Science.gov

Sample records for air stream flows

  1. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  2. Removal of volatile organic compounds from air streams by making use of a microwave plasma burner with reverse vortex flows

    NASA Astrophysics Data System (ADS)

    Kim, Ji H.; Ma, Suk H.; Cho, Chang H.; Hong, Yong C.; Ahn, Jae Y.

    2014-01-01

    We developed an atmospheric-pressure microwave plasma burner for removing volatile organic compounds (VOCs) from polluted air streams. This study focused on the destruction of the VOCs in the high flow rate polluted streams required for industrial use. Plasma flames were sustained by injecting liquefied natural gas (LNG), which is composed of CH4, into the microwave plasma torch. With its high temperature and high density of atomic oxygen, the microwave torch attained nearly complete combustion of LNG, thereby providing a large-volume, high-temperature plasma flame. The plasma flame was applied to reactors in which the polluted streams were in one of two vortex flows: a conventional vortex reactor (CVR) or a reverse vortex reactor (RVR). The RVR, using a plasma power of 2 kW and an LNG flow of 20 liters per minute achieved a destruction removal efficiency (DRE) of 98% for an air flow rate of 5 Nm3/min polluted with 550 pm of VOCs.. For the same experimental parameters, the CVR provided a DRE of 90.2%. We expect that this decontamination system will prove effective in purifying contaminated air at high flow rates.

  3. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Jiang, H. K.; Cao, M. H.

    1981-07-01

    A simple, flat-fan spray model is proposed, which can with two empirical parameters predict both the value and the position of liquid fuel distribution curve maximums downstream of a plain orifice injector under high-velocity cross flow. It was found that the model is useful in the preliminary design of the fan air flow portion of a turbofan afterburner, due to its ability to predict the influence on liquid fuel distribution of (1) such flow parameters as air velocity and viscosity, pressure and temperature; (2) injector parameters such as diameter and injection velocity; and (3) liquid properties including viscosity, density, and surface tension.

  4. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  5. Acoustic streaming flows and sample rotation control

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene

    1998-11-01

    Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].

  6. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  7. Low-flow characteristics of Alabama streams

    USGS Publications Warehouse

    Bingham, Roy H.

    1982-01-01

    A new procedure for estimating the 7-day, 2-year and the 7-day, 10-year low flow of ungaged Alabama streams is based on geology, drainage area, and mean annual precipitation. One equation for each of the two low-flow frequencies applies statewide to all natural flow streams; the equations do not apply to streams where flow is significantly altered by activities of man. The standard error of estimate of each equation based on map values is 40 percent for 7-day, 2-year low flow and 44 percent for 7-day, 10-year low flow. The rate of streamflow recession is used to account for the effects of geology on low flow. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and average distance from stream channels to divides. Relations of low-flow discharge to geology, drainage area, and mean annual precipitation were analyzed by multiple regression techniques.

  8. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  9. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  10. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  11. Apparatus for focusing flowing gas streams

    DOEpatents

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  12. Calculations of rotational flows using stream function

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Yam, C.; Tang, K.; Dwyer, H.

    1989-01-01

    The stream function equation is solved for steady two-dimensional (and axisymmetric) rotational flows. Both finite differences and finite volumes discretization techniques are studied, using generalized body fitted coordinates and unstructured staggered grids, respectively. For inviscid transonic flows, a new artificial viscosity scheme which does not produce any artificial vorticity is introduced, for the stability of the mixed flow calculations and for capturing shocks. The solution of Euler equations, in primitive variables, are also considered. The effects of the artificial viscosity and numerical boundary conditions on the total enthalpy and the vorticity distributions are demonstrated.

  13. Flow probability of New Jersey streams

    USGS Publications Warehouse

    Miler, E.G.

    1966-01-01

    This report is one of a series published by the Division of Water Policy and Supply of the New Jersey Department of Conservation and Economic Development to make basic water data available in a form that can be readily used by all interested persons. The objective of the present report is to present flow-duration information based on past records so that estimates of future flows of New Jersey's streams may be made. It is an extension of the flow-duration portions of Water Resources Circular 6 (Miller and McCall, 1961).

  14. Low-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly

  15. Three-dimensional microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  16. SWEPT-POTENTIAL ELECTROCHEMICAL DETECTOR FOR FLOW STREAMS

    EPA Science Inventory

    An instrument has been designed, constructed, and evaluated for electrochemical measurements in flow streams. The instrument is basically a computer-controlled potentiostat with features that are necessary for measurements in flow streams. These features include real-time graphic...

  17. A Delicate Balance: Hovering Balloons in an Air Stream

    ERIC Educational Resources Information Center

    Gluck, Paul

    2006-01-01

    Science museums and popular physics shows often exhibit a blower in whose air stream a ball is held hovering in equilibrium some distance above the jet's orifice. The weight of the ball, "mg," is balanced by the drag force of the turbulent air stream, often written as ?Cv[superscript 2]A, where "?" and "v" are the…

  18. Magnetic Polarity Streams and Subsurface Flows

    NASA Astrophysics Data System (ADS)

    Howe, R.; Baker, D.; Harra, L.; van Driel-Gesztelyi, L.; Komm, R.; Hill, F.; González Hernández, I.

    2013-12-01

    An important feature of the solar cycle is the transport of unbalanced magnetic flux from active regions towards the poles, which eventually results in polarity reversal. This transport takes the form of distinct “polarity streams” that are visible in the magnetic butterfly diagram. We compare the poleward migration rate estimated from such streams to that derived from the subsurface meridional flows measured in helioseismic data from the GONG network since 2001, and find that the results are in reasonable agreement.

  19. Evolution of injected air stream in granular bed

    NASA Astrophysics Data System (ADS)

    Maiti, Ritwik; Das, Gargi; Das, Prasanta

    2015-11-01

    An air stream injected through an orifice into a granular bed creates intriguing but aesthetically exotic patterns. The interaction of air with an aggregate of cohesionless granules presents evolution of patterns from stationary bubble to meandering filament and finally to a floating canopy with the increase of air velocity.

  20. Capillary-scale polarimetry for flowing streams.

    PubMed

    Swinney, K; Nodorft, J; Bornhop, D J

    2001-05-01

    A micro-polarimeter with a 40 nL probe volume was configured so that it is compatible with capillary-scale flowing stream analysis. The optical configuration consists of two polarizing optics, a capillary, a laser source and a photodetector which is very simple to configure with low cost components. This unique polarimeter is based upon the interaction of a linearly polarized laser beam and a capillary tube, in this case one with an inner diameter of 250 microns. Side illumination of the tube results in a 360 degrees fan of scattered light, which contains a set of interference fringes that change in response to optically active solutes. Solutes that exhibit optical activity are quantifiable and are detected by analyzing the polarization state of the backscattered light. The ability of the instrument to make extremely sensitive optical activity measurements in flowing streams is shown by the determination of (R)-mandelic acid, with a detection limit of 66 x 10(-6) M (507 x 10(-12) g), and the non-optically active control, glycerol. Additionally, the detector was configured to minimize refractive index perturbations. PMID:11394312

  1. Penetration of Air Jets Issuing from Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; Callaghan, Edmund E.; Bowden, Dean T.

    1950-01-01

    An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.

  2. Simulation forecasts complex flow streams from Ekofisk

    SciTech Connect

    Arnes, F.C.; Lillejord, H.

    1996-10-28

    A commercial steady-state process flowsheet simulation program serves as the basis for a rigorous calculation model for predicting produced flow rates from the Ekofisk complex in the Norwegian sector of the North Sea. The complex is the center of an extensive gathering system that collects oil and gas streams from several producing fields. Prior to running a production forecast, the simulation model is initiated by matching several years of production. Once the simulation model matches historical production data within acceptable limits, it then is driven by production forecasts from reservoir simulations to develop long-term forecasts of gas, NGL, and oil production. The paper describes the Ekofisk field, the process simulation, implementation of the model, and problems encountered.

  3. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  4. Summer base-flow recession curves for Iowa streams

    USGS Publications Warehouse

    Saboe, C.W.

    1966-01-01

    Base-flow recession. curves for the summer months (June through September) were developed in this study for gaging stations on interior Iowa streams having five or more years of record. The tabulated data enables the user, starting with a known base flow at a gage, to estimate base flows for up to 20 days in the future. Rainfall during the period o£ the forecast will require that a new estimate be made after the stream again reaches base flow.

  5. Self-stabilzing ice-stream flow in Northeast Greenland

    NASA Astrophysics Data System (ADS)

    Christianson, Knut; Alley, Richard; Peters, Leo; Anandakrishnan, Sridhar; Jacobel, Robert; Riverman, Kiya; Muto, Atsuhiro

    2013-04-01

    We present radio-echo sounding (RES), global positioning system (GPS), and active-source seismic data from the central portion of the Northeast Greenland Ice Stream (NEGIS) showing that the dynamic effects of the streaming flow control ice-stream extent. NEGIS is the sole fast-flowing ice-stream to initiate deep in the interior (~700 km) of the Greenland Ice Sheet (GIS), and was previously shown to widen downglacier from a small region of high geothermal flux near the ice-divide. Our data reveal water-saturated till lubricating the ice-stream, with the ice-stream likely widening toward the coast from flow around basal roughness and other processes. Ice accelerates and thus thins as it flows into the efficiently lubricated NEGIS, producing marginal troughs in surface topography. These marginal troughs, which lack strong control in the basal topography, create steep gradients in the subglacial hydropotential that generate parallel well-lubricated and 'sticky' bands beneath the ice-stream margins. The 'sticky' bands limit ice entrainment across the margin and thus restrict further widening, producing the long, narrow, and relatively stable ice-stream. However, it remains possible that a sufficiently strong perturbation from the coast could thin the central ice-stream enough to remove the marginal troughs, allowing more efficient flow of ice into the stream and thus drawdown of the ice-sheet.

  6. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  7. Three-dimensional features on oscillating microbubbles streaming flows

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  8. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  9. Regionalization of winter low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures were developed for estimating winter (December-April) low flows at ungaged stream sites in Tennessee based on surface geology and drainage area size. One set of equations applies to West Tennessee streams, and another set applies to Middle and East Tennessee streams. The equations do not apply to streams where flow is significantly altered by the activities of man. Standard errors of estimate of equations for West Tennessee are 22% - 35% and for middle and East Tennessee 31% - 36%. Statistical analyses indicate that summer low-flow characteristics are the same as annual low-flow characteristics, and that winter low flows are larger than annual low flows. Streamflow-recession indexes, in days per log cycle of decrease in discharge, were used to account for effects of geology on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that contribute to streamflows during periods of no surface runoff. Streamflow-recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  10. How an Air Stream Can Support a Cupcake

    NASA Astrophysics Data System (ADS)

    Jones, Evan

    2015-05-01

    Variations of a demonstration in which a sheet of paper or a bead is levitated in a grazing stream as from one's breath have been published in several sources.1-4 Even a massive ball can be deflected into the robust flow from a leaf blower.5 The attraction is surprising because it is often quite stable and seems to conflict with the familiar transient repulsion felt from a stream's impact.

  11. Two-dimensional streaming flows induced by resonating, thin beams.

    PubMed

    Açikalin, Tolga; Raman, Arvind; Garimella, Suresh V

    2003-10-01

    Miniaturized resonating slender beams are finding increased applications as fluidic actuators for portable electronics cooling. Piezoelectric and ultrasonic "fans" drive a flexural mode of the beam into resonance thus inducing a streaming flow, which can be used to cool microelectronic components. This paper presents analytical, computational, and experimental investigations of the incompressible two-dimensional streaming flows induced by resonating thin beams. Closed-form analytical streaming solutions are presented first for an infinite beam. These are used to motivate a computational scheme to predict the streaming flows from a baffled piezoelectric fan. Experiments are conducted to visualize the asymmetric streaming flows from a baffled piezoelectric fan and the experimental results are found to be in close agreement with the predicted results. The findings are expected to be of relevance in the optimal design and positioning of these solid-state devices in cooling applications. PMID:14587580

  12. Heat Transfer and Hydraulic Flow Resistance for Streams of High Velocity

    NASA Technical Reports Server (NTRS)

    Lelchuk, V. L.

    1943-01-01

    Problems of hydraulic flow resistance and heat transfer for streams with velocities comparable with acoustic have present great importance for various fields of technical science. Especially, they have great importance for the field of heat transfer in designing and constructing boilers.of the "Velox" type. In this article a description of experiments and their results as regards definition of the laws of heat transfer in differential form for high velocity air streams inside smooth tubes are given.

  13. Variability in stream flow and specific discharge along three headwater streams in central Montana, USA

    NASA Astrophysics Data System (ADS)

    Payn, R. A.; Gooseff, M. N.; Jencso, K.; McGlynn, B. L.

    2008-12-01

    Specific discharge is commonly used to quantify the runoff at a watershed outlet with respect to the watershed area. However, little is known about how specific discharge is distributed along stream valleys within watersheds. Analyses of stream flow and specific discharge distributions may provide insight into the interactions of runoff generating processes and stream-subsurface exchange. We compare longitudinal distributions of stream channel flow and specific discharge in 3 mountain headwater streams of the Tenderfoot Creek Experimental Forest in central Montana, comprising 2.6-, 1.4-, and 2.3-km valley lengths with 5.5, 4.0, and 4.5 km2 of total contributing area, respectively. We performed an instantaneous tracer release every 100 m along each valley, and used dilution gauging to estimate stream channel flow from each release. Multiple series of tracer tests were performed during the summer baseflow recession following snowmelt. We used topographic analysis of digital elevation models to quantify sub-basin contributing areas to each location where flow was measured. We then calculated specific discharges by normalizing each estimate of stream channel flow by its corresponding sub-basin contributing area. The study streams demonstrated substantial variability in specific discharge in both space and time. For example, a 1300-m upstream segment showed consistently lower specific discharges than an 800-m downstream segment in the same stream, where the ratio of specific discharges in the upstream segment to specific discharges in the downstream segment generally ranged from 0.7 at higher baseflows to 0.3 at lower baseflows. The differences in specific discharges over the segments were likely driven by both the variability in source water input from contributing areas and the variability in the importance of segment-scale stream-subsurface exchange relative to stream channel flow. We compare the stream flow and specific discharge distributions across space and time

  14. Selected flows with free surfaces: Streams and drops

    NASA Astrophysics Data System (ADS)

    Kowalewski, Tomasz A.

    1995-03-01

    The basic purpose of the research described in this article was to develop a non contact method for diagnosing the physical parameters of the free surface of a liquid using drop oscillation analysis. In particular, the purpose is to measure the temperature of an evaporating surface. The realization of this goal has led to the development of new experimental techniques which make it possible to record fast processes using video and digital imaging equipment. Experimental studies of the process of the formation of drops as a result of the controlled breakup of a stream revealed the existence of an additional phase in the process based on the formation of microstreams and microsatellites with micrometer-like dimensions. A comparison of measurement results with Eggers' asymptotic model (23) confirmed the model's basic assumption of the local nature of the final phase in the disintegration of the stream, which at the same time points to the existence of a number of discrepancies which provide evidence of the limitations of this approximation. The next part of the article presents the results of observations of the instability of streams of liquid caused by its evaporation. In an attempt to analyze the mechanisms which initiate the turbulence of the evaporating surface, the author focused on surface tension gradients as an essential factor in the destabilization of small-diameter streams. The author also described the occurrence of a number of new phenomena in the destabilization of a stream, including the separation of surface fragments, their stabilization by the flow of vapor, and a quasistable change in the trajectory of the stream. The author also developed an experimental method which makes it possible to detect and produce a precise description of the deformation of drops. Measurements of the oscillations of small drops in the air led to the development of a complete non-linear model of the oscillations of a viscous drop and made it possible to verify simplified

  15. Multiple-orifice liquid injection into hypersonic air streams.

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.

    1972-01-01

    Review of oblique water and fluorocarbon injection test results obtained in experimental studies of the effects of multiple-orifice liquid injection into hypersonic air streams. The results include the finding that maximum lateral penetration from such injections increases linearly with the square root of the jet-to-freestream dynamic-pressure ratio and is proportional to an equivalent orifice diameter.

  16. Experimental study of streaming flows associated with ultrasonic levitators

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Robey, J. L.

    1994-11-01

    Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.

  17. Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica

    USGS Publications Warehouse

    Hodge, S.M.; Doppelhammer, S.K.

    1996-01-01

    Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.

  18. U.S. Stream Flow Measurement and Data Dissemination Improve

    NASA Astrophysics Data System (ADS)

    Hirsch, Robert M.; Costa, John E.

    2004-05-01

    Stream flow information is essential for many important uses across a broad range of scales, including global water balances, engineering design, flood forecasting, reservoir operations, navigation, water supply, recreation, and environmental management. Growing populations and competing priorities for water, including preservation and restoration of aquatic habitat, are spurring demand for more accurate, timely, and accessible water data. To be most useful, stream flow information must be collected in a standardized manner, with a known accuracy, and for a long and continuous time period. The U.S. Geological Survey (USGS) operates over 7000 stream gauges nationwide, which constitute over 90% of the nation's stream gauges that provide daily stream flow records, and that are accessible to the public. Most stream flow records are not based on direct measurement of river discharge, but are derived from continuous measurements of river elevations or stage. These stage data, recorded to 3-mm accuracy, are then converted into discharge by use of a stage/discharge relation (rating) that is unique for each stream gauging location. Because stream beds and banks are not static, neither is the stage discharge rating. Much of the effort and cost associated with stream gauging lies in establishing and updating this relation. Ten years ago, USGS personnel would visit stream gauging stations 8 to 10 times a year to make direct measurements of river depth, width, and velocity using mechanical instruments: a sounding rod or cable, a tagline, and a current meter. From these data, flow rates were computed. The range of measured flow and concurrent river stages were then used to build the rating curve for each site and to track changes to the rating curve.

  19. Computation of three-dimensional flows using two stream functions

    NASA Technical Reports Server (NTRS)

    Greywall, Mahesh S.

    1991-01-01

    An approach to compute 3-D flows using two stream functions is presented. The method generates a boundary fitted grid as part of its solution. Commonly used two steps for computing the flow fields are combined into a single step in the present approach: (1) boundary fitted grid generation; and (2) solution of Navier-Stokes equations on the generated grid. The presented method can be used to directly compute 3-D viscous flows, or the potential flow approximation of this method can be used to generate grids for other algorithms to compute 3-D viscous flows. The independent variables used are chi, a spatial coordinate, and xi and eta, values of stream functions along two sets of suitably chosen intersecting stream surfaces. The dependent variables used are the streamwise velocity, and two functions that describe the stream surfaces. Since for a 3-D flow there is no unique way to define two sets of intersecting stream surfaces to cover the given flow, different types of two sets of intersecting stream surfaces are considered. First, the metric of the (chi, xi, eta) curvilinear coordinate system associated with each type is presented. Next, equations for the steady state transport of mass, momentum, and energy are presented in terms of the metric of the (chi, xi, eta) coordinate system. Also included are the inviscid and the parabolized approximations to the general transport equations.

  20. CURRENT FLOW DATA FOR SELECTED USGS STREAM MONITORING STATIONS

    EPA Science Inventory

    This data set contains recent and historical stream flow data for USGS stations. Flow data (cubic feet per second) are available for the most recent 5-6 day period and are compared with long-term average values. Flow data were collected approximately hourly. Flood stage and the m...

  1. 9. INTAKE STREAM ON GROUND LOOKING WEST AS IT FLOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTAKE STREAM ON GROUND LOOKING WEST AS IT FLOWS DOWNSTREAM TO LAKE MATHEWS, ALL WATER COMING FROM PUMPS. - Colorado River Aqueduct, From Colorado River to Lake Mathews, Parker Dam, San Bernardino County, CA

  2. Modulated stagnation-point flow and steady streaming

    NASA Technical Reports Server (NTRS)

    Merchant, Gregory J.; Davis, Stephen H.

    1989-01-01

    Plane stagnation-point flow is modulated in the free stream so that the velocity components are proportional to K(H) + K cos omega t. Similarity solutions of the Navier-Stokes equations are examined using high-frequency asymptotics for K and K(H) of unit order. Special attention is focused on the steady streaming generated in this flow with strongly non-parallel streamlines.

  3. How an Air Stream Can Support a Cupcake

    ERIC Educational Resources Information Center

    Jones, Evan

    2015-01-01

    Variations of a demonstration in which a sheet of paper or a bead is levitated in a grazing stream as from one's breath have been published in several sources. Even a massive ball can be deflected into the robust flow from a leaf blower. The attraction is surprising because it is often quite stable and seems to conflict with the familiar transient…

  4. Simulation of dust streaming in toroidal traps: Stationary flows

    SciTech Connect

    Reichstein, Torben; Piel, Alexander

    2011-08-15

    Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.

  5. Regionalization of low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures for estimating 3-day 2-year, 3-day 10-year, 3-day 20-year, and 7-day 10-year low flows at ungaged stream sites in Tennessee are based on surface geology and drainage area size. One set of equations applies to west Tennessee streams, and another set applies to central and east Tennessee streams. The equations do not apply to streams where flow is significantly altered by activities of man. Standard errors of estimate of equations for west Tennessee are 24 to 32% and for central and east Tennessee 31 to 35%. Streamflow recession indexes, in days/log cycle, are used to account for effects of geology of the drainage basin on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that sustain streamflows during periods of no surface runoff. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  6. Base flow of streams on Long Island, New York

    USGS Publications Warehouse

    Reynolds, Richard J.

    1982-01-01

    On Long Island, base flow under nonurbanized conditions constitutes 90 to 95% of total stream discharge. Base-flow data from 19 continuously gaged streams are presented as monthly mean and annual mean discharge for water years 1960-75, which includes the 1962-66 drought. The data were derived by hydrograph-separation procedures that isolate mean daily base flow from mean daily discharge. A close empirical relationship between annual mean base flow and stream discharge at the 55-% duration point facilities estimation of average base flow and can be used in place of the more time-consuming hydrograph-separation technique. These data are needed in calibration of computer models that will be used to predict the effects of hydrologic stresses, such as sewering, on the Long Island ground-water system. (USGS)

  7. Stream air temperature relations to classify stream ground water interactions in a karst setting, central Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Michael A.; DeWalle, David R.

    2006-09-01

    SummaryStream-ground water interactions in karst vary from complete losses through swallow holes, to reemergences from springs. Our study objective was to compare stream-air temperature and energy exchange relationships across various stream-ground water relationships in a carbonate watershed. It was hypothesized that ground water-fed stream segments could be distinguished from perched/losing segments using stream-air temperature relationships. Two types of computations were conducted: (1) comparisons of stream-air temperature relationships for the period of October 1999-September 2002 at 12 sites in the Spring Creek drainage and (2) detailed energy budget computations for the same period for ground water-dominated Thompson Run and Lower Buffalo Run, a stream with negligible ground water inputs. Weekly average air temperatures and stream temperatures were highly correlated, but slopes and intercepts of the relationship varied for the 12 sites. Slopes ranged from 0.19 to 0.67 and intercepts ranged from 3.23 to 9.07 °C. A two-component mixing model with end members of ground water and actual stream temperatures indicated that the slope and intercept of the stream-air temperature relationship was controlled by ground water inputs. Streams with large ground water inputs had greater intercepts and lesser slopes than streams that were seasonally losing, perched, and/or distant from ground water inputs. Energy fluxes across the air-water interface were greatest for the ground water-fed stream due to increased longwave, latent, and sensible heat losses from the stream in winter when large temperature and vapor pressure differences existed between the stream and air. Advection of ground water was an important source and sink for heat in the ground water-fed stream, depending on season. In contrast, along the seasonally losing stream reach, advection was of minimal importance and stream temperatures were dominated by energy exchange across the air- water interface. Overall

  8. Particle manipulation affected by streaming flows in vertically actuated open rectangular chambers

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant; Gandhi, Prasanna S.; Neild, Adrian

    2016-03-01

    Particle movement in vibration assisted microfluidic systems is significantly affected by time-averaged streaming flows. These flows can demonstrate either particle collection or dispersion characteristics, depending on the parameters used and system specifics. Here we investigate particle collection within streaming flows in vertically actuated open rectangular chambers at frequencies in the range of 100 Hz. Capillary waves, created at the water-air interface under the action of low frequency vibration, generate streaming fields in the liquid bulk. In addition, the spatial variation in the flow field gives rise to particle collection due to inertial effects. In order to understand the interplay between these effects, 2D simulations are employed to understand the first order field induced particle collection, while an experimental study is performed to investigate the effect of the 3D streaming fields on particle motion. By altering the chamber dimensions, two observations are presented: first by taking measures to reduce the strength of the streaming field, particles as small as 50 nm in diameter can be collected. Second, the streaming fields themselves can be used to trap particles, which in conjunction with the collection forces can cause particle separation.

  9. Scaling Stream Flow Response to Forest Disturbance: the SID Project

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.

    2004-05-01

    We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.

  10. Interactive numerical flow visualization using stream surfaces

    NASA Technical Reports Server (NTRS)

    Hultquist, J. P. M.

    1990-01-01

    Particle traces and ribbons are often used to depict the structure of three-dimensional flowfields, but images produced using these models can be ambiguous. Stream surfaces offer a more visually intuitive method for the depiction of flowfields, but interactive response is needed to allow the user to place surfaces which reveal the essential features of a given flowfield. FLORA, a software package which supports the interactive calculation and display of stream surfaces on silicon graphics workstations, is described. Alternative methods for the integration of particle traces are examined, and calculation through computational space is found to provide rapid results with accuracy adequate for most purposes. Rapid calculation of traces is teamed with progressive refinement of appoximated surfaces. An initial approximation provides immediate user feedback, and subsequent improvement of the surface ensures that the final image is an accurate representation of the flowfield.

  11. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  12. Valve effectively controls amount of contaminant in flow stream

    NASA Technical Reports Server (NTRS)

    Schnitzer, T. E.

    1966-01-01

    Contaminant valve with a coaxial groove rotor uniformly deposits contaminant into a flow stream under full pressure and flow conditions. The valve tests filters and filter elements of hydraulic oil, fuel, or lubricant systems without any detrimental effect on the performance.

  13. A simulation of streaming flows associated with acoustic levitators

    NASA Astrophysics Data System (ADS)

    Rednikov, A.; Riley, N.

    2002-04-01

    Steady-state acoustic streaming flow patterns have been observed by Trinh and Robey [Phys. Fluids 6, 3567 (1994)], during the operation of a variety of single axis ultrasonic levitators in a gaseous environment. Microstreaming around levitated samples is superimposed on the streaming flow which is observed in the levitator even in the absence of any particle therein. In this paper, by physical arguments, numerical and analytical simulations we provide entirely satisfactory interpretations of the observed flow patterns in both isothermal and nonisothermal situations.

  14. Stream Flow Estimation via Belief Propagation for Sparsely Instrumented Watersheds

    NASA Astrophysics Data System (ADS)

    Krekeler, C. R.; Nagarajan, K.; Graham, W. D.; Slatton, K. C.

    2009-12-01

    Knowledge of stream flow rates is critical for management of in-stream flows and mitigation of flooding and drought events. Unfortunately, spatially dense networks of in situ stream flow measurements are not generally available and would be prohibitively expensive to deploy and maintain. Since measurements are only available at relatively sparse spatial frequencies, a data assimilation technique that best utilizes available measurements in a computationally efficient manner is required. Complexities in underlying geology, groundwater-surface water interactions, and rainfall patterns also need to be captured for optimal performance. In this study, a probabilistic technique based on Bayesian Networks and belief propagation is used to estimate and forecast stream flow based on flow at surrounding locations, rainfall, and groundwater levels, and to quantify the uncertainty of the estimates. The causal nature and inherent tree-like structure of stream flow suggests that belief propagation based on message passing is a computationally efficient method to propagate partial observations to improve flow estimates at other stations across the watershed. Stations are considered as part of an array of nodes that communicate evidence of flow measurements to their neighbors via conditional probability densities defining the links between the nodes. The probability density functions are generated based on the relationship between estimates of flow from the Watershed Assessment Model (WAM), calibrated for our study site at the Santa Fe River Watershed in North Central Florida, USA from 1990 through 2008. Rainfall values were obtained from NEXRAD datasets, while Suwannee River Water Management District provided groundwater levels at a network of wells in the watershed. Performance of the proposed method is evaluated by comparing the results to flow measured at several USGS gage stations along the river not used to develop the algorithm, using various metrics such as Nash

  15. Free-Stream Boundaries of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Kistler, Alan L

    1955-01-01

    Report presents the results of an experimental and theoretical study made of the instantaneously sharp and irregular front which is always found to separate turbulent fluid from contiguous "nonturbulent" fluid at a free-stream boundary. This distinct demarcation is known to give an intermittent character to hot-wire signals in the boundary zone. The overall behavior of the front is described statistically in terms of its wrinkle-amplitude growth and its lateral propagation relative to the fluid as functions of downstream coordinate.

  16. Assessing stream aquifer interactions through inverse modeling of flow routing

    NASA Astrophysics Data System (ADS)

    Szilagyi, Jozsef; Parlange, Marc B.; Balint, Gabor

    2006-07-01

    SummaryFlux-exchange between stream and aquifer is assessed on a 85.9 km stretch of the Danube River in Hungary. Streamflow is modeled with a spatially and temporally discretized version of the linear kinematic wave equation written in a state-space form which allows for an easy inversion of flow routing. By knowing in- and outflow of the reach, lateral flux exchange between stream and groundwater can be assessed. Continuous baseflow separation, in terms of groundwater gained by the river between the two gaging stations, is made possible at the downstream station by routing groundwater discharged to the stream reach, separately from streamflow measured at the upstream gaging station.

  17. Testing the instream flow method in trout streams

    SciTech Connect

    Studley, T.K.; Railsback, S.F.; Asce, M.

    1995-12-31

    Pacific Gas and Electric Company`s (PG&E) Department of Research and Development and co-sponsors are fieldtesting the Instream Flow Incremental Methodology (IFIM) at a number of trout stream study sites. Fish populations, flows, and other variables were measured for an eight-year baseline period. Three levels of increasingly sophisticated predictions of population response to increased flows were made. The flow increases have been implemented and additional data are being collected to test the predictions. The baseline data and prediction analyses indicate that (1) using different habitat suitability criteria produces substantially different predictions of how populations respond to flow changes, (2) overlaps in habitat used by trout species can lead to misleading predictions of a population`s response to flow changes, and (3) factors other than habitat during summer low flows can limit trout populations (these include spawning habitat, high flows, stream channel characteristics, and stream temperature). Comprehensive field studies are expensive, but are more likely to result in instream flows that provide a cost-effective tradeoff between power and fisheries values.

  18. Optimized open-flow mixing: insights from microbubble streaming

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2015-11-01

    Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.

  19. Biofiltration of benzene contaminated air streams using compost-activated carbon filter media

    SciTech Connect

    Zhu, L.; Kocher, W.M.; Abumaizar, R.J.

    1998-12-31

    Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

  20. Coaxial twin-fluid atomization with pattern air gas streams

    NASA Astrophysics Data System (ADS)

    Hei Ng, Chin; Aliseda, Alberto

    2010-11-01

    Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.

  1. Sources of acidic storm flow in an Appalachian Headwater Stream

    NASA Astrophysics Data System (ADS)

    Swistock, Bryan R.; Dewalle, David R.; Sharpe, William E.

    1989-10-01

    A study was conducted to quantify the source of increased dissolved aluminum concentrations during acidic storm flows on a small Pennsylvania stream. Data for six episodes during fall 1986 and spring 1987 showed depressions in stream pH and increases in sulfates, conductivity, dissolved organic carbon, and dissolved aluminum. Flow separation analyses were conducted using 18O as a tracer in a three-component mass balance tracer model. Results showed that soil water and groundwater are the dominant flow sources, accounting for approximately 20 and 75% of total flow during storms, respectively. Channel precipitation generally provided less than 5% of total flows. Hydrograph separation using aluminum agreed with 18O results, while other chemical parameters produced unsatisfactory results. The data support Hewlett's (1982) variable source area concept of storm flow generation with inputs of older, deep circulating groundwater from low-elevation source areas early in an event and later inputs of younger soil water and possibly shallow groundwater from expanding source areas at higher elevations. The results suggest that the most toxic runoff events for aquatic life occur during large storms when the greatest inputs of soil water cause elevated stream dissolved aluminum concentrations. Reductions in storm flow acidity and dissolved aluminum concentrations on this catchment will be most dependent upon changes in soil water and/or groundwater chemistry.

  2. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  3. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  4. Annual and seasonal low-flow characteristics of Iowa streams

    USGS Publications Warehouse

    Lara, Oscar G.

    1979-01-01

    The low-flow characteristics of Iowa streams are described by annual and seasonal low-flow frequency and duration data. Tabulated in this report are low-flow data collected at 135 gaging stations on Iowa streams, three on the Mississippi River, four on the Missour River, and 426 partial-record sites. The information contained in this report is based on all of the daily discharge records collected by the U.S. Geological Survey through the 1976 water year. Consideration is given to the regional aspects of low-flow characteristics by including regression equations to estimate the average discharge and generalized maps to estimate the 7-day, 2-year and 7-day, 10-year discharges at ungaged sites. (Kosco-USGS)

  5. Troughs under threshold modeling of minimum flows in perennial streams

    NASA Astrophysics Data System (ADS)

    Önöz, B.; Bayazit, M.

    2002-02-01

    Troughs under threshold analysis has so far found little application in the modeling of minimum streamflows. In this study, all the troughs under a certain threshold level are considered in deriving the probability distribution of annual minima through the total probability theorem. For the occurrence of minima under the threshold, Poissonian, binomial or negative binomial processes are assumed. The magnitude of minima follows the generalized Pareto, exponential or power distribution. It is shown that asymptotic extreme value distributions for minima or the two-parameter Weibull distribution is obtained for the annual minima, depending on which models are assumed for the occurrence and magnitude of troughs under the threshold. Derived distributions can be used for modeling the minimum flows in streams which do not have zero flows. Expressions for the T-year annual minimum flow are obtained. An example illustrates the application of the troughs under threshold model to the minimum flows observed in a stream.

  6. Flow effects on benthic stream invertebrates and ecological processes

    NASA Astrophysics Data System (ADS)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  7. High-flow frequencies for selected streams in Oklahoma

    USGS Publications Warehouse

    Huntzinger, Thomas L.

    1978-01-01

    Streamflow records are analyzed statistically to determine high-flow characteristics of selected streams in Oklahoma. Tables are included which show the 2-, 5-, 10-, 25-, 50-, and 100-year high-flow frequencies for durations of 1, 3, 7, 30, 90, and 365 days. The log-Pearson Type III frequency distribution was used in the computations. Streamflow records used include data extending from 1903 to 1974.

  8. Acoustic Streaming in Microgravity: Flow Stability and Heat Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1999-01-01

    Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.

  9. IN SITU TREATMENT OF HAZARDOUS MATERIAL SPILLS IN FLOWING STREAMS

    EPA Science Inventory

    Two methods of applying activated carbon adsorption treatment to flowing streams were evaluated under comparable conditions. The first involved subsurface introduction of buoyant carbon into the water column followed by the floating of the carbon to the surface and subsequent rem...

  10. Scour and deposition patterns in complex flow around stream restoration structures in a meandering stream channel

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Plott, J. R.; Diplas, P.; Sotiropoulos, F.; Lightbody, A.

    2010-12-01

    Instream structures are often employed in stream restoration projects to minimize erosion on the outside of a meander bend where shear stresses are highest, but guidelines for installation are often based on subjective criteria or professional experience. As part of a multiphase study to develop comprehensive quantitative design guidelines for instream structures, a series of experiments were conducted in the sand-bed meandering stream channel in the Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Following an experiment with a single rock vane, three arrays of three evenly spaced structures (rock vanes, J-hooks, and bendway weirs) were installed in a single meander bend. To improve fundamental understanding of the interaction of the complex flow field around these structures with the sediment bed in a field-scale meandering stream, high resolution channel topography data were obtained for the entire meander bend at bankfull flow conditions (280 LPS) with and without structure arrays. Three-dimensional flow velocity and turbulence was measured using acoustic Doppler velocimetry for each scenario in nine cross sections located before, after, between, and over the structure installation locations. Velocity point spacing was decreased close to boundaries (bed, bank, or structure). The velocity data confirmed that the velocity core moved away from the outside of the meander bend in the presence of structures; however, increased local shear stresses around the structures increased scour which threatened structure stability. For each structure array, individual structures introduced different velocity patterns including visible recirculation zones and turbulent structures depending on the structure type and where in the meander bend the structure was placed. The results from these experiments will inform stream restoration structure design in a meandering stream.

