades with the TBCs. Because thermal conductivity increases with increase in temperature, it is desired that these processes yield very low thermal conductivities at high temperatures in order not to damage the blade. An experiment was carried out using Flash line 5000 apparatus to compare the thermal conductivity of both processes.The apparatus could also be used to determine the thermal diffusivity and specific heat of the TBCs. 75 to 2800 K was the temperature range used in the experimentation. It was found out that though 100HE has high deposition efficiency, the thermal conductivity increases with increase in temperatures whiles APS yielded low thermal conductivities.

  4. Gun control, gun ownership, and suicide prevention.

    PubMed

    Lester, D

    1988-01-01

    The relationship of the extent of gun ownership and the strictness of gun control laws to suicide and homicide rates in the nine major geographic regions of the United States was explored. Gun ownership, rather than the strictness of gun control laws, was found to be the strongest correlate of the rates of suicide and homicide by guns. Regions with a higher extent of gun ownership had higher rates of suicide and homicide by firearms. PMID:3262246

  5. Effect of CeO2 on Cyclic Hot-Corrosion Behavior of Detonation-Gun Sprayed Cr3C2-NiCr Coatings on Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2015-03-01

    The hot-corrosion behavior of detonation-gun sprayed Cr3C2-NiCr coatings with and without 0.4 wt.% CeO2 additive on Ni-based superalloy inconel-718 is comparatively discussed in the present study. Hot-corrosion studies were carried out at 900 °C for 100 cycles in Na2SO4-60%V2O5 molten salt environment under cyclic heating and cooling conditions on bare and coated superalloys. The thermo-gravimetric technique was used to establish kinetics of hot-corrosion. XRD, FESEM/EDAX, and EDX mapping techniques were used to analyze the corrosion products of bare and coated samples. The results indicate that Cr3C2-NiCr-CeO2-coated superalloy showed better hot-corrosion resistance as compared to bare and Cr3C2-NiCr-coated superalloys. The addition of CeO2 has improved micro-hardness, porosity, and surface roughness values of Cr3C2-NiCr-CeO2 coating. The overall weight gain and parabolic rate constant of Cr3C2-NiCr-CeO2-coated superalloy were found to be lowest in the present study signifying that the addition of CeO2 in Cr3C2-NiCr powder has contributed to the development of adherent and dense oxide scale on the coating at elevated temperature.

  6. FEATURE 1, SMALL GUN POSITION, VIEW FACING NORTH. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 1, SMALL GUN POSITION, VIEW FACING NORTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Small Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  7. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  8. FEATURE C. MACHINE GUN POSITION WITH REMNANT OF MOUNT, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE C. MACHINE GUN POSITION WITH REMNANT OF MOUNT, VIEW FACING SOUTH-SOUTHEAST. - Naval Air Station Barbers Point, Battery-Machine Gun Positions, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  9. 6. INTERIOR DETAIL OF GUN MOUNT ON TERRACE, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR DETAIL OF GUN MOUNT ON TERRACE, LOOKING EAST (1992). - Wright-Patterson Air Force Base, Area B, Building 22, Armament Laboratory & Gun Range, On flightline between Tenth & Eleventh Streets, Dayton, Montgomery County, OH

  10. FEATURE A. CONCRETE ANTIAIRCRAFT GUN POSITION, VIEW FACING NORTHNORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A. CONCRETE ANTI-AIRCRAFT GUN POSITION, VIEW FACING NORTH-NORTHEAST. - Naval Air Station Barbers Point, Battery-Anti-Aircraft Gun Position, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  11. FEATURE 1, SMALL GUN POSITION, VIEW FACING NORTH, (with scale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 1, SMALL GUN POSITION, VIEW FACING NORTH, (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Small Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  12. FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING NORTHWEST. - Naval Air Station Barbers Point, Battery-Machine Gun Positions, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  13. FEATURE A. CONCRETE ANTIAIRCRAFT GUN POSITION, VIEW FACING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A. CONCRETE ANTI-AIRCRAFT GUN POSITION, VIEW FACING NORTH - NORTHEAST (with scale stick). - Naval Air Station Barbers Point, Battery-Anti-Aircraft Gun Position, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  14. FEATURE A. CONCRETE ANTIAIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A. CONCRETE ANTI-AIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, VIEW FACING SOUTHEAST. - Naval Air Station Barbers Point, Battery-Anti-Aircraft Gun Position, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  15. FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING NORTHWEST (with scale stick). - Naval Air Station Barbers Point, Battery-Machine Gun Positions, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  16. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  17. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  18. An experimental investigation on the spray flow exhausted from a co-swirling air-blast nozzle

    NASA Astrophysics Data System (ADS)

    Dvorak, Daniel Dean

    The velocity field for a spray produced by an air-blast atomizer is measured using Particle Image Velocimetry (PIV). These measurements are conducted at a variety of input liquid and air mass flow rates producing many different air to liquid mass flow ratios (ALR). The experiment is repeated with two different liquids, water and a hydrocarbon based fuel substitute. It is found that the velocity field depends heavily on the type of fluid used as opposed to the ALR. The experiments are repeated using a Stereoscopic Particle Image Velocimetry (SPIV) measurement technique. These results are compared to the 2D PIV results, and the differences are discussed. Finally, the 2D PIV and SPIV results are compared to existing Laser Doppler Velocimetry (LDV) results. It is seen that the results from the two different techniques are not well correlated.

  19. Effect excess air as an oxidizer in the flame assisted spray dryer using computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Nurtono, Tantular; Winardi, Sugeng

    2016-02-01

    The size distribution of silica particles as a model material from colloidal silica solution precursor in the flame assisted spray dryer method were studied numerically using Computational Fluid Dynamics (CFD). CFD has ability to solve the momentum, energy and mass transfer equation well. k-ɛ model was used to describe the turbulence model and non-premixed combustion model was used to combustion model. Collision and break-up model were also considered to predict the final particles size distribution. For validation, LPG with flow rate of 0.5 L/minute LPG and 200% excess air were used as energy sources. At this condition, numerical solution agreed well to the experimental work resulting in polydisperse size distribution. Therefore, others excess air, 100% and 150% were also observed using CFD and evaluated their contribution to their particles size distribution. Monodisperse particles size distribution were obtained when the combustion used 150% excess air.

  20. "Teaching" an Industrial Robot To Spray

    NASA Technical Reports Server (NTRS)

    Evans, A. R.; Sweet, G. K.

    1982-01-01

    Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

  1. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Wojcik, George M; De Szalay, Ferenc A

    2009-12-01

    The effectiveness of a novel fuselage boom configuration was tested with flat-fan nozzles on U.S. Air Force C-130H aircraft to create ultra-low volume sprays to control mosquitoes (Culicidae) and biting midges (Ceratopogonidae). The mortality of mosquitoes and biting midges in bioassay cages and natural populations, using the organophosphate adulticide, naled, was measured. Mosquitoes in bioassay cages had 100% mortality at 639 m downwind in all single-pass spray trials, and most trials had >90% mortality up to 1491 m downwind. Mosquito mortality was negatively correlated with distance from the spray release point (r2 = 0.38, P < 0.001). The volume median diam of droplets collected was 44 tm at 213 m and decreased to 11 microm at 2130 m downwind of the release point. Droplet density decreased from an average of 18.4 drops/cm2 at 213 m to 2 drops/cm2 at 2130 m. Droplet densities of 10-18 droplets/cm2 were recorded at sampling stations with high mosquito mortality rates (>90%). In wide-area operational applications, numbers of mosquitoes from natural populations 1 wk postspray were 83% (range 55%-95%), lower than prespray numbers (P < 0.05). Biting midge numbers were reduced by 86% (range 53%-97%) on average (P = 0.051) after 7 days. The results of these field trials indicate that the fuselage boom configuration on C-130H aircraft are an effective method to conduct large-scale aerial sprays during military operations and public health emergencies. PMID:20099594

  2. An overview of spray drift reduction testing of spray nozzles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  3. Wide-swath Spray Application in Ornamental Nurseries with Cannon Air Jet Sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide spray applications in nurseries are usually implemented in the very early morning to avoid chemical exposures to regular workers and to prevent potential drift to nearby residential areas. Conventional sprayers cannot efficiently apply pesticides to many container ornamental crops due to ...

  4. DEVELOPMENT OF AN INNOVATIVE SPRAY DISPENSER TO REDUCE INDOOR AIR EMISSIONS FROM AEROSOL CONSUMER PRODUCTS

    EPA Science Inventory

    The report presents the operating principles and performance of a new type of spray nozzle. This nozzle, termed a "ligament-controlled effervescent atomizer," was developed to allow consumer product manufacturers to replace volatile organic compound (VOC) solvents with water, and...

  5. Use of Oriented Spray Nozzles to Set the Vapor-Air Flow in Rotary Motion in the Superspray Space of the Evaporative Chimney-Type Tower

    NASA Astrophysics Data System (ADS)

    Dobrego, K. V.; Davydenko, V. F.; Koznacheev, I. A.

    2016-01-01

    The present paper considers the problem of upgrading the thermal efficiency of chimney-type evaporative cooling towers due to the rotary motion of the vapor-air flow in the superspray space. To set the vapor-air flow in rotary motion, we propose to use the momentum of the sprayed water. It has been shown that the existing parameters of spray nozzles permit setting up to 30% of the water flow momentum in translatory motion, which is enough for changing considerably the aerodynamics of the vapor-air flow in the superspray space and improving the operation of the cooling tower. The optimal angle of axial inclination of the spray cone has been estimated. Recommendations are given and problems have been posed for engineering realization of the proposed technologies in a chimney-type cooling tower.

  6. Analyses of Kolmogorov's model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization

    NASA Astrophysics Data System (ADS)

    Gorokhovski, M. A.; Saveliev, V. L.

    2003-01-01

    This paper considers the breakup of liquid drops at the large Weber number within the framework of Kolmogorov's scenario of breakup. The population balances equation for droplet radius distribution is written to be an invariant under the group of scaling transformations. It is shown that due to this symmetry, the long-time limit solution of this equation is a power function. When the standard deviation of droplet radius strongly increases and, consequently, the characteristic length scale disappears, the power asymptotic solution can be viewed as a further evolution of Kolmogorov's log-normal distribution. This new universality appears to be consistent with the experimental observation of fractal properties of droplets produced by air-blast breakup. The scaling properties of Kolmogorov's model at later times are also demonstrated in the case where the breakup frequency is a power function of instantaneous radius. The model completes the Liouville equation for distribution function of liquid particles in the phase space of droplet position, velocity, and radius. The numerical scheme is proposed for stochastic modeling of droplets production. Lagrangian simulation of the spray under air-blast atomization is performed using KIVA II code, which is a frequently used code for computation of turbulent flows with sprays. The qualitative agreement of simulation with measurements is demonstrated.

  7. Research on air sprays and unique foam application methods. Phase II report. Laboratory investigation of foam systems

    SciTech Connect

    Not Available

    1982-06-01

    The objective of this study is to assess the effectiveness of air sprays and foam systems for dust control on longwall double-drum shearer faces. Laboratory testing has been conducted using foam systems and promising results have been obtained. Upon Bureau approval, underground testing will be scheduled to assess the effectiveness of foam systems under actual operating conditions. Laboratory testing of air sprays is being conducted at present. This report presents the results of the laboratory testing of foam systems. Specifically, the results obtained on the evaluation of selected foaming agents are presented, the feasibility investigation of flushing foam through the shearer-drum are demonstrated, and conceptual layout of the foam system on the shearer is discussed. The laboratory investigation of the selected foaming agents reveal that the Onyx Microfoam, Onyx Maprosyl and DeTer Microfoam foaming agents have higher expansion ratios compared to the others tested. Flushing foam through the shearer drum is entirely feasible and could be a viable technique for dust suppression on longwall faces.

  8. Assessment of residual heat removal and containment spray pump performance under air and debris ingesting conditions. [PWR

    SciTech Connect

    Kamath, P.S.; Tantillo, T.J.; Swift, W.L.

    1982-09-01

    This report presents an assessment of the performance of Residual Heat Removal (RHR) and Containment Spray (CS) pumps during the recirculation phase of reactor core and containment cooldown following a Loss-of-Coolant Accident (LOCA). The pumped fluid is expected to contain debris such as insulation and may ingest air depending on sump conditions. Findings are based on information collected from the literature and from interviews with pump and seal manufacturers. These findings show that for pumps at normal flow rates operating with sufficient Net Positive Suction Head (NPSH), pump performance degradation is negligible if air ingestion quantities are less than 2% by volume. For air ingestion between 3% and 15% by volume, head degradation depends on individual pump design and operating conditions and for air quantities greater than 15% performance of most pumps will be fully degraded. Also, small quantities of air will increase NPSH requirements for these pumps. For the types and quantities of debris likely to be present in the recirculating fluid, pump performance degradation is expected to be negligible.

  9. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  10. Spot-Welding Gun Is Easy To Use

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Nguyen, Francis H.

    1991-01-01

    Electrical-resistance spot-welding gun designed to produce more welds per unit time by decreasing technician's effort and fatigue. Vacuum cups on frame secure welding gun to workpiece while compressed air drives welding tip against workpiece to make spot resistance weld. When weld completed, vacuum in frame cups released so frame and gun moved to position of next spot weld.

  11. Development of Air Force Aerial Spray Night Operations: High Altitude Swath Characterizations.

    PubMed

    Haagsma, Karl A; Breidenbaugh, Mark S; Linthicum, Kenneth J; Aldridge, Robert L; Britch, Seth C

    2015-01-01

    Multiple trials were conducted from 2006 to 2014 in an attempt to validate aerial spray efficacy at altitudes conducive to night spray operations using night vision goggles (NVGs). Higher altitude application of pesticide (more than 400 ft (121.9 m) above ground level (AGL)) suggested that effective vector control might be possible under ideal meteorological conditions. A series of lower altitude daytime applications (300 ft (91.4 m) AGL) demonstrated effective and repeatable mortality of target sentinel insects more than 5,000 ft (1,524 m) downwind, and control of natural vector populations. From these results we believe further pursuit of aerial night applications of pesticide using NVGs at 300 ft (91.4 m) AGL by this group is warranted. PMID:26276945

  12. Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process

    NASA Astrophysics Data System (ADS)

    Lyphout, C.; Sato, K.; Houdkova, S.; Smazalova, E.; Lusvarghi, L.; Bolelli, G.; Sassatelli, P.

    2016-01-01

    Lowering the thermal energy and increasing the kinetic energy of hard metal particles sprayed by the newly developed HVAF systems can significantly reduce their decarburization, and increases the sliding wear and corrosion resistance of the resulting coatings, making the HVAF technique attractive, both economically and environmentally, over its HVOF predecessors. Two agglomerated and sintered feedstock powder chemistries, WC-Co (88/12) and WC-CoCr (86/10/4), respectively, with increasing primary carbides grain size from 0.2 to 4.0 microns, have been deposited by the latest HVAF-M3 process onto carbon steel substrates. Their dry sliding wear behaviors and friction coefficients were evaluated at room temperature via Ball-on-disk (ASTM G99-90) wear tests against Al2O3 counterparts, and via Pin-on-disk (ASTM G77-05) wear tests against modified martensitic steel counterparts in both dry and lubricated conditions. Sliding wear mechanisms, with the formation of wavy surface morphology and brittle cracking, are discussed regarding the distribution and size of primary carbides. Corrosion behaviors were evaluated via standard Neutral Salt Spray, Acetic Acid Salt Spray, accelerated corrosion test, and electrochemical polarization test at room temperature. The optimization of the tribological properties of the coatings is discussed, focusing on the suitable selection of primary carbide size for different working load applications.

  13. Improved DC Gun Insulator

    SciTech Connect

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  14. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  15. ELECTRON GUN

    DOEpatents

    Christofilos, N.C.; Ehlers, K.W.

    1960-04-01

    A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.

  16. Characterization and Wear Behavior of Heat-treated Ni3Al Coatings Deposited by Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Rafiq, M. A.; Nusair Khan, A.; Ahmed, F.; Mudassar Rauf, M.

    2016-07-01

    Air plasma spraying was utilized to deposit Ni3Al coatings on AISI-321 steel substrate. The deposited coatings were isothermally heat-treated at various temperatures from 500 to 800 °C for 10, 30, 60, and 100 h. The x-ray diffraction analysis revealed NiO formation in Ni3Al at 500 °C after 100 h, and the percentage of NiO increased with increasing exposure time and temperature. The hardness of the coating increased with the formation of NiO. The DSC test showed the formation of minor phases, Al3Ni and Al3Ni2, within the coating along with the major phase Ni3Al. TGA revealed a slowing down of the oxidation rate upon surface oxide formation. The pin-on-disk wear test on the as-sprayed and heat-treated coatings showed that wear rate and coefficient of friction decreased with an increase in the NiO phase content.

  17. Characterization and Wear Behavior of Heat-treated Ni3Al Coatings Deposited by Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Rafiq, M. A.; Nusair Khan, A.; Ahmed, F.; Mudassar Rauf, M.

    2016-05-01

    Air plasma spraying was utilized to deposit Ni3Al coatings on AISI-321 steel substrate. The deposited coatings were isothermally heat-treated at various temperatures from 500 to 800 °C for 10, 30, 60, and 100 h. The x-ray diffraction analysis revealed NiO formation in Ni3Al at 500 °C after 100 h, and the percentage of NiO increased with increasing exposure time and temperature. The hardness of the coating increased with the formation of NiO. The DSC test showed the formation of minor phases, Al3Ni and Al3Ni2, within the coating along with the major phase Ni3Al. TGA revealed a slowing down of the oxidation rate upon surface oxide formation. The pin-on-disk wear test on the as-sprayed and heat-treated coatings showed that wear rate and coefficient of friction decreased with an increase in the NiO phase content.

  18. Gun ownership and social gun culture.

    PubMed

    Kalesan, Bindu; Villarreal, Marcos D; Keyes, Katherine M; Galea, Sandro

    2016-06-01

    We assessed gun ownership rates in 2013 across the USA and the association between exposure to a social gun culture and gun ownership. We used data from a nationally representative sample of 4000 US adults, from 50 states and District of Columbia, aged >18 years to assess gun ownership and social gun culture performed in October 2013. State-level firearm policy information was obtained from the Brady Law Center and Injury Prevention and Control Center. One-third of Americans reported owning a gun, ranging from 5.2% in Delaware to 61.7% in Alaska. Gun ownership was 2.25-times greater among those reporting social gun culture (PR=2.25, 95% CI 2.02 to 2.52) than those who did not. In conclusion, we found strong association between social gun culture and gun ownership. Gun cultures may need to be considered for public health strategies that aim to change gun ownership in the USA. PMID:26124073

  19. Encyclopedia of Gun Control and Gun Rights.

    ERIC Educational Resources Information Center

    Utter, Glenn H.

    This reference volume provides information on gun control and gun rights, including resources on the debate surrounding the Second Amendment and individuals and organizations focused on gun issues, along with statutes, court cases, events, and publications surrounding this current topic. Highlighted are the important organizations and their…

  20. Air-Fed Visors Used for Isocyanate Paint Spraying--Potential Exposure When the Visor Is Lifted.

    PubMed

    Clayton, Mike; Baxter, Nick

    2015-11-01

    Continuous-flow air-supplied breathing apparatus with a visor is the respiratory protective equipment (RPE) of choice within the motor vehicle repair trade for protection against exposure to isocyanate paints. Whilst these devices are capable of providing adequate protection, a common workplace practice of sprayers lifting up the visor of their RPE immediately after spraying when checking the quality of the paint finish is thought to have an impact on the protection afforded. While the visor lift may be only for a few seconds, this action, especially if repeated numerous times during a work shift, could potentially result in a significant increase in exposure.Informal interviews with paint sprayers were conducted to understand the reasons for this behaviour followed by a series of laboratory tests to quantify the potential degree of exposure as a result of a visor lift.The majority of the paint sprayers interviewed explained their reasons for lifting their visors immediately after spraying and before the spray booth had been adequately cleared by ventilation. The main reasons given for a visor lift included a combination of habit, poor visibility due to poor visual clarity of the visor screen material, over spray, scratched visor screens, internal visor reflections, and poor booth lighting.The findings of the tests showed that the degree of protection provided by the visor when in the lifted position is in the approximate range of 1-3.7 (mean 1.7) and over the whole of the exposure period (from start of the lift to recovery of protection after refitting) is in the approximate range of 1.4-9.0 (mean 2.7). This is a significant reduction when compared to the assigned protection factor of 40 for this class of device and the measured protection factors of 5000-10 000 when worn correctly.These results clearly demonstrate that lifting the visor whilst still within a contaminated atmosphere considerably increases the wearer's exposure and that this is an example where

  1. Measurement of spray combustion processes

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Arman, E. F.; Hornkohl, J. O.; Farmer, W. M.

    1984-01-01

    A free jet configuration was chosen for measuring noncombusting spray fields and hydrocarbon-air spray flames in an effort to develop computational models of the dynamic interaction between droplets and the gas phase and to verify and refine numerical models of the entire spray combustion process. The development of a spray combustion facility is described including techniques for laser measurements in spray combustion environments and methods for data acquisition, processing, displaying, and interpretation.

  2. Monitoring Coating Thickness During Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1990-01-01

    High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.

  3. The Gun Dispute.

    ERIC Educational Resources Information Center

    Spitzer, Robert J.

