Science.gov

Sample records for air static pressure

  1. On Static Pressure Fluctuation between Sirocco Fan Blades in a Car Air-Conditioning System

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiko; Kato, Takaaki; Moriguchi, Yuu; Sakai, Masaharu; Ito, Kouji; Mitsuishi, Yasushi; Nagata, Kouji; Kubo, Takashi

    In this study, special attention is directed to static pressure fluctuation in a sirocco fan for a car air-conditioning system, because it is expected that there is a close connection between the fluid noise and the pressure fluctuation. The final purpose of this study is to clarify the relationship between the static pressure fluctuation between fan blades and the sound noise emitted to the outside of the fan, and to develop an air-conditioning system with highly low noise level. For this purpose, first of all, a new micro probe for the measurement of static pressure fluctuation has been developed. This new micro probe is composed of an L-type static pressure tube (the outer diameter is 0.5 mm and the inner diameter is 0.34 mm) and a very small pressure transducer. This probe exhibits a flat frequency response until approximately 2,000 Hz, and it is set between the blades of the fan rotating at 1,500 rpm. The measurements of the static pressure fluctuation between the blades have been performed, and the intensity of sound source was quantified from the second derivative of the phase-averaged static pressure fluctuation signals on the basis of Ribner's formula (Ribner 1962). The experiments have been made in two different modes, i.e., the cooling mode (FACE MODE) and the heating mode (FOOT MODE). It is shown that the static pressure increases rapidly as the blade approaches to the nose of the casing. It is also found that the sound source for FACE MODE shows the larger value than that for FOOT MODE as a whole. In particular, the largest intensity of sound source is observed when the blade approaches to the nose. From these results, it is confirmed that the present new static pressure probe is useful to specify the distributions of sound source in a sirocco fan.

  2. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air...

  3. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air...

  4. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air...

  5. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air...

  6. 14 CFR 29.1325 - Static pressure and pressure altimeter systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... between air pressure in the static pressure system and true ambient atmospheric static pressure is not... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure and pressure altimeter...: Installation § 29.1325 Static pressure and pressure altimeter systems. (a) Each instrument with static air...

  7. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  8. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...

  9. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...

  10. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...

  11. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...

  12. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...

  13. New data for aerosols generated by releases of pressurized powders and solutions in static air

    SciTech Connect

    Ballinger, M.Y.; Sutter, S.L.; Hodgson, W.H.

    1987-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop radioactive source-term estimation methods. Experiments measuring the mass airborne and particle size distribution of aerosols produced by pressurized releases were run. Carbon dioxide was used to pressurize uranine solutions to 50, 250, and 500 psig before release. The mass airborne from these experiments was higher than for comparable air-pressurized systems, but not as great as expected based on the amount of gas dissolved in the liquid and the volume of liquid ejected from the release equipment. Flashing sprays of uranine at 60, 125, and 240 psig produced a much larger source term than all other pressurized releases performed under this program. Low-pressure releases of depleted uranium dioxide at 9, 17.5, and 24.5 psig provided data in the energy region between 3-m spills and 50-psig pressurized releases.

  14. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...

  15. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...

  16. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...

  17. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...

  18. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...

  19. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...

  20. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...

  1. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...

  2. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...

  3. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...

  4. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  5. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  6. Measurement of static pressure on aircraft

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1958-01-01

    Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.

  7. Static spherically symmetric wormholes with isotropic pressure

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo

    2016-06-01

    In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

  8. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  9. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  10. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  11. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  12. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  13. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  14. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  15. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  16. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  17. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  18. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.

    PubMed

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min(-1). The nonlinear behavior allows sensitivities equal to 0.6 V l(-1) min for flow rates ranging from -2.0 to +2.0 l min(-1), equal to 2.0 V l(-1) min for flow rates ranging from -3.0 to -2.0 l min(-1) and from +2.0 to +3.0 l min(-1), up to 5.7 V l(-1) min at higher flow rates ranging from -7.0 to -3.0 l min(-1) and from +3.0 to +7.0 l min(-1). The linear range extends from 3.0 to 7.0 l min(-1) with constant sensitivity equal to 5.7 V l(-1) min. The sensor is able to detect a flow-rate equal to 1.0 l min(-1) with a sensitivity of about 400 mV l(-1) min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min(-1), corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l(-1) min. PMID:21361616

  19. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    NASA Astrophysics Data System (ADS)

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min-1. The nonlinear behavior allows sensitivities equal to 0.6 V l-1 min for flow rates ranging from -2.0 to +2.0 l min-1, equal to 2.0 V l-1 min for flow rates ranging from -3.0 to -2.0 l min-1 and from +2.0 to +3.0 l min-1, up to 5.7 V l-1 min at higher flow rates ranging from -7.0 to -3.0 l min-1 and from +3.0 to +7.0 l min-1. The linear range extends from 3.0 to 7.0 l min-1 with constant sensitivity equal to 5.7 V l-1 min. The sensor is able to detect a flow-rate equal to 1.0 l min-1 with a sensitivity of about 400 mV l-1 min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min-1, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l-1 min.

  20. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  1. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  2. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  3. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  4. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  5. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  6. Measurement of the True Dynamic and Static Pressures in Flight

    NASA Technical Reports Server (NTRS)

    Kiel, Georg

    1939-01-01

    In this report, two reliable methods are presented, with the aid of which the undisturbed flight dynamic pressure and the true static pressure may be determined without error. These problems were solved chiefly through practical flight tests.

  7. A short static-pressure probe design for supersonic flow

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1975-01-01

    A static-pressure probe design concept was developed which has the static holes located close to the probe tip and is relatively insensitive to probe angle of attack and circumferential static hole location. Probes were constructed with 10 and 20 deg half-angle cone tips followed by a tangent conic curve section and a tangent cone section of 2, 3, or 3.5 deg, and were tested at Mach numbers of 2.5 and 4.0 and angles of attack up to 12 deg. Experimental results indicate that for stream Mach numbers of 2.5 and 4.0 and probe angle of attack within + or - 10 deg, values of stream static pressure can be determined from probe calibration to within about + or - 4 percent. If the probe is aligned within about 7 deg of the flow experimental results indicated, the stream static pressures can be determined to within 2 percent from probe calibration.

  8. Miniature Flow-Direction/Pitot-Static Pressure Probes

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  9. Nitromethane decomposition under high static pressure.

    PubMed

    Citroni, Margherita; Bini, Roberto; Pagliai, Marco; Cardini, Gianni; Schettino, Vincenzo

    2010-07-29

    The room-temperature pressure-induced reaction of nitromethane has been studied by means of infrared spectroscopy in conjunction with ab initio molecular dynamics simulations. The evolution of the IR spectrum during the reaction has been monitored at 32.2 and 35.5 GPa performing the measurements in a diamond anvil cell. The simulations allowed the characterization of the onset of the high-pressure reaction, showing that its mechanism has a complex bimolecular character and involves the formation of the aci-ion of nitromethane. The growth of a three-dimensional disordered polymer has been evidenced both in the experiments and in the simulations. On decompression of the sample, after the reaction, a continuous evolution of the product is observed with a decomposition into smaller molecules. This behavior has been confirmed by the simulations and represents an important novelty in the scene of the known high-pressure reactions of molecular systems. The major reaction product on decompression is N-methylformamide, the smallest molecule containing the peptide bond. The high-pressure reaction of crystalline nitromethane under irradiation at 458 nm was also experimentally studied. The reaction threshold pressure is significantly lowered by the electronic excitation through two-photon absorption, and methanol, not detected in the purely pressure-induced reaction, is formed. The presence of ammonium carbonate is also observed. PMID:20608697

  10. Quasi-static vapor pressure measurements on reactive systems in inert atmosphere box

    NASA Technical Reports Server (NTRS)

    Fischer, A. K.

    1968-01-01

    Apparatus makes vapor pressure measurements on air-sensitive systems in an inert atmosphere glove box. Once the apparatus is loaded with the sample and all connections made, all measuring operations may be performed outside the box. The apparatus is a single-tube adaptation of the double-tube quasi-static technique.

  11. Hot-film static-pressure probe for surveying flow fields

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Weinstein, L. M.

    1981-01-01

    A static pressure probe employing hot-film sensors has been developed for the rapid measurement of the static pressure fields surrounding analytic shapes in hypersonic flows. The hot-film probe is a modification of the standard static pressure probe, consisting of a front hot-film sensor operated as a resistance thermometer, a rear sensor operated at an overheat ratio of 1.5 to 1.8 and a small sonic orifice installed inside the tubing of a conventional device. The probe has been calibrated in helium and air over a range of temperatures and pressures in a bell jar apparatus, with a repeatability of the data to within + or - 0.015 mm Hg. Comparative tests of the hot-film and conventional static pressure probes in a hypersonic helium wind tunnel at Mach 20 and various Reynolds numbers have indicated the settling time of the hot-film probe to be on the order of milliseconds, as compared with 30 sec for the conventional probe. The pressures measured by the two probes were found to be within 10% of each other. Although the hot-film probe makes flow-field static pressure surveys more practical in blowdown hypersonic wind tunnels, viscous and flow angle effects still must be assessed under the conditions of use.

  12. Comparison of FBG responses to static and dynamic pressures

    NASA Astrophysics Data System (ADS)

    Shafir, E.; Zilberman, S.; Ravid, A.; Glam, B.; Appelbaum, G.; Fedotov Gefen, A.; Saadi, Y.; Shafir, N.; Berkovic, G.

    2014-05-01

    FBGs respond to external pressures in ways that reflect both the strain-optic effect and the geometrical variations, both induced by the applied pressure. While the response to static isotropic pressure is quite straight forward and intuitive, the response to anisotropic shock waves is much more complex and depends also on the relative orientation between the fiber and the shock propagation direction. We describe and explain experimental results for both cases.

  13. Terapascal static pressure generation with ultrahigh yield strength nanodiamond

    PubMed Central

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-01-01

    Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944

  14. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    PubMed

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944

  15. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64...

  16. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64...

  17. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64...

  18. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64...

  19. 14 CFR 33.64 - Pressurized engine static parts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized engine static parts. 33.64 Section 33.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.64...

  20. Static filling pressure in patients during induced ventricular fibrillation.

    PubMed

    Schipke, J D; Heusch, G; Sanii, A P; Gams, E; Winter, J

    2003-12-01

    The static pressure resulting after the cessation of flow is thought to reflect the filling of the cardiovascular system. In the past, static filling pressures or mean circulatory filling pressures have only been reported in experimental animals and in human corpses, respectively. We investigated arterial and central venous pressures in supine, anesthetized humans with longer fibrillation/defibrillation sequences (FDSs) during cardioverter/defibrillator implantation. In 82 patients, the average number of FDSs was 4 +/- 2 (mean +/- SD), and their duration was 13 +/- 2 s. In a total of 323 FDSs, arterial blood pressure decreased with a time constant of 2.9 +/- 1.0 s from 77.5 +/- 34.4 to 24.2 +/- 5.3 mmHg. Central venous pressure increased with a time constant of 3.6 +/- 1.3 s from 7.5 +/- 5.2 to 11.0 +/- 5.4 mmHg (36 points, 141 FDS). The average arteriocentral venous blood pressure difference remained at 13.2 +/- 6.2 mmHg. Although it slowly decreased, the pressure difference persisted even with FDSs lasting 20 s. Lack of true equilibrium pressure could possibly be due to a waterfall mechanism. However, waterfalls were identified neither between the left ventricle and large arteries nor at the level of the diaphragm in supine patients. We therefore suggest that static filling pressures/mean circulatory pressures can only be directly assessed if the time after termination of cardiac pumping is adequate, i.e., >20 s. For humans, such times are beyond ethical options. PMID:12907428

  1. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  2. Decomposition products of TATB under high static pressure

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan; Stavrou, Elissaios; Zaug, Joseph

    We have investigated the decomposition products of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) at static pressures up to 50 GPa using Raman and IR absorption spectroscopy. Decomposition was driven by various continuous wave and pulsed laser drives. We compare decomposition behavior and products obtained at the different pressures. Preliminary results at lower pressures indicate the formation of carbon dioxide, nitrogen, amorphous carbon and possibly hydrogen. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344

  3. Static pressure orifice system testing method and apparatus

    NASA Technical Reports Server (NTRS)

    Culotta, R. F.; Posey, D. L. (Inventor)

    1980-01-01

    A method and apparatus are presented for pressure testing the static pressure orifices and associated connections used in wind tunnels. A cylindrical module, having in one end an open hemispherical calibration pressure chamber separated from and surrounded by an annular vacuum chamber is placed over the orifice of the system to be tested. O-rings ensure seating and a vacuum seal between the chambered end of the module and the surface around the orifice: one O-ring separates the outer chamber from the outside environment. Ports lead from each of the chambers out the other end of the module to tubes connected to a control box consisting of calibration pressure and vacuum supply lines, bleeder valves, and gauges.

  4. Static and dynamic high pressure experiments on cerium

    SciTech Connect

    Jensen, Brian J; Velisavljevic, Nenad; Cherne, Frank J; Stevens, Gerald; Tschauner, Oliver

    2011-01-25

    There is a scientific need to obtain dynamic data to develop and validate multi phase equation-of-state (EOS) models for metals. Experiments are needed to examine the relevant pure phases, to locate phase boundaries and the associated transition kinetics, and other material properties such as strength. Cerium is an ideal material for such work because it exhibits a complex multiphase diagram at relatively moderate pressures readily accessible using standard shock wave methods. In the current work, shock wave (dynamic) and diamond anvil cell (static) experiments were performed to examine the high pressure, low temperature region of the phase diagram to obtain EOS data and to search for the {alpha}-{var_epsilon} boundary. Past work examining the shock-melt transition and the low-pressure {gamma}-{alpha} transition will be presented in brief followed by details of recent results obtained from DAC and double-shock experiments.

  5. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Astrophysics Data System (ADS)

    Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet

    1992-07-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  6. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Astrophysics Data System (ADS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1992-02-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  7. Description of a Pressure Measurement Technique for Obtaining Surface Static Pressures of a Radial Turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1992-01-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  8. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet

    1992-01-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  9. New findings in static high-pressure science

    SciTech Connect

    Hemley, R.J.; Mao, H.-k.

    2010-11-16

    Recent static high P-T experiments using diamond anvil cell techniques reveal an array of phenomena and provide new links to dynamic compression experiments. Selected recent developments are reviewed, including new findings in hot dense hydrogen, the creation of new metals and superconductors, new transitions in molecular and other low-Z systems, the behavior of iron and transition metals, chemical changes of importance in geoscience and planetary science, and the creation of new classes of high-pressure devices based on CVD diamond. These advances have set the stage for the next set of developments in this rapidly growing area.

  10. Portable dynamic pressure generator for static and dynamic calibration of in situ pressure transducers

    NASA Technical Reports Server (NTRS)

    Bolt, P. A.; Hess, R. W.; Davis, W. T.

    1983-01-01

    A portable dynamic pressure generator was developed to meet the requirements of determining the dynamic sensitivities of in situ pressure transducers at low frequencies. The device is designed to operate in a frequency range of 0 to 100 Hz, although it was only tested up to 30 Hz, and to generate dynamic pressures up to 13.8 kPa (2 psi). A description of the operating characteristics and instrumentation used for pressure, frequency, and displacement measurements is given. The pressure generator was used to statically and dynamically calibrate transducers. Test results demonstrated that a difference an exist between the static and dynamic sensitivity of a transducer, confirming the need for dynamic calibrations of in situ pressure transducers.

  11. Plume diagnostics of SRM static firings for pressure perturbation studies

    NASA Technical Reports Server (NTRS)

    Sambamurthi, J. K.; Alvarado, Alexis; Mathias, Edward C.

    1995-01-01

    During the shuttle launches, the solid rocket motors (SRM) occasionally experience pressure perturbations (8-13 psi) between 65 and 75 seconds into the motor burn time. The magnitudes of these perturbations are very small in comparison with the operating motor chamber pressure, which is over 600 psi during this time frame. These SRM pressure perturbations are believed to be caused primarily by the expulsion of slag (aluminum oxide). Two SRM static tests, TEM-11 and FSM-4, were instrumented extensive]y for the study of the phenomenon associated with pressure perturbations. The test instrumentation used included nonintrusive optical and infrared diagnostics of the plume, such as high-speed photography, radiometers, and thermal image cameras. Results from all these nonintrusive observations strongly support the scenario that the pressure perturbation event in the shuttle SRM is caused primarily by the expulsion of molten slag. The slag was also expelled preferentially near the bottom of the nozzle due to slag accumulation at the bottom of the aft end of the horizontally oriented motor.

  12. 30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I conduct a static bottomhole... static bottomhole pressure survey? (a) You must conduct a static bottomhole pressure survey under the following conditions: If you have . . . Then you must conduct . . . (1) A new producing reservoir A...

  13. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.

  14. Error in Airspeed Measurement Due to the Static-Pressure Field Ahead of an Airplane at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    O'Bryan, Thomas C; Danforth, Edward C B; Johnston, J Ford

    1955-01-01

    The magnitude and variation of the static-pressure error for various distances ahead of sharp-nose bodies and open-nose air inlets and for a distance of 1 chord ahead of the wing tip of a swept wing are defined by a combination of experiment and theory. The mechanism of the error is discussed in some detail to show the contributing factors that make up the error. The information presented provides a useful means for choosing a proper location for measurement of static pressure for most purposes.

  15. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  16. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  17. An improved static probe design. [for in-stream pressure measurement in supersonic flows

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1974-01-01

    A new static probe design is described in which the static holes are located much closer to the tip than in conventional probes. The new probe shows promise for use in some situations where conventional probes become highly inaccurate. An additional advantage of the new design is that, when used in static pressure survey rakes, the probes can be located much closer together than in conventional designs and still ensure that disturbances from neighboring probe tips do not affect the static readings.

  18. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  19. On Radiation Pressure in Static, Dusty H II Regions

    NASA Astrophysics Data System (ADS)

    Draine, B. T.

    2011-05-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms) to shell-like (large Q 0 n rms). When Q 0 n rms >~ 1052 cm-3 s-1, dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms, a fourth quantity, which can be Q 0, determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest—such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas—depend on β, γ, and Q 0 n rms. For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  20. Prediction of Severe Eye Injuries in Automobile Accidents: Static and Dynamic Rupture Pressure of the Eye

    PubMed Central

    Kennedy, Eric A.; Voorhies, Katherine D.; Herring, Ian P.; Rath, Amber L.; Duma, Stefan M.

    2004-01-01

    The purpose of this paper is to determine the static and dynamic rupture pressures of 20 human and 20 porcine eyes. This study found the static test results show an average rupture pressure for porcine eyes of 1.00 ± 0.18 MPa while the average rupture pressure for human eyes was 0.36 ± 0.20 MPa. For dynamic loading, the average porcine rupture pressure was 1.64 ± 0.32 MPa, and the average rupture pressure for human eyes was 0.91 ± 0.29 MPa. Significant differences are found between average rupture pressures from all four groups of tests (p = 0.01). A risk function has been developed and predicts a 50% risk of globe rupture at 1.02 MPa, 1.66 MPa, 0.35 MPa, and 0.90 MPa internal pressure for porcine static, porcine dynamic, human static, and human dynamic loading conditions, respectively. PMID:15319124

  1. Differential Pressures on a Pitot-venturi and a Pitot-static Nozzle over 360 Degrees Pitch and Yaw

    NASA Technical Reports Server (NTRS)

    Bear, R M

    1928-01-01

    Measurements of the differential pressures on two navy air-speed nozzles, consisting of a Zahm type Pitot-Venturi tube and a SQ-16 two-pronged Pitot-static tube, in a tunnel air stream of fixed speed at various angles of pitch and yaw between 0 degrees and plus or minus 180 degrees. This shows for a range over -20 degrees to +20 degrees pitch and yaw, indicated air speeds varying very slightly over 2 per cent for the Zahm type and a maximum of about 5 per cent for the SQ-16 type from the calibrated speed at 0 degree. For both types of air-speed nozzle the indicated air speed increases slightly as the tubes are pitched or yawed several degrees from their normal 0 degrees altitude, attains a maximum around plus or minus 15 degrees to 25 degrees, declines rapidly therefrom as plus or minus 40 degrees is passed, to zero in the vicinity of plus or minus 70 degrees to 100 degrees, and thence fluctuates irregular from thereabouts to plus or minus 180 degrees. The complete variation in indicated air speed for the two tubes over 360 degree pitch and yaw is graphically portrayed in figures 9 and 10. For the same air speed and 0 degree pitch and yaw the differential pressure of the Zahm type Pitot-Venturi nozzle is about seven times that of the SQ-16 type two-prolonged Pitot-static nozzle.

  2. Uncertainty of Five-Hole Probe Measurements. [of total flow pressure, static pressure, and flow

    NASA Technical Reports Server (NTRS)

    Reichert, Bruce A.; Wendt, Bruce J.

    1994-01-01

    A new algorithm for five-hole probe calibration and data reduction using a non-nulling technique was developed, verified, and reported earlier (Wendt and Reichert, 1993). The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify the uncertainty of five-hole probe results (e.g., total pressure, static pressure, and flow direction) and to determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance for improving the measurement technique.

  3. Adjoint Optimization of Multistage Axial Compressor Blades with Static Pressure Constraint at Blade Row Interface

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Ji, Lucheng; Li, Weiwei; Yi, Weilin

    2016-06-01

    Adjoint method is an important tool for design refinement of multistage compressors. However, the radial static pressure distribution deviates during the optimization procedure and deteriorates the overall performance, producing final designs that are not well suited for realistic engineering applications. In previous development work on multistage turbomachinery blade optimization using adjoint method and thin shear-layer N-S equations, the entropy production is selected as the objective function with given mass flow rate and total pressure ratio as imposed constraints. The radial static pressure distribution at the interfaces between rows is introduced as a new constraint in the present paper. The approach is applied to the redesign of a five-stage axial compressor, and the results obtained with and without the constraint on the radial static pressure distribution at the interfaces between rows are discussed in detail. The results show that the redesign without the radial static pressure distribution constraint (RSPDC) gives an optimal solution that shows deviations on radial static pressure distribution, especially at rotor exit tip region. On the other hand, the redesign with the RSPDC successfully keeps the radial static pressure distribution at the interfaces between rows and make sure that the optimization results are applicable in a practical engineering design.

  4. Effect of revised high-heeled shoes on foot pressure and static balance during standing

    PubMed Central

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572

  5. ROCKETS OR JATO JET ASSISTED TAKE OFF UNITS AT THE HIGH PRESSURE COMBUSTION FACILITY - STATIC FIRING

    NASA Technical Reports Server (NTRS)

    1946-01-01

    ROCKETS OR JATO JET ASSISTED TAKE OFF UNITS AT THE HIGH PRESSURE COMBUSTION FACILITY - STATIC FIRING OF NITRIC ACID ANILINE ROCKET - PERMANGANATE PER OXIDE ROCKET SETUP INCLUDING TWO VIEWS THROUGH CONTROL ROOM SAFETY WINDOW

  6. Static Pressure Distribution in the Distant Tail Lobe and Compressional Variations Observed by Geotail

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.

    2003-12-01

    In order to study the dynamics of the magnetosphere, it is important to know the temporal variation and spatial distribution of the static pressure. The static pressure in the magnetotail basically depends on the distance from the earth and also on the solar wind condition. We have statistically analyzed the static pressure measured by GEOTAIL in the magnetotail (X < -40 RE) and extracted an empirical equation to express the static pressure in the tail lobe by the solar wind parameters. In the calm magnetosphere, the total pressure in the tail lobe is often smaller than the static pressure in the solar wind (<74%). For more than 90 % of the 30-minutes averaged data, the deviation of the measured pressure from the expected one is found to be within 50 %. On the other hand, substantial deviations of the measured static pressure from the expected one are often caused by the passage of plasmoids. An example of the static pressure variation in the distant magnetotail lobe caused by the passage of a plasmoid is investigated in detail. The traveling speed of the plasmoid is estimated to have been faster than the concurrent magnetosonic speed in the lobe. The magnetic field variation along the maximum variance direction was linearly related to the variation in the field strength, which suggests that a magneto-hydrodynamic compressional mode might have occurred. The propagation direction of the variation is determined from the background field direction and the maximum variance direction of the field. Shortly after the passage of the plasmoid, the relation between the field and velocity variations is consistent with the fast mode. Pressure variation in the fast mode was possibly generated in the trail of the plasmoid to restore equilibrium.

  7. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  8. Static pressure distribution in the distant tail lobe and compressional variations observed by Geotail

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.

    We have statistically analyzed the static pressure (summation of the ion thermal pressure, electron thermal pressure, and magnetic pressure) measured by GEOTAIL in the tail lobe of the distance beyond 40 Re. In the mid-tail (X > -60 Re) the static pressure decreases with the distance from the earth, reflecting the flaring of the magnetosphere. In the distant tail (X < -60 Re) the static pressure is nearly equal to the static pressure of the solar wind. When the electron temperature in the solar wind is assumed to be 141000 K after Newbury et al. [1998], the total pressure in the distant tail lobe (X < -150 Re)is generally smaller than the static pressure in the solar wind (86%). On the other hand, when we assume lower electron temperature down to 103000K, the ratio between the two pressures becomes the unity. It may be attributed to the error of the electron temperature in the solar wind, the inverse-flaring of the magnetosphere. We extracted an empirical equation to express the static pressure in the lobe by the solar wind parameters. In 87% of the total data set the difference between the measured pressure and the estimated one by the equation is within 20%. On the other hand, substantial deviations of the measured static pressure from the expected one are often caused by the passage of plasmoids. An example of the static pressure variation in the distant magnetotail lobe caused by the passage of a plasmoid is investigated in detail. The traveling speed of the plasmoid is estimated to have been faster than the concurrent magnetosonic speed in the lobe. The magnetic field variation along the maximum variance direction was linearly related to the variation in the field strength, which suggests that a magneto-hydrodynamic compressional mode might have occurred. The propagation direction of the variation is determined from the background field direction and the maximum variance direction of the field. Shortly after the passage of the plasmoid, the relation between

  9. Effects of static fingertip loading on carpal tunnel pressure

    NASA Technical Reports Server (NTRS)

    Rempel, D.; Keir, P. J.; Smutz, W. P.; Hargens, A.

    1997-01-01

    The purpose of this study was to explore the relationship between carpal tunnel pressure and fingertip force during a simple pressing task. Carpal tunnel pressure was measured in 15 healthy volunteers by means of a saline-filled catheter inserted percutaneously into the carpal tunnel of the nondominant hand. The subjects pressed on a load cell with the tip of the index finger and with 0, 6, 9, and 12 N of force. The task was repeated in 10 wrist postures: neutral; 10 and 20 degrees of ulnar deviation; 10 degrees of radial deviation; and 15, 30, and 45 degrees of both flexion and extension. Fingertip loading significantly increased carpal tunnel pressure for all wrist angles (p = 0.0001). Post hoc analyses identified significant increase (p < 0.05) in carpal tunnel pressure between unloaded (0 N) and all loaded conditions, as well as between the 6 and 12 N load conditions. This study demonstrates that the process whereby fingertip loading elevates carpal tunnel pressure is independent of wrist posture and that relatively small fingertip loads have a large effect on carpal tunnel pressure. It also reveals the response characteristics of carpal tunnel pressure to fingertip loading, which is one step in understanding the relationship between sustained grip and pinch activities and the aggravation or development of median neuropathy at the wrist.

  10. Cygnus Pressurized Cargo Module (PCM) Flight Inertial Load Static Tests

    NASA Astrophysics Data System (ADS)

    Murgia, Giovanni; Mancini, Simone; Palmieri, Paolo; Rutigliano, Luigi

    2012-07-01

    Cygnus PCM Flight Inertial Load Static Test campaign has been performed by Thales Alenia Space - Italy (TAS-I) to achieve the Static Qualification of its Primary Structure. A “Proto-flight Approach” has been followed (as per [1] and [2]), thus the first flight unit, the PCM0, has been tested up to qualification level (qualification/acceptance factor equivalent to 1.2 [1]). The PCM0 has been constrained to a dummy Service Module (the second member of Cygnus Spacecraft), representative in terms of interfaces provisions, and flight load conditions have been reproduced with proper forces that have been applied by means of hydraulic jacks at internal PCM secondary structure interfaces. Test load cases have been defined in order to simulate load paths and relevant stress fields associated to the worst flight load conditions by using the FE model analyses. Tests have been monitored by means of gauges and displacement transducers and results have been utilized to correlate the PCM FEM following [3] requirements.

