Science.gov

Sample records for air stream prior

  1. Pattern Specificity in the Effect of Prior [delta]f on Auditory Stream Segregation

    ERIC Educational Resources Information Center

    Snyder, Joel S.; Weintraub, David M.

    2011-01-01

    During repeating sequences of low (A) and high (B) tones, perception of two separate streams ("streaming") increases with greater frequency separation ([delta]f) between the A and B tones; in contrast, a prior context with large [delta]f results in less streaming during a subsequent test pattern. The purpose of the present study was to investigate…

  2. A Delicate Balance: Hovering Balloons in an Air Stream

    ERIC Educational Resources Information Center

    Gluck, Paul

    2006-01-01

    Science museums and popular physics shows often exhibit a blower in whose air stream a ball is held hovering in equilibrium some distance above the jet's orifice. The weight of the ball, "mg," is balanced by the drag force of the turbulent air stream, often written as ?Cv[superscript 2]A, where "?" and "v" are the…

  3. Pattern specificity in the effect of prior Δƒ on auditory stream segregation.

    PubMed

    Snyder, Joel S; Weintraub, David M

    2011-10-01

    During repeating sequences of low (A) and high (B) tones, perception of two separate streams ("streaming") increases with greater frequency separation (Δƒ) between the A and B tones; in contrast, a prior context with large Δƒ results in less streaming during a subsequent test pattern. The purpose of the present study was to investigate what aspects of the context pattern are necessary for this context effect to occur. Simply changing the B-tone frequency without an alternating A tone present was not sufficient to cause the effect of prior Δƒ, but rather a melodic change between A and B tones was necessary. We further investigated the extent to which the context and test patterns needed to have similar rhythms (xxx-xxx-) and melodies (up-down-flat-up-down), and found that a maximal prior-Δƒ effect occurred when the rhythmic patterns of the context and test were similar, regardless of the melodic structure. Thus, the effect of prior Δƒ on streaming depended on the presence of (1) at least one melodic change in the context, and (2) similar rhythmic patterns in the context and test. PMID:21500945

  4. Evolution of injected air stream in granular bed

    NASA Astrophysics Data System (ADS)

    Maiti, Ritwik; Das, Gargi; Das, Prasanta

    2015-11-01

    An air stream injected through an orifice into a granular bed creates intriguing but aesthetically exotic patterns. The interaction of air with an aggregate of cohesionless granules presents evolution of patterns from stationary bubble to meandering filament and finally to a floating canopy with the increase of air velocity.

  5. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  6. Multiple-orifice liquid injection into hypersonic air streams.

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.

    1972-01-01

    Review of oblique water and fluorocarbon injection test results obtained in experimental studies of the effects of multiple-orifice liquid injection into hypersonic air streams. The results include the finding that maximum lateral penetration from such injections increases linearly with the square root of the jet-to-freestream dynamic-pressure ratio and is proportional to an equivalent orifice diameter.

  7. Stream air temperature relations to classify stream ground water interactions in a karst setting, central Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Michael A.; DeWalle, David R.

    2006-09-01

    SummaryStream-ground water interactions in karst vary from complete losses through swallow holes, to reemergences from springs. Our study objective was to compare stream-air temperature and energy exchange relationships across various stream-ground water relationships in a carbonate watershed. It was hypothesized that ground water-fed stream segments could be distinguished from perched/losing segments using stream-air temperature relationships. Two types of computations were conducted: (1) comparisons of stream-air temperature relationships for the period of October 1999-September 2002 at 12 sites in the Spring Creek drainage and (2) detailed energy budget computations for the same period for ground water-dominated Thompson Run and Lower Buffalo Run, a stream with negligible ground water inputs. Weekly average air temperatures and stream temperatures were highly correlated, but slopes and intercepts of the relationship varied for the 12 sites. Slopes ranged from 0.19 to 0.67 and intercepts ranged from 3.23 to 9.07 °C. A two-component mixing model with end members of ground water and actual stream temperatures indicated that the slope and intercept of the stream-air temperature relationship was controlled by ground water inputs. Streams with large ground water inputs had greater intercepts and lesser slopes than streams that were seasonally losing, perched, and/or distant from ground water inputs. Energy fluxes across the air-water interface were greatest for the ground water-fed stream due to increased longwave, latent, and sensible heat losses from the stream in winter when large temperature and vapor pressure differences existed between the stream and air. Advection of ground water was an important source and sink for heat in the ground water-fed stream, depending on season. In contrast, along the seasonally losing stream reach, advection was of minimal importance and stream temperatures were dominated by energy exchange across the air- water interface. Overall

  8. Coaxial twin-fluid atomization with pattern air gas streams

    NASA Astrophysics Data System (ADS)

    Hei Ng, Chin; Aliseda, Alberto

    2010-11-01

    Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.

  9. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  10. Biological removal of carbon disulfide from waste air streams

    SciTech Connect

    Hugler, W.; Acosta, C.; Revah, S.

    1999-09-30

    A pilot-scale biological control system for the treatment of 3,400 m{sup 3} h{sup {minus}1} of a gaseous stream containing up to 7.8 g CS{sub 2} m{sup {minus}3} and trace amounts of hydrogen sulfide (H{sub 2}S) was installed in a cellulose sponge manufacturing facility. The objective was to demonstrate the capability of the process to attain sustained removal efficiencies of 90% for CS{sub 2} and 99% for H{sub 2}S. The system consisted of two sequential biotrickling reactors, which had been previously inoculated with an adapted microbial consortium. During the pilot test, stable removal efficiency and elimination capacity of +90% and 220g CS{sub 2} m{sup {minus}3} h{sup {minus}1}, respectively, were attained with an empty bed residence time (EBTR) of 33 seconds for a period of several weeks. Efficiencies greater than 99% were always obtained for H{sub 2}S. Based on the results, the system was determined to be an effective process to remediate waste air streams containing reduced sulfur compounds generated at cellulose sponge facilities.

  11. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    C to 1.5 °C for the different gauges. To test the model, the average water temperature was estimated at the six locations within the Sonoma Valley not used in the calibration. For each water temperature record, the prior area dependent weighting factor was used. Regional maximum and minimum air temperature data were then used to estimate the average stream water temperature over the period of recorded water temperature. The average error between model-estimated and observed water temperature for the additional locations in the Sonoma Valley ranged from 0.7 °C to 3.5 °C. The model estimated water temperature for gauges with upstream drainage area less than 50 km2 had average error between estimated and observed water temperature less than 1.7 °C. When upstream drainage area was greater than 50 km2, the average error increased up to 3.5°C for some gauge locations. The model could also estimate water temperature in streams in other basins using the same area-dependent weighting factor. For eighteen gauges in the Napa Valley to the east , the average error between estimated and observed water temperature ranged from 0.7 °C to 1.9 °C, while for four gauges in the Russian River Valley to the northwest, the average error ranged from 1.2 °C to 3.2 °C. We speculate the area-dependent weighting factor reflects the temperature of groundwater contributions to stream flow.

  12. A diagnostic study of baroclinic disturbances in polar air streams

    NASA Technical Reports Server (NTRS)

    Sinclair, Mark R.; Elsberry, Russell L.

    1986-01-01

    Quasi-Lagrangian budgets of mass, vorticity and heat are calculated following disturbances that form within polar air streams. Observed cases are extracted from the European Centre for Medium-range Weather Forecasts analyses during the First GARP Global Experiment. Model-generated cases are extracted from the simulations of extratropical cyclogenesis by Sandgathe. These polar lows grow primarily through basic baroclinic instability processes and exhibit many features of larger maritime extratropical cyclones. Polar lows that originate on the poleward (or Cyclonic - Type C) side of the jet and have considerable midtropospheric positive vorticity advection at formation time are contrasted with lows that form on the equatorward (or Anticyclonic - Type A) side of a nearly straight upper-level jet. The midtropospheric positive vorticity advection must be present to enhance the vertical circulation when the large surface fluxes that are associated with strong outbreaks act to damp the thermal wave amplification. Although latent heat release is an important factor in both types, it is an essential energy source for the Type A low developments on the equatorward side. Although the vorticity balance is initially different for the two types of polar lows, the vorticity budgets during later stages are similar. The heat budget and the thickness tendency equation demonstrated that the self-development process that is present in larger maritime cyclones is also important for polar low intensification. The absence of favorable coupling to a jet stream is the missing factor in a model-generated Type A polar low that failed to develop. Consequently, the mid- and upper-tropospheric wind fields determine which polar lows will intensify to significant amplitudes.