    1999-01-01

    Explores the debate over gun ownership and gun control in the United States, focusing on the historic place of guns in U.S. society. The current national mood is more receptive than ever to restricting and regulating adolescent access to guns in light of recent school shootings. (SLD)

  4. Gun Sales. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Minimal federal regulations on firearm sales have facilitated the proliferation of guns, gun owners, and gun dealers in the United States. This fact sheet offers data on the growing number of firearm dealers, the relative ease of obtaining and keeping a license to sell guns from the Federal Bureau of Alcohol, Tobacco, and Firearms, the lack of…

  5. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  6. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.

    PubMed

    Geoghegan, Trudyanne S; Hageman, Kimberly J; Hewitt, Andrew J

    2014-03-01

    Pesticide volatilisation and subsequent vapour drift reduce a pesticide's efficiency and contribute to environmental contamination. High-volume air samplers (HVSs) are often used to measure pesticide concentrations in air but these samplers are expensive to purchase and require network electricity, limiting the number and type of sites where they can be deployed. The flow-through sampler (FTS) presents an opportunity to overcome these limitations. The FTS is a wind-driven passive sampler that has been developed to quantify organic contaminants in remote ecosystems. FTSs differ from other passive samplers in that they turn into the wind and use the wind to draw air through the sampling media. The main objective of this work was to evaluate the FTS in a near-field pesticide vapour drift study by comparing the concentrations of pyrimethanil in air measured using one HVS and three FTSs placed in the same location. Pyrimethanil was sprayed onto a vineyard as part of normal pest management procedures. Air samples were collected every eight hours for 48 h. The volume of air sampled by the FTSs was calculated using the measured relationship between ambient wind speed and the wind speed inside the sampler as determined with a separate wind tunnel study. The FTSs sampled 1.7 to 40.6 m(3) of air during each 8 h sampling period, depending on wind speed, whereas the mean volume sampled by the HVS was 128.7 m(3). Mean pyrimethanil concentrations ranged from 0.4 to 3.2 μg m(-3) of air. Inter-sampler reproducibility, as represented by percent relative standard deviation, for the three FTSs was ∼20%. The largest difference in FTS-derived versus HVS-derived pyrimethanil concentrations occurred during the lowest wind-speed period. During this period, it is likely that the FTS predominately acted like a traditional diffusion-based passive sampler. As indicated by both types of sampler, pyrimethanil concentrations in air changed by a factor of ∼2 during the two days after spaying

  7. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  8. Phase Evolution upon Aging of Air-Plasma Sprayed t'-Zirconia Coatings: I-Synchrotron X-Ray Diffraction

    SciTech Connect

    Lipkin, Don M; Krogstad, Jessica A; Gao, Yan; Johnson, Curtis A; Nelson, Warren A; Levi, Carlos G

    2012-10-08

    Phase evolution accompanying the isothermal aging of free-standing air-plasma sprayed (APS) 7–8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) is described. Aging was carried out at temperatures ranging from 982°C to 1482°C in air. The high-temperature kinetics of the phase evolution from the metastable t' phase into a mixture of transformable Y-rich (cubic) and Y-lean (tetragonal) phases are documented through ambient temperature X-ray diffraction (XRD) characterization. A Hollomon–Jaffe parameter (HJP), T[27 + ln(t)], was used to satisfactorily normalize the extent of phase decomposition over the full range of times and temperatures. Comparison to vapor deposited TBCs reveal potential differences in the destabilization mechanism in APS coatings. Furthermore, the lattice parameters extracted from Rietveld refinement of the XRD patterns were used to deduce the stabilizer concentrations of the respective phases, which suggest a retrograde tetragonal solvus over the temperature range studied. In concert with a complementary microstructural study presented in Part II, this effort offers new insights into the mechanisms governing the phase evolution and raises implications for the high-temperature use of 8YSZ ceramics.

  9. Plasma gun with coaxial powder feed and adjustable cathode

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  10. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  11. Catalytic Ignitor for Regenerative Propellant Gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1997-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the igniter and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  12. Catalytic ignitor for regenerative propellant gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1994-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the ignitor and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  13. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  14. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  15. Guns and Violence. Current Controversies.

    ERIC Educational Resources Information Center

    Kim, Henny H., Ed.

    This book focuses on gun violence and gun control, presenting both sides of arguments about firearms ownership and gun control. Each of five chapters poses a question about gun control and provides answers for both sides of the question. The following essays are included: (1) "Gun Violence Is Becoming an Epidemic" (Bob Herbert); (2) "Gun Violence…

  16. Gun Safety (For Kids)

    MedlinePlus

    ... guns are featured in many television shows, video games, computer games, and movies, it's important to know that real ... only happen on TV, in movies, or video games. A real gun is never a toy, and ...

  17. Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering.

    PubMed

    Allison, Patton M; McManus, Thomas A; Sutton, Jeffrey A

    2016-03-15

    This Letter demonstrates the application of filtered Rayleigh scattering (FRS) for quantitative two-dimensional fuel vapor/air mixing measurements in an evaporating hydrocarbon fuel spray flow. Using the FRS approach, gas-phase measurements are made in the presence of liquid-phase droplets without interference. Effective suppression of the liquid-phase droplet scattering using FRS is enabled by the high spectral purity of the current Nd:YAG laser system. Simultaneous Mie-scattering imaging is used to visualize the droplet field and illustrate the droplet loading under which the FRS imaging is applied in the current spray flows. The initial quantification of the FRS imaging is based on calibration measurements from a flow cell of known fuel vapor/air mixtures, while future work targets the utilization of a Rayleigh-Brillouin spectral model for quantification of the FRS signals. PMID:26977637

  18. Three-phase Coupling of Air, Droplets and Fibers for the Spray Molding Manufacturing Process of Polyurethane-Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Diffo, P.; Wulf, P.; Breuer, M.

    2011-09-01

    In the present paper the authors present a multiphase flow simulation model of the interaction of a droplet-laden air flow with flexible fibers. This highly complex flow is occurring during a manufacturing process of fiber reinforced polyurethane based composites, where the liquid plastic polyurethane (PUR) is sprayed with air assistance in a tool form or on a substrate. Simultaneously chopped fibers are laterally inserted in the polyurethane-air spray cone for wetting before the entire mixture deposits on the substrate, where it starts curing. This investigation aims to compute the statistical fiber orientation and density distribution in the final composite, which will help modeling its anisotropic material properties. It is presumed that the final position and orientation of a fiber on a substrate results from its dynamics and coupled interactions with air, PUR-droplets and other fibers within the spray cone. Therefore, we present a new approach simplifying the multiply coupled interaction of the three phases. In this paper a model of the process is built, that computes the transient, 4-way-coupled behavior of the air-liquid droplets mixture with the CFD code ANSYS Fluent and the 1-way-air- and 1-way-droplet-coupled dynamics of the fibers with an extra code called FIDYST. Two approaches for the coupling of fibers with the air-droplets-mixture are presented: One considers the mixture as a pseudo-fluid ("homogenization"), the other computes a force for each of the phases separately, wherein the average momentum transfer for the fiber-droplet collision is estimated based on the probability of local collision events.

  19. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  20. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  1. Manufacture of SOFC electrodes by wet powder spraying

    SciTech Connect

    Wilkenhoener, R.; Mallener, W.; Buchkremer, H.P.

    1996-12-31

    The reproducible and commercial manufacturing of electrodes with enhanced electrochemical performance is of central importance for a successful technical realization of Solid Oxide Fuel Cell (SOFC) systems. The route of electrode fabrication for the SOFC by Wet Powder Spraying (WPS) is presented. Stabilized suspensions of the powder materials for the electrodes were sprayed onto a substrate by employing a spray gun. After drying of the layers, binder removal and sintering are performed in one step. The major advantage of this process is its applicability for a large variety of materials and its flexibility with regard to layer shape and thickness. Above all, flat or curved substrates of any size can be coated, thus opening up the possibility of {open_quotes}up-scaling{close_quotes} SOFC technology. Electrodes with an enhanced electrochemical performance were developed by gradually optimizing the different process steps. For example an optimized SOFC cathode of the composition La{sub 0.65}Sr{sub 0.3}MnO{sub 3} with 40% 8YSZ showed a mean overpotential of about -50 mV at a current density of -0.8 A/cm{sup 2}, with a standard deviation amounting to 16 mV (950{degrees}C, air). Such optimized electrodes can be manufactured with a high degree of reproducibility, as a result of employing a computer-controlled X-Y system for moving the spray gun. Several hundred sintered composites, comprising the substrate anode and the electrolyte, of 100x 100 mm{sup 2} were coated with the cathode by WPS and used for stack integration. The largest manufactured electrodes were 240x240 mm{sup 2}, and data concerning their thickness homogeneity and electrochemical performance are given.

  2. Thermal spray: Advances in coatings technology; Proceedings of the National Thermal Spray Conference, Orlando, FL, Sept. 14-17, 1987

    SciTech Connect

    Houck, D.L.

    1988-01-01

    Papers are presented on particle injection in plasma spraying, cored tube wires for arc and flame spraying, new plasma gun technology, and grit-blasting as a surface preparation before plasma spraying. Also considered are hypervelocity applications of tribological coatings, the variability in strength of thermally sprayed coatings, automated powder mass flow monitoring and control, and coated abrasive superfinishing. Other topics include wire-sprayed aluminum coating services in a SIMA corrosion-control shop, cerium oxide stabilized thermal barrier coatings, and strength enhancement of plasma sprayed coatings.

  3. a Study of Liquid - of Atomization Droplet Size Velocity and Temperature Distribution via Information Theory Spray Interaction with Ambient Air Motion.

    NASA Astrophysics Data System (ADS)

    Li, Xianguo

    Linear temporal instability analysis of a moving thin viscous liquid sheet of uniform thickness in an inviscid gas medium shows that surface tension always opposes, while surrounding gas and relative velocity between the sheet and gas favour the onset and development of instability. For gas Weber number smaller than the density ratio of gas to liquid, liquid viscosity enhances instability; If gas Weber number is slightly larger, aerodynamic and viscosity -induced instabilities interact with each other, displaying complicated effects of viscosity via Ohnesorge number; For much larger values of gas Weber numbers, aerodynamic instability dominates, liquid viscosity reduces disturbance growth rate and increases the dominant wavelength. Droplet probability distribution function (PDF) in sprays is formulated through information theory without resorting to the details of atomization processes. The derived analytical droplet size PDF is Nukiyama-Tanasawa type if conservation of mass is considered alone. If conservation of mass, momentum and energy is all taken into account, the joint droplet size and velocity PDF depends on Weber number, and compares favourably with measurements. Droplet velocity PDF is truncated Gaussian for any specific droplet size. Mean velocity approaches a constant value and velocity variance decreases as droplet size increases. Mean droplet diameters calculated agree well with observations. The computation indicates that atomization efficiency is very low, usually less than 1%. Droplet size, velocity and temperature PDF in sprays under combusting environment has also been derived. Effects of combustion on PDF occur mainly through the heat transferred into liquid sheet prior to its breakup. Experimental studies identify three modes of spray behaviours due to its interaction with various annular air flows, and show that bluff-body type of combustor has ability and easement to control aerodynamically spray angle, shape and droplet trajectories. It is

  4. Survey of SRF guns

    SciTech Connect

    Belomestnykh, S.

    2011-07-25

    Developing Superconducting RF (SRF) electron guns is an active field with several laboratories working on different gun designs. While the first guns were based on elliptic cavity geometries, Quarter Wave Resonator (QWR) option is gaining popularity. QWRs are especially well suited for producing beams with high charge per bunch. In this talk we will describe recent progress in developing both types of SRF guns. SRF guns made excellent progress in the last two years. Several guns generated beams and one, at HZDR, injected beam into an accelerator. By accomplishing this, HZDR/ELBE gun demonstrated feasibility of the SRF gun concept with a normal-conducting Cs{sub 2}Te cathode. The cathode demonstrated very good performance with the lifetime of {approx}1 year. However, for high average current/high bunch charge operation CsK{sub 2}Sb is preferred as it needs green lasers, unlike UV laser for the Cs{sub 2}Te, which makes it easier to build laser/optics systems. Other high QE photocathodes are being developed for SRF guns, most notably diamond-amplified photocathode. Several QWR guns are under development with one producing beam already. They are very promising for high bunch charge operation. The field is very active and we should expect more good results soon.

  5. Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2015-08-01

    Yttria-stabilized zirconia (YSZ) coatings have been frequently used as a thermal protective layer on the metal or alloy component surfaces. In the present study, ZrO2-7%Y2O3 thermal barrier coatings (TBCs) were successfully deposited by DC (direct current) plasma spray process under very low pressure conditions (less than 1 mbar) using low-energy plasma guns F4-VB and F100. The experiments were performed to evaluate the thermal shock resistance of different TBC specimens which were heated to 1373 K at a high-temperature cycling furnace and held for 0.5 h, followed by air cooling at room temperature for 0.2 h. For comparison, a corresponding atmospheric plasma spray (APS) counterpart was also elaborated to carry out the similar experiments. The results indicated that the very low pressure plasma spray (VLPPS) coatings displayed better thermal shock resistance. Moreover, the failure mechanism of the coatings was elucidated.

  6. Women and Guns. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Many gun manufacturers market guns to women claiming a gun can provide protection. Statistics provided in this fact sheet indicate gun ownership may provide a false sense of security that can be fatal, since the greatest threat to a woman comes from the people and guns within her own home. Contrary to "typical" scenarios created by advertisers,…

  7. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    USGS Publications Warehouse

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    detailed images we need for earthquake hazard assessment. Air gun bursts, generated in the Salton Sea along extensions of our onshore seismic lines, also were utilized as sound-wave sources. Temporary deployments of portable land seismometers, as well as ocean-bottom seismometers (OBSs) on the floor of the Salton Sea, recorded the energy from the land shots and air gun bursts. SSIP is similar to the Los Angeles Regional Seismic Experiments of 1994 and 1999 (LARSE I and II, respectively; Murphy and others, 1996; Fuis and others, 2001). The LARSE surveys demonstrated that the USGS and collaborators can safely and effectively conduct seismic imaging surveys in urban and nonurban areas, on lands owned and/or managed by many different types of agencies and entities. Information was produced that could not have been obtained any other way, and this information was key to changing the leading ideas about earthquake hazards at that time in the Los Angeles region. These surveys produced no significant environmental impact or damage to structures, and they did not trigger earthquakes.

  8. Interior of southeast gun chamber (labeled "Gun Turret No. Two), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of southeast gun chamber (labeled "Gun Turret No. Two), showing gun mounting pad, wall rings, small niche, and opening to outside - U.S. Naval Base, Pearl Harbor, Battery Adair, Princeton Place, Pearl City, Honolulu County, HI

  9. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  10. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  11. FEATURE 3, LARGE GUN POSITION, ARMCO HUT (FEATURE 4) IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, ARMCO HUT (FEATURE 4) IN BACKGROUND, VIEW FACING NORTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  12. 14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING EAST AT SOUTHWEST END OF BUILDING. HVAC EQUIPMENT LOCATED OUTDOORS IN FOREGROUND. DUCTS CONDUCT HOT OR COLD AIR INDOORS. ROUND PIPES ARE INSULATED STEAM LINES. BUILDING NO. 448, ORDNANCE FACILITY, IN BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  13. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  14. Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  15. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2015-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 degrees is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  16. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2014-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 deg is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  17. Modeling internal ballistics of gas combustion guns.

    PubMed

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur. PMID:26239103

  18. 40 CFR 63.11177 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....11173(e)(3)(i). (c) Documentation from the spray gun manufacturer that each spray gun with a cup... spray gun, electrostatic application, airless spray gun, or air assisted airless spray gun, has been determined by the Administrator to achieve a transfer efficiency equivalent to that of an HVLP spray...

  19. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    EPA Science Inventory

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are...

  20. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    SciTech Connect

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-15

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.

  1. Comparison of operator exposure for five different greenhouse spraying applications.

    PubMed

    Nuyttens, D; Windey, S; Sonck, B

    2004-08-01

    The European Crop Protection Association (ECPA) and the Agricultural Research Center (CLO-DVL) joined forces in a project to stimulate the safe use of pesticides in southern European countries. CLO-DVL optimized a method using mineral chelates as tracers on collectors. This quantitative method to evaluate spray deposits was used to compare operator exposure from several greenhouse spraying techniques. Operator exposure measurements were of a comparative nature. Five application methods were investigated: a standard spray gun with an operator walking forwards, a spray lance with an operator walking forwards and backwards, a trolley, and a vehicle, both with vertical spray booms. The exposure was measured with patches at 15 places on operators' coveralls and gloves, using mineral chelates as tracer elements. The difference in exposure of the patches between the different techniques was very high. Walking backwards reduced exposure by a factor of 7. The exposures with the trolley and the vehicle, two innovative spraying techniques, were respectively 25 and 100 times lower compared to exposure with the standard spray gun. Operator exposure while walking forward with the spray lance was about two times higher than with the spray gun. Besides very large differences in exposure among the five techniques, there were also large differences in exposure among various parts of the body. All of this is important in consideration of operator safety and for the parts of the body that need to be protected most. PMID:15461135

  2. Rarefaction wave gun propulsion

    NASA Astrophysics Data System (ADS)

    Kathe, Eric Lee

    A new species of gun propulsion that dramatically reduces recoil momentum imparted to the gun is presented. First conceived by the author on 18 March 1999, the propulsion concept is explained, a methodology for the design of a reasonable apparatus for experimental validation using NATO standard 35mm TP anti-aircraft ammunition is developed, and the experimental results are presented. The firing results are juxtaposed by a simple interior ballistic model to place the experimental findings into a context within which they may better be understood. Rarefaction wave gun (RAVEN) propulsion is an original contribution to the field of armament engineering. No precedent is known, and no experimental results of such a gun have been published until now. Recoil reduction in excess of 50% was experimentally achieved without measured loss in projectile velocity. RAVEN achieves recoil reduction by means of a delayed venting of the breech of the gun chamber that directs the high enthalpy propellant gases through an expansion nozzle to generate forward thrust that abates the rearward momentum applied to the gun prior to venting. The novel feature of RAVEN, relative to prior recoilless rifles, is that sufficiently delayed venting results in a rarefaction wave that follows the projectile though the bore without catching it. Thus, the projectile exits the muzzle without any compromise to its propulsion performance relative to guns that maintain a sealed chamber.

  3. Antistatic sprays

    NASA Technical Reports Server (NTRS)

    Ming, James E.

    1989-01-01

    Antistatic sprays from several different manufacturers are examined. The sprays are examined for contamination potential (i.e., outgassing and nonvolatile residue), corrosiveness on an aluminum mirror surface, and electrostatic effectiveness. In addition, the chemical composition of the antistatic sprays is determined by infrared spectrophotometry, mass spectrometry, and ultraviolet spectrophotometry. The results show that 12 of the 17 antistatic sprays examined have a low contamination potential. Of these sprays, 7 are also noncorrosive to an aluminum surface. And of these, only 2 demonstrate good electrostatic properties with respect to reducing voltage accumulation; these sprays did not show a fast voltage dissipation rate however. The results indicate that antistatic sprays can be used on a limited basis where contamination potential, corrosiveness, and electrostatic effectiveness is not critical. Each application is different and proper evaluation of the situation is necessary. Information on some of the properties of some antistatic sprays is presented in this document to aid in the evaluation process.

  4. Preliminary study of cyclic thermal shock resistance of plasma-sprayed zirconium oxide turbine outer air seal shrouds

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1977-01-01

    Several experimental concepts representing potential high pressure turbine seal material systems were subjected to cyclic thermal shock exposures similar to those that might be encountered under severe engine start-up and shut-down sequences. All of the experimental concepts consisted of plasma-sprayed yttria stabilized ZrO2 on the high temperature side of the blade tip seal shroud. Between the ZrO2 and a cooled, dense metal backing, various intermediate layer concepts intended to mitigate thermal stresses were incorporated. Performance was judged on the basis of the number of thermal shock cycles required to cause loss of seal material through spallation. The most effective approach was to include a low modulus, sintered metal pad between the ZrO2 and the metallic backing. It was also found that reducing the density of the ZrO2 layer significantly improved the performance of specimens with plasma-sprayed metal/ceramic composite intermediate layers.

  5. RF Gun Optimization Study

    SciTech Connect

    A. S. Hofler; P. Evtushenko; M. Krasilnikov

    2007-08-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. RF and SRF gun design is further complicated because the bunches are space charge dominated and require additional emittance compensation. A genetic algorithm has been successfully used to optimize DC photo injector designs for Cornell* and Jefferson Lab**, and we propose studying how the genetic algorithm techniques can be applied to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize gun designs that have been benchmarked with beam measurements and simulation.

  6. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  7. How to Use Nasal Pump Sprays

    MedlinePlus

    ... Pump SpraysBlow your nose gently before using the spray. Prime the pump bottle by spraying it into the air a few times. Hold the bottle with your thumb at the bottom and the first two fingers at the top on either side of the nozzle. Tilt your head slightly forward. Gently insert the ...

  8. How to Use Nasal Pump Sprays

    MedlinePlus

    Using Nasal Pump SpraysBlow your nose gently before using the spray. Prime the pump bottle by spraying it into the air a ... Breathe in quickly while squeezing down on the pump bottle one time. Repeat in other nostril. Do ...