  11. In-Flight Pitot-Static Calibration

    NASA Technical Reports Server (NTRS)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  12. Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air

    NASA Astrophysics Data System (ADS)

    Wu, Ding; Liu, Ping; Sun, Liying; Hai, Ran; Ding, Hongbin

    2016-04-01

    In this work, laser induced tungsten plasma has been investigated in the absence and presence of 0.6 T static transverse magnetic field at atmospheric pressure in air. The spectroscopic characterization of laser induced tungsten plasma was experimentally studied using space-resolved emission spectroscopy. The atomic emission lines of tungsten showed a significant enhancement in the presence of a magnetic field, while the ionic emission lines of tungsten presented little change. Temporal variation of the optical emission lines of tungsten indicated that the atomic emission time in the presence of a magnetic field was longer than that in the absence of a magnetic field, while no significant changes occurred for the ionic emission time. The spatial resolution of optical emission lines of tungsten demonstrated that the spatial distribution of atoms and ions were separated. The influence of a magnetic field on the spatial distribution of atoms was remarkable, whereas the spatial distribution of ions was little influenced by the magnetic field. The different behaviors between ions and atoms with and without magnetic field in air were related to the various atomic processes especially the electrons and ions recombination process during the plasma expansion and cooling process.

  13. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  14. Accurate method to study static volume-pressure relationships in small fetal and neonatal animals.

    PubMed

    Suen, H C; Losty, P D; Donahoe, P K; Schnitzer, J J

    1994-08-01

    We designed an accurate method to study respiratory static volume-pressure relationships in small fetal and neonatal animals on the basis of Archimedes' principle. Our method eliminates the error caused by the compressibility of air (Boyle's law) and is sensitive to a volume change of as little as 1 microliters. Fetal and neonatal rats during the period of rapid lung development from day 19.5 of gestation (term = day 22) to day 3.5 postnatum were studied. The absolute lung volume at a transrespiratory pressure of 30-40 cmH2O increased 28-fold from 0.036 +/- 0.006 (SE) to 0.994 +/- 0.042 ml, the volume per gram of lung increased 14-fold from 0.39 +/- 0.07 to 5.59 +/- 0.66 ml/g, compliance increased 12-fold from 2.3 +/- 0.4 to 27.3 +/- 2.7 microliters/cmH2O, and specific compliance increased 6-fold from 24.9 +/- 4.5 to 152.3 +/- 22.8 microliters.cmH2O-1.g lung-1. This technique, which allowed us to compare changes during late gestation and the early neonatal period in small rodents, can be used to monitor and evaluate pulmonary functional changes after in utero pharmacological therapies in experimentally induced abnormalities such as pulmonary hypoplasia, surfactant deficiency, and congenital diaphragmatic hernia. PMID:8002489

  15. DEFLAGRATION RATES OF SECONDARY EXPLOSIVES UNDER STATIC MPA - GPA PRESSURE

    SciTech Connect

    Zaug, J; Young, C; Long, G; Maienschein, J; Glascoe, E; Hansen, D; Wardell, J; Black, C; Sykora, G

    2009-07-30

    We provide measurements of the chemical reaction propagation rate (RPR) as a function of pressure using diamond anvil cell (DAC) and strand burner technologies. Materials investigated include HMX and RDX crystalline powders, LX-04 (85% HMX and 15% Viton A), and Composition B (63% RDX, 36% TNT, 1% wax). The anomalous correspondence between crystal structure, including in some instances isostructural phase transitions, on pressure dependent RPRs of HMX and RDX are correlated to confocal micro-Raman spectroscopic results. The contrast between DAC GPa and strand burner MPa regime measurements yield insight into explosive material burn phenomena. Here we highlight pressure dependent physicochemical mechanisms that appear to affect the deflagration rate of precompressed energetic materials.

  16. 30 CFR 550.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: If you have . . . Then you must conduct . . . (1) A new producing reservoir, A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or... wells to establish an average reservoir pressure. The Regional Supervisor may require that...

  17. 30 CFR 550.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: If you have . . . Then you must conduct . . . (1) A new producing reservoir, A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or... wells to establish an average reservoir pressure. The Regional Supervisor may require that...

  18. 30 CFR 550.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: If you have . . . Then you must conduct . . . (1) A new producing reservoir, A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or... wells to establish an average reservoir pressure. The Regional Supervisor may require that...

  19. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.

    PubMed

    Simonini, Irene; Pandolfi, Anna

    2016-05-01

    The air puff is a dynamic contactless tonometer test used in ophthalmology clinical practice to assess the biomechanical properties of the human cornea and the intraocular pressure due to the filling fluids of the eye. The test is controversial, since the dynamic response of the cornea is governed by the interaction of several factors which cannot be discerned within a single measurement. In this study we describe a numerical model of the air puff tests, and perform a parametric analysis on the major action parameters (jet pressure and intraocular pressure) to assess their relevance on the mechanical response of a patient-specific cornea. The particular cornea considered here has been treated with laser reprofiling to correct myopia, and the parametric study has been conducted on both the preoperative and postoperative geometries. The material properties of the cornea have been obtained by means of an identification procedure that compares the static biomechanical response of preoperative and postoperative corneas under the physiological IOP. The parametric study on the intraocular pressure suggests that the displacement of the cornea׳s apex can be a reliable indicator for tonometry, and the one on the air jet pressure predicts the outcomes of two or more distinct measurements on the same cornea, which can be used in inverse procedures to estimate the material properties of the tissue. PMID:26282384

  20. Free-stream static pressure measurements in the Longshot hypersonic wind tunnel and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Grossir, Guillaume; Van Hove, Bart; Paris, Sébastien; Rambaud, Patrick; Chazot, Olivier

    2016-05-01

    The performance of fast-response slender static pressure probes is evaluated in the short-duration, cold-gas, VKI Longshot hypersonic wind tunnel. Free-stream Mach numbers range between 9.5 and 12, and unit Reynolds numbers are within 3-10 × 106/m. Absolute pressure sensors are fitted within the probes, and an inexpensive calibration method, suited to low static pressure environments (200-1000 Pa), is described. Transfer functions relating the probe measurements p w to the free-stream static pressure p ∞ are established for the Longshot flow conditions based on numerical simulations. The pressure ratios p w / p ∞ are found to be close to unity for both laminar and turbulent boundary layers. Weak viscous effects characterized by small viscous interaction parameters {bar{χ }}<1.5 are confirmed experimentally for probe aspect ratios of L/ D > 16.5 by installing multiple pressure sensors in a single probe. The effect of pressure orifice geometry is also evaluated experimentally and found to be negligible for either straight or chamfered holes, 0.6-1 mm in diameter. No sensitivity to probe angle of attack could be evidenced for α < 0.33°. Pressure measurements are compared to theoretical predictions assuming an isentropic nozzle flow expansion. Significant deviations from this ideal case and the Mach 14 contoured nozzle design are uncovered. Validation of the static pressure measurements is obtained by comparing shock wave locations on Schlieren photographs to numerical predictions using free-stream properties derived from the static pressure probes. While these results apply to the Longshot wind tunnel, the present methodology and sensitivity analysis can guide similar investigations for other hypersonic test facilities.

  1. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  2. Static pressure measurements in A 30 kWe class arcjet

    NASA Technical Reports Server (NTRS)

    Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.

    1991-01-01

    A series of cold and hot flow static pressure measurements have been made as a function of distance along the principal axis of a 30 kWe arcjet. During these experiments, the background pressure was varied from atmospheric pressure to less than 1 Torr. The experimental arcjet used in these tests had the same constrictor and conical nozzle dimensions as the baseline MOD-1 ammonia arcjet developed at NASA-JPL, but used nitrogen as the propellant gas. Comparison of the measured static pressure profiles with the arc erosion patterns on the anode surface showed that anode arc attachment points directly coincided with the minimum static pressure points. The dual voltage modes commonly observed in 30 kWe class arcjet thrusters are also believed to be caused by the presence of two pressure minima in the arcjet, one at the constrictor entrance and the other in the expansion nozzle. The static pressure profiles also suggest that the sonic flow transition occurs at the entrance to the nozzle, indicating the existence of very thick boundary layers in the arcjet constrictor.

  3. Exact solutions: neutral and charged static perfect fluids with pressure

    NASA Astrophysics Data System (ADS)

    Bijalwan, Naveen

    2012-01-01

    We show in this article that charged fluid with pressure derived by Bijalwan (Astrophys. Space. Sci. doi:10.1007/s10509-011-0691-0, 011a) can be used to model classical electron, quark, neutron stars and pulsar with charge matter, quasi black hole, white dwarf, super-dense star etc. Recent analysis by Bijalwan (Astrophys. Space. Sci., 2011d) that all charged fluid solutions in terms of pressure mimic the classical electron model are partially correct because solutions by Bijalwan (Astrophys. Space. Sci. doi:10.1007/s10509-011-0691-0, 011a) may possess a neutral counterpart. In this paper we characterized solutions in terms of pressure for charged fluids that have and do not have a well behaved neutral counter part considering same spatial component of metric e λ for neutral and charged fluids. We discussed solution by Gupta and Maurya (Astrophys. Space Sci. 331(1):135-144, 2010a) and solutions by Bijalwan (Astrophys. Space Sci. doi:10.1007/s10509-011-0735-5, 2011b; Astrophys. Space Sci. doi:10.1007/s10509-011-0780-0, 2011c; Astrophys. Space Sci., 2011d) such that charged fluids possess and do not possess a neutral counterpart as special cases, respectively. For brevity, we only present some analytical results in this paper.

  4. Should care homes adopt a static-led approach to pressure ulcer prevention?

    PubMed

    Keen, Delia Catherine

    A static-led approach refers to the provision of high-specification foam mattresses for the whole of a population at risk of pressure damage. Such mattresses have been found to reduce the risk of pressure ulceration and cost less overall than standard mattresses, even in populations where only 1 in 100 patients develops a pressure ulcer. Reduced pressure ulcer prevalence and reduced costs resulting from decreased expenditure on dynamic mattresses following the implementation of a static-led approach have been reported. Pressure ulcers cause pain, a reduced quality of life, loss of independence, depression and social isolation for those in whom they develop. Organizations are increasingly having to pay out large sums of money following litigation surrounding pressure ulcers. This article explains why NHS healthcare providers and private care organizations need to work together to consider implementing a static-led approach to pressure ulcer prevention within care homes in order to reduce pressure ulcer incidence cost-effectively within their local populations. PMID:20081672

  5. Performance of Compressor of XJ-41-V Turbojet Engine. 3; Compressor Static-Pressure Rise at Equivalent Compressor Speeds of 5000, 7000, 8000, and 9000 rpm

    NASA Technical Reports Server (NTRS)

    Creagh, John W. R.; Ginsburg, Ambrose

    1947-01-01

    At the request of the Air Materiel Command, Army Air Forces, an investigation is being conducted at the NACA Cleveland laboratory to determine the performance characteristics of the XJ-41-V turbojet-engine compressor. The static-pressure variation in the direction of flow through the compressor was presented in reference 1 for an equivalent speed of 8000 rpm. An analysis of these pressure indicated that the maximum-flow limitation of the compressor was caused by separation, which reduced the effective flow area at the vaned-collector entrance. As a result of this analysis, the flow area at the vaned-collector entrance was increased to obtain larger mass flows. The area increase was obtained by cutting back the entrance edges of the collector vanes, which resulted in an increased vaneless-diffuser radius. Comparative performance of the original and revised compressors at an equivalent speed of 8000 rpm is presented. The static-pressure rise through the compressor, determined from static pressures at the impeller entrance and the vaned-collector exit, is also presented together with the compressor adiabatic efficiency and the mass flow over an equivalent speed range from 5000 to 9000 rpm. These static-pressure data are presented for the purpose of correlating the compressor performance with the turbojet-engine performance.

  6. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli

    PubMed Central

    Park, Jonghwa; Kim, Marie; Lee, Youngoh; Lee, Heon Sang; Ko, Hyunhyub

    2015-01-01

    In human fingertips, the fingerprint patterns and interlocked epidermal-dermal microridges play a critical role in amplifying and transferring tactile signals to various mechanoreceptors, enabling spatiotemporal perception of various static and dynamic tactile signals. Inspired by the structure and functions of the human fingertip, we fabricated fingerprint-like patterns and interlocked microstructures in ferroelectric films, which can enhance the piezoelectric, pyroelectric, and piezoresistive sensing of static and dynamic mechanothermal signals. Our flexible and microstructured ferroelectric skins can detect and discriminate between multiple spatiotemporal tactile stimuli including static and dynamic pressure, vibration, and temperature with high sensitivities. As proof-of-concept demonstration, the sensors have been used for the simultaneous monitoring of pulse pressure and temperature of artery vessels, precise detection of acoustic sounds, and discrimination of various surface textures. Our microstructured ferroelectric skins may find applications in robotic skins, wearable sensors, and medical diagnostic devices. PMID:26601303

  7. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli.

    PubMed

    Park, Jonghwa; Kim, Marie; Lee, Youngoh; Lee, Heon Sang; Ko, Hyunhyub

    2015-10-01

    In human fingertips, the fingerprint patterns and interlocked epidermal-dermal microridges play a critical role in amplifying and transferring tactile signals to various mechanoreceptors, enabling spatiotemporal perception of various static and dynamic tactile signals. Inspired by the structure and functions of the human fingertip, we fabricated fingerprint-like patterns and interlocked microstructures in ferroelectric films, which can enhance the piezoelectric, pyroelectric, and piezoresistive sensing of static and dynamic mechanothermal signals. Our flexible and microstructured ferroelectric skins can detect and discriminate between multiple spatiotemporal tactile stimuli including static and dynamic pressure, vibration, and temperature with high sensitivities. As proof-of-concept demonstration, the sensors have been used for the simultaneous monitoring of pulse pressure and temperature of artery vessels, precise detection of acoustic sounds, and discrimination of various surface textures. Our microstructured ferroelectric skins may find applications in robotic skins, wearable sensors, and medical diagnostic devices. PMID:26601303

  8. Static High Pressure X-Ray Diffraction of TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Chesnut, Gary N.; Velisavljevic, Nenad; Sanchez, Lilliana

    2007-12-01

    Ti-6Al-4V was examined under static-high pressure conditions using a diamond anvil cell. The angle-dispersive x-ray diffraction experiments were performed at the Advanced Photon Source, Argonne National Laboratory. Radial and axial geometry were used to examine multiple samples. The purpose of the experiment was to generate pressure-volume data at room temperature (which is non-existent in literature) and to examine deviatoric stress effects on such a hard alloy.

  9. 30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Requirements Well Tests and Surveys § 250.1153 When must I conduct a static bottomhole pressure survey? (a) You... days after the date of first continuous production. (2) A reservoir with three or more...

  10. Using a polynomial approximation of a static pressure profile in calculating swirling flow in a pipe

    NASA Astrophysics Data System (ADS)

    Glebov, G. A.; Matveev, V. B.

    A method for calculating the parameters of swirling flow in a pipe is proposed which employs a polynomial approximation of the static pressure profile. It is shown that an increase in the initial intensity of swirling results in a faster attenuation of the tangential velocity component. The results obtained using the method proposed here are found to be in good agreement with experimental data.

  11. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  12. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  13. Three Modes of Air Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam H.

    2015-09-01

    Atmospheric pressure plasma jet operating in air have gained a high interest due to its various applications in industry and biomedical. The presented air plasma jet system is consisted of stainless steel hollow needle electrode of 1 mm inner diameter which is covered with a quartz tube with a 1 mm diameter side hole. The hole is above the tube nozzle by 5 mm and it is covered by a copper ring which is connected to the ground. The needle is connected to sinusoidal 27 kHz high voltage power supply (25 kV) though a current limiting resistor of 50 k Ω. The tested distance between the needle tip and the side hole was 1 mm or 2.1 mm gape. The electric and plasma jet formation characteristics show three modes of operations. Through these modes the plasma length changes with air flow rate to increase in the first mode and to confine inside the quartz tube in the second mode, then it start to eject from the nozzle again and increase with flow rate to reach a maximum length of 7 mm at 4.5 SLM air flow rate in the third mode. The measured gas temperature of the plasma jet can approach room temperature (300 K). Moreover, the plasma jet emission spectra shows the presence of reactive O and OH radical in the plasma jet. These results indicate that the generated air plasma jet can be used a plasma sterilization.

  14. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles. PMID:22087995

  15. The most incompressible metal osmium at static pressures above 750 gigapascals

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, L.; Dubrovinskaia, N.; Bykova, E.; Bykov, M.; Prakapenka, V.; Prescher, C.; Glazyrin, K.; Liermann, H.-P.; Hanfland, M.; Ekholm, M.; Feng, Q.; Pourovskii, L. V.; Katsnelson, M. I.; Wills, J. M.; Abrikosov, I. A.

    2015-09-01

    Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures. It is also very incompressible, but its high-pressure behaviour is not well understood because it has been studied so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells, with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression.

  16. The most incompressible metal osmium at static pressures above 750 gigapascals.

    PubMed

    Dubrovinsky, L; Dubrovinskaia, N; Bykova, E; Bykov, M; Prakapenka, V; Prescher, C; Glazyrin, K; Liermann, H-P; Hanfland, M; Ekholm, M; Feng, Q; Pourovskii, L V; Katsnelson, M I; Wills, J M; Abrikosov, I A

    2015-09-10

    Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures. It is also very incompressible, but its high-pressure behaviour is not well understood because it has been studied so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells, with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression. PMID:26302297

  17. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  18. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  19. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  20. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  1. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  2. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure

    PubMed Central

    2014-01-01

    Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005

  3. Laboratory manual for static pressure drop experiments in LMFBR wire wrapped rod bundles

    SciTech Connect

    Burns, K.J.; Todreas, N.E.

    1980-07-01

    Purpose of this experiment is to determine both interior and edge subchannel axial pressure drops for a range of Reynolds numbers. The subchannel static pressure drop is used to calculate subchannel and bundle average friction factors, which can be used to verify existing friction factor correlations. The correlations for subchannel friction factors are used as input to computer codes which solve the coupled energy, continuity, and momentum equations, and are also used to develop flow split correlations which are needed as input to codes which solve only the energy equation. The bundle average friction factor is used to calculate the overall bundle pressure drop, which determines the required pumping power.

  4. Integration of streamlines from measured static pressure fields on a surface

    NASA Astrophysics Data System (ADS)

    Vollmers, H.

    1982-10-01

    Streamlines, which offer an intuitive illustration of three-dimensional boundary layer flow and its regions of mutual dependence, are obtained through the integration of numerically measured pressure fields by means of a shooting technique. The method is applied to static pressure data obtained by Meier and Kreplin (1978) for an axisymmetric ellipsoid. For the pressure field of the potential solution, the trajectories showed the expected asymptotic behavior, and it is shown that for a 30 deg inclination and 45 m/sec freestream velocity, the streamlines have a regular pattern.

  5. Influence of increased static pressure in MHD-channel of hypervelocity wind tunnel on its characteristics

    SciTech Connect

    Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I.

    1995-12-31

    One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.

  6. Probe systems for measuring static pressure and turbulence intensity in fluid streams

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.

  7. Effects of p-{rho}-T behavior of muds on static pressures during deep well drilling

    SciTech Connect

    Babu, D.R.

    1996-06-01

    In this study, published p-{rho}-T data of twelve muds are compared using three models already proposed. The empirical model suggested by Kutasov is found to represent the measured data more accurately than the other models for a majority of the muds. With the help of the empirical model, an explicit equation is derived analytically to predict static pressures at different depths. Based on the analysis, an equivalent static density (ESD) variable is defined that incorporates the mud p-{rho}-T behavior, pressure and temperature of the mud at surface, thermal gradient, and depth of the well. It is suggested that ESD should be used in place of normally used mud weight term in all phases of deep well drilling. The analysis is applied to a high-temperature, 25,000-ft deep example well. It is observed that static pressure or ESD at the bottom of the well decreases during tripping and the extent of decrease is dependent on the type of mud. For the example well, it is estimated that a maximum reduction in ESD of about 0.62 lbm/gal occurs in the case of 18-lbm/gal water-based-mud, and a minimum reduction of about 0.2 lbm/gal occurs in the case of a 11-lbm/gal diesel-oil-based mud.

  8. Active control of static pressure drop caused by hydraulic servo-actuator engage

    SciTech Connect

    Janlovic, J.

    1994-12-31

    Pressure drop caused by propagation of expansion waves in the source pipeline of fast high cyclic hydraulic actuator produces possible anomalies in its function. To prevent pressure drop it is possible to minimize wave effects by active control of actuator servo-valve throttle leakage. In the paper is presented synthesis of possible discrete active control of hydraulic actuator and its servo-valve for prevention expansion wave pressure drop. Control synthesis is based on static pressure increasing with decreasing of fluid flow velocity, which can be realized by lower throttle leakage. Some of the effects of assumed control are shown on corresponding diagrams of control valve throttle motion, piston displacement and its corresponding linear velocity.

  9. Response of the Watts Bar, Maine Yankee and Bellefonte containments to static internal pressurization

    SciTech Connect

    Jung, J.

    1983-01-01

    As part of Sandia National Laboratories' Severe Accident Sequence Analysis (SASA) Program, structural analyses of the Watts Bar, Maine Yankee and Bellefonte containment structures were performed with the objective of obtaining realistic estimates of their ultimate static pressure capabilities. The Watts Bar investigation included analyses of the containment shell, equipment hatch, anchorage systems and personnel lock. The ultimate pressure capability is estimated to be between 120 and 140 psig, corresponding to shell yielding and equipment hatch buckling, respectively. The Maine Yankee investigation provided a 96 to 118 psig failure pressure estimate for the containment shell. The pressure capability of the Bellefonte containment structure is estimated to be between 130 and 139 psig corresponding to dome tendon yielding and cylinder wall tendon yielding, respectively.

  10. Analysis of Fluctuating Static Pressure Measurements in a Large High Reynolds Number Transonic Cryogenic Wind Tunnel. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Igoe, William B.

    1991-01-01

    Dynamic measurements of fluctuating static pressure levels were made using flush mounted high frequency response pressure transducers at eleven locations in the circuit of the National Transonic Facility (NTF) over the complete operating range of this wind tunnel. Measurements were made at test section Mach numbers from 0.2 to 1.2, at pressure from 1 to 8.6 atmospheres and at temperatures from ambient to -250 F, resulting in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made independently at variable Mach number, variable Reynolds number, and variable drivepower, each time keeping the other two variables constant thus allowing for the first time, a distinct separation of these three important variables. A description of the NTF emphasizing its flow quality features, details on the calibration of the instrumentation, results of measurements with the test section slots covered, downstream choke, effects of liquid nitrogen injection and gaseous nitrogen venting, comparisons between air and nitrogen, isolation of the effects of Mach number, Reynolds number, and fan drive power, and identification of the sources of significant flow disturbances is included. The results indicate that primary sources of flow disturbance in the NTF may be edge-tones generated by test section sidewall re-entry flaps and the venting of nitrogen gas from the return leg of the tunnel circuit between turns 3 and 4 in the cryogenic mode of operation. The tests to isolate the effects of Mach number, Reynolds number, and drive power indicate that Mach number effects predominate. A comparison with other transonic wind tunnels shows that the NTF has low levels of test section fluctuating static pressure especially in the high subsonic Mach number range from 0.7 to 0.9.

  11. Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust

    NASA Astrophysics Data System (ADS)

    Louzada, Karin L.; Stewart, Sarah T.; Weiss, Benjamin P.; Gattacceca, Jérôme; Bezaeva, Natalia S.

    2010-02-01

    The absence of crustal magnetization around young impact basins suggests impact demagnetization of vast regions of the crust after the cessation of the Martian dynamo. Attempts to understand the impact demagnetization process and to infer the magnetic properties (e.g., the carrier phase) of the Martian crust have been based on the experimental pressure demagnetization of magnetic rocks and minerals. We investigate the magnitude of demagnetization and permanent changes in the intrinsic magnetic properties of single and multidomain natural pyrrhotite under hydrostatic pressures up to 1.8 GPa and shock pressures up to 12 GPa. Both static and dynamic pressures result in an irreversible loss of predominantly low coercivity magnetic remanence. The pressure demagnetization results can be divided into a low-pressure regime and a high-pressure regime. The transition between the two regimes roughly coincides with a ferri- to paramagnetic transition (between 1.2 and 4.5 GPa) and the Hugoniot Elastic Limit (~ 3.5 GPa) of pyrrhotite. The low-pressure regime is characterized by a decrease in remanence with increasing pressure in both static and shock experiments. The higher pressure regime, probed only by shock experiments, is characterized by a more complicated modification of remanence as a result of permanent changes in the intrinsic magnetic properties of the material. These changes include an increase in saturation remanence and a change in the coercivity distribution towards greater bulk coercivity. Samples that were only submitted to hydrostatic pressure up to 1.8 GPa do not show permanent changes in the magnetic properties. Demagnetization of pyrrhotite as a result of pressure is likely due to a combination of domain reordering (in multidomain grains) and magnetostrictive effects (in single-domain grains). Microfracturing of multidomain grains effectively reduces the domain-size leading to the observed increase in single-domain like behavior. Based on uncertain shock

  12. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging.

    PubMed

    Lin, Long; Xie, Yannan; Wang, Sihong; Wu, Wenzhuo; Niu, Simiao; Wen, Xiaonan; Wang, Zhong Lin

    2013-09-24

    We report an innovative, large-area, and self-powered pressure mapping approach based on the triboelectric effect, which converts the mechanical stimuli into electrical output signals. The working mechanism of the triboelectric active sensor (TEAS) was theoretically studied by both analytical method and numerical calculation to gain an intuitive understanding of the relationship between the applied pressure and the responsive signals. Relying on the unique pressure response characteristics of the open-circuit voltage and short-circuit current, we realize both static and dynamic pressure sensing on a single device for the first time. A series of comprehensive investigations were carried out to characterize the performance of the TEAS, and high sensitivity (0.31 kPa(-1)), ultrafast response time (<5 ms), long-term stability (30,000 cycles), as well as low detection limit (2.1 Pa) were achieved. The pressure measurement range of the TEAS was adjustable, which means both gentle pressure detection and large-scale pressure sensing were enabled. Through integrating multiple TEAS units into a sensor array, the as-fabricated TEAS matrix was capable of monitoring and mapping the local pressure distribution applied on the device with distinguishable spatial profiles. This work presents a technique for tactile imaging and progress toward practical applications of nanogenerators, providing potential solutions for accomplishment of artificial skin, human-electronic interfacing, and self-powered systems. PMID:23957827

  13. Static and unsteady pressure measurements on a 50 degree clipped delta wing at M = 0.9

    NASA Technical Reports Server (NTRS)

    Hess, R. W.; Wynne, E. C.; Cazier, F. W.

    1982-01-01

    Static and unsteady pressures were measured on a 50.45 degree clipped delta wing in the Langley Transonic Dynamics Tunnel with Freon as the test medium. Data taken at M = 0.9 is presented for static and oscillatory deflections of the trailing edge control surface and for the wing in pitch. Comparisons of the static measured data are made with results computed using the Bailey-Ballhaus small disturbance code.

  14. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  15. A combined theoretical and experimental investigation of uranium dioxide under high static pressure

    NASA Astrophysics Data System (ADS)

    Crowhurst, J. C.; Jeffries, J. R.; Åberg, D.; Zaug, J. M.; Dai, Z. R.; Siekhaus, W. J.; Teslich, N. E.; Holliday, K. S.; Knight, K. B.; Nelson, A. J.; Hutcheon, I. D.

    2015-07-01

    We have investigated the behavior of uranium dioxide (UO2) under high static pressure using a combination of experimental and theoretical techniques. We have made Raman spectroscopic measurements up to 87 GPa, electrical transport measurements up to 50 GPa from 10 K to room temperature, and optical transmission measurements up to 28 GPa. We have also carried out theoretical calculations within the GGA + U framework. We find that Raman frequencies match to a large extent, theoretical predictions for the cotunnite (Pnma) structure above 30 GPa, but at higher pressures some behavior is not captured theoretically. The Raman measurements also imply that the low-pressure fluorite phase coexists with the cotunnite phase up to high pressures, consistent with earlier reports. Electrical transport measurements show that the resistivity decreases by more than six orders of magnitude with increasing pressure up to 50 GPa but that the material never adopts archetypal metallic behavior. Optical transmission spectra show that while UO2 becomes increasingly opaque with increasing pressure, a likely direct optical band gap of more than 1 eV exists up to at least 28 GPa. Together with the electrical transport measurements, we conclude that the high pressure electrical conductivity of UO2 is mediated by variable-range hopping.

  16. Determination of the thermodynamic scaling exponent for relaxation in liquids from static ambient-pressure quantities.