  13. Usefulness of computed tomography with air insufflation of the stomach prior to percutaneous endoscopic gastrostomy procedure

    PubMed Central

    Kawashima, Kousaku; Adachi, Kyoichi; Onishi, Koji; Fukuda, Kosuke; Kazumori, Hideaki; Ohno, Yasuhiko; Katoh, Takao; Sonoyama, Hiroki; Tada, Yasumasa; Kusunoki, Ryusaku; Oka, Akihiko; Fukuba, Nobuhiko; Oshima, Naoki; Yuki, Takafumi; Ishihara, Shunji; Kinoshita, Yoshikazu

    2016-01-01

    We examined the results of computed tomography (CT) with and without air insufflation of the stomach prior to performing percutaneous endoscopic gastrostomy (PEG). We retrospectively analyzed 366 patients who underwent PEG. CT images obtained with and without air insufflation were examined for the presence or absence of contact between the gastric anterior wall and abdominal wall. PEG outcome based on CT findings was also examined. CT with and without air insufflation was performed in 272 and 94 patients, respectively. Contact between the gastric anterior wall and abdominal wall was shown in 254 (93.4%) with and 45 (47.9%) without air insufflation, all of whom underwent a successful PEG procedure. In patients without contact between the gastric anterior wall and abdominal wall, PEG was not successful in 3 of 49 (6.1%) examined by CT without and 6 of 18 (33.3%) examined with air insufflation (p = 0.004). Values for diagnostic accuracy for contact between the gastric anterior wall and abdominal wall shown by CT with and without air insufflation in successful PEG cases were 0.96 and 0.51, respectively. In conclusion, CT with air insufflation more often revealed contact between the gastric anterior wall and abdominal wall as compared to CT without air insufflation, which may help to predict PEG procedure success. PMID:27257351

  14. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  15. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction

    DOEpatents

    Attia, Yosry A.

    2000-01-01

    Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

  16. Penetration of Air Jets Issuing from Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; Callaghan, Edmund E.; Bowden, Dean T.

    1950-01-01

    An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.

  17. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  18. How an Air Stream Can Support a Cupcake

    NASA Astrophysics Data System (ADS)

    Jones, Evan

    2015-05-01

    Variations of a demonstration in which a sheet of paper or a bead is levitated in a grazing stream as from one's breath have been published in several sources.1-4 Even a massive ball can be deflected into the robust flow from a leaf blower.5 The attraction is surprising because it is often quite stable and seems to conflict with the familiar transient repulsion felt from a stream's impact.

  19. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C., Jr.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  20. How an Air Stream Can Support a Cupcake

    ERIC Educational Resources Information Center

    Jones, Evan

    2015-01-01

    Variations of a demonstration in which a sheet of paper or a bead is levitated in a grazing stream as from one's breath have been published in several sources. Even a massive ball can be deflected into the robust flow from a leaf blower. The attraction is surprising because it is often quite stable and seems to conflict with the familiar transient…

  1. Assessment of endocrine-disrupting chemicals attenuation in a coastal plain stream prior to wastewater treatment plant closure

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.

    2014-01-01

    The U.S. Geological Survey is conducting a combined pre/post-closure assessment at a long-term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine-active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine-disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2-km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β-estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater-derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.

  2. The Research of Membrane-sorption System with Increased Pressure Stream for Enriching Air with Oxygen

    NASA Astrophysics Data System (ADS)

    Korolev, M. V.; Laguntsov, N. I.; Kurchatov, I. M.

    Numerical study of single-hybrid membrane-sorption air separation system for enriching the air with oxygen were conducted. The effectiveness of such a system was analyzed, depending on selective sorbents and membranes under specified pressure ratio. A comparison of various modes membrane sorption system was done. The conclusion regarding the choice of the membrane and a sorbent for the system with a pressurized product stream was drawn.

  3. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  4. Apparatus for mixing char-ash into coal stream

    DOEpatents

    Blaskowski, Henry J.

    1982-03-16

    Apparatus for obtaining complete mixing of char with coal prior to the introduction of the mixture into the combustor (30) of a coal gasifier (10). The coal is carried in one air stream (22), and the char in another air stream (54), to a riffle plate arrangement (26), where the streams of solid are intimately mixed or blended.

  5. On the behaviour of a stressed cotton canopy in a direct air stream

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Newcomb, W. W.

    1986-01-01

    Reflectance variations of a stressed cotton canopy were conducted in the presence of a fan-generated air stream to investigate the effects of air movement and the resulting temperature changes on remotely-sensed data. The initial drop in reflectance after application of the air stream was found to be greatest in the morning because leaf turgor was at a maximum, enabling leaves on the windward side of the canopy to assume surprisingly stable vertical positions. By afternoon, a reduction in leaf turgor was responsible for less stem displacement and consequently a reduction in light-trapping capability. However, reflectance oscillations were greater because the leaves had become sufficiently limp to flutter at the edges and about the petioles exposing both adaxial and abaxial surfaces to the incident light.

  6. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  7. Alcohol issues prior to training in the United States Air Force.

    PubMed

    Derefinko, Karen J; Klesges, Robert C; Bursac, Zoran; Little, Melissa A; Hryshko-Mullen, Ann; Talcott, Gerald W

    2016-07-01

    The negative impact of alcohol is a significant concern to the US military given the costs associated with alcohol-related offenses. Despite considerable research in active duty personnel, relatively little is known about the current extent of alcohol use among incoming recruits. We examined the history of alcohol use and harmful patterns of alcohol consumption among recruits entering the United States Air Force (USAF; N=50,549) over the span of 4 years (2010-2014). Across all years, drinking rates reflected national average trends for those aged 18-24 (NIDA, 2014). However, when abstainers were excluded, those under 21 (n=10,568) reported an average of 18.4 drinks per week, whereas those age 21 and over (n=14,188) reported an average of 14.1 drinks per week, suggesting that for those who drink, those under 21 are exhibiting more risky drinking rates. Alcohol Use Disorders Identification Task (AUDIT) scores for drinkers reflected these same trends. For those under 21, 58% scored in risk categories of 2 or higher (risky drinking warranting attention), compared with 40% for those age 21 and over. These scores indicate that for recruits in the USAF, approximately half report alcohol use immediately prior to basic training, resulting in the inheritance of these potential alcohol related issues for those conducting training of these recruits. Based upon these numbers, brief alcohol interventions could have a potential positive impact on individuals in their initial training stages of the USAF to prevent these baseline issues from resulting in problems later in their military careers. PMID:26945450

  8. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  9. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  10. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  11. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  12. Biofiltration of benzene contaminated air streams using compost-activated carbon filter media

    SciTech Connect

    Zhu, L.; Kocher, W.M.; Abumaizar, R.J.

    1998-12-31

    Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

  13. Air- and Stream-Water-Temperature Trends in the Chesapeake Bay Region, 1960-2014

    USGS Publications Warehouse

    Jastram, John D.; Rice, Karen C.

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

  14. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  15. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  16. Mexico City air quality research initiative. Volume 2, Problem definition, background, and summary of prior research

    SciTech Connect

    Not Available

    1994-06-01

    Air pollution in Mexico City has increased along with the growth of the city, the movement of its population, and the growth of employment created by industry. The main cause of pollution in the city is energy consumption. Therefore, it is necessary to take into account the city`s economic development and its prospects when considering the technological relationships between well-being and energy consumption. Air pollution in the city from dust and other particles suspended in the air is an old problem. However, pollution as we know it today began about 50 years ago with the growth of industry, transportation, and population. The level of well-being attained in Mexico City implies a high energy use that necessarily affects the valley`s natural air quality. However, the pollution has grown so fast that the City must act urgently on three fronts: first, following a comprehensive strategy, transform the economic foundation of the city with nonpolluting activities to replace the old industries, second, halt pollution growth through the development of better technologies; and third, use better fuels, emission controls, and protection of wooded areas.

  17. Air cooling : an experimental method of evaluating the cooling effect of air streams on air-cooled cylinders

    NASA Technical Reports Server (NTRS)

    Alcock, J F

    1927-01-01

    In this report is described an experimental method which the writer has evolved for dealing with air-cooled engines, and some of the data obtained by its means. Methods of temperature measurement and cooling are provided.

  18. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium.

    PubMed

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús

    2015-08-13

    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains. PMID:26189700

  19. Magnetic Characterization of Stream-Sediments From Buenos Aires Province, Argentina, Affected by Pollution

    NASA Astrophysics Data System (ADS)

    Chaparro, M. A.; Sinito, A. M.; Bidegain, J. C.; Gogorza, C. S.; Jurado, S.

    2001-12-01

    A wide urban area from Northeast of Buenos Aires Province is exposed to an important anthropogenic influence, mainly due to industrial activity. In this two water streams were chosen: one of them (Del Gato stream, G) next to La Plata City and the another one (El Pescado stream, P) on the outskirts of the city. Both streams have similar characteristics, although the first one (G) has a higher input of pollutants (fluvial effluents, fly ashes, solid wastes, etc.) than the last one (P). Sediments analyzed in this work are limes from continental origin of PostPampeano (Holocene). Although, some cores were affected by sandy-limy sediments with mollusc valves from Querandino Sea (Pleistocene - later Holocene) and limy sediments of chestnut color with calcareous concretions from the Ensenadense. Magnetic measurements and geochemical studies were carried out on the samples. Among the magnetic parameters, specific susceptibility (X), X frequency-dependence (Xfd%), X temperature-dependence, Natural Remanent Magnetization (NRM), Isothermal Remanent Magnetization (IRM), Saturation IRM (SIRM), coercivity of remanence (Bcr), S ratio and SIRM/X ratio, Anhysteric Remanent Magnetization (ARM), Magnetic and Thermal Demagnetization were studied. The magnetic characteristics for both sites indicate the predominance of magnetically soft minerals on G site and relatively hard minerals on P site. Magnetite is the main magnetic carrier, Pseudo Single Domain and Single Domain grains were found. Chemical studies show (in some cases) a high concentration for some heavy metals (Pb, Cu, Zn, Ni and Fe) on the upper 22-cm. Contents of heavy metals and ARM were correlated. Very good correlation (R> 0.81) is found for Cu, Zn, Ni, Fe and the sum (of Pb, Cu, Zn and Ni), and a weaker correlation for Pb.