  9. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles

  10. Photomicrographic Studies of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W; Spencer, Robert C

    1934-01-01

    A large number of photomicrographs of fuel sprays were taken for the purpose of studying the spray structure and the process of spray formation. They were taken at magnifying powers of 2.5, 3.25, and 10, using a spark discharge of very short duration for illumination. Several types and sizes of nozzles were investigated, different liquids were used, and a wide range of injection pressures was employed. The sprays were photographed as they were injected into a glass-walled chamber in which the air density was varied from 14 atmospheres to 0.0013 atmosphere.

  11. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    NASA Astrophysics Data System (ADS)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  12. Fundamental studies of spray combustion

    SciTech Connect

    Li, S.C.; Libby, P.A.; Williams, F.A.

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  13. Development of a Thermal Transport Database for Air Plasma Sprayed ZrO2 ? Y2O3 Thermal Barrier Coatings

    SciTech Connect

    Wang, Hsin; Dinwiddie, Ralph Barton; Porter, Wallace D

    2010-01-01

    Thermal Diffusivities of Air Plasma Sprayed (APS) thermal barrier coatings (TBCs) are measured by the laser flash method. The data are used to calculate thermal conductivity of TBCs when provided with density and specific heat data. Due to the complicated microstructure and other processing related parameters, thermal diffusivity of TBCs can vary as much as three to four fold. Data collected from over 200 free-standing ZrO2 7-8 wt%Y2O3 TBCs are presented. The large database gives a clear picture of the expected band of thermal diffusivity values. When this band is used as reference for thermal diffusivity of a specific TBC, the thermal transport property of TBC can be more precisely described. The database is intended to serve researchers and manufacturers of TBCs as a valuable source for evaluating their coatings.

  14. Picosecond imaging of sprays

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Liou, Larry; Wang, L.; Liang, X.; Galland, P.; Ho, P. P.; Alfano, R. R.

    1994-01-01

    Preliminary results from applying a Kerr-Fourier imaging system to a water/air spray produced by a shear coaxial element are presented. The physics behind ultrafast time-gated optical techniques is discussed briefly. A typical setup of a Kerr-Fourier time gating system is presented.

  15. On the gas dynamics of HVOF thermal sprays. [HVOF (High-Velocity Oxy-Fuel)

    SciTech Connect

    Hackett, C.M.; Settles, G.S.; Miller, J.D.

    1993-01-01

    An experimental study has been performed on the gas dynamic aspects of the HVOF thermal spray process. A commercially-available HVOF gun (Hobart Tafa JP-5000) is used in this study. Optical diagnostic techniques including microsecond-exposure schlieren and shadowgraph imaging are applied to visualize the hot supersonic jet produced by this equipment without any particle injection. Rapid turbulent mixing of the jet with the surrounding atmosphere is observed, which is an issue of concern in coating quality because of the possibility of oxidation of the sprayed particles. This mixing appears principally to be a function of the density ratio between the hot jet and the cold atmosphere, rather than depending upon the combustion-chamber pressure or barrel length. The supersonic core of the HVOF jet dissipates rapidly due to the, mixing, so that the jet is no longer supersonic when it impinges upon the target surface being sprayed. Secondary issues also observed in this study include strong jet-noise radiation from the HVOF plume and the entrainment and induced bulk motion of the surrounding air. All these issues have a background in the field of gas dynamics which has not been previously applied to thermal spray technology.

  16. Electromagnetic targeting of guns

    SciTech Connect

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  17. Mole gun injury.

    PubMed

    Pistré, V; Rezzouk, J

    2013-09-01

    A mole gun is a weapon, which is used to trap and kill moles. This report provides an overview of the state of knowledge of mole gun injuries, comparable to blast injuries caused by fireworks, explosive or gunshot. Over a 2-year period, the authors reported their experience with ten hand injuries caused by mole gun. Radial side of the hand was often concerned, particularly the thumb. The authors explain their choices in the management of such lesions. Surgery was performed primarily and a large debridement currently seemed to offer the best outcome for the patient. Blast, crush, burns and lacerations may explain the higher rate of amputation to the digits. A long period of physiotherapy, specifically of the hand, was needed before the patient could return to work. This ballistic hand trauma encountered by surgeons requires knowledge and understanding of these injuries. It should be in accordance with firearms law because of severe injuries encountered and possible lethal wounds. PMID:23746826

  18. Oxymetazoline Nasal Spray

    MedlinePlus

    Afrin® Nasal Spray ... Anefrin® Nasal Spray ... Dristan® Nasal Spray ... Mucinex® Nasal Spray ... Nostrilla® Nasal Spray ... Vicks Sinex® Nasal Spray ... Zicam® Nasal Spray ... Oxymetazoline nasal spray is used to relieve nasal discomfort caused by colds, allergies, and hay fever. It is also used to ...

  19. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1979-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  20. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1980-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and of one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  1. Where the guns come from: the gun industry and gun commerce.

    PubMed

    Wintemute, Garen J

    2002-01-01

    Under federal law, it is illegal for youth under age 18 to purchase rifles or shotguns, and for those under age 21 to purchase handguns. However, fatality and injury statistics clearly show that guns are finding their way into young people's hands. Many of these youth obtain guns through illegal gun markets. This article focuses on how guns in the United States are manufactured, marketed, and sold. The article shows how the legal and illegal gun markets are intimately connected and make guns easily accessible to youth. Although the domestic gun manufacturing industry is relatively small and has experienced declining sales in recent years, it has significant political clout and a large market for its products, and has engaged in aggressive marketing to youth. Lax oversight of licensed firearms dealers, combined with little or no regulation of private sales between gun owners, mean that guns can quickly moved from the legal gun market into the illegal market, where they can be acquired by young people. Certain guns, especially inexpensive, poorly made small handguns, are particularly attractive to criminals and youth. The author observes that several policy innovations--including increased regulation of licensed firearms dealers, intensified screening of prospective buyers, regulation of private sales, gun licensing and registration, and bans on some types of weapons--hold promise for decreasing the flow of guns into the hands of youth. PMID:12194613

  2. The Mystery of the Gun Turret in the Desert

    SciTech Connect

    Hoffman, R. D.

    2015-11-30

    The mystery of the gun turret in the desert began with an ingenious idea: to develop a reusable open-air line of sight diagnostic device to support LLNL’s early nuclear weapons development efforts. Obtained from the Mare Island Navy Shipyard (MINS) in January 1957, the gun turret traveled by ship to the Naval Construction Battalion base at Port Hueneme, California, and then by truck to Area 2 in the Yucca Flats valley at the Nevada Nuclear Security Site (NNSS).

  3. Unbalanced field RF electron gun

    DOEpatents

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  4. ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air.

    PubMed

    Afouxenidis, Dimitrios; Mazzocco, Riccardo; Vourlias, Georgios; Livesley, Peter J; Krier, Anthony; Milne, William I; Kolosov, Oleg; Adamopoulos, George

    2015-04-01

    The replacement of SiO2 gate dielectrics with metal oxides of higher dielectric constant has led to the investigation of a wide range of materials with superior properties compared with SiO2. Despite their attractive properties, these high-k dielectrics are usually manufactured using costly vacuum-based techniques. To overcome this bottleneck, research has focused on the development of alternative deposition methods based on solution-processable metal oxides. Here we report the application of spray pyrolysis for the deposition and investigation of Al2x-1·TixOy dielectrics as a function of the [Ti(4+)]/[Ti(4+)+2·Al(3+)] ratio and their implementation in thin film transistors (TFTs) employing spray-coated ZnO as the active semiconducting channels. The films are studied by UV-visible absorption spectroscopy, spectroscopic ellipsometry, impedance spectroscopy, atomic force microscopy, X-ray diffraction and field-effect measurements. Analyses reveal amorphous Al2x-1·TixOy dielectrics that exhibit a wide band gap (∼4.5 eV), low roughness (∼0.9 nm), high dielectric constant (k ∼ 13), Schottky pinning factor S of ∼0.44 and very low leakage currents (<5 nA/cm(2)). TFTs employing stoichiometric Al2O3·TiO2 gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with low operating voltages (∼10 V), negligible hysteresis, high on/off current modulation ratio of ∼10(6), subthreshold swing (SS) of ∼550 mV/dec and electron mobility of ∼10 cm(2) V(-1) s(-1). PMID:25774574

  5. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  6. 40 CFR 63.11177 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... capacity equal to or greater than 3.0 fluid ounces (89 cc) that does not meet the definition of an HVLP spray gun, electrostatic application, airless spray gun, or air assisted airless spray gun, has...

  7. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  8. Glue Guns: Aiming for Safety

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    While glue guns are very useful, there are safety issues. Regardless of the temperature setting, glue guns can burn skin. The teacher should demonstrate and supervise the use of glue guns and have a plan should a student get burned. There should be an initial first aid protocol in place, followed by a visit to the school nurse. An accident report…

  9. Vacuum vapor deposition gun assembly

    DOEpatents

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  10. Children, Youth, and Gun Violence.

    ERIC Educational Resources Information Center

    Behrman, Richard E., Ed.

    2002-01-01

    This collection of articles summarizes knowledge and research about how gun violence affects children and youth and discusses which policies hold promise for reducing youth gun violence. The papers are: (1) "Statement of Purpose" (Richard E. Behrman); "Children, Youth, and Gun Violence: Analysis and Recommendations" (Kathleen Reich, Patti L.…

  11. The Microstructure Stability of Atmospheric Plasma-Sprayed MnCo2O4 Coating Under Dual-Atmosphere (H2/Air) Exposure

    NASA Astrophysics Data System (ADS)

    Hu, Ying-Zhen; Li, Cheng-Xin; Zhang, Shan-Lin; Yang, Guan-Jun; Luo, Xiao-Tao; Li, Chang-Jiu

    2016-01-01

    Based on the specific structure of tubular solid oxide fuel cells, good chemical, microstructural, and phase stabilities for the protective coating are required in both the oxidizing and reducing environments. In this work, MnCo2O4 coatings were deposited onto porous Ni50Cr50-Al2O3 substrate by atmospheric plasma spray. The coated samples were tested at 800 °C with the coating exposed in air environment and the substrate in H2 environment. Reducing and pre-oxidizing treatments were performed prior to the stability test. The microstructural stability, phase composition, and electrical properties of the tested coatings were investigated. The surface morphology exhibited an excellent surface stability, and no obvious crystal coarsening was observed. With enhancement of the testing duration, the area-specific resistance presented a decreasing trend attributed to increase in the contact interface and densification of the upper layer. The cross-section views presented a dense upper layer and a relatively porous bottom layer. The x-ray diffraction results also indicated a single MnCo2O4 phase in the upper layer exposed to air environment and a reduced phase structure in the bottom layer from the substrate side. The evolution mechanism between the oxidation frontier and the reduction interface was then discussed.

  12. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.

    1982-01-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  13. Determination of parameters for successful spray coating of silicon microneedle arrays.

    PubMed

    McGrath, Marie G; Vrdoljak, Anto; O'Mahony, Conor; Oliveira, Jorge C; Moore, Anne C; Crean, Abina M

    2011-08-30

    Coated microneedle patches have demonstrated potential for effective, minimally invasive, drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated microneedle patches, a continuous coating method which utilises conventional pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon microneedle patches using a conventional film-coating process was evaluated and the key process parameters which impact on coating coalescence and weight were identified by employing a fractional factorial design to coat flat silicon patches. Processing parameters analysed included concentration of coating material, liquid input rate, duration of spraying, atomisation air pressure, gun-to-surface distance and air cap setting. Two film-coating materials were investigated; hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC). HPMC readily formed a film-coat on silicon when suitable spray coating parameter settings were determined. CMC films required the inclusion of a surfactant (1%, w/w Tween 80) to facilitate coalescence of the sprayed droplets on the silicon surface. Spray coating parameters identified by experimental design, successfully coated 280μm silicon microneedle arrays, producing an intact film-coat, which follows the contours of the microneedle array without occlusion of the microneedle shape. This study demonstrates a novel method of coating microneedle arrays with biocompatible polymers using a conventional film-coating process. It is the first study to indicate the thickness and roughness of coatings applied to microneedle arrays. The study also highlights the importance of identifying suitable processing parameters when film coating substrates of micron dimensions. The ability of a fractional factorial design to identify these critical parameters is also demonstrated. The polymer coatings applied in this study can potentially be drug loaded for intradermal drug and vaccine delivery

  14. Magnetron injection gun scaling

    SciTech Connect

    Lawson, W.

    1988-04-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations.

  15. The Rail Gun.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    1996-01-01

    Presents a rail gun demonstration that addresses a broad group of educational goals in introductory electricity and magnetism. Uses a battery-powered circuit consisting of a movable conductor placed across two conducting rails in a magnetic field to review mechanics, foster approximate reasoning and lateral class discussion, and demonstrate the…

  16. Service Without Guns

    ERIC Educational Resources Information Center

    Eberly, Donald J.; Gal, Reuven

    2006-01-01

    "Service Without Guns"--by Donald J. Eberly and Reuven Gal with a guest chapter by Michael Sherraden--notes the many similarities between military service and civilian National Youth Service (NYS) and concludes that NYS can and should become as large and influential in the 21st Century as military service was in the 20th. The book examines the…

  17. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  18. Gun control saves lives.

    PubMed

    Matzopoulos, Richard

    2016-01-01

    Reducing firearm mortality by means of stricter gun control is one of the most important short- to medium-term measures to address the burden of violence in South Africa, while longer-term interventions and policy measures take effect. PMID:27245735

  19. Gun Dealers, USA.

    ERIC Educational Resources Information Center

    Duker, Laurie; And Others

    In the United States, more than 11,500 adolescents' and young adults' lives are taken each year by firearms. Although Federal law prohibits minors from purchasing handguns, they typically get them by asking someone of legal age (18 years or older) to purchase them from one of the 256,771 Federally licensed gun dealers. This pamphlet answers…

  20. Investigation of Optimum Applied Voltage for Water Treatment by Pulsed Streamer Discharge in Air Spraying Water Droplets

    NASA Astrophysics Data System (ADS)

    Sugai, Taichi; Suzuki, Tomoya; Minamitani, Yasushi; Nose, Taisuke

    In this study, we investigated a water treatment method spraying the droplets of wastewater into pulse discharge space. The water treatment was carried out by applying voltage with different pulse widths to determine the optimum pulse width, and the optimum pulse voltage determined on the basis of the results of the study was analyzed. The rise time of the voltages with pulse widths of 40, 60, and 80 ns was about 12, 19, and 32 ns, respectively, and the discharge current in the case of the faster rise time was higher. The number of streamer discharges is believed to increase with a decrease in the rise time. The energy efficiency in the case of the pulse width of 40 ns is higher than that in the case of the other pulse widths. This is because almost all of active species are generated by early streamer discharge, and longer discharging time by longer pulse width makes more ineffectual energy by thermal loss. These results show that the pulsed voltage of faster rise time and shorter pulse width is optimum for the treatment.

  1. Large-scale sodium spray fire code validation (SOFICOV) test

    SciTech Connect

    Jeppson, D.W.; Muhlestein, L.D.

    1985-01-01

    A large-scale, sodium, spray fire code validation test was performed in the HEDL 850-m/sup 3/ Containment System Test Facility (CSTF) as part of the Sodium Spray Fire Code Validation (SOFICOV) program. Six hundred fifty eight kilograms of sodium spray was sprayed in an air atmosphere for a period of 2400 s. The sodium spray droplet sizes and spray pattern distribution were estimated. The containment atmosphere temperature and pressure response, containment wall temperature response and sodium reaction rate with oxygen were measured. These results are compared to post-test predictions using SPRAY and NACOM computer codes.

  2. Experiments on the Distribution of Fuel in Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1932-01-01

    The distribution of the fuel in sprays for compression-ignition engines was investigated by taking high-speed spark photographs of fuel sprays produced under a wide variety of conditions, and also by injecting them against pieces of Plasticine. A photographic study was made of sprays injected into evacuated chambers, into the atmosphere, into compressed air, and into transparent liquids. Pairs of identical sprays were injected counter to each other and their behavior analyzed. Small high-velocity air jets were directed normally to the axes of fuel sprays, with the result that the envelope of spray which usually obscures the core was blown aside, leaving the core exposed on one side.

  3. The polarized SRF gun experiment.

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Grover, R.; Todd, R.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2007-09-10

    RF electron guns are capable of producing electron bunches with high brightness, which outperform DC electron guns and may even be able to provide electron beams for the ILC without the need for a damping ring. However, all successful existing guns for polarized electrons are DC guns because the environment inside an RF gun is hostile to the GaAs cathode material necessary for polarization. While the typical vacuum pressure in a DC gun is better than 10{sup -11} torr the vacuum in an RF gun is in the order of 10{sup -9} torr. Experiments at BINP Novosibirsk show that this leads to strong ion back-bombardment and generation of dark currents, which destroy the GaAs cathode in a short time. The situation might be much more favorable in a (super-conducting) SRF gun. The cryogenic pumping of the gun cavity walls may make it possible to maintain a vacuum close to 10{sup -12} torr, solving the problem of ion bombardment and dark currents. Of concern would be contamination of the gun cavity by evaporating cathode material. This report describes an experiment that Brookhaven National Laboratory (BNL) in collaboration with Advanced Energy Systems (AES) is conducting to answer these questions.

  4. Nitroglycerin Spray

    MedlinePlus

    ... attacks. Your doctor will probably tell you to sit down and use one dose of nitroglycerin when ... dose.To use the spray, follow these steps: Sit down if possible, and hold the container without ...

  5. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  6. Gun Attitudes and Fear of Crime.

    ERIC Educational Resources Information Center

    Heath, Linda; Weeks, Kyle; Murphy, Marie Mackay

    1997-01-01

    Using three studies, examined the relationship between attitudes toward guns and fear of crime. Findings indicate a connection between fear of crime and attitudes toward guns: people higher in fear of crime favored gun control. Results also established a relationship between stereotypical beliefs about gun victims and support for gun control. (RJM)

  7. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×104 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m2/g) are achieved. Two-electrode supercapacitor assembled using the CNT-rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of -64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications.

  8. Friction in rail guns

    NASA Technical Reports Server (NTRS)

    Kay, P. K.

    1984-01-01

    The influence of friction is included in the present equations describing the performance of an inductively driven rail gun. These equations, which have their basis in an empirical formulation, are applied to results from two different experiments. Only an approximate physical description of the problem is attempted, in view of the complexity of details in the interaction among forces of this magnitude over time periods of the order of milisecs.

  9. Application of chemicals to substrates without the use of liquids: Proof of concepts for powder spray gun and fluidized bed solid-on- solid (SOS) processing of textiles, and continued research in textile xerography printing, solid shade coloration and electrostatic liquid spray SOS finishing of fabrics

    SciTech Connect

    Cook, F.L.; Carr, W.W.; Tincher, W.C.; Sikorski, M.

    1990-09-28

    The first two years of research under DOE Contract No. FG05-84CE40702 were devoted toward developing processes whereby certain chemicals could be applied to textiles without the use of water, mainly concentrating on powder deposition techniques. The approach was to identify powder-based processes in other industry sectors (mainly the metals and paper industries) that possessed the potential to be adapted to continuous textile manufacturing lines. The adapted textile processes were classified under the general category of solid-on-solid (SOS) processes, since no liquid water was required, and 100% of the chemical materials applied to the substrate remained with it into final product manufacture. The current research focused on several areas of chemical treatment: yarn slashing, textile xerography printing, binding of nonwovens, fluoropolymer barrier finishing, and liquid spray and finishing. Several of these areas were sufficiently developed in the first phase to allow full-scale, proof-of-concept trials to be conducted at industrial sites in the third and fourth years of the project. Other areas were identified and preliminary investigations conducted in the first phase, but were largely left for full development in the reported phase, e.g., liquid spray finishing of 100% solids formulations. This report discusses work in each area of chemical treatment.

  10. Studying the Effect of the Air-Cap Configuration in Twin-Wire Arc-Spraying Process on the Obtained Flow Characteristics Using Design of Experiment Oriented Fluid Simulation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.; Anjami, N.; Hagen, L.

    2015-01-01

    The computational fluid dynamics approach is adopted in this work using the design of experiments to reveal the effect of the air-cap configurations on the obtained gas velocity, the shear stresses, the high velocity zone, and the convergence of the obtained spraying plume in the twin-wire arc-spraying process. The parameters, which are revealed to optimize the air-cap configuration, are the throat diameter, the convergence angle of the throat inlet, the throat length, and the distance between the throat outlet and the intersection point of the approaching wires. The throat length is dependent upon the other configuration parameters. Outlet gas velocity, the turbulence in the flow, and the exerted shear stresses at wire tips are directly affected by the dominating flow regimes near the intersection point of the approaching wires. The presence of wires and the contact tips in the gas flow has enormous impact on the obtained flow characteristics. Air-cap throat diameter and the distance between throat outlet and intersection point determine the shape and length of the obtained high velocity zone in the spraying plum.

  11. Influence of Spray Volume on Spray Deposition and Coverage Within Nursery Trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on better utilizing air blast sprayers to obtain high pesticide spray application efficiency in nursery tree production is needed. Foliar spray deposition and coverage at different heights inside crabapple tree canopies were investigated for an air blast sprayer with four different appl...