  11. Stream flow in Minnesota: Indicator of climate change

    NASA Astrophysics Data System (ADS)

    Novotny, Eric V.; Stefan, Heinz G.

    2007-02-01

    SummaryStream flow records (up to the year 2002) from 36 USGS gauging stations in five major river basins of Minnesota were studied. Seven annual stream flow statistics were extracted and analyzed: mean annual flow, 7-day low flow in winter, 7-day low flow in summer, peak flow due to snow melt runoff, peak flow due to rainfall as well as high and extreme flow days (number of days with flow rates greater than the mean plus one or two standard deviations, respectively). The Mann-Kendal non-parametric test was used to detect significant trends over time windows from 90 to 10 years in combination with the Trend Free Pre-Whitening (TFPW) method for correcting time series data for serial correlation. Streamflows in the state of Minnesota have varied over the period of record. Trends differed significantly from one river basin to another, and became more accentuated for shorter time windows. Periodicity was detected in the trends for the Red River of the North, the Mississippi River, and the Minnesota River basins for six of the statistics studied. Periods were on the order of 13-15 and 25 years, and the amplitudes were particularly strong after 1980. Peak flow due to snowmelt, typically the highest flow in each year, appears to be the only streamflow statistic that has not changed at a significant rate. Peak flows due to rainfall events in the summer are increasing, as well as the number of days with higher flows (high flow days). Increases in low flow (base flow) in summer and in winter have been significant. Wetter summers and more frequent snow melt events due to warmer winters are the likely cause. Stream flows in Minnesota reflect observed changes in precipitation with increases in mean annual precipitation, a larger number of intense rainfall events, more days with precipitation and earlier and more frequent snowmelt events. For water resources management the results suggest that the threat of snowmelt flooding has not increased, but floods due to rainfall events

  12. IMPACTS OF LAND USE ON HYDROLOGIC FLOW PERMANENCE IN HEADWATER STREAMS

    EPA Science Inventory

    Extensive urbanization in the watershed can alter the stream hydrology by increasing peak runoff frequency and reducing base flows, causing subsequent impairment of stream community structure. In addition, development effectively eliminates some headwater streams, being piped an...

  13. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  14. Analysis of transient storage subject to unsteady flow: Diel flow variation in an Antarctic stream

    USGS Publications Warehouse

    Runkel, R.L.; McKnight, Diane M.; Andrews, E.D.

    1998-01-01

    Transport of dissolved material in streams and small rivers may be characterized using tracer-dilution methods and solute transport models. Recent studies have quantified stream/substream interactions using models of transient storage. These studies are based on tracer-dilution data obtained during periods of steady flow. We present a modeling framework for the analysis of transient storage in stream systems with unsteady flows. The framework couples a kinematic wave routing model with a solute transport model that includes transient storage. The routing model provides time-varying flows and cross-sectional areas that are used as input to the solute transport model. The modeling framework was used to quantify stream/substream interaction in Huey Creek, an Antarctic stream fed exclusively by glacial meltwater. Analysis of tracer-dilution data indicates that there was substantial interaction between the flowing surface water and the hyporheic (substream) zone. The ratio of storage zone area to stream cross-sectional area (A(s)/A) was >1 in all stream reaches, indicating that the substream area contributing to hyporheic exchange was large relative to stream cross-sectional area. The rate of exchange, as governed by the transient storage exchange coefficient (??), was rapid because of a high stream gradient and porous alluvial materials. Estimates of ?? generally exceed those determined for other small streams. The high degree of hyporheic exchange supports the hypothesis that weathering reactions within the hyporheos account for observed increases in solute concentration with stream length, as noted in other studies of Antarctic streams.

  15. Low-flow characteristics of streams West Virginia

    USGS Publications Warehouse

    Friel, E.A.; Embree, W.N.; Jack, A.R.; Atkins, J.T., Jr.

    1989-01-01

    Low-flow characteristics of selected streams in West Virginia were determined at continuous-record and partial-record sites. Daily discharges at 100 continuous-record gaging stations on unregulated streams were used to compute selected low-flow frequency values. Estimates of low-flow frequency values at 296 partial-record sites (ones having only discharge measurements) were made using the relation defined by concurrent flows with a continuous-record station. Low-flow characteristics at continuous-record stations were related to drainage area and a variability index to produce equations which can be used to estimate low-flow characteristics at ungaged sites in West Virginia. The State was divided into two hydrologic regions. Drainage area and a streamflow-variability index were determined to be the most significant. The streamflow variability index was computed from duration curves and was used to account for the integrated effects of geology and other hydrologic characteristics. The standard error of estimate for the 7-day low flow with a 2-year recurrence interval is 43% for Region 1 and 57% for Region 2. The standard error of estimate for the 7-day low flow with a 10-year recurrence interval is 82% for Region 1 and 83% for Region 2. (USGS)

  16. Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge

    NASA Technical Reports Server (NTRS)

    Sheeley, Joseph

    1997-01-01

    The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.

  17. Low flows and flow duration of Tennessee streams through 1981

    USGS Publications Warehouse

    Bingham, R.H.

    1985-01-01

    Estimates of low-flow characteristics and flow duration for the period of record at continuous-record streamflow gages are essential in hydrologic studies and water-resources management. This report provides estimates of low flow for 1, 3, 7, 14, 30, 60, and 90 consecutive days for recurrence intervals of 2, 5, 10 , and 20 years for continuous-record streamflow gages in Tennessee. These estimates were used in correlation methods to estimate low flow at partial-record streamflow sites for 1, 3, and 7 consecutive days for a recurrence interval of 10 years; and 3 consecutive days for a recurrence interval of 20 years. (USGS)

  18. Streams of Content, Limited Attention: The Flow of Information through Social Media

    ERIC Educational Resources Information Center

    Boyd, Danah

    2010-01-01

    The future of Web 2.0 is about content streams or streams of information. The metaphor implied by "streams" is powerful. The idea is that individuals are living inside the stream: adding to it, consuming it, redirecting it. The goal today is to be attentively aligned--"in flow"--with these information streams, to be aware of information as it…

  19. The role of hillslopes in stream flow response: connectivity, flow path, and transit time

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; McDonnell, J. J.

    2006-12-01

    Subsurface flow from hillslopes is widely recognized as an important contributor to stream flow generation; however, processes that control how and when hillslopes connect to streams remain unclear. Much of the difficulty in deciphering hillslope response in the stream is due to riparian zone modulation of these inputs. We investigated stream and hillslope runoff dynamics in a 10 ha catchment in the western Cascades of Oregon where the riparian zone has been removed by debris flows, providing an unambiguous hillslope hydrologic signal to the stream channel. Water transit time was used as a framework to develop a conceptual stream flow generation model for the small basin. We based our conceptualization on observations of hydrometric, stable isotope, and applied tracer responses and computed transit times for multiple runoff components using a simple linear systems model. Event water mean transit times (8 to 34 h) and rapid breakthrough from applied hillslope tracer additions, demonstrated that contributing areas extend far upslope during events. Despite rapid hillslope transport processes during events, vadose zone water and runoff mean transit times during non-storm conditions were greater than the timescale of storm events. Vadose zone water mean transit times ranged between 10 and 25 days. Hillslope seepage and catchment baseflow mean transit times were between 1 and 2 years. We describe a conceptual model that captures variable physical flow pathways and transit times through changing antecedent wetness conditions that illustrate the different stages of hillslope and stream connectivity.

  20. Tidal controls on the flow of ice streams

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Gudmundsson, G. Hilmar

    2016-05-01

    The flow of many Antarctic ice streams is known to be significantly influenced by tides. In the past, modeling studies have implemented the tidal forces acting on a coupled ice stream/ice shelf system in a number of different ways, but the consequences that this has on the modeled response of ice streams to tides have, until now, not been considered. Here we investigate for the first time differences in model response that are only due to differences in the way tidal forcings are implemented. We find that attempts to simplify the problem by neglecting flexural stresses are generally not valid and forcing models with only changes in ocean back pressure will not capture either the correct amplitudes or length scale.

  1. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  2. Biological removal of carbon disulfide from waste air streams

    SciTech Connect

    Hugler, W.; Acosta, C.; Revah, S.

    1999-09-30

    A pilot-scale biological control system for the treatment of 3,400 m{sup 3} h{sup {minus}1} of a gaseous stream containing up to 7.8 g CS{sub 2} m{sup {minus}3} and trace amounts of hydrogen sulfide (H{sub 2}S) was installed in a cellulose sponge manufacturing facility. The objective was to demonstrate the capability of the process to attain sustained removal efficiencies of 90% for CS{sub 2} and 99% for H{sub 2}S. The system consisted of two sequential biotrickling reactors, which had been previously inoculated with an adapted microbial consortium. During the pilot test, stable removal efficiency and elimination capacity of +90% and 220g CS{sub 2} m{sup {minus}3} h{sup {minus}1}, respectively, were attained with an empty bed residence time (EBTR) of 33 seconds for a period of several weeks. Efficiencies greater than 99% were always obtained for H{sub 2}S. Based on the results, the system was determined to be an effective process to remediate waste air streams containing reduced sulfur compounds generated at cellulose sponge facilities.

  3. Characterization and classification of invertebrates as indicators of flow permanence in headwater streams

    EPA Science Inventory

    Headwater streams represent a large proportion of river networks and many have temporary flow. Litigation has questioned whether these streams are jurisdictional under the Clean Water Act. Our goal was to identify indicators of flow permanence by comparing invertebrate assemblage...

  4. Spectral measurement of nonequilibrium arc-jet free-stream flow

    NASA Technical Reports Server (NTRS)

    Gopaul, Nigel K. J. M.

    1993-01-01

    Spectra of radiation emitted by the free-stream flow of air in an arcjet wind tunnel at NASA-Ames Research Center were studied experimentally. The arcjet produces a high energy gaseous flow that is expanded to low density and low temperature to produce high velocities in the free-stream for simulating atmospheric entry conditions. The gamma and the delta band systems of nitric oxide emitted by the free stream were measured in the second order. The NO-beta band system, which is in the same spectral region as the NO-gamma and NO-delta band systems, was not present in the data. Only transitions from the lowest vibrational level of the upper state of both the NO-gamma and NO-delta band systems were observed. The rotational temperature determined from these band systems was 660 +/- 50 deg K. The maximum possible vibrational temperature was determined to be less than 850 +/- 50 deg K. The electronic temperature determined from the ratio of the intensities of the NO-gamma and NO-delta band systems was 7560 +/- 340 K. The results indicate that the arcjet free-stream flow is in thermal nonequilibrium.

  5. Vertical air circulation in a low-speed lateral flow wind turbine with rotary blades

    NASA Astrophysics Data System (ADS)

    Cheboxarov, Vik. V.; Cheboxarov, Val. V.

    2008-01-01

    The model of a large-scale lateral flow wind turbine with rotary blades is presented and the conditions of numerical aerodynamic investigation of this turbine are described. The results of numerical experiments show that air flowing past the turbine exhibits a considerable vertical (axial) circulation, which increases the power coefficient of the turbine. In the inner space of the turbine, two stable vortices are formed through which retarded streams partly leave the turbine upon flowing past the windward side, to be replaced by faster streams from adjacent layers of air.

  6. Numerical Parametric Studies of Laminar Flame Structures in Opposed Jets of Partially Premixed Methane-Air Streams

    NASA Astrophysics Data System (ADS)

    Arun, C. R.; Raghavan, Vasudevan

    2012-09-01

    Interactions of fuel-rich and fuel-lean mixtures and formation of interlinked multiple flame zones are observed in gas turbines and industrial furnaces. For fundamentally understanding such flames, numerical investigation of heat and mass transport, and chemical reaction processes, in laminar, counter flowing partially premixed rich and lean streams of methane and air mixtures, is presented. An axisymmetric numerical reactive flow model, with C2 detailed mechanism for describing methane oxidation in air and an optically thin radiation sub-model, is used in simulations. The numerical results are validated against the experimental results from literature. The equivalence ratios of counter flowing rich and lean reactant streams and the resulting strain rates have been varied. The effect of these parameters on the flame structure is presented. For a given rich and lean side equivalence ratios, by varying the strain rates, triple, double and single flame zones are obtained.

  7. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  8. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  9. A diagnostic study of baroclinic disturbances in polar air streams

    NASA Technical Reports Server (NTRS)

    Sinclair, Mark R.; Elsberry, Russell L.

    1986-01-01

    Quasi-Lagrangian budgets of mass, vorticity and heat are calculated following disturbances that form within polar air streams. Observed cases are extracted from the European Centre for Medium-range Weather Forecasts analyses during the First GARP Global Experiment. Model-generated cases are extracted from the simulations of extratropical cyclogenesis by Sandgathe. These polar lows grow primarily through basic baroclinic instability processes and exhibit many features of larger maritime extratropical cyclones. Polar lows that originate on the poleward (or Cyclonic - Type C) side of the jet and have considerable midtropospheric positive vorticity advection at formation time are contrasted with lows that form on the equatorward (or Anticyclonic - Type A) side of a nearly straight upper-level jet. The midtropospheric positive vorticity advection must be present to enhance the vertical circulation when the large surface fluxes that are associated with strong outbreaks act to damp the thermal wave amplification. Although latent heat release is an important factor in both types, it is an essential energy source for the Type A low developments on the equatorward side. Although the vorticity balance is initially different for the two types of polar lows, the vorticity budgets during later stages are similar. The heat budget and the thickness tendency equation demonstrated that the self-development process that is present in larger maritime cyclones is also important for polar low intensification. The absence of favorable coupling to a jet stream is the missing factor in a model-generated Type A polar low that failed to develop. Consequently, the mid- and upper-tropospheric wind fields determine which polar lows will intensify to significant amplitudes.

  10. Determination of trunk streams via using flow accumulation values

    NASA Astrophysics Data System (ADS)

    Farek, Vladimir

    2013-04-01

    There is often a problem, with schematisation of catchments and a channel networks in a broken relief like sandstone landscape (with high vertical segmentation, narrow valley lines, crags, sheer rocks, endorheic hollows etc.). Usual hydrological parameters (subcatchment areas, altitude of highest point of subcatchment, water discharge), which are mostly used for determination of trunk stream upstream the junction, are frequently not utilizable very well in this kind of relief. We found, that for small, relatively homogeneous catchments (within the meaning of land-use, geological subsurface, anthropogenic influence etc.), which are extremely shaped, the value called "flow accumulation" (FA) could be very useful. This value gives the number of cells of the Digital Elevation Model (DEM) grid, which are drained to each cell of the catchment. We can predict that the stream channel with higher values of flow accumulation represents the main stream. There are three crucial issues with this theory. At first it is necessary to find the most suitable algorithm for calculation flow accumulation in a broken relief. Various algorithms could have complications with correct flow routing (representation of divergent or convergent character of the flow), or with keeping the flow paths uninterrupted. Relief with high curvature changes (alternating concave/convex shapes, high steepness changes) causes interrupting of flow lines in many algorithms used for hydrological computing. Second - set down limits of this theory (e.g. the size and character of a surveyed catchment). Third - verify this theory in reality. We tested this theory on sandstone landscape of National park Czech Switzerland. The main data source were high-resolution LIDAR (Light Detection and Ranging) DEM snapshots of surveyed area. This data comes from TU Dresden project called Genesis (Geoinformation Networks For The Cross- Border National Park Region Saxon- Bohemian Switzerland). In order to solve these issues GIS

  11. Irreversibility and complex network behavior of stream flow fluctuations

    NASA Astrophysics Data System (ADS)

    Serinaldi, Francesco; Kilsby, Chris G.

    2016-05-01

    Exploiting the duality between time series and networks, directed horizontal visibility graphs (DHVGs) are used to perform an unprecedented analysis of the dynamics of stream flow fluctuations with focus on time irreversibility and long range dependence. The analysis relies on a large quality-controlled data set consisting of 699 daily time series recorded in the continental United States (CONUS) that are not affected by human activity and primarily reflects meteorological conditions. DHVGs allow a clear visualization and quantification of time irreversibility of flow dynamics, which can be interpreted as a signature of nonlinearity, and long range dependence resulting from the interaction of atmospheric, surface and underground processes acting at multiple spatio-temporal scales. Irreversibility is explored by mapping the time series into ingoing, outgoing, and undirected graphs and comparing the corresponding degree distributions. Using surrogate data preserving up to the second order linear temporal dependence properties of the observed series, DHVGs highlight the additional complexity introduced by nonlinearity into flow fluctuation dynamics. We show that the degree distributions do not decay exponentially as expected, but tend to follow a subexponential behavior, even though sampling uncertainty does not allow a clear distinction between apparent or true power law decay. These results confirm that the complexity of stream flow dynamics goes beyond a linear representation involving for instance the combination of linear processes with short and long range dependence, and requires modeling strategies accounting for temporal asymmetry and nonlinearity.

  12. Global Stream Temperatures and Flows under Climate Change

    NASA Astrophysics Data System (ADS)

    van Vliet, M. T.; Yearsley, J. R.; Franssen, W. H.; Ludwig, F.; Haddeland, I.; Lettenmaier, D. P.; Kabat, P.

    2012-12-01

    Climate change will affect thermal and hydrologic regimes of rivers, having a direct impact on human water use and freshwater ecosystems. Here we assess the impact of climate change on stream temperature and streamflow globally. We used a physically-based stream temperature river basin model (RBM) linked to the Variable Infiltration Capacity (VIC) model. The modelling framework was adapted for global application including impacts of reservoirs and thermal heat discharges, and was validated using observed water temperature and river discharge records in large river basins globally. VIC-RBM was forced with an ensemble of bias-corrected Global Climate Model (GCM) output resulting in global projections of daily streamflow and water temperature for the 21st century. Global mean and high (95th percentile) stream temperatures are projected to increase on average by 0.8-1.6 (1.0-2.2)°C for the SRES B1-A2 scenario for 2071-2100 relative to 1971-2000. The largest water temperature increases are projected for Europe, North America, Southeast Asia, South Africa and parts of Australia. In these regions, the sensitivities for warming are exacerbated by projected decreases in summer low flows. Large increases in water temperature combined with decreases in low flows are found for the southeastern U.S., Europe and eastern China. These regions could potentially be affected by increased deterioration of water quality and freshwater habitats, and reduced water available for beneficial uses such as thermoelectric power production.

  13. Observations and Modelling of Stream Flow and Stream Phosphorus In Four Nested Grassland Catchments

    NASA Astrophysics Data System (ADS)

    Moynihan, D.; Horgan, F.; Kiely, G.; Scanlon, T.

    The ability to monitor and model the physical and chemical dynamics of stream catchments has become of major importance over the past few years. There is now a greater awareness of the adverse affects of excess phosphorus concentrations on stream water quality and consequently more attention is being focused on the implementation of models to trace and predict the paths of surface and subsurface flow which aid in agri-chemical transport. One such model is Topmodel (a topography based hydrological model) Beven et al. (2000). For a grassland catchment in Ireland a modified version of topmodel is used to simulate the observed catchment dynamics by deriving relationships from the integration of modelled hydrological processes with observed hydrochemical data. Water quality and continuous flow data collected from four nested catchments (15ha, 25ha, 2km2, 15km2) is modelled. The effect of scale was also examined. A linear relationship holds between the flow at catchment 1 (15ha) and catchment 2 (25ha), but the scale effect between the larger areas is non ­ linear and dependent on the hydrological, vegetation and soil parameters. Topmodel is shown to simulate the hydrology well, but less accurate for the phosphorous.

  14. Air flow cued spatial learning in mice.

    PubMed

    Bouchekioua, Youcef; Mimura, Masaru; Watanabe, Shigeru

    2015-01-01

    Spatial learning experiments in rodents typically employ visual cues that are associated with a goal place, even though it is now well established that they have poor visual acuity. We assessed here the possibility of spatial learning in mice based on an air flow cue in a dry version of the Morris water maze task. A miniature fan was placed at each of the four cardinal points of the circular maze, but only one blew air towards the centre of the maze. The three other fans were blowing towards their own box. The mice were able to learn the task only if the spatial relationship between the air flow cue and the position of the goal place was kept constant across trials. A change of this spatial relationship resulted in an increase in the time to find the goal place. We report here the first evidence of spatial learning relying on an air flow cue. PMID:25257773

  15. Apparatus for irradiating a continuously flowing stream of fluid

    DOEpatents

    Speir, Leslie G.; Adams, Edwin L.

    1984-01-01

    An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  16. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    C to 1.5 °C for the different gauges. To test the model, the average water temperature was estimated at the six locations within the Sonoma Valley not used in the calibration. For each water temperature record, the prior area dependent weighting factor was used. Regional maximum and minimum air temperature data were then used to estimate the average stream water temperature over the period of recorded water temperature. The average error between model-estimated and observed water temperature for the additional locations in the Sonoma Valley ranged from 0.7 °C to 3.5 °C. The model estimated water temperature for gauges with upstream drainage area less than 50 km2 had average error between estimated and observed water temperature less than 1.7 °C. When upstream drainage area was greater than 50 km2, the average error increased up to 3.5°C for some gauge locations. The model could also estimate water temperature in streams in other basins using the same area-dependent weighting factor. For eighteen gauges in the Napa Valley to the east , the average error between estimated and observed water temperature ranged from 0.7 °C to 1.9 °C, while for four gauges in the Russian River Valley to the northwest, the average error ranged from 1.2 °C to 3.2 °C. We speculate the area-dependent weighting factor reflects the temperature of groundwater contributions to stream flow.

  17. Stream flow changes across North Carolina (USA) 1955-2012 with implications for environmental flow management

    NASA Astrophysics Data System (ADS)

    Meitzen, Kimberly M.

    2016-01-01

    This study examines changes in stream flow conditions across North Carolina, relates these changes to geomorphological conditions of rivers, and makes recommendations for environmental flow guidelines to conserve and protect riverine ecosystems. Monthly stream flow percentile metrics (90th, 75th, 50th, 25th, and 10th percentiles) are compared over two time periods (1955-1980 and 1984-2012) for 63 gages distributed statewide. The results showed that stream flow changes vary spatially by flow magnitude, ecoregion, basin, and temporally by months. The greatest changes involve decreases to the 10th, 25th, 50th, and 75th percentiles and the least amount of change is associated with 90th percentile flows. The spring and summer months of February through August have the greatest flow reductions, while September, November, and December exhibit magnitude increases for the 75th and 90th percentile flows. The Blue Ridge has the least amount of change, whereas the Piedmont and Coastal Plain have the greatest change. The few gages that do not show significant magnitude decreases to the 10th percentile flow are below major dams on the Neuse, Cape Fear, and Roanoke rivers. These same dammed rivers exhibit increases to the 90th percentile flows. The Tar River Basin, which is free of dams, shows opposite effects, with significant decreases to the 10th percentile flows and minimal changes to the 75th and 90th percentile flows. This study elucidates the importance of establishing environmental flow criteria that apply statewide across North Carolina. Sustainable environmental flow criteria need to be established that conserve seasonal patterns of flows, sustain low flows (from increases and decreases), and protect headwater and tributary accumulation areas from over-abstraction.

  18. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean

  19. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  20. Seasonal Stream Flow Forecasting and Decision Support in Central Texas

    NASA Astrophysics Data System (ADS)

    Watkins, D. W.; Nykanen, D. K.; Mahmoud, M.; Wei, W.

    2003-12-01

    A decision support model based on stream flow ensemble forecasts has been developed for the Lower Colorado River Authority in Central Texas, and predictive skill is added to climatology-based forecasts by conditioning the ensembles on observable climate indicators. These indicators include stream flow (persistence), soil moisture, and large-scale recurrent patterns such as the El Nino-Southern Oscillation, Pacific Decadal Oscillation, and the North Atlantic Oscillation. In the absence of historical soil moisture measurements, the Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set is applied. Strong correlation between observed runoff volumes and runoff volumes simulated by the (uncalibrated) VIC model indicates the viability of this approach. Following correlation analysis to screen potential predictors, a Bayesian procedure for updating ensemble probabilities is outlined, and various skill scores are reviewed for evaluating forecast performance. Verification of the ensemble forecasts using a resampling procedure indicates a small but potentially significant improvement in forecast skill over climatology that could be exploited in seasonal water management decisions. Future work involves evaluation of seasonal soil moisture forecasts, further evaluation of annual flow forecasts, incorporation of climate forecasts in reservoir operating rules, and estimation of the value of the forecasts.

  1. The Secondary Stream of Interstellar Neutral Hydrogen Flow

    NASA Astrophysics Data System (ADS)

    Nakagawa, H.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.; Yamazaki, A.

    2005-12-01

    The solar system is located in a low-density interstellar cloud. Neutral hydrogen and helium atoms of the interstellar medium can penetrate deep into the heliosphere without being completely interrupted by the solar wind plasma. Consequently, there is a uniform flow of interplanetary hydrogen and helium in the solar system. This neutral hydrogen and helium flow is called `interstellar wind'. Spacecraft data demonstrated that the upstream direction of the interplanetary neutral helium flow is (254.7°+-0.4°, 5.2°+-0.2°) in the ecliptic coordinate system [Witte, 2004; Vallerga et al., 2004; Gloeckler et al., 2004], while it is (252.5°+-0.5°, 8.8°+-0.5°) for the interplanetary neutral hydrogen [Lallement, et al., 2005; Quemerais et al., 1999]. The presence of this well-established primary stream leads the hydrogen and helium glows to symmetry with respect to the 74° / 254° ecliptic longitude axis. Meanwhile, the existence of a secondary stream of the neutral wind inside the heliosphere arriving from a direction between about 260° and 290° ecliptic longitude, about 10° - 40° different from the upstream primary interstellar neutral flow direction, has been proposed recently by a synthetic analysis of a wide variety of spacecraft observations [M. R. Collier, private communication]. In this study, we have performed a detailed analysis of the interstellar hydrogen resonance glow data obtained from ultraviolet imaging spectrometer (UVS) measurements onboard Nozomi spacecraft. Although the UVS instrument instantaneously points a certain direction with the field-of-view which is perpendicular to the spin axis controlled toward the Earth, spatial distributions of emissions are measured by using the spin and orbital motion of the Nozomi spacecraft. One year observations enable us to derive the full sky image of Lyman alpha emission. We plotted the data obtained in the ecliptic plane from 2000 to 2001 and compared them with the model calculations in cases of the

  2. Properties of a constricted-tube air-flow levitator

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Stephens, W. K.; Ethridge, E. C.

    1982-01-01

    The properties of a constricted-tube gas flow levitator first developed by Berge et al. (1981) have been investigated experimentally in order to predict its behavior in a gravity-free environment and at elevated temperatures. The levitator consists of a constricted (quartz) tube fed at one end by a source of heated air or gas. A spherical sample is positioned by the air stream on the downstream side of the constriction, where it can be melted and resolidified without touching the tube. It is shown experimentally that the kinematic viscosity is the important fluid parameter for operation in thermal equilibrium at high temperatures. If air is heated from room temperature to 1200 C, the kinematic viscosity increases by a factor of 14. To maintain a given value of the Reynolds number, the flow rate would have to be increased by the same factor for a specific geometry of tube and sample. Thus, to maintain stable equilibrium, the flow rate should be increased as the air or other gas is heated. The other stability problem discussed is associated with changes in the shape of a cylindrical sample as it melts.

  3. Does stream flow structure woody riparian vegetation in subtropical catchments?

    PubMed

    James, Cassandra S; Mackay, Stephen J; Arthington, Angela H; Capon, Samantha J; Barnes, Anna; Pearson, Ben

    2016-08-01

    The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA - Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream-specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are

  4. Ice and thermal cameras for stream flow observations

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Petroselli, Andrea; Grimaldi, Salvatore

    2016-04-01

    Flow measurements are instrumental to establish discharge rating curves and to enable flood risk forecast. Further, they are crucial to study erosion dynamics and to comprehend the organization of drainage networks in natural catchments. Flow observations are typically executed with intrusive instrumentation, such as current meters or acoustic devices. Alternatively, non-intrusive instruments, such as radars and microwave sensors, are applied to estimate surface velocity. Both approaches enable flow measurements over areas of limited extent, and their implementation can be costly. Optical methods, such as large scale particle image velocimetry, have proved beneficial for non-intrusive and spatially-distributed environmental monitoring. In this work, a novel optical-based approach is utilized for surface flow velocity observations based on the combined use of a thermal camera and ice dices. Different from RGB imagery, thermal images are relatively unaffected by illumination conditions and water reflections. Therefore, such high-quality images allow to readily identify and track tracers against the background. Further, the optimal environmental compatibility of ice dices and their relative ease of preparation and storage suggest that the technique can be easily implemented to rapidly characterize surface flows. To demonstrate the validity of the approach, we present a set of experiments performed on the Brenta stream, Italy. In the experimental setup, the axis of the camera is maintained perpendicular with respect to the water surface to circumvent image orthorectification through ground reference points. Small amounts of ice dices are deployed onto the stream water surface during image acquisition. Particle tracers' trajectories are reconstructed off-line by analyzing thermal images with a particle tracking velocimetry (PTV) algorithm. Given the optimal visibility of the tracers and their low seeding density, PTV allows for efficiently following tracers' paths in

  5. Dilatant till facilitates ice-stream flow in northeast Greenland

    NASA Astrophysics Data System (ADS)

    Christianson, Knut; Peters, Leo E.; Alley, Richard B.; Anandakrishnan, Sridhar; Jacobel, Robert W.; Riverman, Kiya L.; Muto, Atsuhiro; Keisling, Benjamin A.

    2014-09-01

    We present radio-echo sounding (RES), global positioning system (GPS), and active-source seismic data across the central portion of the Northeast Greenland Ice Stream (NEGIS). NEGIS widens downglacier from a small region of high geothermal flux near the ice divide. Our data reveal high-porosity (40+%) water-saturated till lubricating the ice stream. Ice accelerates and thins as it flows into NEGIS, producing marginal troughs in surface topography. These troughs create steep gradients in the subglacial hydropotential that generate parallel “sticky” and “slippery” bands beneath the shear margins. The low-porosity “sticky” sediment bands limit ice entrainment across the margins and thus restrict further widening, producing the long, narrow, and relatively stable ice stream. However, the observed relations among surface elevation, basal water routing, broad sedimentary drape, and till dilatancy suggest that rapid shifts in ice dynamics are possible, including rapid transmission of ocean forcing inland. The source and routing of the subglacial till are unclear, but our data help constrain hypotheses.

  6. Simulation of stream-groundwater exchange and near-stream flow paths of two first-order mountain streams using MODFLOW

    SciTech Connect

    Wroblicky, G.J.; Campana, M.E.; Dahm, C.N.; Valett, H.M.; Morrice, J.A.; Baker, M.A.; Henry, K.S.

    1994-12-31

    Hydrologic exchange between surface water and groundwater has been shown to exert strong controls on stream biota and biogeochemical processes. To quantify such exchange, the authors constructed two-dimensional unconfined groundwater flow models for two first-order stream sites in New Mexico, Aspen Creek and Rio Calaveras, using the U.S.G.S. modular three-dimensional finite-difference groundwater flow model (MODFLOW). They calibrated the model to hydraulic head, stream stage, and seepage meter measurements. Model-calibrated flow rates between the stream and local aquifer system range between 10{sup {minus}4} and 10{sup {minus}6} cm/s at Aspen Creek, and 10 {sup {minus}4} and 10 {sup {minus}7} cm/s at Rio Calaveras. Modeled flow rates at both sites tended to under predict seepage meter estimates by one-half to one order of magnitude. A particle tracking code (MODPATH) delineated near-stream flow paths. Near-stream flow paths were found to be associated with stream meander bends and areas where the streambed slope increased significantly.

  7. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  8. Bubble size prediction in co-flowing streams

    NASA Astrophysics Data System (ADS)

    van Hoeve, W.; Dollet, B.; Gordillo, J. M.; Versluis, M.; van Wijngaarden, L.; Lohse, D.

    2011-06-01

    In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low-Reynolds-number flows and by conservation of momentum. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate Qi, the outer liquid flow rate Qo, and the tube radius R. For a very low gas-to-liquid flow rate ratio (Qi/Qo→0) the bubble radius scales as r_{b}/R \\propto \\sqrt{Q_{i}/Q_{o}} , independently of the inner-to-outer viscosity ratio ηi/ηo and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e. ηi/ηoLt1, the bubble diameter scales as rb~(Qi/Qo)β, with β smaller than 1/2.

  9. A coupled stream flow and depth-integrated subsurface flow model for catchment hydrology

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Weill, Sylvain; Ackerer, Philippe; Delay, Frederick

    2015-11-01

    Few hydrological models that couple stream flow and subsurface flow in shallow aquifers are based on a compromise between simple and complex depiction of the system, although this compromise could result in tractable tools for various applications. We present a depth-integrated approach in which flows in the vadose and saturated zones are assumed to be parallel to the bottom of the aquifer and thus are integrated in the direction normal to the bottom of the aquifer. The hydrodynamic parameters are also integrated in this direction, and gravity effects are preserved. Stream flow is handled by a diffusive-wave equation that is calculated over a network of one-dimensional bonds. The first-order coupling between the stream and subsurface flows exchanges water fluxes between the stream network and the subsurface compartment according to the hydraulic head differences between the systems. Three synthetic test cases, one including a comparison with a three-dimensional code, are used to evaluate the general behavior of the coupled model. It is shown that the approach reproduces the main hydrological features at the catchment scale, including the generation of runoff, infiltration-exfiltration into (from) the vadose zone, and smooth transient head variations in the aquifer.

  10. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  11. A mixing layer theory for flow resistance in shallow streams

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Wiberg, Patricia; Albertson, John; Hornberger, George

    2002-11-01

    A variety of surface roughness characterizations have emerged from nineteenth and twentieth century studies of channel hydraulics. When the water depth h is much larger than the characteristic roughness height ks, roughness formulations such as Manning's n and the friction factor f can be explicitly related to the momentum roughness height zo in the log-law formulation for turbulent boundary layers, thereby unifying roughness definitions for a given surface. However, when h is comparable to (or even smaller than) ks, the log-law need not be valid. Using a newly proposed mixing layer analogy for the inflectional velocity profile within and just above the roughness layer, a model for the flow resistance in shallow flows is developed. The key model parameter is the characteristic length scale describing the depth of the Kelvin-Helmholtz wave instability. It is shown that the new theory, originally developed for canopy turbulence, recovers much of the earlier roughness results for flume experiments and shallow gravel streams. This study is the first to provide such a unifying framework between canopy atmospheric turbulence and shallow gravel stream roughness characterization. The broader implication of this study is to support the merger of a wealth of surface roughness characterizations independently developed in nineteenth and twentieth century hydraulics and atmospheric sciences and to establish a connection between roughness formulations across traditionally distinct boundary layer types.

  12. Downscaling stream flow time series from monthly to daily scales using an auto-regressive stochastic algorithm: StreamFARM

    NASA Astrophysics Data System (ADS)

    Rebora, N.; Silvestro, F.; Rudari, R.; Herold, C.; Ferraris, L.

    2016-06-01

    Downscaling methods are used to derive stream flow at a high temporal resolution from a data series that has a coarser time resolution. These algorithms are useful for many applications, such as water management and statistical analysis, because in many cases stream flow time series are available with coarse temporal steps (monthly), especially when considering historical data; however, in many cases, data that have a finer temporal resolution are needed (daily). In this study, we considered a simple but efficient stochastic auto-regressive model that is able to downscale the available stream flow data from monthly to daily time resolution and applied it to a large dataset that covered the entire North and Central American continent. Basins with different drainage areas and different hydro-climatic characteristics were considered, and the results show the general good ability of the analysed model to downscale monthly stream flows to daily stream flows, especially regarding the reproduction of the annual maxima. If the performance in terms of the reproduction of hydrographs and duration curves is considered, better results are obtained for those cases in which the hydrologic regime is such that the annual maxima stream flow show low or medium variability, which means that they have a low or medium coefficient of variation; however, when the variability increases, the performance of the model decreases.

  13. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction

    DOEpatents

    Attia, Yosry A.

    2000-01-01

    Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

  14. Two-dimensional streaming flows in high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Dreeben, Thomas D.; Chini, Gregory P.