  20. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems

    NASA Astrophysics Data System (ADS)

    Sherwin, Catherine M.; Baldini, James U. L.

    2011-07-01

    Hourly resolved cave air P and cave drip water hydrochemical data illustrate that calcite deposition on stalagmites can be modulated by prior calcite precipitation (PCP) on extremely short timescales. A very clear second-order covariation between cave air P and drip water Ca 2+ concentrations during the winter months demonstrates the effects of degassing-induced PCP on drip water chemistry. Estimating the strength of the cave air P control on PCP is possible because the PCP signal is so clear; at our drip site a one ppm shift in Ca 2+ concentrations requires a P shift of between 333 and 667 ppm. This value will undoubtedly vary from site to site, depending on drip water flow rate, residence time, drip water-cave air P differential, and availability of low P void spaces in the vadose zone above the cave. High-resolution cave environmental measurements were used to model calcite deposition on one stalagmite in Crag Cave, SW Ireland, and modelled growth over the study period (222 μm over 171 days) is extremely similar to the amount of actual calcite growth (240 μm) over the same time interval, strongly suggesting that equations used to estimate stalagmite growth rates are valid. Although cave air P appears to control drip water hydrochemistry in the winter, drip water dilution caused by rain events may have played a larger role during the summer, as evidenced by a series of sudden drops in Ca 2+ concentrations (dilution) followed by much more gradual increases in drip water Ca 2+ concentrations (slow addition of diffuse water). This research demonstrates that PCP on stalactites, cave ceilings, and void spaces within the karst above the cave partially controls drip water chemistry, and that thorough characterisation of this process at individual caves is necessary to most accurately interpret climate records from those sites.

  1. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  2. Jet Stream Converges Prior to 6.8M Niigata Chuetsu-oki Earthquake of Japan on 2007/07/16

    NASA Astrophysics Data System (ADS)

    Wu, H.

    2007-12-01

    The 6.8M Niigata Chuetsu-oki earthquake occurred on 2007/07/16 and resulted in 11 deaths and at least 1000 injuries have been reported, and 342 buildings were completely destroyed. The 108km/hr isobar jet stream line converged around an epicenter on 2007/07/01 12:00 and 2007/07/02 06:00. Before a devastating earthquake occurs, the underground water level usually changes caused by the rock squishing or loosening. This study assumed that rock squishing or loosening caused air inhalation or exhalation that creates an internal gravity wave. This phenomenon will change the jet streams at an altitude of 10 km. Ps. The predicted Data:07/06/26-07/07/26 Japan(37.4N140.0E)M 6.0 100% The Actual Data: 07/07/16 Japan (37.576N138.469E) 6.6M 10km This earthquake prediction had been predicted on http://tw.myblog.yahoo.com/wu10002002/ and sent to Dr. Dimitar Ouzounov in advance.

  3. Effect of single silica gel particle adsorption on the transport processes in a humid air stream

    NASA Astrophysics Data System (ADS)

    Sanyal, Apratim; Basu, Saptarshi; Kumar, Pramod

    2013-11-01

    The effect of adsorption due to a single silica gel particle on a convective field consisting of humid air has been investigated numerically. The adsorption is incorporated as a sink term in the transport equation for species (water vapor) and has been modeled using Linear Driving Force model, while the heat released due to adsorption is taken as source term in the energy equation and proportional to the amount of water vapor adsorbed. The heat released creates a coupling between the species and the temperature field as the adsorption characteristics are directly influenced by particle temperature. The extent of species and temperature boundary layer show the diffusion of the adsorption effects into the free stream. Surface adsorption is found to decrease with Reynolds no. The particle surface temperature increases from forward stagnation point till downstream. This work provides a model for understanding the adsorption kinetics in convective stream for other adsorbate-adsorbent pair. Further more complex scenarios can be modeled such as presence of multiple adsorbent particles, the interaction of species and temperature boundary layers setup due to individual particles and their influence on the overall adsorption characteristics.

  4. Strategies for NO{sub x} cleanup from air streams using dielectric barrier discharges

    SciTech Connect

    Gentile, A.C.; Kushner, M.J.

    1993-12-01

    Efficient processes for the removal of NO{sub x} from exhaust gases due to the combustion of fossil fuels is of increasing interest due to stringent EPA limits on allowable emissions. Strategies for plasma remediation of NO{sub x} using both reduction (N + NO {yields} N{sub 2} + O) and oxidation (NO{sub 2} + OH {yields} HNO{sub 3}) techniques are being developed as an energy efficient cleansing method. The dry reduction technique is preferred since there is no acidic waste product. The authors have developed a plasma chemistry computer model for atmospheric pressure gas streams excited by dielectric barrier discharges to investigate optimum methods to remove NO{sub x} from air. They will report on efficiencies for removing 100s ppm of NO{sub x} while varying water content and power deposition. Comparisons will be made to experiments by Chang et. al.

  5. Real-time dissemination of air quality information using data streams and Web technologies: linking air quality to health risks in urban areas.

    PubMed

    Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan

    2015-06-01

    This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed. PMID:26110480

  6. Nomogram for correcting drag and angle of attack of an airfoil model in an air stream of finite diameter

    NASA Technical Reports Server (NTRS)

    1924-01-01

    In experimenting with airfoil models in a wind tunnel, the magnitude of the forces acting on the model is affected by the fact that the air stream in which the model is suspended, has a restricted cross-section. In order to utilize the results for an airplane in an unlimited quantity of air, a correction must be made. The magnitude of this correction was determined by Prandtl by the application of his wing theory.

  7. Sampling of air streams and incorporation of samples in the Microtox{trademark} toxicity testing system

    SciTech Connect

    Kleinheinz, G.T.; St. John, W.P.

    1997-10-01

    A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicity testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.

  8. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  9. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  10. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags.

    PubMed

    Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  11. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    PubMed Central

    Hocking, Daniel J.; O’Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O’Donnell, Matthew J.

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  12. Numerical Parametric Studies of Laminar Flame Structures in Opposed Jets of Partially Premixed Methane-Air Streams

    NASA Astrophysics Data System (ADS)

    Arun, C. R.; Raghavan, Vasudevan

    2012-09-01

    Interactions of fuel-rich and fuel-lean mixtures and formation of interlinked multiple flame zones are observed in gas turbines and industrial furnaces. For fundamentally understanding such flames, numerical investigation of heat and mass transport, and chemical reaction processes, in laminar, counter flowing partially premixed rich and lean streams of methane and air mixtures, is presented. An axisymmetric numerical reactive flow model, with C2 detailed mechanism for describing methane oxidation in air and an optically thin radiation sub-model, is used in simulations. The numerical results are validated against the experimental results from literature. The equivalence ratios of counter flowing rich and lean reactant streams and the resulting strain rates have been varied. The effect of these parameters on the flame structure is presented. For a given rich and lean side equivalence ratios, by varying the strain rates, triple, double and single flame zones are obtained.

  13. Restoration of an inner-city stream and its impact on air temperature and humidity based on long-term monitoring data

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kwon, Tae Heon; Kim, Yeon-Hee; Koo, Hae-Jung; Choi, Byoung-Cheol; Choi, Chee-Young

    2009-03-01

    Spatiotemporal changes in air temperature and humidity associated with the restoration of an innercity stream in Seoul, Korea, are investigated based on long-term monitoring data. The Cheonggye stream, covered under a concrete structure for 46 years, was restored in 2005 and runs 5.8 km eastward through a central region of Seoul. Long-term monitoring of the air temperature and relative humidity was made along the stream throughout the restoration and across the stream after the restoration. The area along the stream had a higher air temperature than the entire metropolitan area. The temperature anomaly between the monitoring area and the surrounding metropolitan area was 0.13°C lower on average at the center of the stream after the restoration. The stream’s effect on the air temperature was also evident in the temperature distribution along a street traversing the stream. The relative and specific humidities were increased due to the restoration. The restored stream modified the nearby urban climate in the opposite direction compared to urbanization. The results could be used as a model case in mitigating urban climate by a stream in future urban planning practices.