  12. Experimental Analysis of Spray Dryer Used in Hydroxyapatite Thermal Spray Powder

    NASA Astrophysics Data System (ADS)

    Murtaza, Q.; Stokes, J.; Ardhaoui, M.

    2012-09-01

    The spray drying process of hydroxyapatite (HA) powder used as a plasma spray powder on human hip implants was examined. The Niro-Minor mixed spray dryer was studied because it incorporates both co-current and counter-current air mixing systems. The process parameters of the spray drying were investigated: temperature, flow rate of the inlet hot air in the spray dryer, viscosity of feed/HA slurry, and responses (chamber and cyclone powder size, deposition of powder on the wall of spray dryer, and overall thermal efficiency). The statistical analysis (ANOVA test) showed that for the chamber particle size, viscosity was the most significant parameter, while for the cyclone particle size, the main effects were temperature, viscosity, and flow rate, but also their interaction effects were significant. The spray dried HA powder showed the two main shapes were a doughnut and solid sphere shape as a result of the different input.

  13. Tapered plug foam spray apparatus

    NASA Technical Reports Server (NTRS)

    Allen, Peter B. (Inventor)

    1996-01-01

    A two-component foam spray gun is readily disassembled for cleaning. It includes a body (1) with reactant (12, 14) and purge gas (16) inlet ports. A moldable valve packing (32) inside the body has a tapered conical interior surface (142), and apertures which match the reactant ports. A valve/tip (40) has a conical outer surface (48) which mates with the valve packing (32). The valve/tip (40) is held in place by a moldable packing washer (34), held at non-constant pressure by a screw (36, 38). The interior of the valve/tip (40) houses a removable mixing chamber (50). The mixing chamber (50) has direct flow orifices (60) and an auxiliary flow path (58, 60) which ameliorate pressure surges. The spray gun can be disassembled for cleaning without disturbing the seal, by removing the valve/tip (40) to the rear, thereby breaking it free of the conical packing. Rotation of the valve/tip (40) relative to the body (1) shuts off the reactant flow, and starts the purge gas flow.

  14. Wisconsin SRF Electron Gun Commissioning

    SciTech Connect

    Bisognano, Joseph J.; Bissen, M.; Bosch, R.; Efremov, M.; Eisert, D.; Fisher, M.; Green, M.; Jacobs, K.; Keil, R.; Kleman, K.; Rogers, G.; Severson, M.; Yavuz, D. D.; Legg, Robert A.; Bachimanchi, Ramakrishna; Hovater, J. Curtis; Plawski, Tomasz; Powers, Thomas J.

    2013-12-01

    The University of Wisconsin has completed fabrication and commissioning of a low frequency (199.6 MHz) superconducting electron gun based on a quarter wave resonator (QWR) cavity. Its concept was optimized to be the source for a CW free electron laser facility. The gun design includes active tuning and a high temperature superconducting solenoid. We will report on the status of the Wisconsin SRF electron gun program, including commissioning experience and first beam measurements.

  15. Thermal Spraying Coatings Assisted by Laser Treatment

    SciTech Connect

    Fenineche, N. E.; Cherigui, M.

    2008-09-23

    Coatings produced by air plasma spraying (APS) are widely used to protect components against abrasive wear and corrosion. However, APS coatings contain porosities and the properties of these coatings may thereby be reduced. To improve these properties, various methods could be proposed, including post-laser irradiation [1-4]. Firstly, PROTAL process (thermal spraying assisted by laser) has been developed as a palliative technique to degreasing and grit-blasting prior to thermal spraying. Secondly, thermal spray coatings are densified and remelted using Laser treatment. In this study, a review of microstructure coatings prepared by laser-assisted air plasma spraying will be presented. Mechanical and magnetic properties will be evaluated in relation to changes in the coating microstructure and the properties of such coatings will be compared with those of as-sprayed APS coatings.

  16. Gun muzzle blast and flash

    NASA Astrophysics Data System (ADS)

    Klingenberg, Guenter; Heimerl, Joseph M.

    A repository of fundamental experimental and analytical data concerning the complex phenomena associated with gun-muzzle blast and flash effects is presented, proceeding from gun muzzle signatures to modern gun-propulsion concepts, interior and transitional ballistics, and characterizations of blast-wave research and muzzle flash. Data are presented in support of a novel hypothesis which explains the ignition of secondary flash and elucidates the means for its suppression. Both chemical and mechanical (often competing) methods of flash suppression are treated. The historical work of Kesslau and Ladenburg is noted, together with French, British, Japanese and American research efforts and current techniques of experimental characterization for gun muzzle phenomena.

  17. Hair spray poisoning

    MedlinePlus

    Hair spray poisoning occurs when someone breathes in (inhales) hair spray or sprays it down their throat or ... The harmful ingredients in hair spray are: Carboxymethylcellulose ... Polyvinyl alcohol Propylene glycol Polyvinylpyrrolidone

  18. Process maps for plasma spray: Part 1: Plasma-particle interactions

    SciTech Connect

    GILMORE,DELWYN L.; NEISER JR.,RICHARD A.; WAN,YUEPENG; SAMPATH,SANJAY

    2000-01-26

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data.

  19. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    NASA Astrophysics Data System (ADS)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the

  20. Resonant optical gun.

    PubMed

    Maslov, A V; Bakunov, M I

    2014-05-01

    We propose a concept of a structure-a resonant optical gun-to realize an efficient propulsion of dielectric microparticles by light forces. The structure is based on a waveguide in which a reversal of the electromagnetic momentum flow of the incident mode is realized by exciting a whispering gallery resonance in the microparticle. The propelling force can reach the value up to the theoretical maximum of twice the momentum flow of the initial wave. The force density oscillates along the particle periphery and has very large amplitude. PMID:24784113

  1. Gun Concerns Personal for Duncan

    ERIC Educational Resources Information Center

    McNeil, Michele

    2013-01-01

    As U.S. Secretary of Education Arne Duncan works with other Obama administration officials on policy responses to the shootings at a Connecticut elementary school, he brings a personal and professional history that has acquainted him with the impact of gun violence. As schools chief in Chicago from 2001 to 2008, he was affected by the gun deaths…

  2. A new HVOF thermal spray concept

    SciTech Connect

    Browning, J.A.; Matus, R.J.; Richter, H.J.

    1995-12-31

    HVOF plays an important role in the commercial production of thermal spray coatings from powder. Initially, both the chamber and duct modes were used. Today, the best coatings are produced by high-pressure chamber guns with some manufacturers having switched their designs from the duct to the chamber mode. There has been little or no spraying of wire with HVOF equipment. A new HVOF process -- the shock-stabilized mode -- compliments chamber powder spraying by offering the user a very simple device for wire use. Calculations show that the much higher jet velocities of the chamber mode make that design the better suited for use with powder. Conversely, the greatly increased jet temperatures offered by shock-stabilized combustion give extremely high wire melt-off rates.

  3. High-Temperature Oxidation Resistance of a Nanoceria Spray-Coated 316L Stainless Steel Under Short-Term Air Exposure

    NASA Astrophysics Data System (ADS)

    Lopez, Hugo F.; Mendoza, Humberto; Church, Ben

    2013-10-01

    Nanoceria coatings using a spray method were implemented on a 316L stainless steel (SS). Coated and uncoated coupons were exposed to dry air at 1073 K to 1273 K (800 °C to 1000 °C) for short time periods (up to 24 hours) and in situ measurements of oxidation were carried out using a highly sensitive thermogravimetric balance. From the experimental outcome, activation energies were determined in both, coated and uncoated 316 SS coupons. The estimated exhibited activation energies for oxidation in the coated and uncoated conditions were 174 and 356 kJ/mol, respectively. In addition, the developed scales were significantly different. In the coated steel, the dominant oxide was an oxide spinel (Fe, Mn)3O4 and the presence of Fe2O3 was sharply reduced, particularly at 1273 K (1000 °C). In contrast, no spinel was found in the uncoated 316L SS, and Fe2O3 was always present in the scale at all the investigated oxidation temperatures. The coated steels developed a highly adherent fine-grained scale structure. Apparently, the nanoceria particles enhanced nucleation of the newly formed scale while restricting coarsening. Coarse grain structures were found in the uncoated steels with scale growth occurring at grain ledges. Moreover, the oxidation rates for the coated 316L SS were at least an order of magnitude lower than those exhibited by the steel in the uncoated condition. The reduction in oxidation rates is attributed to a shift in the oxidation mechanism from outward cation diffusion to inward oxygen diffusion.

  4. Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems

    NASA Astrophysics Data System (ADS)

    Schwetzke, R.; Kreye, H.

    1999-09-01

    This article reports on a series of experiments with various high-velocity oxygen fuel spray systems (Jet Kote, Top Gun, Diamond Jet (DJ) Standard, DJ 2600 and 2700, JP-5000, Top Gun-K) using different WC-Co and WC-Co-Cr powders. The microstructure and phase composition of powders and coatings were analyzed by optical and scanning electron microscopy and x-ray diffraction. Carbon and oxygen content of the coatings were determined to study the decarburization and oxidation of the material during the spray process. Coatings were also characterized by their hardness, bond strength, abrasive wear, and corrosion resistance. The results demonstrate that the powders exhibit various degrees of phase transformation during the spray process depending on type of powder, spray system, and spray parameters. Within a relatively wide range, the extent of phase transformation has only little effect on coating properties. Therefore, coatings of high hardness and wear resistance can be produced with all HVOF spray systems when the proper spray powder and process parameters are chosen.

  5. Rolling contact fatigue testing of thermally sprayed coatings

    SciTech Connect

    Maekelae, A.; Vuoristo, P.; Lahdensuo, M.; Niemi, K.; Maentylae, T.

    1994-12-31

    Two Rolling Contact Fatigue (RCF) test systems have been developed in order to compare coatings according to their service lives under high-load rolling contact. Experimental testing facilities of the three-roller and the two-roller type RCF test equipment are presented and problems involved with testing of thermally sprayed coatings are discussed. The aim of this three-year-project is to study reasons for development of coating micropitting and delamination of high-velocity oxyfuel (HVOF) and detonation gun sprayed coatings. Some observations of rolling contact fatigue behavior of detonation gun sprayed WC+12% Co coating subjected to a nearly pure rolling line contact at cyclic Hertzian stress level of approximately 410 MPa are made, but interpreting the results requires still more work.

  6. LCLS Gun Solenoid Design Considerations

    SciTech Connect

    Schmerge, John

    2010-12-10

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  7. Preventing gun injuries in children.

    PubMed

    Crossen, Eric J; Lewis, Brenna; Hoffman, Benjamin D

    2015-02-01

    Firearms are involved in the injury and death of a large number of children each year from both intentional and unintentional causes. Gun ownership in homes with children is common, and pediatricians should incorporate evidence-based means to discuss firearms and protect children from gun-related injuries and violence. Safe storage of guns, including unloaded guns locked and stored separately from ammunition, can decrease risks to children, and effective tools are available that pediatricians can use in clinical settings to help decrease children's access to firearms. Furthermore, several community-based interventions led by pediatricians have effectively reduced firearm-related injury risks to children. Educational programs that focus on children's behavior around guns have not proven effective. PMID:25646308

  8. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  9. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  10. Nitroglycerin Spray

    MedlinePlus

    ... of the hole, the container will no longer dispense full doses of medication. Do not try to open the container of nitroglycerin spray. This product may catch fire, so do not use near an open flame, and do not allow the container to be burned after use.

  11. Investigating the Link Between Gun Possession and Gun Assault

    PubMed Central

    Richmond, Therese S.; Culhane, Dennis P.; Ten Have, Thomas R.; Wiebe, Douglas J.

    2009-01-01

    Objectives. We investigated the possible relationship between being shot in an assault and possession of a gun at the time. Methods. We enrolled 677 case participants that had been shot in an assault and 684 population-based control participants within Philadelphia, PA, from 2003 to 2006. We adjusted odds ratios for confounding variables. Results. After adjustment, individuals in possession of a gun were 4.46 (P < .05) times more likely to be shot in an assault than those not in possession. Among gun assaults where the victim had at least some chance to resist, this adjusted odds ratio increased to 5.45 (P < .05). Conclusions. On average, guns did not protect those who possessed them from being shot in an assault. Although successful defensive gun uses occur each year, the probability of success may be low for civilian gun users in urban areas. Such users should reconsider their possession of guns or, at least, understand that regular possession necessitates careful safety countermeasures. PMID:19762675

  12. 5. GUN MOUNT ON TERRACE, EAST VIEW (1992). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GUN MOUNT ON TERRACE, EAST VIEW (1992). - Wright-Patterson Air Force Base, Area B, Building 71, Power Plant Engine Test Torque Stands, Seventh Street between D & G Streets, Dayton, Montgomery County, OH

  13. Coanda-assisted Spray Manipulation

    NASA Astrophysics Data System (ADS)

    Mabey, Katie; Smith, Barton; Archibald, Reid; West, Brian

    2009-11-01

    An overview of research on a flow control technique called Coanda-assisted Spray Manipulation (CSM) is presented. CSM uses a high-momentum control jet under the influence of the Coanda effect to vector a high volume-flow jet or spray. Actuators provide the capability of moving the location of applied control flow making rotary or arbitrary motion of the vectored flow possible. The presented work includes a fundamental isothermal study on the effects of rotation speed and Reynolds number on a vectored jet using a belt-driven CSM actuator. Three-component velocity data were acquired for three Reynolds numbers and three rotation speeds using timed resolved high-speed stereo Particle Image Velocimetry. A second CSM system with 16 pneumatically-driven control ports has been retrofitted to a flame spray gun. This combination provides the capability to rapidly alter the direction of applied metal powders. High speed video of this process will also be presented. Finally, a fundamental study on the pneumatic system's response to minor losses and connection lines of varying lengths is presented.

  14. Gun shows and gun violence: fatally flawed study yields misleading results.

    PubMed

    Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A

    2010-10-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  15. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    PubMed Central

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  16. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C. P.

    1985-01-01

    A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.

  17. High Intensity Polarized Electron Gun

    SciTech Connect

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  18. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  19. Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    1986-01-01

    AGDISP, a computer code written for Langley by Continuum Dynamics, Inc., aids crop dusting airplanes in targeting pesticides. The code is commercially available and can be run on a personal computer by an inexperienced operator. Called SWA+H, it is used by the Forest Service, FAA, DuPont, etc. DuPont uses the code to "test" equipment on the computer using a laser system to measure particle characteristics of various spray compounds.

  20. The Internal Ballistics of an Air Gun

    ERIC Educational Resources Information Center

    Denny, Mark

    2011-01-01

    The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder…

  1. Nail-gun injuries. Accident, homicide, or suicide?

    PubMed

    McCorkell, S J; Harley, J D; Cummings, D

    1986-09-01

    It may be difficult to distinguish industrial accidents from suicide attempts or even assaults or homicide. Nail guns are relatively new industrial tools that can produce severe or fatal injuries. The configuration of the nail on patients' radiographs after such injuries can be helpful in determining the cause of injury. Steel nails that are bent are due to a ricochet and thus indicate accidental injury. Straight-nail injuries to the co-workers of nail-gun users are most likely due to over-penetration of the substance being nailed or accidental mid-air firing; however, intentional injury cannot be ruled out. Extremity injuries caused by straight steel nails in nail gun users are the result of carelessness or poor technique, but suicide should be considered when straight nails cause wounds to the chest, head, or abdomen. PMID:3788906

  2. Temporal association between federal gun laws and the diversion of guns to criminals in Milwaukee.

    PubMed

    Webster, Daniel W; Vernick, Jon S; Bulzacchelli, Maria T; Vittes, Katherine A

    2012-02-01

    The practices of licensed gun dealers can threaten the safety of urban residents by facilitating the diversion of guns to criminals. In 2003, changes to federal law shielded gun dealers from the release of gun trace data and provided other protections to gun dealers. The 14-month period during which the dealer did not sell junk guns was associated with a 68% reduction in the diversion of guns to criminals within a year of sale by the dealer and a 43% increase in guns diverted to criminals following sales by other dealers. The laws were associated with a 203% increase in the number of guns diverted to criminals within a year of sale by the gun store, which was the focus of this study. Policies which affect gun dealer accountability appeared to influence the diversion of guns to criminals. PMID:22218834

  3. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  4. The polarized SRF gun experiment

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Shultheiss, T.

    2008-10-01

    An experiment is under way to prove the feasibility of a super-conducting RF gun for the production of polarized electrons. We report on the progress of the experiment and on simulations predicting the possibility of success.

  5. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  6. Olopatadine Nasal Spray

    MedlinePlus

    ... relieve sneezing and a stuffy, runny or itchy nose caused by allergic rhinitis (hay fever). Olopatadine is ... comes as a liquid to spray in the nose. Olopatadine nasal spray is usually sprayed in each ...

  7. High-solids paint overspray aerosols in a spray painting booth: particle size analysis and scrubber efficiency

    SciTech Connect

    Chan, T.L.; D'arcy, J.B.; Schreck, R.M.

    1986-07-01

    Particle size distributions of high-solids acrylic-enamel paint overspray aerosols were determined isokinetically in a typical downdraft spray painting booth in which a 7-stage cascade impactor was used. Three different industrial paint atomizers were used, and the paint aerosols were characterized before and after a paint both scrubber. The mass median aerodynamic diameter (MMAD) of a metallic basecoat and an acrylic clearcoat paint aerosol from air-atomized spray guns ranged from 4-12 ..mu..m and was dependent on atomization pressure. When the paint booth was operated under controlled conditions simulating those in a plant, the collection efficiency of paint overspray aerosols by a paint scrubber was found to be size dependent and decreased sharply for particles smaller than 2 ..mu..m to as low as 64% for clearcoat paint particles of 0.6 ..mu..m. Improvement in the overall particulate removal efficiency can be achieved by optimizing the spray painting operations so as to produce the least amount of fine overspray paint aerosols less than 2 ..mu..m. Maintaining a higher static pressure drop across the paint both scrubber also will improve scrubber performance.

  8. Electrostatic Spraying With Conductive Liquids

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Dawn, Frederic S.; Erlandson, Robert E.; Atkins, Loren E.

    1989-01-01

    Thin, uniform polymer coatings applied in water base normally impossible to charge. Electrostatic sprayer modified so applies coatings suspended or dissolved in electrically conductive liquids. Nozzle and gun constructed of nonconductive molded plastic. Liquid passageway made long enough electrical leakage through it low. Coaxial hose for liquid built of polytetrafluoroethylene tube, insulating sleeve, and polyurethane jacket. Sprayer provided with insulated seal at gun-to-hose connection, nonconductive airhose, pressure tank electrically isolated from ground, and special nozzle electrode. Supply of atomizing air reduced so particle momentum controlled by electrostatic field more effectively. Developed to apply water-base polyurethane coating to woven, shaped polyester fabric. Coating provides pressure seal for fabric, which is part of spacesuit. Also useful for applying waterproof, decorative, or protective coatings to fabrics for use on Earth.

  9. The case for moderate gun control.

    PubMed

    DeGrazia, David

    2014-03-01

    In addressing the shape of appropriate gun policy, this essay assumes for the sake of discussion that there is a legal and moral right to private gun ownership. My thesis is that, against the background of this right, the most defensible policy approach in the United States would feature moderate gun control. The first section summarizes the American gun control status quo and characterizes what I call "moderate gun control." The next section states and rebuts six leading arguments against this general approach to gun policy. The section that follows presents a positive case for moderate gun control that emphasizes safety in the home and society as well as rights whose enforcement entails some limits or qualifications on the right to bear arms. A final section shows how the recommended gun regulations address legitimate purposes, rather than imposing arbitrary restrictions on gun rights, and offers concluding reflections. PMID:24783322

  10. DEMONSTRATION OF SPLIT-FLOW VENTILATION AND RECIRCULATION AS FLOW-REDUCTION METHODS IN AN AIR FORCE PAINT SPRAY BOOTH - VOLUME II. APPENDICES D-J

    EPA Science Inventory

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and ...

  11. Large Bore Powder Gun Qualification (U)

    SciTech Connect

    Rabern, Donald A.; Valdiviez, Robert

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  12. Spray Drying of Mosambi Juice in Lab

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  13. ESTIMATING MICROORGANISM DENSITIES IN AEROSOLS FROM SPRAY IRRIGATION OF WASTEWATER

    EPA Science Inventory

    This document summarizes current knowledge about estimating the density of microorganisms in the air near wastewater management facilities, with emphasis on spray irrigation sites. One technique for modeling microorganism density in air is provided and an aerosol density estimati...

  14. Agrochemical spray drift; assessment and mitigation--a review.

    PubMed

    Felsot, Allan S; Unsworth, John B; Linders, Jan B H J; Roberts, Graham; Rautman, Dirk; Harris, Caroline; Carazo, Elizabeth

    2011-01-01

    During application of agrochemicals spray droplets can drift beyond the intended target to non-target receptors, including water, plants and animals. Factors affecting this spray drift include mode of application, droplet size, which can be modified by the nozzle types, formulation adjuvants, wind direction, wind speed, air stability, relative humidity, temperature and height of released spray relative to the crop canopy. The rate of fall of spray droplets depends upon the size of the droplets but is modified by entrainment in a mobile air mass and is also influenced by the rate of evaporation of the liquid constituting the aerosol. The longer the aerosol remains in the air before falling to the ground (or alternatively striking an object above ground) the greater the opportunity for it to be carried away from its intended target. In general, all size classes of droplets are capable of movement off target, but the smallest are likely to move the farthest before depositing on the ground or a non-target receptor. It is not possible to avoid spray drift completely but it can be minimized by using best-management practices. These include using appropriate nozzle types, shields, spray pressure, volumes per area sprayed, tractor speed and only spraying when climatic conditions are suitable. Field layout can also influence spray drift, whilst crop-free and spray-free buffer zones and windbreak crops can also have a mitigating effect. Various models are available to estimate the environmental exposure from spray drift at the time of application. PMID:20981606

  15. [Suicide with home-made gun].