    2011-05-01

    High-intensity discharge (HID) lamps embody a practical application in which acoustically generated streaming flows are used to significantly improve energy efficiency. Streaming in these lamps is examined using finite-element simulations in conjunction with available experimental results on the basis of the assumption that the streaming motion is excited by two-dimensional acoustic standing waves. Neither the magnitude nor the direction of the time-averaged flows is adequately explained by existing theory. Consequently, a modified streaming analysis is proposed in which the fluctuating flow is driven by an oscillating pressure field rather by a moving boundary and convective terms in both the instantaneous and streaming flows are included. Density variations are also shown to be important to the generation of the observed and simulated streaming. This analysis highlights the differences between streaming flows in HID lamps and those described in canonical problems appearing elsewhere in the literature.

  15. Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.

    PubMed

    Valverde, Jose Manuel

    2015-06-01

    Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves. PMID:26123774

  16. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  17. Ensemble stream flow predictions using the ECMWF forecasts

    NASA Astrophysics Data System (ADS)

    Kiczko, Adam; Romanowicz, Renata; Osuch, Marzena; Pappenberger, Florian; Karamuz, Emilia

    2015-04-01

    Floods and low flows in rivers are seasonal phenomena that can cause several problems to society. To anticipate high and low flow events, flow forecasts are crucial. They are of particular importance in mountainous catchments, where the lead time of forecasts is usually short. In order to prolong the forecast lead-time, numerical weather predictions (NWPs) are used as a hydrological model driving force. The forecasted flow is commonly given as one value, even though it is uncertain. There is an increasing interest in accounting for the uncertainty in flood early warning and decision support systems. When NWP are given in the form of ensembles, such as the ECMWF forecasts, the uncertainty of these forecasts can be accounted for. Apart from the forecast uncertainty the uncertainty related to the hydrological model used also plays an important role in the uncertainty of the final flow prediction. The aim of this study is the development of a stream flow prediction system for the Biała Tarnowska, a mountainous catchment in the south of Poland. We apply two different hydrological models. One is a conceptual HBV model for rainfall-flow predictions, applied within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, the second is a data-based DBM model, adjusted for Polish conditions by adding the Soil Moisture Accounting (SMA) and snow-melt modules. Both models provide the uncertainty of the predictions, but the DBM approach is much more numerically efficient, therefore more suitable for the real-time forecasting.. The ECMWF forecasts require bias reduction in order to correspond to observations. Therefore we applied Quantile Mapping with and without seasonal adjustment for bias correction. Up to seven-days ahead forecast skills are compared using the Relative Operation Characteristic (ROC) graphs, for the flood warning and flood alarm flow value thresholds. The ECMWF forecasts are obtained from the project TIGGE (http

  18. Stream responses as the sum of flow component responses

    NASA Astrophysics Data System (ADS)

    Stewart, Michael

    2014-05-01

    Catchment flows are often treated as continuums of hydrological processes from low flow to peak flow and back to low flow again, when analysing streamflow by methods like recession analysis or flow duration curve analysis. Such a conception of catchment response could not be further from the truth, catchment drainage instead is the sum of various flow components deriving from different parts of the catchment, as is well-understood by modellers. Why then have we traditionally applied the analysis methods to streamflow rather than to the separated components? (Apart, that is, for practical reasons.) Applying recession analyses to separated components turns out to give surprising results, and removes confusion arising from the mixture of components in streamflow (Stewart, 2014). The simplest separation of components is into quickflow and baseflow, which have very different sources and behaviours as shown in particular by tracer measurements. Quickflow is direct runoff from runoff events and often drops to zero between events, while baseflow is sourced from groundwater aquifers and continues as long as the stream flows. As an example, recession analysis using recession plots (i.e. plots of Q (flow) versus -dQ/dt) for quickflow and baseflow was applied to data from Glendhu GH1, New Zealand, a schist catchment of 2.2 km2. Whereas the streamflow points were fitted by power law slopes of up to 4 (i.e. dQ/dt = -0.09Q4) which proved to be artifacts due to the mixing of components noted above, the quickflow and baseflow points fitted power law slopes of 1.5 revealing the actual quadratic nature of storage reservoirs in the catchment. Other catchments have given similar results although a wider selection may show differences, nevertheless the message remains: In order to understand catchment and hillslope responses we need to be analysing separated components, not just streamflow. Stewart, M.K. 2014: New base flow separation and recession analysis methods for streamflow

  19. Nitric oxide flow tagging in unseeded air.

    PubMed

    Dam, N; Klein-Douwel, R J; Sijtsema, N M; Meulen, J J

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from N(2) and O(2) in the waist region of a focused ArF excimer laser beam. This NO distribution is advected by the flow and can be visualized any time later by laser-induced fluorescence in the gamma bands. The creation of NO is confirmed by use of an excitation spectrum. Two examples of the application of the new scheme for air-flow velocimetry are given in which single laser pulses are used for creation and visualization of NO. PMID:18033499

  20. Characterizing the Drivers of Intermittent Flow in Arctic Alaska Streams

    NASA Astrophysics Data System (ADS)

    Betts, E.; Kane, D. L.; Stephan, N.

    2012-12-01

    Fish and wildlife species in the Arctic have developed life history strategies to deal with the extreme climate of the North. In the case of Arctic grayling, these strategies include long life, yearly spawning and migration.. In order to understand how such a species will be affected by a changing climate, we must first determine how these adaptive strategies may be at odds with the changing Arctic landscape. Arctic grayling migrate to spawning grounds just after spring break-up; then they migrate to feeding sites in early summer and finally in the fall migrate back to their overwintering sites. Low precipitation and high evapotranspiration rates during the summer can lead to low water levels and a fragmentation of the hydrologic landscape. This fragmentation creates a barrier to fish migration. The Kuparuk River is a perennial stream originating in the foothills of the Brooks Range on the North Slope of Alaska. The basin is underlain by continuous permafrost which essentially blocks the surface system from interacting with the subpermafrost groundwater system. Shallow subsurface flow occurs in the active layer, that area above permafrost which undergoes seasonal thawing in the summer. Sections of the Kuparuk are intermittent in that during low flows in the system these reaches appear dry (no flow in channel). Water reappears in the channel, downstream of these dry reaches, and it is believed that water continues to flow below the surface through the unfrozen thaw bulb beneath these reaches. These dry reaches act as summer barriers to fish migration within the Kuparuk River system. Previous research of this phenomenon sought to understand the location and timing of these dry events. The current research to be presented here attempts to determine the drivers of these dry channel events. Dye tracers and discharge measurements are used to determine the amount of hyporheic flow along these dry reaches and a statistical model incorporating soil moisture, precipitation

  1. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  3. Adequacy of satellite derived rainfall data for stream flow modeling

    USGS Publications Warehouse

    Artan, G.; Gadain, Hussein; Smith, Jody L.; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  4. Ensemble stream flow predictions, a way towards better hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Edlund, C.

    2009-04-01

    The hydrological forecasting division at SMHI has been using hydrological EPS and hydrological probabilities forecasts operationally since some years ago. The inputs to the hydrological model HBV are the EPS forecasts from ECMWF. From the ensemble, non-exceedance probabilities are estimated and final correction of the ensemble spread, based on evaluation is done. Ensemble stream flow predictions are done for about 80 indicator basins in Sweden, where there is a real-time discharge gauge. The EPS runs are updated daily against the latest observed discharge. Flood probability maps for exceeding a certain threshold, i.e. a certain warning level, are produced automatically once a day. The flood probabilistic forecasts are based on a HBV- model application, (called HBV-Sv, HBV Sweden) that covers the whole country and consist of 1001 subbasins with an average size between 200 and 700 km2. Probabilities computations for exceeding a certain warning level are made for each one of these 1001 subbasins. Statistical flood levels have been calculated for each river sub-basin. Hydrological probability forecasts should be seen as an early warning product that can give better support in decision making to end-users communities, for instance Civil Protections Offices and County Administrative Boards, within flood risk management. The main limitations with probability forecasts are: on one hand, difficulties to catch small-scale rain (mainly due to resolution of meteorological models); on the other hand, the hydrological model can't be updated against observations in all subbasins. The benefits of working with probabilities consist, first of all, of a new approach when working with flood risk management and scenarios. A probability forecast can give an early indication for Civil Protection that "something is going to happen" and to gain time in preparing aid operations. The ensemble stream flow prediction at SMHI is integrated with the national forecasting system and the products

  5. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C., Jr.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  6. Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream

    SciTech Connect

    Olstad, S.J.

    1995-08-01

    The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

  7. the nature of air flow near the inlets of blunt dust sampling probes

    NASA Astrophysics Data System (ADS)

    Vincent, J. H.; Hutson, D.; Mark, D.

    This paper sets out to describe the nature of air flow near blunt dust samplers in a way which allows a relatively simple assessment of their performances for collecting dust particles. Of particular importance is the shape of the limiting stream surface which divides the sampled air from that which passes outside the sampler, and how this is affected by the free-stream air velocity, the sampling flow rate, and the shape of the sampler body. This was investigated for two-dimensional and axially-symmetric sampler systems by means of complementary experiments using electrolytic tank potential flow analogues and a wind tunnel respectively. For extreme conditions the flow of air entering the sampling orifice may be wholly divergent or wholly convergent. For a wide range of intermediate conditions, however, the flow first diverges then converges, exhibiting a so-called "spring onion effect". Whichever of these applies for a particular situation, the flow may be considered to consist of two parts, the outer one dominated by the flow about the sampler body and the inner one dominated by the flow into the sampling orifice. Particle transport in this two-part flow may be assessed using ideas borrowed from thin-walled probe theory.

  8. Factors influencing the stream-aquifer flow exchange coefficient.

    PubMed

    Morel-Seytoux, Hubert J; Mehl, Steffen; Morgado, Kyle

    2014-01-01

    Knowledge of river gain from or loss to a hydraulically connected water table aquifer is crucial in issues of water rights and also when attempting to optimize conjunctive use of surface and ground waters. Typically in groundwater models this exchange flow is related to a difference in head between the river and some point in the aquifer, through a "coefficient." This coefficient has been defined differently as well as the location for the head in the aquifer. This paper proposes a new coefficient, analytically derived, and a specific location for the point where the aquifer head is used in the difference. The dimensionless part of the coefficient is referred to as the SAFE (stream-aquifer flow exchange) dimensionless conductance. The paper investigates the factors that influence the value of this new conductance. Among these factors are (1) the wetted perimeter of the cross-section, (2) the degree of penetration of the cross-section, and (3) the shape of the cross-section. The study shows that these factors just listed are indeed ordered in their respective level of importance. In addition the study verifies that the analytical correct value of the coefficient is matched by finite difference simulation only if the grid system is sufficiently fine. Thus the use of the analytical value of the coefficient is an accurate and efficient alternative to ad hoc estimates for the coefficient typically used in finite difference and finite element methods. PMID:24010703

  9. Acoustic streaming field structure. Part II. Examples that include boundary-driven flow.

    PubMed

    Bradley, Charles

    2012-01-01

    In this paper three simple acoustic streaming problems are presented and solved. The purpose of the paper is to demonstrate the use of a previously published streaming model by Bradley [J. Acoust. Soc. Am. 100(3), 1399-1408 (1996)] and illustrate, with concrete examples, some of the features of streaming flows that were predicted by the general model. In particular, the problems are intended to demonstrate cases in which the streaming field boundary condition at the face of the radiator has a nontrivial lateral dc velocity component. Such a boundary condition drives a steady solenoidal flow just like a laterally translating boundary drives Couette flow. PMID:22280567

  10. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  11. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  12. Prediction of Stream Flow in Ungauged Basins - a Comprehensive Framework

    NASA Astrophysics Data System (ADS)

    Ganti, R.; Agarwal, V.; Shetty, A.

    2012-12-01

    It is well established that critical information on stream-flow is essential in reducing uncertainties in planning and design of various water resource projects. Lack of data, at the desired spatial and temporal resolution, poses an enormous challenge in developing meaningful prediction models. Powerful techniques like Artificial Neural Network (ANN) modeling provide reasonably accurate prediction models, however development of such models require substantial amount of past data. Currently, empirical equations developed across the span of several hundred years are used on a regionalized basis. These equations are usually very simple, allowing for easy application, however not very accurate. This limited accuracy can be attributed to the use of noisy data and inclusion of only limited stream-flow variables. This study is an attempt to process noisy data and incorporate catchment variables to improve the accuracy of existing relationships whilst maintaining their simplicity. This study presents a comprehensive framework starting from data-processing to data-analysis that enables the development of regionalized empirical equations. A case-study has been presented for the sub-basins in "Dakshina Kannada" (Coastal Karnataka, India). Firstly, the data has first been processed to remove any outliers and estimate missing values, by replacing missing values with the average values of the neighboring entries for discrete data-sets or by using Least Square principles (LS) for continuously distributed date. Secondly, the existing models have been improved based on the processed dataset obtained through Exploratory Data Analysis (EDA). Further, utilizing Principal Component Analysis (PCA) other important parameters have been identified. All these parameters have then been included to arrive at an "improved regionalized relationship". Finally, the improved regionalized relationships have been evaluated for their performance based on the Correlation Coefficient and Standard Error

  13. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Gao, P.; Geissen, V.; Ritsema, C. J.; Mu, X.-M.; Wang, F.

    2013-03-01

    Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P < 0.01), and that sediment discharge began in 1981 (P < 0.01) in the main river. In the two subcatchments, the transition years were 1985 (P < 0.01) and 1994 (P < 0.05) for water discharge, and 1978 and 1979 for sediment discharge (P < 0.05), respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment). For reductions in stream flow and sediment discharge, the contribution rate of human activity was found

  14. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  16. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  17. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  18. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators

    NASA Astrophysics Data System (ADS)

    Salter, S.

    2011-12-01

    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  19. Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon

    USGS Publications Warehouse

    Risley, John; Stonewall, Adam J.; Haluska, Tana

    2008-01-01

    Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate

  20. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of

  1. Flood and debris flow interactions with roads promote the invasion of exotic plants along steep mountain streams, western Oregon

    NASA Astrophysics Data System (ADS)

    Watterson, Nicholas A.; Jones, Julia A.

    2006-08-01

    This study examines the interactions among geomorphic and biogeographic processes that govern the invasion by two contrasting exotic plant species—a shrub, scotch broom ( Cytisus scoparius) and an herb, foxglove ( Digitalis purpurea), over several decades of road and stream networks in the H.J. Andrews Experimental Forest in western Oregon. Distributions of C. scoparius and D. purpurea were mapped along hillslopes and streams in 1993, 2002, and 2003. The mapped distributions were related to debris flow pathways and changes in stream morphology interpreted from field surveys and air photos over the period 1993 to 2003. Laboratory trials examined the response of seed germination to scarification (to test effects of transport by debris flows), soaking (to test effects of fluvial transport), and substrate texture (to test effects on establishment). C. scoparius and D. purpurea were present along roads and in clearcuts in the Andrews Forest from the 1970s to 2003, but invaded the stream (Lookout Creek) only after debris flows and floods during an extreme storm in 1996. Laboratory trials demonstrated that seeds could germinate on a variety of substrates after scarification and flood transport. Mapping and air photo/GIS analysis indicated that the distributions of exotic plants were located on freshly scoured bars and floodplains adjacent to the active channel, downstream of seed sources along roads that were connected to the main stem of Lookout Creek by road ditch drainage systems, and debris flow paths. This paper outlines a conceptual model for the invasion of exotic plants, highlighting the connectivity between road and stream networks provided by geomorphic processes in steep forested landscapes.

  2. Flow Dynamics and Stability of the NE Greenland Ice Stream from Active Seismics and Radar

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Alley, R. B.; Anandakrishnan, S.; Christianson, K. A.; Peters, L. E.; Muto, A.

    2015-12-01

    We find that dilatant till facilitates rapid ice flow in central Greenland, and regions of dryer till limit the expansion of ice flow. The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining 8.4% of the ice sheet's area. Fast ice flow initiates near the ice sheet summit in a region of high geothermal heat flow and extends some 700km downstream to three outlet glaciers along the NE Coast. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. In this study, we present the results of the first-ever ground-based geophysical survey of the initiation zone of NEGIS. Based on radar and preliminary seismic data, Christianson et al. (2014, EPSL) propose a flow mechanism for the ice stream based on topographically driven hydropotential lows which generate 'sticky' regions of the bed under the ice stream margins. We further test this hypothesis using a 40km reflection seismic survey across both ice stream margins. We find that regions of 'sticky' bed as observed by the radar survey are coincident with regions of the bed with seismic returns indicating drier subglacial sediments. These findings are further supported by five amplitude-verses-offset seismic surveys indicating dilatant till within the ice stream and consolidated sediments within its margins.

  3. Suitability and potential of environmental tracers for base-flow determination in streams

    NASA Astrophysics Data System (ADS)

    Gerber, C.; Purtschert, R.; Darling, G.; Gooddy, D.; Kralik, M.; Humer, F.; Sültenfuss, J.

    2012-04-01

    The temporal and spatial distribution of the proportion of groundwater discharge into gaining rivers can be estimated with conventional geochemical parameters and 222Rn measurements (COOK et al., 2006). However, the quantification of the age of the discharging groundwater requires either groundwater sampling from boreholes in the vicinity of the river e.g. (FETTE et al., 2005) or tracer measurements in the river water itself. A promising tracer for age dating of base flow in streams is 85Kr. Its chemically inertness and the relatively low diffusion coefficient (long exchange time with the atmosphere) favours 85Kr in comparison to e.g. 3H/3He (STOLP et al., 2010). In this paper, measurements of 85Kr, 3H/3Hetrit and SF6 from a small scale system in the southern Vienna basin (STOLP et al., 2010) are presented and discussed. In combination with completing parameters (stable isotopes, geochemistry, flux measurements) and model calculations the gas exchange dynamic between stream water and the atmosphere is estimated. This is a key factor for the age characterization of the discharging groundwater. The sensitivity of the individual methods to origin and amount of excess air is also discussed. Cook P. G., Lamontagne S., Berhane D., and Clark J. F. (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. WRR 42.doi:10.1029/2006WR004921 Fette M., Kipfer R., Schubert C. J., Hoehn E., and Wehrli.B. (2005) Assessing river-groundwater exchange in the regulated Rhone River (Switzerland) using stable isotopes and geochemical tracers. Appl. Geochemistry 20, 701-712 Stolp B., Solomon D. K., Vitvar T., Rank D., Aggarwal P. K., and Han L. F. (2010) Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria. Water Resour. Res. 46, 13.doi:10.1029/2009WR008006

  4. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-07-01

    These new findings will help them understand the famous sunspot cycle and associated increases in solar activity that can affect the Earth with power and communications disruptions. The observations are the latest made by the Solar Oscillations Investigation (SOI) group at Stanford University, CA, and they build on discoveries by the SOHO science team over the past year. "We have detected motion similar to the weather patterns in the Earth's atmosphere", said Dr. Jesper Schou of Stanford. "Moreover, in what is a completely new discovery, we have found a jet-like flow near the poles. This flow is totally inside the Sun. It is completely unexpected, and cannot be seen at the surface." "These polar streams are on a small scale, compared to the whole Sun, but they are still immense compared to atmospheric jet streams on the Earth", added Dr. Philip Scherrer, the SOI principal investigator at Stanford. "Ringing the Sun at about 75 degrees latitude, they consist of flattened oval regions about 30,000 kilometres across where material moves about ten percent (about 130 km/h) faster than its surroundings. Although these are the smallest structures yet observed inside the Sun, each is still large enough to engulf two Earths." Additionally, there are features similar to the Earth's trade winds on the surface of the Sun. The Sun rotates much faster at the equator than at the poles. However, Stanford researchers Schou and Dr. Alexander G. Kosovichev have found that there are belts in the northern and southern hemispheres where currents flow at different speeds relative to each other. Six of these gaseous bands move slightly faster than the material surrounding them. The solar belts are more than 65 thousand km across and they contain "winds" that move about 15 kilometres per hour relative to their surroundings. The first evidence of these belts was found more than a decade ago by Dr. Robert Howard of the Mount Wilson Observatory. The Stanford researchers have now shown that

  5. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-08-01

    These new findings will help them understand the famous sunspot cycle and associated increases in solar activity that can affect the Earth with power and communications disruptions. The observations are the latest made by the Solar Oscillations Investigation (SOI) group at Stanford University, CA, and they build on discoveries by the SOHO science team over the past year. "We have detected motion similar to the weather patterns in the Earth's atmosphere", said Dr. Jesper Schou of Stanford. "Moreover, in what is a completely new discovery, we have found a jet-like flow near the poles. This flow is totally inside the Sun. It is completely unexpected, and cannot be seen at the surface." "These polar streams are on a small scale, compared to the whole Sun, but they are still immense compared to atmospheric jet streams on the Earth", added Dr. Philip Scherrer, the SOI principal investigator at Stanford. "Ringing the Sun at about 75 degrees latitude, they consist of flattened oval regions about 30,000 kilometres across where material moves about ten percent (about 130 km/h) faster than its surroundings. Although these are the smallest structures yet observed inside the Sun, each is still large enough to engulf two Earths." Additionally, there are features similar to the Earth's trade winds on the surface of the Sun. The Sun rotates much faster at the equator than at the poles. However, Stanford researchers Schou and Dr. Alexander G. Kosovichev have found that there are belts in the northern and southern hemispheres where currents flow at different speeds relative to each other. Six of these gaseous bands move slightly faster than the material surrounding them. The solar belts are more than 65 thousand km across and they contain "winds" that move about 15 kilometres per hour relative to their surroundings. The first evidence of these belts was found more than a decade ago by Dr. Robert Howard of the Mount Wilson Observatory. The Stanford researchers have now shown that

  6. Stream flow, salmon and beaver dams: roles in the structuring of stream fish communities within an anadromous salmon dominated stream.

    PubMed

    Mitchell, Sean C; Cunjak, Richard A

    2007-11-01

    The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions

  7. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  8. Selected flow characteristics of streams in the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Swift, C. H., III

    1966-01-01

    Flow-duration, annual low-flow, and annual high-flow tables through September 30, 1963, are given in this report for 110 stream-gaging stations in the Willamette and Sandy River basins. These tables summarize the basic data needed to define the streamflow characteristics at the gaging stations. The content of each of the three summary tables is described, and techniques for preparing flow-duration curves, low-flow frequency curves, and high-flow frequency curves are explained.

  9. A stream-gaging network analysis for the 7-Day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations. A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990. To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the

  10. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  11. MICROBIAL COMETABOLISM OF RECALCITRANT CHEMICALS IN CONTAMINATED AIR STREAMS

    EPA Science Inventory

    Chlorinated Solvents: The treatment system consists of a laboratory-scale hollow fiber membrane (HFM) module containing a center baffle and a radial cross-flow pattern on the shell side of the fibers. The shell and lumen fluids are contacting in a counter-current f...

  12. Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession

    NASA Astrophysics Data System (ADS)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.; Harman, Ciaran; Gooseff, Michael N.; Singha, Kamini

    2016-02-01

    Solute transport along riparian and hyporheic flow paths is broadly expected to respond to dynamic hydrologic forcing by streams, aquifers, and hillslopes. However, direct observation of these dynamic responses is lacking, as is the relative control of geologic setting as a control on responses to dynamic hydrologic forcing. We conducted a series of four stream solute tracer injections through base flow recession in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow riparian wells in each watershed. We found hyporheic mean arrival time, temporal variance, and fraction of stream water in the bedrock-constrained valley bottom and near large roughness elements in the wider valley bottom were not variable with discharge, suggesting minimal control by hydrologic forcing. Conversely, we observed increases in mean arrival time and temporal variance and decreasing fraction stream water with decreasing discharge near the hillslopes in the wider valley bottom. This may indicate changes in stream discharge and valley bottom hydrology control transport in less constrained locations. We detail five hydrogeomorphic responses to base flow recession to explain observed spatial and temporal patterns in the interactions between streams and their valley bottoms. Models able to account for the transition from geologically dominated processes in the near-stream subsurface to hydrologically dominated processes near the hillslope will be required to predict solute transport and fate in valley bottoms of headwater mountain streams.

  13. The Research of Membrane-sorption System with Increased Pressure Stream for Enriching Air with Oxygen

    NASA Astrophysics Data System (ADS)

    Korolev, M. V.; Laguntsov, N. I.; Kurchatov, I. M.

    Numerical study of single-hybrid membrane-sorption air separation system for enriching the air with oxygen were conducted. The effectiveness of such a system was analyzed, depending on selective sorbents and membranes under specified pressure ratio. A comparison of various modes membrane sorption system was done. The conclusion regarding the choice of the membrane and a sorbent for the system with a pressurized product stream was drawn.

  14. MODIFICATION OF STREAM FLOW ROUTING FOR BANK STORAGE

    EPA Science Inventory

    Bank storage is a process in which volumes of water are temporally retained by alluvial stream banks during flood events, and gradually released as baseflows. This process has implications on ground-water resource

  15. Techniques for estimating peak-flow frequency relations for North Dakota streams

    USGS Publications Warehouse

    Williams-Sether, Tara

    1992-01-01

    This report presents techniques for estimating peak-flow frequency relations for North Dakota streams. In addition, a generalized skew coefficient analysis was completed for North Dakota to test the validity of using the generalized skew coefficient map in Bulletin 17B of the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, 'Guidelines for Determining Flood Flow Frequency.' The analysis indicates that the generalized skew coefficient map in Bulletin 17B provides accurate estimates of generalized skew coefficient values for natural-flow streams in North Dakota. Peak-flow records through 1988 for 192 continuous- and partial-record streamflow gaging stations that had 10 or more years of record were used in a generalized least-squares regression analysis that relates peak flows for selected recurrence intervals to selected basin characteristics. Peak-flow equations were developed for recurrence intervals of 2, 10, 15, 25, 50, 100, and 500 years for three hydrologic regions in North Dakota. The peak-flow equations are applicable to natural-flow streams that have drainage areas of less than or equal to 1,000 square miles. The standard error of estimate for the three hydrologic regions ranges from 60 to 70 percent for the 100-year peak-flow equations. Methods are presented for transferring peak-flow data from gaging stations to ungaged sites on the same stream and for determining peak flows for ungaged sites on ungaged streams. Peak-flow relations, weighted estimates of peak flow, and selected basin characteristics are tabulated for the 192 gaging stations used in the generalized skew coefficient and regression analyses. Peak-flow relations also are provided for 63 additional gaging stations that were not used in the generalized skew coefficient and regression analyses. These 63 gaging stations generally represent streams that are significantly controlled by regulation and those that have drainage areas greater than 1,000 square miles.

  16. Forced flow of a vapor-liquid stream in a horizontal pipe with film boiling

    NASA Astrophysics Data System (ADS)

    Kalinin, É. K.; Panevin, V. I.; Firsov, V. P.

    1986-05-01

    The stream structure and flow regime during film boiling of liquid nitrogen in a horizontal pipe are investigated. Data on heat transfer are obtained and a model is proposed for calculating the parameters of the two-phase stream along the channel length.

  17. Flow variability and ongoing margin shifts on Bindschadler and MacAyeal Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hulbe, C. L.; Scambos, T. A.; Klinger, M.; Fahnestock, M. A.

    2016-02-01

    Ice streams on the Ross Sea side of the West Antarctic Ice Sheet are known to experience flow variability on hourly, annual, and multicentury time scales. We report here on observations of flow variability at the decade scale on the Bindschadler and MacAyeal Ice Streams (BIS and MacIS). Our analysis makes use of archived ice velocity data and new mappings from composited Landsat 7 and Landsat 8 imagery that together span the interval from 1985 to 2014. Both ice streams speedup and slowdown in a range of about ±5 m a-2 over our various comparison intervals. The rates of change are variable in both time and space, and there is no evidence of external forcing at work across the two streams. Widespread changes are most likely linked to instability in the subglacial till and/or subglacial water flow. Sticky spots near the confluence of the two ice streams are loci for speed changes. These relatively young and slow-flowing features appear to be forcing shifts in margin position near the outlets of both streams. The margin jumps reduce the effective outlet widths of the streams by 20% and 30% on BIS and MacIS, respectively. Those magnitudes are similar to the outlet narrowing experienced by Kamb Ice Stream prior to its stagnation.

  18. HOW WELL CAN YOU ESTIMATE LOW FLOW AND BANKFULL DISCHARGE FROM STREAM CHANNEL HABITAT DATA?

    EPA Science Inventory

    Modeled estimates of stream discharge are becoming more important because of reductions in the number of gauging stations and increases in flow alteration from land development and climate change. Field measurements of channel morphology are available at thousands of streams and...

  19. HYDRAULIC ANALYSIS OF BASE-FLOW AND BANK STORAGE IN ALLUVIAL STREAMS

    EPA Science Inventory

    This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...

  20. The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream

    NASA Astrophysics Data System (ADS)

    Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.

    2013-09-01

    Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6-12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.

  1. CURRENT FLOW DATA FOR SELECTED USGS STREAM MONITORING STATIONS IN WASHINGTON STATE

    EPA Science Inventory

    This data set contains recent stream flow data for USGS stations in Washington State. Flow data (cubic feet per second) are available for the most recent 5-6 day period and are compared with long-term average values. Flow data were collected approximately hourly. Flood stage and ...

  2. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  3. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)

    EPA Science Inventory

    This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...

  4. Subglacial water flow inferred from stream measurements at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Fountain, A.G.

    1992-01-01

    Comparisons of water discharge and cation load in each of the two main streams indicate that subglacial hydraulic processes differ between drainage basins. One stream drains from a conduit that is isolated in its lower reach from the surrounding subglacial region and receives water routed englacially from the surface. The upper reach of the conduit also receives water rounted englacially from the surface as well as from a distributed subglacial flow system. The other main stream drains from a conduit coupled to a debris layer beneath the glacier. Observations of the layer in natural ice tunnels indicate that the water may flow within a thin layer of debris. A one-dimensional model of flow through the debris layer can explain both the base-flow and diurnal variations of the second main stream. -from Author

  5. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (External Review Draft)

    EPA Science Inventory

    This external review draft report is a technical "best practices" document describing sensor deployment for and data collection of continuous temperature and flow at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, pl...

  6. A quest for macroinvertebrate indicators of flow conditions in small, suburban stream

    EPA Science Inventory

    Alteration of hydrologic variability is considered a key pathway by which urbanization affects stream assemblages; however, understanding the mechanisms of alteration remains a challenge. One approach is to identify biological metrics that show distinct responses to flows, which ...

  7. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  8. Organic carbon flow in a swamp-stream ecosystem

    SciTech Connect

    Mulholland, P.J.

    1981-01-01

    An annual organic carbon budget is presented for an 8-km segment of Creeping Swamp, an undisturbed, third-order swamp-stream in the Coastal Plain of North Carolina, USA. Annual input of organic carbon (588 gC/m/sup 2/) was 96% allochthonous and was dominated by leaf litter inputs (36%) and fluvial, dissolved organic carbon (DOC) inputs (31%). Although the swamp-stream was primarily heterotrophic, autochthonous organic carbon input, primarily from filamentous algae, was important during February and March when primary production/ecosystem respiration (P/R) ratios of the flooded portions were near one. Annual output of organic carbon via fluvial processes (214 gC/m/sup 2/), 95% as DOC, was 36% of total annual inputs, indicating that the swamp-stream segment ecosystem was 64% efficient at retaining organic carbon. Organic carbon dynamics in the Creeping Swamp segment were compared to those reported for upland stream segments using indices of organic matter processing suggested by Fisher (1977) and a loading potential index suggested here. Creeping Swamp, while loading at a high rate, retains a much larger portion of its organic carbon inputs than two upland streams. Despite the high degree of retention and oxidation of organic inputs to Creeping Swamp, there is a net annual fluvial export of 21 gC/m/sup 2/, mostly in the dissolved form. Watersheds drained by swamp-streams in the southeastern United States are thought to have large organic carbon exports compared to upland forested drainages, because the stream network covers a much greater proportion of the total watershed area.

  9. Characterising temporary streams' regimes using qualitative "aquatic states" instead of quantitative flow measures.

    NASA Astrophysics Data System (ADS)

    Gallart, F.; Prat, N.

    2012-04-01

    The analysis of the biological communities found in stream reaches is currently used for the assessment of the quality of stream waters. Nevertheless, in temporary streams, these communities are largely varying in time, strongly depending on the occurrence of the sets of aquatic mesohabitats determined by the hydrological conditions (hereafter called Aquatic States). Particularly, the interruption of the flow in a stream, or even its total desiccation, plays a determinant role in their ecological communities so much so that temporary streams should be considered a distinct class of ecosystems instead of simply hydrologically challenged permanent streams. Within the EU MIRAGE project (grant FP7 n° 211732), two complementary tools have been developed to analyse and characterise the regime of temporary streams: the Aquatic States Frequency Graph (ASFG) that shows the monthly frequency of occurrence of the diverse Aquatic States throughout the year, and the Temporary Stream Regime Plot (TSRP) that maps the value of two metrics that describe respectively the relative number of months with flow per year (Mf) and the seasonal predictability of the zero-flow periods (Sd6). The ASFG allows a rapid appraisal of the stream regime relevant for the development of the aquatic life and is useful for anticipating the sampling calendars but is somewhat dependent of the subjective criteria of the observer. On the contrary, the TSRP manages much less information but allows the comparison and classification of the regimes and is based on the more objective criterion of the presence-absence of flow. In the case of lack of observations, rainfall-runoff models may be used to develop these analyses, although a threshold value for zero flow must be assessed as models usually do not simulate the absence of flow.

  10. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible

  11. On the behaviour of a stressed cotton canopy in a direct air stream

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Newcomb, W. W.

    1986-01-01

    Reflectance variations of a stressed cotton canopy were conducted in the presence of a fan-generated air stream to investigate the effects of air movement and the resulting temperature changes on remotely-sensed data. The initial drop in reflectance after application of the air stream was found to be greatest in the morning because leaf turgor was at a maximum, enabling leaves on the windward side of the canopy to assume surprisingly stable vertical positions. By afternoon, a reduction in leaf turgor was responsible for less stem displacement and consequently a reduction in light-trapping capability. However, reflectance oscillations were greater because the leaves had become sufficiently limp to flutter at the edges and about the petioles exposing both adaxial and abaxial surfaces to the incident light.

  12. Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.; Ganjoo, D. K.

    1990-01-01

    Finite element procedures and computations based on the velocity-pressure and vorticity-stream function formulations of incompressible flows are presented. Two new multistep velocity-pressure formulations are proposed and compared with the vorticity-stream function and one-step formulations. The example problems chosen are the standing vortex problem and flow past a circular cylinder. Benchmark quality computations are performed for the cylinder problem. The numerical results indicate that the vorticity-stream function formulation and one of the two new multistep formulations involve much less numerical dissipation than the one-step formulation.

  13. Flow Durations, Low-Flow Frequencies, and Monthly Median Flows for Selected Streams in Connecticut through 2005

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2008-01-01

    Flow durations, low-flow frequencies, and monthly median streamflows were computed for 91 continuous-record, streamflow-gaging stations in Connecticut with 10 or more years of record. Flow durations include the 99-, 98-, 97-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, and 1-percent exceedances. Low-flow frequencies include the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low flow. Streamflow estimates were computed for each station using data for the period of record through water year 2005. Estimates of low-flow statistics for 7 short-term (operated between 3 and 10 years) streamflow-gaging stations and 31 partial-record sites were computed. Low-flow estimates were made on the basis of the relation between base flows at a short-term station or partial-record site and concurrent daily mean streamflows at a nearby index station. The relation is defined by the Maintenance of Variance Extension, type 3 (MOVE.3) method. Several short-term stations and partial-record sites had poorly defined relations with nearby index stations; therefore, no low-flow statistics were derived for these sites. The estimated low-flow statistics for the short-term stations and partial-record sites include the 99-, 98-, 97-, 95-, 90-, and 85-percent flow durations; the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low-flow frequencies; and the August median flow. Descriptive information on location and record length, measured basin characteristics, index stations correlated to the short-term station and partial-record sites, and estimated flow statistics are provided in this report for each station. Streamflow estimates from this study are stored on USGS's World Wide Web application 'StreamStats' (http://water.usgs.gov/osw/streamstats/connecticut.html).

  14. Relation of streams, lakes, and wetlands to groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  15. Solute transport processes in flow-event-driven stream-aquifer interaction

    NASA Astrophysics Data System (ADS)

    Xie, Yueqing; Cook, Peter G.; Simmons, Craig T.