    PubMed

    Casalini, R; Roland, C M

    2014-08-22

    An equation is derived that expresses the thermodynamic scaling exponent, γ, which superposes relaxation times τ and other measures of molecular mobility determined over a range of temperatures and densities, in terms of static physical quantities. The latter are available in the literature or can be measured at ambient pressure. We show for 13 materials, both molecular liquids and polymers, that the calculated γ are equivalent to the scaling exponents obtained directly by superpositioning. The assumptions of the analysis are that the glass transition T(g) is isochronal (i.e., τ(α) is constant at T(g), which is true by definition) and that the pressure derivative of the glass temperature is given by the first Ehrenfest relation. The latter, derived assuming continuity of the entropy at the glass transition, has been corroborated for many glass-forming materials at ambient pressure. However, we find that the Ehrenfest relation breaks down at elevated pressure; this limitation is of no consequence herein, since the appeal of the new equation is its applicability to ambient-pressure data. The ability to determine, from ambient-pressure measurements, the scaling exponent describing the high-pressure dynamics extends the applicability of this approach to a broader range of materials. Since γ is linked to the intermolecular potential, the new equation thus provides ready access to information about the forces between molecules. PMID:25192107

  17. Plume Diagnostics of the RSRM Static Firings for the Pressure Perturbation Studies

    NASA Technical Reports Server (NTRS)

    Mathias, Edward C.; Sambamurthi, Jay K.; Alvarado, Alexis

    1995-01-01

    During the STS-54 launch (RSRM-29), the right hand solid rocket motor experienced a 13.9 psi chamber pressure perturbation at 67 seconds into the motor operation. This pressure augmentation equated to a thrust change of 51 klb. Concerns were raised regarding the adverse effects of this thrust imbalance on the shuttle system and the overall thrust into the external tank structural elements. Pressure perturbations have been observed in solid rocket motors due to expulsion of igniter or insulation materials; the motor thrust during such events drop abruptly before rising. However, the RSRM motors do not exhibit such behavior during the large chamber pressure perturbation events. Several scenarios were investigated to explain these pressure perturbations in the RSRM motors based on a fault tree developed after STS-54. Of these, the expulsion of the slag accumulated in the submerged nozzle region appeared to be the most plausible scenario to explain the observations. Slag is a natural combustion product of aluminized solid rocket motors. The RSRM propellant contains 16% by weight of aluminum. Any ejection of this slag mass during nozzle vectoring or other side loads on the motor will result in the chamber pressure perturbation. Two RSRM static firings were instrumented extensively to further understand the slag expulsion phenomenon in the RSRM and the associated pressure perturbations.

  18. Quasi-static calibration of piezoelectric sensor using half-sine pressure pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Shang, Fei; Kong, Deren

    2010-08-01

    The quasi-static method with application of half-sine pressure pulse is presented to calibrate the piezoelectric sensor, which is used for the dynamic pressure measurement of weapons. A pressure generator based on the drop hammer hydraulic system is manufactured to get the half-sine pressure pulse. The oil cylinder of the generator is reconstructed to install four standard pressure sensors and two calibrated sensors simultaneously. With pressure taken from four standard sensors as calibrating excitation, and response data obtained from calibrated sensors, the working sensitivities of sensors are worked out through regression analysis. The experimental results obtained with sensor 6215 at the national shooting range shows that it is effective to calibrate piezoelectric sensors using half-sine pressure pulse. The residual standard deviation of the equation fitting is less than 0.7%; the linearity is less than 0.21%; and the relative uncertainty of the four standard sensors is less than 0.7%, under the precision target of the calibration system acceptance.

  19. Variation with Mach Number of Static and Total Pressures Through Various Screens

    NASA Technical Reports Server (NTRS)

    Adler, Alfred A

    1946-01-01

    Tests were conducted in the Langley 24-inch highspeed tunnel to ascertain the static-pressure and total-pressure losses through screens ranging in mesh from 3 to 12 wires per inch and in wire diameter from 0.023 to 0.041 inch. Data were obtained from a Mach number of approximately 0.20 up to the maximum (choking) Mach number obtainable for each screen. The results of this investigation indicate that the pressure losses increase with increasing Mach number until the choking Mach number, which can be computed, is reached. Since choking imposes a restriction on the mass rate of flow and maximum losses are incurred at this condition, great care must be taken in selecting the screen mesh and wire dimmeter for an installation so that the choking Mach number is

  20. In situ electrical conductivity measurements of H2O under static pressure up to 28 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Bao; Gao, Yang; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2016-08-01

    The in situ electrical conductivity measurements on water in both solid state and liquid state were performed under pressure up to 28 GPa and temperature from 77 K to 300 K using a microcircuit fabricated on a diamond anvil cell (DAC). Water chemically ionization mainly contributes to electrical conduction in liquid state, which is in accord with the results obtained under dynamic pressure. Energy band theory of liquid water was used to understand effect of static pressure on electrical conduction of water. The electric conductivity of H2O decreased discontinuously by four orders of magnitude at 0.7-0.96 GPa, indicating water frozen at this P-T condition. Correspondingly, the conduction of H2O in solid state is determined by arrangement and bending of H-bond in ice VI and ice VII. Based on Jaccard theory, we have concluded that the charge carriers of ice are already existing ions and Bjerrum defects.

  1. Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Igoe, William B.

    1996-01-01

    Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this wind tunnel. Measurements were taken at test-section Mach numbers from 0.1 to 1.2, at pressures from 1 to 8.6 atm, and at temperatures from ambient to -250 F, which resulted in dynamic flow disturbance measurements at the highest Reynolds numbers available in a transonic ground test facility. Tests were also made by independent variation of the Mach number, the Reynolds number, or the fan drive power while the other two parameters were held constant, which for the first time resulted in a distinct separation of the effects of these three important parameters.

  2. Differential air sac pressures in diving tufted ducks Aythya fuligula.

    PubMed

    Boggs, D F; Butler, P J; Wallace, S E

    1998-09-01

    The air in the respiratory system of diving birds contains a large proportion of the body oxygen stores, but it must be in the lungs for gas exchange with blood to occur. To test the hypothesis that locomotion induces mixing of air sac air with lung air during dives, we measured differential pressures between the interclavicular and posterior thoracic air sacs in five diving tufted ducks Aythya fuligula. The peak differential pressure between posterior thoracic and interclavicular air sacs, 0.49+/-0.13 kPa (mean +/- s.d.), varied substantially during underwater paddling as indicated by gastrocnemius muscle activity. These data support the hypothesis that locomotion, perhaps through associated abdominal muscle activity, intermittently compresses the posterior air sacs more than the anterior ones. The result is differential pressure fluctuations that might induce the movement of air between air sacs and through the lungs during dives. PMID:9716518

  3. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway

    SciTech Connect

    Luo, Di-xian; Cheng, Jiming; Xiong, Yan; Li, Junmo; Xia, Chenglai; Xu, Canxin; Wang, Chun; Zhu, Bingyang; Hu, Zhuowei; Liao, Duan-fang

    2010-01-22

    Intimal hyperplasia plays an important role in various types of vascular remodeling. Mechanical forces derived from blood flow are associated with the proliferation of vascular smooth muscle cells (VSMC). This contributes to many vascular disorders such as hypertension, atherosclerosis and restenosis after percutaneous transluminal angioplasty (PTA). In this study, we show that static pressure induces the proliferation of VSMC and activates its related signal pathway. VSMC from a rat aorta were treated with different pressures (0, 60, 90, 120, 150 and 180 mm Hg) in a custom-made pressure incubator for 24 h. The most active proliferation of VSMC was detected at a pressure of 120 mm Hg. VSMC was also incubated under a static pressure of 120 mm Hg for different time intervals (0, 2, 4, 8, 12 and 24 h). We found that static pressure significantly stimulates VSMC proliferation. Extracellular signal-regulated kinases 1/2 (ERK1/2) activation showed a peak at the pressure of 120 mm Hg at 4-h time point. Moreover, caveolin-1 expression was significantly inhibited by rising static pressure. Downregulation of VSMC proliferation could be found after PD98059 (ERK1/2 phosphorylation inhibitor) treatment. Our data also showed that a siRNA-mediated caveolin-1 knock down increased ERK1/2 phosphorylation and VSMC proliferation. These results demonstrate that static pressure promotes VSMC proliferation via the Caveolin-1/ERK1/2 pathway.

  4. Time to Onset of Pain: Effects of Magnitude and Location for Static Pressures Applied to the Plantar Foot

    PubMed Central

    Wiggermann, Neal; Keyserling, W. Monroe

    2016-01-01

    Mechanisms that cause foot discomfort during prolonged standing are poorly understood. There is currently no method for evaluating discomfort associated with low levels of static pressure that are typical during standing. Pain thresholds were measured for 20 healthy participants by applying five levels of static pressure at different plantar foot locations. A survival analysis was performed to determine the effects of pressure magnitude and foot location on the time until pain onset. Time to pain onset was significantly affected by pressure magnitude (P<0.001); time decreased as pressure increased. Foot location was also significant (P<0.001); greatest times to pain onset (least sensitive) were observed under the heel and fifth metatarsal head, shortest times (most sensitive) were found under the midfoot. This research presents a novel methodology for evaluating static pressure that may be applicable to product design. PMID:25118168

  5. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing. PMID:26398125

  6. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    SciTech Connect

    Armstrong, M; Crowhurst, J; Reed, E; Zaug, J

    2008-02-04

    We have used sub-picosecond laser pulses to launch ultra-high strain rate ({approx} 10{sup 9} s{sup -1}) nonlinear acoustic waves into a 4:1 methanol-ethanol pressure medium which has been precompressed in a standard diamond anvil cell. Using ultrafast interferometry, we have characterized acoustic wave propagation into the pressure medium at static compression up to 24 GPa. We find that the velocity is dependent on the incident laser fluence, demonstrating a nonlinear acoustic response which may result in shock wave behavior. We compare our results with low strain, low strain-rate acoustic data. This technique provides controlled access to regions of thermodynamic phase space that are otherwise difficult to obtain.

  7. Static and dynamic fatigue behavior of glass filament-wound pressure vessels at ambient and cryogenic temperatures.

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1972-01-01

    Investigation of the pressure load carrying capacity and fatigue strength of filament-wound glass-reinforced plastic pressure vessels subjected to static and cyclic loading at ambient and cryogenic (liquid nitrogen) temperature environments. The results indicate that the static fatigue problem is not critical at cryogenic temperatures. Under static loading at liquid nitrogen temperature, a reinforced plastic cylinder sustained pressurization for 88 days without failure at about 90% of the single cycle burst strength. At ambient temperature, the static life at 90% of the burst strength was about 7 min. Under cyclic loading in liquid nitrogen, no failure resulted after 1509 cycles at 55% of the single cycle burst strength. Under the same cyclic loading at ambient temperature, the test results would predict failure in the reinforced plastic. The results of similar tests upon adhesively bonded polyimide aluminum-foil lined cylinders are also reviewed.-

  8. Interpretation of prematurely terminated air-pressurized slug tests

    USGS Publications Warehouse

    Shapiro, Allen M.; Greene, Earl A.

    1995-01-01

    An air-pressurized slug test consists of applying a constant pressure to the column of air in a well, monitoring the declining water level, and then releasing the air pressure and monitoring the recovering water level. Such tests offer a means of estimating formation transmissivity and storativity without extensive downhole equipment and the associated safety risks. This paper analyzes data from prematurely terminated tests. A solution to the boundary-value problem for the declining and recovering water level during an air-pressurized slug test is developed for an arbitrary time-dependent air pressure applied to the well. Type curves are generated to estimate formation transmissivity and storativity from the recovering water level associated with prematurely, terminated tests. The application of the type curves is illustrated in a series of actual tests.

  9. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  10. Electron density distribution and static dipole moment of KNbO3 at high pressure

    NASA Astrophysics Data System (ADS)

    Yamanaka, T.; Okada, T.; Nakamoto, Y.

    2009-09-01

    The electron-density distribution of single-crystal KNbO3 has been measured as a function of pressure using synchrotron-radiation techniques in order to understand the variation in its static dielectric properties. KNbO3 adopts three different polymorphs at varying pressures and ambient temperature: the ambient pressure phase adopts an orthorhombic Cm2m (Amm2) structure that transforms to a tetragonal (P4mm) phase at about 7.0 GPa, which then transforms further to a cubic Pm3m phase at about 10.0 GPa. The cubic phase is paraelectric, while the two lower-pressure phases are ferroelectric. Difference Fourier and maximum entropy method maps clearly show d-p-π hybridization, which is composed of Nb4d and O2p states. The ferroelectric-to-paraelectric transition in KNbO3 at high pressure is discussed with reference to the variation in the electron-density distribution with pressure. Covalent bonding is reduced in the tetragonal phase as valence electrons become more localized with increasing pressure. The effective charge calculated from the valence electron density indicates that the tetragonal phase has the largest dipole moment among the three polymorphs. Orientation of the polarization in the tetragonal phase is possible in the [001] direction as a result of strain, but the orthorhombic phase shows a considerably strong polarization in both the [010] and [001] directions. In the cubic phase, a statistical distribution of Nb atoms around the inversion center in the [001] and [110] directions, rather than the [111] direction, results in paraelectric character.

  11. Comparative Tests of Pitot-static Tubes

    NASA Technical Reports Server (NTRS)

    Merriam, Kenneth G; Spaulding, Ellis R

    1935-01-01

    Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.

  12. A theoretical remark about waves on a static water surface beneath a layer of moving air

    NASA Astrophysics Data System (ADS)

    Kida, T.; Hayashi, R.; Yasutomi, Z.

    1990-12-01

    Grundy and Tuck (1987) treat the problem of large-amplitude waves on an air-water interface where the air is a steady nonuniform flow and the water is stationary. Both periodic nonlinear Stokes-like waves far downstream and a configuration of the water surface from the edge region of a hovercraft were computed. However, there is no work that treats the existence of such Stokes-like waves theoretically. The present work aims to prove the existence of such solutions in the case where the cushion pressure is low, that is, the depression at the upstream stagnation point from the mean water level is small.

  13. Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary of results

    SciTech Connect

    Evans, W J; Jenei, Z

    2009-09-17

    Static high-pressure measurements of the equation of state of a Gold-Silver alloy (23.5 wt-% Ag) at room temperature were performed up to a pressure of approximately 100 GPA (1 megabar). Measurements were made using an energy-dispersive x-ray diffraction method. The data was analyzed, yielding crystal structure lattice constants and volume/density as a function of pressure. The results are extremely precise yielding accuracy of better than 1%. The experiments were carried out at the HPCAT 16BM-D beamline at the Advanced Photon Source. Two experiments on separate samples were carried out using conventional membrane diamond anvil cells. To achieve hydrostatic conditions, we loaded a 50-100 micron piece of the Au-Ag alloy into the cell and surrounded it with neon and mineral oil pressure media in the respective experiments. The differing pressure media demonstrated no measurable difference on the resultant crystal structures, lattice constants or pressure-volume curves. Results of our work are shown in the figures below. Up to the maximum pressure of 100 GPa the sample remained in the face-centered cubic structure, e.g., we observed no change in crystal structure. EOS curves of silver and gold, taken from the literature, are shown for comparison. We fit our data to a Vinet EOS functional form, and the parameters for this EOS were found to be, Reference (ambient pressure) volume, V{sub 0} = 16.965435 {angstrom}{sup 3}; Reference (ambient pressure) density, {rho}{sub 0} = 16.14584 g/cm{sup 3}; Bulk Modulus, K{sub 0} = 144 GPa; and Bulk Mod Derivative, K{prime}{sub 0} = 5.66. As one might expect the Au-Ag alloy lies between the gold and silver EOS curves, and tracks more closely to the gold EOS. These data are useful in validating and developing predictive EOS models of the pressure-dependent behavior of Au-Ag alloys.

  14. Evaluation of Air Capture Ratio of Scramjet Inlet by Multi-Point Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Mitani, Tohru; Sakuranaka, Noboru; Izumikawa, Muneo; Watanabe, Syuichi; Masuya, Goro

    A method to evaluate aerodynamic performances of scramjet engines by using multi-probe rakes was proposed. The aerodynamic tests were carried out under Mach 4 flight conditions. The Pitot and static pressures were measured at 250 points in the cross sectional area of the engine exit by the rakes. Local mass flux and thrust function were evaluated from the pressure measurement at each point and integrations of these values enabled to obtain the mass flow rate and the stream thrust at the engine exit. The air capture ratios were independently measured by the rakes and a conventional choked flowmeter. The air capture ratios measured by these two methods agreed within 2%. It was found that the rakes enabled to measure the air capture ratio more simply than the flowmeter. Additionally, the effect of boundary layer ingestion to an internal drag was investigated by the rakes. The decrease of air capture ratio measured by the rakes showed that the ingested boundary layers were separated in the inlet. The pressure drag of inlet increased by the separation and the pressure thrust decreased by the decrease of air capture ratio. As a result, the internal drag increased when the forebody boundary layer was ingested.

  15. Maximal respiratory static pressures in patients with different stages of COPD severity

    PubMed Central

    Terzano, Claudio; Ceccarelli, Daniela; Conti, Vittoria; Graziani, Elda; Ricci, Alberto; Petroianni, Angelo

    2008-01-01

    Background In this study, we analyzed maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) values in a stable COPD population compared with normal subjects. We evaluated the possible correlation between functional maximal respiratory static pressures and functional and anthropometric parameters at different stages of COPD. Furthermore, we considered the possible correlation between airway obstruction and MIP and MEP values. Subject and methods 110 patients with stable COPD and 21 age-matched healthy subjects were enrolled in this study. Patients were subdivided according to GOLD guidelines: 31 mild, 39 moderate and 28 severe. Results Both MIP and MEP were lower in patients with severe airway impairment than in normal subjects. Moreover, we found a correlation between respiratory muscle function and some functional and anthropometric parameters: FEV1 (forced expiratory volume in one second), FVC (forced vital capacity), PEF (peak expiratory flow), TLC (total lung capacity) and height. MIP and MEP values were lower in patients with severe impairment than in patients with a slight reduction of FEV1. Conclusion The measurement of MIP and MEP indicates the state of respiratory muscles, thus providing clinicians with a further and helpful tool in monitoring the evolution of COPD. PMID:18208602

  16. Static and dynamic pressure effects on the thermolysis of nitroalkanes in solution

    SciTech Connect

    Brower, K.R.; Davis, L.L.; Naud, D.L.; Wang, J.

    1998-12-31

    The authors have measured the effects of static and shock-induced pressures on the decomposition rates and mechanisms of various nitroalkanes dissolved in different solvents with and without organic amine catalysts. While nitroalkanes without {alpha}-hydrogen decompose by homolysis of the C-NO{sub 2} bond over a wide range of conditions, the decomposition pathway of nitroalkanes having {alpha}-hydrogens (i.e., acidic nitroalkanes) is complicated and follows different decomposition mechanisms depending on the availability of organic base and reaction pressure. The Nef reaction is also an important reaction pathway. The five known decomposition pathways, homolysis of the C-NO{sub 2} bond, bimolecular reaction between the aci-form and aci-ion, cyclization of the aci-form, elimination of nitrous acid, and the Nef reaction, are highly dependent on the reaction conditions, such as pressure, presence of organic amines, water, alcohols, and polarity of solvent. The authors discuss the results of several tests used to support these various decomposition mechanisms.

  17. Subsonic wind-tunnel tests of a trailing-cone device for calibrating aircraft static pressure systems

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Ritchie, V. S.

    1973-01-01

    A trailing-cone device for calibrating aircraft static-pressure systems was tested in a transonic wind tunnel to investigate the pressure-sensing characteristics of the device including effects of several configuration changes. The tests were conducted at Mach numbers from 0.30 to 0.95 with Reynolds numbers from (0.9 x one million to 4.1 x one million per foot). The results of these tests indicated that the pressures sensed by the device changed slightly but consistently as the distance between the device pressure orifices and cone was varied from 4 to 10 cone diameters. Differences between such device-indicated pressures and free-stream static pressure were small, however, and corresponded to Mach number differences of less than 0.001 for device configurations with pressure orifices located 5 or 6 cone diameters ahead of the cone. Differences between device-indicated and free-stream static pressures were not greatly influenced by a protection skid at the downstream end of the pressure tube of the device nor by a 2-to-1 change in test Reynolds number.

  18. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  19. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  20. [A new approach to improving air in habitable pressurized modules].

    PubMed

    Argunova, A M; Odelevskiĭ, V K; Strogonova, L B

    2009-01-01

    Habitable pressurized modules, including space cabin, should provide ecologically efficient and physiologically auspicious conditions. The regenerated air should be comparable with fresh air of the natural environment humans belonged with over thousand years of evolution. Air scrubbing system GALOINHALATOR IGK-02 (MAI, patent No. 2209093) comprises eco-pure minerals from the salt rocks in Verkhnekamsk (the Urals). The portable automatic system controls air saturation with negative light aeroions and fine salt aerosols at preset levels. The laboratory, clinical and model tests demonstrated bactericide and bacteriostatic effects of air produced by GALOINHALATOR and the mineral ability to adsorb harmful volatile admixtures. Breathing decontaminated and ionized air during long stay in a pressurized module is beneficial to human performance, immunity, and chronic diseases prevention. PMID:19621806

  1. Determination of Global Reaction Rate During Laser-Induced Decomposition at Static High Pressures

    NASA Astrophysics Data System (ADS)

    Russell, Thomas. P.; Pangilinan, Gerardo I.

    1998-03-01

    The laser induced decomposition of hexahydro-1,3,5-trinitro-1,3,5 triazine (C_3H_6N_6O_6, RDX), trinitro azetidine (C_3H_4N_3O_6, TNAZ) and ammonium perchlorate (NH_4ClO_4, AP) at static high pressure in the range of 0.6 - 2.0 GPa is presented. The samples are loaded in a gem anvil cell and the reaction is induced with a single laser pulse (514 nm, 6 μs duration, 3-22 J/cm^2). The dynamic chemical processes are probed using time resolved uv-Vis absorption spectroscopy, during and up to 20 μs after the laser pulse. In all three materials, decomposition is characterized by a time-dependent increase in absorbance from 300-500 nm. This absorption change is directly proportional to the mole fraction of reaction and provides a measurement of the global reaction rate. The reaction rate is determined to be dependent on the sample, the initial pressure, and the laser fluence. The chemical decomposition is modeled using a three term reaction rate equation encompassing initiation, growth, and coalescence. A description of the differences in the decomposition kinetics for each material will be provided. Finally, the implications of these measurements to models of macroscopic energy release rates will be addressed.

  2. Melting-point measurements at high static pressures from laser heating methods: Application to uranium

    SciTech Connect

    Sitaud, B.; Thevenin, T.

    1999-07-01

    Two experimental approaches dealing with the determination of melting at high static pressures are described and analyzed. With the sample squeezed inside a diamond anvil cell, high temperatures up to the solid-liquid transition are obtained using Nd:YAG laser heating. Two methods have been investigated. In the first technique, the heating is accomplished with a pulsed laser and the brief radiation variations (t {lt} 10 ms) emitted from the sample are recorded with two high-speed infrared detectors. The melting location is defined by a plateau or changes of slope of the signals, and the temperatures are calculated by assuming a constant value of emissivity factor at the end of the transition over the studied pressure range. The second system employs a continuous laser and a two-dimensional CCD detector to measure temperatures using multispectral pyrometry. Melting is detected from criteria related either to textural change in the sample involving interference contrast under a laser illumination or to the specific variations of temperatures and emissivity as a function of laser power. Thermal radiation is fitted to Planck's law with temperature and emissivity as the free parameters. Advantages and drawbacks are presented from results obtained on pure uranium.

  3. Static and dynamic tensile behaviour of aluminium processed by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Verleysen, Patricia; Oelbrandt, Wouter; Naghdy, Soroosh; Kestens, Leo

    2015-09-01

    High pressure torsion (HPT) is a severe plastic deformation technique in which a small, disk-like sample is subjected to a torsional deformation under a high hydrostatic pressure. In present study, the static and dynamic tensile behaviour of commercially pure aluminium (99.6 wt%) processed by HPT is studied. The high strain rate tensile behaviour is characterized using a purpose-developed miniature split Hopkinson tensile bar setup by which strain rates up to 5 × 103 s-1 can be reached. During the tests, the deformation of a speckle pattern applied to the samples is recorded, by which local information on the strain is obtained using a digital image correlation technique. Electron back scatter diffraction images are used to investigate the microstructural evolution, more specifically the grain refinement obtained by HPT. The fracture surfaces of the tensile samples are studied by scanning electron microscopy. Results show that the imposed severe plastic deformation significantly increases the tensile strength, however, at the expense of ductility. The strain rate only has a minor influence on the materials tensile behaviour.

  4. The development of large diameter, high pressure, cryogenic radial static seals

    NASA Technical Reports Server (NTRS)

    Burr, M. E.

    1976-01-01

    Two configurations of radial static seals are developed for high-pressure 773 kg per sq cm cryogenic applications: a U-shaped fluorocarbon seal and a delta-shaped PTFE seal. The U-seal is a common commercial design consisting of a spring-loaded cup-shaped jacket; the basic principle is that the soft plastic jacket provides the interface between the piston and the bore, the jacket being held in place by a metal spring. The delta seal is based on the principle that the soft plastic delta cross section furnishes the interface at the metal face and circumferential face of the gland and cylinder. Test results indicate that both the plastic U-seal and the delta seal designs are sufficiently flexible to accommodate assembly in bore or piston grooves. Of these two configurations, the delta seal is found to be superior as it meets all the design requirements for proof pressure testing the turbopump components of the main engine in the Space Shuttle.

  5. Teaching Science: Air Pressure "Eggs-periments."

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses how teachers can introduce students to various scientific concept concerning motion, air composition, and heat by conducting an experiment: A peeled, hard-boiled egg is sucked into a bottle neck slightly smaller than the egg, after the bottle has been filled and emptied of hot water. Also discusses how students' understanding of the…

  6. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Okuno, A. F.

    1985-01-01

    The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.

  7. Static and Transient Cavitation Threshold Measurements for Mercury

    SciTech Connect

    Moraga, F.; Taleyarkhan, R.P.

    1999-11-14

    Transient and static cavitation thresholds for mercury as a function of the cover gas (helium or air), and pressure are reported. Both static and transient cavitation onset pressure thresholds increase linearly with cover gas pressure. Additionally, the cavitation thresholds as a function of dissolved gases were also measured and are reported.

  8. SMALL OIL BURNER CONCEPTS BASED ON LOW PRESSURE AIR ATOMIZATION

    SciTech Connect

    BUTCHER,T.; CELEBI,Y.; WEI,G.; KAMATH,B.

    2000-03-16

    The development of several novel oil burner applications based on low pressure air atomization is described. The atomizer used is a prefilming, airblast nozzle of the type commonly used in gas turbine combustion. The air pressure used can be as low as 1,300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. The development of three specific applications is presented. The first two are domestic heating burners covering a capacity range 10 to 26 kW. The third application presented involves the use of this burner in an oil-fired thermophotovoltaic power generator system. Here the design firing rate is 2.9 kW and the system produces 500 watts of electric power.

  9. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  10. Pressure evolution of ethylene-air explosions in enclosures

    NASA Astrophysics Data System (ADS)

    Movileanu, C.; Razus, D.; Giurcan, V.; Gosa, V.

    2014-08-01

    The peak explosion pressure and the maximum rate of pressure rise are important safety parameters for assessing the hazard of a process and for design of vessels able to withstand an explosion or of their vents used as relief devices. Using ethylene-air with various fuel concentrations (4-10 vol% C2H4) as test mixture, the propagation of explosion in four closed vessels (a spherical vessel with central ignition and three cylindrical vessels with various L/D ratios, centrally or side ignited) has been studied at various initial pressures between 0.3-2.0 bar. In all cases, the peak pressures and the maximum rates of pressure rise were found to be linear functions on the total initial pressure, at constant fuel concentration. Examining several enclosures, the maximum values of explosion pressures and rates of pressure rise have been found for the spherical vessel. For the same initial conditions, the peak explosion pressure and maximum rates of pressure rise determined in cylindrical vessels decrease with the increase of L/D ratio. Asymmetric ignition, at vessel's bottom, induces important heat losses during flame propagation. This process is characterized by the lowest rates of pressure rise, as compared to propagation of flame ignited in the centre of the same vessel.

  11. Study of the laser-induced decomposition of HNO3/ 2-Nitropropane mixture at static high pressures

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Hébert, Philippe; Doucet, Michel

    2007-06-01

    HNO3 / 2-Nitropropane is a well known energetic material on which Raman spectroscopy measurements at static high pressure in a diamond anvil cell (DAC) have already been conducted at CEA/LE RIPAULT in order to examine the evolution of the mixture as a function of composition and pressure [1]. The purpose of the work presented here was to study the laser-induced decomposition of these energetic materials at static high pressures by measuring the combustion front propagation rate in the DAC. First of all, the feasibility of the experimental device was checked with a well known homogeneous explosive, nitromethane. Our results were consistent with those of Rice and Foltz [2]. Then, we investigated the initiation of NA / 2NP mixture as a function of nitric acid proportion, for a given pressure. We chose the mixture for which both the combustion propagation rate and detonation velocity are maximum and we examined the evolution of the front propagation velocity as a function of pressure and energy deposit. [1] Hebert, P., Regache, I., and Lalanne, P., ``High-Pressure Raman Spectroscopy study of HNO3 / 2-Nitropropane Mixtures. Influence of the Composition.'' Proceedings of the 42nd European High-Pressure Research Group Meeting, Lausanne, Suisse, 2004 [2] Rice, S.F., et al., Combustion and Flame 87 (1991) 109-122.