  14. Removal of volatile organic compounds from air streams by making use of a microwave plasma burner with reverse vortex flows

    NASA Astrophysics Data System (ADS)

    Kim, Ji H.; Ma, Suk H.; Cho, Chang H.; Hong, Yong C.; Ahn, Jae Y.

    2014-01-01

    We developed an atmospheric-pressure microwave plasma burner for removing volatile organic compounds (VOCs) from polluted air streams. This study focused on the destruction of the VOCs in the high flow rate polluted streams required for industrial use. Plasma flames were sustained by injecting liquefied natural gas (LNG), which is composed of CH4, into the microwave plasma torch. With its high temperature and high density of atomic oxygen, the microwave torch attained nearly complete combustion of LNG, thereby providing a large-volume, high-temperature plasma flame. The plasma flame was applied to reactors in which the polluted streams were in one of two vortex flows: a conventional vortex reactor (CVR) or a reverse vortex reactor (RVR). The RVR, using a plasma power of 2 kW and an LNG flow of 20 liters per minute achieved a destruction removal efficiency (DRE) of 98% for an air flow rate of 5 Nm3/min polluted with 550 pm of VOCs.. For the same experimental parameters, the CVR provided a DRE of 90.2%. We expect that this decontamination system will prove effective in purifying contaminated air at high flow rates.

  15. Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia

    NASA Astrophysics Data System (ADS)

    Treble, Pauline C.; Fairchild, Ian J.; Griffiths, Alan; Baker, Andy; Meredith, Karina T.; Wood, Anne; McGuire, Elizabeth

    2015-11-01

    Speleothem trace element chemistry is an important component of multi-proxy records of environmental change but a thorough understanding of hydrochemical processes is essential for its interpretation. We present a dripwater chemistry dataset (PCO2, alkalinity, Ca, SIcc, Mg and Sr) from an eight-year monitoring study from Golgotha Cave, building on a previous study of hydrology and dripwater oxygen isotopes (Treble et al., 2013). Golgotha Cave is developed in Quaternary aeolianite and located in a forested catchment in the Mediterranean-type climate of southwest Western Australia. All dripwaters from each of the five monitored sites become supersaturated with respect to calcite during most of the year when cave ventilation lowers PCO2 in cave air. In this winter ventilation mode, prior calcite precipitation (PCP) signals of increased Mg/Ca and Sr/Ca in dripwater are attributed to stalactite deposition. A fast-dripping site displays less-evolved carbonate chemistry, implying minimal stalactite growth, phenomena which are attributed to minimal degassing because of the short drip interval (30 s). We employ hydrochemical mass-balance modelling techniques to quantitatively investigate the impact of PCP and CO2 degassing on our dripwater. Initially, we reverse-modelled dripwater solutions to demonstrate that PCP is dominating the dripwater chemistry at our low-flow site and predict that PCP becomes enhanced in underlying stalagmites. Secondly, we forward-modelled the ranges of solution Mg/Ca variation that potentially can be caused by degassing and calcite precipitation to serve as a guide to interpreting the resulting stalagmite chemistry. We predict that stalagmite trace element data from our high-flow sites will reflect trends in original dripwater solutes, preserving information on biogeochemical fluxes within our system. By contrast, stalagmites from our low-flow sites will be dominated by PCP effects driven by cave ventilation. Our poorly karstified system allows us

  16. U.S. Armed Forces air crew: incident illness and injury diagnosis during the 12 months prior to retirement, 2003-2012.

    PubMed

    Smallman, Darlene P; Hu, Zheng; Rohrbeck, Patricia

    2014-05-01

    U.S. Armed Services retirees are eligible for disability compensation for medical illness/injury incurred during their service. This analysis of recently retired U.S. active component air crew/aviation service members from all Services evaluated incident diagnoses among aviation retirees during the 12 months prior to retirement and assessed trends in first-time diagnoses by major diagnostic category and aviation component stratification. Most aviation retirees were in their 40s, Air Force, male, white, and senior officers and warrant officers. Among the study population, 14,191 (88%) of aviation retirees had at least one first-time diagnosis recorded during the 12 months prior to retirement. During 2003-2012, 63.8% of all diagnoses in aviation retirees during the 12 months prior to retirement were new. The highest proportions of new diagnoses were for "other disorders of the ear," "organic sleep disorders," and "general symptoms." Among the four subtypes of aviators, general air crew/air craft crew had the lowest proportion of new diagnoses (60.2%). PMID:24885877

  17. The use of warm air stream for solvent evaporation: effects on the durability of resin-dentin bonds.

    PubMed

    Reis, Alessandra; Klein-Júnior, Celso A; de Souza, Fabio H Coelho; Stanislawczuk, Rodrigo; Loguercio, Alessandro D

    2010-01-01

    This study evaluated the effect of a warm (W) or cold (C) air-dry stream for solvent evaporation on the immediate (IM) and six-month (6M) resin-dentin bond strength (microTBS) and silver nitrate uptake pattern (SNU) of two-step etch-and-rinse adhesive system (Adper Single Bond [SB] and Prime & Bond 2.1 [PB]). The adhesives were applied on demineralized dentin surfaces and a warm or cold air-dry stream (10 seconds) was applied followed by light-activation (10 seconds). After 24-hours of water storage, the specimens were serially sectioned in the "x" and "y" directions to obtain bonded sticks around 0.8 mm2 to be tested immediately or after six months of water storage. The specimens at each period were immersed in a 50% solution of silver nitrate, photodeveloped and analyzed by SEM for SNU. Higher IM microTBS values were observed for SB under W conditions. Both adhesives showed reductions in microTBS after 6M in both air temperatures. Regarding SEM, a low silver nitrate uptake was observed in the W groups either in IM or 6M for both adhesives. PMID:20166408

  18. Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina).

    PubMed

    Solis, Marina; Mugni, Hernán; Hunt, Lisa; Marrochi, Natalia; Fanelli, Silvia; Bonetto, Carlos

    2016-09-01

    Agriculture and livestock may contribute to water quality degradation in adjacent waterbodies and produce changes in the resident invertebrate composition. The objective of the present study was to assess land use effects on the stream invertebrate assemblages in rural areas of the Argentine Pampa. The four sampling events were performed at six sites in four streams of the Pampa plain; two streams were sampled inside a biosphere reserve, and another one was surrounded by extensive livestock fields. The fourth stream was sampled at three sites; the upstream site was adjacent to agricultural plots, the following site was adjacent to an intensive livestock plot and the downstream site was adjacent to extensive breeding cattle plots. Higher pesticide concentrations were found at the site adjacent to agricultural plots and higher nutrient concentrations at the sites adjacent to agricultural and intensive breeding cattle plots. The invertebrate fauna were also different at these sites. Multivariate analysis showed a relationship between nutrient concentrations and taxonomic composition. Amphipoda (Hyalella curvispina) was the dominant group in the reserve and extensive breeding cattle sites, but was not present in the agricultural site. Also, Chironomidae were absent from the agricultural site while present at other sites. Gasteropoda (Biomphalaria peregrina), Zygoptera, and Hirudinea were dominant at the most impacted agricultural and intensive breeding cattle sites. PMID:27581006

  19. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    SciTech Connect

    Fernandez, Jose M.; Plaza, Cesar; Polo, Alfredo; Plante, Alain F.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC

  20. Integrated air stream micromixer for performing bioanalytical assays on a plastic chip.

    PubMed

    Geissler, Matthias; Li, Kebin; Zhang, Xuefeng; Clime, Liviu; Robideau, Gregg P; Bilodeau, Guillaume J; Veres, Teodor

    2014-10-01

    This paper describes the design, functioning and use of an integrated mixer that relies on air flux to agitate microliter entities of fluid in an embedded microfluidic cavity. The system was fabricated from multiple layers of a thermoplastic elastomer and features circuits for both liquid and air supply along with pneumatic valves for process control. Internally-dyed polymer particles have been used to visualize flow within the fluid phase during agitation. Numerical modelling of the micromixer revealed an overall efficacy of 10(-1) to 10(-2) for momentum transfer at the air-water interface. Simulation of air vortex dynamics showed dependency of the flow pattern on the velocity of the flux entering the cavity. Three bioanalytical assays have been performed as proof-of-concept demonstrations. In a first assay, cells of Listeria monocytogenes were combined with magnetic nanoparticles (NPs), resulting in high-density coverage of the bacteria's surface with NPs after 1 min of agitation. This finding is contrasted by a control experiment without agitation for which interaction between bacteria and NPs remains low. In a second one, capture and release of genomic DNA from fungi through adsorption onto magnetic beads was tested and shown to be improved by agitation compared to non-agitated controls. A third assay finally involved fluorescently-labelled target oligonucleotide strands and polystyrene particles modified with DNA capture probes to perform detection of nucleic acids on beads. Excellent selectivity was obtained in a competitive hybridization process using a multiplexed micromixer chip design. PMID:25091476

  1. Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Ferguson, Michael P.