    2016-07-01

    The interaction between streams and groundwater controls key features of the stream hydrograph and chemograph. Since surface runoff is usually less saline than groundwater, flow events are usually accompanied by declines in stream salinity. In this paper, we use numerical modelling to show that, at any particular monitoring location: (i) the increase in stream stage associated with a flow event will precede the decrease in solute concentration (arrival time lag for solutes); and (ii) the decrease in stream stage following the flow peak will usually precede the subsequent return (increase) in solute concentration (return time lag). Both arrival time lag and return time lag increase with increasing wave duration. However, arrival time lag decreases with increasing wave amplitude, whereas return time lag increases. Furthermore, while arrival time lag is most sensitive to parameters that control river velocity (channel roughness and stream slope), return time lag is most sensitive to groundwater parameters (aquifer hydraulic conductivity, recharge rate, and dispersitivity). Additionally, the absolute magnitude of the decrease in river concentration is sensitive to both river and groundwater parameters. Our simulations also show that in-stream mixing is dominated by wave propagation and bank storage processes, and in-stream dispersion has a relatively minor effect on solute concentrations. This has important implications for spreading of contaminants released to streams. Our work also demonstrates that a high contribution of pre-event water (or groundwater) within the flow hydrograph can be caused by the combination of in-stream and bank storage exchange processes, and does not require transport of pre-event water through the catchment.

  16. ON THE HYDRAULICS OF STREAM FLOW ROUTING WITH BANK STORAGE

    EPA Science Inventory

    Bank storage is a process in which volumes of water are temporally retained by alluvial stream banks during flood events, and gradually released to partially sustain baseflow. This process has important hydrologic and ecological implications. In this paper, analytical solutions a...

  17. Availability and Distribution of Base Flow in Lower Honokohau Stream, Island of Maui

    USGS Publications Warehouse

    Fontaine, Richard A.

    2003-01-01

    Honokohau Stream is one of the few perennial streams in the Lahaina District of West Maui. Current Honokohau water-use practices often lead to conflicts among water users, which are most evident during periods of base flow. To better manage the resource, data are needed that describe the availability and distribution of base flow in lower Honokohau Stream and how base flow is affected by streamflow diversion and return-flow practices. Flow-duration discharges for percentiles ranging from 50 to 95 percent were estimated at 13 locations on lower Honokohau Stream using data from a variety of sources. These sources included (1) available U.S. Geological Survey discharge data, (2) published summaries of Maui Land & Pineapple Company, Inc. diversion and water development-tunnel data, (3) seepage run and low-flow partial-record discharge measurements made for this study, and (4) current (2003) water diversion and return-flow practices. These flow-duration estimates provide a detailed characterization of the distribution and availability of base flow in lower Honokohau Stream. Estimates of base-flow statistics indicate the significant effect of Honokohau Ditch diversions on flow in the stream. Eighty-six percent of the total flow upstream from the ditch is diverted from the stream. Immediately downstream from the diversion dam there is no flow in the stream 91.2 percent of the time, except for minor leakage through the dam. Flow releases at the Taro Gate, from Honokohau Ditch back into the stream, are inconsistent and were found to be less than the target release of 1.55 cubic feet per second on 9 of the 10 days on which measurements were made. Previous estimates of base-flow availability downstream from the Taro Gate release range from 2.32 to 4.6 cubic feet per second (1.5 to 3.0 million gallons per day). At the two principal sites where water is currently being diverted for agricultural use in the valley (MacDonald's and Chun's Dams), base flows of 2.32 cubic feet per

  18. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows

    PubMed Central

    Branco, Paulo; Santos, José M.; Katopodis, Christos; Pinheiro, António; Ferreira, Maria T.

    2013-01-01

    Fish are particularly sensitive to connectivity loss as their ability to reach spawning grounds is seriously affected. The most common way to circumvent a barrier to longitudinal connectivity, and to mitigate its impacts, is to implement a fish passage device. However, these structures are often non-effective for species with different morphological and ecological characteristics so there is a need to determine optimum dimensioning values and hydraulic parameters. The aim of this work is to study the behaviour and performance of two species with different ecological characteristics (Iberian barbel Luciobarbus bocagei–bottom oriented, and Iberian chub Squalius pyrenaicus–water column) in a full-scale experimental pool-type fishway that offers two different flow regimes–plunging and streaming. Results showed that both species passed through the surface notch more readily during streaming flow than during plunging flow. The surface oriented species used the surface notch more readily in streaming flow, and both species were more successful in moving upstream in streaming flow than in plunging flow. Streaming flow enhances upstream movement of both species, and seems the most suitable for fishways in river systems where a wide range of fish morpho-ecological traits are found. PMID:23741465

  19. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  20. Channelised Subglacial Hydrology Modulates West Antarctic Ice Stream Basal Conditions and Flow

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Schroeder, D. M.

    2014-12-01

    Ice-sheet models show a coincidence between ice flux and basal water-flow maxima, as water at the bed of an ice sheets acts generally to lubricate the basal interface. Hydrological flow paths support this view with ice and basal-water drainage basins being well-aligned. At the scale of an individual ice stream, however, we reveal a significant offset of this alignment. Airborne geophysical data across the trunk of the Institute Ice Stream reveal how subglacial hydrology acts to subdue ice flow in two ways: first, by removing basal sediment, which decreases opportunity for the deformation of basal material and increases basal roughness; and, second, by reducing basal water pressures. The macro flow of basal water beneath the ice stream is known well from high-resolution bed elevation data and satellite imagery, which reveal well-organised water flow along the Robin Subglacial Basin, terminating at the grounding line as a channel carving upwards into the adjacent ice shelf. The highest ice flow is offset from this channelized zone, however. Maximum velocities are located where the bed is very smooth and radio-echo returns are strong; consistent with a dilated weak sedimentary material at the ice stream bed. The geophysical evidence is consistent with the removal of basal sediment from the deepest regions of the Robin Subglacial Basin by the action of water and illustrates how accumulation of sedimentary material from ice streams is not necessary a precise locator for maximum ice-flow velocities at the scale of individual ice streams. The figure shows a radar section across the Institute Ice Stream, West Antarctica, revealing two modes of basal environment. One is flat and smooth, indicative of a soft wet bed. The other is rougher, as a consequence of the removal of basal material and water channelisation. This latter region is located in the deepest regions of the Robin Subglacial Basin. The former region is located beneath the highest ice flow speeds.

  1. Altered stream-flow regimes and invasive plant species: The Tamarix case

    USGS Publications Warehouse

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  2. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  3. Variability in isotopic composition of base flow in two headwater streams of the southern Appalachians

    NASA Astrophysics Data System (ADS)

    Singh, Nitin K.; Emanuel, Ryan E.; McGlynn, Brian L.

    2016-06-01

    We investigated the influence of hillslope scale topographic characteristics and the relative position of hillslopes along streams (i.e., internal catchment structure) on the isotopic composition of base flow in first-order, forested headwater streams at Coweeta Hydrologic Laboratory. The study focused on two adjacent forested catchments with different topographic characteristics. We used stable isotopes (18O and 2H) of water together with stream gauging and geospatial analysis to evaluate relationships between internal catchment structure and the spatiotemporal variability of base flow δ18O. Base flow δ18O was variable in space and time along streams, and the temporal variability of base flow δ18O declined with increasing drainage area. Base flow became enriched in 18O moving along streams from channel heads to catchment outlets but the frequency of enrichment varied between catchments. The spatiotemporal variability in base flow δ18O was high adjacent to large hillslopes with short flow paths, and it was positively correlated with the relative arrangement of hillslopes within the catchment. These results point to influence of unique arrangement of hillslopes on the patterns of downstream enrichment. Spatial variability in base flow δ18O within the streams was relatively low during dry and wet conditions, but it was higher during the transition period between dry and wet conditions. These results suggest that the strength of topographic control on the isotopic composition of base flow can vary with catchment wetness. This study highlights that topographic control on base flow generation and isotopic composition is important even at fine spatial scales.

  4. What matters most: Are summer stream temperatures more sensitive to changing air temperature, changing discharge, or changing riparian vegetation under future climates?

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2012-12-01

    We investigated stream temperature responses to changes in both air temperature and stream discharge projected for 2040-2060 from downscaled GCMs and changes in the height and canopy density of streamside vegetation. We used Heat Source© calibrated for a 37 km section of the Middle Fork John Day River located in Oregon, USA. The analysis used the multiple-variable-at-a-time (MVAT) approach to simulate various combinations of changes: 3 levels of air warming, 5 levels of stream flow (higher and lower discharges), and 6 types of streamside vegetation. Preliminary results show that, under current discharge and riparian vegetation conditions, projected 2 to 4 °C increase in air temperature will increase the 7-day Average Daily Maximum Temperature (7dADM) by 1 to 2 °C. Changing stream discharge by ±30% changes stream temperature by ±0.5 °C, and the influence of changing discharge is greatest when the stream is poorly shaded. In contrast, the 7dADM could change by as much as 11°C with changes in riparian vegetation from unshaded conditions to heavily shaded conditions along the study section. The most heavily shaded simulations used uniformly dense riparian vegetation over the full 37-km reach, and this vegetation was composed of the tallest trees and densest canopies that can currently occur within the study reach. While this simulation represents an extreme case, it does suggest that managing riparian vegetation to substantially increase stream shade could decrease 7dADM temperatures relative to current temperatures, even under future climates when mean air temperatures have increased from 2 to 4 °C.

  5. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  6. Visualization of Rotor Tip Secondary Flows with Blade Tip Air Discharge and Suction in a Low-speed Turbine

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W

    1956-01-01

    Smoke was used to visualize outer-wall secondary flows in a low-speed turbine utilizing rotor tip air discharge and suction. Photographs as well as visual observations of the effect of tip air discharge and suction were made by independently varying the direction and quantity of the tip air discharge and suction, and varying tip clearance, and main-stream air speed. In addition, the cross-sectional area of the hollow blade discharge opening was varied for the case of tip air discharge.

  7. Steady computational analysis of shrouded plug nozzle flows using unequal stream pressures

    NASA Astrophysics Data System (ADS)

    Ruhs, Kevin Paul

    This study focuses on the effects of unequal core and bypass stream feed pressures in a high pressure ratio, two-stream nozzle notionally designed for supersonic business jet applications. Whereas previous analysis used a measured mass average pressure of the core and bypass streams, equal pressures were not exactly maintained in the experimental work and the effect of the imbalance is the primary motivation for the present study. The plug nozzle geometry used is a sub-scale model of a Gulfstream Aerospace Corporation concept that features an extended shroud. It uses two inlet streams, representing core and bypass streams from a turbofan engine. Nozzle pressure ratios range from unity to 6.23. Experimental measurements included pressure taps on the plug and shroud, schlieren and shadowgraph figures, mass flows for both streams, and thrust values. The computational analysis employed the General Equation and Mesh Solver, or GEMS code. Previous computational analysis was performed by Kapilavai, giving a basis analysis involving grid generation and refinement, error convergence studies, axisymmetric analysis, and unsteady computations. Unequal core and bypass stream pressure or swirl in the core stream is used to replicate experimental data and assess performance. The results of using these conditions were explored, including pressure on the plug and shroud, shock characteristics, separation and recirculation zones, mass flows and discharge coefficients, and thrust efficiencies.

  8. Analysing subglacial geology hidden beneath the ice streams flowing into the Weddell Sea (West Antarctica)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; King, O.; Jordan, T. A.; Ross, N.; Bingham, R. G.; Le Brocq, A. M.; Smith, A.; Hindmarsh, R. C. A.; Siegert, M. J.

    2014-12-01

    Subglacial geology provides important controls on the onset and maintenance of fast glacial flow in the West Antarctic Ice Sheet (WAIS). Widespread subglacial sediments deposited within deep rift basins, thinner drapes of marine sediments within the West Antarctic Rift System (WARS) and high geothermal heat flux associated with Cenozoic magmatism have been previously identified as key geological controls that can modulate ice sheet dynamics. Here, we compile a suite of new and vintage aeromagnetic and airborne gravity observations to examine the large-scale geological setting of several major ice streams flowing into the Weddell Sea Embayment and assess the role of geological controls on subglacial topography and WAIS flow regimes. We focus on the subglacial geology beneath the Institute and Moeller ice streams, the Rutford ice stream and the Evans ice stream. We show that the Moeller ice stream is underlain by a major strike-slip fault system, which is part of the tectonic boundary between East and West Antarctica. A set of en-echelon subglacial basins formed along the strike-slip fault and these basins appear to steer enhanced flow far inland. Deep sedimentary basins are not present along this fault system, however, suggesting that subglacial sediments are not necessarily a geological template for the onset of fast glacial flow. The recently identified Robin Subglacial Basin that underlies the fast flowing coastal region of the Institute ice stream contains 1-3 km of sedimentary infill and smooth bedrock topography. Enhanced flow in the tributaries of the Institute ice stream cuts across the Ellsworth Mountains and is controlled by basement faults displacing metasedimentary and metavolcanic rocks. Prominent magnetic anomalies overlie outcrops of Jurassic granitic intrusions and enable us to trace their subglacial extent beneath the catchments of Institute, Moeller and Rutford ice streams. These large granitoid bodies form topographic highs that appear to divert

  9. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    NASA Astrophysics Data System (ADS)

    Goyenola, G.; Meerhoff, M.; Teixeira-de Mello, F.; González-Bergonzoni, I.; Graeber, D.; Fosalba, C.; Vidal, N.; Mazzeo, N.; Ovesen, N. B.; Jeppesen, E.; Kronvang, B.

    2015-10-01

    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate phosphorus export from diffuse sources in streams in Uruguay streams, mostly as a consequence of higher variability in flow regime (higher flashiness). Contrarily, we found a higher contribution of dissolved P in flashy streams. We did not find a notably poorer performance of the low-frequency sampling program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams and overestimation of P in flashy streams. Based on our findings, we suggest that the evaluation and use of more accurate monitoring methods, such as automatized flow-proportional water samplers and automatized bankside analyzers, should be prioritized whenever logistically possible. However, it seems particularly relevant in currently flashy systems and also in systems where climate change predictions suggest an increase in stream flashiness.

  10. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams

    PubMed Central

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-01-01

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity. PMID:27090223

  11. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.

    PubMed

    Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús

    2015-01-15

    Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can

  12. Low-flow characteristics of streams on the Olympic Peninsula, Washington

    USGS Publications Warehouse

    Haushild, W.L.; LaFrance, D.E.

    1977-01-01

    Streams in lowland basins of the Olympic Peninsula, Washington, generally have their low flows in summer and peak flows in winter, whereas streams originating at higher elevations in the mountains have their low flows in late summer-early fall and they have both winter and spring peak flows. Data from long-term stations indicate no important trend in low flows during 1940-73 but they do indicate that low flows generally were lower during the relatively dry 1940 's than during the relatively wet 1950-73 period. The magnitude and frequency of 7-day low flows were estimated for 116 sites either from frequency analyses of a data at long-term stations or from correlation of data at a short-term station with data at an appropriate long-term station. (Woodard-USGS)

  13. Dating base flow in streams using dissolved gases and diurnal temperature changes

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.; Casile, Gerolamo; Haase, Karl B.

    2015-12-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12-14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  14. Low-Cost Sensor Network for Stream Flow Monitoring in the Alto Beni Region of Bolivia

    NASA Astrophysics Data System (ADS)

    Rowe, M. D.; Fry, L. M.; Mihelcic, J. R.

    2009-12-01

    Lack of data is a persistent problem in hydrology and other field work in developing countries. Low cost monitoring devices allow investigators to maximize spatial coverage on a limited budget, as well as to minimize the financial risk of loss of instruments placed in vulnerable locations. This work contributes to an ongoing project to evaluate the sustainability of discharge from springs supplying gravity-fed potable water systems in the Alto Beni region of Bolivia where land use is rapidly changing from forest to agriculture. The approach is to estimate ground water recharge as a function of land use variables using a water balance model in several representative watersheds. Monthly stream discharge is currently estimated using monthly manual measurements of water level by a local technician. Continuous water level measurements will allow an improved estimate of the cumulative discharge, and generate data on statistical distribution of daily flow that may be useful to estimate discharge in similar, ungaged watersheds. Continuous water level measurements, along with available precipitation data, will allow analysis and comparison of the response of watersheds to individual precipitation events as a function of land use variables. We assembled a low cost level logging system for stream flow monitoring that measures and records distance up to 6 m to the nearest 25 mm every ten minutes, and runs for a month on six rechargeable AA batteries. The system consists of a sonic range finder sensor (MaxSonar-EZ2, Maxbotix Inc., Baxter, MN, 30), a temperature sensor (MCP9701, Microchip Technology Inc., Chandler, AZ, 0.25), and a datalogger (Hobo U12, Onset Computer Corp., Pocasset, MA, 104) along with a weather-resistant enclosure and common items for a total cost of 230 per unit. The level loggers were attached to bridges over three subject streams. A local technician visits the sites monthly to download data, replace the rechargeable batteries, and take a manual water level

  15. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  16. Base-flow measurements at partial-record sites on small streams in South Carolina

    USGS Publications Warehouse

    Barker, Carroll

    1986-01-01

    This report contains site descriptions and base-flow data collected at 362 partial-record sites in South Carolina. These data include site name, site description, latitude, longitude, drainage area, instantaneous streamflow, and date of the streamflow measurement. The base-flow data can be used as an aid to estimate low flow characteristics at ungaged locations on streams in South Carolina. Partial record data collection sites were established in all physiographic provinces except the lower Coastal Plain. Data collection sites were not established in the lower Coastal Plain because of the widespread occurrence of zero during drought periods in all but the larger streams. (USGS)

  17. Improvement of trout streams in Wisconsin by augmenting low flows with ground water

    USGS Publications Warehouse

    Novitzki, R.P.

    1973-01-01

    Approximately 2 cubic feet per second of ground water were introduced into the Little Plover River in 1968 when natural streamflow ranged from 3 to 4 cubic feet per second. These augmentation flows were retained undiminished through the 2-mile reach of stream monitored. Maximum stream temperatures were reduced as much as 5?F (3?C) at the augmentation site during the test period, although changes became insignificant more than 1 mile downstream. Maximum temperatures might be reduced as much as 10?F (6?C) during critical periods, based on estimates using a stream temperature model developed as part of the study. During critical periods significant temperature improvement may extend 2 miles or more downstream. Changes in minimum DO (dissolved oxygen) levels were slight, primarily because of the high natural DO levels occurring during the test period. Criteria for considering other streams for flow augmentation are developed on the basis of the observed hydrologic responses in the Little Plover River. Augmentation flows of nearly 2? cubic feet per second of ground water were introduced into the headwater reach of Black Earth Creek from the end of June through mid-October 1969. Streamflow ranged from 1 to 2 cubic feet per second at the augmentation site, and the average flow at the gaging station at Black Earth, approximately 8 miles downstream, ranged from 25 to 50 cubic feet per second. Augmentation flows were retained through the 8-mile reach of stream. Temperature of the augmentation flow as it entered the stream ranged from 60? to 70?F (about 16? to 21?C) during the test period, and minimum stream temperatures were raised 5?F (3?C) or more at the augmentation site, with changes extending from 2 to 3 miles downstream. Augmentation during critical periods could maintain stream temperatures between 40? and 70?F (4? and 21?C) through most of the study reach. DO levels were increased by as much as 2 milligrams per liter or more below the augmentation site, although the

  18. Extraction of conjugate main-stream structures from a complex network flow.

    PubMed

    Tamura, Koutarou; Takayasu, Hideki; Takayasu, Misako

    2015-04-01

    We introduce a method to extract main-stream structures for a given complex network flow by trimming less effective links. As the resulting main streams generally have an almost loopless treelike structure, we can define the stream basin size for each node, which characterizes the importance of the node with regard to the flow. As a real-world example, we apply this method to an interfirm trading network, both for the money flow and its conjugate-the material or service flow-confirming that both basin size distributions follow a similar power law that differs significantly from the basin size distributions of rivers in nature. We theoretically analyze the process of trimming and derive a consistent statistical formulation between the original link number and the basin size. PMID:25974555

  19. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  20. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  1. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  2. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  3. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  4. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  5. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.

    2003-01-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11??? D and 2.2??? 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occured owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (??) generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where 'fast' biogeochemical reactions may influence water chemistry, and extended

  6. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; McKnight, Diane M.; Runkel, Robert L.; Vaughn, Bruce H.

    2003-06-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11 D and 2·2 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates () generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where fast biogeochemical reactions may influence water chemistry, and extended hyporheic

  7. Numerical simulation of flow in a circular duct fitted with air-jet vortex generators

    NASA Astrophysics Data System (ADS)

    Küpper, Christoph; Henry, Frank S.

    2002-04-01

    Most of the fundamental studies of the use of air-jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air-jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross-section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier-Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non-orthogonal, body-fitted, grid using the k- turbulence model and standard wall functions. Streamwise, vertical and cross-stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross-stream and streamwise direction, cross-stream vorticity profiles and cross-stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co- and counter-rotating vortex arrays. Copyright

  8. Integrated turbine-compressor provides air flow for cooling

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1970-01-01

    Modified supersonic turbine cycle provides cooling air to surrounding structures. Simplified mechanical design assures correct balance of air flow, allows direct issue of cool air to the structure, and assists in matching turbine work output to work input required by the compressor.

  9. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology

    NASA Astrophysics Data System (ADS)

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.

    2016-02-01

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.

  10. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  11. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  12. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  13. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps

  14. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  15. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  16. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. PMID:26363328

  17. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOEpatents

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  18. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  19. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  20. Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the

  1. A logistic regression equation for estimating the probability of a stream in Vermont having intermittent flow

    USGS Publications Warehouse

    Olson, Scott A.; Brouillette, Michael C.

    2006-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing intermittently at unregulated, rural stream sites in Vermont. These determinations can be used for a wide variety of regulatory and planning efforts at the Federal, State, regional, county and town levels, including such applications as assessing fish and wildlife habitats, wetlands classifications, recreational opportunities, water-supply potential, waste-assimilation capacities, and sediment transport. The equation will be used to create a derived product for the Vermont Hydrography Dataset having the streamflow characteristic of 'intermittent' or 'perennial.' The Vermont Hydrography Dataset is Vermont's implementation of the National Hydrography Dataset and was created at a scale of 1:5,000 based on statewide digital orthophotos. The equation was developed by relating field-verified perennial or intermittent status of a stream site during normal summer low-streamflow conditions in the summer of 2005 to selected basin characteristics of naturally flowing streams in Vermont. The database used to develop the equation included 682 stream sites with drainage areas ranging from 0.05 to 5.0 square miles. When the 682 sites were observed, 126 were intermittent (had no flow at the time of the observation) and 556 were perennial (had flowing water at the time of the observation). The results of the logistic regression analysis indicate that the probability of a stream having intermittent flow in Vermont is a function of drainage area, elevation of the site, the ratio of basin relief to basin perimeter, and the areal percentage of well- and moderately well-drained soils in the basin. Using a probability cutpoint (a lower probability indicates the site has perennial flow and a higher probability indicates the site has intermittent flow) of 0.5, the logistic regression equation correctly predicted the perennial or intermittent status of 116 test sites 85 percent of the time.

  2. Response of macrophyte communities to flow regulation in mountain streams.

    PubMed

    Abati, Silverio; Minciardi, Maria Rita; Ciadamidaro, Simone; Fattorini, Simone; Ceschin, Simona

    2016-07-01

    River macrophytes are widely used in freshwater ecosystem assessment because of their sensitivity to anthropogenic pressures, even if there are only a few studies that investigated how macrophytes respond to water regime alterations. In this study, we analyzed the effects of dams on river macrophyte communities through a comparison between upstream and downstream sides from 18 dams located in Alps and Apennines. A co-inertia analysis and a Mantel test were applied to assess if the analysis of environmental parameters could be effective in predicting macrophyte community structure. We analyzed morphological and physicochemical inter-site differences and tested the influence of dams on various aspects of community structure (composition, richness, diversity, dominance, coverage) using multivariate randomized block permutation procedure. Plant similarity between sites was evaluated at the level of phylum, and indicator species analysis was performed to identify the taxa most sensitive or tolerant to water regulation. We found that the overall environmental setting overwhelms the dam impact and that the influence of hydrological alteration became apparent when comparing upstream and downstream assemblages at the same dam. In particular, we found that most of taxa had a higher affinity with the downstream side and that in general, stream regulation increases plant richness and coverage, but reduces community evenness. Analyses based on higher taxonomic groups (phyla) demonstrated that this community can be effectively used in bioassessment even at phylum level analysis. In particular, we found that bryophytes, strictly linked with changes in substrate stability, show particular sensitivity to water regulation in mountain streams. PMID:27315127

  3. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  4. Technical Note: Variability of flow discharge in lateral inflow-dominated stream channels

    NASA Astrophysics Data System (ADS)

    Chang, C.-M.; Yeh, H.-D.

    2015-02-01

    The influence of the temporal changes in lateral inflow rate on the discharge variability in stream channels is explored through the analysis of diffusion wave equation (the linearized St. Venant equations). To account for variability and uncertainty, the lateral inflow rate is regarded as a temporal random function. Based on the spectral representation theory, analytical expressions for the covariance function and evolutionary power spectral density of the random discharge perturbation process are derived to quantify variability in stream flow discharge induced by the temporal changes in lateral inflow rate. Upon evaluating the closed-form expressions, it is found that the variability in stream flow discharge increases with distance from the upstream boundary of the channel and time as well. The temporal correlation scale of inflow rate fluctuations plays a positive role in enhancing the variability of the flow discharge in channels. The treatment of the discharge variance gives us a quantitative estimate of uncertainty from the use of the deterministic model.

  5. Extraction of conjugate main-stream structures from a complex network flow

    NASA Astrophysics Data System (ADS)

    Tamura, Koutarou; Takayasu, Hideki; Takayasu, Misako

    2015-04-01

    We introduce a method to extract main-stream structures for a given complex network flow by trimming less effective links. As the resulting main streams generally have an almost loopless treelike structure, we can define the stream basin size for each node, which characterizes the importance of the node with regard to the flow. As a real-world example, we apply this method to an interfirm trading network, both for the money flow and its conjugate—the material or service flow—confirming that both basin size distributions follow a similar power law that differs significantly from the basin size distributions of rivers in nature. We theoretically analyze the process of trimming and derive a consistent statistical formulation between the original link number and the basin size.

  6. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  7. Streaming driven by sessile microbubbles: Explaining flow patterns and frequency response

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2013-11-01

    Ultrasound excitation of bubbles drives powerful steady streaming flows which have found widespread applications in microfluidics, where bubbles are typically of semicircular cross section and attached to walls of the device (sessile). While bubble-driven streaming in bulk fluid is well understood, this practically relevant case presents additional complexity introduced by the wall and contact lines. We develop an asymptotic theory that takes into account the presence of the wall as well as the oscillation dynamics of the bubble, providing a complete description of the streaming flow as a function only of the driving frequency, the bubble size, and the physical properties of the fluid. We show that the coupling between different bubble oscillation modes sustains the experimentally observed streaming flow vortex pattern over a broad range of frequencies, greatly exceeding the widths of individual mode resonances. Above a threshold frequency, we predict, and observe in experiment, reversal of the flow direction. Our analytical theory can be used to guide the design of microfluidic devices, both in situations where robust flow patterns insensitive to parameter changes are desired (e.g. lab-on-a-chip sorters), and in cases where intentional modulation of the flow field appearance is key (e.g. efficient mixers). Current address: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology.

  8. A logistic regression equation for estimating the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Archfield, Stacey A.

    2002-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing perennially at a specific site in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing whether streams are perennial or intermittent at a specific site in Massachusetts. This information is needed to assist these environmental agencies, who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending along the length of each side of the stream from the mean annual high-water line along each side of perennial streams, with exceptions in some urban areas. The equation was developed by relating the verified perennial or intermittent status of a stream site to selected basin characteristics of naturally flowing streams (no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, waste-water discharge, and so forth) in Massachusetts. Stream sites used in the analysis were identified as perennial or intermittent on the basis of review of measured streamflow at sites throughout Massachusetts and on visual observation at sites in the South Coastal Basin, southeastern Massachusetts. Measured or observed zero flow(s) during months of extended drought as defined by the 310 Code of Massachusetts Regulations (CMR) 10.58(2)(a) were not considered when designating the perennial or intermittent status of a stream site. The database used to develop the equation included a total of 305 stream sites (84 intermittent- and 89 perennial-stream sites in the State, and 50 intermittent- and 82 perennial-stream sites in the South Coastal Basin). Stream sites included in the database had drainage areas that ranged from 0.14 to 8.94 square miles in the State and from 0.02 to 7.00 square miles in the South Coastal Basin.Results of the logistic regression analysis

  9. The influence of subglacial hydrology on the flow of Kamb Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Wel, Narelle; Christoffersen, Poul; Bougamont, Marion

    2013-03-01

    Ice streams on the Siple Coast, West Antarctica, have a complex history of flow because their basal motion is governed by time-varying basal conditions. Although the mechanical interaction between ice and till is well established, very little is known about the potential effect of regionally scaled water transport in a basal water system, which has only recently become apparent. To investigate the combined effect of hydrological and mechanical processes, we developed the Hydrology, Ice and Till model, in which ice flow is coupled to a Coulomb-plastic till layer and a basal water system consisting of discrete conduits. When the model is applied to Kamb Ice Stream (KIS), results confirm that it is capable of oscillating between fast and stagnant modes of flow. We show that when subglacial conduits are disregarded or do not extend to the grounding line, the oscillatory behavior of the ice stream is governed by the basal thermal regime. When conduits extend to the grounding line, the modelled ice stream oscillation period is increased, peak speeds are reduced, and oscillations may ultimately cease if the volume of water supplied is sufficiently high. Three different hydrological states characterize the behavioral patterns of ice flow and these states are distinguished by conditions at the grounding line. Modelled ice stream velocities were found to oscillate with fast and slow periods typically lasting a few hundred years, although varying according to hydrological activity. Our results indicate that KIS could reactivate this century, given its hydrological setting and ~170 years of stagnation.

  10. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-01-01

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of

  11. Transport of nitrate and ammonium during stream flow events from a southeastern USA Coastal Plain in-stream wetland - 1997 to 1999

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-stream wetlands (ISW) intercept stream water and act as nitrogen (N) sinks influencing nitrate and ammonium export to downstream aquatic ecosystems. Nitrogen assimilation and storage by ISW, however, can be affected by storm flows, seasonal changes in water quality or shifts in N pools, resulting...

  12. Incorporating seepage losses into the unsteady streamflow equations for simulating intermittent flow along mountain front streams

    USGS Publications Warehouse

    Niswonger, R.G.; Prudic, D.E.; Pohll, G.; Constantz, J.

    2005-01-01

    Seepage losses along numerous mountain front streams that discharge intermittently onto alluvial fans and piedmont alluvial plains are an important source of groundwater in the Basin and Range Province of the Western United States. Determining the distribution of seepage loss along mountain front streams is important when assessing groundwater resources of the region. Seepage loss along a mountain front stream in northern Nevada was evaluated using a one-dimensional unsteady streamflow model. Seepage loss was incorporated into the spatial derivatives of the streamflow equations. Because seepage loss from streams is dependent on stream depth, wetted perimeter, and streambed properties, a two-dimensional variably saturated flow model was used to develop a series of relations between seepage loss and stream depth for each reach. This method works when streams are separated from groundwater by variably saturated sediment. Two periods of intermittent flow were simulated to evaluate the modeling approach. The model reproduced measured flow and seepage losses along the channel. Seepage loss in the spring of 2000 was limited to the upper reaches on the alluvial plain and totaled 196,000 m3, whereas 64% of the seepage loss in the spring of 2004 occurred at the base of the alluvial plain and totaled 273,000 m3. A greater seepage loss at the base of the piedmont alluvial plain is attributed to increased streambed hydraulic conductivity caused by less armoring of the channel. The modeling approach provides a method for quantifying and distributing seepage loss along mountain front streams that cross alluvial fans or piedmont alluvial plains. Copyright 2005 by the American Geophysical Union.

  13. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Astrophysics Data System (ADS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-03-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  14. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  15. Solar forcing of the stream flow of a continental scale South American river.

    PubMed

    Mauas, Pablo J D; Flamenco, Eduardo; Buccino, Andrea P

    2008-10-17

    Solar forcing on climate has been reported in several studies although the evidence so far remains inconclusive. Here, we analyze the stream flow of one of the largest rivers in the world, the Paraná in southeastern South America. For the last century, we find a strong correlation with the sunspot number, in multidecadal time scales, and with larger solar activity corresponding to larger stream flow. The correlation coefficient is r=0.78, significant to a 99% level. In shorter time scales we find a strong correlation with El Niño. These results are a step toward flood prediction, which might have great social and economic impacts. PMID:18999720

  16. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  17. Estimates of median flows for streams on the Kansas surface water register

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2002-01-01

    The Kansas State Legislature, by enacting Kansas Statute KSA 82a-2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a-2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10-years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the uncontrolled gaging stations used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a root mean square error of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a root mean square error of 0.247 logarithmic units. These equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On

  18. Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2005-01-01

    Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall

  19. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.

    PubMed

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent

    2015-01-01

    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. PMID:25557038

  20. No Snow No Flow: How Montane Stream Networks Respond to Drought

    NASA Astrophysics Data System (ADS)

    Grant, G.; Nolin, A. W.; Selker, J. S.; Lewis, S.; Hempel, L. A.; Jefferson, A.; Walter, C.; Roques, C.

    2015-12-01

    Hydrologic extremes, such as drought, offer an exceptional opportunity to explore how runoff generation mechanisms and stream networks respond to changing precipitation regimes. The winter of 2014-2015 was the warmest on record in western Oregon, US, with record low snowpacks, and was followed by an anomalously warm, dry spring, resulting in historically low streamflows. But a year like 2015 is more than an outlier meteorological year. It provides a unique opportunity to test fundamental hypotheses for how montane hydrologic systems will respond to anticipated changes in amount and timing of recharge. In particular, the volcanic Cascade Mountains represent a "landscape laboratory" comprised of two distinct runoff regimes: the surface-flow dominated Western Cascade watersheds, with flashy streamflow regimes, rapid baseflow recession, and very low summer flows; and (b) the spring-fed High Cascade watersheds, with a slow-responding streamflow regime, and a long and sustained baseflow recession that maintains late summer streamflow through deep-groundwater contributions to high volume, coldwater springs. We hypothesize that stream network response to the extremely low snowpack and recharge varies sharply in these two regions. In surface flow dominated streams, the location of channel heads can migrate downstream, contracting the network longitudinally; wetted channel width and depth contract laterally as summer recession proceeds and flows diminish. In contrast, in spring-fed streams, channel heads "jump" to the next downstream spring when upper basin spring flow diminishes to zero. Downstream of flowing springs, wetted channel width and depth contract laterally as flows recede. To test these hypotheses, we conducted a field campaign to measure changing discharge, hydraulic geometry, and channel head location in both types of watersheds throughout the summer and early fall. Multiple cross-section sites were established on 6 streams representing both flow regime types

  1. Hyporheic Zone Denitrification: Flow Path Controls and Scaling Consequences for N budgets for the Whole Stream

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Bohlke, J. K.; Voytek, M. A.; Scott, D.; Tobias, C. R.

    2013-12-01

    Denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field that relates controlling processes to whole-stream consequences for N budgets. To demonstrate at a field site we injected 15 NO3-, Br (conservative tracer) and SF6 (gas exchange tracer) and compared measures of whole-stream denitrification with in situ hyporheic denitrification measurements in both shallow and deeper flow paths of contrasting geomorphic units such as channel thalwegs and side cavities. Hyporheic denitrification accounted for between a few percent and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (which increases substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance as indicated by nirS, and measures related to granular surface area and presence of anoxic microzones in otherwise suboxic porewater. Reaction efficiency in individual hyporheic flow paths was quantified as the dimensionless product of reaction rate constant and hyporheic residence time, λhzτhz (also defined as a Damköhler number, Daden-hz). At the stream reach scale the reaction significance was quantified by a dimensionless index Rs that combines the product of Da hz and the proportion of stream discharge passing through the hyporheic zone. Reaction progress was optimal in the subset of hyporheic flow paths where Da den-hz ~ 1, which avoids inefficient transport through very long flow paths after substrates have been used up but also avoids inefficient pathways that require repeated entries and exits through very short hyporheic flow paths to complete the reaction. We conclude that the zone of significant denitrification in the streambed can be substantially less than the full depth of the hyporheic zone, which is one reason previous researchers were not able to explain whole-stream denitrification rates based on total hyporheic-zone metrics such as

  2. Relating low-flow characteristics to the base flow recession time constant at partial record stream gauges

    USGS Publications Warehouse

    Eng, K.; Milly, P.C.D.