  12. Static inflation and deflation pressure-volume curves from excised lungs of marine mammals.

    PubMed

    Fahlman, Andreas; Loring, Stephen H; Ferrigno, Massimo; Moore, Colby; Early, Greg; Niemeyer, Misty; Lentell, Betty; Wenzel, Frederic; Joy, Ruth; Moore, Michael J

    2011-11-15

    Excised lungs from eight marine mammal species [harp seal (Pagophilus groenlandicus), harbor seal (Phoca vitulina), gray seal (Halichoerus grypush), Atlantic white-sided dolphin (Lagenorhynchus acutus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), long-finned pilot whale (Globicephala melas) and harbor porpoise (Phocoena phocoena)] were used to determine the minimum air volume of the relaxed lung (MAV, N=15), the elastic properties (pressure-volume curves, N=24) of the respiratory system and the total lung capacity (TLC). Our data indicate that mass-specific TLC (sTLC, l kg(-1)) does not differ between species or groups (odontocete vs phocid) and agree with that estimated (TLC(est)) from body mass (M(b)) by applying the equation: TLC(est)=0.135 M(b)(0.92). Measured MAV was on average 7% of TLC, with a range from 0 to 16%. The pressure-volume curves were similar among species on inflation but diverged during deflation in phocids in comparison with odontocetes. These differences provide a structural basis for observed species differences in the depth at which lungs collapse and gas exchange ceases. PMID:22031747

  13. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  14. Modulatory effects of static magnetic fields on blood pressure in rabbits.

    PubMed

    Okano, H; Ohkubo, C

    2001-09-01

    Acute effects of locally applied static magnetic fields (SMF) on pharmacologically altered blood pressure (BP) in a central artery of the ear lobe of a conscious rabbit were evaluated. Hypotensive and vasodilator actions were induced by a Ca(2+) channel blocker, nicardipine (NIC). Hypertensive and vasoconstrictive actions were induced by a nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME). The hemodynamic changes in the artery exposed to SMF were measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, BP changes in a central artery contralateral to that of the exposed ear lobe were monitored. SMF intensity was 1 mT and the duration of exposure was 30 min. A total of 180 experimental trials were carried out in 34 healthy adult male rabbits weighing 2.6-3.8 kg. Six experimental procedures were chosen at random: (1) sham exposure without pharmacological treatment; (2) SMF exposure alone; (3) decreased BP induced by a single intravenous (iv) bolus injection of NIC (100 microM/kg) without SMF exposure; (4) decreased BP induced by injection of NIC with SMF exposure; (5) increased BP induced by a constant iv infusion of L-NAME (10 mM/kg/h) without SMF exposure; (6) increased BP induced by infusion of L-NAME with SMF exposure. The results demonstrated that SMF significantly reduced the vasodilatation with enhanced vasomotion and antagonized the reduction of BP via NIC-blocked Ca(2+) channels in vascular smooth muscle cells. In addition, SMF significantly attenuated the vasoconstriction and suppressed the elevation of BP via NOS inhibition in vascular endothelial cells and/or central nervous system neurons. These results suggest that these modulatory effects of SMF on BP might, in part, involve a feedback control system for alteration in NOS activity in conjunction with modulation of Ca(2+) dynamics. PMID:11536282

  15. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  16. Stresses and Displacements in Steel-Lined Pressure Tunnels and Shafts in Anisotropic Rock Under Quasi-Static Internal Water Pressure

    NASA Astrophysics Data System (ADS)

    Pachoud, Alexandre J.; Schleiss, Anton J.

    2016-04-01

    Steel-lined pressure tunnels and shafts are constructed to convey water from reservoirs to hydroelectric power plants. They are multilayer structures made of a steel liner, a cracked backfill concrete layer, a cracked or loosened near-field rock zone and a sound far-field rock zone. Designers often assume isotropic behavior of the far-field rock, considering the most unfavorable rock mass elastic modulus measured in situ, and a quasi-static internal water pressure. Such a conventional model is thus axisymmetrical and has an analytical solution for stresses and displacements. However, rock masses often have an anisotropic behavior and such isotropic assumption is usually conservative in terms of quasi-static maximum stresses in the steel liner. In this work, the stresses and displacements in steel-lined pressure tunnels and shafts in anisotropic rock mass are studied by means of the finite element method. A quasi-static internal water pressure is considered. The materials are considered linear elastic, and tied contact is assumed between the layers. The constitutive models used for the rock mass and the cracked layers are presented and the practical ranges of variation of the parameters are discussed. An extensive systematic parametric study is performed and stresses and displacements in the steel liner and in the far-field rock mass are presented. Finally, correction factors are derived to be included in the axisymmetrical solution which allow a rapid estimate of the maximum stresses in the steel liners of pressure tunnels and shafts in anisotropic rock.

  17. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  18. Modulated corona nanosecond discharge in air under ambient pressure

    NASA Astrophysics Data System (ADS)

    Lepekhin, N. M.; Priseko, Yu. S.; Filippov, V. G.; Bulatov, M. U.; Sukharevskii, D. I.; Syssoev, V. S.

    2015-04-01

    A unique type of corona discharge-modulated corona nanosecond discharge-has been obtained, the parameters of which have been determined in a geometric system of electrodes with a sharply heterogeneous electric field in air under ambient pressure and natural humidity.

  19. The Jar Magic--Instructional Activities for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-01-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass,…

  20. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  1. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  2. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  3. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  4. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  5. Modelling the lifetime of an observable BSR under static pressure-temperature conditions

    NASA Astrophysics Data System (ADS)

    Haacke, R. R.; Westbrook, G. K.; Riley, M.

    2003-04-01

    Investigating the depletion of a free gas layer beneath sediments containing hydrate can shed light on the processes and conditions required to maintain an observable BSR. The free gas layer beneath a hydrate bearing sediment column is subject to depletion via advection-dispersion when the mechanisms for its replenishment are inactive. The depletion process was investigated with a one dimensional model based on the nature of the sub-BSR free gas zone observed in sediments on the Blake Ridge, by ODP leg 164, and offshore Svalbard by the Hydratech project. A uniform and static pressure-temperature (p-T) field was applied to the free gas layer, represented as a quasi-mixture of gas bubbles trapped in the rock matrix by surface tension effects. The behaviour of mass transport in solution was modelled via the Crank-Nicolson form of the advection-dispersion equation and solved by LU decomposition to quantify perturbations from equilibrium, defined by Duan's equation of states. Departures from equilibrium were restored at the expense of the free gas held in the quasi-mixture until full depletion occurred. A depletion time of about 33 ka was obtained for free gas contained in 4% pore volume of a typical 100-m thick gas layer. The accuracy of the result depends on the validity of input parameters, and differences in geological setting may allow this depletion time to lie within the range of 2-80 ka. This implies that where hydrate-bearing sediments are found without a BSR, water depth has not decreased and bottom water temperature has not increased for at least this period of time. To sustain an observable BSR, gaseous methane must occupy the region beneath the BSR with a thickness greater than one quarter of the dominant seismic wavelength. The gas must come from bubbles percolating from depth, or gas dissociated from hydrate by a change in ambient p-T conditions that moves the stability boundary upward relative to the rock matrix. Calculation shows that in the absence of

  6. Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals.

    PubMed

    Levinsky, Alexandra; Papyan, Surik; Weinberg, Guy; Stadheim, Trond; Eide, Per Kristian

    2016-05-01

    The aim of the present study was to examine whether a method for estimation of non-invasive ICP (nICP) from transcranial acoustic (TCA) signals mixed with head-generated sounds estimate the static and pulsatile invasive ICP (iICP). For that purpose, simultaneous iICP and mixed TCA signals were obtained from patients undergoing continuous iICP monitoring as part of clinical management. The ear probe placed in the right outer ear channel sent a TCA signal with fixed frequency (621 Hz) that was picked up by the left ear probe along with acoustic signals generated by the intracranial compartment. Based on a mathematical model of the association between mixed TCA and iICP, the static and pulsatile nICP values were determined. Total 39 patients were included in the study; the total number of observations for prediction of static and pulsatile iICP were 5789 and 6791, respectively. The results demonstrated a good agreement between iICP/nICP observations, with mean difference of 0.39 mmHg and 0.53 mmHg for static and pulsatile ICP, respectively. In summary, in this cohort of patients, mixed TCA signals estimated the static and pulsatile iICP with rather good accuracy. Further studies are required to validate whether mixed TCA signals may become useful for measurement of nICP. PMID:26997563

  7. The hybrid pressurized air receiver (HPAR) in the SUNDISC cycle

    NASA Astrophysics Data System (ADS)

    Heller, Lukas; Hoffmann, Jaap; Gauché, Paul

    2016-05-01

    Tubular metallic pressurized air solar receivers face challenges in terms of temperature distribution on the absorber tubes and the limited sustainable solar influx. The HPAR concept aims at mitigating these problems through a macro-volumetric design and a secondary non-pressurized air flow around the absorber elements. Here, a 360◦ manifestation of this concept for implementation in the dual-pressure SUNDISC cycle is presented. Computationally inexpensive models for the numerous heat flows were developed for use in parametric studies of a receiver's geometric layout. Initial findings are presented on the optical penetration of concentrated solar radiation into the absorber structure, blocking of thermal radiation from hot surfaces and the influence of the flow path through the heated tubes. In the basic design the heat transfer to the non-pressurized air stream is found to be insufficient and possible measures for its improvement are given. Their effect will be examined in more detailed models of external convection and thermal radiation to be able to provide performance estimates of the system.

  8. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  9. The StenTec gauge for measuring static intra-access pressure ratio (P(Ia Ratio) ) of fistulas and grafts.

    PubMed

    Ash, Stephen R; Dhamija, Rajiv; Zaroura, Mohamad Y; Hentschel, Dirk M

    2012-07-01

    The StenTec™ Gauge provides a method to determine the static intra-access pressure ratio (P(Ia Ratio) ) within a fistula or graft. The StenTec Gauge estimates the peak systolic pressure within the fistula or graft by measurement of the distance that the blood-air interface progresses into the tubing of the fistula needle, after the needle is inserted "dry" into the fistula or graft and before the cap is removed from the tubing. The peak systolic pressure is graphically compared with the systolic arterial blood pressure of the patient, to determine P(Ia Ratio) . For best accuracy, the StenTec Gauge should be chosen that best matches the internal volume of the fistula needle tubing (2.3-2.6 ml for 12-inch tubing and 3.6 ml for 16-inch tubing) and the approximate elevation of the city in which it is used (0-1000, 1000-3000, and 3000-6000 feet above sea level). In this article, we explain the rationale for this method of surveillance, evidence for accuracy of the StenTec Gauge, and the correlation of changes in the P(Ia Ratio) to the development of stenosis in a fistula or graft. PMID:22356546

  10. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  11. The effects of confining pressure and stress difference on static fatigue of granite

    NASA Technical Reports Server (NTRS)

    Kranz, R. L.

    1979-01-01

    Samples of Barre granite were creep tested at room temperature at confining pressures up to 2 kilobars. The time to fracture increased with decreasing stress difference at every pressure, but the rate of change of fracture time with respect to the stress difference increased with pressure. At 87% of the short-term fracture strength, the time to fracture increased from about 4 minutes at atmospheric pressure to longer than one day at 2 Kb of pressure. The inelastic volumetric strain at the onset of tertiary creep, delta, was constant within 25% at any particular pressure but increased with pressure in a manner analogous to the increase of strength with pressure. At the onset of tertiary creep, the number of cracks and their average length increased with pressure. The crack angle and crack length spectra were quite similar, however, at each pressure at the onset of tertiary creep.

  12. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    SciTech Connect

    Luo, Di-xian; Xia, Cheng-lai; Li, Jun-mu; Xiong, Yan; Yuan, Hao-yu; TANG, Zhen-Wang; Zeng, Yixin; Liao, Duan-fang

    2010-12-03

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were

  13. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules

    NASA Astrophysics Data System (ADS)

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  14. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.

    PubMed

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process. PMID:26133864

  15. Pressure Relief, Visco-Elastic Foam with Inflated Air? A Pilot Study in a Dutch Nursing Home

    PubMed Central

    Van Leen, Martin; Schols, Jos

    2015-01-01

    Objective: There is still little evidence regarding the type of mattress that is the best for preventing pressure ulcers (PUs). In a Dutch nursing home, a new type of overlay mattress (air inflated visco-elastic foam) was tested to analyze the opportunity for replacement of the normally used static air overlay mattress in its three-step PU prevention protocol In this small pilot the outcome measures were: healing of a category one pressure ulcer, new development or deterioration of a category one PU and need for repositioning. Methods: We included 20 nursing home residents with a new category one pressure ulcer, existing for no longer than 48 h following a consecutive sampling technic. All residents were staying for more than 30 days in the nursing home and were lying on a visco-elastic foam mattress without repositioning (step one of the 3-step protocol) at the start of the pilot study. They had not suffered from a PU in the month before. The intervention involved use of an air inflated foam overlay instead of a static air overlay (normally step 2 of the 3-step protocol). At the start; the following data were registered: age; gender; main diagnosis and presence of incontinence. Thereafter; all participating residents were checked weekly for PU healing tendency; deterioration of PUs; new PUs and need of repositioning. Only when residents showed still a category one PU after 48 h or deterioration of an existing pressure ulcer or if there was development of a new pressure ulcer, repositioning was put into practice (step 3 of the PU protocol). All residents participated during 8 weeks. Results: Seven residents developed a new pressure ulcer category one and still had a category one pressure ulcer at the end of the study period. One resident developed a pressure ulcer category 2. Fifteen residents needed repositioning from one week after start of the study until the end of the study. Conclusions: Overall 40% of the residents developed a pressure ulcer. Seventy five

  16. Microcontrolled air-mattress for ulcer by pressure prevention

    NASA Astrophysics Data System (ADS)

    Pasluosta, Cristian F.; Fontana, Juan M.; Beltramone, Diego A.; Taborda, Ricardo A. M.

    2007-11-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  17. The Jar Magic -- Instructional Activities for Teaching Air Pressure

    NASA Astrophysics Data System (ADS)

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-12-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass, amazingly, no water spills out. Further, one may also use balloons and plastic bottles as the components in another experiment. Place a balloon in a plastic bottle and spread the balloon's mouth over the bottle's rim. Inflate the balloon by blowing into it. Students will be astonished at the fact that the balloon remains inflated even though its mouth is open. Making suction cups "stick" to the wall is also an instance of proving how air pressure works.

  18. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    SciTech Connect

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  19. Static and unsteady pressure measurements on a 50 degree clipped delta wing at M = 0.9. [conducted in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Hess, R. W.; Wynne, E. C.; Cazier, F. W.

    1982-01-01

    Pressures were measured with Freon as the test medium. Data taken at M = 0.9 is presented for static and oscillatory deflections of the trailing edge control surface and for the wing in pitch. Comparisons of the static measured data are made with results computed using the Bailey-Ballhaus small disturbance code.

  20. Contact area and static pressure profile at the plate-bone interface in the nonluted and luted bone plate.

    PubMed

    Staller, G S; Richardson, D W; Nunamaker, D M; Provost, M

    1995-01-01

    Contact area and pressure between 6-hole broad dynamic compression plates and 20 pairs of equine third metatarsal bones were measured using nonluted and luted plating techniques. Pressure-sensitive film (pressure ranges 10 to 50 MPa and 50 to 130 MPa) was used as the static pressure transducer. Nonluted and one of two luting techniques were tested on each pair of bones; each luting technique was tested on 20 bones. Quantitative determinations of contact area and pressure were made using computerized image processing techniques. Mean (+/- SD) total contact area for nonluted plates was 18.49% +/- 3.5% of the potential plate-bone contact area. Luting increased (P < .05) total contact area to 25.56% +/- 4.0% and 31.29% +/- 6.6% for the respective luting techniques. The effects of luting on contact area were dependent on the contact pressure. At contact pressure ranges 10 to 20 and 21 to 35 MPa, luting increased contact area. In contact pressure ranges 36 to 45 and 50 to 65 MPa, plate-bone contact was inherently greatest and plate luting had no significant effect on contact area. In contact pressure ranges 66 to 99 and 100 to 126 MPa, luting decreased contact area. Contact area was increased at lower contact pressures at the expense of higher pressure contact. Contact in the middle third of the plate was 20% to 40% of the contact at either end of the plate. Plate luting increased contact area best where plate-bone contour was most similar. PMID:7571381

  1. Effect of pressure on statics, dynamics, and stability of multielectron bubbles.

    PubMed

    Tempere, J; Silvera, I F; Devreese, J T

    2001-12-31

    The effect of positive and negative pressure on the modes of oscillation of a multielectron bubble in liquid helium is calculated. Already at low pressures of the order of 10-100 mbar, these effects are found to significantly modify the frequencies of oscillation of the bubble. Stabilization of the bubble is shown to occur in the presence of a small negative pressure, which expands the bubble radius. Above a threshold negative pressure, the bubble is unstable. PMID:11800888

  2. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  3. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  4. Brass plasmoid in external magnetic field at different air pressures

    SciTech Connect

    Patel, D. N.; Thareja, Raj K.; Pandey, Pramod K.

    2013-10-15

    The behavior of expanding brass plasmoid generated by 266 nm wavelength of Nd:YAG laser in nonuniform magnetic field at different air pressures has been examined using optical emission spectroscopy and fast imaging of plasma plumes. The splitting of the plasma plumes and enhancement of intensity of Cu I at 510.5 nm in the presence of magnetic field at lower pressures are discussed. The threading and expulsion of the magnetic field lines through the plasmoid are correlated with the ambient pressure. The stoichiometry of the plasma plume is not significantly influenced by the magnetic field; however, the abundance of neutral to ionic species of Cu and Zn is greatly influenced by the magnetic field.

  5. Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa

    NASA Astrophysics Data System (ADS)

    Günther, Eva; Mehling, Harald; Werner, Matthias

    2007-08-01

    Phase change materials (PCMs) are used for efficient thermal energy storage. When a PCM melts and solidifies, it absorbs and releases a large amount of heat within a small temperature interval. Salt hydrates are interesting PCMs with high storage density, but their solidification is often problematic due to large subcooling. From thermodynamic theory, it should be possible to cause nucleation by applying high pressure to the subcooled melt, and thereby reduce subcooling. However, for the design of a pressure based triggering system there are still many unknown factors. In this context, we investigated the pressure dependence of the melting and nucleation temperatures. We present experimental data of three inorganic PCMs under static pressures up to 800 MPa. For NaOAc · 3H2O we observed a shifting of the nucleation temperature from -20°C at ambient pressure to +40°C at 800 MPa. This confirms that within this pressure range, the nucleation temperature of NaOAc · 3H2O is shifted above room temperature. For CaCl2 · 6H2O, a good agreement with reported melting temperature data was observed, and the range of experimental data was extended. For KF · 4H2O, the shift of the melting temperature was found to differ considerably from theoretic predictions.

  6. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    SciTech Connect

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  7. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  8. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  9. Effect of Static Pressure on Absolute Paleointesity Determinations with Implications for Meteorites

    NASA Astrophysics Data System (ADS)

    Volk, M.; Gilder, S. A.

    2015-12-01

    Meteorites store information about the magnetic fields present in the solar system. However, most meteorites have experienced pressure/shock, which will influence the magnetic properties of the remanence carrying minerals. Here, we quantify the effect that relatively low pressure has on paleointensity recording with relevance to meteorites that have no petrographic evidence for shock. Thellier-type experiments were carried out on 40 samples containing thermally stable titanomagnetite similar to that found in some achondrites. Pressure cycling was performed under hydrostatic and non-hydrostatic conditions. We also tested the effect of pressure cycling when the maximum compression axis was imposed parallel and perpendicular to the magnetization direction. The initial zero pressure experiment correctly reproduced the laboratory field imparted on the samples. Paleointensity values decrease 10%/GPa under hydrostatic conditions with no observable directional dependence between the direction of the magnetization with the maximum compression axis. Non-hydrostatic pressures have a significantly greater effect - paleointensity decreases 20%/GPa on average, with only a slight difference when pressure is imposed parallel to the magnetization direction, whereas the pressure demagnetization effect is more substantial. Interestingly, the data become more linear (higher quality factors) as pressure increases. We explain this phenomenon through a numerical model that shows the mean blocking temperatures become lower with increasing pressure. This reduces the difference between mean blocking and unblocking, which eliminates the sagging (curvature) seen in Arai plots.Considering that samples from meteorites classified as unshocked may have experienced pressures up to 5 GPa, paleointensity estimates derived from meteorites should be considered as minimum values.

  10. Static Pressure Above 300 GPa Using Chemical Vapor Deposited Two-stage Diamond Micro-anvils

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey; Samudrala, Gopi; Tsoi, Georgiy; Smith, Spencer; Vohra, Yogesh

    Two-stage diamond micro-anvils were grown via chemical vapor deposition (CVD) on beveled diamond anvils with 30 micron central flats. These anvils were used to compress a pre-indented rhenium foil to pressures in excess of 300 Gigapascals (GPa) at relatively small applied loads. Powder diffraction patterns were collected across the high-pressure region using an x-ray beam collimated to 1x2 microns in a grid with a spacing of 1 micron. While multi-megabar pressures were seen across the entire second stage, the highest pressure regions were confined to areas of a few microns in diameter. These were observed at points near the edge of the second stage with nearby pressure gradients as high as 100 GPa/micron. The transmitted x-rays show that the second stage plastically deformed while maintaining multi-megabar pressures. This may have created a second-stage gasket consisting of CVD diamond and rhenium that supported the pressure gradient without substantial external confining pressure. Further improvements in two-stage diamond micro-anvils would require controlling the geometry and microcrystalline/nanocrystalline diamond content during CVD growth process. This work was supported by the Department of Energy (DOE), National Nuclear Security Administration under Grant Number DE-NA0002014.

  11. Static spherically-symmetric perfect fluids with pressure equal to energy density

    NASA Astrophysics Data System (ADS)

    Yadav, R. B. S.; Saini, S. L.

    1991-12-01

    An exact, static, and spherically-symmetric solution is presented of Einstein's field equations for a homogeneous perfect fluid core surrounded by a field of Zel'dovich's fluid which is asymptotically homaloidal. The equation of state for the fluid is taken as p = p, which describes several important cases, e.g., radiation, relativistic degenerate Fermi gas, and probably very dense baryon matter. If the fluid satisfies p = p and if in addition its motion is irrotational, then such a source has the same stress energy tensor as that of a massless scalar field.

  12. Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces

    NASA Astrophysics Data System (ADS)

    Brown, C. V.; Al-Shabib, W.; Wells, G. G.; McHale, G.; Newton, M. I.

    2010-12-01

    Dielectrophoresis forces have been used to create a static periodic wrinkle with a sinusoidal morphology on the surface of a thin layer of 1-decanol oil. The surface deformation occurs when a voltage V is applied between adjacent coplanar strip electrodes in an interdigitated array onto which the oil film is coated. It has been shown experimentally that the peak-to-peak amplitude A of the wrinkle scales according to the functional form A ∝V2 exp(-αh¯/p) for a range of oil film thicknesses h¯ (between 15 and 50 μm) and wrinkle pitches p (160, 240, and 320 μm).

  13. Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft. [conducted in a Langley 8 foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Flechner, S. G.; Siemers, P. M., III

    1980-01-01

    The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed.

  14. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  15. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  16. Microwave generation of stable atmospheric-pressure fireballs in air.

    PubMed

    Stephan, Karl D

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed. PMID:17279961

  17. Microwave generation of stable atmospheric-pressure fireballs in air

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  18. Microwave generation of stable atmospheric-pressure fireballs in air

    SciTech Connect

    Stephan, Karl D.

    2006-11-15

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  19. The effects of confining pressure and stress difference on static fatigue of granite

    NASA Technical Reports Server (NTRS)

    Kranz, R. L.

    1980-01-01

    Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.

  20. Study of the Laser-Induced Decomposition of HNO3/2-NITROPROPANE Mixture at Static High Pressure

    NASA Astrophysics Data System (ADS)

    Bouyer, V.; Hébert, P.; Doucet, M.

    2007-12-01

    The objective of the work presented here is to study the laser-induced decomposition of a condensed HNO3/2-nitropropane mixture containing 58% nitric acid. On the macroscopic scale, this energetic material detonates. Under static high pressure, the formation of an H-bonded complex with that particular composition was demonstrated in a previous study. The high pressure behavior of the complex showed the presence of a solid-solid phase transition around 18 GPa. The combustion front propagation velocity was recorded between 6 and 31 GPa. The analysis of the optical properties of the reaction products as well as the recording of their Raman spectra showed two different combustion regimes. Below 18 GPa, total combustion takes place in the sample and a black residue only composed of soot remains in the cell. Above 18 GPa, the combustion leads to a clear residue with little carbon present. However, the Raman spectra of the remaining sample show new features indicating the presence of species which are not yet clearly identified. The pressure limit between these two behaviors corresponds to the phase transition pressure measured for the complex.

  1. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  2. A noncontact intraocular pressure measurement device using a micro reflected air pressure sensor for the prediagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Kim, Byeong Hee; Seo, Young Ho

    2012-03-01

    This study investigates a novel, portable tonometer using a micro reflected air pressure sensor for the prediagnosis of glaucoma. Because glaucoma progresses slowly and is not painful, glaucoma patients require a portable prediagnosis system to periodically measure intraocular pressure at home. Conventionally, intraocular pressure is measured by an air-puff tonometer whereby the cornea is deformed by a short pulse of air pressure and the magnitude of the corneal deformation is measured by optic systems such as a combination of laser- and photodiodes. In this study, a micro reflected air pressure sensor was designed, fabricated, and tested in order to measure the magnitude of corneal deformation without optic systems. In an experimental study, artificial eyes with different internal pressures were fabricated and these pressures were measured by the aforementioned system.

  3. Structural phase stability in group IV metals under static high pressure

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Garry N; Dattelbaum, Dana M; Vohra, Yogesh K; Stemshorn, Andrew

    2009-01-01

    In group IV metals (Ti, Zr, and Hf) room temperature compression leads to a martensitic transformation from a ductile {alpha} to a brittle {omega} phase. {alpha} {yields} {omega} phase boundary decreases to lower pressure at high temperature and can limit the use of group IV metals in industrial applications. There is a large discrepancy in the transition pressure reported in literature, with some of the variation attributed to experimental conditions (i.e. hydrostatic vs. non-hydrostatic). Shear deformation in non-hydrostatic experiments drives {alpha} {yields} {omega} transition and decreases transition pressure. Impurities can also aid or suppress {alpha} {yields} {omega} transition. By performing x-ray diffraction experiments on samples in a diamond anvil cell we show that interstitial impurities, such as C, N, and O can obstruct {alpha} {yields} {omega} transition and stabilize {alpha} phase to higher pressure. We also show that reduction in grain size can also influence {alpha} {yields} {omega} phase boundary and help stabilize {alpha} phase to higher pressure under non-hydrostatic conditions.

  4. Prenatal Air Pollution Exposure and Newborn Blood Pressure

    PubMed Central

    Rifas-Shiman, Sheryl L.; Melly, Steven J.; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Mittleman, Murray A.; Oken, Emily; Gillman, Matthew W.; Koutrakis, Petros; Gold, Diane R.

    2015-01-01

    Background Air pollution exposure has been associated with increased blood pressure in adults. Objective: We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). Methods: We studied 1,131 mother–infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child’s birth weight; mother’s age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Results: Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., –2.3 mmHg; 95% CI: –4.4, –0.2 for a 13.5-ppb increase during the 90 days before birth). Conclusions: Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood. Citation: van Rossem L, Rifas-Shiman SL, Melly SJ, Kloog I, Luttmann-Gibson H, Zanobetti A, Coull BA, Schwartz JD, Mittleman MA, Oken E, Gillman MW, Koutrakis P, Gold DR. 2015. Prenatal air pollution exposure and newborn blood pressure

  5. In-flight measurement of static pressures and boundary layer state with integrated sensors

    NASA Astrophysics Data System (ADS)

    Greff, E.