    1991-01-01

    Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for three aircraft stacks near the western Gulf Stream front, observed during the Genesis of Atlantic Lows Experiment (GALE) January 28, 1986 cold-air outbreak, has been studied using mixed-layer scaling. The GOES image and stability parameter indicates that these three stacks were in the roll vortex regime. The turbulence structure in the MABL is studied for this case, as well as the significance of roll vortices to heat fluxes. The roll circulations are shown to contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. The results suggest that the entrainment at the MABL top might affect the the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.

  2. Treatment of Halogenated Organic Vent Streams for the Reduction of Air Emissions.

    PubMed

    Bailey, R V; Phillips, J B

    1996-05-01

    This work presents a three-stage treatment system to process halogenated organic vent streams for compliance with the Hazardous Organic NESHAP (HON) Rule. The three stages are incineration, energy recovery, and wet scrubbing. In particular, this work concentrates on the design of the scrubber, which the HON Rule states must remove at least 99% of any halogens or hydrogen halides generated during the combustion step. Computerized process simulation was found to be ineffective in designing a scrubber for this application, so laboratory data on the partial pressure of the hydrogen halide species over aqueous solutions was employed. The number of overall gas transfer units required for 99% removal was found to be slightly less than 5, and the overall gas transfer unit height was found to be approximately 0.5 m. PMID:26613125

  3. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Liu, Hai-Feng; Li, Wei-Feng; Xu, Jian-Liang

    2010-11-01

    To investigate the effect of Rayleigh-Taylor wave number in the region of maximum cross stream dimension (NRT) on drop breakup morphology, the breakup properties of accelerating low viscosity liquid drops (water and ethanol drops, diameter=1.2-6.6 mm, Weber number=10-80) were investigated using high-speed digital photography. The results of morphological analysis show a good correlation of the observed breakup type with NRT; bag breakup occurred when NRT was 1/√3 -1, bag-stamen breakup at 1-2, and dual-bag breakup at 2-3. The number of nodes in bag breakup, bag-stamen breakup, and dual-bag breakup all increased with Weber number. The experimental results are consistent with the model estimates and in good agreement with those reported in the literature.

  4. What matters most: Are summer stream temperatures more sensitive to changing air temperature, changing discharge, or changing riparian vegetation under future climates?

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2012-12-01

    We investigated stream temperature responses to changes in both air temperature and stream discharge projected for 2040-2060 from downscaled GCMs and changes in the height and canopy density of streamside vegetation. We used Heat Source© calibrated for a 37 km section of the Middle Fork John Day River located in Oregon, USA. The analysis used the multiple-variable-at-a-time (MVAT) approach to simulate various combinations of changes: 3 levels of air warming, 5 levels of stream flow (higher and lower discharges), and 6 types of streamside vegetation. Preliminary results show that, under current discharge and riparian vegetation conditions, projected 2 to 4 °C increase in air temperature will increase the 7-day Average Daily Maximum Temperature (7dADM) by 1 to 2 °C. Changing stream discharge by ±30% changes stream temperature by ±0.5 °C, and the influence of changing discharge is greatest when the stream is poorly shaded. In contrast, the 7dADM could change by as much as 11°C with changes in riparian vegetation from unshaded conditions to heavily shaded conditions along the study section. The most heavily shaded simulations used uniformly dense riparian vegetation over the full 37-km reach, and this vegetation was composed of the tallest trees and densest canopies that can currently occur within the study reach. While this simulation represents an extreme case, it does suggest that managing riparian vegetation to substantially increase stream shade could decrease 7dADM temperatures relative to current temperatures, even under future climates when mean air temperatures have increased from 2 to 4 °C.

  5. Numerical Investigation of Hydrogen and Kerosene Combustion in Supersonic Air Streams

    NASA Technical Reports Server (NTRS)

    Taha, A. A.; Tiwari, S. N.; Mohieldin, T. O.

    1999-01-01

    The effect of mixing schemes on the combustion of both gaseous hydrogen and liquid kerosene is investigated. Injecting pilot gaseous hydrogen parallel to the supersonic incoming air tends to maintain the stabilization of the main liquid kerosene, which is normally injected. Also the maximum kerosene equivalence ratio that can maintain stable flame can be increased by increasing the pilot energy level. The wedge flame holding contributes to an increased kerosene combustion efficiency by the generation of shock-jet interaction.

  6. Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study

    PubMed Central

    de Souza Rossi, Felipe; Yagui, Ana Cristina Zanon; Haddad, Luciana Branco; Deutsch, Alice D'Agostini; Rebello, Celso Moura

    2013-01-01

    OBJECTIVES: Nasal continuous positive airway pressure is used as a standard of care after extubation in very-low-birth-weight infants. A pressure of 5 cmH2O is usually applied regardless of individual differences in lung compliance. Current methods for evaluation of lung compliance and air distribution in the lungs are thus imprecise for preterm infants. This study used electrical impedance tomography to determine the feasibility of evaluating the positive end-expiratory pressure level associated with a more homogeneous air distribution within the lungs before extubation. METHODS: Ventilation homogeneity was defined by electrical impedance tomography as the ratio of ventilation between dependent and non-dependent lung areas. The best ventilation homogeneity was achieved when this ratio was equal to 1. Just before extubation, decremental expiratory pressure levels were applied (8, 7, 6 and 5 cmH20; 3 minutes each step), and the pressure that determined the best ventilation homogeneity was defined as the best positive end-expiratory pressure. RESULTS: The best positive end-expiratory pressure value was 6.3±1.1 cmH20, and the mean continuous positive airway pressure applied after extubation was 5.2±0.4 cmH20 (p = 0.002). The extubation failure rate was 21.4%. X-Ray and blood gases after extubation were also checked. CONCLUSION: This study demonstrates that electrical impedance tomography can be safely and successfully used in patients ready for extubation to suggest the best ventilation homogeneity, which is influenced by the level of expiratory pressure applied. In this feasibility study, the best lung compliance was found with pressure levels higher than the continuous positive airway pressure levels that are usually applied for routine extubation. PMID:23644854

  7. Monitoring air, soil, stream and fish for aerial drift of permethrin.

    PubMed

    Frank, R; Johnson, K; Braun, H E; Halliday, C G; Harvey, J

    1991-02-01

    Permethrin drift from two aerial applications at each of two sites in a potato growing area in Ontario were measured to a maximum distance of 61 m outside the treatment area. Droplet drift did not enter the adjacent surface water streams at either study site, since there was little or no wind on the four occasions. The concentration of the insecticide in soil as a result of drifting off site was significantly lower than the amount deposited on the treatment area. The spray drifting off-target was generally made up of droplets <100 μm. Permethrin residues were detected in the water and sediment samples collected after treatment along the Bailey Creek and Beeton Creek; however, these levels did not cause lethal or sublethal effects to aquatic invertebrates and fish species. Based on the conditions and results of this study, it is concluded that a buffer zone of 65 m around sensitive and productive bodies of water would be effective and practical. PMID:24241889

  8. Bonding to dentin as a function of air-stream temperatures for solvent evaporation.

    PubMed

    Marsiglio, Andréia Aquino; Almeida, Júlio César Franco; Hilgert, Leandro Augusto; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel

    2012-01-01

    This study evaluated the influence of solvent evaporation conditions of acid-etching adhesives. The medium dentin of thirty extracted human third molars was exposed and bonded to different types of etch-and-rinse adhesives: 1) Scotchbond Multi-Purpose (SBMP) ; water-based; 2) Adper Single Bond 2 (SB) ; ethanol/water-based, and 3) Prime & Bond 2.1 (PB) ; acetone-based. Solvents were evaporated at air-drying temperatures of 21ºC or 38ºC. Composite buildups were incrementally constructed. After storage in water for 24 h at 37ºC, the specimens were prepared for bond strength testing. Data were analyzed by two-way ANOVA and Tukey's test (5%). SBMP performed better when the solvents were evaporated at a higher temperature (p < 0.05). Higher temperatures did not affect the performance of SB or PB. Bond strength at room temperature was material-dependent, and air-drying temperatures affected bonding of the water-based, acid-etching adhesive. PMID:22641449

  9. The effects of forest harvest operations on mercury and methylmercury in two boreal streams: relatively small changes in the first two years prior to site preparation.

    PubMed

    Sørensen, Rasmus; Meili, Markus; Lambertsson, Lars; von Brömssen, Claudia; Bishop, Kevin

    2009-11-01

    Forest harvest is hypothesized to increase the mercury (Hg) load in aquatic ecosystems. The Balsjö paired catchment study examined the outputs of methylmercury (MeHg) and total mercury (Hg(tot)) from two boreal catchments during the 2 y following forest harvest but prior to site preparation. This enabled us to separate the effect of the two operations that followed best management practices. Hg(tot) concentrations increased by approximately 15%, and fluxes by 20-30%. The MeHg concentrations and fluxes either declined or increased by up to 60%, depending on whether annual MeHg peaks during summer low flows were considered to have been influenced by forest harvest. The lack of a severalfold increase in Hg outputs after forest harvest, as reported from other sites, may be the result of minimal soil disturbance during the winter forest harvest operations. If so, there may be a greater Hg response after soil scarification to prepare for planting. PMID:19943392

  10. Noise reduction evaluation of grids in a supersonic air stream with application to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Nystrom, P.; Pao, S. P.