    2007-01-01

    Base flow recession information is helpful for regional estimation of low-flow characteristics. However, analyses that exploit such information generally require a continuous record of streamflow at the estimation site to characterize base flow recession. Here we propose a simple method for characterizing base flow recession at low-flow partial record stream gauges (i.e., sites with very few streamflow measurements under low-streamflow conditions), and we use that characterization as the basis for a practical new approach to low-flow regression. In a case study the introduction of a base flow recession time constant, estimated from a single pair of strategically timed streamflow measurements, approximately halves the root-mean-square estimation error relative to that of a conventional drainage area regression. Additional streamflow measurements can be used to reduce the error further.

  3. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. PMID:26025507

  4. Spatial statistics, variation and trends in SPI and their relation to stream flow in Portugal

    NASA Astrophysics Data System (ADS)

    de Lima, M. Isabel P.; Silva, Álvaro P.; Espírito Santo, Fátima; de Lima, João L. M. P.

    2015-04-01

    Stream flow regimes and variability are highly dependent on the precipitation input across the drainage basin, although it also depends on other factors (e.g. physiography and land use). Changes in precipitation, of natural or anthropogenic origin, are likely to affect surface runoff regimes and other hydrological processes. However, from surface runoff data alone it is difficult to disentangle between the nature of changes in the runoff regime. Thus, the main focus of this study is using spatial statistics derived from the Standardized Precipitation Index (SPI) calculated at several times scales for Portuguese river basins to get a better insight into climate change impacts on stream flow variability and trends across the basins. SPI constitutes a practical tool to assess, monitor and evaluate spatio-temporal variability of dry/wet conditions, over different periods, and here we are applying it at the basin scale using monthly precipitation data. The spatial interpolation and analysis functions in GIS are used to obtain SPI statistical values for each basin. A special focus is given on the synthesis of the severe or extreme wet/dry events. The statistics are used to better understand the flow variability in Iberian water courses flowing to the Atlantic Ocean, which drainage basins have different geometric, geological and climatic characteristics, as well as land use. Long stream flow time series are examined for trends in flow rates and fluctuations, and peak flows, which is expected to have implications for ecological processes and human usage throughout basins.

  5. PIV measurements of the streaming fluid flow due to the adsorption of particles

    NASA Astrophysics Data System (ADS)

    Patel, Harsh; Musunuri, Naga; Amah, Edison; Fischer, Ian; Singh, Pushpendra

    2015-11-01

    The particle image velocimetry (PIV) technique is used to study the streaming flow that is induced when a spherical particle is adsorbed at a liquid surface. The flow causes powders sprinkled on a liquid surface to disperse on the surface. The dispersion can occur so quickly that it appears explosive, especially for small particles on the surface of mobile liquids like water. The measurements show that the adsorption of a spherical particle causes an axisymmetric streaming flow about the vertical line passing through the center of the particle. The fluid directly below the particle rises upward, and near the surface, it moves away from the particle. The flow, which develops within a fraction of second after the adsorption of the particle, persists for several seconds. The flow strength, and the volume over which it extends, decreases with decreasing particle size. The streaming flow induced by the adsorption of two or more particles is a combination of the flows which they induce individually. The work was supported by National Science Foundation.

  6. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  7. Calculating discharge of phosphorus and nitrogen with groundwater base flow to a small urban stream reach

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Alex; Roy, James W.; Smith, James E.

    2015-09-01

    Elevated levels of nutrients, especially phosphorus, in urban streams can lead to eutrophication and general degradation of stream water quality. Contributions of phosphorus from groundwater have typically been assumed minor, though elevated concentrations have been associated with riparian areas and urban settings. The objective of this study was to investigate the importance of groundwater as a pathway for phosphorus and nitrogen input to a gaining urban stream. The stream at the 28-m study reach was 3-5 m wide and straight, flowing generally eastward, with a relatively smooth bottom of predominantly sand, with some areas of finer sediments and a few boulders. Temperature-based methods were used to estimate the groundwater flux distribution. Detailed concentration distributions in discharging groundwater were mapped using in-stream piezometers and diffusion-based peepers, and showed elevated levels of soluble reactive phosphorus (SRP) and ammonium compared to the stream (while nitrate levels were lower), especially along the south bank, where groundwater fluxes were lower and geochemically reducing conditions dominated. Field evidence suggests the ammonium may originate from nearby landfills, but that local sediments likely contribute the SRP. Ammonium and SRP mass discharges with groundwater were then estimated as the product of the respective concentration distributions and the groundwater flux distribution. These were determined as approximately 9 and 200 g d-1 for SRP and ammonium, respectively, which compares to stream mass discharges over the observed range of base flows of 20-1100 and 270-7600 g d-1, respectively. This suggests that groundwater from this small reach, and any similar areas along Dyment's Creek, has the potential to contribute substantially to the stream nutrient concentrations.

  8. Validating alternative methodologies to estimate the hydrological regime of temporary streams when flow data are unavailable

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Gallart, Francesc; Latron, Jérôme; Cid, Núria; Rieradevall, Maria; Prat, Narcís

    2016-04-01

    Aquatic life in temporary streams is strongly conditioned by the temporal variability of the hydrological conditions that control the occurrence and connectivity of diverse mesohabitats. In this context, the software TREHS (Temporary Rivers' Ecological and Hydrological Status) has been developed, in the framework of the LIFE Trivers project, to help managers for adequately implement the Water Framework Directive in this type of water bodies. TREHS, using the methodology described in Gallart et al (2012), defines six temporal 'aquatic states', based on the hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Nevertheless, hydrological data for assessing the regime of temporary streams are often non-existent or scarce. The scarcity of flow data makes frequently impossible the characterization of temporary streams hydrological regimes and, as a consequence, the selection of the correct periods and methods to determine their ecological status. Because of its qualitative nature, the TREHS approach allows the use of alternative methodologies to assess the regime of temporary streams in the lack of observed flow data. However, to adapt the TREHS to this qualitative data both the temporal scheme (from monthly to seasonal) as well as the number of aquatic states (from 6 to 3) have been modified. Two alternatives complementary methodologies were tested within the TREHS framework to assess the regime of temporary streams: interviews and aerial photographs. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE, Spain) with recurrent zero flows periods were selected to validate both methodologies. On one hand, non-structured interviews were carried out to inhabitants of villages and small towns near the gauging stations. Flow permanence metrics for input into TREHS were drawn from the notes taken during the interviews. On the other hand, the historical series of available aerial photographs (typically 10

  9. Calibration of HYPULSE for hypervelocity air flows corresponding to flight Mach numbers 13.5, 15, and 17

    NASA Technical Reports Server (NTRS)

    Calleja, John; Tamagno, Jose

    1993-01-01

    A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.

  10. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    PubMed Central

    Mehmood, Ahmer; Ali, Asif; Saleem, Najma

    2014-01-01

    This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060

  11. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  12. Climate and Land-Cover Change Impacts on Stream Flow in the Southwest U.S.

    EPA Science Inventory

    Vegetation change in arid and semi-arid climatic regions of the American West are a primary concern in sustaining key ecosystem services such as clean, reliable water sources for multiple uses. Land cover and climate change impacts on stream flow were investigated in a southeast ...

  13. Ecosystem Consequences of Contrasting Flow Regimes in an Urban Effects Stream Mesocosm Study

    EPA Science Inventory

    A stream mesocosm experiment was conducted to study the ecosystem-wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engine...

  14. FLOW REGIME, JUVENILE ABUNDANCE, AND THE ASSEMBLAGE STRUCTURE OF STREAM FISHES

    EPA Science Inventory

    The assemblage of fishes in a second-order stream in east-central Illinois was compared through seine sampling for two years with distinctly different flow regimes. In both years adult (age 0) fish were most abundant in late spring and early summer while juvenile (age 0) abundanc...

  15. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    used to provide accurate information about the amount of air entering the engine so that the amount of fuel can be adjusted to give the most efficient combustion. The ideal mass-flow sensor would be a rugged design that minimizes the disturbance to the flow stream and provides an accurate reading of both smooth and turbulent flows; NASA's design satisfies these requirements better than any existing design. Most of the mass-flow sensors used today are the hot wire variety. Hot wires can be fragile and cannot accurately measure a turbulent or reversing flow, which is often encountered in an intake manifold. Other types of mass-flow sensors include pitot tubes, vane anemometers, and thermocouple rakes-all of which suffer from some type of performance problem. Because it solves these performance problems while maintaining a simple design that lends itself to low-cost manufacturing techniques, NASA s thin-film resistance temperature detector air-mass-flow sensor should lead to more widespread use of mass-flow sensors.

  16. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions

    USGS Publications Warehouse

    Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.

    2004-01-01

    During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200 000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), β-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased.

  17. Regionalization of Low Flows in Hawaii Streams for Past and Future Rainfall Conditions

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.

    2014-12-01

    The Hawaiian Islands experience large inter-annual rainfall variations and statistically significant long-term downward trends in streamflow, especially low flows, have been detected. Low flows in Hawaii streams provide a variety of beneficial uses that include maintaining fish habitat, supplying freshwater for irrigation and domestic uses, and protecting traditional and customary Hawaiian rights. However, the variability of low flows in ungaged streams in Hawaii has not been quantified and potential effects of climate change on low flows need to be better understood to properly manage surface-water resources. Regionalization of streamflow for ungaged areas in Hawaii provides a useful case study because streamflow, climate, and basin characteristics are extremely spatially and temporally variable. Here we present the development of statistical models to estimate low flows of ungaged streams in Hawaii for past and future rainfall conditions. We discuss the benefits and limitations of applying simple statistical approaches to improve understanding of changes in low flows in heterogeneous and data poor regions and to explicitly evaluate uncertainty and data needs in the context of climate change predictions for regional water-resources management.

  18. Evaluating Key Watershed Components of Low Flow Regimes in New England Streams.

    PubMed

    Morrison, Alisa C; Gold, Arthur J; Pelletier, Marguerite C

    2016-05-01

    Water resource managers seeking to optimize stream ecosystem services and abstractions of water from watersheds need an understanding of the importance of land use, physical and climatic characteristics, and hydrography on different low flow components of stream hydrographs. Within 33 USGS gaged watersheds of southern New England, we assessed relationships between watershed variables and a set of low flow parameters by using an information-theoretical approach. The key variables identified by the Akaike Information Criteria (AIC) weighting factors as generating positive relationships with low flow events included percent stratified drift, mean elevation, drainage area, and mean August precipitation. The extent of wetlands in the watershed was negatively related to low flow magnitudes. Of the various land use variables, the percentage of developed land was found to have the highest importance and a negative relationship on low flow magnitudes, but was less important than wetlands and physical and climatic features. Our results suggest that management practices aimed to sustain low flows in fluvial systems can benefit from attention to specific watershed features. We draw attention to the finding that streams located in watersheds with high proportions of wetlands may require more stringent approaches to withdrawals to sustain fluvial ecosystems during drought periods, particularly in watersheds with extensive development and limited deposits of stratified drift. PMID:27136170

  19. Air- and Stream-Water-Temperature Trends in the Chesapeake Bay Region, 1960-2014

    USGS Publications Warehouse

    Jastram, John D.; Rice, Karen C.

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

  20. Constraints upon the Response of Fish and Crayfish to Environmental Flow Releases in a Regulated Headwater Stream Network

    PubMed Central

    Chester, Edwin T.; Matthews, Ty G.; Howson, Travis J.; Johnston, Kerrylyn; Mackie, Jonathon K.; Strachan, Scott R.; Robson, Belinda J.

    2014-01-01

    In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer–term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006–2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human–made dispersal barriers downstream need to be identified and ameliorated, to allow

  1. Constraints upon the response of fish and crayfish to environmental flow releases in a regulated headwater stream network.

    PubMed

    Chester, Edwin T; Matthews, Ty G; Howson, Travis J; Johnston, Kerrylyn; Mackie, Jonathon K; Strachan, Scott R; Robson, Belinda J

    2014-01-01

    In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer-term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006-2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human-made dispersal barriers downstream need to be identified and ameliorated, to allow

  2. Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.

    2015-01-01

    Equations developed in this study apply only to stream locations where flows are not substantially affected by regulation, diversion, or urbanization. All equations presented in this study will be incorporated into StreamStats, a web-based geographic information system tool developed by the U.S. Geological Survey. StreamStats allows users to obtain streamflow statistics, basin characteristics, and other information for user-selected locations on streams through an interactive map.

  3. Distribution of Amphipods (Gammarus nipponensis Ueno) Among Mountain Headwater Streams with Different Legacies of Debris Flow Occurrence

    EPA Science Inventory

    To understand the impacts of debris flows on the distribution of an amphipod with limited dispersal ability in the context of stream networks, we surveyed the presence of Gammarus nipponensis in 87 headwater streams with different legacies of debris flow occurrence within an 8.5-...

  4. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    PubMed

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. PMID:26209067

  5. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  6. Microbial responses to changes in flow status in temporary headwater streams: a cross-system comparison

    PubMed Central

    Febria, Catherine M.; Hosen, Jacob D.; Crump, Byron C.; Palmer, Margaret A.; Williams, D. Dudley

    2015-01-01

    Microbial communities are responsible for the bulk of biogeochemical processing in temporary headwater streams, yet there is still relatively little known about how community structure and function respond to periodic drying. Moreover, the ability to sample temporary habitats can be a logistical challenge due to the limited capability to measure and predict the timing, intensity and frequency of wet-dry events. Unsurprisingly, published datasets on microbial community structure and function are limited in scope and temporal resolution and vary widely in the molecular methods applied. We compared environmental and microbial community datasets for permanent and temporary tributaries of two different North American headwater stream systems: Speed River (Ontario, Canada) and Parkers Creek (Maryland, USA). We explored whether taxonomic diversity and community composition were altered as a result of flow permanence and compared community composition amongst streams using different 16S microbial community methods (i.e., T-RFLP and Illumina MiSeq). Contrary to our hypotheses, and irrespective of method, community composition did not respond strongly to drying. In both systems, community composition was related to site rather than drying condition. Additional network analysis on the Parkers Creek dataset indicated a shift in the central microbial relationships between temporary and permanent streams. In the permanent stream at Parkers Creek, associations of methanotrophic taxa were most dominant, whereas associations with taxa from the order Nitrospirales were more dominant in the temporary stream, particularly during dry conditions. We compared these results with existing published studies from around the world and found a wide range in community responses to drying. We conclude by proposing three hypotheses that may address contradictory results and, when tested across systems, may expand understanding of the responses of microbial communities in temporary streams to

  7. E. coli transport to stream water column from bottom sediments to the stream water column in base flow conditions

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov; Shelton, Daniel; Stocker, Matthew

    2016-04-01

    E. coli as an indicator bacterium is commonly used to characterize microbiological water quality, to evaluate surface water sources for microbiological impairment, and to assess management practices that lead to the decrease of pathogens and indicator influx in surface water sources for recreation and irrigation. Bottom sediments present a large reservoir of fecal indicator bacteria that are known to be released to water column during high flow events caused by rainstorms and snowmelt. The objective of this work was to see if the influx of E. coli from sediments to water occurs also during base flow periods when groundwater rather than runoff provides the major water input to the stream. The experiment was carried out at the first-order creek in Maryland flowing in the riparian zone in base flow conditions. An inert tracer was released to creek water from the manifold for 5 hours. Streamflow and concentrations of E. coli and tracer were monitored in water 10 m below tracer release location, and at the downstream location at 450 m from the release location. The tracer mass recovered at the downstream location was close to the released tracer mass. We then could directly compare the total numbers of E. coli in volumes of water containing tracer at the upstream (release) location and the downstream location. There was a substantial (3 to 6 times) increase in flow between the upstream and downstream locations as well as the substantial increase in the E. coli total numbers in water (14 to 26 times). The average E. coli influx from the bottom sediment was about 400 cells m-2s-1. Although this value is about 2 to 5 times less than published E. coli release rates during high flow events, it still can substantially change the microbial water quality assessment without any input from animal agriculture or manure application. Interesting research objectives include finding out whether the transport of E. coli from bottom sediment to water column during the base flow periods

  8. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Buraas, E. M.; Renshaw, C. E.

    2015-01-01

    Geomorphologists have long studied the impacts of extreme floods, yet the association between the magnitude of flow parameters (discharge, velocity, shear stress, or stream power) and resulting geomorphic effectiveness remains vague and non-deterministic. Attempts have been made to include flow duration and total expenditure of stream power, in combination with peak unit stream power, as important variables, but there has been minimal exploration of this hydraulic combination. Taking advantage of Tropical Storm Irene's rapid track through eastern Vermont (USA) in late summer 2011, this paper presents the array of geomorphic responses to a short duration (time to peak of < 8 h) but high magnitude flood that was the twentieth century flood of record for numerous watersheds. We present herein the geomorphic imprint of Tropical Storm Irene flooding within a larger context of fluvial theory concerning the role of, and trade-off between, the magnitude of energy expenditure during a flood and its duration. Focusing on a detailed field effort within the 187-km2 Saxtons River basin in southeastern VT, augmented by select sites along the adjacent lower gradient Williams River (291-km2), we elucidate (1) the geomorphic effects of a short duration flood in a humid, well-vegetated landscape; (2) the relationship between geomorphic response and (a) peak stream power, (b) total stream power, and (c) flow duration of stream power above a critical threshold; and (3) the spatial variation of geomorphic effects relative to reach-scale geologic and geomorphic controls. Flooding associated with Tropical Storm Irene ranged from the 1000 year recurrence interval (RI) flood (based on Weibull flood frequency analysis) to the 300 year RI flood (log Pearson Type III). Discharges spawned a peak unit stream power of 712 W/m2 (Saxtons River) and 361 W/m2 (Williams River), with total energy expenditure throughout the event of ~ 16,000 × 103 and 15,000 × 103 J, respectively. For the Saxtons

  9. Supersonic Air Flow due to Solid-Liquid Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Peters, Ivo R.; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2010-01-01

    A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle—with the key difference that here the “nozzle” is a liquid cavity shrinking rapidly in time.

  10. Computational and experimental study of spin coater air flow

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoguang; Liang, Faqiu; Haji-Sheikh, A.; Ghariban, N.

    1998-06-01

    An extensive 2- and 3-D analysis of air flow in a POLARISTM 2200 Microlithography Cluster spin coater was conducted using FLUENTTM Computational Fluid Dynamics (CFD) software. To supplement this analysis, direct measurement of air flow velocity was also performed using a DantecTM Hot Wire Anemometer. Velocity measurements were made along two major planes across the entire flow field in the spin coater at various operating conditions. It was found that the flow velocity at the spin coater inlet is much lower than previously assumed and quite nonuniform. Based on this observation, a pressure boundary condition rather than a velocity boundary condition was used for subsequent CFD analysis. A comparison between calculated results and experimental data shows that the 3D model accurately predicts the air flow field in the spin coater. An added advantage of this approach is that the CFD model can be easily generated from the mechanical design database and used to analyze the effect of design changes. The modeled and measured results show that the flow pattern in the spin bowl is affected by interactions between the spinning wafer, exhaust flow, and the gap between the spin head and surrounding baffle. Different operating conditions such as spin speed, inlet pressure, and exhaust pressure were found to generate substantially different flow patterns. It was also found that backflow of air could be generated under certain conditions.

  11. Low-noise flow valve for air ducts

    NASA Technical Reports Server (NTRS)

    Gallo, E. A.

    1970-01-01

    Valve assembly controls air flow from feeder into main duct, with minimum of turbulence, friction, pressure differential, and noise. Valve consists of damper, deflector, and spring. Streamlining of damper and deflector merges flow smoothly, while spring keeps damper and deflector in contact and eliminates valve chatter and damping vibrations.

  12. Riparian indicators of flow frequency in a tropical montane stream network

    NASA Astrophysics Data System (ADS)

    Pike, Andrew S.; Scatena, Frederick N.

    2010-03-01

    SummaryMany field indicators have been used to approximate the magnitude and frequency of flows in a variety of streams and rivers, yet due to a scarcity of long-term flow records in tropical mountain streams, little to no work has been done to establish such relationships between field features and the flow regime in these environments. Furthermore, the transition between the active channel of a river and the adjacent flood zone (i.e. bankfull) is an important geomorphologic and ecological boundary, but is rarely identifiable in steep mountain channels that lack alluvial flood plains. This study (a) quantifies relationships between field indicators and flow frequency in alluvial and steepland channels in a tropical mountain stream network and (b) identifies a reference active channel boundary in these channels, based on statistically defined combinations of riparian features, that corresponds to the same flow frequency of the bankfull stage and the effective discharge in adjacent alluvial channels. The relative elevation of transitions in riparian vegetation, soil, and substrate characteristics were first surveyed at nine stream gages in and around the Luquillo Experimental Forest in Northeastern Puerto Rico. The corresponding discharge, flow frequency, and recurrence intervals associated with these features was then determined from long-term 15-min discharge records and a partial duration series analysis. Survey data indicate that mosses and short grasses dominate at a stage often inundated by sub-effective flows. Herbaceous vegetation is associated with intermediate discharges that correspond to the threshold for sediment mobilization. Near-channel woody shrubs and trees establish at elevations along the channel margin inundated by a less frequent discharge that is coincident with the effective discharge of bed load sediment transport. Our data demonstrate that in alluvial channels in the study, both the bankfull stage (as marked by a flood plain) and the

  13. Air cooling : an experimental method of evaluating the cooling effect of air streams on air-cooled cylinders

    NASA Technical Reports Server (NTRS)

    Alcock, J F

    1927-01-01

    In this report is described an experimental method which the writer has evolved for dealing with air-cooled engines, and some of the data obtained by its means. Methods of temperature measurement and cooling are provided.

  14. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  15. Polymer-template-assisted growth of gold nanowires using a novel flow-stream technique.

    PubMed

    Metwalli, E; Moulin, J-F; Perlich, J; Wang, W; Diethert, A; Roth, S V; Müller-Buschbaum, P

    2009-10-01

    By utilizing a fluidic device, a gold nanoparticle dispersion is cast onto a nanostructured polymer template using solution subjected to hydrodynamic flow. With in situ grazing incidence small-angle X-ray scattering (GISAXS), the progressive gold deposition from a stream of gold solution onto the polymer template of a diblock copolymer with parallel cylinder morphology arranged into powder-like domains is investigated. The continuously flowing solution causes a systematic increase in the X-ray contrast between both of the microphase-separated blocks of the block copolymer film, indicating flow-induced selective gold immobilization on one block. Both in situ GISAXS data and atomic force microscopy of the metal-deposited polymer film prove the 1D coalescence of nanoparticles into continuous nanowires. With additional gold nanoparticle upload by the continuous flow-stream method, the selectivity of the nanoparticle deposition diminishes as a result of the formation of a pseudo uniform gold layer. Consequently, this flow-stream deposition technique introduces an easy alternative method to the vapor deposition technique for surface gold nanopatterning. PMID:19572494

  16. Assessing the ecological base and peak flow of the alpine streams in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Yang, P. S.; Tian, P. L.

    2009-04-01

    The ecological base and peak flow are crucial for the assessment and design for habitat rehabilitation and recovery. The amount of discharge affects the aquatic creatures and may severely damage the existence and balance of the community under extreme conditions. Aquatic insects are selected as the target species in this study to evaluate the influence of the discharge and to estimate the ecological base and peak flow. The distribution of the number of species and abundance (density) versus discharge is assessed to define the critical discharge. Two streams located at the alpine area in central Taiwan are selected as the study area to evaluate the base and peak flow. From the preliminary data (Aug 2008 to Dec 2008) collected from one stream Creek C originating from Sitou Area in Central Taiwan shows that the abundance of several species varies with the discharge. The dominate family and genus of aquatic insects is Baetidae (Order Ephemeroptera) and Baetis spp. that accounts for 32.47% and 31.11%, respectively. The Hilsenhoff family biotic index (FBI) shows that the water quality is classified to "Good" and "Very Good" level while the river pollution index (RPI) indicates that the stream is non-polluted. The discharge of base flow interpreted from the 95% curve of duration for the daily discharge is 0.0234 cms. Consistent observations are yet to be collected to yield more accurate result and ecological peak flow in rainy and typhoon seasons.

  17. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  18. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  19. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method

    NASA Astrophysics Data System (ADS)

    Murdoch, Peter S.; Shanley, James B.

    2006-08-01

    The effects of changes in acid deposition rates resulting from the Clean Air Act Amendments of 1990 should first appear in stream waters during rainstorms and snowmelt, when the surface of the watershed is most hydrologically connected to the stream. Early detection of improved stream water quality is possible if trends at high flow could be separately determined. Trends in concentrations of sulfate (SO42-), nitrate (NO3-), calcium plus magnesium (Ca2++Mg2+), and acid-neutralizing capacity (ANC) in Biscuit Brook, Catskill Mountains, New York, were assessed through segmented regression analysis (SRA). The method uses annual concentration-to-discharge relations to predict concentrations for specific discharges, then compares those annual values to determine trends at specific discharge levels. Median-flow trends using SRA were comparable to those predicted by the seasonal Kendall tau test and a multiple regression residual analysis. All of these methods show that stream water SO42- concentrations have decreased significantly since 1983; Ca2++Mg2+ concentrations have decreased at a steady but slower rate than SO42-; and ANC shows no trend. The new SRA method, however, reveals trends that differ at specified flow levels. ANC has increased, and NO3- concentrations have decreased at high flows, but neither has changed as significantly at low flows. The general downward trend in SO42- flattened at median flow and reversed at high flow between 1997 and 2002. The reversal of the high-flow SO42- trend is consistent with increases in SO42- concentrations in both precipitation and soil solutions at Biscuit Brook. Separate calculation of high-flow trends provides resource managers with an early detection system for assessing changes in water quality resulting from changes in acidic deposition.

  20. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method

    USGS Publications Warehouse

    Murdoch, Peter S.; Shanley, J.B.

    2006-01-01

    The effects of changes in acid deposition rates resulting from the Clean Air Act Amendments of 1990 should first appear in stream waters during rainstorms and snowmelt, when the surface of the watershed is most hydrologically connected to the stream. Early detection of improved stream water quality is possible if trends at high flow could be separately determined. Trends in concentrations of sulfate (8042-), nitrate (NO3-), calcium plus magnesium (Ca2++Mg 2+), and acid-neutralizing capacity (ANC) in Biscuit Brook, Catskill Mountains, New York, were assessed through segmented regression analysis (SRA). The method uses annual concentration-to-discharge relations to predict concentrations for specific discharges, then compares those annual values to determine trends at specific discharge levels. Median-flow trends using SRA were comparable to those predicted by the seasonal Kendall tau test and a multiple regression residual analysis. All of these methods show that stream water SO42- concentrations have decreased significantly since 1983; Ca2++Mg2+ concentrations have decreased at a steady but slower rate than SO42-; and ANC shows no trend. The new SRA method, however, reveals trends that differ at specified flow levels. ANC has increased, and NO3- concentrations have decreased at high flows, but neither has changed as significantly at low flows. The general downward trend in SO42- flattened at median flow and reversed at high flow between 1997 and 2002. The reversal of the high-flow SO42- trend is consistent with increases in SO 42- concentrations in both precipitation and soil solutions at Biscuit Brook. Separate calculation of high-flow trends provides resource managers with an early detection system for assessing changes in water quality resulting from changes in acidic deposition. Copyright 2006 by the American Geophysical Union.

  1. Evaporation of stationary alcohol layer in minichannel under air flow

    NASA Astrophysics Data System (ADS)

    Afanasyev, Ilya; Orlova, Evgenija; Feoktistov, Dmitriy

    2015-01-01

    This paper presents experimental investigation of effect of the gas flow rate moving parallel to the stationary liquid layer on the evaporation rate under the conditions of formation of a stable plane "liquid-gas" interface. The average evaporation flow rate of liquid layer (ethanol) by the gas flow (air) has been calculated using two independent methods. Obtained results have been compared with previously published data.

  2. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  3. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Ronan, A.D.; Prudic, D.E.; Thodal, C.E.; Constantz, J.

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Stream flow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured stream flow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data

  4. Magnetic Characterization of Stream-Sediments From Buenos Aires Province, Argentina, Affected by Pollution

    NASA Astrophysics Data System (ADS)

    Chaparro, M. A.; Sinito, A. M.; Bidegain, J. C.; Gogorza, C. S.; Jurado, S.

    2001-12-01

    A wide urban area from Northeast of Buenos Aires Province is exposed to an important anthropogenic influence, mainly due to industrial activity. In this two water streams were chosen: one of them (Del Gato stream, G) next to La Plata City and the another one (El Pescado stream, P) on the outskirts of the city. Both streams have similar characteristics, although the first one (G) has a higher input of pollutants (fluvial effluents, fly ashes, solid wastes, etc.) than the last one (P). Sediments analyzed in this work are limes from continental origin of PostPampeano (Holocene). Although, some cores were affected by sandy-limy sediments with mollusc valves from Querandino Sea (Pleistocene - later Holocene) and limy sediments of chestnut color with calcareous concretions from the Ensenadense. Magnetic measurements and geochemical studies were carried out on the samples. Among the magnetic parameters, specific susceptibility (X), X frequency-dependence (Xfd%), X temperature-dependence, Natural Remanent Magnetization (NRM), Isothermal Remanent Magnetization (IRM), Saturation IRM (SIRM), coercivity of remanence (Bcr), S ratio and SIRM/X ratio, Anhysteric Remanent Magnetization (ARM), Magnetic and Thermal Demagnetization were studied. The magnetic characteristics for both sites indicate the predominance of magnetically soft minerals on G site and relatively hard minerals on P site. Magnetite is the main magnetic carrier, Pseudo Single Domain and Single Domain grains were found. Chemical studies show (in some cases) a high concentration for some heavy metals (Pb, Cu, Zn, Ni and Fe) on the upper 22-cm. Contents of heavy metals and ARM were correlated. Very good correlation (R> 0.81) is found for Cu, Zn, Ni, Fe and the sum (of Pb, Cu, Zn and Ni), and a weaker correlation for Pb.

  5. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The

  6. Estimation of geomorphically significant flows in alpine streams of the Rocky Mountains, Colorado (USA)

    USGS Publications Warehouse

    Surian, N.; Andrews, E.D.

    1999-01-01

    Streamflows recorded at 24 gauging stations in the Rocky Mountains of Colorado were analyzed to derive regional regression equations for estimating the natural flow duration and flood frequency in reaches where the natural flows are unknown or have been altered by diversion or regulation. The principal objective of this analysis is to determine whether the relatively high, infrequent, but geomorphically and ecologically important flows in the Rocky Mountains can be accurately estimated by regional flow duration equations. The region considered in this study is an area of relatively abundant runoff, and, consequently, intense water resources development. The specific streams analyzed here, however, are unaltered and remain nearly pristine. Regional flow duration equations are derived for two situations. When the mean annual discharge is known, flows ??? 10% of the time can be estimated with an uncertainty of ??9% for the 10% exceedance flow, to ??11%forthe 1.0% exceedance flow. When the mean annual discharge is unknown, the relatively high, infrequent flow can be estimated using the mean basin precipitation rate (in m3/s), and basin relief with an uncertainty of ??23% for the 10% exceedance flow to ??21% for the 1.0% exeedance flow. The uncertainty in estimated discharges using the equations derived in this analysis is substantially smaller than has been previously reported, especially for the geomorphically significant flows which are relatively large and infrequent. The improvement is due primarily to the quality of streamflow records analyzed and a well-defined hydrologic region.

  7. Annular fuel and air co-flow premixer

    SciTech Connect

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  8. Geological control of flow in the Institute and Möller Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A.; Siegert, M. J.

    2012-12-01

    The conditions at the base of an ice sheet influence its flow, and reflect the ongoing interaction between moving ice and the underlying geology. Critical influences on ice flow include subglacial topography, bed lithology, and geothermal heat flux. These factors are influenced either directly by local geology, or by the regional tectonic setting. Geophysical methods have been used in many parts of Antarctica, such as the Siple Coast, to reveal the role subglacial geology plays in influencing ice flow. Until recently, however, the Institute and Möller Ice Streams, which drain ~20% of the West Antarctic Ice Sheet into the Weddell Sea, were only covered by sparse airborne radar (~50 km line spacing), and reconnaissance aeromagnetic data, limiting our understanding of the geological template for this sector of the West Antarctic Ice Sheet. Here we present our geological interpretation of the first integrated aerogeophysical survey over the catchments of the Institute and Möller Ice Streams, which collected ~25,000 km of new aerogeophysical data during the 2010/11 field season. These new airborne radar, magnetic and gravity data reveals both the subglacial topography, and the subglacial geology. Our maps show the fastest flowing coastal part of the Institute Ice Stream crosses a sedimentary basin underlain by thinned continental crust. Further inland two distinct ice flow provinces are recognised: the Pagano Ice Flow Province, which follows the newly identified, ~75 km wide, sinistral strike-slip Pagano Fault Zone at the boundary between East and West Antarctica; and the Ellsworth Ice Flow Province, which is controlled by the Permo-Triassic structural grain of folded Middle Cambrian-Permian meta-sediments, and Jurassic granitic rocks which form significant subglacial highlands. Our new data highlight the importance of understanding subglacial geology when explaining the complex pattern of ice flow observed in the ice sheet interior.

  9. Magnitude and frequency of high flows of unregulated streams in Kansas

    USGS Publications Warehouse

    Jordan, P.R.

    1984-01-01

    Information on high flow magnitude and frequency is needed for hydrologic evaluation of such factors as flood control storage and dam safety. High flow information given in this report is for streamflows unaffected by major regulation, such as by large reservoirs. High flow magnitude and frequency data are given for 91 streamflow gaging stations throughout Kansas. Results of frequency calculations are given for durations of high flow of 1 , 3, 7, 15, 30, 60, 90, 120, and 183 consecutive days. Accuracy of the magnitude-frequency values is influenced by the variability of flow, the number of years of flow record, and the recurrence interval calculated. High flow magnitude and frequency for ungaged sites can be estimated from regression equations using significant drainage basin characteristics of contributing-drainage area; 50-yr, 24-hr rainfall; and free-water-surface evaporation. Standard errors of estimate for ungaged sites on ungaged streams range from 31% to 49%, generally increasing with recurrence interval. If an ungaged site is near a gaging station having 10 or more yr of record on the same stream, the data for the gaging station may be used to improve the regression estimates. (Author 's abstract)

  10. Magnitude and frequency of high flows of unregulated streams in Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert

    1986-01-01

    Information on high-flow magnitude and frequency is needed for hydrologic evaluation of such factors as flood-control storage and dam safety. High-flow information given in this report is for streamflows unaffected by major regulation, such as by large reservoirs. High-flow magnitude and frequency data are given for 91 streamflow-gaging stations throughout Kansas. Results of frequency calculations are given for durations of high flow of 1, 3, 7, 15, 30, 60, 90, 120, and 183 consecutive days. Accuracy of the magnitude-frequency values is influenced by the variability of flow, the number of years of flow record, and the recurrence interval calculated. High-flow magnitude and frequency for ungaged sites can be estimated from regression equations using significant drainage-basin characteristics of contributing-drainage area; 50-year, 24-hour rainfall; and free-water-surface evaporation. Standard errors of estimate for ungaged sites on ungaged streams range from 31 to 49 percent, generally increasing with recurrence interval. If an ungaged site is near a gaging station having 10 or more years of record on the same stream, the data for the gaging station may be used to improve the regression estimates.

  11. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  12. An evaluation of the relations between flow regime components, stream characteristics, species traits and meta-demographic rates of warmwater stream fishes: Implications for aquatic resource management

    USGS Publications Warehouse

    Peterson, James T.; Shea, C.P.

    2015-01-01

    Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Methods for Estimating Magnitude and Frequency of Peak Flows for Natural Streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  14. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, L.B.; Antweiler, R.C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, H.E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  15. Flowing catalyst particles in annular stream around a plug in lift pot

    SciTech Connect

    Skraba, F.W.