    The reliable, integrated sensors for control-system feedback required by advanced transport aircraft wing designs incorporating adaptive geometry features for load control and performance optimization are presently evaluated. Absolute pressure transducers from various manufacturers were tested and adapted to the flight test environment; both laboratory and flight test results indicate steady measurement capabilities. It is shown that the sensing of pressure fluctuations in the wing-buffet regime will improve the prediction of operational limits. The pressure transducers were also used to investigate the laminar/turbulent transition in the attachment-line flow of a swept wing. A comparison of these results with those of hot film probes shows the transducers' effectiveness.

  6. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  7. Inelastic X-ray scattering experiments on B[subscript 4]C under high static pressures

    SciTech Connect

    Kumar, Ravhi S.; Dandekar, Dattatraya; Leithe-Jasper, Andres; Tanaka, Takaho; Xiao, Yuming; Chow, Paul; Nicol, Malcolm F.; Cornelius, Andrew L.

    2010-05-04

    Boron K-edge inelastic X-ray scattering experiments were performed on clean B{sub 4}C and shock impact recovered boron carbide up to 30 GPa and at ambient temperature to understand the pressure induced bonding changes. The spectral features corresponding to the boron site in the interlinking chain remained unchanged up to 30 GPa. The results of our experiments indicate that pressure induces less distortion to the boron sites and the local amorphization observed in the previous reports are due to the rearrangement of carbon atoms under extreme conditions without affecting the boron environment.

  8. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    SciTech Connect

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  9. Helical guided waves in liquid-filled cylindrical shells subjected to static pressurization stress

    NASA Astrophysics Data System (ADS)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2016-04-01

    Helical guided waves in pipelines are studied under the effects of pressurization stresses from a contained liquid. The pipeline is approximated by an "unwrapped" plate waveguide, and a transfer matrix method is used to solve for guided wave velocity and attenuation dispersion curves in a multilayered plate waveguide subject to an arbitrary triaxial state of initial stress. The matrix-based model is able to incorporate both elastic and viscoelastic solid materials, as well as approximate non-uniform distributions in initial stress through the thickness of a waveguide. Experiments on a steel pipe filled with pressurized water are carried out to validate the modeling approach.

  10. Selection and static calibration of the Marsh J1678 pressure gauge

    NASA Technical Reports Server (NTRS)

    Oxendine, Charles R.; Smith, Howard W.

    1993-01-01

    During the experimental testing of the ultralight, it was determined that a pressure gauge would be required to monitor the simulated flight loads. After analyzing several factors, which are indicated in the discussion section of this report, the Marsh J1678 pressure gauge appeared to be the prominent candidate for the task. However, prior to the final selection, the Marsh pressure gauge was calibrated twice by two different techniques. As a result of the calibration, the Marsh gauge was selected as the appropriate measuring device during the structural testing of the ultralight. Although, there are commerical pressure gauges available on the market that would have proven to be more efficient and accurate. However, in order to obtain these characteristics in a gauge, one has to pay the price on the price tag, and this value is an exponential function of the degree of accuracy efficiency, precision, and many other features that may be designed into the gauge. After analyzing the extent of precision and accuracy that would be required, a more expensive gauge wouldn't have proven to be a financial benefit towards the outcome of the experiment.

  11. Static voltage distribution between turns of secondary winding of air-core spiral strip transformer and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-bo; Liu, Jin-liang; Cheng, Xin-bing; Zhang, Yu

    2011-09-01

    The static voltage distribution between winding turns has great impact on output characteristics and lifetime of the air-core spiral strip pulse transformer (ACSSPT). In this paper, winding inductance was calculated by electromagnetic theory, so that the static voltage distribution between turns of secondary winding of ACSSPT was analyzed conveniently. According to theoretical analysis, a voltage gradient because of the turn-to-turn capacitance was clearly noticeable across the ground turns. Simulation results of Pspice and CST EM Studio codes showed that the voltage distribution between turns of secondary winding had linear increments from the output turn to the ground turn. In experiment, the difference in increased voltage between the ground turns and the output turns of a 20-turns secondary winding is almost 50%, which is believed to be responsible for premature breakdown of the insulation, particularly between the ground turns. The experimental results demonstrated the theoretical analysis and simulation results, which had important value for stable and long lifetime ACSSPT design. A new ACSSPT with improved structure has been used successfully in intense electron beam accelerators steadily.

  12. High pressure stability of protein complexes studied by static and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Gebhardt, Ronald; Kulozik, Ulrich

    2011-03-01

    The high pressure dissociation of hemocyanin prepared from the lobster Homarus americanus and casein micelles from cow milk were observed by in situ light scattering. The hemocyanin dodecamer dissociated via a hexamer into monomers in a two-step three-species reaction. The influence of ligands and the effector l-lactate on the dissociation behavior was investigated. While no effect by carbon monoxide after exchanging the ligand oxygen was observed, the addition of the effector l-lactate led to a decrease in the pressure stability. Due to a trimer intermediate which was found to be stabilized by l-lactate, the dissociation reaction in the presence of the effector was analyzed by a three-step four-species reaction. In the case of casein micelles, a two-step dissociation mechanism was found. The stabilizing interactions of casein micelles were identified and separated.

  13. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    NASA Astrophysics Data System (ADS)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  14. Comparison of Predicted and Experimental Heat-Transfer and Pressure-Drop Results for an Air-Cooled Plug Nozzle and Supporting Struts

    NASA Technical Reports Server (NTRS)

    Graber, E. J., Jr.; Clark, J. S.

    1972-01-01

    A calculational procedure is presented to analyze the heat-transfer and fluid-flow characteristics of a convectively air -cooled plug-nozzle operating on an afterburning turbojet engine. Anderson's method was used to predict hot-gas static pressures in the supersonic stream with fully expanded flow (high nozzle-pressure ratios); the results were excellent. For low nozzle-pressure ratios, the flow was assumed to expand one-dimensionally and isentropically to the plug back pressure. Wall temperatures predicted using this latter pressure distribution agreed well with the wall temperatures predicted using the measured hot-gas pressures (maximum deviation was about 30 K (54 deg R)). Either an in tegral boundary-layer technique or a simple pipe-flow equation may be used to calculate convective heat transfer from the hot gas to the wall. The simple pipeflow equation results in the prediction of slightly higher wall temperatures than does the integral technique. Experimental wall temperatures were generally in good agreement with the two predicted wall temperature distributions. Excellent agreement was noted b etween measured and predicted coolant static-pressure distributions. The plug-coolant temperature rise was generally overpredicted by about 22.2 K (40 deg R); possible explanations are offered. Although an an alysis of the struts, which support the plug, was purposely kept simple, reasonable results were obtained. Potential flow over an ellipse was used to calculate hot-gas static pressure; the results were satisfactory.

  15. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  16. Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.

  17. Atmospheric Pressure Non-Thermal Air Plasma Jet

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam; Al-Mashraqi, Ahmed; Benghanem, Mohamed; Al Shariff, Samir

    2013-09-01

    Atmospheric pressure air cold plasma jet is introduced in this work. It is AC (60 Hz to 20 kHz) cold plasma jet in air. The system is consisted of a cylindrical alumina insulator tube with outer diameter of 1.59 mm and 26 mm length and 0.80 mm inner diameter. AC sinusoidal high voltage was applied to the powered electrode which is a hollow needle inserted in the Alumina tube. The inner electrode is a hollow needle with 0.80 mm and 0.46 mm outer and inner diameters respectively. The outer electrode is grounded which is a copper ring surrounded the alumina tube locates at the nozzle end. Air is blowing through the inner electrode to form a plasma jet. The jet length increases with flow rate and applied voltage to reach 1.5 cm. The gas temperature decreases with distance from the end of the nozzle and with increasing the flow rate. The spectroscopic measurement between 200 nm and 900 nm indicates that the jet contains reactive species such as OH, O in addition to the UV emission. The peak to peak current values increased from 6 mA to 12 mA. The current voltage waveform indicates that the generated jet is homogenous plasma. The jet gas temperature measurements indicate that the jet has a room temperature. This work was supported by the National Science, Technology and Innovation Plan(NSTIP) through the Science and Technology Unit (STU) at Taibah University, Al Madinah Al Munawwarah, KSA, with the grant number 08-BIO24-5.

  18. The static pressure-volume relationship of the respiratory system determined with a computer-controlled ventilator.

    PubMed

    Svantesson, C; Drefeldt, B; Jonson, B

    1997-07-01

    The pressure-volume relationship of the respiratory system offers a guideline for setting of ventilators. The occlusion method for determination of the static elastic pressure-volume (Pel(st)/V) relationship is used as a reference and the aim of the study was to improve it with respect to time consumption and precision of recording and analysis. The inspiratory Pel(st)/V curve was determined with a computer-controlled ventilator using its pressure and flow sensors. During an automated procedure, an operator-defined volume history preceded each of a number of study breaths. These were interrupted at different volumes evenly distributed over a predefined volume interval. Total positive end-expiratory pressure (PEEP) was measured and could be separated into its components, external PEEP and auto-PEEP. The volume relationship between the curve and the current tidal volume was defined. An analytical method for definition of a linear segment of the Pel(st)/V curve and determination of its compliance is presented. In eight healthy human anaesthetized subjects duplicate Pel(st)/V curves were studied with respect to compliance and the position along the volume axis of the linear segment. The difference in compliance between measurements was 1.6 +/- 1.3 ml cmH2O(-1) or 1.2 +/- 0.9%. The position of the curve differed between measurements by 15 +/- 10 ml or by 1.1 +/- 0.9%. In a patient with acute lung injury the feasibility of applying a numerical method for a more detailed description of the Pel(st)/V curve was illustrated. PMID:19361153

  19. Correlating Velocity Information in the Vicinity of Lagrangian Saddle Points to the Spatially and Temporally Resolved Static Pressure Distribution on a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew; Green, Melissa

    2015-11-01

    The locations of Lagrangian saddle points found as the intersections of positive and negative-time Lagrangian coherent structures (LCS) can be used to determine the location and behavior of von Karman vortices shed in the wake of bluff bodies. Correlating the Lagrangian saddle point locations to physical quantities measurable in real-time is critical to the development of a novel input for closed-loop flow control. As a first step towards finding this correlation, the velocity fluctuations in the vicinity of the Lagrangian saddle point are correlated to the fluctuating static pressure at multiple locations on the cylinder surface to determine the lag time between the two quantities at these locations. This offers insight into the specific location and time of past events on the cylinder that influenced the flow field in the vicinity of the Lagrangian saddle point. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  20. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  1. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  2. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... applicable chapters of the National Board Inspection Code, a Manual for Boiler and Pressure Vessel...

  3. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineers Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Unfired Pressure Vessels... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's...

  4. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineers Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Unfired Pressure Vessels... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's...

  5. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND HEALTH... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... applicable chapters of the National Board Inspection Code, a Manual for Boiler and Pressure Vessel...

  6. Combination Of Thermography And Pressure Tests To Combat Air Leakage Problems In Building Enclosures

    NASA Astrophysics Data System (ADS)

    Spruin, W. G.

    1987-05-01

    Uncontrolled air leakage in a building enclosure is the main component of space heating and cooling costs. In Atlantic Canada, Public Works Canada has combined thermography and pressure testing to identify design and construction problems in new construction and to identify specific areas of air leakage in existing housing stock. A study case shows how thermography and pressure testing has been utilized to locate and compare specific areas of air leakage in a residence before and after air sealing. The study provides both quantitative and qualitative evidence of how air sealing increases the air tightness in building enclosures.

  7. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  8. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Herring, G. C.; Balla, R. Jeffrey

    2007-06-01

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  9. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  10. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  11. Space shuttle: Static surface pressures of the 0.004 scale 049 orbiter in the launch configuration

    NASA Technical Reports Server (NTRS)

    Buchholz, R. E.; Gamble, M.

    1972-01-01

    Wing and lower body surface static pressure data for the space shuttle 049 orbiter while in the launch configuration were obtained. The purpose of the test was to determine the optimum incidence position of the orbiter relative to the hydrogen-oxygen (HO) tank and the optimum radial position of the solid rocket motors (SRM) on the HO tank. The orbiter was mounted on the HO tank at incidence angles of 0 and -1.5 degrees to determine the optimum incidence position. The SRM boosters were tested at radial positions of 75, 90, and 135 degrees on the HO tank to determine their optimum position with respect to the loads imposed on the orbiter. The test was conducted in the tunnel over a Mach number range of 0.6 to 4.96. Angle of attack was varied from -8 to +8 degrees at zero degree angle of sideslip, and at sideslip angles varying from -6 to +6 degrees at zero degree angle of attack.

  12. 78 FR 1735 - Airworthiness Directives; Honeywell International Inc. Air Data Pressure Transducers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Executive Order 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR... International Inc. Air Data Pressure Transducers AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Honeywell International Inc. air data pressure transducers as installed on various aircraft....

  13. Respiratory and Laryngeal Responses to an Oral Air Pressure Bleed during Speech

    ERIC Educational Resources Information Center

    Huber, Jessica E.; Stathopoulos, Elaine T.

    2003-01-01

    Researchers have hypothesized that the respiratory and laryngeal speech subsystems would respond to an air pressure bleed, but these responses have not been empirically studied. The present study examined the nature of the responses of the respiratory and laryngeal subsystems to an air pressure bleed in order to provide information relevant to the…

  14. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds during Production of Stop Consonants: New Evidence of Aeromechanical Regulation.

    ERIC Educational Resources Information Center

    Zajac, David J.; Weissler, Mark C.

    2004-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults…

  15. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  16. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  17. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  18. Dynamic and Static Shell Properties of White and Brown Shell Eggs Exposed to Modified-pressure Microcrack Detection Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic and static shell properties of eggs provide important insight to egg quality. Understanding how processing and handling procedures affect both dynamic and static shell properties can enhance the safety and quality of egg reaching consumers. A study was conducted to determine if dynamic she...

  19. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels shall be inspected by inspectors holding a valid National Board Commission and in accordance...

  20. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND HEALTH... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels shall be inspected by inspectors holding a valid National Board Commission and in accordance...

  1. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  2. Gradual Rewarming with Gradual Increase in Pressure during Machine Perfusion after Cold Static Preservation Reduces Kidney Ischemia Reperfusion Injury

    PubMed Central

    Mahboub, Paria; Ottens, Petra; Seelen, Marc; t Hart, Nails; Van Goor, Harry; Ploeg, Rutger; Martins, Paulo; Leuvenink, Henri

    2015-01-01

    In this study we evaluated whether gradual rewarming after the period of cold ischemia would improve organ quality in an Isolated Perfused Kidney Model. Left rat kidneys were statically cold stored in University of Wisconsin solution for 24 hours at 4°C. After cold storage kidneys were rewarmed in one of three ways: perfusion at body temperature (38°C), or rewarmed gradually from 10°C to 38°C with stabilization at 10°C for 30 min and rewarmed gradually from 10°C to 38°C with stabilization at 25°C for 30 min. In the gradual rewarming groups the pressure was increased stepwise to 40 mmHg at 10°C and 70 mmHg at 25°C to counteract for vasodilatation leading to low perfusate flows. Renal function parameters and injury biomarkers were measured in perfusate and urine samples. Increases in injury biomarkers such as aspartate transaminase and lactate dehydrogenase in the perfusate were lower in the gradual rewarming groups versus the control group. Sodium re-absorption was improved in the gradual rewarming groups and reached significance in the 25°C group after ninety minutes of perfusion. HSP-70, ICAM-1, VCAM-1 mRNA expressions were decreased in the 10°C and 25°C groups. Based on the data kidneys that underwent gradual rewarming suffered less renal parenchymal, tubular injury and showed better endothelial preservation. Renal function improved in the gradual rewarming groups versus the control group. PMID:26630031

  3. Impacts of air pressure on the evolution of nanosecond pulse discharge products

    NASA Astrophysics Data System (ADS)

    Yu, Jin-Lu; He, Li-Ming; Ding, Wei; Wang, Yu-Qian; Du, Chun

    2013-05-01

    Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, O3 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure.

  4. Insect hygroreceptor responses to continuous changes in humidity and air pressure

    PubMed Central

    Tichy, H.; Kallina, W.

    2011-01-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure, but also in the opposite direction, as observed during changes in air humidity. The moist-cell’s excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry-cell’s excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore, the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  5. Insect hygroreceptor responses to continuous changes in humidity and air pressure.

    PubMed

    Tichy, H; Kallina, W

    2010-06-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure but also in the opposite direction, as observed during changes in air humidity. The moist cell's excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry cell's excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  6. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  7. Static and Wind-on Performance of Polymer-Based Pressure-Sensitive Paints Using Platinum and Ruthenium as the Luminophore.

    PubMed

    Lo, Kin Hing; Kontis, Konstantinos

    2016-01-01

    An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913

  8. Static and Wind-on Performance of Polymer-Based Pressure-Sensitive Paints Using Platinum and Ruthenium as the Luminophore

    PubMed Central

    Lo, Kin Hing; Kontis, Konstantinos

    2016-01-01

    An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913

  9. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  10. Differences in the body pressure-related sensory changes between the floor and mattress in a static supine position for physiotherapy research: a randomized controlled pilot trial.

    PubMed

    Lee, Won-Deok; Lee, Jeong-Uk; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Junghwan

    2016-04-01

    [Purpose] This study was performed to investigate the difference in body pressure-related sensory changes between the floor and mattress in a static supine position for physiotherapy research. [Subjects and Methods] To analyze body pressure, the Body Pressure Measurement System was used. Body pressure sensors were attached to mattresses and the floor beneath the subjects. The level of pain was evaluated using pain score tools before the static supine position was adopted, at 1, 5, 10, and 15 min, and in total for specific body points. [Results] In analysis of digitized images, there was no significant difference observed between floor and mattress body pressure values at the start position. However, the head pressure intensity was significantly higher than that of the other body parts. In analysis of pain scores, all body part pain scores except those for both legs were significantly higher for the floor than for the mattress. Furthermore, the pain scores of the floor group were significantly increased at minute 1 compared with those of the mattress group. [Conclusion] These results suggest that properties that change in a time-dependent manner and postural changes need to be carefully considered when applying physical therapy. PMID:27190432

  11. Effects of follower load and rib cage on intervertebral disc pressure and sagittal plane curvature in static tests of cadaveric thoracic spines.

    PubMed

    Anderson, Dennis E; Mannen, Erin M; Sis, Hadley L; Wong, Benjamin M; Cadel, Eileen S; Friis, Elizabeth A; Bouxsein, Mary L

    2016-05-01

    The clinical relevance of mechanical testing studies of cadaveric human thoracic spines could be enhanced by using follower preload techniques, by including the intact rib cage, and by measuring thoracic intervertebral disc pressures, but studies to date have not incorporated all of these components simultaneously. Thus, this study aimed to implement a follower preload in the thoracic spine with intact rib cage, and examine the effects of follower load, rib cage stiffening and rib cage removal on intervertebral disc pressures and sagittal plane curvatures in unconstrained static conditions. Intervertebral disc pressures increased linearly with follower load magnitude. The effect of the rib cage on disc pressures in static conditions remains unclear because testing order likely confounded the results. Disc pressures compared well with previous reports in vitro, and comparison with in vivo values suggests the use of a follower load of about 400N to approximate loading in upright standing. Follower load had no effect on sagittal plane spine curvature overall, suggesting successful application of the technique, although increased flexion in the upper spine and reduced flexion in the lower spine suggest that the follower load path was not optimized. Rib cage stiffening and removal both increased overall spine flexion slightly, although with differing effects at specific spinal locations. Overall, the approaches demonstrated here will support the use of follower preloads, intact rib cage, and disc pressure measurements to enhance the clinical relevance of future studies of the thoracic spine. PMID:26944690

  12. Endotracheal tube cuff pressure before, during, and after fixed-wing air medical retrieval.

    PubMed

    Brendt, Peter; Schnekenburger, Marc; Paxton, Karen; Brown, Anthony; Mendis, Kumara

    2013-01-01

    Abstract Background. Increased endotracheal tube (ETT) cuff pressure is associated with compromised tracheal mucosal perfusion and injuries. No published data are available for Australia on pressures in the fixed-wing air medical retrieval setting. Objective. After introduction of a cuff pressure manometer (Mallinckrodt, Hennef, Germany) at the Royal Flying Doctor Service (RFDS) Base in Dubbo, New South Wales (NSW), Australia, we assessed the prevalence of increased cuff pressures before, during, and after air medical retrieval. Methods. This was a retrospective audit in 35 ventilated patients during fixed-wing retrievals by the RFDS in NSW, Australia. Explicit chart review of ventilated patients was performed for cuff pressures and changes during medical retrievals with pressurized aircrafts. Pearson correlation was calculated to determine the relation of ascent and ETT cuff pressure change from ground to flight level. Results. The mean (± standard deviation) of the first ETT cuff pressure measurement on the ground was 44 ± 20 cmH2O. Prior to retrieval in 11 patients, the ETT cuff pressure was >30 cmH2O and in 11 patients >50 cmH2O. After ascent to cruising altitude, the cuff pressure was >30 cmH2O in 22 patients and >50 cmH2O in eight patients. The cuff pressure was reduced 1) in 72% of cases prior to take off and 2) in 85% of cases during flight, and 3) after landing, the cuff pressure increased in 85% of cases. The correlation between ascent in cabin altitude and ETT cuff pressure was r = 0.3901, p = 0.0205. Conclusions. The high prevalence of excessive cuff pressures during air medical retrieval can be avoided by the use of cuff pressure manometers. Key words: cuff pressure; air medical retrieval; prehospital. PMID:23252881

  13. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  14. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  15. A new DBD-driven atmospheric pressure plasma jet source on air or nitrogen

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victir A.; Skakun, Victor S.; Tarasenko, Victor F.; Pechenitsin, Dmitrii S.; Kuznetsov, Vladimir S.

    2015-12-01

    The paper proposes a new atmospheric pressure plasma jet (APPJ) source for operation in air and nitrogen. The conditions for the formation of stable plasma jets 4 cm long are determined. Energy and spectral measurement data are presented.

  16. Differences in the body pressure-related sensory changes between the floor and mattress in a static supine position for physiotherapy research: a randomized controlled pilot trial

    PubMed Central

    Lee, Won-Deok; Lee, Jeong-Uk; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Junghwan

    2016-01-01

    [Purpose] This study was performed to investigate the difference in body pressure–related sensory changes between the floor and mattress in a static supine position for physiotherapy research. [Subjects and Methods] To analyze body pressure, the Body Pressure Measurement System was used. Body pressure sensors were attached to mattresses and the floor beneath the subjects. The level of pain was evaluated using pain score tools before the static supine position was adopted, at 1, 5, 10, and 15 min, and in total for specific body points. [Results] In analysis of digitized images, there was no significant difference observed between floor and mattress body pressure values at the start position. However, the head pressure intensity was significantly higher than that of the other body parts. In analysis of pain scores, all body part pain scores except those for both legs were significantly higher for the floor than for the mattress. Furthermore, the pain scores of the floor group were significantly increased at minute 1 compared with those of the mattress group. [Conclusion] These results suggest that properties that change in a time-dependent manner and postural changes need to be carefully considered when applying physical therapy. PMID:27190432

  17. The Research of Membrane-sorption System with Increased Pressure Stream for Enriching Air with Oxygen

    NASA Astrophysics Data System (ADS)

    Korolev, M. V.; Laguntsov, N. I.; Kurchatov, I. M.

    Numerical study of single-hybrid membrane-sorption air separation system for enriching the air with oxygen were conducted. The effectiveness of such a system was analyzed, depending on selective sorbents and membranes under specified pressure ratio. A comparison of various modes membrane sorption system was done. The conclusion regarding the choice of the membrane and a sorbent for the system with a pressurized product stream was drawn.

  18. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes. PMID:16154265

  19. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Warning signals, air pressure and vacuum gauges. 393.51 Section 393.51 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air...

  20. A model to determine the behaviour of a pressure measurement equipment during non-static operations of gasturbine engines

    NASA Astrophysics Data System (ADS)

    Lemmer, K.-U.; Hass, J.

    1987-05-01

    A mathematical model was developed to describe the behavior of a pressure measurement equipment of gas-turbine engines during nonstatic operations. The model determines the influence of the components of the measuring chain: a pressure measuring transducer, a hose pipe, and a pressure probe. It performs back calculations from the measured pressure signals to the real measuring value. The model was verified by pressure measurements with a calibrating device. The pressure measurements during the transition between different operating points of a gas-turbine engine and the adjustment of these pressure values with the help of the measuring-chain model are described.

  1. Acute Air Pollution Exposure and Blood Pressure at Delivery Among Women With and Without Hypertension

    PubMed Central

    Männistö, Tuija; Liu, Danping; Leishear, Kira; Sherman, Seth; Laughon, S. Katherine

    2015-01-01

    BACKGROUND Chronic air pollution exposure increases risk for hypertensive disorders of pregnancy, but the effect of acute air pollution exposure on blood pressure during pregnancy is less well known. METHODS We studied 151,276 singleton term deliveries from the Consortium on Safe Labor (2002–2008) with clinical blood pressure measured at admission to labor/delivery and diagnoses of hypertensive disorders collected from electronic medical records and hospital discharge summaries. Air pollution exposures were estimated for the admission hour and the 4 hours preceding admission using a modified version of the Community Multiscale Air Quality models and observed air monitoring data. Blood pressure was categorized as normal; high normal; and mild, moderate, or severe hypertension based on pregnancy cut points. Adjusted ordinal logistic regression estimated the odds of women having a higher admission blood pressure category as a function of air pollutant, hypertensive disorders, and their interaction effect. RESULTS Odds of high blood pressure at admission to labor/delivery were increased in normotensive women after exposure to nitrogen oxides (by 0.2%/5 units), sulfur dioxide (by 0.3%/1 unit), carbon monoxide and several air toxics (by 3%–4%/high exposure). The effects were often similar or stronger among women with gestational hypertension and preeclampsia. Exposure to particulate matter <10 μm increased odds of high blood pressure in women with preeclampsia by 3%/5 units. CONCLUSIONS Air pollution can influence admission blood pressure in term deliveries and may increase likelihood of preeclampsia screening at delivery admission. PMID:24795401

  2. Pressurant requirements for discharge of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank under both static and slosh conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Mcintire, T. O.

    1974-01-01

    Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter-(5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions.

  3. The influence of locomotion on air-sac pressures in little penguins.

    PubMed

    Boggs, D F; Baudinette, R V; Frappell, P B; Butler, P J

    2001-10-01

    Air-sac pressures have been reported to oscillate with wing beat in flying magpies and with foot paddling in diving ducks. We sought to determine the impact on air-sac pressure of wing beats during swimming and of the step cycle during walking in little penguins (Eudyptula minor). Fluctuations averaged 0.16+/-0.06 kPa in the interclavicular air sacs, but only 0.06+/-0.04 kPa in the posterior thoracic sac, generating a small differential pressure between sacs of 0.06+/-0.02 kPa (means +/- S.E.M., N=4). These fluctuations occurred at approximately 3 Hz and corresponded to wing beats during swimming, indicated by electromyograms from the pectoralis and supracoracoideus muscles. There was no abdominal muscle activity associated with swimming or exhalation, but the abdominal muscles were active with the step cycle in walking penguins, and oscillations in posterior air-sac pressure (0.08+/-0.038 kPa) occurred with steps. We conclude that high-frequency oscillations in differential air-sac pressure enhance access to and utilization of the O(2) stores in the air sacs during a dive. PMID:11707507

  4. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  5. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  6. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  7. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  8. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  9. Preliminary investigation of cooling-air ejector performance at pressure ratios from 1 to 10

    NASA Technical Reports Server (NTRS)

    Ellis, C W; Hollister, D P; Sargent, A F , Jr

    1951-01-01

    Preliminary investigation was made of conical cooling air ejector at primary pressure ratios from 1 to 10. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The gross thrust of the ejector and nozzle were compared. Several ratios of the spacing between the nozzle and shroud exit to the nozzle exit diameter were investigated for several shroud to nozzle exit diameter ratios. Maximum gross thrust loss occurred under conditions of zero cooling-air flow and was as much as 35 percent below nozzle jet thrust. For minimum thrust loss, ejector should be designed with as low diameter and spacing ratio as possible.

  10. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  11. Determination of 2-methylisoborneol and geosmin in aqueous samples by static headspace-gas chromatography-mass spectrometry with ramped inlet pressure.

    PubMed

    Nakamura, Sadao; Sakui, Norihiro; Tsuji, Akira; Daishima, Shigeki

    2005-12-01

    A method for determining the earthy and musty odors 2-methylisoborneol (2-MIB) and geosmin in drinking water using static headspace-GC-MS is described. To achieve lower detection limits, split ratio was optimized with ramped inlet pressure for large headspace sampling volume. The ramped inlet pressure, which held higher pressure (higher column flow rate) only during injection, allowed us to inject 3-mL volume to GC with very low split ratio (2:1). Although sequential analysis with a stainless steel ion source often changed the mass spectrum of 2-MIB, this spectral change was eliminated by using an inert ion source with a 6 mm drawout plate. The detection limits of this method were 0.36 and 0.14 ng/L, respectively, for 2-MIB and geosmin. The repeatabilities (n = 30) were 6.6 and 4.8%, respectively, at 1 ng/L for 2-MIB and geosmin. PMID:16405182

  12. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  13. Downhole steam generator using low pressure fuel and air supply

    SciTech Connect

    Fox, R.L.