    1977-01-01

    Near field acoustic measurements were obtained for a model supersonic air jet perturbed by a screen. Noise reduction potential in the vicinity of the space shuttle vehicle during ground launch when the rocket exhaust flow is perturbed by a grid was determined. Both 10 and 12 mesh screens were utilized for this experiment, and each exhibited a noise reduction only at very low frequencies in the near field forward arc. A power spectrum analysis revealed that a modest reduction of from 3 to 5 decibels exists below a Strouhal number S sub t = 0.11. Above S sub t = 0.11 screen harmonics increased the observed sound pressure level. The favorable noise reductions obtained with screens for S sub t 0.11 may be of substantial interest for the space shuttle at ground launch.

  11. Molecular and physiological approaches to understand the ecology of methanol degradation during the biofiltration of air streams.

    PubMed

    Barcón, Tamara; Alonso-Gutiérrez, Jorge; Omil, Francisco

    2012-06-01

    A 13.4 L biofilter treating an off-gas stream supplemented with methanol under two different situations was studied in terms of MeOH removal efficiency, microbial ecology and odor removal. During Period 1 (P1) the reactor was packed with wood bark chips with no pH control, treating an off-gas resulting from the aerobic chamber of a membrane biological reactor treating sewage and located outdoor, whereas during Period 2 (P2) a compressed air stream fed with MeOH was treated using PVC rings and maintaining pH at neutral values. Both systems operated at 96 g MeOH m(-3) h(-1) achieving removal efficiencies of around 90% during P1 and 99.9% during P2. The relative activity of biomass developed in both systems was assessed using respirometric analysis with samples obtained from both biofilms. Higher biomass activity was obtained during P2 (0.25-0.35 kg MeOH kg(-1) VSS d(-1)) whereas 1.1 kg MeOH kg(-1) VSS d(-1) was obtained in the case of P1. The application of molecular and microscopic techniques showed that the eukaryotes were predominant during P1, being the yeast Candida boidinii the most abundant microorganism. A specific Fluorescence in situ hybridization probe was designed for C. boidinii and tested successfully. As a result of the neutral pH, a clear predominance of prokaryotes was detected during P2. Interestingly, some anaerobic bacteria were detected such as Desulfovibrio, Desulfobacteraceae species and also some archaea such as Methanosarcina. PMID:22386929

  12. Needs and workflow assessment prior to implementation of a digital pathology infrastructure for the US Air Force Medical Service

    PubMed Central

    Ho, Jonhan; Aridor, Orly; Glinski, David W.; Saylor, Christopher D.; Pelletier, Joseph P.; Selby, Dale M.; Davis, Steven W.; Lancia, Nicholas; Gerlach, Christopher B.; Newberry, Jonathan; Anthony, Leslie; Pantanowitz, Liron; Parwani, Anil V.

    2013-01-01

    Background: Advances in digital pathology are accelerating integration of this technology into anatomic pathology (AP). To optimize implementation and adoption of digital pathology systems within a large healthcare organization, initial assessment of both end user (pathologist) needs and organizational infrastructure are required. Contextual inquiry is a qualitative, user-centered tool for collecting, interpreting, and aggregating such detailed data about work practices that can be employed to help identify specific needs and requirements. Aim: Using contextual inquiry, the objective of this study was to identify the unique work practices and requirements in AP for the United States (US) Air Force Medical Service (AFMS) that had to be targeted in order to support their transition to digital pathology. Subjects and Methods: A pathology-centered observer team conducted 1.5 h interviews with a total of 24 AFMS pathologists and histology lab personnel at three large regional centers and one smaller peripheral AFMS pathology center using contextual inquiry guidelines. Findings were documented as notes and arranged into a hierarchal organization of common themes based on user-provided data, defined as an affinity diagram. These data were also organized into consolidated graphic models that characterized AFMS pathology work practices, structure, and requirements. Results: Over 1,200 recorded notes were grouped into an affinity diagram composed of 27 third-level, 10 second-level, and five main-level (workflow and workload distribution, quality, communication, military culture, and technology) categories. When combined with workflow and cultural models, the findings revealed that AFMS pathologists had needs that were unique to their military setting, when compared to civilian pathologists. These unique needs included having to serve a globally distributed patient population, transient staff, but a uniform information technology (IT) structure. Conclusions: The contextual

  13. Tailored synthesis of nanostructures by laser irradiation of a precursor microdroplet stream in open-air.

    PubMed

    Palanco, S; Marino, S; Gabás, M; Ayala, L; Ramos-Barrado, J R

    2015-01-14

    A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the difficulties associated with pulsed-laser deposition (PLD), the use of a liquid precursor whose composition can be tailored on a droplet-to-droplet basis opens a number of possibilities. PMID:25407984

  14. Using memory for prior aircraft events to detect conflicts under conditions of proactive air traffic control and with concurrent task requirements.

    PubMed

    Bowden, Vanessa K; Loft, Shayne

    2016-06-01

    In 2 experiments we examined the impact of memory for prior events on conflict detection in simulated air traffic control under conditions where individuals proactively controlled aircraft and completed concurrent tasks. Individuals were faster to detect conflicts that had repeatedly been presented during training (positive transfer). Bayesian statistics indicated strong evidence for the null hypothesis that conflict detection was not impaired for events that resembled an aircraft pair that had repeatedly come close to conflicting during training. This is likely because aircraft altitude (the feature manipulated between training and test) was attended to by participants when proactively controlling aircraft. In contrast, a minor change to the relative position of a repeated nonconflicting aircraft pair moderately impaired conflict detection (negative transfer). There was strong evidence for the null hypothesis that positive transfer was not impacted by dividing participant attention, which suggests that part of the information retrieved regarding prior aircraft events was perceptual (the new aircraft pair "looked" like a conflict based on familiarity). These findings extend the effects previously reported by Loft, Humphreys, and Neal (2004), answering the recent strong and unanimous calls across the psychological science discipline to formally establish the robustness and generality of previously published effects. (PsycINFO Database Record PMID:27295467

  15. Oxidation chemistry of chloric acid in NOx/SOx and air toxic metal removal from gas streams

    SciTech Connect

    Kaczur, J.J.

    1996-12-31

    Chloric acid, HClO{sub 3}, is a new oxidizer which has recently been shown to be an effective agent in the simultaneous removal of NOx and/or SOx from combustion flue gases and various chemical processes, including nitrations and metal pickling. Aqueous chloric acid readily reacts with NO and SO{sub 2} even in dilute solutions at ambient temperatures. Chlorine dioxide, ClO{sub 2}, is formed as a chemical intermediate in the solution phase oxidation reactions. The oxidation by-products of NO include NO{sub 2} and nitric acid. The ClO{sub 2} generated from the solution phase reactions also participates in gas phase oxidation reactions with NO and NO{sub 2}. The combined solution phase and fast gas phase reaction chemistries provide the means for creating a new type of high performance NOx/SOx removal process. Wet scrubber based pilot plant tests have demonstrated up to 99% removal of NO. Additional recent research work has shown that chloric acid is an effective reagent for the removal of air toxic metals, such as elemental mercury, which are present in the waste gas output streams from incinerators, hydrogen from mercury cell chlor-alkali plants, and flue gases of coal-fired power plants. Work in this area is being conducted by Argonne National Laboratories and Olin. This paper discusses the oxidation chemistry of chloric acid and its unique solution and gas phase reactions with NO, SO{sub 2}, and air toxics in wet scrubber type process equipment. 32 refs., 16 figs., 5 tabs.

  16. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  17. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. PMID:26363328

  18. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  19. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  20. Assessing Patterns in the Surface Electric Field Prior to First CG Flashes and After Last CG Flashes in Air-Mass Thunderstorms

    NASA Astrophysics Data System (ADS)

    Williams, D. E.; Beasley, W. H.; Hyland, P. T.