    PubMed

    Safr, M; Hejna, P; Zátopková, L

    2009-04-01

    Three cases of suicide by single bullet injury to head by home-made guns with immediate incapacitation are reported in following article. Zip gun (home-made gun) is a improvised firearm, usually a handgun. Home-made guns are almost always single-shot, as the improvised construction sometimes makes them weak enough to be destroyed by the act of firing. Zip guns are mostly smoothbore. Zip gun injuries, although unique today, represent a special category of missile injury with atypical low velocity terminal ballistics. PMID:19534397

  16. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  17. Detailed fuel spray analysis techniques

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Bosque, M. A.; Humenik, F. M.

    1983-01-01

    Detailed fuel spray analyses are a necessary input to the analytical modeling of the complex mixing and combustion processes which occur in advanced combustor systems. It is anticipated that by controlling fuel-air reaction conditions, combustor temperatures can be better controlled, leading to improved combustion system durability. Thus, a research program is underway to demonstrate the capability to measure liquid droplet size, velocity, and number density throughout a fuel spray and to utilize this measurement technique in laboratory benchmark experiments. The research activities from two contracts and one grant are described with results to data. The experiment to characterize fuel sprays is also described. These experiments and data should be useful for application to and validation of turbulent flow modeling to improve the design systems of future advanced technology engines.

  18. Development of a system for determining collection efficiency of spray samplers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low speed spray dispersion tunnel was constructed and evaluated for use in passive spray collector efficiency studies. The dispersion tunnel utilizes an air-assisted nozzle to generate a spray cloud with a volume median diameter of about 20 um. The air velocities in the testing section of the di...

  19. The HVOF process - the hottest topic in the thermal spray industry

    SciTech Connect

    Smith, R.W. . Center for the Plasma Processing of Materials); Irving, B.; Knight, R.

    1993-07-01

    High-velocity combustion or oxyfuel spraying started up more than 35 years ago with the development of the detonation gun or D-Gun process. Described as the newest and fastest growing member of the family of coating, or surfacing, technologies known collectively as thermal spray'', HVOF processes have carved out a significant, specialized niche in the thermal spray coating business, particularly for the deposition of wear-resistant carbide coatings. HVOF processes are able to deposit very dense coatings, typically with reduced changes in the phase composition of the material, compared with plasma arc spray processes. HVOF also offers a number of potential advantages over, and alternatives to, competing processes, including lower capital costs, portability, and ease of use in the field.

  20. Numerical simulation of gas and particle flow field characteristics in HVOF guns

    SciTech Connect

    Yang, X.; Eidelman, S.; Lottati, I.

    1995-12-31

    The particle flow field characteristics in an HVOF gun are examined using numerical simulation techniques. The authors consider the particle injection, acceleration, convection heat transfer, and particle barrel interaction processes in a TAFA JP-5000 HVOF gun. Details of particle trajectories and temperature history as a function of particle size and other parameters are simulated and analyzed. A parameter study is conducted for different particle size, particle injection direction, and particle velocity. The number of distinct particle injection regimes was predicted and analyzed. Particle velocity and temperature at the exit of the barrel are listed. Using numerical simulation, the injection condition can be designed as a function of the set of flow parameters as well as particle properties, including particle size and material properties, to optimize the thermal spray process. A companion paper by the same authors in this proceedings presents a comprehensive analysis of the gas flow conditions for the HVOF gun.

  1. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  2. Plasma Spray for Difficult-To-Braze Alloys

    NASA Technical Reports Server (NTRS)

    Brennan, A.

    1982-01-01

    Nickel plating on surfaces makes brazing easier for some alloys. Sometimes nickel plating may not be feasible because of manufacturing sequence, size of hardware, or lack of suitable source for nickel plating. Alternative surface preparation in such cases is to grit-blast surface lightly and then plasma-spray 1 1/2 to 2 mils of fine nickel powder or braze-alloy material directly on surface. Powder is sprayed from plasma gun, using argon as carrier gas to prevent oxidation of nickel or braze alloy.

  3. Method and apparatus for the application of thermal spray coatings onto aluminum engine cylinder bores

    SciTech Connect

    Byrnes, L.; Kramer, M.

    1994-12-31

    This paper presents background and detail information concerning the application of thermally sprayed metal alloy coatings onto the I.D. surfaces of aluminum block engine cylinder bores using a rotating extension HVOF spray gun. A fixturing method that provides block temperature stabilization and the elimination of fixture cleaning and part masking is described. A new approach and technique that replaces grit blasting for surface preparation is also discussed.

  4. Guns in the home: risky business.

    PubMed

    Wiebe, Douglas J

    2003-05-01

    One in three U.S. households contains at least one firearm. Gun owners cite two main reasons for having a gun: hunting and self-protection. A majority of handgun owners believe that they are protecting their homes and families against violent assaults. But in a country where the majority of homicides and suicides involve a gun, it is reasonable to question whether access to a gun increases or decreases the risk of violent death. This Issue Brief describes case-control studies that investigate links between gun availability and gun death, and supports earlier findings that people with guns in their homes appear to increase their risk of being shot fatally (intentionally or unintentionally) or taking their own life with a gun. PMID:12828174

  5. States with More Gun Owners Have More Gun-Related Suicides: Study

    MedlinePlus

    ... medlineplus/news/fullstory_158931.html States With More Gun Owners Have More Gun-Related Suicides: Study But only association was found, ... HealthDay News) -- In states where there are more gun owners, there are also more gun-related suicides, ...

  6. States with More Gun Owners Have More Gun-Related Suicides: Study

    MedlinePlus

    ... gov/news/fullstory_158931.html States With More Gun Owners Have More Gun-Related Suicides: Study But only association was found, ... HealthDay News) -- In states where there are more gun owners, there are also more gun-related suicides, ...

  7. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities.

    PubMed

    Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E

    2014-11-01

    Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. PMID:25260178

  8. Unintentional Gun Deaths among Children. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Children are at risk of being killed or injured by a gun if their parents own a gun because many guns obtained for self-defense are kept loaded and within reach of children. This brief fact sheet presents statistical information relating to accidental deaths involving young people and firearms. Safety measures are suggested for preventing…

  9. Preliminary Photomicrographic Studies of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W; Spencer, Robert C

    1932-01-01

    Photomicrographs were taken of fuel sprays injected into air at various densities for the purpose of studying the spray structure and the stages in the atomization of the fuel. The photomicrographs were taken at magnifying powers of 2.5, 3.25, and 10, using a spark discharge of very short duration for illumination. The results indicate that the theory advanced by Dr. R. A. Castleman, Jr., on the atomization of fuel in carburetors may also be applied to the atomization of fuel sprays of the solid-injection type. The fuel leaves the nozzle as a solid column, is ruffled and then torn into small, irregular ligaments by the action of the air. These ligaments are then quickly broken up into drops by the surface tension of the fuel. The photomicrographs also show that the dispersion of a fuel spray at a given distance from the nozzle increases with an increase in the jet velocity or an increase in the air density. The first portions of fuel sprays injected from an automatic injection valve into air at atmospheric density have a much greater dispersion than the later portions, but this difference decreases rapidly as the air density is increased.

  10. High gradient rf gun studies of CsBr photocathodes

    SciTech Connect

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  11. High gradient rf gun studies of CsBr photocathodes

    NASA Astrophysics Data System (ADS)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-01

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV /m fields without breaking down or emitting dark current. They can operate in 2 ×10-9 torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  12. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  13. Characteristics of MCrAlY coatings sprayed by high velocity oxygen-fuel spraying system

    SciTech Connect

    Itoh, Y.; Saitoh, M.; Tamura, M.

    2000-01-01

    High velocity oxygen-fuel (HVOF) spraying system in open air has been established for producing the coatings that are extremely clean and dense. It is thought that the HVOF sprayed MCrAlY (M is Fe, Ni and/or Co) coatings can be applied to provide resistance against oxidation and corrosion to the hot parts of gas turbines. Also, it is well known that the thicker coating can be sprayed in comparison with any other thermal spraying systems due to improved residual stresses. However, thermal and mechanical properties of HVOF coatings have not been clarified. Especially, the characteristics of residual stress, that are the most important property from the view point of production technique, have not been made clear. In this paper, the mechanical properties of HVOF sprayed MCrAlY coatings were measured in both the case of as-sprayed and heat-treated coatings in comparison with a vacuum plasma sprayed MCrAlY coatings. It was confirmed that the mechanical properties of HVOF sprayed MCrAlY coatings could be improved by a diffusion heat treatment to equate the vacuum plasma sprayed MCrAlY coatings. Also, the residual stress characteristics were analyzed using a deflection measurement technique and a X-ray technique. The residual stress of HVOF coating was reduced by the shot-peening effect comparable to that of a plasma spray system in open air. This phenomena could be explained by the reason that the HVOF sprayed MCrAlY coating was built up by poorly melted particles.

  14. Guns in Schools. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Common reasons that young people choose to carry firearms outside of school--protection, intimidation of others, or to be like their peers--are the same reasons they carry guns into the school. This fact sheet presents statistics regarding the prevalence of firearms amongst students in American schools, including: shooting fatalities and woundings…

  15. Comparison of the Failures during Cyclic Oxidation of Yttria-Stabilized (7 to 8 Weight Percent) Zirconia Thermal Barrier Coatings Fabricated via Electron Beam Physical Vapor Deposition and Air Plasma Spray

    NASA Astrophysics Data System (ADS)

    Yanar, N. M.; Helminiak, M.; Meier, G. H.; Pettit, F. S.

    2011-04-01

    The failures during oxidation of electron beam physical vapor deposition (EBPVD) and air plasma spray (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) on different bond coats, namely, platinum-modified aluminide and NiCoCrAlY, are described. It is shown that oxidation of the bond coats, along with defects existing near the TBC/bond coat interface, plays a very important role in TBC failures. Procedures to improve TBC performance via modifying the oxidation characteristics of the bond coats and removing the as-processed defects are discussed. The influence of exposure conditions on TBC lives is described and factors such as cycle frequency and thermal gradients are discussed.

  16. Large volume water sprays for dispersing warm fogs

    NASA Astrophysics Data System (ADS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.

    A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.

  17. Large volume water sprays for dispersing warm fogs

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.

    1986-01-01

    A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.

  18. RF Design of the LCLS Gun

    SciTech Connect

    Limborg-Deprey, C

    2010-12-13

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

  19. Mobile zone, spray booth ventilation system. Final report

    SciTech Connect

    Not Available

    1994-04-26

    This concept endeavors to reduce the volume of air (to be treated) from spray paint booths, thereby increasing efficiency and improving air pollution abatement (VOC emissions especially). Most of the ventilation air is recycled through the booth to maintain laminar flow; the machinery is located on the supply side of the booth rather than on the exhaust side. 60 to 95% reduction in spray booth exhaust rate should result. Although engineering and production prototypes have been made, demand is low.

  20. Fuel spray diagnostics

    NASA Technical Reports Server (NTRS)

    Bosque, M. A.

    1984-01-01

    Several laser measurement methods are being studied to provide the capability to make droplet size and velocity measurements under a variety of spray conditions. The droplet sizing interferometer (DSI) promises to be a successful technique because of its capability for rapid data acquisition, compilation and analysis. Its main advantage is the ability to obtain size and velocity measurements in air-fuel mixing studies and hot flows. The existing DSI at NASA Lewis is a two-color, two-component system. Two independent orthogonal measurements of size and velocity components can be made simultaneously. It also uses an off-axis large-angle light scatter detection. The fundamental features of the system are optics, signal processing and data management system. The major component includes a transmitter unit, two receiver units, two signal processors, two data management systems, two Bragg cell systems, two printer/plotters, a laser, power supply and color monitor.

  1. Abrasion and erosion wear resistance of Cr{sub 3}C{sub 2}-NiCr coatings prepared by plasma, detonation and high-velocity oxyfuel spraying

    SciTech Connect

    Vuoristo, P.; Niemi, K.; Maekelae, A.; Maentylae, T.

    1994-12-31

    Chromium carbide based cermet coatings (Cr{sub 3}C{sub 2}-NiCr) deposited by atmospheric plasma spraying (APS), detonation gun spraying (DGS), and high-velocity oxyfuel flame spraying (HVOF) methods were evaluated with the microstructure, microhardness, phase structure, room temperature abrasion wear and particle erosion wear resistance. The influence of some spray parameters, e.g, the use of different plasma gases (Ar-H{sub 2}, Ar-He) in plasma spraying, and fuel gas-to-oxygen ratio (C{sub 2}H{sub 2}/O{sub 2}) and diluent gas content in detonation gun spraying, were studied in order to optimize the wear resistance of the coatings. The results showed that Cr{sub 3}C{sub 2}-NiCr coatings had different wear properties depending on the spray parameters and spray methods used. Highest wear resistance was obtained with coatings prepared by the high-velocity combustion processes, i.e. by HVOF and detonation gun spraying.

  2. Granny, (don't) get your gun: competency issues in gun ownership by older adults.

    PubMed

    Greene, Edith; Bornstein, Brian H; Dietrich, Hannah

    2007-01-01

    This article explores the possible risks associated with gun ownership by older adults. We summarize existing regulations on who may own firearms, especially with respect to age. We then present data on older gun owners and violence committed by older adults in general, followed by a discussion of gun violence perpetrated by gun owners whose functional and cognitive abilities have declined, perhaps as a result of dementia. For comparison purposes, we review regulations on driving among older adults, drawing parallels to gun ownership. The paper concludes with recommendations for ensuring the safety of older gun owners and others, balanced against citizens' right to bear arms, and with some directions for research. PMID:17559168

  3. A gasdynamic gun driven by gaseous detonation

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  4. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels. PMID:26827358

  5. Flow characteristic of in-flight particles in supersonic plasma spraying process

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2015-10-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  6. Effects of a gun dealer's change in sales practices on the supply of guns to criminals.

    PubMed

    Webster, Daniel W; Vernick, Jon S; Bulzacchelli, Maria T

    2006-09-01

    Licensed gun dealers are a major conduit for gun trafficking. Prior to May 1999, a single gun store sold more than half of the guns recovered from criminals in Milwaukee, WI, shortly following retail sale. On May 10, 1999, the store stopped selling small, inexpensive handguns popular with criminals, often called "Saturday night specials." The purpose of this study was to estimate the effect of this gun store's changed sales practices on criminals' acquisition of new guns. We used an interrupted time-series design with comparisons to test for changes in the number of guns that police recovered from criminals within a year of retail sale following the gun dealer's new sales policy. The dealer's changed sales policy was associated with a 96% decrease in recently sold, small, inexpensive handguns use in crime in Milwaukee, a 73% decrease in crime guns recently sold by this dealer, and a 44% decrease in the flow of all new, trafficked guns to criminals in Milwaukee. The findings demonstrate the substantial impact that a single gun store's sales practices can have on the supply of new guns to criminals. Proposed anti-gun-trafficking efforts in other cities could benefit from targeting problem retail outlets. PMID:16937085

  7. Effects of a Gun Dealer's Change in Sales Practices on the Supply of Guns to Criminals

    PubMed Central

    Vernick, Jon S.; Bulzacchelli, Maria T.

    2006-01-01

    Licensed gun dealers are a major conduit for gun trafficking. Prior to May 1999, a single gun store sold more than half of the guns recovered from criminals in Milwaukee, WI, shortly following retail sale. On May 10, 1999, the store stopped selling small, inexpensive handguns popular with criminals, often called “Saturday night specials.” The purpose of this study was to estimate the effect of this gun store's changed sales practices on criminals' acquisition of new guns. We used an interrupted time-series design with comparisons to test for changes in the number of guns that police recovered from criminals within a year of retail sale following the gun dealer's new sales policy. The dealer's changed sales policy was associated with a 96% decrease in recently sold, small, inexpensive handguns use in crime in Milwaukee, a 73% decrease in crime guns recently sold by this dealer, and a 44% decrease in the flow of all new, trafficked guns to criminals in Milwaukee. The findings demonstrate the substantial impact that a single gun store's sales practices can have on the supply of new guns to criminals. Proposed anti-gun-trafficking efforts in other cities could benefit from targeting problem retail outlets. PMID:16937085

  8. Ciclesonide Nasal Spray

    MedlinePlus

    Ciclesonide nasal spray is used to treat the symptoms of seasonal (occurs only at certain times of the year), and perennial ( ... Ciclesonide comes as a solution (liquid) to spray in the nose. It is usually sprayed in each nostril once daily. Use ciclesonide at around the same time every day. Follow the ...

  9. Collection efficiency of various airborne spray flux samplers used in aerial application research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low air speed, spray dispersion tunnel was constructed and used to evaluate the collection efficiency of passive spray flux collectors. The dispersion tunnel utilizes an air-assisted nozzle to generate a spray cloud with a DV0.5 of 18.5 (±0.4) µm at air speeds ranging from 0.45-4.0 m/sec. A samp...

  10. SPRAY CHARGING AND TRAPPING SCRUBBER FOR FUGITIVE PARTICLE EMISSION CONTROL

    EPA Science Inventory

    The report gives results of a theoretical and experimental evaluation of the control of fugitive particle emissions (FPE) with a Spray Charging and Trapping (SCAT) Scrubber that uses an air curtain and/or jets to contain, convey, and divert the FPE into a charged spray scrubber. ...

  11. Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun

    NASA Astrophysics Data System (ADS)

    Henkes, C.; Olivier, H.

    2014-04-01

    The quality of thermal sprayed coatings depends on many factors which have been investigated and are still in scientific focus. Mostly, the coating material is inserted into the spray device as solid powder. The particle condition during the spray process has a strong effect on coating quality. In some cases, higher particle impact energy leads to improved coating quality. Therefore, a computer-controlled detonation gun based spraying device has been designed and tested to obtain particle velocities over 1200 m/s. The device is able to be operated in two modes based on different flow-physical principles. In one mode, the device functions like a conventional detonation gun in which the powder is accelerated in a blast wave. In the other mode, an extension with a nozzle transforms the detonation gun process into an intermittent shock tunnel process in which the particles are accelerated in a high enthalpy nozzle flow with high reservoir conditions. Presented are experimental results of the operation with nozzle in which the device generates very high particle velocities up to a frequency of 5 Hz. A variable particle injection system allows injection of the powder at any point along the nozzle axis to control particle temperature and velocity. A hydrogen/oxygen mixture is used in the experiments. Operation performance and nozzle outflow are characterized by time resolved pressure measurements. The particle conditions inside the nozzle and in the nozzle exit plane are calculated with a quasi-one-dimensional WENO-code of high order. For the experiments, particle velocity is obtained by particle image velocimetry, and particle concentration is qualitatively determined by a laser extinction method. The powders used are WC-Co(88/12), NiCr(80/20), Al2O3, and Cu. Different substrate/powder combinations for varying particle injection positions have been investigated by light microscopy and measurements of microhardness.

  12. Effects of Spray Release Height and Nozzle/Atomizer Configuration on Penetration of Spray in a Soybean Canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preliminary experiments were conducted using three nozzle/atomizer configurations to determine spray characteristics and relative penetration in a soybean canopy. Water was applied at three different spray release heights in a random sequence using an Air Tractor 402-B agricultural aircraft. Sample...

  13. X-Band RF Gun Development

    SciTech Connect

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

    2012-06-22

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  14. Improved DC Gun Insulator Assembly

    SciTech Connect

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user fa­cil­i­ties such as syn­chrotron ra­di­a­tion light sources and free elec­tron lasers re­quire ac­cel­er­at­ing struc­tures that sup­port elec­tric fields of 10-100 MV/m, es­pe­cial­ly at the start of the ac­cel­er­a­tor chain where ce­ram­ic in­su­la­tors are used for very high gra­di­ent DC guns. These in­su­la­tors are dif­fi­cult to man­u­fac­ture, re­quire long com­mis­sion­ing times, and often ex­hib­it poor re­li­a­bil­i­ty. Two tech­ni­cal ap­proach­es to solv­ing this prob­lem will be in­ves­ti­gat­ed. First­ly, in­vert­ed ce­ram­ics offer so­lu­tions for re­duced gra­di­ents be­tween the elec­trodes and ground. An in­vert­ed de­sign will be pre­sent­ed for 350 kV, with max­i­mum gra­di­ents in the range of 5-10 MV/m. Sec­ond­ly, novel ce­ram­ic man­u­fac­tur­ing pro­cess­es will be stud­ied, in order to pro­tect triple junc­tion lo­ca­tions from emis­sion, by ap­ply­ing a coat­ing with a bulk re­sis­tiv­i­ty. The pro­cess­es for cre­at­ing this coat­ing will be op­ti­mized to pro­vide pro­tec­tion as well as be used to coat a ce­ram­ic with an ap­pro­pri­ate gra­di­ent in bulk re­sis­tiv­i­ty from the vac­u­um side to the air side of an HV stand­off ce­ram­ic cylin­der. Ex­am­ple in­su­la­tor de­signs are being com­put­er mod­elled, and in­su­la­tor sam­ples are being man­u­fac­tured and test­ed

  15. Measuring densities of high-velocity metallic sprays using piezoelectric sensors

    SciTech Connect

    Lloyd, C. E.; Proud, W. G.