    1983-06-28

    An apparatus is claimed for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  14. Adding a custom made pressure release valve during air enema for intussusception: A new technique

    PubMed Central

    Ahmed, Hosni Morsi; Ahmed, Osama; Ahmed, Refaat Khodary

    2015-01-01

    Background: Non-surgical reduction remains the first line treatment of choice for intussusception. The major complication of air enema reduction is bowel perforation. The authors developed a custom made pressure release valve to be added to portable insufflation devices, delivering air at pressures accepted as safe for effective reduction of intussusception in children under fluoroscopic guidance. The aim of this study was to develop a custom made pressure release valve that is suitable for the insufflation devices used for air enema reduction of intussusception and to put this valve into regular clinical practice. Materials and Methods: An adjustable, custom made pressure release valve was assembled by the authors using readily available components. The valve was coupled to a simple air enema insufflation device. The device was used for the trial of reduction of intussusception in a prospective study that included 132 patients. Results: The success rate for air enema reduction with the new device was 88.2%. The mean pressure required to achieve complete reduction was 100 mmHg. The insufflation pressure never exceeded the preset value (120 mmHg). Of the successful cases, 58.3% were reduced from the first attempt while 36.1% required a second insufflation. Only 5.55% required a third insufflation to complete the reduction. In cases with unsuccessful pneumatic reduction attempt (18.1%), surgical treatment was required. Surgery ranged from simple reduction to resection with a primary end to end anastomosis. No complications from air enema were recorded. Conclusions: The authors recommend adding pressure release valves to ensure safety by avoiding pressure overshoot during the procedure. PMID:26712286

  15. Ozone generation using atmospheric pressure glow discharge in air

    NASA Astrophysics Data System (ADS)

    Buntat, Z.; Smith, I. R.; Razali, N. A. M.

    2009-12-01

    This paper presents results from a study into the generation of ozone by a stable atmospheric glow discharge, using dry air as the feeding gas for ozone generation. The power supply is 50 Hz ac, with the use of a perforated aluminium sheet for the electrodes and soda lime glass as a dielectric layer in a parallel-plate configuration, stabilizing the generation process and enabling ozone to be produced. The stable glow discharge spreads uniformly at a gas breakdown voltage below 4.8 kV and requires only 330 mW discharge power, with a limitation of 3 mm on the maximum gap spacing for the dry air. With the technique providing a high collision rate between the electrons and gas molecules during the discharge process, a high ozone yield is obtained. An analysis of the effect on the production rate of parameters such as the input voltage, gas flow rate and reaction chamber dimensions resulted in a highest efficiency of production of almost 350 g kWh-1 and confirms its potential as an important ozone generation technology.

  16. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  17. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  18. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  19. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  20. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m. PMID:11071051

  1. A barometric pressure sensor based on the air-gap scale effect in a cantilever

    NASA Astrophysics Data System (ADS)

    Minh-Dung, Nguyen; Takahashi, Hidetoshi; Uchiyama, Takeshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-09-01

    The most common structure for a conventional barometric pressure sensor consists of a vacuum-sealed cavity and a diaphragm. However, we hypothesize that a simple structure with an unsealed cavity and an ultra-thin cantilever can provide more sensitive measurements. We produced a 300-nm-thick cantilever with a small spring constant, which made the cantilever sensitive to low pressures. We demonstrated that miniaturizing the air-gap of the cantilever enables the sensor to measure barometric pressure changes at a low pressure change rate with a high resolution, which was 1 Pa at 0.05 Hz, and for a gap size of 1.7 μm.

  2. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  3. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  4. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1980-01-01

    Barograms from a number of National Weather Service stations were assembled for the May 18, 1980, eruption and compared to airblast wave propagations from large explosions. Wave amplitudes at 50 to 300 km distances were about what might be expected from a nuclear explosion of between 1 megaton and 10 megaton yield. Pressure-time signatures could not be resolved for the first compression phase, because of the slow paper recording speed. The 900 s negative phase duration was much too long for comparison with the negative phase of an explosion. Nevertheless, positive and negative amplitudes were about equal, as often observed at long distances from explosions. Calculations have been made for a simple finite amplitude propagation model. These show rough bounds on the source compression rate, to give the observed inaudible waves at least to 54 km distance, yet cause audibly rapid compression at Seattle, near 150 km, and beyond.

  5. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Liu, Dongping; Song, Ying; Sun, Yue; Yang, Si-ze

    2013-05-01

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  6. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  7. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    SciTech Connect

    Vasco, D.W.

    2011-10-01

    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  8. Auto-ignition and upper explosion limit of rich propane-air mixtures at elevated pressures.

    PubMed

    Norman, F; Van den Schoor, F; Verplaetsen, F

    2006-09-21

    The auto-ignition limits of propane-air mixtures at elevated pressures up to 15 bar and for concentrations from 10 mol% up to 70 mol% are investigated. The experiments are performed in a closed spherical vessel with a volume of 8 dm3. The auto-ignition temperatures decrease from 300 degrees C to 250 degrees C when increasing the pressure from 1 bar to 14.5 bar. It is shown that the fuel concentration most sensitive to auto-ignition depends on initial pressure. A second series of experiments investigates the upper flammability limit of propane-air mixtures at initial temperatures up to 250 degrees C and pressures up to 30 bar near the auto-ignition area. Finally the propane auto-oxidation is modelled using several detailed kinetic reaction mechanisms and these numerical calculations are compared with the experimental results. PMID:16716499

  9. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator... air-supply system, and the range of hose length for the respirator. For example, he might specify that... pressure at the point of attachment of the hose to the air-supply system shall not exceed 863 kN/m.2...

  10. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator... air-supply system, and the range of hose length for the respirator. For example, he might specify that... pressure at the point of attachment of the hose to the air-supply system shall not exceed 863 kN/m.2...

  11. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator... air-supply system, and the range of hose length for the respirator. For example, he might specify that... pressure at the point of attachment of the hose to the air-supply system shall not exceed 863 kN/m.2...

  12. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator... air-supply system, and the range of hose length for the respirator. For example, he might specify that... pressure at the point of attachment of the hose to the air-supply system shall not exceed 863 kN/m.2...

  13. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  14. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  15. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  16. The Static-Pressure Error of a Wing Airspeed Installation of the McDonnell XF-88 Airplane in Dives to Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Goodman, Harold R.

    1949-01-01

    Measurements were made, in dives to transonic speeds, of the static-pressure position error at a distance of one chord ahead of the McDonnell XF-88 airplane. The airplane incorporates a wing which is swept back 35 deg along the 0.22 chord line and utilizes a 65-series airfoil with a 9-percent-thick section perpendicular to the 0.25-chord line. The section in the stream direction is approximately 8-percent thick. Data up to a Mach number of about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Data at Mach numbers above about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Results of the measurements indicate that the static-pressure error, within the accuracy of measurement, is negligible from a Mach number of 0.65 to a Mach number of about 0.97. With a further increase in Mach number, the static-pressure error increases rapidly; at the highest Mach number attained in these tests (about M = 1.038), the error increases to about 8 percent of the impact pressure. Above a Mach number of about 0.975, the recorded Mach number remains substantially constant with increasing true Mach number; the installation is of no value between a Mach number of about 0.975 and at least 1.038, as the true Mach number cannot be obtained from the recorded Mach number in this range. Previously published data have shown that at 0.96 chord ahead of the wing tip of the straight-wing X-l airplanes, a rapid rise of position error started at a Mach number of about 0.8. In the case of the XF-88 airplane, this rise of position error was delayed, presumably by the sweep of the wing, to a Mach number of about 0.97.

  17. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    SciTech Connect

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  18. Evaluation of Nodal Reactor Physics Methods for Quasi-Static and Time-Dependent Coupled Neutronic Thermal - Analysis of Pressurized Water Reactor Transients

    NASA Astrophysics Data System (ADS)

    Feltus, Madeline Anne

    1990-01-01

    This thesis examines coupled time-dependent thermal -hydraulic (T/H) and neutronics solution methods for Pressurized Water Reactor (PWR) transient analysis. The degree of equivalence is evaluated between the typical quasi-static approach and a newly-developed iterative tandem method. Four specific PWR transients that exhibit a wide range of Reactor Coolant System (RCS) T/H response were investigated: (1) a Station Blackout Anticipated Transient Without Scram (ATWS), (2) a Loss of Feedwater ATWS, (3) a Total Loss of RCS Flow with Scram, and (4) a Main Steam Line Break (MSLB). Rather than using simplified RCS and core models, the theory and method in this thesis were applied practically by using realistic models for an actual four-loop Westinghouse PWR plant. The time-dependent STAR kinetics code, based on the QUANDRY Analytic Nodal Method, and the RETRAN and MCPWR T/H systems codes were used to develop a new, fully coupled, tandem STAR/MCPWRQ methodology that runs tandemly on an enhanced 386/387 IBM PC architecture. MCPWRQ uses externally calculated power input rather than point kinetics power level results. The tandem method was compared to quasi -static STAR and time-dependent STAR 2-D and 3-D kinetics results. The new STAR/MCPWRQ method uses RETRAN time-dependent T/H and point kinetics power input as a first estimate. STAR and MCPWRQ are used tandemly to couple STAR 3-D, time-dependent core power results with the MCPWRQ RCS T/H phenomena. This thesis shows that: (a) quasi-static and point kinetics methods are not able to describe severe PWR transient phenomena adequately; and (b) fully coupled, 3-D, time -dependent, tandem (or possibly parallel) analysis methods should be used for PWR reactor transients instead. By tandemly coupling the RCS response in terms of updated core inlet conditions with 3-D time-dependent core kinetics response, the core power response and T/H conditions are forced to be self-consistent during the entire transient. The transient analyses

  19. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  20. Compressed-air work is entering the field of high pressures.

    PubMed

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges. PMID:20737925

  1. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    EPA Science Inventory

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  2. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  3. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  4. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  5. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  6. High static pressure alters water-pool properties in reversed micelles formed by aerosol OT (sodium bis(2-ethylhexyl)sulfosuccinate): A high pressure ESR study

    NASA Astrophysics Data System (ADS)

    Sueishi, Yoshimi; Yoshioka, Daisuke; Negi, Mieko; Kotake, Yashige

    2005-11-01

    ESR spectra of Fremy's salt in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reversed micelles were recorded at high pressures in order to monitor dynamic properties of water molecules inside water pools. Rotational correlation times of Fremy's salt in large AOT water pools slightly decreased with increasing pressure, conversely those in small water pools increased with pressure: Δ V‡ for the rotational motion = -1.05 and 9.19 cm 3 mol -1 at ω0 = 20 and 2, respectively. These results demonstrate that most water molecules in small water pools are bound to AOT head groups and show very different physical properties from bulk water.

  7. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  8. Non-LTE Steady-State Kinetics of He-Air Atmospheric Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Petrova, Tzvetelina; Petrov, George; Gillman, Eric; Boris, David; Hernández, Sandra; Walton, Scott

    2015-11-01

    A non-LTE, steady-state collisional-radiative kinetics model is developed to study discharges produced in mixtures of He, N2 and O2 (He-Air) at atmospheric pressures. The model is based on a self-consistent solution of coupled Boltzmann equation for the electron energy distribution function, electron energy balance equation, gas thermal balance equation, and a system of non-linear equations for species that govern plasma chemistry (electrons, ions, radicals, atoms and molecules in ground and excited states). The model and results can be applied to study a variety of atmospheric pressure plasmas generated in He-Air mixtures, such as plasma jets, dielectric barrier discharges, laser-induced plasmas, microwave plasmas, etc. In this talk, collisional rates and species densities are obtained as a function of He-to-air ratio and the results are benchmarked against available experimental data. Work supported by the NRL Base Program.

  9. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  10. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study

    NASA Astrophysics Data System (ADS)

    Ullrich, Angela; Schranz, Wilfried; Miletich, Ronald

    2009-12-01

    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around ~3.2 and ~7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/ c- P21/ c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pressure across the transition. A modified Landau free energy expansion in terms of a one component order parameter has been developed and tested against these experimentally determined data. The Landau solution provides a much better reproduction of the observed anomalies than any equation-of-state fit to data sets truncated below and above P tr, thus giving Landau parameters of K 0 = 138.3(2) GPa, K' = 7.46(5), λ V = 33.6(2) GPa, a = 0.486(3), b = -29.4(6) GPa and c = 551(11) GPa.

  11. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    NASA Astrophysics Data System (ADS)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  12. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  13. Brine Flow Up a Borehole Caused by Pressure Perturbation From CO2 Storage: Static and Dynamic Evaluations

    EPA Science Inventory

    Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...

  14. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  15. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data presented were obtained during wind tunnel tests of a 0.0405-scale model of the -89B ferry configuration of the space shuttle vehicle orbiter. These tests were conducted in the Rockwell International low speed wind tunnel (NAAL). The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration has a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  16. Respiratory monitoring system based on the nasal pressure technique for the analysis of sleep breathing disorders: Reduction of static and dynamic errors, and comparisons with thermistors and pneumotachographs

    NASA Astrophysics Data System (ADS)

    Alves de Mesquita, Jayme; Lopes de Melo, Pedro

    2004-03-01

    Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the

  17. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.

    PubMed

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S

    2013-01-01

    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions. PMID:22676479

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    SciTech Connect

    Clauss, D.B.

    1987-05-01

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test.

  20. The static pressure field as a driving mechanism for the streamwise corner flow in the presence of an inclined transverse plane

    NASA Astrophysics Data System (ADS)

    Georgiou, Demos P.; Milidonis, Kypros F.

    2014-03-01

    Streamwise corner flows are characterized by the strong interaction among the boundary layers on the two walls that create the junction. The nature of this interaction defines some critical aspects of the corner flow, such as instability and laminar-turbulent transition, turbulence statistics and local shear friction and heat transfer intensities. The studies so far (both experimental and analytical) have investigated the configurations where the mainstream is mostly parallel to both walls. Under such conditions, the interaction is mainly viscous. Hence, a correct understanding of the flow dynamics requires a comprehensive knowledge of the velocity (mean and turbulent) field. In a number, however, of important applications (especially in turbomachinery blades and aircraft wing junctions), the mainstream flow is inclined against the blocking wall. This generates strong pressure gradients that modify significantly the structure of the relevant flowfield. The present study investigates experimentally the significance of the static pressure field associated with such geometries, focusing on the magnitudes and the directions along which the pressure pushes the flow. The results indicate that (1) the basic model explaining the flow interactions near a streamwise corner must be modified, and (2) the presence of an inclined wall modifies the relevant field significantly, by forcing a more intensive rotation on the mainstream, which leads to more intensive streamwise accelerations and wall jet effects near the corner.

  1. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  2. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The...

  3. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The...

  4. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The...

  5. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The...

  6. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  7. Calculating osmotic pressure of xylitol solutions from molality according to UNIFAC model and measuring it with air humidity osmometry.

    PubMed

    Yu, Lan; Zhan, Tingting; Zhan, Xiancheng; Wei, Guocui; Tan, Xiaoying; Wang, Xiaolan; Li, Chengrong

    2014-11-01

    The osmotic pressure of xylitol solution at a wide concentration range was calculated according to the UNIFAC model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with UNIFAC model calculations from dilute to saturated solution. Results indicate that air humidity osmometry measurements are comparable to UNIFAC model calculations at a wide concentration range by two one-sided test and multiple testing corrections. The air humidity osmometry is applicable to measure the osmotic pressure and the osmotic pressure can be calculated from the concentration. PMID:24032449

  8. Influence of atmospheric pressure supplied on permittivity of air-film of aerostatic bearing

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Yubing; Li, Dong-sheng

    2013-01-01

    Influence of atmospheric pressure supplied on permittivity of the air-film is researched based on the capacitive testing method of the air film thickness of aerostatic bearing. An experiment platform is designed. The experimental results illustrate that permittivity has significant negative correlation with atmospheric pressure which varies from 0.1MPa to 0.48MPa when other environmental conditions remain unchanged. The curves conform to the fourth-order polynomial approximately. All of the values of R2 are beyond 0.944 which means that trend lines fit the data curves well. Relative permittivity of the air film is between 0.996 and 1.324. This interval shows that weak current exists between restrictor and flat of the experiment which are not absolutely insulating and atmosphere of the air film is not pure. This result provides a basis both for establishing accurate mathematical model of air film thickness and capacitance value of the aerostatic bearing and for other exploratory experiments later.

  9. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  10. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  11. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  12. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study

    PubMed Central

    Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.

    2015-01-01

    Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health

  13. Plasma formation in atmospheric pressure helium discharges under different background air pressures

    SciTech Connect

    Liu Yaoge; Hao Yanpeng; Zheng Bin

    2012-09-15

    Atmospheric pressure glow discharges generated between parallel-plate electrodes in helium have been characterized using temporally resolved emission spectra. The variation of typical spectral lines over time has been analyzed. In helium with a low concentration of N{sub 2}, the emission of He at 706.5 nm is dominant and appears 500 ns earlier than N{sub 2}{sup +} first negative bands, indicating low reaction rates of Penning ionization and charge transfer in the initial stage. During the decay, it is the Penning ionization caused by He metastables with a long lifetime rather than the charge transfer reaction that leads to the long decay of N{sub 2}{sup +} emissions. When helium contains a higher concentration of N{sub 2} molecules, the N{sub 2}{sup +} first negative bands become the most intense, and emissions from He, N{sub 2}{sup +}, and O exhibit similar behavior as they increase. The emissions last for a shorter time under such conditions because of rapid consumption of He metastables and He{sub 2}{sup +}.

  14. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength

    PubMed Central

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a “hard” and “soft” mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in “soft” than in “hard” mode. The differences between the sinking distances of the mattress in “soft” and “hard” modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense. PMID:26741497

  15. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.

    PubMed

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense. PMID:26741497

  16. Selecting ventilator settings according to variables derived from the quasi-static pressure/volume relationship in patients with acute lung injury.

    PubMed

    Putensen, C; Baum, M; Hörmann, C

    1993-09-01

    Knowledge of the pressure/volume (P/V) relationship of the lung may allow selection of tidal volume and positive end-expiratory pressure (PEEP) to optimize gas exchange without adversely affecting lung function or hemodynamics. Ten patients with acute lung injury were stabilized on controlled mechanical ventilation, based on conventional practice, using criteria from arterial blood gas data. The P/V relationship was determined under quasi-static conditions (end-expiratory and end-inspiratory, no flow periods > 0.8 s) during mechanical ventilation with an automated procedure that changed PEEP in a stepwise fashion. Differences in expiratory tidal volumes before and after a change in PEEP equaled the change in functional residual capacity (delta FRC). PEEP was set above the lowest point of the steepest section of the P/V curve (inflection pressure) to prevent end-expiratory lung collapse. Inspiratory tidal volumes (VTI) were adjusted to avoid an end-inspiratory lung volume reaching the flat part of the P/V curve. Averaged delta FRC versus PEEP curves were shifted to the left and the slope increased 1, 6, and 12 h after changing ventilator settings compared to baseline (P < 0.01). Averaged baseline delta FRC versus PEEP curves showed a marked inflection pressure that decreased after adjusting ventilator settings (P < 0.01). PEEP was increased from 7.4 +/- 1.8 cm H2O (baseline) to 11.9 +/- 1.6 cm H2O (1 h) (P < 0.001) according to measured baseline inflection pressures. Simultaneously, VTI had to be reduced from 759 +/- 161 mL (baseline) to 664 +/- 101 mL (1 h) (P < 0.01) to avoid end-inspiratory overinflation. To maintain minute volume constant ventilator frequency was increased from 14 +/- 1.2 (baseline) to 16 +/- 1.2 breaths/min (1 h) (P < 0.01). Maximum quasi-static compliance of 38 +/- 7 mL/cm H2O (baseline) increased to 46 +/- 9 mL/cm H2O (1 h) (P < 0.01). Maintaining FIO2 constant, PaO2 increased from a baseline of 90 +/- 16 mm Hg to 122 +/- 24 mm Hg (1 h) (P

  17. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    SciTech Connect

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-05-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels.

  18. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  19. Comparison of Calculated and Experimental Temperatures and Coolant Pressure Losses for a Cascade of Small Air-Cooled Turbine Rotor Blades

    NASA Technical Reports Server (NTRS)

    Stepka, Francis S

    1958-01-01

    Average spanwise blade temperatures and cooling-air pressure losses through a small (1.4-in, span, 0.7-in, chord) air-cooled turbine blade were calculated and are compared with experimental nonrotating cascade data. Two methods of calculating the blade spanwise metal temperature distributions are presented. The method which considered the effect of the length-to-diameter ratio of the coolant passage on the blade-to-coolant heat-transfer coefficient and assumed constant coolant properties based on the coolant bulk temperature gave the best agreement with experimental data. The agreement obtained was within 3 percent at the midspan and tip regions of the blade. At the root region of the blade, the agreement was within 3 percent for coolant flows within the turbulent flow regime and within 10 percent for coolant flows in the laminar regime. The calculated and measured cooling-air pressure losses through the blade agreed within 5 percent. Calculated spanwise blade temperatures for assumed turboprop engine operating conditions of 2000 F turbine-inlet gas temperature and flight conditions of 300 knots at a 30,000-foot altitude agreed well with those obtained by the extrapolation of correlated experimental data of a static cascade investigation of these blades.

  20. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  1. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  2. Femtosecond filamentation in air at low pressures. Part II: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Méchain, G.; Olivier, T.; Franco, M.; Couairon, A.; Prade, B.; Mysyrowicz, A.

    2006-05-01

    We present experimental studies of filamentation of a femtosecond laser pulse in air at low pressures. The evolution of the filament has been studied by measuring along the propagation axis the conductivity and the sub-THz emission from the plasma channel. We show experimentally that the filamentation process occurs at pressures as low as 0.2 atm in agreement with numerical simulations. Experimental and numerical results [A. Couairon, M. Franco, G. Méchain, T. Olivier, B. Prade, A. Mysyrowicz, Opt. Commun., submitted for publication] are compared and the possible sources of discrepancy are discussed.

  3. Low-Pressure Photolysis of 2,3-Pentanedione in Air: Quantum Yields and Reaction Mechanism.

    PubMed

    Bouzidi, Hichem; Djehiche, Mokhtar; Gierczak, Tomasz; Morajkar, Pranay; Fittschen, Christa; Coddeville, Patrice; Tomas, Alexandre

    2015-12-24

    Dicarbonyls in the atmosphere mainly arise from secondary sources as reaction products in the degradation of a large number of volatile organic compounds (VOC). Because of their sensitivity to solar radiation, photodissociation of dicarbonyls can dominate the fate of these VOC and impact the atmospheric radical budget. The photolysis of 2,3-pentanedione (PTD) has been investigated for the first time as a function of pressure in a static reactor equipped with continuous wave cavity ring-down spectroscopy to measure the HO2 radical photostationary concentrations along with stable species. We showed that (i) Stern-Volmer plots are consistent with low OH-radical formation yields in RCO + O2 reactions, (ii) the decrease of the photodissociation rate due to pressure increase from 26 to 1000 mbar is of about 30%, (iii) similarly to other dicarbonyls, the Stern-Volmer analysis shows a curvature at the lower pressure investigated, which may be assigned to the existence of excited singlet and triplet PTD states, (iv) PTD photolysis at 66 mbar leads to CO2, CH2O and CO with yields of (1.16 ± 0.04), (0.33 ± 0.02) and (0.070 ± 0.005), respectively, with CH2O yield independent of pressure up to 132 mbar and CO yield in agreement with that obtained at atmospheric pressure by Bouzidi et al. (2014), and (v) the PTD photolysis mechanism remains unchanged between atmospheric pressure and 66 mbar. As a part of this work, the O2 broadening coefficient for the absorption line of HO2 radicals at 6638.21 cm(-1) has been determined (γO2 = 0.0289 cm(-1) atm(-1)). PMID:26608471

  4. Calcium phosphate growth beneath a polycationic monolayer at the air-water interface: effects of oscillating surface pressure on mineralization.

    PubMed

    Junginger, Mathias; Bleek, Katrin; Kita-Tokarczyk, Katarzyna; Reiche, Jürgen; Shkilnyy, Andriy; Schacher, Felix; Müller, Axel H E; Taubert, Andreas

    2010-11-01

    The self-assembly of the amphiphilic block copolymer poly(butadiene)-block-poly[2-(dimethylamino)ethyl methacrylate] at the air-water interface and the mineralization of the monolayers with calcium phosphate was investigated at different pH values. As expected for polyelectrolytes, the subphase pH strongly affects the monolayer properties. The focus of the current study, however, is on the effect of an oscillating (instead of a static) polymer monolayer on calcium phosphate mineralization. Monitoring of the surface pressure vs. mineralization time shows that the monolayer is quite stable if the mineralization is performed at pH 8. In contrast, the monolayer at pH 5 shows a measurable decrease of the surface pressure already after ca. 2 h of mineralization. Transmission electron microscopy reveals that mineralization at low pH under constant oscillation leads to small particles, which are arranged in circular features and larger entities with holes of ca. 200 nm. The larger features with the holes disappear as the mineralization is continued in favor of the smaller particles. These grow with time and form necklace-like architectures of spherical particles with a uniform diameter. In contrast, mineralization at pH 8 leads to very uniform particle morphologies already after 2 h. The mineralization products consist of a circular feature with a dark dot in the center. The increasing contrast of the precipitates in the electron micrographs with mineralization time indicates an increasing degree of mineralization vs. reaction time. The study therefore shows that mechanical effects on mineralization at interfaces are quite complex. PMID:20835481

  5. Calcium phosphate growth beneath a polycationic monolayer at the air-water interface: effects of oscillating surface pressure on mineralization

    NASA Astrophysics Data System (ADS)

    Junginger, Mathias; Bleek, Katrin; Kita-Tokarczyk, Katarzyna; Reiche, Jürgen; Shkilnyy, Andriy; Schacher, Felix; Müller, Axel H. E.; Taubert, Andreas

    2010-11-01

    The self-assembly of the amphiphilic block copolymer poly(butadiene)-block-poly[2-(dimethylamino)ethyl methacrylate] at the air-water interface and the mineralization of the monolayers with calcium phosphate was investigated at different pH values. As expected for polyelectrolytes, the subphase pH strongly affects the monolayer properties. The focus of the current study, however, is on the effect of an oscillating (instead of a static) polymer monolayer on calcium phosphate mineralization. Monitoring of the surface pressure vs. mineralization time shows that the monolayer is quite stable if the mineralization is performed at pH 8. In contrast, the monolayer at pH 5 shows a measurable decrease of the surface pressure already after ca. 2 h of mineralization. Transmission electron microscopy reveals that mineralization at low pH under constant oscillation leads to small particles, which are arranged in circular features and larger entities with holes of ca. 200 nm. The larger features with the holes disappear as the mineralization is continued in favor of the smaller particles. These grow with time and form necklace-like architectures of spherical particles with a uniform diameter. In contrast, mineralization at pH 8 leads to very uniform particle morphologies already after 2 h. The mineralization products consist of a circular feature with a dark dot in the center. The increasing contrast of the precipitates in the electron micrographs with mineralization time indicates an increasing degree of mineralization vs. reaction time. The study therefore shows that mechanical effects on mineralization at interfaces are quite complex.

  6. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  7. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  8. Influence of venting areas on the air blast pressure inside tubular structures like railway carriages.

    PubMed

    Larcher, Martin; Casadei, Folco; Solomos, George

    2010-11-15

    In case of a terrorist bomb attack the influence and efficiency of venting areas in tubular structures like train carriages is of interest. The pressure-time function of an air blast wave resulting from a solid charge is first compared to that of a gas or dust explosion and the capability of a venting structure to fly away is assessed. Several calculations using fluid-structure interaction are performed, which show that after a certain distance from the explosion, the air blast wave inside a tubular structure becomes one-dimensional, and that the influence of venting areas parallel to the wave propagation direction is small. The pressure peak and the impulse at certain points in a tubular structure are compared for several opening sizes. The overall influence of realistic size venting devices remains moderate and their usefulness in mitigating internal explosion effects in trains is discussed. PMID:20728991

  9. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  10. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  11. Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas

    SciTech Connect

    Luo Siqi; Denning, C. Mark; Scharer, John E.