    1987-06-23

    A catalytic cracking process is described comprising (a) flowing a stream of hot cracking catalyst particles longitudinally through at least a portion of a lift pot in an annular stream around a plug which is positioned in the lift pot and which has an upstream end; a downstream end and a longitudinal axis; the hot cracking catalyst particles flow generally radially inwardly toward the plug axis past the downstream end of the plug, and then longitudinally into a riser-reactor; (b) introducing an oil feedstock into the stream of hot cracking catalyst particles as it is moving radially inwardly from around the periphery of the downstream end of the plug for the formation of a reaction mixture with the hot cracking catalyst. The hot catalyst particles and the oil feedstock moves at approximately right angles to each other at the point at which the oil feedstock is introduced; and (c) flowing the reaction mixture through the riser-reactor and into a disengagement chamber. The mixture flows into the disengagement chamber comprising cracked oil product and catalyst particles.

  16. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  17. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  18. A millennium-length reconstruction of Bear River stream flow, Utah

    NASA Astrophysics Data System (ADS)

    DeRose, R. J.; Bekker, M. F.; Wang, S.-Y.; Buckley, B. M.; Kjelgren, R. K.; Bardsley, T.; Rittenour, T. M.; Allen, E. B.

    2015-10-01

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region's agricultural, urban, and wildlife needs, our understanding of the variability of Bear River's stream flow derives entirely from the short instrumental record (1943-2010). Here we present a 1200-year calibrated and verified tree-ring reconstruction of stream flow for the Bear River that explains 67% of the variance of the instrumental record over the period from 1943 to 2010. Furthermore, we developed this reconstruction from a species that is not typically used for dendroclimatology, Utah juniper (Juniperus osteosperma). We identify highly significant periodicity in our reconstruction at quasi-decadal (7-8 year), multi-decadal (30 year), and centennial (>50 years) scales. The latter half of the 20th century was found to be the 2nd wettest (∼40-year) period of the past 1200 years, while the first half of the 20th century marked the 4th driest period. The most severe period of reduced stream flow occurred during the Medieval Warm Period (ca. mid-1200s CE) and persisted for ∼70 years. Upper-level circulation anomalies suggest that atmospheric teleconnections originating in the western tropical Pacific are responsible for the delivery of precipitation to the Bear River watershed during the October-December (OND) season of the previous year. The Bear River flow was compared to recent reconstructions of the other tributaries to the Great Salt Lake (GSL) and the GSL level. Implications for water management could be drawn from the observation that the latter half of the 20th century was the 2nd wettest in 1200 years, and that management for future water supply should take into account the stream flow variability over the past millennium.

  19. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    PubMed

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  20. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  1. Cross-flow versus counterflow air-stripping towers

    SciTech Connect

    Little, J.C.; Marinas, B.J.

    1997-07-01

    Mass-transfer and pressure-drop packing performance correlations are used together with tower design equations and detailed cost models to compare the effectiveness of cross-flow and counterflow air stripping towers over a wide range of contaminant volatility. Cross-flow towers are shown to offer a significant economic advantage over counterflow towers when stripping low volatility organic contaminants primarily due to savings in energy costs. These savings increase as contaminant volatility decreases and as water flow rate increases. A further advantage of the cross-flow configuration is that it extends the feasible operating range for air stripping as cross-flow towers can accommodate higher air-to-water flow ratios than conventional counterflow towers. Finally it is shown that the optimized least-cost design for both counterflow and cross-flow towers varies with Henry`s law constant, water flow rate, and percent removal, but that the optimum is virtually insensitive to other cost and operating variables. This greatly simplifies the tower design procedure.

  2. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  3. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  4. Evaluation of a method of estimating low-flow frequencies from base-flow measurements at Indiana streams

    USGS Publications Warehouse

    Wilson, John Thomas

    2000-01-01

    A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In

  5. Leading-edge receptivity to free-stream disturbance waves for hypersonic flow over a parabola

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    2001-08-01

    The receptivity of hypersonic boundary layers to free-stream disturbances, which is the process of environmental disturbances initially entering the boundary layers and generating disturbance waves, is altered considerably by the presence of bow shocks in hypersonic flow fields. This paper presents a numerical simulation study of the generation of boundary layer disturbance waves due to free-stream waves, for a two-dimensional Mach 15 viscous flow over a parabola. Both steady and unsteady flow solutions of the receptivity problem are obtained by computing the full Navier Stokes equations using a high-order-accurate shock-fitting finite difference scheme. The effects of bow-shock/free-stream-sound interactions on the receptivity process are accurately taken into account by treating the shock as a discontinuity surface, governed by the Rankine-Hugoniot relations. The results show that the disturbance waves generated and developed in the hypersonic boundary layer contain both first-, second-, and third-mode waves. A parametric study is carried out on the receptivity characteristics for different free-stream waves, frequencies, nose bluntness characterized by Strouhal numbers, Reynolds numbers, Mach numbers, and wall cooling. In this paper, the hypersonic boundary-layer receptivity is characterized by a receptivity parameter defined as the ratio of the maximum induced wave amplitude in the first-mode-dominated region to the amplitude of the free-stream forcing wave. It is found that the receptivity parameter decreases when the forcing frequency or nose bluntness increase. The results also show that the generation of boundary layer waves is mainly due to the interaction of the boundary layer with the acoustic wave field behind the bow shock, rather than interactions with the entropy and vorticity wave fields.

  6. EFFECTS OF LOW FLOW ON INVASION PROCESS OF EXOTIC STREAM INVERTEBRATES

    NASA Astrophysics Data System (ADS)

    Yamane, Naoya; Sakai, Toru; Miyake, Yo

    This study aimed to demonstrate recent invasion status and low-flow resistance of two exotic invertebrates, Pyasa acuta and Crangonyx floridanus, in Shigenobu River, Ehime, Japan. Six years of longitudinal survey revealed that density of these two invasive species were high in the middle and lower segments of the mainstem, in which stream habitats were degraded. Furthermore, the distribution of Crangonyx floridanus appeared to expand toward upstream along the river. A short-term survey during a descending flow showed that Crangonyx floridanus decreased along with other major invertebrate taxa. In contrast, relative abundance of Pyasa acuta increased as flow decreased, indicating that this invasive species has relatively high resistance to low flow. Thus, low flow was suggested to facilitate the invasion of Pyasa acuta.

  7. Regulation of ice stream flow through subglacial formation of gas hydrates

    NASA Astrophysics Data System (ADS)

    Winsborrow, Monica; Andreassen, Karin; Hubbard, Alun; Plaza-Faverola, Andreia; Gudlaugsson, Eythor; Patton, Henry

    2016-05-01

    Variations in the flow of ice streams and outlet glaciers are a primary control on ice sheet stability, yet comprehensive understanding of the key processes operating at the ice-bed interface remains elusive. Basal resistance is critical, especially sticky spots--localized zones of high basal traction--for maintaining force balance in an otherwise well-lubricated/high-slip subglacial environment. Here we consider the influence of subglacial gas-hydrate formation on ice stream dynamics, and its potential to initiate and maintain sticky spots. Geophysical data document the geologic footprint of a major palaeo-ice-stream that drained the Barents Sea-Fennoscandian ice sheet approximately 20,000 years ago. Our results reveal a ~250 km2 sticky spot that coincided with subsurface shallow gas accumulations, seafloor fluid expulsion and a fault complex associated with deep hydrocarbon reservoirs. We propose that gas migrating from these reservoirs formed hydrates under high-pressure, low-temperature subglacial conditions. The gas hydrate desiccated, stiffened and thereby strengthened the subglacial sediments, promoting high traction--a sticky spot--that regulated ice stream flow. Deep hydrocarbon reservoirs are common beneath past and contemporary glaciated areas, implying that gas-hydrate regulation of subglacial dynamics could be a widespread phenomenon.

  8. Mitigation of biocide and fungicide concentrations in flow-through vegetated stream mesocosms.

    PubMed

    Stang, Christoph; Elsaesser, David; Bundschuh, Mirco; Ternes, Thomas A; Schulz, Ralf

    2013-11-01

    Organic chemicals entering surface waters may interact with aquatic macrophytes, which in turn may reduce potential negative effects on aquatic organisms. The overall objective of the present study was to determine the significance of aquatic macrophytes to the retention of organic chemicals in slow-flowing streams and thus their contribution to the mitigation of the risks that these compounds may pose to aquatic ecosystems. Hence, we conducted a study on the mitigation of the biocides triclosan and triclocarban and the fungicides imazalil, propiconazole and thiabendazole, which were experimentally spiked to five flow-through stream mesocosms (45 m length, 0.4 m width, 0.26 m water depth, discharge 1 L/s), four of which were planted with the submerged macrophyte (Planch.). Chemical analyses were performed using liquid chromatography-tandem mass spectrometry following solid-phase extraction for water samples and accelerated solvent extraction for macrophyte and sediment samples. The peak reductions of biocide and fungicide concentrations from the inlet to the outlet sampling sites were ≥48% in all stream mesocosms, and the peak reductions in the vegetated stream mesocosms were 20 to 25% greater than in the unvegetated mesocosm. On average, 7 ± 3 to 10 ± 3% and 28 ± 8 to 34 ± 14% of the initially applied amount of fungicides and biocides, respectively, were retained by macrophytes. There was a significant correlation between retention by macrophytes and the lipophility of the compounds. PMID:25602429

  9. Effect of snow accumulation and melt on the stream flow in the Jordan River, East Mediterranean

    NASA Astrophysics Data System (ADS)

    Rimmer, Alon; Hartmann, Andreas

    2010-05-01

    Snow melt on high mountains, at low latitudes (<40 degrees N), can be an important component of the surface water flow during the winter and spring seasons. As opposed to snow cover at high latitudes which are persistent due to below zero temperatures, snow cover in warmer climates is rapidly changing, potentially resulting in several complete melting cycles during one winter season. In the Mt. Hermon region (Israel-Lebanon-Syria border, East Mediterranean, ~33.5 degrees N) previous studies have concluded that snow storage accounts for ~10% of the Jordan River annual yields. Here we apply a modified version of HYdrological Model for Karst Environment (HYMKE) to estimate the effect of snow accumulation and snow melt on the timing of stream flow in the Jordan River. It is a system approach, physically based karst hydrology model, which receives daily precipitation and potential evaporation time series as input. The modeled fast flow stream component is correlated with the physical area of the catchment, while the area of the groundwater aquifer is a parameter which is calibrated against the separated measured baseflow. We have added a snowmelt routine before the main equations in HYMKE creating the following model structure: the snow routine (1), surface layer water balance (2), surface ("fast") flow (3), vadose zone flow (4), and groundwater ("base flow", 5). The new snowmelt routine uses the measured precipitation and temperature data, and analyzes it separately to produce snow and snowmelt at 56 discrete stripes of 50 m' height each, ranging in elevation from 75 m' to 2825 m'. It uses a standard HBV (Hydrological Bureau Waterbalance-section) approach based on a degree-day temperature-index. With current available temperature data the actual temperature gradient was calibrated, and the daily temperature at each elevation stripe was evaluated. However, due to the lack of measured snowmelt, several parameters of the model could not be calibrated, and were adopted

  10. Acoustically induced streaming flows near a model cod otolith and their potential implications for fish hearing.

    PubMed

    Kotas, Charlotte W; Rogers, Peter H; Yoda, Minami

    2011-08-01

    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear's sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8-24 Hz, corresponding to an actual frequency range of 280-830 Hz. Phase-locked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species. PMID:21877817

  11. Acoustically Induced Streaming Flows near a Model Cod Otolith and their Potential Implications for Fish Hearing

    SciTech Connect

    Kotas, Charlotte W; Rogers, Peter; Yoda, Minami

    2011-01-01

    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.

  12. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  13. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  14. Prediction of effects of daily flow fluctuations on stream biota. Technical completion report

    SciTech Connect

    Hooper, F.F.; Ottey, D.R.

    1982-12-01

    The short-term effects of regulated daily discharges on benthos communities were examined in a small Michigan trout stream. Flow regulation designs simulated fluctuations produced by storage and release for hydroelectric generation, as well as different constant daily stream diversions. Impacts on the dynamics of micro-distribution, species diversity, and behavior were evaluated on stable artificial substrates. Invertebrate drift rates were measured at different discharges during light and dark periods. The caddisfly G. nigrior became less active and oriented downstream when exposed to high discharge, and underwent movements to protected substrate faces. The mayfly Baetis vagans also changed micro-positioning in response to flow fluctuations, but total density changes generally were more pronounced. There was evidence for increased species diversity during low discharges.

  15. Quantifying the contribution of land use and climate change to stream flow alteration in tropical catchments

    NASA Astrophysics Data System (ADS)

    Marhaento, Hero; Booij, Martijn J.; Hoekstra, Arjen Y.

    2015-04-01

    A new approach is introduced to measure the quantitative contribution of land use and climate change to stream flow alteration based on the changes in the proportion of excess water relative to changes in the proportion of excess energy. The quantitative contribution is estimated based on three measures: (1) the resultant length (R) which indicates the magnitude of the changes in the proportion of excess water and energy with a higher resultant indicating a higher magnitude; (2) the slope of change (θ in arc degree) which indicates the magnitude of the contribution of land use and climate changes with a higher slope reflecting a higher contribution of climate change; and (3) the relative contribution of land use and climate changes to stream flow alteration (C in %). In this study, we applied our approach to five catchments (Pidekso, Keduang, Samin, Madiun and Kening) ranging in size from 234 to 3759 km2 on Java, Indonesia. The hydro-climatic data cover the period 1975 - 2012 and the land use maps acquired from multi-temporal satellite imageries (i.e. for the years 1972, 1994, 2002 and 2013) were used and analyzed. The approach consists of four steps: (1) performing abrupt change detection on annual stream flow using Pettitt's test; (2) calculating the proportion of excess water and the proportion of excess energy for the period before and after the abrupt change of the stream flow; (3) calculating the quantitative contribution of land use and climate change to stream flow changes; (4) comparing the results with the Mann-Kendall trend analysis of variability in precipitation and potential evapotranspiration, and the land use change analysis. The results show that all catchments have a simultaneous increase of the proportion of excess water and energy for the period after the abrupt change compared to the period before the abrupt change. The Samin catchment gives the highest R value with a value of 0.9 followed by Pidekso catchment (0.7), Keduang catchment (0

  16. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...EPA is announcing a 30-day public comment period for the draft document titled, ``Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that either ERG or Versar, EPA contractors for external scientific peer review, will select an independent group of experts to conduct a letter peer review of the draft document.......

  17. Relation Between Fog & Summer Stream Flow on the North Coast of California in Redwood National Park

    NASA Astrophysics Data System (ADS)

    Lavery, K.

    2012-12-01

    There are three common definitions of fog; visibility less than 800 meters (Dawson 1998), ceiling height less than 400 meters (Liepper 1995, Johnstone & Dawson 2010) or low level stratus that touches the ground. Regardless of the definition used the ecological importance of fog is evidenced by the commonly used term occult precipitation i.e. water that is not accounted for. Fog is most common on the coast of Northern California during summer, the time of least precipitation. The diurnal flux in stream flows is also most evident in the summer. Diurnal flux and seasonal trends in stream flow are thought to be controlled by precipitation and evapotranspiration. Fog impacts both precipitation and evapotranspiration. While changes in fog regimes are expected to occur as a result of climate change, the ability to measure fog and anticipate the implications are in nascent stages. Although, methods for detecting fog using satellite imagery have been developed they have not been perfected and they generally only give height info for the cloud deck (top of clouds). Although deck height is important for aviation and enables some inference of what is occurring on the ground the thickness and base height are important variables for developing a greater understanding of the impacts of fog. Fog harps will be used to detect fog on the ground. Fog harp data will be compared with the results of satellite imagery analysis for presence or absence of fog. After detrending, stream flow data will be divided into categories of fog and no fog. The two categories will be tested for a statistically significant difference. The results have the potential to help solve a piece of the climate change puzzle. The data will help with the anticipation of change in stream flows in areas with high levels of summer fog and Mediterranean climates as well as refine techniques for analyzing satellite imagery for presence or absence of fog.

  18. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2014-12-01

    The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump. PMID:25001051

  19. Fine Magnetic Structure and Origin of Counter-streaming Mass Flows in a Quiescent Solar Prominence

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Liu, Yu; Liu, Ying D.; Chen, P. F.; Su, Jiangtao; Xu, Zhi; Liu, Zhong

    2015-11-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  20. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  1. Ecological Response to Extreme Flow Events in Streams and Rivers: Implications of Climate Change for Aquatic Biodiversity

    NASA Astrophysics Data System (ADS)

    Hawkins, C. P.; Vander Laan, J. J.; Dhungel, S.; Tarboton, D. G.

    2014-12-01

    We used the USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) data to assess the potential sensitivity of stream biodiversity to both spatial variation in measures of extreme flow and likely changes in extreme flows associated with projected climate change. The NRSA data consisted of macroinvertebrate samples collected at 1313 reference-quality sites. We characterized the hydrologic regimes at each of these sites by developing Random Forest empirical models from long-term (≥ 20 years) daily flow records obtained from 601 gaged USGS stations. These models described spatial variation in 16 flow variables as a function of climate and watershed attributes. Three of the models characterized aspects of extreme flow: the mean number of zero-flow events per year (ZeroDays), the mean number of high-flow events per year (HighDays = number of events per year that exceed the 95th percentile of mean annual flow), and the coefficient of variation of daily flows (CV). We used these models to predict the flow attributes expected at each of the 1313 sites with ecological data. We then built additional Random Forest models that related among-site differences in stream macroinvertebrate taxonomic composition, assemblage richness, and the likelihood of observing individual taxa to the 16 measures of flow regime and other environmental predictors. At the national level, ZeroDays was an important predictor of macroinvertebrate biodiversity: richness declined as ZeroDays increased. A similar pattern was observed when analyses were restricted to lowland and plains streams. For eastern highland streams, HighDays was a better predictor of stream biodiversity than aspects of low flow: richness declined as HighDays increased. For western streams, CV was a better predictor of biodiversity than either ZeroDays or HighDays: biodiversity decreased as CV increased. Empirical models that linked flow attributes to climate change projections imply that flow regime response to climate

  2. Air flow management in an internal combustion engine through the use of electronically controlled air jets

    SciTech Connect

    Swain, M.R.

    1988-12-27

    This patent describes a means for producing an air/fuel mixture in the valve pocket and means for directing the air/fuel mixture past the intake valve into the combustion chamber, the improvement comprising a device for generating a swirling flow of the air/fuel mixture in the combustion chamber to thereby obtain greater combustion stability. The device has a nozzle positioned within the valve pocket and directed at an acute angle toward the intake valve comprising at least one opening for receiving air, connected to a first pathway, and at least one opening for expelling air, connected, to a second pathway joined to the first pathway and extending to the expulsion opening. The device also includes a means for controlling the flow of air through the pathway and out the expulsion opening comprising: (i) a stopper having sides complementary in shape to the pair of opposed arcuate walls movable from an open position allowing air through the pathway to a closed position, wherein the sides of the stopper are in a sealed relationship with the opposed arcaute sides of the junction thereby preventing the flow of air through the second pathway and out of the expulsion opening; and (ii) an electronic computer which determines the size and duration of the pathway opening.

  3. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  4. Integrated air stream micromixer for performing bioanalytical assays on a plastic chip.

    PubMed

    Geissler, Matthias; Li, Kebin; Zhang, Xuefeng; Clime, Liviu; Robideau, Gregg P; Bilodeau, Guillaume J; Veres, Teodor

    2014-10-01

    This paper describes the design, functioning and use of an integrated mixer that relies on air flux to agitate microliter entities of fluid in an embedded microfluidic cavity. The system was fabricated from multiple layers of a thermoplastic elastomer and features circuits for both liquid and air supply along with pneumatic valves for process control. Internally-dyed polymer particles have been used to visualize flow within the fluid phase during agitation. Numerical modelling of the micromixer revealed an overall efficacy of 10(-1) to 10(-2) for momentum transfer at the air-water interface. Simulation of air vortex dynamics showed dependency of the flow pattern on the velocity of the flux entering the cavity. Three bioanalytical assays have been performed as proof-of-concept demonstrations. In a first assay, cells of Listeria monocytogenes were combined with magnetic nanoparticles (NPs), resulting in high-density coverage of the bacteria's surface with NPs after 1 min of agitation. This finding is contrasted by a control experiment without agitation for which interaction between bacteria and NPs remains low. In a second one, capture and release of genomic DNA from fungi through adsorption onto magnetic beads was tested and shown to be improved by agitation compared to non-agitated controls. A third assay finally involved fluorescently-labelled target oligonucleotide strands and polystyrene particles modified with DNA capture probes to perform detection of nucleic acids on beads. Excellent selectivity was obtained in a competitive hybridization process using a multiplexed micromixer chip design. PMID:25091476

  5. Effect of single silica gel particle adsorption on the transport processes in a humid air stream

    NASA Astrophysics Data System (ADS)

    Sanyal, Apratim; Basu, Saptarshi; Kumar, Pramod

    2013-11-01

    The effect of adsorption due to a single silica gel particle on a convective field consisting of humid air has been investigated numerically. The adsorption is incorporated as a sink term in the transport equation for species (water vapor) and has been modeled using Linear Driving Force model, while the heat released due to adsorption is taken as source term in the energy equation and proportional to the amount of water vapor adsorbed. The heat released creates a coupling between the species and the temperature field as the adsorption characteristics are directly influenced by particle temperature. The extent of species and temperature boundary layer show the diffusion of the adsorption effects into the free stream. Surface adsorption is found to decrease with Reynolds no. The particle surface temperature increases from forward stagnation point till downstream. This work provides a model for understanding the adsorption kinetics in convective stream for other adsorbate-adsorbent pair. Further more complex scenarios can be modeled such as presence of multiple adsorbent particles, the interaction of species and temperature boundary layers setup due to individual particles and their influence on the overall adsorption characteristics.

  6. Strategies for NO{sub x} cleanup from air streams using dielectric barrier discharges

    SciTech Connect

    Gentile, A.C.; Kushner, M.J.

    1993-12-01

    Efficient processes for the removal of NO{sub x} from exhaust gases due to the combustion of fossil fuels is of increasing interest due to stringent EPA limits on allowable emissions. Strategies for plasma remediation of NO{sub x} using both reduction (N + NO {yields} N{sub 2} + O) and oxidation (NO{sub 2} + OH {yields} HNO{sub 3}) techniques are being developed as an energy efficient cleansing method. The dry reduction technique is preferred since there is no acidic waste product. The authors have developed a plasma chemistry computer model for atmospheric pressure gas streams excited by dielectric barrier discharges to investigate optimum methods to remove NO{sub x} from air. They will report on efficiencies for removing 100s ppm of NO{sub x} while varying water content and power deposition. Comparisons will be made to experiments by Chang et. al.

  7. Real-time dissemination of air quality information using data streams and Web technologies: linking air quality to health risks in urban areas.

    PubMed

    Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan

    2015-06-01

    This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed. PMID:26110480

  8. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows

    PubMed Central

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  9. Large-eddy simulation of flow past a real-life stream restoration structure

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Sotiropoulos, Fotis

    2011-11-01

    We carry out high-resolution large-eddy simulation (LES) of flow around a rock vane, which is a widely used stream restoration structure. Mean velocities and turbulence statistics collected downstream of the rock vane installed in a laboratory flume are compared with the LES results. The comparisons demonstrate that the LES is able to accurately predict the measured mean velocities and turbulence statistics. The simulation shows that the rock vane effectively directs the oncoming flow away from the structure and creates a reduced velocity region in the downstream region. The computed results also reveal that the rock vane creates strong secondary helical flow that directs the near-bed flow toward the sidewall to which the rock vane is attached. This finding points to the conclusion that the downstream secondary flow can create deposition of sediments near the sidewall in a mobile bed condition, which can serve as an important mechanism for protecting near-bank scour in natural streams. This work was supported by National Center for Earth-surface Dynamics (NCED), ECORIVER21 project in South Korea, National Cooperative Highway Research Program (NCHRP) and Minnesota Supercomputing Institue (MSI).

  10. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows.

    PubMed

    Kumar, Haribalan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2011-04-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan-Carpenter (K(C)) number. PMID:21580803

  11. Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study.

    PubMed

    Baken, Stijn; Regelink, Inge C; Comans, Rob N J; Smolders, Erik; Koopmans, Gerwin F

    2016-08-01

    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments. PMID:27140905

  12. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  13. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.

    2012-01-01

    Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.

  14. Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream

    USGS Publications Warehouse

    Snyder, C.D.; Johnson, Z.B.

    2006-01-01

    In June 1995, heavy rains caused severe flooding and massive debris flows on the Staunton River, a 3rd-order stream in the Blue Ridge Mountains (Virginia, USA). Scouring caused the loss of the riparian zone and repositioned the stream channel of the lower 2.1 km of the stream. Between 1998 and 2001, we conducted seasonal macroinvertebrate surveys at sites on the Staunton River and on White Oak Canyon Run, a reference stream of similar size and geology that was relatively unaffected by the flood. Our study was designed to determine the extent to which flood-induced changes to the stream channel and riparian habitats caused long-term changes to macroinvertebrate community structure and composition. Sites within the impacted zone of the Staunton River supported diverse stable benthic macroinvertebrate assemblages 3 y after the flood despite dramatic and persistent changes in environmental factors known to be important controls on stream ecosystem function. However, significant differences in total macroinvertebrate density and trophic structure could be attributed to the flood. In autumn, densities of most feeding guilds, including shredders, were higher at impacted-zone sites than at all other sites, suggesting higher overall productivity in the impacted zone. Higher shredder density in the impacted zone was surprising in light of expected decreases in leaf-litter inputs because of removal of riparian forests. In contrast, in spring, we observed density differences in only one feeding guild, scrapers, which showed higher densities at impacted-zone sites than at all other sites. This result conformed to a priori expectations that reduced shading in the impacted zone would lead to increased light and higher instream primary production. We attribute the seasonal differences in trophic structure to the effects of increased temperatures on food quality and to the relationship between the timing of our sampling and the emergence patterns of important taxa. ?? 2006 by The

  15. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  16. Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA

    USGS Publications Warehouse

    Machavaram, M.V.; Whittemore, D.O.; Conrad, M.E.; Miller, N.L.

    2006-01-01

    A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. ?? 2006 Elsevier B.V. All rights reserved.

  17. Parametrisation of initial conditions for seasonal stream flow forecasting in the Swiss Rhine basin

    NASA Astrophysics Data System (ADS)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2016-04-01

    Current climate forecast models show - to the best of our knowledge - low skill in forecasting climate variability in Central Europe at seasonal lead times. When it comes to seasonal stream flow forecasting, initial conditions thus play an important role. Here, initial conditions refer to the catchments moisture at the date of forecast, i.e. snow depth, stream flow and lake level, soil moisture content, and groundwater level. The parametrisation of these initial conditions can take place at various spatial and temporal scales. Examples are the grid size of a distributed model or the time aggregation of predictors in statistical models. Therefore, the present study aims to investigate the extent to which the parametrisation of initial conditions at different spatial scales leads to differences in forecast errors. To do so, we conduct a forecast experiment for the Swiss Rhine at Basel, which covers parts of Germany, Austria, and Switzerland and is southerly bounded by the Alps. Seasonal mean stream flow is defined for the time aggregation of 30, 60, and 90 days and forecasted at 24 dates within the calendar year, i.e. at the 1st and 16th day of each month. A regression model is employed due to the various anthropogenic effects on the basins hydrology, which often are not quantifiable but might be grasped by a simple black box model. Furthermore, the pool of candidate predictors consists of antecedent temperature, precipitation, and stream flow only. This pragmatic approach follows the fact that observations of variables relevant for hydrological storages are either scarce in space or time (soil moisture, groundwater level), restricted to certain seasons (snow depth), or regions (lake levels, snow depth). For a systematic evaluation, we therefore focus on the comprehensive archives of meteorological observations and reanalyses to estimate the initial conditions via climate variability prior to the date of forecast. The experiment itself is based on four different

  18. The Evolution of Flow Stripes and Internal Layers on Kamb Ice Stream, Antarctica

    NASA Astrophysics Data System (ADS)

    Campbell, I.; Welch, B.; Jacobel, R.; Pettersson, R.

    2006-12-01

    Flowstripes are ubiquitous features indicating fast ice flow on glaciers, ice streams and floating ice shelves. Model studies show that they are an expected consequence where flow is strongly convergent, or whenever velocity at the bed is large compared to shearing through the ice thickness (Gudmundsson et al., 1998). Under these conditions, basal undulations are effectively transmitted to the surface where they are advected for long distances downstream. Folding of internal layers depicted in radar profiles is also a common occurrence in ice streams. In the case of Kamb Ice Stream (KIS), "stacks" of internal layers folds on the scale of 1-3 kilometers in wavelength in the cross-flow direction have been traced for over 100 kilometers (Ng and Conway, 2004). The question is: What relationship, if any, do these folds have with respect to surface flowstripes? We have traced surface flowstripes in Radarsat and MODIS imagery for several hundred kilometers on KIS from the onset of streaming flow into the stagnant trunk. We compare the morphology and evolution of these features at the surface to the internal layer folds in cross-ice stream profiles at five transects along the length of KIS, including those analyzed by Ng and Conway (2004). We find little correspondence between the internal layer folds in the cross-flow radar profiles and the flowstripes seen on the surface directly above. The initial wavelengths of internal layer folds are generally in the range of 1-3 km and tend to converge downstream, ending with wavelengths typically less than a kilometer. Surface flowstripes, though having similar wavelengths (on the order of 1.5 to 3 km at onset), remain roughly subparallel for tens to hundreds of kilometers, eventually becoming less distinct as the ice stagnates but retaining their wavelength and spacing. We are thus able to identify examples where flowstripes cross above internal layers. The amplitude of internal layer folds we have measured decreases towards the

  19. Effects of a flood pulse on exchange flows along a sinuous stream

    NASA Astrophysics Data System (ADS)

    Käser, D.; Brunner, P.; Renard, P.; Perrochet, P.; Schirmer, M.; Hunkeler, D.

    2012-04-01

    Flood pulses are important events for river ecosystems: they create hydrological interactions at the terrestrial/aquatic interface that fuel biological productivity and shape the hyporheic-riparian habitats. For example, floods promote faunal activity and decomposition by increasing the supply of oxygenated water in downwelling areas, while the following recession periods tend to provide stable thermal conditions favoured by fish or insects in areas of groundwater upwelling. This 3-D modelling study investigates the effect of stream stage transience (with events characterised by their intensity and duration) on hydrological exchanges between the surface and the near-stream subsurface. It evaluates, in particular, its effect on streams of varying sinuosity by quantifying the dynamic response of: (1) subsurface flow paths, (2) the exchange pattern at the sediment-water interface, and (3) integrative measures such as total exchange flux and total storage. Understanding geomorphological controls on groundwater/surface water interactions is attractive because topography is generally better constrained than subsurface parameters, and can be used in data-poor situations. The numerical model represents a hypothetical alluvial plain limited by impervious bedrock on all four sides, and in which the channel meanders according to the sine-generated curve of Langbein and Leopold (1966). As the model (HydroGeoSphere) couples surface and subsurface flow, the stream stage transience is imposed by a fluctuating head at the channel inlet. Preliminary results show that a simple rectangular flood pulse in an idealised sinuous stream without additional complexity can generate multiple flow direction reversals at a single point in the channel. The initial conditions of the groundwater table, the channel sinuosity and the time characteristics of the flood pulse all control exchange flow features in different ways. Results are also compared with 'bank storage' analytical solutions that

  20. Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms.

    PubMed

    Corcoll, Natàlia; Casellas, Maria; Huerta, Belinda; Guasch, Helena; Acuña, Vicenç; Rodríguez-Mozaz, Sara; Serra-Compte, Albert; Barceló, Damià; Sabater, Sergi

    2015-01-15

    Increasing concentrations of pharmaceutical compounds occur in many rivers, but their environmental risk remains poorly studied in stream biofilms. Flow intermittency shapes the structure and functions of ecosystems, and may enhance their sensitivity to toxicants. This study evaluates the effects of a long-term exposure of biofilm communities to a mixture of pharmaceutical compounds at environmental concentrations on biofilm bioaccumulation capacity, the structure and metabolic processes of algae and bacteria communities, and how their potential effects were enhanced or not by the occurrence of flow intermittency. To assess the interaction between those two stressors, an experiment with artificial streams was performed. Stream biofilms were exposed to a mixture of pharmaceuticals, as well as to a short period of flow intermittency. Results indicate that biofilms were negatively affected by pharmaceuticals. The algal biomass and taxa richness decreased and unicellular green algae relatively increased. The structure of the bacterial (based on denaturing gradient gel electrophoresis of amplified 16S rRNA genes) changed and showed a reduction of the operational taxonomic units (OTUs) richness. Exposed biofilms showed higher rates of metabolic processes, such as primary production and community respiration, attributed to pharmaceuticals stimulated an increase of green algae and heterotrophs, respectively. Flow intermittency modulated the effects of chemicals on natural communities. The algal community became more sensitive to short-term exposure of pharmaceuticals (lower EC50 value) when exposed to water intermittency, indicating cumulative effects between the two assessed stressors. In contrast to algae, the bacterial community became less sensitive to short-term exposure of pharmaceuticals (higher EC50) when exposed to water intermittency, indicating co-tolerance phenomena. According to the observed effects, the environmental risk of pharmaceuticals in nature is high

  1. The Estimated Likelihood of Nutrients and Pesticides in Nontidal Headwater Streams of the Maryland Coastal Plain During Base Flow

    EPA Science Inventory

    Water quality in nontidal headwater (first-order) streams of the Coastal Plain during base flow in the late winter and spring is related to land use, hydrogeology, and other natural or human influences in contributing watersheds. A random survey of 174 headwater streams of the Mi...

  2. Flow duration of Kentucky streams through 1990; historical and monthly flow characteristics, including the effects of reservoirs

    USGS Publications Warehouse

    Ruhl, K.J.; Burns, R.J.; Martin, G.R.; Allgeier, D.P.

    1995-01-01

    This report presents flow-duration tables and plots for selected streamflow sites in Kentucky with three or more years of continuous record through 1990. Flow duration describes the frequency with which given streamflows are equalled or exceeded. The flow-duration tables were computed using daily mean discharge values for the entire period specified and for each month of the period specified. Only complete years of record were used for the computation. For sites where the streamflow is affected by regulation, separate tables are presented for the period before regulation (unregulated), the period of record after regulation (regulated) and the entire period of record (historical). Flow-duration plots are also presented for each station using the data for the entire period specified. Where practicable, several flow-duration plots are shown together. This includes stations on the same stream, such as main-stem stations, and stations within the same watershed. For stations affected by regulation, which have up to three sets of data available for one station (unregulated, regulated, and historical), the three plots are shown together to clearly illustrate the influence of regulation in augmenting low flows and reducing high flows.

  3. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    PubMed

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change. PMID:24363894

  4. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  5. Low-flow characteristics of streams in the Kishwaukee River basin, Illinois

    USGS Publications Warehouse

    Allen, Howard E., Jr.; Cowan, Ellen A.

    1985-01-01

    Seven-day, 2-year, and 7-day, 10-year natural low flows are estimated at five continuous-record gaging stations based on streamflow records and records of wastewater effluent furnished by treatment plants. Low flows are also estimated at 22 partial-record stations by relating natural low-flow estimates for long-term stations to discharge measurements at partial-record stations. Standard error of estimates for the 27 gaged sites averaged 33 percent for 2-year estimates and 51 percent for 10-year estimates. A technique for estimating flows at ungaged stream sites is based on drainage area and indexes of streamflow recession. Streamflow-recession indexes were used to account for effects of geology on low flows. Multiple-regression analyses relates the low flows to drainage area and streamflow recession rates. Average standard errors of estimates of 61 and 97 percent were indicated for the 2-year and 10-year estimating equations, respectively. Wastewater treatment plant location and effluent discharged during 7-day low-flow periods in 1981 are presented for use in adjusting natural low-flow estimates at gaged and ungaged sites to represent 1981 streamflow conditions. (USGS)

  6. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  7. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Timerkaev, B. A.; Zalyaliev, B. R.; Saifutdinov, A. I.

    2014-11-01

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  8. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  9. The Wells turbine in an oscillating air flow

    SciTech Connect

    Raghunathan, S.; Ombaka,

    1984-08-01

    An experimental study of the performance of a 0.2 m diameter Wells self rectifying air turbine with NACA 0021 blades is presented. Experiments were conducted in an oscillating flowrig. The effects of Reynolds number and Strouhal number on the performance of the turbine were investigated. Finally comparison between the results with the predictions from uni-directional flow tests are made.