    2007-12-12

    Recent research efforts in large-scale hydrodynamic experiments have concentrated on the possibility of using piezoelectric sensors to study the evolution of ejecta. Ejecta are small (<100 m diameter) particulates that are ejected at high velocity (>1 km s{sup -1}) from a shocked surface. This paper investigates whether Dynasen PZT piezoelectric sensors are reliable and robust enough to measure accurate time-resolved stresses and densities in high-velocity metallic sprays. The sprays are assumed to have similar characteristics to ejecta sprays, and are generated by a gas gun and in a safe and reproducible manner. A complimentary diagnostic technique, utilising high-speed photography and fast x-radiography, measures the densities of the sprays independently, allowing the accuracy of the sensors to be assessed. The Dynasen sensors have been shown to perform relatively well in spray environments. Their accuracy can be improved by taking their mechanical impedance characteristics into account.

  16. Racism, Gun Ownership and Gun Control: Biased Attitudes in US Whites May Influence Policy Decisions

    PubMed Central

    O’Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Objective Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. Method The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. Results After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Conclusions Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites’ paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions. PMID:24204867

  17. Characterization of sprays

    NASA Astrophysics Data System (ADS)

    Chigier, N.; Mao, C.-P.

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  18. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  19. Health and Gun Violence. Guns as a Public-Health Issue.

    ERIC Educational Resources Information Center

    Duran, Victoria

    1994-01-01

    Violence in all settings has reached epidemic proportions. Most shootings are committed by friends or relatives following an argument or when playing with guns. The public needs education about nonviolent ways of coping with anger and about the high cost of gun violence. Suggestions for avoiding gun violence and the PTA position on firearms are…

  20. Spray characteristics of a spill-return airblast atomizer

    NASA Technical Reports Server (NTRS)

    Dai, X. F.; Lefebvre, A. H.; Rollbuhler, J.

    1988-01-01

    The spray characteristics of a spill-return airblast atomizer are examined using water as the working fluid. Measurements of mean drop size, drop size distribution, spray cone angle, and circumferential liquid distinction, are carried out over wide ranges of liquid injection pressures and atomizing air velocities. Generally, it is found that an increase in nozzle bypass ratio worsens the atomization quality and widens the spray cone angle. Increase in airblast air velocity may improve or impair atomization quality depending on whether it increases or decreases the relative velocity between the liquid and the surrounding air. Airblast air can also be used to modify the change in spray cone angle that normally accompanies a change in bypass ratio.

  1. Spray characteristics of a spill-return airblast atomizer

    NASA Astrophysics Data System (ADS)

    Dai, X. F.; Lefebvre, A. H.; Rollbuhler, J.

    1988-06-01

    The spray characteristics of a spill-return airblast atomizer are examined using water as the working fluid. Measurements of mean drop size, drop size distribution, spray cone angle, and circumferential liquid distinction, are carried out over wide ranges of liquid injection pressures and atomizing air velocities. Generally, it is found that an increase in nozzle bypass ratio worsens the atomization quality and widens the spray cone angle. Increase in airblast air velocity may improve or impair atomization quality depending on whether it increases or decreases the relative velocity between the liquid and the surrounding air. Airblast air can also be used to modify the change in spray cone angle that normally accompanies a change in bypass ratio.

  2. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  3. From gun politics to self-defense politics: a feminist critique of the great gun debate.

    PubMed

    Carlson, Jennifer D

    2014-03-01

    This article calls attention to a problematic binary produced by public debates surrounding gun rights and gun control-namely, that women must choose armed self-protection or no self-protection at all. I argue that both anti- and pro-gun discourses, drawing on and reproducing race and class privileges, use assumptions about women's physical inferiority to further their agendas. I highlight how both sides have used guns as the proxy for self-defense and conclude by calling for a shift in public discourse to focus on the broader question of the right to self-defense rather than the narrower question of gun rights. PMID:24686128

  4. Influence of handpiece maintenance sprays on resin bonding to dentin

    PubMed Central

    Sugawara, Toyotarou; Kameyama, Atsushi; Haruyama, Akiko; Oishi, Takumi; Kukidome, Nobuyuki; Takase, Yasuaki; Tsunoda, Masatake

    2010-01-01

    Objective To investigate the influence of maintenance spray on resin bonding to dentin. Materials and methods The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical), and resin composite (Clearfil AP-X, Kuraray Medical) build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick) perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test. Results Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups) showed significantly lower μTBS than control specimens (P < 0.05). However, there was no significant difference between the spray-contaminated groups (P > 0.05). Conclusion Maintenance spray significantly reduces the bond strength of Clearfil SE Bond to dentin. PMID:23662078

  5. Spray drift reduction test method correlation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ASTM Standard E609 Terminology Relating to Pesticides defines drift as “The physical movement of an agrochemical through the air at the time of application or soon thereafter to any non or off target site.” Since there are many commercial tank mix adjuvants designed to reduce spray drift, ASTM esta...

  6. PAINT SPRAY BOOTH MODIFICATIONS FOR RECIRCULATION VENTILATION

    EPA Science Inventory

    The control of emissions from spray painting operations has historically been cost prohibitive, due to the high exhaust flow rates coupled with low volatile organic compound (VOC) and hazardous air pollutant (HAP) Concentrations. Past studies, conducted by the U.S. EPA and U.S. ...

  7. Corrosion properties of stainless steel coatings made by different methods of thermal spraying

    SciTech Connect

    Siitonen, P.; Konos, T.; Kettunen, P.O.

    1994-12-31

    The corrosion protection ability of thermally sprayed stainless steel coatings in aggressive environments is considerably limited as compared to bulk materials of the same composition. The two main reasons for the decrease in corrosion resistance are the porosity in the coatings and the oxidation of elements, particularly chromium, during spraying process. The corrosion resistance and structure of stainless steel coatings, ANVAL 254 SMO, made by different methods of thermal spraying were evaluated in this work. The coatings were produced by atmospheric plasma spraying (APS), atmospheric plasma spraying using gas shielding around the plasma (APS/S), low pressure plasma spraying (LPPS), detonation gun spraying (DGS) and high velocity oxyfuel spraying (HVOF). Electrochemical methods were used for determining the corrosion protection ability of coatings in 3.5% NaCl-solution and in sulfur acid solution (pH 3 and 1). The structure and composition of coatings were studied by optical microscopy and scanning electron microscopy/energy dispersive analysator (SEM/EDS). The porosity of the coatings was determined by water impregnation method, optical microscopy and mercury porosimeter. The results showed that the best coating quality can be achieved by LPPS- and HVOF-coatings. Oxidation and porosity restrict the use of APS-coatings in corrosive environments. The oxidation can be avoided by using argon gas shield around the plasma flame during spraying. Due to porosity all studied coatings suffered crevice corrosion in chloride solution. Despite high Mo-alloying the best coatings reached only the corrosion resistance of AISI 316.

  8. Crafting a Gauss Gun Demonstration

    NASA Astrophysics Data System (ADS)

    Blodgett, Matthew E.; Blodgett, E. D.

    2006-12-01

    A Gauss Gun launches a ferromagnetic projectile using a pulsed electromagnet. This demonstration provides a nice counterpoint to the popular Thompson's jumping ring demonstration, which launches a nonferromagnetic ring via repulsion of an induced current. The pulsed current must be short enough in duration so that the projectile is not retarded by lingering current in the launch solenoid, but also large enough to provide a suitably impressive velocity. This project involved an iterative design process, as we worked through balancing all the different design criteria. We recommend it as a very nice electronics design project which will produce a very portable and enjoyable demonstration. AAPT sponsor Earl Blodgett.

  9. The Xygra gun simulation tool.

    SciTech Connect

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  10. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  11. Guns and High Gas Output Devices Panel: Introduction

    NASA Technical Reports Server (NTRS)

    Simmons, Ronald L.; Kaste, Pamela J.

    2000-01-01

    A new panel known as the Guns and High Gas Output Panel was organized in 1999 under the auspices of the JANNAF Propellant and Characterization SubCommittee (PDCS). This is an introduction to our first meeting, purpose of the panel, and the scope of activities to be covered. The primary purpose of the panel is very simple: to provide a single focal point for interfacing Government Laboratories (Department of Defense and Department of Energy) and commercial industry researchers to share R&D activities and findings (i.e. facilitate the exchange of information) specifically aimed at gun-launched propulsion and high-gas output devices (gas generators and air bag inflators). Specific areas of interest included in the Panel's scope (and the Technical Data Base) are the following: (1) new propellant formulations and chemistry, (2) new ingredients, (3) ballistic effects of the new formulations and ingredients, (4) new processing methods unique to gun propellants, (5) thermochemistry of new ingredients, (6) unique physical and mechanical properties, (7) burning rates of new propellants and small scale closed bomb testing, (8) plasma effects on the propellant, and (9) unique safety and insensitive munitions properties.

  12. Protect Children Instead of Guns, 2002.

    ERIC Educational Resources Information Center

    Children's Defense Fund, Washington, DC.

    Beginning with statistics pertaining to children and gun violence in a single year in the United States, this report details trends in child and youth gun deaths. Tables present information on the following: (1) number of firearms deaths by manner and by race from 1979 to 2000; (2) number of firearms deaths by manner for each state and nationwide,…

  13. Fighting Juvenile Gun Violence. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Sheppard, David; Grant, Heath; Rowe, Wendy; Jacobs, Nancy

    This bulletin describes the Office of Juvenile Justice and Delinquency Prevention's efforts to fight juvenile gun violence. The Office awarded four community demonstration grants to implement "Partnerships To Reduce Juvenile Gun Violence." Partnership goals include increasing the effectiveness of existing strategies by enhancing and coordinating…

  14. Gun Control: The Debate and Public Policy.

    ERIC Educational Resources Information Center

    Watkins, Christine

    1997-01-01

    Provides an overview and background information on the debate over gun control, as well as several teaching ideas. Handouts include a list of related topics drawn from various disciplines (economics, U.S. history), seven arguments for and against gun control, and a set of policy evaluation guidelines. (MJP)

  15. Light gas gun with reduced timing jitter

    DOEpatents

    Laabs, G.W.; Funk, D.J.; Asay, B.W.

    1998-06-09

    Gas gun with reduced timing jitter is disclosed. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile. 4 figs.

  16. Superconducting 112 MHz QWR electron gun

    SciTech Connect

    Belomestnykh, S.; Ben-Zvi, I.; Boulware, C.H.; Chang, X.; Grimm, T.L.; Rao, T.; Siegel, B.; Skaritka, J.; Than, R.; Winowski, M.; Wu, Q.; Xin, T.; Xue, L.

    2011-07-25

    Brookhaven National Laboratory and Niowave, Inc. have designed and fabricated a superconducting 112 MHz quarter-wave resonator (QWR) electron gun. The first cold test of the QWR cryomodule has been completed at Niowave. The paper describes the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule. Future experiments include studies of different photocathodes and use for the coherent electron cooling proof-of-principle experiment. Two cathode stalk options, one for multi-alkali photocathodes and the other one for a diamond-amplified photocathode, are discussed. A quarter-wave resonator concept of superconducting RF (SRF) electron gun was proposed at BNL for electron cooling hadron beams in RHIC. QWRs can be made sufficiently compact even at low RF frequencies (long wavelengths). The long wavelength allows to produce long electron bunches, thus minimizing space charge effects and enabling high bunch charge. Also, such guns should be suitable for experiments requiring high average current electron beams. A 112 MHz QWR gun was designed, fabricated, and cold-tested in collaboration between BNL and Niowave. This is the lowest frequency SRF gun ever tested successfully. In this paper we describe the gun design and fabrication, present the cold test results, and outline our plans. This gun will also serve as a prototype for a future SRF gun to be used for coherent electron cooling of hadrons in eRHIC.

  17. Light gas gun with reduced timing jitter

    DOEpatents

    Laabs, Gary W.; Funk, David J.; Asay, Blaine W.

    1998-01-01

    Gas gun with reduced timing jitter. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile.

  18. Youth Homicide and Guns. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Young Americans are killed with guns at rates far higher than young people in other countries and than older Americans, with young, urban African-American males being most at risk. This fact sheet presents data on gun-related homicides among teenagers in the United States. The high rate of youth homicide in the United States is unique in the…

  19. Experiments and Demonstrations with Soldering Guns.

    ERIC Educational Resources Information Center

    Henry, Dennis C.; Danielson, Sarah A.

    1993-01-01

    Discusses the essential electrical characteristics of a particular model of soldering gun. Presents four classroom demonstrations that utilize the soldering gun to test the following geometrics of wire loops as electromagnets: (1) the original tip; (2) a single circular loop; (3) a Helmholtz coil; and (4) the solenoid. (MDH)

  20. Hydroxide absorption heat pumps with spray absorber

    SciTech Connect

    Summerer, F.; Alefeld, G.; Zeigler, F.; Riesch, P.

    1996-11-01

    The absorber is one of the most expensive components of an absorption heat pump or chiller, respectively. In order to reduce the cost of a heat exchanger, much effort is invested into searching for additives for heat transfer enhancement. Another way to reduce heat exchanger cost, especially for machines with low capacities, is to use an adiabatic spray absorber. The basic principles of the spray absorber is to perform heat and mass transfer separated from each other in two different components. In this way the heat can be rejected effectively in a liquid-liquid heat exchanger, whereas the mass transfer occurs subsequently in a simple vessel. The spray technique can not only save heat exchanger cost in conventional absorption systems working with water and lithium bromide, it also allows the use of quite different working fluids such as hydroxides, which have lower heat transfer coefficients in falling films. Moreover, the separated heat transfer can easily be performed in a liquid-to-air heat exchanger. Hence it is obvious to use hydroxides that allow for a high temperature lift for building an air-cooled chiller with spray absorber. In this presentation theoretical and experimental investigations of the spray absorber as well as the setup will be described. Finally, possible applications will be outlined.

  1. Dense spray evaporation as a mixing process

    NASA Astrophysics Data System (ADS)

    de Rivas, A.; Villermaux, E.

    2016-05-01

    We explore the processes by which a dense set of small liquid droplets (a spray) evaporates in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient air as a plume whose extension depends on the relative humidity of the diluting medium. Standard shear instabilities develop at the plume edge, forming the stretched lamellar structures familiar with passive scalars. Unlike passive scalars however, these lamellae vanish in a finite time, because individual droplets evaporate at their border in contact with the dry environment. Experiments demonstrate that the lifetime of an individual droplet embedded in a lamellae is much larger than expected from the usual d2 law describing the fate of a single drop evaporating in a quiescent environment. By analogy with the way mixing times are understood from the convection-diffusion equation for passive scalars, we show that the lifetime of a spray lamellae stretched at a constant rate γ is tv=1/γ ln(1/+ϕ ϕ ) , where ϕ is a parameter that incorporates the thermodynamic and diffusional properties of the vapor in the diluting phase. The case of time-dependent stretching rates is examined too. A dense spray behaves almost as a (nonconserved) passive scalar.

  2. Gun shows across a multistate American gun market: observational evidence of the effects of regulatory policies

    PubMed Central

    Wintemute, Garen J

    2007-01-01

    Objective To describe gun shows and assess the impact of increased regulation on characteristics linked to their importance as sources of guns used in crime. Design Cross‐sectional, observational. Subjects Data were collected at a structured sample of 28 gun shows in California, which regulates these events and prohibits undocumented private party gun sales; and in Arizona, Nevada, Texas and Florida—all leading sources of California's crime guns—where these restrictions do not exist. Main outcome measures Size of shows, measured by numbers of gun vendors and people in attendance; number and nature of guns for sale by gun vendors; measures of private party gun sales and illegal surrogate (“straw”) gun purchases. Results Shows in comparison states were larger, but the number of attendees per gun vendor was higher in California. None of these differences was statistically significant. Armed attendees were more common in other states (median 5.7%, interquartile range (IQR) 3.9–10.0%) than in California (median 1.1%, IQR 0.5–2.2%), p = 0.0007. Thirty percent of gun vendors both in California and elsewhere were identifiable as licensed firearm retailers. There were few differences in the types or numbers of guns offered for sale; vendors elsewhere were more likely to sell assault weapons (34.9% and 13.3%, respectively; p = 0.001). Straw purchases were more common in the comparison states (rate ratio 6.6 (95% CI 0.9 to 49.1), p = 0.06). Conclusions California's regulatory policies were associated with a decreased incidence of anonymous, undocumented gun sales and illegal straw purchases at gun shows. No significant adverse effects of these policies were observed. PMID:17567968

  3. Life-threatening nail gun injuries.

    PubMed

    Beaver, A C; Cheatham, M L

    1999-12-01

    The use of pneumatic and explosive cartridge-activated nail guns is common in the construction industry. The ease and speed of nailing these tools afford enhance productivity at the cost of increased potential for traumatic injury. Although extremity injuries are most common, life-threatening injuries to the head, neck, chest, or abdomen and pelvis may occur. During a 20-month period, eight potentially life-threatening nail gun injuries were admitted to a Level I trauma center, including injuries to the brain, eye, neck, heart, lung, and femoral artery. Mechanism of injury included nail ricochet, nail gun misuse due to inadequate training, and successful suicide. Nail guns have significant potential for causing severe debilitating injury and death. These findings indicate a need for improved safety features and user education. The various types of nail guns, their ballistic potential, and techniques for operative management are discussed. PMID:10597056

  4. Sequential injection gas guns for accelerating projectiles

    DOEpatents

    Lacy, Jeffrey M.; Chu, Henry S.; Novascone, Stephen R.

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  5. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  6. ECR ion source with electron gun

    DOEpatents

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  7. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  8. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  9. Subterranean well casing perforating gun

    SciTech Connect

    Stout, G. W.; Nelson, J. A.

    1984-10-30

    The invention provides a subterranean well casing perforating gun device which employs shaped explosive charges to perforate the well casing. The device generally defines an outer tubular housing assembly concentrically insertable in the well and defining a vertical axis, cylindrical chamber. A tubular carrier of polygonal cross sectional configuration is insertable in the chamber in concentric relationship to the cylindrical wall of the cylindrical chamber. Each of the faces of the carrier have a plurality of spaced passages therethrough, each passage having a configuration substantially corresponding to the configuration of the polygonal face. A shaped charge container has its cylindrical body insertable in any selected one of the passages and a radial flange on the outer end for abutting the polygonal face portion adjacent the respective passage, thereby limiting the insertion of each of the containers into the selected passage. Selectively disengageable fastening means are operable from the exterior of the carrier for clamping the radial flange against the respective polygonal face and for selective disengagement therefrom from the exterior of the carrier. The invention also contemplates a method of utilization of the carrier and the gun, as well as to incorporation of same into a particular perforating and gravel packing method and apparatus.

  10. Gas-particle interaction in detonation spraying systems

    NASA Astrophysics Data System (ADS)

    Kadyrov, E.

    1996-06-01

    A model is developed to describe dynamic interaction of particles with the carrier gas during detonation spraying. Equations of mass, energy, and momentum conservation are integrated numerically for the two-phase particle-gas flow with the Hugoniot boundary conditions at the detonation wave front. Velocity and temperature of the sprayed powder and the gas parameters are calculated self-consistently, taking into account effects of friction and cooling of the gas in the vicinity of the gun barrel and effects of particle-gas interaction on the parameters of the gas phase. Calculations are performed for tungsten carbide particles of 30 μm diam and a 1.8 m long detonation gun using a stoichiometric mixture of oxygen and propane. Distributions of gas and particle parameters along the barrel are calculated for various moments of time. Tungsten carbide particles of 30 μm reach an exit velocity of 1278 m/s and a temperature of 1950 K. Exit particle velocity is a nonmonotonic function of the loading distance, L, with a distinct maximum at L = 75 cm. The proposed model can be applied to a broad range of problems related to detonation coating technology and allows evaluation of the effectiveness of various designs and optimization of operational parameters of detonation spraying systems.

  11. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    SciTech Connect

    Liu, Meng; Duan, YuFeng; Zhang, TieNan

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)

  12. A Practical Example Aiding Understanding Momentum in 1D: The Water Gun Experiment

    ERIC Educational Resources Information Center

    MacLeod, Katarin

    2007-01-01

    The law of conservation of momentum is one that students often have difficulties understanding. This experiment allows students to use childhood toys to examine and calculate the muzzle velocity of their favourite water gun by using an air track, a spark timer or data logger and the law of conservation of momentum in a one-dimensional case, a…

  13. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  14. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  15. Computer modelling of the meteorological and spraying parameters that influence the aerial dispersion of agrochemical sprays

    NASA Astrophysics Data System (ADS)

    Mokeba, M. L.; Salt, D. W.; Lee, B. E.; Ford, M. G.