    2008-07-01

    A laser initiation and radio frequency (rf) sustainment technique has been developed and improved from our previous work to create and sustain large-volume, high-pressure air and nitrogen plasmas. This technique utilizes a laser-initiated, 15 mTorr partial pressure tetrakis (dimethylamino) ethylene seed plasma with a 75 Torr background gas pressure to achieve high-pressure air/nitrogen plasma breakdown and reduce the rf power requirement needed to sustain the plasma. Upon the laser plasma initiation, the chamber pressure is raised to 760 Torr in 0.5 s through a pulsed gas valve, and the end of the chamber is subsequently opened to the ambient air. The atmospheric-pressure plasma is then maintained with the 13.56 MHz rf power. Using this technique, large-volume (1000 cm{sup 3}), high electron density (on the order of 10{sup 11-12} cm{sup -3}), 760 Torr air and nitrogen plasmas have been created while rf power reflection is minimized during the entire plasma pulse utilizing a dynamic matching method. This plasma can project far away from the antenna region (30 cm), and the rf power budget is 5 W/cm{sup 3}. Temporal evolution of the plasma electron density and total electron-neutral collision frequency during the pulsed plasma is diagnosed using millimeter wave interferometry. Optical emission spectroscopy (OES) aided by SPECAIR, a special OES simulation program for air-constituent plasmas, is used to analyze the radiating species and thermodynamic characteristics of the plasma. Rotational and vibrational temperatures of 4400-4600{+-}100 K are obtained from the emission spectra from the N{sub 2}(2+) and N{sub 2}{sup +}(1-) transitions by matching the experimental spectrum results with the SPECAIR simulation results. Based on the relation between the electron collision frequency and the neutral density, utilizing millimeter wave interferometry, the electron temperature of the 760 Torr nitrogen plasma is found to be 8700{+-}100 K (0.75{+-}0.1 eV). Therefore, the plasma

  12. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  13. Vibration and recoil control of pneumatic hammers. [by air flow pressure regulation

    NASA Technical Reports Server (NTRS)

    Constantinescu, I. N.; Darabont, A. V.

    1974-01-01

    Vibration sources are described for pneumatic hammers used in the mining industry (pick hammers), in boiler shops (riveting hammers), etc., bringing to light the fact that the principal vibration source is the variation in air pressure inside the cylinder. The present state of the art of vibration control of pneumatic hammers as it is practiced abroad, and the solutions adopted for this purpose, are discussed. A new type of pneumatic hammer with a low noise and vibration level is presented.

  14. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: the generation R study.

    PubMed

    van den Hooven, Edith H; de Kluizenaar, Yvonne; Pierik, Frank H; Hofman, Albert; van Ratingen, Sjoerd W; Zandveld, Peter Y J; Mackenbach, Johan P; Steegers, Eric A P; Miedema, Henk M E; Jaddoe, Vincent W V

    2011-03-01

    Exposure to air pollution is associated with elevated blood pressure and cardiovascular disease. We assessed the associations of exposure to particulate matter (PM(10)) and nitrogen dioxide (NO(2)) levels with blood pressure measured in each trimester of pregnancy and the risks of pregnancy-induced hypertension and preeclampsia in 7006 women participating in a prospective cohort study in the Netherlands. Information on gestational hypertensive disorders was obtained from medical records. PM(10) exposure was not associated with first trimester systolic and diastolic blood pressure, but a 10-μg/m(3) increase in PM(10) levels was associated with a 1.11-mm Hg (95% confidence interval [CI] 0.43 to 1.79) and 2.11-mm Hg (95% CI 1.34 to 2.89) increase in systolic blood pressure in the second and third trimester, respectively. Longitudinal analyses showed that elevated PM(10) exposure levels were associated with a steeper increase in systolic blood pressure throughout pregnancy (P<0.01), but not with diastolic blood pressure patterns. Elevated NO(2) exposure was associated with higher systolic blood pressure levels in the first, second, and third trimester (P<0.05), and with a more gradual increase when analyzed longitudinally (P<0.01). PM(10) exposure, but not NO(2) exposure, was associated with an increased risk of pregnancy-induced hypertension (odds ratio 1.72 [95% CI 1.12 to 2.63] per 10-μg/m(3) increase). In conclusion, our results suggest that air pollution may affect maternal cardiovascular health during pregnancy. The effects might be small but relevant on a population level. PMID:21220700

  15. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  16. Pattern recognition techniques for visualizing the biotropic waveform of air temperature and pressure

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.

    2012-12-01

    It is known that long periods of adverse weather have a negative effect on the human cardiovascular system. A number of studies have set a lower limit of around 5 days for the duration of these periods. However, the specific features of the negative dynamics of the main weather characteristics—air temperature and atmospheric pressure—remained open. To address this problem, the present paper proposes a conjunctive method of the theory of pattern recognition. It is shown that this method approaches a globally optimal (in the sense of recognition errors) Neumann critical region and can be used to solve various problems in heliobiology. To illustrate the efficiency of this method, we show that some quickly relaxing short sequences of temperature and pressure time series (the so-called temperature waves and waves of atmospheric pressure changes) increase the risk of cardiovascular diseases and can lead to serious organic lesions (particularly myocardial infarction). It is established that the temperature waves and waves of atmospheric pressure changes increase the average morbidity rate of myocardial infarction by 90% and 110%, respectively. Atmospheric pressure turned out to be a more biotropic factor than air temperature.

  17. The role of air pressure and contact force in shaping obstruent consonant onset

    NASA Astrophysics Data System (ADS)

    Chen, Lan

    2003-04-01

    Soft tissues (the tongue or lips) are used to form the narrow oral constriction for turbulence noise generation during the production of obstruent consonants. The displacement of the soft tissue subject to oral pressure buildup is comparable to the vertical dimension of the constriction. The contact force during the closure of stop consonants and affricates provides a pressure load over 5 times larger than the air pressure at the surface in contact. It can influence the time variation of the constriction size at onset in the form of elastic energy stored in the compliant structure forming the constriction. A finite element fluid-structure interaction program has been used to simulate the effect of these external forces during the onset of obstruent consonants. Preliminary results from a 2-D tongue tip constriction/closure model show that air pressure and contact force can introduce movement on the order of 0.1-0.2 mm during the first tens of milliseconds after release, which is enough to affect the size of the constriction at onset and the nature of release burst. The results of this kind can be used for speech synthesis, guiding the modification of the trajectories of articulators at the consonant onset. [Work supported by NIH.

  18. Evaluation of the Operator Protection Factors Offered by Positive Pressure Air Suits against Airborne Microbiological Challenge

    PubMed Central

    Steward, Jackie A.; Lever, Mark S.

    2012-01-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  19. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  20. Emissions measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.

    1979-01-01

    A series of experiments was conducted in which the emissions of a lean premixed system of propane and air were measured at pressures of 5, 10, 20 and 30 atm in a flametube apparatus. Measurements were made for inlet temperatures between 600K and 1000K and combustor residence times from 1.0 to 3.0 msec. A schematic of the test rig is presented along with graphs showing emissions measurements for nitric oxide, carbon monoxide, and UHC as functions of bustor residence time for various equivalence ratios, entrance temperatures and pressures; typical behavior of emissions as a function of equivalence ratio for a fixed residence time. Correlations of nitric oxide emission index with adiabatic flame temperature for a fixed residence time of 2 msec and pressures from 5 to 30 atm; and adiabatic flame temperature corresponding to CO breakpoint conditions for 2 msec residence time as a function of inlet temperature.

  1. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    NASA Astrophysics Data System (ADS)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  2. Effects of Photoionization on Similarity Properties of Streamers at Various Pressures in Air

    NASA Astrophysics Data System (ADS)

    Liu, N.; Pasko, V. P.

    2005-12-01

    Similarity relations [e.g., Roth, Industrial plasma engineering, Vol. 1, 1995, p. 306] represent a useful tool for analysis of gas discharges since they allow to use known properties of the discharge at one pressure to deduce features of discharges at variety of other pressures of interest, at which experimental studies may not be feasible or even possible. In addition to traditional design of glow discharge tubes, similarity relations have been successfully applied to understanding of streamer discharges in air at several atmospheres, which are used for triggering of combustion in spark ignition engines [Achat et al., J. Phys. D: Appl. Phys., 25, 661, 1992; Tardiveau et al., J. Phys. D: Appl. Phys., 34, 1690, 2001], and also for analysis and interpretation of streamer discharges in sprites occurring at very low air pressures in altitude range 40-90 km in the Earth's atmosphere [e.g., Liu and Pasko, JGR, 109, A04301, 2004]. Streamer discharges similar to those documented in sprites [Gerken and Inan, IEEE Trans. Plasma Sci., 33, 282, 2005, and references therein] have been observed in point-to-plane discharge geometry in laboratory experiments at near ground pressures [Pancheshnyi et al., Phys. Rev. E, 71, 016407, 2005; Briels et al., IEEE Trans. Plasma Sci., 33, 264, 2005]. Understanding of the physical processes which lead to the observed departures from similarity relations at different pressures in these experiments represents an important problem, resolution of which would synergistically benefit understanding of streamers in both systems (i.e., due to generally relaxed requirements on time resolution of imaging systems needed for studies of sprite streamers, and easy repeatability of discharges in high pressure laboratory experiments). In this talk we report results from a streamer model developed in [Liu and Pasko, JGR, 109, A04301, 2004; GRL, L05104, 2005; J. Phys. D: Appl. Phys., in review, 2005] as applied to propagation of positive streamers at various

  3. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  4. Simplified Configuration for the Combustor of an oil Burner using a low Pressure, high flow air-atomizing Nozzle

    SciTech Connect

    Butcher, Thomas; Celebi, Yusuf; Fisher, Leonard

    1998-09-28

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion oil resulting in a minimum emission of pollutants. The inventors have devised a fuel burner that uses a low pressure air atomizing nozzle. The improved fuel burner does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design.

  5. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    PubMed

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  6. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  7. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  8. An investigation to determine the static pressure distribution of the 0.00548 scale shuttle solid rocket booster (MSFC model number 468) during reentry in the NASA/MSFC 14 inch trisonic wind tunnel (SA28F)

    NASA Technical Reports Server (NTRS)

    Braddock, W. F.; Streby, G. D.

    1977-01-01

    The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.

  9. Properties of Broezel static probe

    NASA Astrophysics Data System (ADS)

    Gašparovič, Peter; Semrád, Karol; Cúttová, Miroslava

    2016-03-01

    The properties of flat static probe designed by Broezel and used in sailplanes are investigated for its planned use in low speed tunnel. Both the numerical CFD model and experiment in low speed wind tunnel confirm yaw insensitivity of the static pressure measured by the probe. The results indicate that the probe is sufficiently accurate for its planned use in wind tunnel measurements.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Du, Shi-Gui; Zhang, Ping-Yang; Zhou, Yu

    2015-03-01

    Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.

  12. The effectiveness of small changes for pressure redistribution; using the air mattress for small changes.

    PubMed

    Tsuchiya, Sayumi; Sato, Aya; Azuma, Eri; Urushidani, Hiroko; Osawa, Masako; Kadoya, Kanaho; Takamura, Mana; Nunomi, Makiko; Mitsuoka, Akimi; Nishizawa Yokono, Tomoe; Sugama, Junko

    2016-05-01

    Observing small changes (SCs) at specific sites is a new form of managing changes in position. We investigated SCs at specific sites considering interface pressure, contact area, body alignment and physical sensation in nine healthy female adults and evaluated SCs using the air mattress that was divided into six cells (A-F). Thirty-three SC combinations at one or several sites were evaluated. Pressure in the sacral region significantly decreased in 28 SC combinations compared with the supine position (p < 0.05), and the effect of pressure redistribution was greater when SCs were applied at several instead of a single site. The contact area at 17 of the 28 SC combinations significantly increased (p < 0.05). Among sites ranked based on interface pressure, body alignment and physical sensation, SCs at sites BCE, AE and BD were the most favorable. The common feature among these three combinations was that they involved tilting the buttock region and one other site. The findings suggested that SCs at the buttock region could reduce disruptions in alignment as well as the impact on physical sensation caused by the body sinking into the mattress and improve interface pressure redistribution via increased contact area with the mattress. PMID:26827265

  13. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  14. Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation

    SciTech Connect

    Myer, E.C.; Marboe, R.C.

    1994-12-31

    Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

  15. Design of a two dimensional planer pressurized air labyrinth seal test rig

    NASA Astrophysics Data System (ADS)

    Konicki, Joseph S.

    1993-12-01

    A two-dimensional planer labyrinth seal test rig was designed to operate with air supplied at 45 psig and temperatures up to 150 F. The rig operates with a manually specified test section pressure up to 30 psig yielding Mach numbers to 0.9 and gap Reynolds numbers to 100,000. The air flow rate through the seal will be controlled by setting inlet pressure and adjusting an outlet control valve. The test section measurements are 18 inches wide by 1.5 inches depth by 6 inches in length and provides for 10:1 large scale geometry seals to be used to facilitate measurements. Design maximum seal gap size is 0.15 inches. The test section has a glass viewing port to allow flow field measurement by non-intrusive means such as Laser Doppler Velocimeter (LDV) with seals containing up to 5 sealing knives. Measurements of pressure, temperature and flow fields can also be simultaneously measured by probes inserted in the seal itself, or mounted on the removable/replaceable top plate. Inlet flow is conditioned through the use of a dump diffuser incorporating screens, honeycombs, expansion and contraction portions. The inlet flow to the test section can be modified from uniform to various non-uniform conditions by employing profile generators such as screens and winglets. A detailed mechanical design has been conducted including stress analysis and seal flow rate predictions.

  16. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  17. Measurement of Respiration, Heart Beat and Body Movement on a Bed Using Dynamic Air-Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Kuno, Hiroaki; Takashima, Mitsuru; Okawai, Hiroaki

    In this study, the possibility of the measurement of respiration, heart beat, and body movement on a bed was examined using the dynamic air-pressure sensor aiming at a daily health monitoring. The dynamic air-pressure sensor measures vital information using a change of air pressure. Twelve healthy volunteers participated in this study. The dynamic air-pressure sensor was installed under the bed mat and respiration and heart beat information were measured. This information was compared with the standard waveforms obtained from respiratory belt transducer and the electrocardiograph. As a result, both waveforms demonstrate a high correlation, and confirmed the validity of this method. A change of waveform and a quantitative evaluation of respiration, heart beat, and body movement measured from during sleep using this sensor can be useful for a daily health monitoring.

  18. High-pressure ceramic air heater for indirectly fired gas turbine applications

    NASA Astrophysics Data System (ADS)

    Lahaye, P. G.; Briggs, G. F.; Vandervort, C. L.; Seger, J. L.

    The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 x 10(sup 6) Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

  19. Study on an Efficient Dehumidifying Air-conditioning System utilizing Phase Change of Intermediate Pressure Refrigerant

    NASA Astrophysics Data System (ADS)

    Maeda, Kensaku; Inaba, Hideo

    The present study has proven a new dehumidifying system that aimed to reduce the sensible heat factor(SHF) of cooling process without using additional heat to relieve the internationally indicated conflict between energy saving and dehumidification necessary for keeping adequate indoor air quality (IAQ). In this system, we used intermediate pressure refrigerant in a vapor compression refrigerating cycle as heat transfer medium of a characteristic heat exchanger to precool the process air entering into an evaporator as well as to reheat the process air leaving from the evaporator. By this system, the present results achieved higher moisture removal and consequently higher efficiency of dehumidifying process. In addition to this fact, since this system has capability of integration into air-conditioning apparatus(HVAC system), it will be able to work for wide range of cooling load by variable SHF function. In the present paper, technical information, experimental results, and simulation results which assumed to apply this system into HVAC system are reported.

  20. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  1. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. PMID:26172593

  2. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  3. Mixture distributions for the statistical time delay in synthetic air at low pressure

    NASA Astrophysics Data System (ADS)

    Jovanović, Aleksandar P.; Popović, Biljana Č.; Marković, Vidosav Lj.; Stamenković, Suzana N.; Stankov, Marjan N.

    2014-08-01

    The mixture distributions for statistical time delay of electrical breakdown are proposed along with the generalized relation for the effective electron yield. The validity of the proposed model is tested by applying this distribution to experimental data measured in synthetic air at low pressure. Two samples without and with oxide surface are compared in order to determine physical processes leading to appearance of mixture distributions in the case of oxidized cathode. The obtained distributions are tested by Kolmogorov-Smirnov statistical hypothesis test in order to justify the use of mixture distributions. The physical interpretation of mixture distribution measured in the synthetic air is proposed, accompanied by the calculated values of the effective electron yield of initiating electrons in the gas gap.

  4. A study of the glow discharge characteristics of contact electrodes at atmospheric pressure in air

    SciTech Connect

    Liu, Wenzheng Sun, Guangliang Li, Chuanhui; Zhang, Rongrong

    2014-04-15

    Electric field distributions and discharge properties of rod-rod contact electrodes were studied under the condition of DBD for the steady generation of atmospheric pressure glow discharge plasma (APGD) in air. We found that under the effect of the initial electrons generated in a nanometer-scale gap, the rod-rod cross-contact electrodes yielded APGD plasma in air. Regarding the rod-rod cross-contact electrodes, increasing the working voltage expanded the strong electric field area of the gas gap so that both discharge area and discharge power increased, and the increase in the number of contact points kept the initial discharge voltage unchanged and caused an increase in the plasma discharge area and discharge power. A mesh-like structure of cross-contact electrodes was designed and used to generate more APGD plasma, suggesting high applicability.

  5. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    SciTech Connect

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-12-15

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beam in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.

  6. JT8D revised high-pressure turbine cooling and other outer air seal program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT8D high pressure turbine was revised to reduce leakage between the blade tip shrouds and the outer air seal, and engine testing was performed to determine the effect on performance. The addition of a second knife-edge on the blade tip shroud, the extension of the honeycomb seal land to cover the added knife-edge and an existing spoiler on the shroud, and a material substitution in the seal support ring to improve thermal growth characteristics are included. A relocation of the blade cooling air discharge to insure adequate cooling flow is required. Significant specific fuel consumption and exhaust gas temperature improvements were demonstrated with the revised turbine in sea level and simulated altitude engine tests. Inspection of the revised seal hardware after these tests showed no unusual wear or degradation.

  7. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  9. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  10. [Temporal behavior of light emission of dielectric barrier discharges in air at atmospheric pressure].

    PubMed

    Yin, Zeng-qian; Dong, Li-fang; Han, Li; Li, Xue-chen; Chai, Zhi-fang

    2002-12-01

    The experimental setup of dielectric barrier discharge was designed which is propitious to optical measurement. Temporal behavior of light emission of dielectric barrier discharges (filamentary model) in air at atmospheric pressure was measured by using optical method. Temporal behavior of dielectric barrier discharges was obtained. The experimental results show that the discharge burst in each half cycle of applied voltage consists of a series of discharge pulses, the duration of each discharge pulse is about 30-50 ns, and the interval of the neighboring discharge pulses is about a few hundred ns. The result is of great importance to the application of dielectric barrier discharges. PMID:12914154

  11. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  12. Spectrum of the Runaway Electron Beam Generated During a Nanosecond Discharge in Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.

    2016-04-01

    The spectrum of supershort avalanche runaway electron beam generated in air at atmospheric pressure is experimentally investigated using a time-of-flight spectrometer and attenuation curves. It is shown that the maximum of the electron energy distribution for the main (second) group of electrons is less than the energy eUm, where Um is the maximal voltage across the gap, and the difference between these energies depends on the design of the cathode and the interelectrode gap in a gas diode. It is confirmed that there are three groups of electrons with different energies in the runaway electron beam spectrum.

  13. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  14. Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The paper presents the results of examination of copper samples exposed to a diffuse discharge initiated by a runaway electron beam in air under normal pressure. The changes in the chemical composition of the surface layers of copper caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses. The study was aimed at finding possible ways of using this type of discharge in research and industry.

  15. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  16. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  17. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air

    NASA Astrophysics Data System (ADS)

    Parkes, W.; Djakov, V.; Barton, J. S.; Watson, S.; MacPherson, W. N.; Stevenson, J. T. M.; Dunare, C. C.

    2007-07-01

    Optical fibre pressure sensors have potential performance advantages over electrical sensors in measuring rapid transients such as shock waves from explosive blasts. We report the development of micromachined optical fibre Fabry-Pérot pressure sensors using a silicon dioxide or nitride diaphragm and detail the fabrication stages of the sensor body and diaphragm. The planar technology used is based on silicon deep etching and direct fusion bonding of silicon wafers. Test results for both types of diaphragm are presented. Sensors with rise times better than 3 µs, range 0.1 to 1 MPa and resolution ~500 Pa have been demonstrated in explosives trials. Despite the difference in the sign of stress for the two diaphragm types, both demonstrated excellent high-speed response to explosively generated air shocks.

  18. The lunar semidiurnal air pressure tide in in-situ data and ECMWF reanalyses

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-04-01

    A gridded empirical model of the lunar semidiurnal air pressure tide L2 is deduced through multiquadric interpolation of more than 2000 globally distributed tidal estimates from land barometers and moored buoys. The resulting climatology serves as an independent standard to validate the barometric L2 oscillations that are present in ECMWF's (European Centre for Medium-Range Weather Forecasts) global atmospheric reanalyses despite the omission of gravitational forcing mechanisms in the involved forecast routines. Inconsistencies between numerical and empirical L2 solutions are found to be small even though the reanalysis models typically underestimate equatorial peak pressures by 10-20% and produce slightly deficient tidal phases in latitudes south of 30°N. Through using a time-invariant reference surface over both land and water and assimilating marine pressure data without accounting for vertical sensor movements due to the M2 ocean tide, ECMWF-based tidal solutions are also prone to strong local artifacts. Additionally, the dependency of the lunar tidal oscillation in atmospheric analysis systems on the meteorological input data is demonstrated based on a recent ECMWF twentieth-century reanalysis (ERA-20C) which draws its all of its observational constraints from in-situ registrations of pressure and surface winds. The L2 signature prior to 1950 is particularly indicative of distinct observing system changes, such as the paucity of marine data during both World Wars or the opening of the Panama Canal in 1914 and the associated adjustment of commercial shipping routes.

  19. Laser-based measurements of OH in high pressure CH4/air flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1991-01-01

    Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.

  20. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today. PMID:26573709

  1. Shuttle Entry Air Data System concepts applied to Space Shuttle Orbiter flight pressure data to determine air data - STS 1-4

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Wolf, H.; Flanagan, P. F.

    1983-01-01

    The Shuttle Entry Air Data System (SEADS) is the implementation of a new concept in air data systems, with application to entry vehicles. This concept incorporates an array of flush orifices in the nose and forward fuselage of the vehicle and a new flowfield modeling concept for the analysis of flight data and the determination of the required air data parameters. Although the SEADS has not been fully demonstrated, a developmental analysis capability has been assembled and demonstrated. This analytical capability has been used to analyze selected Development Flight Instrumentation (DFI) pressure data from STS-1 through STS-4 and determine angle of attack and freestream dynamic pressure. The results of this study verify the potential of the SEADS as a highly fault tolerant operational air data system. In addition, the transition of SEADS from its present status as an experimental system to an operational system is shown to be readily achievable.

  2. Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Itina, T. E.; Voloshko, A.

    2013-12-01

    Recent promising methods of nanoparticle fabrication include laser ablation and spark discharge. Despite different experimental conditions, a striking similarity is often observed in the sizes of the obtained particles. To explain this result, we elucidate physical mechanisms involved in the formation of metallic nanoparticles. In particular, we compare supersaturation degree and sizes of critical nucleus obtained under laser ablation conditions with that obtained for spark discharge in air. For this, the dynamics of the expansion of either ablated or eroded products is described by using a three-dimensional blast wave model. Firstly, we consider nanosecond laser ablation in air. In the presence of a background gas, the plume expansion is limited by the gas pressure. Nanoparticles are mostly formed by nucleation and condensation taking place in the supersaturated vapor. Secondly, we investigate nanoparticles formation by spark discharge at atmospheric pressure. After efficient photoionization and streamer expansion, the cathode material suffers erosion and NPs appear. The calculation results allow us to examine the sizes of critical nuclei as function of the experimental parameters and to reveal the conditions favorable for the size reduction and for the increase in the nanoparticle yield.

  3. Self-pulsing discharges in pre-heated air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Machala, Zdenko; Dvonč, Lukáš; Lacoste, Deanna; Laux, Christophe O.

    2015-01-01

    The paper presents investigations of self-pulsing discharges in atmospheric pressure air pre-heated to 300-1000 K. Despite using a direct-current power supply, two self-pulsing discharge regimes, a repetitive transient spark (TS) and a repetitive streamer (RS) were generated. The pulse repetition frequency, on the order of a few kHz, can be controlled by adjusting the generator voltage. The TS is a discharge initiated by a streamer, followed by a short (tens of ns) spark current pulse (˜ 1 A), associated with the total discharging of the internal capacity of the electric circuit. The TS is suitable for the study of ‘memory’ effects (pre-heating, pre-ionization) on the mechanisms of streamer-to-spark transition and electrical breakdown in atmospheric pressure air. The TS regime was stable below ˜600 K. Above ˜600 K, a stable repetitive streamer (RS) regime was observed. In this regime, the breakdown and spark did not occur. After the initial streamer, the internal capacity of the electrical circuit discharged partially. With further pre-heating of the gas, the stable TS appeared again at ˜1000 K.

  4. Integrated Energy Method for Propulsion Dynamics Analysis of Air-Pressurized Waterjet Rocket

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Chiu, Chih-Hong; Hsia, Wen-Kung

    The launching of a waterjet rocket has been a very popular idea in recent years. Its basic propulsion principle makes use of the high-pressurized air inside the rocket’s main body to swiftly expel the water out of the nozzle and thus generate thrust. The waterjet rocket is characterized with nature, interest, combustionlessness, environmental friendliness, simplicity, and minimal cost. Moreover, it is a very good science model for propulsion analysis, design, experiment, and education because of an abundance of easily adjustable key parameters. This model also features separately stored energy and mass of the propellant, in contrast to a conventional rocket. However, related literature shows that no in-depth theoretical analysis of the waterjet rocket has been attempted for various reasons. In this research, the propulsion dynamics of a waterjet rocket is analyzed by simultaneously solving the momentum and the newly derived generalized power equations to predict its flight histogram, computationally, and convolutionally. This integrated energy approach synthesizes the internal and external dynamics analyses together and ingeniously takes full advantage of the clear power supply of pressurized air in a waterjet rocket. The analysis results are generally agreeable with the experimental flight data. While the new power equation herein gives a complete spectrum of physical parameters to be manipulated, there will be wider room in quest of better rocket propulsion performance, especially through the heuristic research of this versatile but affordable waterjet rocket.

  5. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  6. Features of the electron density dynamics in the filamentation of femtosecond laser radiation in air at elevated pressure

    NASA Astrophysics Data System (ADS)

    Chizhov, P. A.; Bukin, V. V.; Ushakov, A. A.; Garnov, S. V.

    2016-04-01

    The electron density in the plasma channel of a femtosecond filament in air at pressures from 1 to 7 atm is measured at different instants, starting from the ionisation onset and up to several hundreds of picoseconds after it. The initial electron density is found to increase sharply in the pressure range of 3 – 4 atm. The plasma channel diameter is found to decrease with an increase in pressure from 3 to 7 atm.

  7. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    NASA Astrophysics Data System (ADS)

    Ribière, M.; Cessenat, O.; d'Almeida, T.; de Gaufridy de Dortan, F.; Maulois, M.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-03-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 1010 cm-3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  8. Air Pollution from Industrial Swine Operations and Blood Pressure of Neighboring Residents

    PubMed Central

    Horton, Rachel Avery; Rose, Kathryn M.

    2012-01-01

    Background: Industrial swine operations emit odorant chemicals including ammonia, hydrogen sulfide (H2S), and volatile organic compounds. Malodor and pollutant concentrations have been associated with self-reported stress and altered mood in prior studies. Objectives: We conducted a repeated-measures study of air pollution, stress, and blood pressure in neighbors of swine operations. Methods: For approximately 2 weeks, 101 nonsmoking adult volunteers living near industrial swine operations in 16 neighborhoods in eastern North Carolina sat outdoors for 10 min twice daily at preselected times. Afterward, they reported levels of hog odor on a 9-point scale and measured their blood pressure twice using an automated oscillometric device. During the same 2- to 3-week period, we measured ambient levels of H2S and PM10 at a central location in each neighborhood. Associations between systolic and diastolic blood pressure (SBP and DBP, respectively) and pollutant measures were estimated using fixed-effects (conditional) linear regression with adjustment for time of day. Results: PM10 showed little association with blood pressure. DBP [β (SE)] increased 0.23 (0.08) mmHg per unit of reported hog odor during the 10 min outdoors and 0.12 (0.08) mmHg per 1-ppb increase of H2S concentration in the same hour. SBP increased 0.10 (0.12) mmHg per odor unit and 0.29 (0.12) mmHg per 1-ppb increase of H2S in the same hour. Reported stress was strongly associated with BP; adjustment for stress reduced the odor–DBP association, but the H2S–SBP association changed little. Conclusions: Like noise and other repetitive environmental stressors, malodors may be associated with acute blood pressure increases that could contribute to development of chronic hypertension. PMID:23111006

  9. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinghua; Xian, Richang; Sun, Xuefeng; Wang, Tao; Lv, Xuebin; Chen, Suhong; Yang, Fan

    2014-08-01

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O- and O2- densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.