  10. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  11. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  12. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  13. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  14. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  15. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  16. Nomogram for correcting drag and angle of attack of an airfoil model in an air stream of finite diameter

    NASA Technical Reports Server (NTRS)

    1924-01-01

    In experimenting with airfoil models in a wind tunnel, the magnitude of the forces acting on the model is affected by the fact that the air stream in which the model is suspended, has a restricted cross-section. In order to utilize the results for an airplane in an unlimited quantity of air, a correction must be made. The magnitude of this correction was determined by Prandtl by the application of his wing theory.

  17. Assessing the Vulnerability of Streams to Increased Frequency and Severity of Low Flows in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Konrad, C. P.

    2014-12-01

    A changing climate poses risks to the availability and quality of water resources. Among the risks, increased frequency and severity of low flow periods in streams would be significant for many in-stream and out-of-stream uses of water. While down-scaled climate projections serve as the basis for understanding impacts of climate change on hydrologic systems, a robust framework for risk assessment incorporates multiple dimensions of risks including the vulnerability of hydrologic systems to climate change impacts. Streamflow records from the southeastern US were examined to assess the vulnerability of streams to increased frequency and severity of low flows. Long-term (>50 years) records provide evidence of more frequent and severe low flows in more streams than would be expected from random chance. Trends in low flows appear to be a result of changes in the temporal distribution rather than the annual amount of preciptation and/or in evaporation. Base flow recession provides an indicator of a stream's vulnerability to such changes. Linkages between streamflow patterns across temporal scales can be used for understanding and asessing stream responses to the various possible expressions of a changing climate.

  18. Experimental determination of the structure coefficient of a twisted stream flowing in the intertube space of a heat exchanger

    NASA Astrophysics Data System (ADS)

    Dzyubenko, B. V.

    1981-05-01

    The dependence of the structure coefficient of a stream flowing in a bundle of helically curved tubes of oval profile on the determining parameters is established, along with the features of this system.

  19. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    NASA Astrophysics Data System (ADS)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  20. Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid.

    PubMed

    Whiteley, Andrew R; Coombs, Jason A; Cembrola, Matthew; O'Donnell, Matthew J; Hudy, Mark; Nislow, Keith H; Letcher, Benjamin H

    2015-07-01

    The effective number of breeders that give rise to a cohort (N(b)) is a promising metric for genetic monitoring of species with overlapping generations; however, more work is needed to understand factors that contribute to variation in this measure in natural populations. We tested hypotheses related to interannual variation in N(b) in two long-term studies of brook trout populations. We found no supporting evidence for our initial hypothesis that N^(b) reflects N^(c) (defined as the number of adults in a population at the time of reproduction). N^(b) was stable relative to N^(C) and did not follow trends in abundance (one stream negative, the other positive). We used stream flow estimates to test the alternative hypothesis that environmental factors constrain N(b). We observed an intermediate optimum autumn stream flow for both N^(b) (R(2) = 0.73, P = 0.02) and full-sibling family evenness (R(2) = 0.77, P = 0.01) in one population and a negative correlation between autumn stream flow and full-sib family evenness in the other population (r = -0.95, P = 0.02). Evidence for greater reproductive skew at the lowest and highest autumn flow was consistent with suboptimal conditions at flow extremes. A series of additional tests provided no supporting evidence for a related hypothesis that density-dependent reproductive success was responsible for the lack of relationship between N(b) and N(C) (so-called genetic compensation). This work provides evidence that N(b) is a useful metric of population-specific individual reproductive contribution for genetic monitoring across populations and the link we provide between stream flow and N(b) could be used to help predict population resilience to environmental change. PMID:26080621

  1. Sampling of air streams and incorporation of samples in the Microtox{trademark} toxicity testing system

    SciTech Connect

    Kleinheinz, G.T.; St. John, W.P.

    1997-10-01

    A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicity testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.

  2. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  3. Direct numerical simulation of stagnation region flow and heat transfer with free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Bae, Sungwon; Lele, Sanjiva K.; Sung, Hyung Jin

    2003-06-01

    A direct numerical simulation is performed for stagnation-region flow with free-stream turbulence. A fully implicit second-order time-advancement scheme with fourth-order finite differences and an optimized scheme are employed. The optimized scheme is developed to save computational cost. The free-stream turbulence is a precomputed field of isotropic turbulence. The present DNS results in the "damping" and "attached amplifying" regimes are found to be similar to those of the organized inflow disturbances. Emphasis is placed on the flow and temperature fields in the "detached amplifying" regime. The contours of instantaneous flow field illustrate that streamwise vortices are stretched in the streamwise direction by mean strain rate. The temperature field is also stretched in the streamwise direction near the wall. The surface contours reveal that the temperature field is influenced significantly by streamwise vorticity. Due to the dominance of the mean strain, the log-law region is not observed for ū and T˜, the inner scaling fails, but the outer scaling works. The single-point turbulence statistics and the turbulent statistics budgets are obtained. The flow statistics reflect the typical characteristics of stagnation-region flow which are generically different from those of other canonical shear flows. One of the typical features of the budgets is that the velocity pressure correlation and the turbulent transport play significant roles in the stagnation-region flow. Finally, the present simulation data are compared with experimental results. It is found that the effect of large-scale eddies on the enhancement of wall heat transfer is substantial in the turbulent stagnation-region heat transfer.

  4. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  5. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  6. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags.

    PubMed

    Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  7. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    PubMed Central

    Hocking, Daniel J.; O’Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O’Donnell, Matthew J.

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  8. Self-adjustment of stream bed roughness and flow velocity in a steep mountain channel

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Rickenmann, Dieter; Turowski, Jens M.; Kirchner, James W.

    2015-10-01

    Understanding how channel bed morphology affects flow conditions (and vice versa) is important for a wide range of fluvial processes and practical applications. We investigated interactions between bed roughness and flow velocity in a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) with almost flume-like boundary conditions. Bed gradient increases along the 1 km study reach by roughly 1 order of magnitude (S = 3-41%), with a corresponding increase in streambed roughness, while flow discharge and width remain approximately constant due to the glacial runoff regime. Streambed roughness was characterized by semivariograms and standard deviations of point clouds derived from terrestrial laser scanning. Reach-averaged flow velocity was derived from dye tracer breakthrough curves measured by 10 fluorometers installed along the channel. Commonly used flow resistance approaches (Darcy-Weisbach equation and dimensionless hydraulic geometry) were used to relate the measured bulk velocity to bed characteristics. As a roughness measure, D84 yielded comparable results to more laborious measures derived from point clouds. Flow resistance behavior across this large range of steep slopes agreed with patterns established in previous studies for both lower-gradient and steep reaches, regardless of which roughness measures were used. We linked empirical critical shear stress approaches to the variable power equation for flow resistance to investigate the change of bed roughness with channel slope. The predicted increase in D84 with increasing channel slope was in good agreement with field observations.

  9. Upper washita river experimental watersheds: reservoir, groundwater, and stream flow data.

    PubMed

    Moriasi, Daniel N; Starks, Patrick J; Guzman, Jorge A; Garbrecht, Jurgen D; Steiner, Jean L; Stoner, J Chris; Allen, Paul B; Naney, James W

    2014-07-01

    Surface and groundwater quantity and quality data are essential in many hydrologic applications and to the development of hydrologic and water quality simulation models. We describe the hydrologic data available in the Little Washita River Experimental Watershed (LWREW) of the Southern Great Plains Research Watershed (SGPRW) and Fort Cobb Reservoir Experimental Watershed (FCREW), both located in southwest Oklahoma. Specifically, we describe the flood retarding structures and corresponding stage, discharge, seepage, and consumptive use data (), stream gauges, and groundwater wells and their corresponding stream flow (; LWREW ARS 522-526 stream gauges) and groundwater level data (SGPRW groundwater levels data; LWREW groundwater data; ; ), respectively. Data collection is a collaborative effort between federal and state agencies. Stage, discharge, seepage, and consumptive use data for the Fort Cobb Reservoir are available from the Bureau of Reclamation and cover a period of 1959 to present. There are 15 stream gauges in the LWREW and six in the FCREW with varying data records. There were 479 observation wells with data in the SGPRW and 80 in the LWREW, with the latest records collected in 1992. In addition, groundwater level data are available from five real-time monitoring wells and 34 historical wells within the FCREW. These data sets have been used for several research applications. Plans for detailed groundwater data collection are underway to calibrate and validate the linked Soil and Water Assessment Tool (SWAT)-MODFLOW model. Also, plans are underway to conduct reservoir bathymetric surveys to determine the current reservoir capacity as affected by land use/land cover and overland and stream channel soil erosion. PMID:25603074

  10. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  11. Identifying Coherent Structures in a 3-Stream Supersonic Jet Flow using Time-Resolved Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Coleman, Thomas; Berry, Matthew; Magstadt, Andy; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Shock cells and large scale structures present in a three-stream non-axisymmetric jet are studied both qualitatively and quantitatively. Large Eddy Simulation is utilized first to gain an understanding of the underlying physics of the flow and direct the focus of the physical experiment. The flow in the experiment is visualized using long exposure Schlieren photography, with time resolved Schlieren photography also a possibility. Velocity derivative diagnostics are calculated from the grey-scale Schlieren images are analyzed using continuous wavelet transforms. Pressure signals are also captured in the near-field of the jet to correlate with the velocity derivative diagnostics and assist in unraveling this complex flow. We acknowledge the support of AFRL through an SBIR grant.

  12. Effects of flow regime on stream turbidity and suspended solids after wildfire, Colorado Front Range

    USGS Publications Warehouse

    Murphy, Sheila F.; McCleskey, R. Blaine; Writer, Jeffrey H.

    2012-01-01

    Wildfires occur frequently in the Colorado Front Range and can alter the hydrological response of watersheds, yet little information exists on the impact of flow regime and storm events on post-wildfire water quality. The flow regime in the region is characterized by base-flow conditions during much of the year and increased runoff during spring snowmelt and summer convective storms. The impact of snowmelt and storm events on stream discharge and water quality was evaluated for about a year after a wildfire near Boulder, Colorado, USA. During spring snowmelt and low-intensity storms, differences in discharge and turbidity at sites upstream and downstream from the burned areas were minimal. However, high-intensity convective storms resulted in dramatic increases in discharge and turbidity at sites downstream from the burned area. This study highlights the importance of using high-frequency sampling to assess accurately wildfire impacts on water quality downstream.

  13. On the far-field stream function condition for two-dimensional incompressible flows

    NASA Technical Reports Server (NTRS)

    Sa, Jong-Youb; Chang, Keun-Shik

    1990-01-01

    The present demonstration of the usefulness of the integral series expansion of the stream function as a far-field computational boundary condition shows the method to require only a 10-percent/time-step increase in computational effort over alternative boundary conditions, in the case of implementation of unsteady problems using a direct elliptic solver. So long as the vorticity was encompassed within the computational domain, the method proved sufficiently accurate to yield virtually identical results for two widely different domains. While the integral-series condition yielded the best results for periodic flow, the Neumann condition gave comparable accuracy with less computation time for the steady-flow case despite its inability to treat periodic flow with vortex shedding.

  14. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOEpatents

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  15. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    PubMed

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses. PMID:26738843

  16. Impact of streambed heterogeneity on hyporheic exchange fluxes under losing and gaining stream flow conditions

    NASA Astrophysics Data System (ADS)

    Fox, Aryeh; Laube, Gerrit; Schmidt, Christian; Fleckenstein, Jan H.; Arnon, Shai

    2015-04-01

    Biogeochemical processes in streams are affected by water exchange between the surface and subsurface environments (e.g. hyporheic exchange). It has previously been shown that hyporheic exchange is strongly affected by the local morphology of the streambed and the flow conditions, including overlying water velocity and losing or gaining fluxes. The objectives of this work were to evaluate how the streambed heterogeneity is affecting hyporheic exchange. In addition, we tested how losing or gaining flow conditions are affecting the hyporheic exchange fluxes and the spatial distribution of the flow paths within the streambed. Experiments measuring the combined effect of streambed heterogeneity and losing and gaining flow conditions on hyporheic exchange were conducted in a laboratory flume system (640 cm long and 30 cm wide). The flow in the flume is fully controlled including gaining or losing fluxes, and it was packed with heterogeneous sediments. An estimate of the solute exchange between the stream and the sediment was obtained from the analysis of a salt tracer (NaCl) injection into the overlying water, which then was monitored by an electrical conductivity meter. In addition, dye injections into the overlying water were used to visualize the effect of sediment heterogeneity on the flow paths in the streambed. Experimental results showed that increasing losing and gaining fluxes resulted in a similar decline in the hyporheic exchange flux as previously observed for a homogenous streambed. However the location in which the hyporheic exchange takes place is different and is strongly influenced by the sediment heterogeneity. The spatial distribution of hyporheic exchange within the streambed will be discussed in light of the distribution of the local, horizontal and vertical hydraulic conductivities.

  17. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  18. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    NASA Astrophysics Data System (ADS)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  19. Low-flow and flow-duration characteristics of Alabama streams

    USGS Publications Warehouse

    Atkins, J.B.; Pearman, J.L.

    1994-01-01

    Estimates of minimum 7-day average discharges with recurrence intervals of 2 and 10 years for 228 continuous-record gaging stations are presented in this report. Low-flow frequency discharge estimates for 447 partial-record stations are also presented. These discharge estimates were computed by relating base-flow discharge measurements at the partial- record stations to daily-mean discharge values at selected continuous-record gaging stations. Flow- duration characteristics for 207 continuous-record gaging stations are also provided.

  20. A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Steeves, Peter A.

    2006-01-01

    A revised logistic regression equation and an automated procedure were developed for mapping the probability of a stream flowing perennially in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection a method for assessing whether streams are intermittent or perennial at a specific site in Massachusetts by estimating the probability of a stream flowing perennially at that site. This information could assist the environmental agencies who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending from the mean annual high-water line along each side of a perennial stream, with exceptions for some urban areas. The equation was developed by relating the observed intermittent or perennial status of a stream site to selected basin characteristics of naturally flowing streams (defined as having no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, wastewater discharge, and so forth) in Massachusetts. This revised equation differs from the equation developed in a previous U.S. Geological Survey study in that it is solely based on visual observations of the intermittent or perennial status of stream sites across Massachusetts and on the evaluation of several additional basin and land-use characteristics as potential explanatory variables in the logistic regression analysis. The revised equation estimated more accurately the intermittent or perennial status of the observed stream sites than the equation from the previous study. Stream sites used in the analysis were identified as intermittent or perennial based on visual observation during low-flow periods from late July through early September 2001. The database of intermittent and perennial streams included a total of 351 naturally flowing (no regulation) sites, of which 85 were observed to be intermittent and 266 perennial

  1. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  2. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOEpatents

    Wijmans, Johannes G.; Merkel, Timothy C.; Lin, Haiqing; Thompson, Scott; Daniels, Ramin

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  3. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation.

    PubMed

    Abril, Meritxell; Muñoz, Isabel; Menéndez, Margarita

    2016-05-15

    In temporary Mediterranean streams, flow fragmentation during summer droughts originates an ephemeral mosaic of terrestrial and aquatic habitat types. The heterogeneity of habitat types implies a particular ecosystem functioning in temporary streams that is still poorly understood. We assessed the initial phases of leaf litter decomposition in selected habitat types: running waters, isolated pools and moist and dry streambed sediments. We used coarse-mesh litter bags containing Populus nigra leaves to examine decomposition rates, microbial biomass, macroinvertebrate abundance and dissolved organic carbon (DOC) release rates in each habitat type over an 11-day period in late summer. We detected faster decomposition rates in aquatic (running waters and isolated pools) than in terrestrial habitats (moist and dry streambed sediments). Under aquatic conditions, decomposition was characterized by intense leaching and early microbial colonization, which swiftly started to decompose litter. Microbial colonization in isolated pools was primarily dominated by bacteria, whereas in running waters fungal biomass predominated. Under terrestrial conditions, leaves were most often affected by abiotic processes that resulted in small mass losses. We found a substantial decrease in DOC release rates in both aquatic habitats within the first days of the study, whereas DOC release rates remained relatively stable in the moist and dry sediments. This suggests that leaves play different roles as a DOC source during and after flow fragmentation. Overall, our results revealed that leaf decomposition is heterogeneous during flow fragmentation, which has implications related to DOC utilization that should be considered in future regional carbon budgets. PMID:26930306

  4. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  5. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    SciTech Connect

    Bougamont, M.; Christoffersen, P.; Price, S. F.; Fricker, H. A.; Tulaczyk, S.; Carter, S. P.

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leading to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.

  6. Low-flow characteristics of streams in the Deschutes River basin, Washington

    USGS Publications Warehouse

    Cummans, J.E.

    1981-01-01

    The streams in the basin usually have their low flows in August and September. Seven-day low flows were smallest in 1952 when annual rainfall at the Olympia airport was also the least during the 1945-75 period of continuous gaging-station records in the basin. The magnitude and frequency of seven-day low flows were estimated for 23 streamflow sites, either from frequency analysis of data at long-term stations or from correlation of measured or computed discharges at a streamflow site with data at a long-term station. Seven-day low flows ranged from no-flow at one tributary of Deschutes River having a drainage area of 1.85 square miles to 98 cubic feet per second for Deschutes River near its mouth, where the drainage was 162 square miles. Mean monthly flows were determined for two long-term stations and estimated for months of July to September for the other streamflow sites. (USGS)

  7. Low flows and temperatures of streams in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Hidaka, F.T.

    1972-01-01

    Data on the minimum flows of streams and water temperature are necessary for the proper planning and development of the water resources of urban Seattle-Tacoma and adjacent areas. The data on low flows are needed for such purposes as (1) designing and operating municipal and industrial water-supply systems; (2) classifying streams as to their potential for waste disposal; (3) defining the amount of water available for irrigation, for maintaining streamflow as required by law or agreement, and for fish propagation; and (4) designing water-storage facilities. Data on stream temperatures are important to many water users because of the many biological, chemical, and physical properties of water that are dependent on temperature. Agricultural and domestic users as well as municipal, industrial and fishery agencies are concerned with water temperatures. In this report, low-flow data are accompanied by information on seasonal variations in water temperatures at sites selected as representing regional stream-temperature patterns. Because low flows and high water temperatures commonly occur together, they may impose constraints on various uses of the region's streams. The following discussion deals first with low-flow trends in the region, then with stream temperatures, and finally with some of the resulting constraints.

  8. Influence of observers and stream flow on northern two-lined salamander (Eurycea bislineata bislineata) relative abundance estimates in Acadia and Shenandoah National Parks, USA

    USGS Publications Warehouse

    Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.

    2007-01-01

    We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.

  9. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  10. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  11. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors. PMID:21694270

  12. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  13. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  14. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  15. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  16. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter. PMID:7942509

  17. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  18. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  19. Tracing Nitrate Contributions to Streams During Varying Flow Regimes at the Sleepers River Research Watershed, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.

    2003-12-01

    Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.

  20. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  1. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  2. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  3. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  4. Methods of Visually Determining the Air Flow Around Airplanes

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  5. Availability and distribution of low flow in Anahola Stream, Kauaʻi, Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling; Wolff, Reuben H.

    2012-01-01

    Anahola Stream is a perennial stream in northeast Kauaʻi, Hawaiʻi, that supports agricultural, domestic, and cultural uses within its drainage basin. Beginning in the late 19th century, Anahola streamflow was diverted by Makee Sugar Company at altitudes of 840 feet (upper intake) and 280 feet (lower intake) for irrigating sugarcane in the Keālia area. When sugarcane cultivation in the Keālia area ceased in 1988, part of the Makee Sugar Company’s surface-water collection system (Makee diversion system) in the Anahola drainage basin was abandoned. In an effort to better manage available surface-water resources, the State of Hawaiʻi Department of Hawaiian Home Lands is considering using the existing ditches in the Anahola Stream drainage basin to provide irrigation water for Native Hawaiian farmers in the area. To provide information needed for successful management of the surface-water resources, the U.S. Geological Survey investigated the availability and distribution of natural low flow in Anahola Stream and also collected low-flow data in Goldfish Stream, a stream that discharges into Kaneha Reservoir, which served as a major collection point for the Makee diversion system. Biological surveys of Anahola Stream were conducted as part of a study to determine the distribution of native and nonnative aquatic stream fauna. Results of the biological surveys indicated the presence of the following native aquatic species in Anahola Stream: ʻoʻopu ʻakupa (Sandwich Island sleeper) and ʻoʻopu naniha (Tear-drop goby) in the lower stream reaches surveyed; and ʻoʻopu nākea (Pacific river goby), ʻoʻopu nōpili (Stimpson’s goby), and ʻōpae kalaʻole (Mountain shrimp) in the middle and upper stream reaches surveyed. Nonnative aquatic species were found in all of the surveyed stream reaches along Anahola Stream. The availability and distribution of natural low flow were determined using a combination of discharge measurements made from February 2011 to May 2012

  6. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  7. Sonic environment of aircraft structure immersed in a supersonic jet flow stream

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.; Balena, F. J.; Soovere, J.

    1976-01-01

    Test methods for determining the sonic environment of aircraft structure that is immersed in the flow stream of a high velocity jet or that is subjected to the noise field surrounding the jet, were investigated. Sonic environment test data measured on a SCAT 15-F model in the flow field of Mach 1.5 and 2.5 jets were processed. Narrow band, lateral cross correlation and noise contour plots are presented. Data acquisition and reduction methods are depicted. A computer program for scaling the model data is given that accounts for model size, jet velocity, transducer size, and jet density. Comparisons of scaled model data and full size aircraft data are made for the L-1011, S-3A, and a V/STOL lower surface blowing concept. Sonic environment predictions are made for an engine-over-the-wing SST configuration.

  8. The effects of antecedent flows on sediment entrainment in a mountain stream

    NASA Astrophysics Data System (ADS)

    Mao, L.; Comiti, F.; Dell'Agnese, A.; Engel, M.; Lucía, A.

    2014-12-01

    Bedload transport in mountain streams is notoriously difficult to measure, and substantial efforts are currently devoted to develop and test reliable surrogate techniques for quantifying bedload transport rates and size. Tracers, and in particular Passive Integrated Transponders (PITs), represent a powerful method to assess particle dynamics. PITs are usually searched after floods using a portable antenna, and grain size of tracers are typically related to the peak of the events. However, antennas fixed on the channel bed have the potential to identify the actual discharge at the time of transport. This work focuses on incipient motion of tracers measured with a stationary antenna in the upper part of a mountain basin (Saldur River, drainage area 18.6 km2, Italian Alps), where a glacier (2.3 km2) determines significant daily discharge fluctuations in summer. During the study period (2011 to 2013) flow discharge ranged from 1 to 10 m3s-1. Almost 600 clasts - ranging in diameter from 40 mm to about 0.5 m - were equipped with PITs and laid in a confined reach (6% slope) of the main channel featuring a bed morphology transitional from plane-bed to step-pool. PITs-clasts were gently placed on the bed surface few meters upstream of an antenna fixed on the channel bed, where flow stage is recorded every 10 min. Preliminary results indicate that discharge at the time of passage above the antenna is only slightly related to the size of transported tracers, providing little evidence of size-selectivity conditions in this stream. The influence of antecedent flows on incipient motion was then investigated dividing the maximum discharge recorded between each PIT placement and its subsequent entrainment by the actual critical discharge at the time of movement (ratio Qmax/Qc). It results that only 45% of tracers moved at Qmax/Qc ~ 1, and 70% of tracers moved at Qmax/Qc < 1.5. Therefore, about 30% of tracers had to previously experience a discharge substantially higher than the

  9. Flow and turbulence structure around an in-stream rectangular cylinder with scour hole

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2010-11-01

    Most of the erosion around obstacles present in alluvial streams takes place after the formation of a scour hole of sufficiently large dimensions to stabilize the large-scale oscillations of the horseshoe vortex (HV) system. The present paper uses eddy resolving techniques to reveal the unsteady dynamics of the coherent structures present in the flow field around an in-stream vertical cylinder (e.g., bridge pier) with a large scour hole at a channel Reynolds number defined with the channel depth and the bulk channel velocity of 2.4 × 105. The cylinder has a rectangular section and is placed perpendicular to the incoming flow. The geometry of the scour hole is obtained from an experiment conducted as part of the present work. The mechanisms driving the bed erosion during the advanced stages of the scour process around the vertical plate are discussed. Simulation results demonstrate the critical role played by these large-scale turbulent eddies and their interactions in driving the local scour. The paper analyzes the changes in the flow and turbulence structure with respect to the initial stages of the scour process (flat bed conditions) for a cylinder of identical shape and orientation. Results show the wake loses its undular shape due to suppression of the antisymmetrical shedding of the roller vortices. Also, the nature of the interactions between the necklace vortices of the HV system and the eddies present inside the detached shear layers (DSLs) changes as the scour process evolves. This means that information on the vortical structure of the flow at the initiation of the scour process, or during its initial stages, are insufficient to understand the local scour mechanisms. The paper also examines the effect of the shape of the obstruction on the dynamics of the vortical eddies and how it affects the bed erosion processes during the advanced stages of the local scour. In particular, the paper provides an explanation for the observed increase in the maximum

  10. Analysis of long-term fluctuations in stream flow time series: An application to Litani River, Lebanon

    NASA Astrophysics Data System (ADS)

    Shaban, Amin; Telesca, Luciano; Darwich, Talal; Amacha, Nabil

    2014-02-01

    Litani River is the largest river in Lebanon and has been affected by several physical and anthropogenic factors that influenced its flow dynamics. By means of the Singular Spectrum Analysis (SSA), the time dynamics of the stream flow of seven sites along the course of Litani River was investigated, extracting for each site the long-term trend. A clear decreasing trend characterizes all the long-term trends of the stream flow. Furthermore, several peaks were identified, consistent with the rainfall rate and snow cover variability.

  11. Rehabilitation of a debris-flow prone mountain stream in southwestern China - Strategies, effects and implications

    NASA Astrophysics Data System (ADS)

    Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang

    2012-01-01

    SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.

  12. A soil moisture index as an auxiliary ANN input for stream flow forecasting

    NASA Astrophysics Data System (ADS)

    Anctil, François; Michel, Claude; Perrin, Charles; Andréassian, Vazken

    2004-01-01

    This study tests the short-term forecasting improvement afforded by the inclusion of low-frequency inputs to artificial neural network (ANN) rainfall-runoff models that are first optimized by using only fast response components, i.e. using stream flow and rainfall as inputs. Ten low-frequency ANN input candidates are considered: the potential evapotranspiration, the antecedent precipitation index (API i, i=7, 15, 30, 60, and 120 days) and a proposed soil moisture index time series (SMI A, for A=100, 200, 400 and 800 mm). As the ANNs considered are for use in real-time lead-time-L forecasting, forecast performance is expressed in terms of the persistence index, rather than the conventional Nash-Sutcliffe index. The API i are the non-decayed moving average precipitation series, while the SMI A are calculated through the soil moisture accounting reservoir of the lumped conceptual rainfall-runoff model GR4J. Results, based on daily data of the Serein and Leaf rivers, reveal that only the SMI A time series are useful for one-day-ahead stream flow forecasting, with both the potential evapotranspiration and the API itime series failing to improve the ANN performance.

  13. Cutting-Edge Analysis of Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry

    PubMed Central

    Headland, Sarah E.; Jones, Hefin R.; D'Sa, Adelina S. V.; Perretti, Mauro; Norling, Lucy V.

    2014-01-01

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStreamX Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStreamX could be used effectively to advance this scientific field. PMID:24913598

  14. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.

    PubMed

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V

    2014-01-01

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field. PMID:24913598

  15. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  16. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  17. Development of regression equations to estimate flow durations and low-flow-frequency statistics in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    Regression equations and basin-characteristic digital datasets were developed to help water-resource managers estimate surface-water resources during periods of low flow in New Hampshire. The regression equations were developed to estimate statistics for the seasonal and annual low-flow-frequency and seasonal period-of-record and period-of-record flow durations. Because streamflow is maintained by ground-water discharge during periods of low flow, these equations also will aid in the assessment of ground-water availability. Ultimately, the equations and datasets developed herein can be combined with data on water withdrawals, discharges, and interbasin transfers in a geographic information system (GIS) to allow assessments of water use and water availability in any drainage basin in the State of New Hampshire. Regression equations developed in this study provide estimates of the seasonal (spring, summer, fall, and winter) and annual 7-day 2-year (7Q2) and 7-day 10-year (7Q10) low-flow-frequency values, as well as seasonal period-of-record and period-of-record flow durations (60-, 70-, 80-, 90-, 95-, and 98-percent exceedences) for ungaged reaches of unregulated New Hampshire streams. Regression equations were developed using seasonal and annual low-flow statistics from 58 to 60 continuous-record stream-gaging stations in New Hampshire and nearby areas in neighboring states, and measurements of various characteristics of the drainage basins that contribute flow to those stations. The estimating equations for the seasonal and annual 7Q2 and 7Q10 values were developed using generalized-least-squares (GLS) regression analyses. The GLS equations developed for these flow statistics gave average prediction errors that ranged from 11 to 61 percent. The estimating equations for flow-duration exceedence frequency values were developed using ordinary-least-squares (OLS) regression analysis. The OLS equations developed for these flow statistics gave average prediction errors

  18. Aeromagnetic and gravity imaging of subglacial geology beneath major ice streams flowing in the Weddell Sea Embayment

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; King, Owen; Jordan, Tom; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Siegert, Martin; Smith, Andy; Hindmarsh, Richard

    2014-05-01

    Extensive airborne geophysical research has helped unveil subglacial geology beneath the West Antarctic Ice Sheet (WAIS) in particular over the Ross Sea Embayment. Three key geological controls on the onset and maintenance of fast glacial flow for the WAIS have emerged including the presence of widespread subglacial sediments deposited within deep rift basins, thinner drapes of marine sediments within the low lying topography of the West Antarctic Rift System (WARS) and high geothermal heat flux associated with Cenozoic rift-related magmatism. Here, we compile a suite of new and vintage aerogeophysical observations over the catchments of several major ice streams flowing into the Weddell Sea Embayment to examine their large-scale geological setting and assess the role of regional geological controls on subglacial topography and WAIS flow regimes. Specifically, we examine the subglacial geology beneath the catchments of the Institute and Moeller ice streams, the Rutford ice stream and the Evans ice stream using a combination of airborne radar, aeromagnetic and airborne gravity imaging. We show that the Moeller ice stream is underlain by the largest strike-slip fault system recognised so far along the tectonic boundary between East and West Antarctica. This fault system controls the location of a set of en-echelon subglacial basins that steer enhanced flow inland. We find no evidence, however, for deep sedimentary basins along this fault system, suggesting that subglacial sediments are not necessarily a geological template for the onset of fast flow. However, the newly identified Robin Subglacial Basin that underlies the fast flowing coastal region of the Institute ice stream contains 1-3 km of sedimentary infill and remarkably smooth bedrock topography. Enhanced flow in the tributaries of the Institute ice stream that cut through the Ellsworth Mountains are controlled by major basement faults likely active in Cambrian and Permian times and perhaps reactivated during

  19. Macroinvertebrate instream flow studies after 20 years: A role in stream management and restoration

    USGS Publications Warehouse

    Gore, J.A.; Layzer, J.B.; Mead, J.

    2001-01-01

    Over the past two decades of refinement and application of instream flow evaluations, we have examined the hydraulic habitat of aquatic macroinvertebrates in a variety of conditions, along with the role of these macroinverte-brates in sustaining ecosystem integrity. Instream flow analyses assume that predictable changes in channel flow characteristics can, in turn, be used to predict the change in the density or distribution of lotic species or, more appropriately, the availability of useable habitat for those species. Five major hydraulic conditions most affect the distribution and ecological success of lotic biota: suspended load, bedload movement, and water column effects, such as turbulence, velocity profile, and substratum interactions (near-bed hydraulics). The interactions of these hydraulic conditions upon the morphology and behavior of the individual organisms govern the distribution of aquatic biota. Historically, management decisions employing the Physical Habitat Simulation (PHABSIM) have focused upon prediction of available habitat for life stages of target fish species. Regulatory agencies have rarely included evaluation of benthos for flow reservations. Although 'taxonomic discomfort' may be cited for the reluctant use or creation of benthic criteria, we suggest that a basic misunderstanding of the links between benthic macroinvertebrate and the fish communities is still a problem. This is derived from the lack of a perceived 'value' that can be assigned to macroinvertebrate species. With the exception of endangered mussel species (for which PHABSIM analysis is probably inappropriate), this is understandable. However, it appears that there is a greater ability to predict macroinvertebrate distribution (that is, a response to the change in habitat quality or location) and diversity without complex population models. Also, habitat suitability criteria for water quality indicator taxa (Ephemeroptera, Plecoptera, and Trichoptera; the so-called 'EPTs

  20. Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between Tmax_w and Qmin. We also examined if years with extreme low Qmin were associated with years of extreme high Tmax_w. We tested these hypotheses using long32 term data from 22 minimally human-influenced streams for the period 1950-2010. We found trends toward a shorter time lag between Tmax_w and Qmin over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gauge the effects of the recent climate variability in freshwaters.

  1. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  2. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  3. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  4. Field-derived relationships for flow velocity and resistance in high-gradient streams

    USGS Publications Warehouse

    Comiti, F.; Mao, L.; Wilcox, A.; Wohl, E.E.; Lenzi, M.A.

    2007-01-01

    We measured velocity and channel geometry in 10 reaches (bed gradient = 0.08-0.21) of a predominantly step-pool channel, the Rio Cordon, Italy, over a range of discharges (3-80% of the bankfull discharge). The resulting data were used to compute flow resistance. At-a-station hydraulic geometry relations indicate that in most reaches, the exponent describing the rate of velocity increases with discharge was between 0.48 and 0.6, which is within the range of published values for pool-riffle channels. The Rio Cordon data are also combined with published hydraulics data from step-pool streams to explore non-dimensional relationships between velocity and flow resistance and factors including unit discharge, channel gradient, and step geometry. Multiple regression analysis of this combined field dataset indicated that dimensionless unit discharge (q*) is the most important independent variable overall in explaining variations in velocity and flow resistance, followed by channel slope and the ratio of step height to step length. Empirical equations are provided both for dimensionless velocity and flow resistance, but prediction of the former variable appears more reliable. ?? 2007 Elsevier B.V. All rights reserved.

  5. Calculation of two-dimensional inlet flow fields in a supersonic free stream: Program documentation and test cases

    NASA Technical Reports Server (NTRS)

    Biringen, S. H.; Mcmillan, O. J.

    1980-01-01

    The use of a computer code for the calculation of two dimensional inlet flow fields in a supersonic free stream and a nonorthogonal mesh-generation code are illustrated by specific examples. Input, output, and program operation and use are given and explained for the case of supercritical inlet operation at a subdesign Mach number (M Mach free stream = 2.09) for an isentropic-compression, drooped-cowl inlet. Source listings of the computer codes are also provided.

  6. Noise reduction evaluation of grids in a supersonic air stream with application to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Nystrom, P.; Pao, S. P.

    1977-01-01

    Near field acoustic measurements were obtained for a model supersonic air jet perturbed by a screen. Noise reduction potential in the vicinity of the space shuttle vehicle during ground launch when the rocket exhaust flow is perturbed by a grid was determined. Both 10 and 12 mesh screens were utilized for this experiment, and each exhibited a noise reduction only at very low frequencies in the near field forward arc. A power spectrum analysis revealed that a modest reduction of from 3 to 5 decibels exists below a Strouhal number S sub t = 0.11. Above S sub t = 0.11 screen harmonics increased the observed sound pressure level. The favorable noise reductions obtained with screens for S sub t 0.11 may be of substantial interest for the space shuttle at ground launch.

  7. Pesticide sequestration in passive samplers (SPMDs): considerations for deployment time, biofouling, and stream flow in a tropical watershed.