    2007-12-01

    In an effort to elicit patterns in the temporal and spatial evolution of the contours of surface electric field relevant to the occurrence of cloud-to-ground (CG) lightning, we have analyzed data from the network of 31 electric-field mills jointly operated by the John F. Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). To identify cases of interest, we used lightning ground-strike data, maps of in-cloud lightning discharges, rainfall data, and radar data. In particular, we have focused on two critical problems: 1) estimation of when and where the first CG flash in a storm might occur and 2) assessment of the likelihood of CG flashes occurring late in a storm after a long period without a CG flash. Our long-term goal is to understand the evolution of surface contours of electric field for periods of 30 minutes or more before the first flash of any kind and 30 minutes or more before and after the last flash of any kind. For practical reasons, we are reporting here on analysis of data for periods of 30 minutes before the first CG flash and 30 minutes after the last CG flash in each storm of interest. We have analyzed electric-field data from isolated air-mass convective storms that developed over KSC/CCAFS from late May through early September, 2004-2006. To identify thunderstorms that fit the air-mass, or "pop-up" criteria, we started by examining rainfall and CG lightning data, then looked at radar data. Then, for the storms selected, we performed a two-pass Barnes objective analysis on the electric-field data. Each analysis cycle resulted in one contour plot of 20-second averaged data, yielding 90 plots for each 30 minute interval, which we then animated. This resulted in 58 animations of the field contours prior to first CG flashes and 62 animations of the field contours after last CG flashes. Preliminary impressions from examinations of these cases suggest that the electric-field contours before the first flash exhibit a smooth transition

  1. Impact of a hydrophobic granular stream in water

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Mandeles, Harry; Parkhouse, Jacob

    We experimentally investigate the flow of a stream of hydrophobic granular particles impacting a water surface from above. The granular sample is composed of a mixture of hydrophobic and hydrophilic grains and the concentration, stream diameter, and drop height are independently controlled. While granular flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. The present experiment complements rheological measurements performed in parallel and aims to elucidate prior experiments on hydrophobic samples in a rotating drum. The present experimental geometry allows us to compare the behavior of granular streams to prior work on impacts of solids and fluid streams. Sequential images of the granular stream in water are taken and analyzed. We present data on the size, length, and shape of the aggregate streams with variations in concentration, entering stream diameter, and drop height. We find that increased hydrophobic grain concentration leads to increased aggregation due to an effectively cohesive interaction mediated by entrained air. At lower concentrations, the stream exhibits a lateral instability. Finally, we will make connections to rheology and rotating drum results. This work was supported by NSF CBET award 1067598.

  2. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2014-12-01

    The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump. PMID:25001051

  3. Headaches prior to earthquakes

    NASA Astrophysics Data System (ADS)

    Morton, L. L.

    1988-06-01

    In two surveys of headaches it was noted that their incidence had increased significantly within 48 h prior to earthquakes from an incidence of 17% to 58% in the first survey using correlated samples and from 20.4% to 44% in the second survey using independent samples. It is suggested that an increase in positive air ions from rock compression may trigger head pain via a decrease in brain levels of the neurotransmitter serotonin. The findings are presented as preliminary, with the hope of generating further research efforts in areas more prone to earthquakes.

  4. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Jiang, H. K.; Cao, M. H.

    1981-07-01

    A simple, flat-fan spray model is proposed, which can with two empirical parameters predict both the value and the position of liquid fuel distribution curve maximums downstream of a plain orifice injector under high-velocity cross flow. It was found that the model is useful in the preliminary design of the fan air flow portion of a turbofan afterburner, due to its ability to predict the influence on liquid fuel distribution of (1) such flow parameters as air velocity and viscosity, pressure and temperature; (2) injector parameters such as diameter and injection velocity; and (3) liquid properties including viscosity, density, and surface tension.

  5. FIELD METHODS TO MEASURE CONTAMINANT REMOVAL EFFECTIVENESS OF GAS-PHASE AIR FILTRATION EQUIPMENT - PHASE 1: SEARCH OF LITERATURE AND PRIOR ART

    EPA Science Inventory

    The report, Phase 1 of a two-phase research project, gives results of a literature search into the
    effectiveness of in-field gas-phase air filtration equipment (GPAFE) test methods, including required instrumentation and costs. GPAFE has been used in heating, ventilation, and ...

  6. Atmospheric structure prior to tornadoes as derived from proximity and precedent upper-air soundings, covering the period April 1977-June 1979

    SciTech Connect

    Taylor, G.E.; Darkow, G.L.

    1982-05-01

    The uniqueness of the thermodynamic and dynamic structure of the atmosphere in the area of imminent tornado bearing storm development is analyzed by comparing 115 tornado proximity soundings with upper air soundings made at the same location 6 and 12 hours earlier (precedent soundings) and with soundings made simultaneously at neighboring upper air stations. The comparisons suggest that both the proximity station and the neighboring station upstream with respect to the mean flow in the low level moist air display very similar degrees of hydrostatic and potential-convective instability by late afternoon. The principal difference is in the wind profiles at the two locations. The tornado proximity station displays significantly stronger wind speeds above 1 km with the most striking difference being in the vertical shear of the wind in the layer from 1 to 3 km above ground level. In this layer the winds at the proximity station show an average increase of about 3 m sec/sup -1/ while the upstream, non-tornadic, station shows a slight decrease of wind speed with height.

  7. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst.

    PubMed

    Rezaei, Fatemeh; Moussavi, Gholamreza; Bakhtiari, Alireza Riyahi; Yamini, Yadollah

    2016-04-01

    This paper investigates the catalytic potential of MgO/GAC composite for toluene elimination from waste air in the catalytic ozonation process (COP). The MgO/GAC composite was a micro-porous material with the BET surface area of 1082m(2)/g. Different functional groups including aromatic CC, saturated CO of anhydrates, hydroxyl groups and SH bond of thiols were identified on the surface of MgO/GAC. Effects of residence time (0.5-4s), inlet toluene concentration (100-400ppmv) and bed temperature (25-100°C) were investigated on degradation of toluene in COP. Impregnation of GAC with MgO increased the breakthrough time and removal capacity by 73.9% and 64.6%, respectively, at the optimal conditions. The catalytic potential of the GAC and MgO/GAC for toluene degradation was 11.1% and 90.6%, respectively, at the optimum condition. The highest removal capacity using MgO/GAC (297.9gtoulene/gMgO/GAC) was attained at 100°C, whereas the highest removal capacity of GAC (128.5mgtoulene/gGAC) was obtained at 25°C. Major by-products of the toluene removal in COP with GAC were Formic acid, benzaldehyde, O-nitro-p-cresol and methyl di-phenyl-methane. MgO/GAC could greatly catalyze the decomposition of toluene in COPand formic acid was the main compound desorbed from the catalyst. Accordingly, the MgO/GAC is an efficient material to catalyze the ozonation of hydrocarbon vapors. PMID:26784452

  8. Optically Induced Forces Imposed in an Optical Funnel on a Stream of Particles in Air or Vacuum

    NASA Astrophysics Data System (ADS)

    Eckerskorn, Niko; Bowman, Richard; Kirian, Richard A.; Awel, Salah; Wiedorn, Max; Küpper, Jochen; Padgett, Miles J.; Chapman, Henry N.; Rode, Andrei V.

    2015-12-01

    Optical trapping of light-absorbing particles in a gaseous environment is governed by a laser-induced photophoretic force, which can be orders of magnitude stronger than the force of radiation pressure induced by the same light intensity. In spite of many experimental studies, the exact theoretical background underlying the photophoretic force and the prediction of its influence on the particle motion is still in its infancy. Here, we report the results of a quantitative analysis of the photophoretic force and the stiffness of trapping achieved by levitating graphite and graphite-coated glass shells of calibrated sizes in an upright diverging hollow-core vortex beam, which we refer to as an "optical funnel". The measurements of forces are conducted in air at various gas pressures in the range from 5 mbar to 2 bar. The results of these measurements lay the foundation for mapping the optically induced force to the intensity distribution in the trap. The mapping, in turn, provides the necessary information to model flight trajectories of particles of various sizes entering the beam at given initial speed and position relative to the beam axis. Finally, we determine the limits of the parameter space for the particle speed, size, and radial offset to the beam axis, all linked to the laser power and the particular laser-beam structure. These results establish the grounds for developing a touch-free optical system for precisely positioning submicrometer bioparticles at the focal spot of an x-ray free-electron laser, which will significantly enhance the efficiency of studying nanoscale morphology of proteins and biomolecules in femtosecond coherent diffractive imaging experiments.

  9. Statistical Modeling of Daily Stream Temperature for Mitigating Fish Mortality

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Rajagopalan, B.

    2011-12-01

    Water allocations in the Central Valley Project (CVP) of California require the consideration of short- and long-term needs of many socioeconomic factors including, but not limited to, agriculture, urban use, flood mitigation/control, and environmental concerns. The Endangered Species Act (ESA) ensures that the decision-making process provides sufficient water to limit the impact on protected species, such as salmon, in the Sacramento River Valley. Current decision support tools in the CVP were deemed inadequate by the National Marine Fisheries Service due to the limited temporal resolution of forecasts for monthly stream temperature and fish mortality. Finer scale temporal resolution is necessary to account for the stream temperature variations critical to salmon survival and reproduction. In addition, complementary, long-range tools are needed for monthly and seasonal management of water resources. We will present a Generalized Linear Model (GLM) framework of maximum daily stream temperatures and related attributes, such as: daily stream temperature range, exceedance/non-exceedance of critical threshold temperatures, and the number of hours of exceedance. A suite of predictors that impact stream temperatures are included in the models, including current and prior day values of streamflow, water temperatures of upstream releases from Shasta Dam, air temperature, and precipitation. Monthly models are developed for each stream temperature attribute at the Balls Ferry gauge, an EPA compliance point for meeting temperature criteria. The statistical framework is also coupled with seasonal climate forecasts using a stochastic weather generator to provide ensembles of stream temperature scenarios that can be used for seasonal scale water allocation planning and decisions. Short-term weather forecasts can also be used in the framework to provide near-term scenarios useful for making water release decisions on a daily basis. The framework can be easily translated to other

  10. Methods of separating particulate residue streams

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  11. CONNECTICUT STREAMS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of named streams in Connecticut. It includes two Shapefiles with line and polygon features. Both Shapefiles should be used together. The polygon shapefile fills in open water streams such as the Connecticut River as well as Long Island Sound. T...