    An insight into the nature of prevailing meteorological conditions and the manner in which they interact with spraying parameters is an important prerequisite in the analysis of the dynamics of agrochemical sprays. Usually, when these sprays are projected from hydraulic nozzles, their initial velocity is greater than that of the ambient wind speed. The flowfield therefore experiences changes in speed and direction which are felt upstream as well as downstream of the spray droplets. The pattern of the droplet flow, i.e. the shape of the streamlines marking typical trajectories, will be determined by a balance of viscous forces related to wind speed, inertial forces resulting from the acceleration of the airstream and pressure forces which can be viewed in terms of the drag forces exerted on the spray droplets themselves. At a certain distance in the ensuing motion, when the initial velocity of the spray droplets has decreased sufficiently for there to be no acceleration, their trajectories will be controlled entirely by the random effects of turbulence. These two transport processes in the atmosphere can be modelled mathematically using computers. This paper presents a model that considers the velocity of spray droplets to consist of a ballistic velocity component superimposed by a random-walk velocity component. The model is used to study the influence of meteorological and spraying parameters on the three-dimensional dynamics of spray droplets projected in specified directions in neutral and unstable weather conditions. The ballistic and random-walk velocity components are scaled by factors of (1-ξ) and ξ respectively, where ξ is the ratio of the sedimentation velocity and the relative velocity between the spray droplets and the surrounding airstream. This ratio increases progressively as the initial velocity of the spray droplet decreases with air resistance and attains a maximum when the sedimentation velocity has been reached. As soon as this occurs, the

  16. Gun Violence, Mental Illness, And Laws That Prohibit Gun Possession: Evidence From Two Florida Counties.

    PubMed

    Swanson, Jeffrey W; Easter, Michele M; Robertson, Allison G; Swartz, Marvin S; Alanis-Hirsch, Kelly; Moseley, Daniel; Dion, Charles; Petrila, John

    2016-06-01

    Gun violence kills about ninety people every day in the United States, a toll measured in wasted and ruined lives and with an annual economic price tag exceeding $200 billion. Some policy makers suggest that reforming mental health care systems and improving point-of-purchase background checks to keep guns from mentally disturbed people will address the problem. Epidemiological research shows that serious mental illness contributes little to the risk of interpersonal violence but is a strong factor in suicide, which accounts for most firearm fatalities. Meanwhile, the effectiveness of gun restrictions focused on mental illness remains poorly understood. This article examines gun-related suicide and violent crime in people with serious mental illnesses, and whether legal restrictions on firearm sales to people with a history of mental health adjudication are effective in preventing gun violence. Among the study population in two large Florida counties, we found that 62 percent of violent gun crime arrests and 28 percent of gun suicides involved individuals not legally permitted to have a gun at the time. Suggested policy reforms include enacting risk-based gun removal laws and prohibiting guns from people involuntarily detained in short-term psychiatric hospitalizations. PMID:27269024

  17. Fungicide spray coverage from ground-based sprayers in mature pecan trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air-blast sprayers are widely used to control pecan scab (Fusicladium effusum) on pecan trees. Good spray coverage is critical to ensure disease control and to minimize risk of fungicide resistance. Spray coverage from an air-blast sprayer, typical of the sprayer used by commercial producers, was me...

  18. Gun Violence, mental health, and Connecticut physicians.

    PubMed

    Dodds, Peter R; Anderson, Caitlyn O; Dodds, Jon H

    2014-01-01

    While there is a public perception that gun violence is associated with mental illness we present evidence that it is a complex public health problem which defies simple characterizations and solutions. Only a small percentage of individuals with mental illness are at risk for extreme violence and they account for only a small percentage of gun-related homicides. Individuals who are at risk for gun violence are difficult to identify and successfully treat. The incidence, and perhaps the demographics, of gun violence vary substantially from state to state. We make a case for Connecticut physicians to study gun violence at the state level. We recommend that Connecticut physicians promote and expand upon the American Academy of Pediatrics' recommendation for creating a "safe home environment. "We suggest that guns be secured in all homes in which there are children. In addition we suggest that guns be voluntarily removed from homes in which there are individuals with a history of violence, threats of violence, depression, drug and/or alcohol abuse, and individuals with major mental illnesses who are not cooperating with therapy. PMID:25745735

  19. Simple light gas guns for hypervelocity studies

    SciTech Connect

    Combs, S.K.; Haselton, H.H.; Milora, S.L.

    1990-01-01

    Two-stage light guns are used extensively in hypervelocity research. The applications of this technology include impact studies and special materials development. Oak Ridge National Laboratory (ORNL) has developed two-stage guns that accelerate small projectiles (4-mm nominal diameter) to velocities of up to {approx}5 km/s. These guns are relatively small and simple (thus, easy to operate), allowing a significant number of test shots to be carried out and data accumulated in a short time. Materials that have been used for projectiles include plastics, frozen isotopes of hydrogen, and lithium hydride. One gun has been used to demonstrate repetitive operation at a rate of 0.7 Hz; and, with a few design improvements, it appears capable of performing at firing frequencies of 1--2 Hz. A schematic of ORNL two-stage device is shown below. Unlike most such devices, no rupture disks are used. Instead, a fast valve (high-flow type) initiates the acceleration process in the first stage. Projectiles can be loaded into the gun breech via the slide mechanism; this action has been automated which allows repetitive firing. Alternatively, the device is equipped with pipe gun'' apparatus in which gas can be frozen in situ in the gun barrel to form the projectile. This equipment operates with high reliability and is well suited for small-scale testing at high velocity. 17 refs., 6 figs., 2 tabs.

  20. Nail-Gun Injuries to the Hand

    PubMed Central

    Pierpont, Yvonne N.; Pappas-Politis, Effie; Naidu, Deepak K.; Salas, R. Emerick; Johnson, Erika L.; Payne, Wyatt G.

    2008-01-01

    Background: The nail gun is a commonly utilized tool in carpentry and construction. When used properly with appropriate safety precautions, it can facilitate production and boost efficiency; however, this powerful tool also has the potential to cause serious injury. The most common site of nail-gun injuries in both industrial and nonoccupational settings is the hand. Materials and Methods: We report on two patients with nail-gun injuries to the hand. A review of the literature and discussion of clinical evaluation and treatment of nail-gun injuries to the hand are presented. Results: Two patients present with soft tissue injuries to the hand with the nail embedded and intact at the injury site. Operative removal of the nail and wound care resulted in successful treatment in both cases. Nail-gun injuries to the hand vary in severity on the basis of the extent of structural damage. Treatment is based on the severity of injury and the presence and location of barbs on the penetrating nail. Conclusion: Healthcare providers must understand and educate patients on the prevention mechanics of nail-gun injuries. Nail-gun injuries to the hand necessitate appropriate evaluation techniques, understanding of surgical management versus nonsurgical management, and awareness of potential pitfalls in treatment. PMID:19079574

  1. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    SciTech Connect

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  2. Gun Safety Management with Patients at Risk for Suicide

    ERIC Educational Resources Information Center

    Simon, Robert I.

    2007-01-01

    Guns in the home are associated with a five-fold increase in suicide. All patients at risk for suicide must be asked if guns are available at home or easily accessible elsewhere, or if they have intent to buy or purchase a gun. Gun safety management requires a collaborative team approach including the clinician, patient, and designated person…

  3. Ready, Fire, Aim: The College Campus Gun Fight

    ERIC Educational Resources Information Center

    Birnbaum, Robert

    2013-01-01

    The question of whether guns should be permitted on college and university campuses in the United States reflects the tension between two competing perspectives. America has both a robust gun culture and an equally robust (if less well known) gun-control culture. The gun culture is as American as apple pie: There may be as many as 300 million…

  4. Correlates of Gun Involvement and Aggressiveness among Adolescents.

    ERIC Educational Resources Information Center

    Ding, Cody S.; Nelsen, Edward A.; Lassonde, Cynthia T.

    2002-01-01

    Investigated adolescents' aggressiveness in relation to their experiences, beliefs, and attitudes concerning gun use, also noting family composition, relationships with parents, and emotionality as correlates of gun involvement and aggression. Student surveys indicated links between gun ownership and recreational use, beliefs about gun use, and…

  5. Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings

    NASA Astrophysics Data System (ADS)

    Kim, KeeHyun; Kuroda, Seiji; Watanabe, Makoto; Huang, RenZhong; Fukanuma, Hirotaka; Katanoda, Hiroshi

    2012-06-01

    Thick titanium coatings were prepared by the warm spraying (WS) and cold spraying (CS) processes to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particles were numerically calculated. Significant oxidation occurred in the WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of a high velocity oxy-fuel (HVOF) spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In the CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Even when scanning electron microscopy or an x-ray diffraction method did not detect oxides in the coating layers produced by WS using a high nitrogen flow rate or by CS using helium, the inert gas fusion method revealed minor increases of oxygen content from 0.01 to 0.2 wt.%. Most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense. However, the cross-sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles.

  6. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  7. SPRAY ATOMIZATION MODELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop protection product labels are now being written with spray droplet spectra classification terms that have specific definitions. Some of these terms are the same as previously used for generic descriptions such as fine or coarse sprays, but these terms used on new product labels have very speci...

  8. Spray momentum measuring system

    NASA Technical Reports Server (NTRS)

    Sheffield, E. W.

    1971-01-01

    Technique enables accurate prediction of erosion and cavitation produced by fluid spray. Method measures high velocity sprays produced by small orifices. Originally designed to determine oxidizer-injection patterns of liquid fueled rocket engines, technique is used with other liquids, or, with appropriate modification, with gases.

  9. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Sheppard, J. C.; Vecchione, T.; Jongewaard, E.; Brachmann, A.; Corbett, J.; Gilevich, S.; Weathersby, S.

    2015-05-01

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10-5 can be routinely achieved in the RF gun with the cathodes of QE <1×10-7 measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning.

  10. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  11. What Do We Know, What are the Current Limitations of Suspension HVOF Spraying?

    NASA Astrophysics Data System (ADS)

    Killinger, A.; Müller, P.; Gadow, R.

    2015-10-01

    Suspension spraying has evolved during the past decades and now is at the threshold of a commercial utilization. Compared to standard powder spray methods, mainly DC plasma spraying and (high velocity) flame spraying, it is quite clear that suspension spraying will not replace these well-established technologies but can extend them by adding new coating properties. Still there remain many issues to be solved. Suspension interaction with the hot gas stream is much more complex than in ordinary powder spray processes. In case of HVOF when axial injection into the combustion chamber is used, a direct observation of the liquid flame interaction is not possible. This paper discusses the present status of suspension HVOF-spraying (high velocity suspension flame spraying) including torch concepts, torch configuration in case of a TopGun system as well as different injector concepts and their influence on suspension atomization. The role of suspensions is discussed regarding their rheological and thermodynamical properties, mainly given by the solvent type and the solid content. An overview of different available diagnostic methods and systems and the respective applicability is given. Coating properties are shown and discussed for several oxide ceramics in respect to their possible applications.

  12. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings.

    PubMed

    Göhler, Daniel; Stintz, Michael

    2014-01-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 10(8) and 3 × 10(10) particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed. PMID:25152690

  13. A Two Frequency Thermionic Cathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Edelen, Jon; Biedron, Sandra; Harris, John; Lewellen, John; Milton, Stephen

    2014-03-01

    When an un-gated thermionic cathode is operated in an RF gun, some fraction of the emitted electrons will return to the cathode due to the change in sign of the electric field in the gun. This back-bombardment current causes heating of the cathode, and this reduces the ability of the cathode heater to control the bunch charge. In this paper, we investigate the use of a two frequency TM010 / TM020 electron gun to mitigate this effect. Simulations revealed that for a 100-pC bunch charge operating at 10MV/m gradient the harmonic field produced a 63% reduction in the back-bombardment power.

  14. SSRL photocathode RF gun test stand

    SciTech Connect

    Hernandez, M.; Baltay, M.; Boyce, A.

    1995-12-31

    A photocathode RF gun test stand designed for the production and study of high brightness electron beams will be constructed at SSRL. The beam will be generated from a laser driven third generation photocathode RF gun being developed in collaboration with BNL, LBL, and UCLA. The 3-5 [MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section, in order to achieve the desired low emittance beam, emittance compensation with solenoidal focusing will be employed.

  15. Advances in DC photocathode electron guns

    SciTech Connect

    Bruce M. Dunham; P. Heartmann; Reza Kazimi; Hongxiu Liu; B. M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; Charles K. Sinclair

    1998-07-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughout. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, the authors will review recent results and discuss implications for future photocathode guns.

  16. Evaluation of Smart Gun Technologies preliminary report

    SciTech Connect

    Weiss, D.R.

    1996-01-01

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  17. Performance of the Brookhaven photocathode rf gun

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-12-31

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1{1/2} cells driven at 2856 MHz in {pi}-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models.

  18. Performance of the Brookhaven photocathode rf gun

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S. ); Lin, L.Y. . Dept. of Applied Physics); McDonald, K.T.; Russell, D.P. (Pr

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1{1/2} cells driven at 2856 MHz in {pi}-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models.

  19. "Is there a gun in the home?" Assessing the risks of gun ownership in older adults.

    PubMed

    Pinholt, Ellen M; Mitchell, Joshua D; Butler, Jane H; Kumar, Harjinder

    2014-06-01

    An important ethical and safety concern that geriatricians, primary care providers, and home health professionals need to address is gun ownership by elderly adults. Those aged 65 and older now have the highest rate of gun ownership in America, and they also have a high prevalence of depression and suicide. Dementia can add additional layers of risk. Even older gun owners who are otherwise intellectually intact may benefit from information about gun safety with the increasing numbers of children being cared for by grandparents. Health professionals should ask patients, "Is there a gun in the home?" in the clinic and during home visits. Healthcare professionals must have knowledge and skills to address safe gun ownership in elderly adults. The 5 L's (Locked, Loaded, Little children, feeling Low, Learned owner) will assist professionals in addressing all aspects of safe ownership. PMID:24898055

  20. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  1. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  2. Thorium-Free Versus Thoriated Plasma Gun Electrodes: Statistical Evaluation of Coating Properties

    NASA Astrophysics Data System (ADS)

    Colmenares-Angulo, Jose; Molz, Ronald; Hawley, David; Seshadri, Ramachandran Chidambaram

    2016-04-01

    Industries throughout the world today have an increased awareness of environmental, health, and safety issues. This, together with recent Nuclear Regulatory Commission changes concerning source material (e.g., thorium) has added complexity in the supply chain of thoriated tungsten commonly used in plasma spray gun spares. In the interest of a safer and more sustainable work environment, Oerlikon Metco has developed thorium-free material solutions proven to have longer service life than conventional thoriated spares. This work reports on the effect, if any, caused by tungsten compositional changes and extended service life in coating properties. Microstructure, coating efficiency parameters, hardness, particle state, in situ coating stress, and ex situ modulus are evaluated over the service life duration of the nozzle, comparing coatings with thoriated and non-thoriated nozzles and electrodes with the same spray parameters.

  3. Potential hazard of volatile organic compounds contained in household spray products

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2014-03-01

    To assess the exposure levels of hazardous volatile pollutants released from common household spray products, a total of 10 spray products consisting of six body spray and four air spray products have been investigated. The body spray products included insect repellents (two different products), medicated patch, deodorant, hair spray, and humectant, whereas the air spray products included two different insecticides (mosquito and/or cockroach), antibacterial spray, and air freshener. The main objective of this study was to measure concentrations of 15 model volatile organic compounds (VOCs) using GC/MS coupled with a thermal desorber. In addition, up to 34 ‘compounds lacking authentic standards or surrogates (CLASS)' were also quantified based on the effective carbon number (ECN) theory. According to our analysis, the most common indoor pollutants like benzene, toluene, styrene, methyl ethyl ketone, and butyl acetate have been detected frequently in the majority of spray products with the concentration range of 5.3-125 mg L-1. If one assumes that the amount of spray products released into air reaches the 0.3 mL level for a given space size of 5 m3, the risk factor is expected to exceed the carcinogenic risk level set for benzene (10-5) by the U.S. EPA.

  4. Some Characteristics of Sprays Obtained from Pintle-type Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Marsh, E. T.; Waldron, C. D.

    1933-01-01

    This report presents the results of tests made with the pintle-type injection nozzles, one having a pintle angle of 8 degrees, the other a pintle angle of 30 degrees. The fuel was injected into a glass-windowed pressure chamber and the spray photographed by means of the N.A.C.A. spray photography apparatus. Curves are presented that give the penetration of the spray tips when fuel oil is injected by pressures of 1,500 to 4,000 pounds per square inch into air at room temperature and densities of 11 to 18 atmospheres. High-speed spark photographs show the appearance of the sprays in air at a density of 18 atmospheres. The results indicate that the pintle angles have little effect on the size of the spray cone angle, which is about the same as that of sprays from plain round hole orifices. The penetration of the spray from the nozzle with an 8 degree pintle is slightly higher than that of the spray from the nozzle with a 30 degree pintle. The penetration of the sprays from the pintle nozzles, for comparable conditions of injection pressure and air density, is about the same as that of sprays from round-hole orifices. Increase in air density decreases the penetration in about the same ratio with all the injection pressures.

  5. Quality and bacteriological consequences of beef carcass spray-chilling: Effects of spray duration and boxed beef storage temperature.

    PubMed

    Greer, G G; Jones, S D

    1997-01-01

    The effects of water spray-chilling on beef carcass traits and muscle quality, bacteriology and retail case life were determined in a research abattoir. Chilling treatments were compared using 10 crossbred steer carcasses (280 ± 4 kg) at each spray duration (4, 8, 12 and 16 h) and each vacuum storage temperature (1, 4, 8 and 12 °C). Control sides were air-chilled (1 °C, 24 h) while spray-chilled sides were sprayed with an intermittent water mist at 1 °C in four, 60 s cycles/h for the initial 4-16 h of chilling. The effects of storage temperature were evaluated using vacuum packaged longissimus thoracis (LT) muscle at post-chill intervals of 2, 16, 30 and 44 days. Chilling treatment effects were similar at all spray-chill durations and LT vacuum storage times and temperatures. Carcass spray-chilling did not effect pH, lean colour, % moisture, sarcomere length, shear value or weight loss during the vacuum storage of LT muscle. Carcass fat colour tended to brighten as spray duration was extended up to 12 h, but there was a grey discoloration of fat at spray durations beyond 12 h. Chilling treatment had only marginal effects on anaerobic bacteria during the vacuum storage of LT muscles, or aerobic bacteria during the retail display of rib-eye steaks, and the retail case life of steaks was largely unaffected by spray-chilling. A linear relationship between spray-chill duration and carcass weight loss was determined and carcass shrinkage was reduced by 0.08 g/100 g for every hour of spray-chilling. It was estimated that a major beef processing abattoir could utilize spray-chilling to save more than 2000 kg daily in carcass shrinkage, without compromising quality or increasing spoilage losses. PMID:22061138

  6. Influence of drop size distribution and fuel vapor fraction on premixed spray combustion

    NASA Astrophysics Data System (ADS)

    Machiroutu, Sridhar Venkatabojji

    Premixed spray combustion is affected by fuel and oxidizer properties, mixture equivalence ratio and spray quality. The spray quality is characterized by a mean droplet diameter (SMD) and a droplet size distribution (DSD). Prior experimental studies have considered only the influence of SMD, in part due to the difficulty in controlling the DSD independently. The present work provides experimental evidence demonstrating the effect of the fuel droplet size distribution and fuel vapor fraction on premixed spray combustion. Combustion experiments were performed in a pilot-ignited, continuous flow, tubular, vertical test rig wherein fuel sprays were injected into an air stream. A novel twin-atomizer technique that allowed control over overall equivalence ratio, SMD, DSD, and fuel vapor fraction of the premixed spray was used to generate test sprays. A line-of-sight, infrared (IR) extinction technique was developed to quantify the fuel vapor fraction in premixed sprays. Radial distributions of fuel vapor were evaluated using an 'onion peeling' deconvolution technique. Combustion of test sprays indicated flame propagation among regions of high fuel vapor fraction to generate a high rate of combustion. In lean premixed sprays, the presence of a low fuel vapor concentration does not impact the combustion process. Experimental evidence demonstrating the enhancement of flame propagation velocity for optimal SMDs of ethanol sprays has been found. It was observed that test sprays with narrower DSDs have faster burning rates and more complete combustion. The DSD of the sprays were characterized with a droplet surface-area-based standard deviation of the DSD.

  7. Effects of undercover police stings of gun dealers on the supply of new guns to criminals

    PubMed Central

    Webster, D W; Bulzacchelli, M T; Zeoli, A M; Vernick, J S

    2006-01-01

    Objective To assess the effects of undercover police stings and lawsuits against gun dealers suspected of facilitating illegal gun sales in three US cities (Chicago, Detroit, Gary) on the flow of new firearms to criminals. Methods An interrupted time series design and negative binomial regression analyses were used to test for temporal change in the recovery of guns used in crimes within one year of retail sale in both intervention and comparison cities. Results The stings were associated with an abrupt 46.4% reduction in the flow of new guns to criminals in Chicago (95% confidence interval, −58.6% to −30.5%), and with a gradual reduction in new crime guns recovered in Detroit. There was no significant change associated with the stings in Gary, and no change in comparison cities that was coincident with the stings in Chicago and Detroit. Conclusions The announcement of police stings and lawsuits against suspect gun dealers appeared to have reduced the supply of new guns to criminals in Chicago significantly, and may have contributed to beneficial effects in Detroit. Given the important role that gun stores play in supplying guns to criminals in the US, further efforts of this type are warranted and should be evaluated. PMID:16887943

  8. Separating batterers and guns: a review and analysis of gun removal laws in 50 States.

    PubMed

    Frattaroli, Shannon; Vernick, Jon S

    2006-06-01

    Firearms play an important role in lethal domestic violence incidents. The authors review state laws regarding two policies to separate batterers from firearms: laws authorizing police to remove firearms when responding to a domestic violence complaint ("police gun removal laws") and laws authorizing courts to order guns removed from batterers through a protective order ("court-ordered removal laws"). As of April 2004, 18 states had police gun removal laws; 16 states had court-ordered removal laws. The authors examine relevant characteristics of the laws and recommend that these laws be mandatory, apply to all guns and ammunition possessed by an abuser, and include clear procedures to enhance implementation. PMID:16679498

  9. Containment atmosphere response to external sprays

    SciTech Connect

    Green, J.; Almenas, K.