  10. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  11. Focused excimer laser initiated and radio frequency sustained plasma formation in high pressure air

    NASA Astrophysics Data System (ADS)

    Giar, Ryan

    A doctoral thesis project was performed to experimentally investigate the feasibility of focused excimer laser initiation of air plasmas for radio frequency sustainment. A 193 nm, 15 MW, 300 mJ laser was focused with a 18 cm focal length lens to form a small, high density (ne ~ 10 14 cm--3) seed plasma. These laser plasmas were produced inside a borosilicate glass tube around which was wrapped a 5 turn helical antenna. This antenna was powered with 5 kW of 13.56 MHz of radiation for 1.5 s. This was accomplished at a pressure of 22 Torr, resulting in a large volume (300 cm3) air plasma. Diagnostic measurements of this air plasma determined an electron density of 5E10 cm-3 and an electron temperature 1.3 eV with a neutral temperature of 3500 K. The collision frequency was measured to be 9E10 Hz which resulted in a plasma-loaded antenna resistance of 6 O with a voltage reflection coefficient of 0.7.

  12. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  13. Radio-Frequency Sustainment of Laser Initiated, High-Pressure Air Constituent Plasmas*

    NASA Astrophysics Data System (ADS)

    Akhtar, Kamran; Scharer, John; Tysk, Shane; Denning, Mark

    2003-10-01

    We investigate the feasibility of creating a high-density sim 10^12 -10^14 /cc, large volume plasma in air constituents by laser (300 mJ, 20(+/-2) ns) preionization of an organic gas. Tetrakis (dimethyl-amino) ethylene (TMAE) is seeded in high-pressure air constituent gases and then sustained by the efficient absorption of the radio-frequency (RF) power (1-25 kW pulsed) through inductive coupling of the wave fields, thereby reducing the rf initiation power budget.1 A multi-turn helical antenna is used to couple rf power through a capacitive matching network to sustain the plasma. Plasma density and decay recombination mechanisms with and without the background gas are examined using a 105 GHz interferometr.2 The effect of gas heating on plasma life-time enhancement through reduced formation of negative oxygen ions will also be presented. Optical emission spectroscopy is employed to study the process of delayed ionization of the seed gas and RF creation of air constituent plasma and calculate the plasma temperature. RF wave penetration and projection of plasma away from the source region are also examined for different gas flow rates. 1. Kelly K, Scharer J, Paller E, and Ding G, J. App. Phys., 92,698(2002). 2. Akhtar K, Scharer J, Tysk S., and Kho E., Rev. Sci. Instrum., 74, 996 (2003).

  14. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  15. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    PubMed

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  16. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study)

    PubMed Central

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  17. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O‑ ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (∼600–1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (∼10% of the electron density). For electron densities in the range (1–≤ft. 4\\right)× {{10}12} cm‑3, the system exhibits high dissociation degrees for O2 (∼20–70%, depending on the working conditions, in contrast with the  ∼0.1% dissociation obtained for N2), a high concentration of O2(a) (∼1014 cm‑3) and NO(X) (5× {{10}14} cm‑3) and low ozone production (<{{10}-3}% ).

  18. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  19. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature.

    PubMed

    Giorgini, Paolo; Di Giosia, Paolo; Grassi, Davide; Rubenfire, Melvyn; Brook, Robert D; Ferri, Claudio

    2016-01-01

    Both high arterial blood pressure (BP) and elevated levels of fine particulate matter (PM2.5) air pollution have been associated with an increased risk for several cardiovascular (CV) diseases, including stroke, heart failure, and myocardial infarction. Given that PM2.5 and high BP are each independently leading risk factors for premature mortality worldwide, a potential relationship between these factors would have tremendous public health repercussions. Therefore, the aim of this review is to summarize recent evidence linking air pollution and BP. Epidemiological findings demonstrate that particulate pollutants cause significant increases in BP parameters in relation to both short and long-term exposures, with robust evidence for exposures to PM2.5. Moreover, recent epidemiological studies suggest a positive association between residence within regions with higher levels of ambient PM and an increased incidence and prevalence of overt hypertension. Studies provide consistent results that elevated concentrations of pollutants increase hospital admissions and/or emergency visits for hypertensive disorders and also support that PM levels increases BP in vulnerable subsets of individuals (pregnant women, high CV risk individuals). In this context, PM-mediated BP elevations may be an important pathway which acts as a potential triggering factor for acute CV events. Mechanistic evidence illustrates plausible pathways by which acute and chronic exposures to air pollutants might disrupt hemodynamic balance favoring vasoconstriction, including autonomic imbalance and augmented release of various pro-oxidative, inflammatory and/or hemodynamically-active mediators. Together these responses may underlie PM-induced BP elevations; however, full details regarding the responsible mechanisms require further studies. As a consequence of the ubiquity of air pollution, even a small effect on raising BP and/or the prevalence of hypertension, i.e. the major risk factor for mortality

  20. A global ground truth view of the lunar air pressure tide L2

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-01-01

    A comprehensive model of the lunar air pressure tide L2 is developed on the basis of 2315 ground truth estimates from land barometers and moored buoys. Regional-scale features of the tide and its seasonal modulations are well resolved by the in situ scatter and gridded to a 2° mesh through multiquadric interpolation. The resulting climatologies serve as an independent standard to validate the lunar semidiurnal tidal signal that is present in ERA-Interim reanalysis products despite the absence of L2-related gravitational forcing mechanisms in the prescribed model physics. Inconsistencies between the reanalysis solution of the barometric lunar tide and its empirical account are generally small, yet when averaged over the period 1979-2010, ERA-Interim underestimates the 100 μbar open ocean tidal amplitude in the Tropics by up to 20 μbar and produces times of peak pressure that are too early by 10 lunar minutes. Large-amplitude features of the reanalysis tide off the coast of Alaska, the eastern U.S., and Great Britain are evidently spurious, introduced to the analysis system by assimilating marine pressure data at an invariant reference surface instead of properly accounting for vertical sensor movements associated with the M2 ocean tide. Additionally, a credible L2 signal is documented for the ERA-20C pilot reanalysis of the twentieth century. The fact that this model rests upon input data from mere surface observations provides an unambiguous indication that the lunar tidal oscillation in atmospheric analysis systems is closely tied to the assimilation of conventional pressure measurements from stations and marine objects.

  1. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  2. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations. PMID:18529171

  3. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  4. Solvent Selection for Pressurized Liquid Extraction of Polymeric Sorbents Used in Air Sampling

    PubMed Central

    Primbs, Toby; Genualdi, Susan; Simonich, Staci

    2014-01-01

    Pressurized liquid extraction (PLE) was evaluated as a method for extracting semivolatile organic compounds (SOCs) from air sampling media; including quartz fiber filter (QFF), polyurethane foam (PUF), and a polystyrene divinyl benzene copolymer (XAD-2). Hansen solubility parameter plots were used to aid in the PLE solvent selection in order to reduce both co-extraction of polyurethane and save time in evaluating solvent compatibility during the initial steps of method development. A PLE solvent composition of 75:25% hexane:acetone was chosen for PUF. The XAD-2 copolymer was not solubilized under the PLE conditions used. The average percent PLE recoveries (and percent relative standard deviations) of 63 SOCs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine, amide, triazine, thiocarbamate, and phosphorothioate pesticides, were 76.7 (6.2), 79.3 (8.1), and 93.4 (2.9) % for the QFF, PUF, and XAD-2, respectively. PMID:18220448

  5. Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F. Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Rybka, D. V.

    2013-07-15

    The influence of the cathode design on the energy of the main group of electrons generated during a subnanosecond breakdown in atmospheric-pressure air was studied experimentally. The electron energy was measured using a time-of-flight spectrometer with a picosecond time resolution. It is shown that the energy of the main group of electrons increases with increasing cathode curvature radius. It is established using 400- to 650-{mu}m-thick aluminum foils that the electron energy reaches its maximum value in voltage pulses with abrupt trailing edges and amplitudes below the maximum amplitude. Electrons with maximum energies are generated with a stronger spatial and amplitude scatter than those with average energies.

  6. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-08-01

    The study of cell immobilization on delicate polymer by an air atmospheric pressure plasma jet (AAPPJ) is required for its medical application. The aim of this study was to evaluate whether AAPPJ treatment induce cell immobilization effect on delicate polymers without significant change of surface roughness by AAPPJ treatment. After surface roughness, dynamic contact angle, and chemical characteristics were investigated, the immobilization effect was evaluated with the mouse fibroblast L929 cell line. Surface roughness change was not observed (P > 0.05) in either delicate dental wax or polystyrene plate (PSP) as advancing and receding contact angles significantly decreased (P < 0.05), thanks to decreased hydrocarbon and formation of oxygen-related functional groups in treated PSP. Adherent L929 cells with elongated morphology were found in treated PSP along with the formation of immobilization markers vinculin and actin cytoskeleton. Increased PTK2 gene expression upregulated these markers on treated PSP.

  7. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure.

    PubMed

    Soares de Lima Filho, Elton; Nemova, Galina; Loranger, Sébastien; Kashyap, Raman

    2013-10-21

    We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10⁻⁴ cm⁻¹ was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample's dimensions. PMID:24150315

  8. Response of atmospheric pressure and air temperature to the solar events in October 2003

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Voronin, N. A.; Nikol'sky, G. A.

    2015-12-01

    Variations in the main weather parameters were studied for effects of solar flares and magnetic storms: the air temperature T and the atmospheric pressure P. We report the results of our comparison of these parameters measured at the mountain meteorological observatory near Kislovodsk (2100 m above sea level) to the monitoring data on strong solargeomagnetic perturbations for October 2003. We observed a decrease in the value of P for medium and large flares (of the type M > 4) in nine cases (82%) and an increase in T after magnetic storms with K p > 5 in 16 cases (84%). Hence, the manifestation of solar flares and magnetic storms in weather parameter variations ( T and P) at an altitude of 2100 m was proven, and the contribution of the radiooptical three-step trigger mechanism to solar-weather relations was qualitatively confirmed.

  9. Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Yu, Yang; Zhang, Cheng; Jiang, Hui; Yan, Ping; Zhou, Yuanxiang

    2011-12-01

    Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime. Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.

  10. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  11. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  12. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  13. Vapour pressures, aqueous solubility, Henry's law constants and air/water partition coefficients of 1,8-dichlorooctane and 1,8-dibromooctane.

    PubMed

    Sarraute, Sabine; Mokbel, Ilham; Costa Gomes, Margarida F; Majer, Vladimir; Delepine, Hervé; Jose, Jacques

    2006-09-01

    New data on the vapour pressures and aqueous solubility of 1,8-dichlorooctane and 1,8-dibromooctane are reported as a function of temperature between 20 degrees C and 80 degrees C and 1 degrees C and 40 degrees C, respectively. For the vapour pressures, a static method was used during the measurements which have an estimated uncertainty between 3% and 5%. The aqueous solubilities were determined using a dynamic saturation column method and the values are accurate to within +/-10%. 1,8-Dichlorooctane is more volatile than 1,8-dibromooctane in the temperature range covered (p(sat) varies from 3 to 250 Pa and from 0.53 to 62 Pa, respectively) and is also approximately three times more soluble in water (mole fraction solubilities at 25 degrees C of 5.95 x 10(-7) and 1.92 x 10(-7), respectively). A combination of the two sets of data allowed the calculation of the Henry's law constants and the air water partition coefficients. A simple group contribution concept was used to rationalize the data obtained. PMID:16530806

  14. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Jia, Caixia; Chen, Ping; Liu, Wei; Li, Bin; Wang, Qian

    2011-02-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, Cdbnd O and Odbnd C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  15. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  16. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  17. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  18. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  19. Air jet erosion test on plasma sprayed surface by varying erodent impingement pressure and impingement angle

    NASA Astrophysics Data System (ADS)

    Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.

    2015-02-01

    Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.

  20. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    NASA Astrophysics Data System (ADS)

    Bhoj, Ananth N.; Kushner, Mark J.

    2008-08-01

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  1. Influence of low air pressure on flashover voltages of polluted insulators

    SciTech Connect

    Rudakova, V.M.; Tikhodeev, N.N.

    1989-01-01

    Numerous mountain 110 to 500 kV power transmission lines are in operation in the USSR; since 1967 a 110 kV lien has been in service at an altitude (H/sub o/) up to 3.58 km above the sea level; a recent 100 kV overhead line has H/sub o/ = 4 km, its entire 224 km length running above 1,8 km and at least 65% of its right-of-way lying in mountains with H/sub o/ less than or equal to 3 km. A number of 220 to 500 kV lines cross passes whose latitude exceeds 3.2 km. Construction of overhead lines in the mountains of the Caucasus, Central Asia and in the Eastern USSR made it necessary to conduct unique studies of outdoor insulation behaviour at air pressures p below the normal pressure values p/sub o/. Some of the studies were made in altitude chambers, and some, at special high-altitude outdoor test facilities. Here an attempt is made to generalize basic results of these studies made in the USSR.

  2. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  3. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Meher, K. C.; Kar, R.; Tiwari, N.; Sahasrabudhe, S. N.

    2016-07-01

    Experimental investigation of cathode erosion in atmospheric pressure hafnium-electrode plasma torches is reported under different plasma environments along with the results of numerical simulation. Air, nitrogen and oxygen are the plasma gases considered. Distinct differences in the erosion features in different plasmas are brought out. Cathode images exhibiting a degree of erosion and measured erosion rates are presented in detail as a function of time of arc operation and arc current. Physical erosion rates are determined using high precision balance. The changes in the surface microstructures are investigated through scanning electron microscopy (SEM). Evolution of cathode chemistry is determined using energy dispersive x-ray spectroscopy (EDX). Numerical simulation with proper consideration of the plasma effects is performed for all the plasma gases. The important role of electromagnetic body forces in shaping the flow field and the distribution of pressure in the region is explored. It is shown that the mutual interaction between fluid dynamic and electromagnetic body forces may self-consistently evolve a situation of an extremely low cathode erosion rate.

  4. Generation of aerosols by the electrical explosion of wires at reduced air pressure

    SciTech Connect

    Sedoi, V.S.; Valevich, V.V.; Katz, J.D.

    1998-12-31

    The exploding wire method of particle production allows the authors to model the high speed formation of aerosols because of the fast heating and evaporation rates inherent to this technique. The method is also of interest from the viewpoint of controlling the production of aerosols of a particular material with a specific particle size distribution at a specific efficiency. The electrical explosion of iron, aluminum, titanium, and copper wires have been investigated in various gases at pressures from 0.01 to 1 atm. In these experiments the energy density introduced into the material, w, is normalized to the sublimation energy of the material, w{sub s}. The energy density also controls the heating rate. Particle and agglomerate sizes were determined using transmission electron microscopy and laser scattering methods. The specific surface area of the powder was measured by low-temperature adsorption. The phase composition was determined by X-ray diffraction. Increasing the energy density increases the internal energy of the material, the expansion velocity and the number of condensation centers, while the final particle size decreases. With an exothermic oxidation reaction, the optimum energy density can be less than the sublimation energy of the material. As a result, metal oxides are formed. Electrical explosion of wires, at reduced air pressures, allows for the production of ultra-fine powders of oxides of various metals with particle sizes of less than 50 nm. The method is environmentally safe and does not require excess energy expenditures. The electrical explosion of wire at reduced pressure allows for new possibilities in the production of ultra-fine powders (UFP).

  5. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  6. Static Material Strength Determined Using a DAC

    SciTech Connect

    Cynn, H; Evans, W; Klepeis, J P; Lipp, M; Liermann, P; Yang, W

    2009-06-04

    By measuring sample thickness and pressure gradient using x-ray absorption and x-ray diffraction, respectively, the accurate static yield strengths of Ta and Fe were determined at high pressure. This improved method has several advantages over other similar methods to quantitatively determine static material strength.

  7. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions

    NASA Technical Reports Server (NTRS)

    Henry, M. W.; Wolf, H.; Siemers, Paul M., III

    1988-01-01

    The SEADS pressure data obtained from the Shuttle flight 61-C are analyzed in conjunction with the preflight database. Based on wind tunnel data, the sensitivity of the Shuttle Orbiter stagnation region pressure distribution to angle of attack and Mach number is demonstrated. Comparisons are made between flight and wind tunnel SEADS orifice pressure distributions at several points throughout the re-entry. It is concluded that modified Newtonian theory provides a good tool for the design of a flush air data system, furnishing data for determining orifice locations and transducer sizing. Ground-based wind tunnel facilities are capable of providing the correction factors necessary for the derivation of accurate air data parameters from pressure data.

  8. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.

    PubMed

    Wistbacka, Greta; Sundberg, Johan; Simberg, Susanna

    2016-10-01

    Resonance tube phonation in water (RTPW) is commonly used in voice therapy, particularly in Finland and Sweden. The method is believed to induce a lowering of the vertical laryngeal position (VLP) in phonation as well as variations of the oral pressure, possibly inducing a massage effect. This pilot study presents an attempt to measure VLP and oral pressure in two subjects during RTPW and during phonation with the free tube end in air. VLP is recorded by means of a dual-channel electroglottograph. RTPW was found to lower VLP in the subjects, while it increased during phonation with the tube end in air. RTPW caused an oral pressure modulation with a bubble frequency of 14-22 Hz, depending mainly on the depth of the tube end under the water surface. The results indicate that RTPW lowers the VLP instantly and creates oral pressure variations. PMID:26033381

  9. An Ultrasonic and Air Pressure Sensing System for Detection of Behavior before Getting out of Bed Aided by Fuzzy Theory

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hayato; Nakajima, Hiroshi; Taniguchi, Kazuhiko; Kobashi, Syoji; Hata, Yutaka

    This paper proposes a sensing system for a behavior detection system using an ultrasonic oscillosensor and an air pressure sensor. The ultrasonic oscillosensor sensor has a cylindrical tank filled with water. It detects the vibration of the target object from the signal reflected from the water surface. This sensor can detect a biological vibration by setting to the bottom bed frame. The air pressure sensor consists of a polypropylene sheet and an air pressure sensor, and detects the pressure information by setting under the bed's mattress. An increase (decrease) in the load placed on the bed is detected by the increase (decrease) in the pressure of the air held in the tube attached to the sheet. We propose a behavior detection system using both sensors, complementally. The system recognizes three states (nobody in bed, keeping quiet in bed, moving in bed) using both sensors, and we detect the behavior before getting out of bed by recognized these states. Fuzzy logic plays a primary role in the system. As the fundamental experiment, we applied the system to five healthy volunteers, the system successfully recognized three states, and detected the behavior before getting out of bed. As the clinical experiment, we applied the system to four elderly patients with dementia, the system exactly detected the behavior before getting out of the bed with enough time for medical care support.

  10. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  11. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  12. Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Gortschakow, S.; Guaitella, O.; Marinov, D.; Rousseau, A.; Röpcke, J.; Loffhagen, D.

    2016-06-01

    The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5 ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of 0.57× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , 1.05× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , and 1.3× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed.

  13. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  14. Effects of nozzle exit geometry and pressure ratio on plume shape for nozzles exhausting into quiescent air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1991-01-01

    The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.

  15. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI. PMID:26580727

  16. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  17. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  18. Undesirable dispersal of eggs and early-stage nymphs of the bed bug Hemiptera: cimicidae) by static electricity and air currents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Movement of whole live insects or other small arthropods attributed to static electricity has been reported only rarely. While viewing bed bugs in plastic or glass Petri dishes using a dissecting microscope, individual eggs and early stage nymphs were occasionally observed to move suddenly and rapid...

  19. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...

  20. Survey and bibliography on attainment of laminar flow control in air using pressure gradient and suction, volume 1

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Tuttle, M. H.

    1979-01-01

    A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.

  1. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure demand class; minimum requirements. 84.149 Section 84.149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  2. Similarity laws for cathode-directed streamers in gaps with an inhomogeneous field at elevated air pressures

    SciTech Connect

    Bolotov, O. V.; Golota, V. I.; Kadolin, B. B.; Karas', V. I.; Ostroushko, V. N.; Zavada, L. M.; Shulika, A. Yu.

    2010-11-15

    Results are presented from experimental studies of cathode-directed streamers in the gap closure regime without a transition into spark breakdown. Spatiotemporal, electrodynamic, and spectroscopic characteristics of streamer discharges in air at different pressures were studied. Similarity laws for streamer discharges were formulated. These laws allow one to compare the discharge current characteristics and streamer propagation dynamics at different pressures. Substantial influence of gas photoionization on the deviations from the similarity laws was revealed. The existence of a pressure range in which the discharges develop in a similar way was demonstrated experimentally. In particular, for fixed values of the product pd and discharge voltage U, the average streamer velocity is also fixed. It is found that, although the similarity laws are violated in the interstreamer pause of the discharge, the average discharge current and the product of the pressure and the streamer repetition period remain the same at different pressures. The radiation spectra of the second positive system of nitrogen (the C{sup 3{Pi}}{sub u}-B{sup 3{Pi}}{sub g} transitions) in a wavelength range of 300-400 nm at air pressures of 1-3 atm were recorded. It is shown that, in the entire pressure range under study, the profiles of the observed radiation bands practically remain unchanged and the relative intensities of the spectral lines corresponding to the {sup 3{Pi}}{sub u}-B{sup 3{Pi}}{sub g} transitions are preserved.

  3. Carbon dioxide partial pressure and carbon fluxes of air-water interface in Taihu Lake, China

    NASA Astrophysics Data System (ADS)

    Fan, Chengxin; Hu, Weiping; Ford, Phillip W.; Chen, Yuwei; Qu, Wenchuan; Zhang, Lu

    2005-03-01

    To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake, Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4 (mean±standard deviation) μatm (1atm=1.013 25×105Pa), 416.3±217.0 μatm, 576.5±758.8 μatm, 304.2±243.5 μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6 μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7 μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (-0.58±12.9 mmol/m2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×104 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.

  4. X-ray radiation from the volume discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Bratchikov, V. B.; Gagarinov, K. A.; Kostyrya, I. D.; Tarasenko, V. F.; Tkachev, A. N.; Yakovlenko, S. I.

    2007-07-01

    X-ray radiation from the volume discharge in atmospheric-pressure air is studied under the conditions when the voltage pulse rise time varies from 0.5 to 100 ns and the open-circuit voltage amplitude of the generator varies from 20 to 750 kV. It is shown that a volume discharge from a needle-like cathode forms at a relatively wide voltage pulse (to ≈60 ns in this work). The volume character of the discharge is due to preionization by fast electrons, which arise when the electric field concentrates at the cathode and in the discharge gap. As the voltage pulse rise time grows, X-ray radiation comes largely from the discharge gap in accordance with previous experiments. Propagation of fast avalanche electrons in nitrogen subjected to a nonuniform unsteady electric field is simulated. It is demonstrated that the amount of hard X-ray photons grows not only with increasing voltage amplitude but also with shortening pulse rise time.

  5. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  6. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  7. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments

    NASA Astrophysics Data System (ADS)

    Huang, Weixin; Ptasinska, Sylwia

    2016-03-01

    The functionalization of graphene, which deforms its band structure, can result in a metal-semiconductor transition. In this work, we report a facile strategy to oxidize single-layer graphene using an atmospheric pressure plasma jet (APPJ) that generates a variety of reactive plasma species at close to ambient temperature. We systematically characterized the oxygen content and chemical structure of the graphene films after plasma treatment under different oxidative conditions (ambient air atmosphere or hydrogen peroxide solution) by X-ray Photoelectron Spectroscopy (XPS). Plasma-treated graphene films containing more than 40% oxygen were obtained in both oxidative environments. Interestingly, prolonged irradiation led to the reduction of graphene oxides. N-doping of graphene also occurred during the APPJ treatment in H2O2 solution; the nitrogen content of the doped graphene was dependent on the duration of irradiation and reached up to 8.1% within 40 min. Moreover, the H2O2 solution served as a buffer layer that prevented damage to the graphene during plasma irradiation. Four-point probe measurement revealed an increase in sheet resistance of the plasma-treated graphene, indicating the transition of the material property from semi-metallic to semiconducting.

  8. Electrode Erosion in Pulsed Arc for Generating Air Meso-Plasma Jet under Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Shiki, Hajime; Motoki, Junpei; Takikawa, Hirofumi; Sakakibara, Tateki; Nishimura, Yoshimi; Hishida, Shigeji; Okawa, Takashi; Ootsuka, Takeshi

    Various materials of the rod electrode were examined in pulsed arc of PEN-Jet (Plasma ENergized-Jet) with working gas of air, which can be used for the surface treatment under atmospheric pressure. The erosion of the rod electrode was measured and it surface was observed. The amount of erosion and surface appearance were found to be different for the materials, input power and energizing time. Tungsten (W) rod electrode was oxidized immediately after starting the discharge and tungsten oxide (WO3) powder was generated over the side surface of electrode tip. This powder contaminated the treating surface. Copper (Cu) rod electrode was also oxidized immediately and CuO/Cu2O multi-layer was formed on the electrode surface. However, the erosion of Cu electrode was quite small. Platinum (Pt) and iridium (20 wt%)-contained-platinum (Pt-Ir) rod electrode were not oxidized and their erosions were significantly small. This indicated that they could be employed for keeping the constant electrode-gap and processing the surface treatment without contamination due to electrode erosion.

  9. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  10. Characterization Of Nano-Second Laser Induced Plasmas From Al Target In Air At Atmospheric Pressure

    SciTech Connect

    Hegazy, H.; Abdel-Rahim, F. M.; Nossair, A. M. A.; Allam, S. H.; El-Sherbini, Th. M.

    2008-09-23

    In the present work we study the effect of the laser beam energy on the properties of the plasma generated by focusing an intense laser beam on Al solid target in air at atmospheric pressure. Plasma is generated using a Nd:YAG pulsed laser at 1064 nm wavelength, 6 ns pulse duration with a maximum pulse energy of 750mJ. The emission spectrum is collected using an Echelle spectrometer equipped with ICCD camera Andor type. The measurements were performed at several delay times between 0 to 9 {mu}s. Measurements of temperature and electron density of the produced plasmas at different laser energies and at different delay times are described using different emission spectral lines. Based on LTE assumption, excitation temperature is determined from the Boltzmann plot using O I spectral lines at 777.34, 794.93, and 848.65 nm and the electron density is determined from Stark width of Al II at 281.6 and 466.3 nm. The determined density is compared with the density determined from H{sub {alpha}} spectral line.

  11. Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-A. H.; Kolb, J. F.; Schoenbach, K. H.

    2010-12-01

    Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

  12. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution (OA57B), volume 1

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data were obtained during wind tunnel tests of a 0.0405-scale model of the ferry configuration of the space shuttle vehicle orbiter conducted in a low speed wind tunnel during the time period of September 18 to September 23, 1973. The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration had a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  13. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  14. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. PMID:20934810

  15. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  16. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  17. Personal Black Carbon Exposure Influences Ambulatory Blood Pressure: Air Pollution and Cardio-metabolic Disease (AIRCMD-China) Study

    PubMed Central

    Zhao, Xiaoyi; Sun, Zhichao; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Yang, Fumo; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Brook, Jeffrey R.; Sun, Qinghua; Brook, Robert D.; Rajagopalan, Sanjay; Fan, Zhongjie

    2015-01-01

    Few prospective studies have assessed the blood pressure impact of extremely high air pollution encountered in Asia’s megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethelometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the U.S. Embassy. 24-hour ambulatory blood pressure and heart rate variability were measured from Day 4. Arterial stiffness and endothelial function were obtained at the end of Day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (standard deviation) of personal black carbon and fine particulate matter over 24-hour was 4.66 (2.89) and 64.2 (36.9) μg/m3. Exposure to high levels of black carbon in the preceding hours was significantly associated with adverse cardiovascular responses. A unit increase in personal black carbon over the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mmHg and diastolic blood pressure of 0.37 mmHg (95% confidence interval, 0.17-0.89 and 0.10-0.65 mmHg, respectively), a percent change in low frequency to high frequency ratio of 5.11 and mean inter-beat interval of −0.06 (95% confidence interval, 0.62 to 9.60 and −0.11 to −0.01, respectively). These findings highlight the public health impact of air pollution and the importance of reducing air pollution. PMID:24420543

  18. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  19. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  20. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.