    PubMed

    Polidoro, Beth A; Morra, Matthew J; Ruepert, Clemens; Castillo, Luisa Eugenia

    2009-10-01

    Semi-permeable membrane devices (SPMDs) provide an informative and cost-effective approach for monitoring contaminants in remote tropical streams. Estimation and interpretation of contaminant concentrations in streams derived from SPMDs can vary based on a number of environmental factors, including stream flow, biofouling, and deployment time. In three one-month long trials, SPMDs were concurrently deployed for 4, 15, and 28 days at three stream sites in an extensive agricultural area of southeastern Costa Rica. Water, bottom sediment, and suspended solids grab samples were also collected and several environmental variables were monitored at corresponding time intervals during each month-long study period. At all three sites, SPMD concentrations of the widely used insecticide chlorpyrifos increased with deployment time, with no relationship between SPMD biofouling and pesticide sequestration. Differences in SPMD chlorpyrifos sequestration among sites are likely due to differences in stream chlorpyrifos concentration rather than differences in SPMD sampling rates. The longer exposure period of SPMDs allowed for the detection of lower concentrations of chlorpyrifos, terbufos, and difenoconazole compared to water grab samples. In addition to the use of appropriate performance reference compounds (PRCs), other environmental variables such as stream turbidity, flow regime, stream morphology, and knowledge of pesticide application methods are important considerations for optimizing SPMD deployment and data interpretation in tropical regions. PMID:19809710

  8. Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2000-01-01

    Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.

  9. Moving Beyond Whole-stream Tracer Injections to Understand the Role of Flow and Geomorphic Variability in Stream and River Ecosystems

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2011-12-01

    Flow in aquatic ecosystems affects ecological processes by influencing how sediments and nutrients are stored and transformed. Decades of tracer-addition experiments in streams have been central in revealing the key physical-biological linkages. The averaging of heterogeneous processes made possible by injecting tracers during steady baseflow conditions has allowed the individual roles of transport, storage, and biogeochemical reactions that influence stream ecological health to be clearly separated. However, fluvial systems are inherently unsteady, with flow and sediment transport continually readjusting to one another. Also, very few investigators have addressed effects of temporal variability in flow or interactions that occur between hydrologic or geomorphic processes. Thus, whole-stream tracer addition experiments often end up having limited transferability beyond the very specific flow and geomorphic conditions under which the experiments were conducted. Furthermore, there is increasing recognition that, no matter what measurement technique is used (e.g. hydraulic or tracer-based) or what model is employed, the results are almost always limited by a "window of detection" that is determined by measurement spacing and frequency, sensitivity, and by experiment duration. To counter these challenges, field investigators are increasingly supplementing whole-stream injections with additional measurements that help address different spatial and temporal scales. Furthermore they are often using multi-scale models to more fully evaluate of the full spectrum of water fluxes and biogeochemical reaction rates involved. Often the goal is to identify the combinations of flow and geomorphic conditions which enhance a particular biogeochemical reaction (e.g. dentrification, removal of toxic metals, etc.), or to rank by importance the extent of reactions occurring in different sub-environments. Examples of studies in streams, wetlands, and floodplains range in spatial scale

  10. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  11. Modeling the Relations Between Flow Regime Components, Species Traits, and Spawning Success of Fishes in Warmwater Streams

    NASA Astrophysics Data System (ADS)

    Craven, Scott W.; Peterson, James T.; Freeman, Mary C.; Kwak, Thomas J.; Irwin, Elise

    2010-08-01

    Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management.

  12. Restoration of an inner-city stream and its impact on air temperature and humidity based on long-term monitoring data

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kwon, Tae Heon; Kim, Yeon-Hee; Koo, Hae-Jung; Choi, Byoung-Cheol; Choi, Chee-Young

    2009-03-01

    Spatiotemporal changes in air temperature and humidity associated with the restoration of an innercity stream in Seoul, Korea, are investigated based on long-term monitoring data. The Cheonggye stream, covered under a concrete structure for 46 years, was restored in 2005 and runs 5.8 km eastward through a central region of Seoul. Long-term monitoring of the air temperature and relative humidity was made along the stream throughout the restoration and across the stream after the restoration. The area along the stream had a higher air temperature than the entire metropolitan area. The temperature anomaly between the monitoring area and the surrounding metropolitan area was 0.13°C lower on average at the center of the stream after the restoration. The stream’s effect on the air temperature was also evident in the temperature distribution along a street traversing the stream. The relative and specific humidities were increased due to the restoration. The restored stream modified the nearby urban climate in the opposite direction compared to urbanization. The results could be used as a model case in mitigating urban climate by a stream in future urban planning practices.

  13. Geostatistical prediction of stream-flow regime in southeastern United States

    NASA Astrophysics Data System (ADS)

    Pugliese, Alessio; Castellarin, Attilio; Archfield, Stacey; Farmer, William

    2015-04-01

    A Flow-Duration Curve (FDC) represents the percentage of time (duration) during which a given stream-flow is equalled or exceeded over a given period of time. In many water-engineering applications FDCs need to be predicted for ungauged sites (Prediction in Ungauged Basins, PUB problem) using the information collected in donor neighboring gauged basins. We present an application of kriging procedures which makes the procedures capable of predicting FDCs in ungauged catchments. As many of the techniques proposed in the recent literature, the curve is predicted at the target site as a weighted average of empirical dimensionless FDCs that are constructed for neighboring streamgauges and standardized by discharge Q*. Geostatistical weights are obtained by applying two different interpolation techniques, i.e. Top-kriging (TK, see e.g. Pugliese et al., 2014) and Ordinary-kriging (OK, see e.g. Castiglioni et al., 2009), for interpolating a point streamflow-index computed as the overall negative deviation of each empirical curve from Q*, which we term Total Negative Deviation (TND). Empirical TND values can be used to assess the hydrological similarity between catchments and can be interpolated using TK or OK procedures along the stream-network. We consider period-of-record/annual, and complete/seasonal FDCs standardized by two different Q* values, i.e. Mean Annual Flow (MAF) and Mean Annual Precipitation at catchment scale times the drainage area (MAP*), and we apply TK and OK in a wide study area in the Southeastern United States including 182 unregulated gauged catchments. The accuracy of the predicted FDCs is assessed comprehensively under different operational conditions through the (1) leave-one-out and (2) three-fold cross-validation procedures. The results are compared with six different methods for predicting FDCs from synthetically generated daily stream-flow series, which were recently analysed by U.S. Geological Survey. The application of OK and TK reveal

  14. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream

  15. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west

  16. Development of an Analytical Method for Predicting Flow in a Supersonic Air Ejector

    NASA Astrophysics Data System (ADS)

    Kracik, Jan; Dvorak, Vaclav

    2016-03-01

    The article deals with development of an analytical method for predicting flow in an ejector with twelve supersonic nozzles, which are located at the periphery of the mixing chamber of the ejector. Supersonic primary air stream makes the investigation more complex. The secondary air (atmospheric) is sucked in direction of the ejector axis. The shape of the mixing chamber is convergent - divergent and a throat is formed behind the primary nozzles. Each of the primary nozzles can be treated independently so there can be various number of nozzles under operation in the ejector. According to previous investigations, constant pressure mixing is assumed to occur inside a part of the mixing chamber. The method under investigation is considered for isentropic flow in the first approximation and after that the stagnation pressure corrections at the inlets are considered. Furthermore, the decrease in stagnation pressure in the mixing chamber is considered to take losses in the mixing chamber and diffuser into account. The numerical data of the stagnation pressure has been obtained from Ansys Fluent software. In addition, a comparison with previous experimental results is introduced.

  17. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    -catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  18. Optical observation of ultrafine droplets and air flows from newly designed supersonic air assist spray nozzles

    NASA Astrophysics Data System (ADS)

    Miyashiro, Seiji S.; Mori, H.; Takechi, H.

    2001-04-01

    One of the authors developed a new spray drying nozzle (special quadruplet fluid spray nozzle) for drug manufacturing and it has succeeded in manufacturing fine particles of 2 micrometer diameter of 1/15 ratios to those currently in use. The flow visualization results show that the two air jets become under-expanded on both edge sides of the nozzle, generate shock and expansion waves alternately on each side and reach the edge tip, where they collide, unite, and spout out while shock and expansion waves are again formed in the mixed jet. When the edge surfaces are supplied with water, the water is extended into thin film by the air jet and intensely disturbed. At the nozzle tip it is torn into droplets, which are further atomized afterwards in shock waves. At the spray tip, the friction with ambient air shears the droplets furthermore, and they decrease further in size.

  19. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  20. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    PubMed

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation. Graphical abstract The dash-dotted blue curve describes an assumed log-normal sample molecular weight distribution (right axis

  1. Rapid morphological divergence of a stream fish in response to changes in water flow

    PubMed Central

    Cureton, James C.; Broughton, Richard E.

    2014-01-01

    Recent evidence indicates that evolution can occur on a contemporary time scale. However, the precise timing and patterns of phenotypic change are not well known. Reservoir construction severely alters selective regimes in aquatic habitats due to abrupt cessation of water flow. We examined the spatial and temporal patterns of evolution of a widespread North American stream fish (Pimephales vigilax) in response to stream impoundment. Gross morphological changes occurred in P. vigilax populations following dam construction in each of seven different rivers. Significant changes in body depth, head shape and fin placement were observed relative to fish populations that occupied the rivers prior to dam construction. These changes occurred over a very small number of generations and independent populations exhibited common responses to similar selective pressures. The magnitude of change was observed to be greatest in the first 15 generations post-impoundment, followed by continued but more gradual change thereafter. This pattern suggests early directional selection facilitated by phenotypic plasticity in the first 10–20 years, followed by potential stabilizing selection as populations reached a new adaptive peak (or variation became exhausted). This study provides evidence for rapid, apparently adaptive, phenotypic divergence of natural populations due to major environmental perturbations in a changing world.

  2. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. PMID:24875866

  3. On the Role of Hyporheic Exchange and Stream Flow Velocity in Driving Diurnal Fluctuations in Discharge During Baseflow Recession

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Gooseff, M. N.; McGlynn, B. L.

    2005-12-01

    Diurnal fluctuations in stream flow during baseflow discharge have been observed in many streams and is typically attributed to water losses from evapo-transpiration. However, there is no widely transferable conceptual model describing the response of hillslopes, riparian zones, and streams, and their interactions, that explains these diurnal variations in streamflow. Bond et al. (2002) proposed a conceptual model suggesting that diurnal streamflow variation during baseflow is, in part, due to groundwater-surface water interactions within the riparian corridor of a 2nd-order stream in central Oregon. Their conceptual model is based on two critical observations: 1) that the amplitude in the diurnal fluctuations decreases with baseflow recession, and 2) that the time lag between maximum evapo-transpirational demand and minimum stream discharge increases with baseflow recession. We test Bond et al.'s (2002) conceptual model with data collected over the summer of 2004 from a previously-established network of piezometers and wells located at the site used by Bond et al. (2002) and with data from previous stream tracer experiments within the same reach. Our data do not support Bond et al.'s conceptual model. In fact, there is no evidence that evapo-transpirational drawdown of riparian aquifers generates diurnal fluctuations in stream discharge despite clear connections via hyporheic exchange flows. Our results do not shed light on questions about the location and physical mechanisms that generate diurnal fluctuations in discharge. Our results do suggest, however, that decreases in stream flow velocity with baseflow recession are important in influencing the amplitude and time lag of the observed diurnal fluctuations and that the hyporheic zone could act as a reservoir to dampen fluctuations in discharge generated higher in the watershed.

  4. sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2014-07-01

    Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (Flow"target="_blank">www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).

  5. A numerical method for solving converging flows using a stream tube analysis and a trust region technique

    NASA Astrophysics Data System (ADS)

    Clermont, J. R.; de La Lande, M. E.; Dinh, T. Pham; Yassine, A.

    A numerical method based on the concept of stream tubes is presented for flow computations of incompressible fluids in plane or axisymmetric geometries. Under the assumption of noncirculatory flows, the physical domain D1 is transformed into a domain D in which the transformed streamlines are parallel straight lines. This approach makes it possible to compute the flow on successive stream tubes in the transformed domain from the wall to the central region of the flow. The discretization of the relevant equations leads to a nonlinear system of equations of unknowns f (the transformation from D1 into D) and the pressure p. A new algorithm based on optimization methods is applied to this set of equations. Numerical results are presented in the case of axisymmetric converging flows of Newtonian fluids.

  6. Combining Natural Tracers to Identify Flow Paths in Arctic Beaded Streams

    NASA Astrophysics Data System (ADS)

    Neilson, B. T.; Merck, M. F.; Cory, R. M.; Kling, G. W.

    2011-12-01

    Data on the movement of multiple natural tracers through a portion of Imnavait Creek, a beaded tundra stream located north of the Brooks Range in Alaska, were collected to further understand the extent and variability of water storage and residence times throughout the open water season. These data included high spatial resolution temperatures within the pools and surrounding sediments as well as electrical conductivity and analysis of the colored and fluorescent fraction of dissolved organic matter (DOM) within the pools and riparian areas. The results indicated storage areas within the pools, banks, and other marshy areas within the riparian zone, including a subsurface flow path that connected two pools. During low flow periods the in-pool temperatures showed persistent thermal stratification occurring due to absorption of solar radiation by DOM coupled with underlying permafrost and low wind stress at the pool surface. This led to separation of the surface and bottom water masses which was confirmed by the differences in conductivity as well as DOM spectral character. Riparian sediment temperatures and water conductivity within the subsurface flow path showed that the source of water was primarily surface water from an adjacent pool. This subsurface flow path was found not only to increase water residence times, but to alter the chemical composition of DOM within very short distances after leaving the pool. The combined influences of the consistent separation of water masses in each pool and the subsurface flow paths result in significant changes to the fate and transport of materials within the system. Without further understanding of these processes, our ability to predict the evolution of water chemistry and material export will be limited.

  7. Flow Analysis over Batten Reinforced Wings for Micro Air Vehicles

    NASA Astrophysics Data System (ADS)

    Townsend, Kurtis; Hicks, Travis; Hubner, James P.

    2008-11-01

    Flexible membrane wings modify the flow separation of low Reynolds number micro air vehicles (MAVs). A specific type of fixed-wing geometry is a batten-reinforced configuration in which the membrane is attached to a rigid frame with chordwise battens, allowing the vibration of the membrane at the trailing-edge. In this study, smoke-wire visualization and hot-wire anemometry, both near the trailing-edge and further downstream in the wake, are used to quantify the frequency and energy of these fluctuations for various cell geometries and flow angles-of-attack. Improvement in the wake momentum deficit will be analyzed to determine preferred membrane cell geometries for MAV flight conditions.

  8. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  9. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona)

    USGS Publications Warehouse

    Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.

    2005-01-01

    The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant

  10. The multi-stream flows and the dynamics of the cosmic web

    SciTech Connect

    Shandarin, Sergei F.

    2011-05-01

    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.

  11. Agricultural practices influence flow regimes of headwater streams in western Iowa.

    PubMed

    Tomer, M D; Meek, D W; Kramer, L A

    2005-01-01

    Agricultural tillage influences runoff and infiltration, but consequent effects on watershed hydrology are poorly documented. This study evaluated 25 yr (1971-1995) hydrologic records from four first-order watersheds in Iowa's loess hills. Two watersheds were under conventional tillage and two were under conservation (ridge) tillage, one of which was terraced. All four watersheds grew corn (Zea mays L.) every year. Flow-frequency statistics and autoregressive modeling were used to determine how conservation treatments influenced stream hydrology. The autoregressive modeling characterized variations in discharge, baseflow, and runoff at multi-year, annual, and shorter time scales. The ridge-tilled watershed (nonterraced) had 47% less runoff and 36% more baseflow than the conventional watershed of similar landform and slope. Recovery of baseflow after drought was quicker in the conservation watersheds, as evidenced by 365-d moving average plots, and 67% greater baseflow during the driest 2 yr. The two conventional watersheds were similar, except the steeper watershed discharged more runoff and baseflow during short (<30 d), wet periods. Significant multi-year and annual cycles occurred in all variables. Under ridge-till, seasonal (annual-cycle) variations in baseflow had greater amplitude, showing the seasonality of subsurface contaminant movement could increase under conservation practices. However, deviations from the modeled cycles of baseflow were also more persistent under conservation practices, indicating baseflow was more stable. Indeed, flow-frequency curves showed wet-weather discharge decreased and dry-weather discharge increased under conservation practices. Although mean discharge increased in the conservation watersheds, variance and skewness of daily values were smaller. Ridge tillage with or without terraces increased stream discharge but reduced its variability. PMID:16091607

  12. Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream.

    PubMed

    Kiernan, Joseph D; Moyle, Peter B

    2012-06-01

    The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data. PMID:22827124

  13. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  14. Thermal runaway instabilities: A possible mechanism for fast-flow in surging glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Fastook, J.

    2011-12-01

    Thermal runaway is the process whereby increased temperature due to strain heating produced by deformation of a viscous material affects its mechanical properties in a way that softens the material, allowing greater strain rates, which in turn produce more strain heating and further increased temperatures. Such positive feedback has been shown to lead to catastrophic failure of viscoelastic materials such as polymers, metallic glasses, rocks under high pressure, and rapidly deforming crystalline solids. Such processes often result in rather narrow shear bands in which much of the deformation occurs. Such narrow shear bands are characteristic of the edges of ice streams, which show an almost square velocity profile, and may also mimic the mostly uniform vertical velocity profiles often invoked in models of sliding where considerable movement is allowed to occur at the bed of the glacier. We examine a simplified analytic model of such thermal runaway leading to the collapse of a shearing material (Braeck et al., Phys. Rev. E, 80(4), 2009). A definite singularity point in the applied stress In this treatment is evident, beyond which thermal runaway leads to rapidly increasing temperature and rate of deformation. While quite limited in the analytic sense, the results point to the possibility that such thermal runaway could exist in ice sheets, and could possibly be responsible for surges in glaciers as well as the steady fast flow of ice streams, even without invoking of the "basal lubrication" usually associated with such sliding situations. Using a simple 1D model of heat flow through a slab of ice whose surface is held at a defined temperature, whose bed receives a specific geothermal heat flux, and whose material properties (the ice hardness parameter in the Flow Law) are given by an Arrhenius exponential function of temperature, we present a parameter-space examination of the dependence of such a process on driving stress (ie. ice thickness and surface slope

  15. Investigation of nonlinear inviscid and viscous flow effects in the analysis of dynamic stall. [air flow and chordwise pressure distribution on airfoil below stall condition

    NASA Technical Reports Server (NTRS)

    Crimi, P.

    1974-01-01

    A method for analyzing unsteady airfoil stall was refined by including nonlinear effects in the representation of the inviscid flow. Certain other aspects of the potential-flow model were reexamined and the effects of varying Reynolds number on stall characteristics were investigated. Refinement of the formulation improved the representation of the flow and chordwise pressure distribution below stall, but substantial quantitative differences between computed and measured results are still evident for sinusoidal pitching through stall. Agreement is substantially improved by assuming the growth rate of the dead-air region at the onset of leading-edge stall is of the order of the component of the free stream normal to the airfoil chordline. The method predicts the expected increase in the resistance to stalling with increasing Reynolds number. Results indicate that a given airfoil can undergo both trailing-edge and leading-edge stall under unsteady conditions.

  16. Upper air teleconnections to Ob River flows and tree rings

    NASA Astrophysics Data System (ADS)

    Meko, David; Panyushkina, Irina; Agafonov, Leonid

    2015-04-01

    The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air

  17. The magnitude and seasonal stream flow fluctuations of Hunza River, Karakoram region during 1966-2010

    NASA Astrophysics Data System (ADS)

    Farhan, Suhaib Bin; Zhang, Yinsheng; Ma, Yingzhao; Gao, Haifeng; Rehmatullah, Jilani; Hashmi, Danial

    2014-05-01

    The glacierized river basins with insufficient summer precipitation (rain) but abundant in snow and glacier-melt water, are highly suspected by reduction and seasonal alteration in the annual stream flows owing to climate change. However, the high altitude glacio-hydrological observations and investigations to address the linkage between the timings of glacier changes and river runoff fluctuations are still very weak and ambiguous particularly in the Karakoram region of Pakistan, which also a consequent of controversies among the scientists regarding the current status of glaciers in the region. In this context, the hydrological regime of Hunza (13,717km2), a sub-catchment of Upper Indus River Basin (UIB), which is a part of Tibetan Plateau Environment (TPE) and lies in Hindukush-Karakoram-Himalaya (HKH) region, was comprehensively investigated by employing in-situ hydro-meteorological observations in combination with Satellite Remote sensing data. This study suggests that the annual basin precipitation is evenly distributed in winter and summer seasons, and depends on Westerly and summer Monsoon circulations respectively. As a consequent of very high mean basin elevation i.e. 4500m.a.s.l, more than 24% of basin area is covered by glaciers and perennial ice and with accumulated seasonal snow (estimated by temporal MODIS Imageries) it reaches 58% of the basin area. Hydrological analysis by employing basin cryosphere dynamics and observed hydro-meteorological data reveals that most of the annual basin runoff depends on melt-water produced by predominant glacier ablation and seasonal snow. As a result, the basin annual mean discharge reaches 762mm of water depth equivalent; whereas the three meteorological stations at 2810m.a.s.l (Naltar), 3669m.a.s.l (Ziarat) and 4730m.a.s.l (Khunjerab) located in Hunza basin recorded 720mm, 265mm and 200mm annual mean precipitation respectively. The separation of hydrologic flow regimes to estimate the contribution of genetic

  18. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  19. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change

    NASA Astrophysics Data System (ADS)

    Springer, A. E.; Stevens, L. E.

    2008-12-01

    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  20. Real-air data reduction procedures based on flow parameters measured in the test section of supersonic and hypersonic facilities

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1972-01-01

    Data-reduction procedures for determining free stream and post-normal shock kinetic and thermodynamic quantities are derived. These procedures are applicable to imperfect real air flows in thermochemical equilibrium for temperatures to 15 000 K and a range of pressures from 0.25 N/sq m to 1 GN/sq m. Although derived primarily to meet the immediate needs of the 6-inch expansion tube, these procedures are applicable to any supersonic or hypersonic test facility where combinations of three of the following flow parameters are measured in the test section: (1) Stagnation pressure behind normal shock; (2) freestream static pressure; (3) stagnation point heat transfer rate; (4) free stream velocity; (5) stagnation density behind normal shock; and (6) free stream density. Limitations of the nine procedures and uncertainties in calculated flow quantities corresponding to uncertainties in measured input data are discussed. A listing of the computer program is presented, along with a description of the inputs required and a sample of the data printout.

  1. The effects of antecedent flows on sediment entrainment in a mountain stream

    NASA Astrophysics Data System (ADS)

    Mao, Luca; Comiti, Francesco; Dell'Agnese, Andrea; Engel, Angel; Lucia, Ana

    2015-04-01

    The difficulty for predicting bedload transport and identifying incipient motion thresholds in high mountain streams is well-known, especially during flood events. Surrogate methods aiming at quantification of sediment transport rates and sizes have been developed thorughout the last decades; among those, tracers in general, and PITs (Passive Integrated Transponders) in particular are a good alternative in particle dynamics study. Usually, the recovery of PITs after flood events is done by means of a portable antenna; however an alternate valid option is represented by antennas fixed on the channel bank or on the river shores. The use of stationary antennas allows to know the actual discharge at the moment of motion. This study focuses on incipient motion of tracers measured by means of a stationary antenna system in the upper part of a mountain basin (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily fluctuations in summer - due to the part of the basin (2.3 km2) being glacierized - are monitored. From 2011 to 2013, flow discharge varied between 1 and 10 m3s-1. A total of 587 clasts equipped with PITs ranging from 35 to 580 mm were released along the main channel, in a confined reach with bed morphology transitional from plane-bed to step-pool (6% slope). PIT-tagged clasts were gently deployed on the riverbed, few meters upstream of an antenna anchored to the channel bed. Flow stage data were acquired at 10 min interval by means of a pressure transducer installed near the fixed antenna. The analysis of preliminary results showed that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing above the antenna is weak. Hence, it was investigated the influence of antecedent flows on incipient motion, by dividing the peak discharge recorded between each PIT deployment and the subsequent entrainment by the actual critical discharge at the time of movement (ratio Qmax/Qc). Results show

  2. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-01-01

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  3. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system.

    PubMed

    Moore, Jean-Sébastien; Gow, Jennifer L; Taylor, Eric B; Hendry, Andrew P

    2007-08-01

    The constraining effect of gene flow on adaptive divergence is often inferred but rarely quantified. We illustrate ways of doing so using stream populations of threespine stickleback (Gasterosteus aculeatus) that experience different levels of gene flow from a parapatric lake population. In the Misty Lake watershed (British Columbia, Canada), the inlet stream population is morphologically divergent from the lake population, and presumably experiences little gene flow from the lake. The outlet stream population, however, shows an intermediate phenotype and may experience more gene flow from the lake. We first used microsatellite data to demonstrate that gene flow from the lake is low into the inlet but high into the outlet, and that gene flow from the lake remains relatively constant with distance along the outlet. We next combined gene flow data with morphological and habitat data to quantify the effect of gene flow on morphological divergence. In one approach, we assumed that inlet stickleback manifest well-adapted phenotypic trait values not constrained by gene flow. We then calculated the deviation between the observed and expected phenotypes for a given habitat in the outlet. In a second approach, we parameterized a quantitative genetic model of adaptive divergence. Both approaches suggest a large impact of gene flow, constraining adaptation by 80-86% in the outlet (i.e., only 14-20% of the expected morphological divergence in the absence of gene flow was observed). Such approaches may be useful in other taxa to estimate how important gene flow is in constraining adaptive divergence in nature. PMID:17683442

  4. Air-flow separation over unsteady breaking wind waves

    NASA Astrophysics Data System (ADS)

    Saxena, Gaurav

    2005-11-01

    In air-sea interaction processes, when considering wind stress over small-scale breaking waves, there are few direct quantitative experimental investigations into the role of air-flow separation on the interfacial momentum flux. Reul et. al, (1999), found multiple coherent patches of vorticity downwind of the crest that were strongly influenced by the geometric characteristics of the breaker. However, their breakers were generated by dispersive focusing techniques and, therefore, independent of the wind stress. We present experimental results obtained with particle image velocimetry (PIV) where moderate to strong winds directly generate unsteady small-scale breaking waves, a scenario commonly found in the open ocean. Particular attention has been devoted to capturing the spatio-temporal evolution of the air-water interface. Specifically, texture segmentation algorithms typically used for face recognition (Grey Level Co-occurrence Matrix (GLCM) and the Cross-Diagonal Texture Matrix (CDTM)) have been combined to yield robust and accurate estimates of the instantaneous breaker geometry.

  5. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  6. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  7. Thresholds of flow-induced bed disturbances and their effects on stream metabolism in an agricultural river

    USGS Publications Warehouse

    O'Connor, Ben L.; Harvey, Judson W.; McPhillips, Lauren E.

    2012-01-01

    Storm-driven flow pulses in rivers destroy and restructure sediment habitats that affect stream metabolism. This study examined thresholds of bed disturbances that affected patch- and reach-scale sediment conditions and metabolism rates. A 4 year record of discharge and diel changes in dissolved oxygen concentrations (ΔDO) was analyzed for disturbances and recovery periods of the ΔDO signal. Disturbances to the ΔDO signal were associated with flow pulses, and the recovery times for the ΔDO signal were found to be in two categories: less than 5 days (30% of the disturbances) or greater than 15 days (70% of the disturbances). A field study was performed during the fall of 2007, which included a storm event that increased discharge from 3.1 to 6.9 m3/s over a 7 h period. During stable flow conditions before the storm, variability in patch-scale stream metabolism values were associated with sediment texture classes with values ranging from −16.4 to 2.3 g O22/d (negative sign indicates net respiration) that bounded the reach-averaged rate of −5.6 g O22/d. Hydraulic modeling of bed shear stresses demonstrated a storm-induced flow pulse mobilized approximately 25% of the bed and reach-scale metabolism rates shifted from −5 to −40 g O22/d. These results suggest that storm-induced bed disturbances led to threshold behavior with respect to stream metabolism. Small flow pulses resulted in partial-bed mobilization that disrupted stream metabolism by increased turbidity with short recovery times. Large flow pulses resulted in full-bed mobilization that disrupted stream metabolism by destroying periphyton habitats with long recovery times.

  8. Modeling transient streaming potentials in coupled saturated-unsaturated zone flow to a pumping well

    NASA Astrophysics Data System (ADS)

    Malama, B.

    2012-12-01

    A semi-analytical model for transient response of streaming potentials (SP) to pumping in an unconfined aquifer, taking into account unsaturated zone flow, is presented. Flow in the unsaturated zone is modeled with a linearized Richards' equation with the moisture retention curve and unsaturated hydraulic conduc- tivity assumed to be exponential functions of matric potential. For the case presented here, the same sorption number is assumed for moisture retention and unsaturated hydraulic conductivity. The ratio of the unsaturated to satu- rated electrokinetic coupling coefficient is described by Cℓ,r = kr Sw-(d+1), where kr is relative hydraulic conductivity, Sw is saturation, and d is Archie's second exponent. Hence, based on the assumption of an exponential moisture retention curve, Cℓ,r is also an exponential function of matric potential. Model predicted responses in the saturated and unsaturated zones are compared with measured SP responses to pumping in a bench-scale experimental setup that simulates a radially bounded unconfined aquifer. Potential for using SP responses to esti- mate saturated and unsaturated hydraulic parameters is evaluated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  9. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.

    PubMed

    Jacob, Paul; Kashyap, Prakriti; Suparat, Tasawan; Visvanathan, Chettiyappan

    2014-09-01

    Increasing urbanisation and automobile use have given rise to an increase in global tyre waste generation. A tyre becomes waste once it wears out and is no longer fit for its original purpose, and is thus in its end-of-life state. Unlike in developed countries, where waste tyre management has already become a significant issue, it is rarely a priority waste stream in developing countries. Hence, a large quantity of waste tyres ends up either in the open environment or in landfill. In Thailand, waste tyre management is in its infancy, with increased tyre production and wider use of vehicles, but low levels of recycling, leaving scope for more appropriate policies, plans and strategies to increase waste tyre recycling. This article describes the journey of waste tyres in Thailand in terms of recycling and recovery, and disposal. Material flow analysis was used as a tool to quantify the flows and accumulation of waste tyres in Thailand in 2012. The study revealed that, in Thailand in 2012, waste tyre management was still biased towards destructive technologies (48.9%), rather than material recovery involving rubber reclamation, retreading tyres and whole and shredded tyre applications (6.7%). Despite having both economic and environmental benefits, 44.4% of used tyres in 2012 were dumped in the open environment, and the remaining 0.05% in landfills. PMID:25106533

  10. Ontogenetic Microhabitat Shifts in the Bullhead, Cottus gobio L.,in a Fast Flowing Stream

    NASA Astrophysics Data System (ADS)

    Legalle, Milène; Mastrorillo, Sylvain; Santoul, Frédéric; Céréghino, Régis

    2005-06-01

    We investigated differences in microhabitat preference curves for bullheads, Cottus gobio L., of different size-classes during low flow periods, and evaluated the influence of such differences on habitat use through Weighted Usable Area (WUA) predictions in relation to river flow in a piedmont stream in Southwest France. Water depth, current velocity, and substratum composition were used to calculate proportional use values for each size-class (SC), and to quantify size-specific microhabitat preferences. Bullhead used non-cohesive and coarse mineral particles (pebbles, cobbles, boulders), but there was a spatial segregation of individuals from different size classes (SC1-SC4). Smaller bullhead (SC1, total length <60 mm) took refuge under cobbles, significantly preferred shallower areas, and were less prone to select high current velocities than larger bullhead (SC 2 to 4, >60 mm), the latter occurring below (or under) the largest particles, where current velocity is weakened and sand accumulates. SC1 bullhead had a more restricted range for each habitat descriptors, and were thus likely to require a more specific habitat type than other bullhead. The maximum WUA values and the related preferred discharges (0.15-0.75 m3 s-1) depended on the considered size-class. Our results suggest that ontogenetic niche shifts may play a role in the structure and dynamics of populations, by adjusting species' requirements to the spatial and temporal dynamics of environmental conditions, including abiotic and biotic conditions.

  11. Considerations of Air Flow in Combustion Chambers of High-Speed Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1932-01-01

    The air flow in combustion chambers is divided into three fundamental classes - induced, forced, and residual. A generalized resume is given of the present status of air flow investigations and of the work done at this and other laboratories to determine the direction and velocity of air movement in auxiliary and integral combustion chambers. The effects of air flow on engine performance are mentioned to show that although air flow improves the combustion efficiency, considerable induction, friction, and thermal losses must be guarded against.

  12. Rapid Sediment Erosion and Drumlin Formation Observed Beneath a Fast-Flowing Antarctic Ice Stream

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Murray, T.; Nicholls, K. W.; Makinson, K.; Adalgeirsdottir, G.; Behar, A. E.

    2005-12-01

    What happens beneath a glacier affects both the way it flows and the landforms left behind when it retreats. Unfortunately, although the subglacial environment is one of the most critical to understanding ice flow and the processes of bedform formation, it is also the most difficult to study. As part of the RABID project on Rutford Ice Stream, West Antarctica in 2004/05, seismic reflection data were acquired at the same geographic location as identical surveys conducted 7 and 13 years previously. Analysis of the data from all 3 seismic surveys gives both the bed topography and an indication of the bed material and basal conditions. In particular, we can distinguish between places where the bed is soft, water-saturated sediments, probably deforming pervasively with the motion of the overlying ice, and those where the bed, whilst still sedimentary, is harder and the ice flow is probably dominated by basal sliding. Over the six years between the first and second surveys, 6 m of sediment was eroded from a region of the bed approximately 500 m wide. This occurs in one of the basal sliding areas. Typical interpreted and modelled subglacial erosion rates from all glacial environments are normally of the order of 0.1-100 mm/a. Our minimum observed rate of 1 m/a is remarkably high, particularly for a glacier which appears to have been in overall steady-state for at least many hundreds of years, and probably much longer. Over the seven years between the second and third surveys, further major changes occurred at the ice stream bed. The previous erosion ceased. Subsequently, a large mound of deforming sediment over-rode this same area of the glacier bed. This mound is 10 m high, 100 m wide and at least a few hundred metres long. This is a very short time for the formation of such a large feature, only 7 years previously nothing of its kind existed at this location. We interpret these dimensions and sediment characteristics as an actively-forming drumlin. Our results are the

  13. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2003-10-15

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to {sup 60}Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor.

  14. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  15. Numerical analyses of passive and active flow control over a micro air vehicle with an optimized airfoil

    NASA Astrophysics Data System (ADS)

    Gada, Komal Kantilal

    Numerical investigations of an optimized thin airfoil with a passive and an active flow control device (riblets and rotary cylinder) have been performed. The objectives of the thesis were to investigate the tip vortices reduction using riblets and decrease in flow separation, using a rotary cylinder for improved lift-to-drag ratio. The investigations has application potentials in improving performances of Micro Air Vehicles (MAVs). The airfoil has a chord length of 19.66 cm and a span of 25 cm. with the free stream mean velocity was set at 20 m/s. The Reynolds number was calculated as 3 x 10 4. Investigations with base model of the airfoil have shown flow separation at approximately 85% chord length at an angle of attack of 17 degrees. For investigation using passive flow control device, i.e. riblets, investigations were performed for different radial sizes but at a fixed location. It was found that with 1 mm radial size riblet, the tip vortices were reduced by approximately 95%, as compared to the baseline model. Although negligible lift-to-drag improvement was seen, a faster dissipation rate in turbulent kinetic energy was observed. Furthermore, investigations were carried out using the active flow control device. The rotary cylinder with a 0.51 cm in diameter was placed slightly downstream of the location of flow separation, i.e. at x/c = 0.848. Investigations were performed at different cylinder's rotations, corresponding to different tangential velocities of being higher than, equal to and less than the free stream mean velocity. Results have shown approximately 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Further investigation may include usage of the riblets and the rotary cylinder combined, to increase the stability as well as the lift-to-drag ratio of the MAVs.

  16. On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.

    1991-01-01

    Downstream boundary conditions equivalent to the homogeneous form of the natural boundary conditions associated with the velocity-pressure formulation of the Navier-Stokes equations are derived for the vorticity-stream function formulation of two-dimensional incompressible flows. Of particular interest are the zero normal and shear stress conditions at a downstream boundary.

  17. Fluxed of fixed nitrogen species contributed by two adjacent wetland streams with different flow-source terms in Watkinsville, GA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inorganic, fixed nitrogen from agricultural settings often is introduced to first-order streams via surface runoff and shallow ground-water flow. Best management practices for limiting the flux of fixed N to surface waters often include buffers such as wetlands. However, the efficiency of wetlands t...

  18. A geographic information system tool to solve regression equations and estimate flow-frequency characteristics of Vermont Streams

    USGS Publications Warehouse

    Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.

    2003-01-01

    Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.

  19. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina

    EPA Science Inventory

    <