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  10. Investigation on the suitability of plasma sprayed Fe Cr Al coatings as tritium permeation barrier

    NASA Astrophysics Data System (ADS)

    Fazio, C.; Stein-Fechner, K.; Serra, E.; Glasbrenner, H.; Benamati, G.

    1999-08-01

    Results on the fabrication of a tritium permeation barrier by spraying Fe-Cr-Al powders are described. The sprayed coatings were deposited at temperatures below the Ac1 temperature of the ferritic-martensitic steel substrate and no post-deposition heat treatment was applied. The aim of the investigation was the determination of the efficiency of the coatings to act as tritium permeation barrier. Metallurgical investigations as well as hydrogen isotope permeation measurements were carried out onto the produced coatings. The depositions were performed on ferritic-martensitic steels by means of three types of spray techniques: high velocity oxy fuel, air plasma spray and vacuum plasma spray.

  11. Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of SiC Ceramics

    NASA Astrophysics Data System (ADS)

    García, E.; Nistal, A.; Martín de la Escalera, F.; Khalifa, A.; Sainz, M. A.; Osendi, M. I.; Miranzo, P.

    2015-01-01

    The suitability of certain glass compositions in the Y2O3-Al2O3-SiO2 (YAS) system as protecting coatings for silicon carbide components has been prospected. One particular YAS composition was formulated considering its glass formation ability and subsequent crystallization during service. Round-shaped and homogeneous granules of the selected composition were prepared by spray drying the corresponding homogeneous oxide powder mixture. Glassy coatings (197 µm thick) were obtained by oxyacetylene flame spraying the YAS granules over SiC substrates, previously grit blasted and coated with a Si bond layer (56 µm thick). Bulk glass of the same composition was produced by the conventional glass casting method and used as reference material for comparative evaluation of the characteristic glass transition temperatures, crystallization behavior, mechanical, and thermal coating properties. The mechanical properties and thermal conductivity of the coating were lower than those of the bulk glass owing to its lower density, higher porosity, and characteristic lamellar structure. The crystallization of both bulk glass and coating occurred during isothermal treatments in air at 1100-1350 °C. Preliminary data on ablation tests at 900 °C using the oxyacetylene gun indicated that the YAS glassy coating was a viable protective shield for the SiC substrate during 150 s.

  12. Circuit Model for Gun Driven Spheromaks

    SciTech Connect

    Thomassen, K I

    2000-07-14

    In this note we derive circuit equations for sustained spheromaks, in the phase after a spheromak is detached from the gun and sustained in a flux conserver. The impedance of the spheromak during the formation and ''bubble burst'' phase has been discussed by Barnes et. al. We assume here that the spheromak is formed and helicity is being delivered to it from the gun, currents are above the threshold current, and the {lambda}-gradients are outward ({lambda} decreasing inward). We follow an open field line that begins and ends at the gun electrodes, encircling the closed flux surfaces of the spheromak, and apply power and helicity balance equations for this gun-driven system. In addition to these equations one will need to know the initial conditions (currents, stored energies) after the ''bubble burst'' in order to project forward in time.

  13. The electric rail gun for space propulsion

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  14. Arc-driven rail gun research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1984-01-01

    The equations describing the performance of an inductively-driven rail gun are analyzed numerically. Friction between the projectile and rails is included through an empirical formulation. The equations are applied to the experiment of Rashleigh and Marshall to obtain an estimate of energy distribution in rail guns as a function of time. The effect of frictional heat dissipation on the bore of the gun is calculated. The mechanism of plasma and projectile acceleration in a dc rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  15. Direct launch using the electric rail gun

    NASA Technical Reports Server (NTRS)

    Barber, J. P.

    1983-01-01

    The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.

  16. Arc Plasma Gun With Coaxial Powder Feed

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  17. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  18. Toroid Joining Gun For Fittings And Couplings

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.

    1992-01-01

    Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.

  19. Spray drift mitigation with spray mix adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Four new drift control adjuvants were sele...

  20. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  1. Conference on electromagnetic guns and launchers, 1980

    SciTech Connect

    Anon

    1982-01-01

    Proceedings includes 31 papers dealing with the physical principles and engineering technology associated with the development of electromagnetic propulsion, with emphasis on its use for guns, launchers as well as other military equipment. Topics covered include: rail guns, projectiles, mass accelerators, electric motors and generators, nuclear reactors, superconducting devices, plasma acceleration and confinement, traveling magnetic waves, aerospace propulsion, space shuttles, homopolar generators, fusion reactors, tokamaks, impact fusion, and electric power generation. 14 papers are abstracted and indexed separately.

  2. Current implications of past DDT indoor spraying in Oman.

    PubMed

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. PMID:26820926

  3. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling

    SciTech Connect

    Ge, Hai-Wen; Gutheil, Eva

    2008-04-15

    A joint mixture fraction-enthalpy probability density function (PDF) is proposed for the simulation of turbulent spray flames. The PDF transport equation is deduced and modeled. The interaction-by-exchange-with-the-mean (IEM) model that has been developed for gas-phase flows is extended to describe molecular mixing in nonreactive and reactive spray flows. The joint PDF transport equation is solved by a hybrid finite-volume and Lagrangian Monte Carlo method. Standard spray and turbulence models are used to describe the gas phase and the liquid phase. A turbulent methanol/air spray flame is simulated using the present method. Detailed chemistry is implemented through the spray flamelet model. The precalculated spray flamelet library for methanol/air combustion comprises 23 species and 168 elementary reactions. Thus, the model is capable of predicting the formation of radicals and of pollutants. Different values for the model constant C{sub {phi}} in the IEM model are tested. The numerical results for the gas velocity, the gas temperature, and the mass fraction of methanol vapor are compared with experimental data in the literature. Good agreement with experiment is obtained when C{sub {phi}}=2.0. Marginal PDFs of mixture fraction, enthalpy, and gas temperature are presented. The computed PDFs of mixture fraction are compared with the presumed standard {beta} function and modified {beta} function. The results show that the standard {beta} function fails to reproduce bimodal shapes observed in transported PDF computation, while the modified {beta} function, fits the computed PDFs very well. Moreover, joint PDFs of mixture fraction and enthalpy are presented and analyzed. The enthalpy and mixture fraction are strongly correlated. The samples that deviate from the linear correlation are due to the energy consumption of local spray evaporation. (author)

  4. Plasma Spray System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Computer aided, fully-automatic TRW system sprays very hot plasma onto a turbine blade. Composed of gas into which metallic and ceramic powders have been injected, the plasma forms a two-layer coating which insulates the blade. Critical part of operation is controlling the thickness of the deposit which is measured in thousandths of an inch. This is accomplished by an optical detector which illuminates spots at various locations on the blade and determines thickness by measuring the light reflections. Optical sensor monitors spraying process until precise thickness is attained, then computer halts the spraying.

  5. NPS Gas Gun for Planar Impact Studies

    NASA Astrophysics Data System (ADS)

    Cheong Ho, Chien; Hixson, Robert

    2009-11-01

    The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.

  6. Supersonic-Spray Cleaner

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B.; Lin, Feng-Nan; Thaxton, Eric A.

    1995-01-01

    Spraying system for cleaning mechanical components uses less liquid and operates at pressures significantly lower. Liquid currently used is water. Designed to replace chlorofluorocarbon (CFC) solvent-based cleaning and cleanliness verification methods. Consists of spray head containing supersonic converging/diverging nozzles, source of gas at regulated pressure, pressurized liquid tank, and various hoses, fittings, valves, and gauges. Parameters of nozzles set so any of large variety of liquids and gases combined in desired ratio and rate of flow. Size and number of nozzles varied so system built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. Also used to verify part adequately cleaned. Runoff liquid from spray directed at part collected. Liquid analyzed for presence of contaminants, and part recleaned if necessary.

  7. Bug spray poisoning

    MedlinePlus

    ... effective bug sprays contain pyrethrins. Pyrethrins are a pesticide made from the chrysanthemum flower. It is generally ... death. References Borron SW. Pyrethrins, repellants, and other pesticides. In: Shannon MW, Borron SW, Burns MJ, eds. ...

  8. Mometasone Nasal Spray

    MedlinePlus

    ... sneezing, stuffy, runny, itchy nose) caused by the common cold. Mometasone nasal spray is in a class of ... taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  9. Beclomethasone Nasal Spray

    MedlinePlus

    ... relieve symptoms of sneezing, runny, stuffy, or itchy nose (rhinitis) caused by hay fever, other allergies, or ... nasal polyps (swelling of the lining of the nose) after nasal polyp removal surgery. Beclomethasone nasal spray ...

  10. Budesonide Nasal Spray

    MedlinePlus

    ... used to relieve sneezing, runny, stuffy, or itchy nose caused by hay fever or other allergies (caused ... treat symptoms (e.g., sneezing, stuffy, runny, itchy nose) caused by the common cold. Budesonide nasal spray ...

  11. Mometasone Nasal Spray

    MedlinePlus

    ... relieve symptoms of sneezing, runny, stuffy, or itchy nose caused by hay fever or other allergies. It ... nasal polyps (swelling of the lining of the nose). Mometasone nasal spray should not be used to ...

  12. Bug spray poisoning

    MedlinePlus

    ... effective bug sprays contain pyrethrins. Pyrethrins are a pesticide made from the chrysanthemum flower. It is generally ... Borron SW. Pyrethrins, repellants, and other pesticides. In: Shannon ... of Poisoning and Drug Overdose . 4th ed. Philadelphia, PA: ...

  13. Olopatadine Nasal Spray

    MedlinePlus

    ... a stuffy, runny or itchy nose caused by allergic rhinitis (hay fever). Olopatadine is in a class of ... Olopatadine nasal spray controls the symptoms of seasonal allergic rhinitis, but does not cure these condition. Continue to ...

  14. Nasal corticosteroid sprays

    MedlinePlus

    ... Allergic rhinitis symptoms , such as congestion, runny nose, sneezing, itching, or swelling of the nasal passageway Nasal ... Repeat these steps for the other nostril. Avoid sneezing or blowing your nose right after spraying.

  15. Nicotine Nasal Spray

    MedlinePlus

    ... the bottle in front of a tissue or paper towel. Pump the spray bottle six to eight times ... up the spill immediately with a cloth or paper towel. Avoid touching the liquid. Throw away the used ...

  16. Beclomethasone Nasal Spray

    MedlinePlus

    ... the lining of the nose) after nasal polyp removal surgery. Beclomethasone nasal spray should not be used ... as well as any products such as vitamins, minerals, or other dietary supplements. You should bring this ...

  17. Ciclesonide Nasal Spray

    MedlinePlus

    ... used to treat the symptoms of seasonal (occurs only at certain times of the year), and perennial ( ... prescribed by your doctor.Ciclesonide nasal spray is only for use in the nose. Do not swallow ...

  18. Fentanyl Sublingual Spray

    MedlinePlus

    Fentanyl sublingual spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  19. Fentanyl Nasal Spray

    MedlinePlus

    Fentanyl nasal spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  20. Separating Batterers and Guns: A Review and Analysis of Gun Removal Laws in 50 States

    ERIC Educational Resources Information Center

    Frattaroli, Shannon; Vernick, Jon S.

    2006-01-01

    Firearms play an important role in lethal domestic violence incidents. The authors review state laws regarding two policies to separate batterers from firearms: laws authorizing police to remove firearms when responding to a domestic violence complaint ("police gun removal laws") and laws authorizing courts to order guns removed from batterers…

  1. Gun Carrying by High School Students in Boston, MA: Does Overestimation of Peer Gun Carrying Matter?

    ERIC Educational Resources Information Center

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M.; Miller, Matthew; Azrael, Deborah

    2011-01-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1700 high school students in Boston, MA. Over 5% of students reported carrying a…

  2. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  3. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  4. Directed spray mast

    DOEpatents

    Nance, Thomas A.; Siddall, Alvin A.; Cheng, William Y.; Counts, Kevin T.

    2005-05-10

    Disclosed is an elongated, tubular, compact high pressure sprayer apparatus for insertion into an access port of vessels having contaminated interior areas that require cleaning by high pressure water spray. The invention includes a spray nozzle and a camera adjacent thereto with means for rotating and raising and lowering the nozzle so that areas identified through the camera may be cleaned with a minimum production of waste water to be removed.

  5. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  6. Thermally sprayed coatings

    SciTech Connect

    Diaz, D.J.; Blann, G.A. )

    1991-05-01

    Standardization of specimen preparation for microstructural evaluation of thermally sprayed coatings is considered. Metallographic specimen preparation procedures including sectioning, encapsulation, planar grinding, and power lapping of thermally sprayed coatings are described. A Co-Ni-Cr-W coating on an AISI 410 stainless steel substrate is used as a control sample. Specimen-preparation techniques have been evaluated through scanning electron microscopy for determining the percentage of apparent porosity and energy dispersive spectroscopy for determining elemental composition.

  7. The characteristics of coatings applied by the DEMETON detonation gun process

    SciTech Connect

    Kadyrov, V.H.; Brik, V.B.; Worzala, F.J.; Florey, C.

    1994-12-31

    The characteristics of a detonation spray process, using a Detonation Gun developed at the Institute for Materials Science in Kiev, is described. This process has achieved measured velocities in the vicinity of 1,200 m/sec. It is shown that because the powder particles are carried by a high velocity pressure wave, the amount of heat transferred to the substrate is relatively low. Therefore, this process will be able to apply coatings to some materials that could not be coated by other processes that heated the substrate to the point of distortion or melting. The coatings produced have very high densities, in the range of 1--3% porosity, and excellent adhesion, up to 240 MPa. It is proposed that the high densities and adhesion observed for these coatings result from an anomalously high diffusion rate of atoms at the surface. When the high velocity particles strike the substrate surface, mixing rates are significantly enhanced under the driving force of the highly unstable system. A series of coatings were applied to several substrates using the D-gun process, the HVOF and the plasma spray process. Coatings were examined and compared. The results of this study are presented.

  8. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    NASA Technical Reports Server (NTRS)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  9. Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation.

    PubMed

    Maa, Y F; Nguyen, P A; Sit, K; Hsu, C C

    1998-11-01

    The objective of this work was to improve a bench-top spray dryer's efficiency in both production recovery and throughput for preparing protein aerosol powders. A Büchi mini-spray dryer was used to prepare the powders of recombinant humanized anti-IgE antibody. The resulting powder's physical properties such as particle size, residual moisture, and morphology, along with its recovery and production rate was the basis of this development work. Mass balance suggests that approximately 10-20% of powder was lost in the exhaust air, consisting primarily of particles less than 2 micrometer. Also, significant loss (20-30%) occurred in the cyclone. Attempts were made to improve product recovery in the receiving vessel using dual-cyclone configurations, different cyclone designs, cyclones with anti-static treatment, and different receiver designs. System modifications such as replacing the original bag-filter unit with a vacuum system effectively reduced drying air flow resistance, allowing the protein to be dried at a lower inlet air temperature and the production scale to be increased. We concluded that the modified spray-drying system is advantageous over the original bench-top spray dryer. This improvement will be beneficial to early-stage research and development involving high-valued protein powders. PMID:10099432

  10. Microstructure and properties of thermally sprayed silicon nitride-based coatings

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Berger, L.-M.; Herrmann, M.; Nebelung, M.; Heimann, R. B.; Schnick, T.; Wielage, B.; Vuoristo, P.; Schnick, T.

    2002-06-01

    The preparation of thermally sprayed, dense, Si3N4-based coatings can be accomplished using composite spray powders with Si3N4 embedded in a complex oxide binder matrix. Powders with excellent processability were developed and produced by agglomeration (spray drying) and sintering. Optimization of the heat transfer into the powder particles was found to be the most decisive factor necessary for the production of dense and well-adhering coatings. In the present work, different thermal spray processes such as detonation gun spraying (DGS), atmospheric plasma spraying (APS) with axial powder injection, and high-velocity oxyfuel spraying (HVOF) were used. The coatings were characterized using optical and scanning electron microscopy (SEM), x-ray diffraction (XRD), and microhardness testing. The wear resistance was tested using a rubber wheel abrasion wear test (ASTM G65). In addition, thermoshock and corrosion resistances were determined. The microstructure and the performance of the best coatings were found to be sufficient, suggesting the technical applicability of this new type of coating.

  11. The supply and demand for guns to juveniles: Oakland's gun tracing project.

    PubMed

    Calhoun, Deane; Dodge, Andrea Craig; Journel, Coraline S; Zahnd, Elaine

    2005-12-01

    In response to Oakland, California's high level of gun violence affecting young people, the East Oakland Partnership to Reduce Juvenile Gun Violence, a citywide collaboration, was formed in 1997. In 1999, the Partnership established the Oakland Gun Tracing Project to develop evidence-based policy recommendations aimed at reducing the supply of and demand for gun acquisition among urban youth. The advocacy project involved gathering, analyzing, and using police record and gun sale/registration data to inform policy and practice. Such data were collected for all gun crimes committed in Oakland, California between 1998 and 1999 in which a juvenile was either the suspect or the victim. The 213 cases involved 263 juveniles of which 170 were suspects/perpetrators and 93 were victims. Suspects as well as victims were predominantly male and African American. The 213 cases involved 132 recovered guns. Only 55% of the cases were traced to a federally licensed dealer. Three-quarters of the guns were purchased near Oakland, California. Successful traces, defined as the ability to identify federally licensed dealers and initial purchasers, were completed on only 52 of the 132 guns, demonstrating systemic tracing difficulties. Data gathered for the project was used to advocate for numerous policy changes. Recommended policy strategies include initiating a comprehensive gun tracing program so police can track all secondary sales, new laws requiring federal handgun registration which would track ownership changes, required reporting of stolen firearms, and providing effective intervention services to all juveniles the first time they enter the criminal justice system. PMID:16269532

  12. Modeling of gas turbine fuel nozzle spray

    SciTech Connect

    Rizk, N.K.; Chin, J.S.; Razdan, M.K.

    1997-01-01

    Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A two-dimensional fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the air-assist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on the partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near-critical evaporation. The present investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel-rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon and CO in atomizer flowfield.

  13. Solid oxide fuel cell processing using plasma arc spray deposition techniques

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  14. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  15. A high-brightness thermionic microwave electron gun

    SciTech Connect

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun's performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. State-of-the-art'' microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 {pi} {center dot} m{sub e}c {center dot} {mu}m for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread {plus minus}10%. These emittances are for up to 5 {times} 10{sup 9}e{sup {minus}} per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 {pi} {center dot} m{sub e} {center dot} {mu}m.

  16. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  17. Electron gun system for NSC KIPT linac

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; He, Da-Yong; Chi, Yun-Long

    2014-06-01

    In the NSC KIPT linac, a neutron source based on a subcritical assembly driven by a 100 MeV/100 kW electron linear accelerator is under design and development. The linear accelerator needs a new high current electron gun. In this paper, the physical design, mechanical fabrication and beam test of this new electron gun are described. The emission current is designed to be higher than 2 A for the pulse width of 3 μs with repetition rate of 50 Hz. The gun will operate with a DC high voltage power supply that can provide a high voltage up to 150 kV. Computer simulations and optimizations have been carried out in the design stage, including the gun geometry and beam transport line. The test results of high voltage conditioning and beam test are presented. The operation status of the electron gun system is also included. The basic test results show that the design, manufacture, and operation of the new electron system are basically successful.

  18. ECR ion source with electron gun

    DOEpatents

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  19. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  20. [Comparison of wound morphology following gunshots by machine guns and sub-machine guns].

    PubMed

    Grellner, W; Madea, B

    1999-01-01

    Automatic weapons such as machine guns and submachine guns are found in the German-speaking region only in special army and police units and appear accordingly rarely in homicides, suicides and accidents. In the following, the findings in two cases of death with the use of machine and submachine guns are presented. The first case was a fatal accident during shooting on a training area (current machine gun of the German army, calibre 7.62 x 51 mm), the second case was a killing during a physical conflict (submachine gun MP 40 from World War II, calibre 9 x 19 mm). In the case with the machine gun autopsy disclosed typical entry holes corresponding to the calibre, but unusually large exit wounds with tissue bridges in the wound ground, measuring 4 x 2.5 cm in diameter. By contrast, the second case (submachine gun) showed "normal" entry and exit wounds. The differences are mainly caused by deviating ballistic data of the ammunition used. They are discussed against the background of literature on wound ballistics. PMID:10198694