  12. Stream Processors

    NASA Astrophysics Data System (ADS)

    Erez, Mattan; Dally, William J.

    Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.

  13. Physical priors in virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Rivaz, Hassan; Shinagawa, Yoshihisa; Liang, Jianming

    2009-02-01

    Electronic colon cleansing (ECC) aims to remove the contrast agent from the CT abdominal images so that a virtual model of the colon can be constructed. Virtual colonoscopy requires either liquid or solid preparation of the colon before CT imaging. This paper has two parts to address ECC in both preparation methods. In the first part, meniscus removal in the liquid preparation is studied. The meniscus is the curve seen at the top of a liquid in response to its container. Left on the colon wall, the meniscus can decrease the sensitivity and specificity of virtual colonoscopy. We state the differential equation that governs the profile of the meniscus and propose an algorithm for calculating the boundary of the contrast agent. We compute the surface tension of the liquid-colon wall contact using in-vivo CT data. Our results show that the surface tension can be estimated with an acceptable degree of uncertainty. Such an estimate, along with the meniscus profile differential equation will be used as an a priori knowledge to aid meniscus segmentation. In the second part, we study ECC in solid preparation of colon. Since the colon is pressurized with air before acquisition of the CT images, a prior on the shape of the colon wall can be obtained. We present such prior and investigate it using patient data. We show the shape prior is held in certain parts of the colon and propose a method that uses this prior to ease pseudoenhancement correction.

  14. 14 CFR 212.9 - Prior authorization requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.9 Prior... long-term wet lease to a foreign air carrier. (b) Foreign air carriers shall obtain a statement of... blanket statements of authorization to foreign air carriers to conduct fifth freedom charters....

  15. 14 CFR 212.9 - Prior authorization requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.9 Prior... long-term wet lease to a foreign air carrier. (b) Foreign air carriers shall obtain a statement of... blanket statements of authorization to foreign air carriers to conduct fifth freedom charters....

  16. 14 CFR 212.9 - Prior authorization requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.9 Prior... long-term wet lease to a foreign air carrier. (b) Foreign air carriers shall obtain a statement of... blanket statements of authorization to foreign air carriers to conduct fifth freedom charters....

  17. 14 CFR 212.9 - Prior authorization requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.9 Prior... long-term wet lease to a foreign air carrier. (b) Foreign air carriers shall obtain a statement of... blanket statements of authorization to foreign air carriers to conduct fifth freedom charters....

  18. Constructing priors in synesthesia.

    PubMed

    van Leeuwen, Tessa M

    2014-01-01

    A new theoretical framework (PPSMC) applicable to synesthesia has been proposed, in which the discrepancy between the perceptual reality of (some) synesthetic concurrents and their subjective non-veridicality is being explained. The PPSMC framework stresses the relevance of the phenomenology of synesthesia for synesthesia research-and beyond. When describing the emergence and persistence of synesthetic concurrents under PPSMC, it is proposed that precise, high-confidence priors are crucial in synesthesia. I discuss the construction of priors in synesthesia. PMID:24702569

  19. Stream Studies.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    This manual provides teachers with some knowledge of ecological study methods and techniques used in collecting data when plants and animals are studied in the field. Most activities deal with the interrelatedness of plant and animal life to the structure and characteristics of a stream and pond. Also included in this unit plan designed for the…

  20. Stream Studies.

    ERIC Educational Resources Information Center

    Stein, Scott

    1997-01-01

    Outlines a science curriculum reform effort aimed at enabling students to collect original data concerning an environmental parameter such as water quality on a yearly basis. Students track the overall health of the stream by analyzing both biotic and abiotic factors. (DDR)

  1. Describing Story Evolution from Dynamic Information Streams

    SciTech Connect

    Rose, Stuart J.; Butner, R. Scott; Cowley, Wendy E.; Gregory, Michelle L.; Walker, Julia

    2009-10-12

    Sources of streaming information, such as news syndicates, publish information continuously. Information portals and news aggregators list the latest information from around the world enabling information consumers to easily identify events in the past 24 hours. The volume and velocity of these streams causes information from prior days’ to quickly vanish despite its utility in providing an informative context for interpreting new information. Few capabilities exist to support an individual attempting to identify or understand trends and changes from streaming information over time. The burden of retaining prior information and integrating with the new is left to the skills, determination, and discipline of each individual. In this paper we present a visual analytics system for linking essential content from information streams over time into dynamic stories that develop and change over multiple days. We describe particular challenges to the analysis of streaming information and explore visual representations for showing story change and evolution over time.

  2. Internal-liquid-film-cooling Experiments with Air-stream Temperatures to 2000 Degrees F. in 2- and 4-inch-diameter Horizontal Tubes

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Abramson, Andrew E; Sloop, John L

    1952-01-01

    Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.

  3. High-Speed Wind-Tunnel Tests of a 1/16-Scale Model of the D-558 Research Airplane Air-Stream Fluctuations at the Tail of the D-558-1 Airplane

    NASA Technical Reports Server (NTRS)

    Pendley, Robert E.

    1947-01-01

    An investigation of the air-stream fluctuations at the tail of the D-558-1 airplane has been made at high speed for the purpose of determining the vertical region in which the horizontal tail may be placed without becoming subject to tail buffeting. The investigation was made for a range of Mach numbers from 0.775 to 0.907, and a range of vertical positions at the tall to include two proposed horizontal-tail positions. The tests were made at two angles of attack, 0,2 deg. and 4.2 deg., representative, of the angles of attack for high-speed level flight and a pull-out condition.

  4. The effect of Gulf Stream-induced baroclinicity on US East Coast winter cyclones

    SciTech Connect

    Cione, J.J.; Raman, S.; Pietrafesa, L.J. )

    1993-02-01

    Midlatitude cyclones develop off the Carolinas during winters and move north producing gale-force winds, ice, and heavy snow. It is believed that boundary-layer and air-sea interaction processes are very important during the development stages of these East Coast storms. The marine boundary layer (MBL) off the mid-Atlantic coastline is highly baroclinic due to the proximity of the Gulf Stream just offshore. Typical horizontal distances between the Wilmington coastline and the western edge of the Gulf Stream vary between 90 and 250 km annually, and this distance can deviate by over 30 km within a single week. While similar weekly Gulf Stream position standard deviations also exist at Cape Hatteras, the average annual distance to the Gulf Stream frontal zone is much smaller off Cape Hatteras, normally ranging between 30 and 100 km. This research investigates the low-level baroclinic conditions present prior to observed storm events. The examination of nine years of data on the Gulf Stream position and East Coast winter storms seems to indicate that the degree of low-level baroclinicity and modification existing prior to a cyclonic event may significantly affect the rate of cyclonic deepening off the mid-Atlantic coastline. Statistical analyses linking the observed surface-pressure decrease with both the Gulf Stream frontal location and the prestorm coastal baroclinic conditions are presented. These results quantitatively indicate that Gulf Stream-induced wintertime baroclinicity may significantly affect the regional intensification of East Coast winter cyclones. 20 refs., 9 figs., 1 tab.

  5. Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments.

    PubMed

    Surita, Sharon C; Tansel, Berrin

    2014-01-15

    Siloxane use in consumer products (i.e., fabrics, paper, concrete, wood, adhesive surfaces) has significantly increased in recent years due to their excellent water repelling and antimicrobial characteristics. The objectives of this study were to evaluate the release mechanisms of two siloxane compounds, octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), which have been detected both at landfills and wastewater treatment plants, estimate persistence times in different media, and project release quantities over time in relation to their increasing use. Analyses were conducted based on fate and transport mechanisms after siloxanes enter waste streams. Due to their high volatility, the majority of D4 and D5 end up in the biogas during decomposition. D5 is about ten times more likely to partition into the solid phase (i.e., soil, biosolids). D5 concentrations in the wastewater influent and biogas are about 16 times and 18 times higher respectively, in comparison to the detected levels of D4. PMID:24012894

  6. Accounting for groundwater in stream fish thermal habitat responses to climate change

    USGS Publications Warehouse

    Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.

    2015-01-01

    Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout habitat have generally assumed uniform air-water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air-water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, USA, 78 sites in 9 watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air-water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air-water temperature regression models can provide a powerful and cost-effective approach for predicting future stream temperatures while accounting for effects of groundwater.

  7. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Landrum, D. Brian; Turner, Matthew; Wagner, David K.; Lambert, James

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane. Initial cold flow testing of the model is underway to determine both, the behavior of the ingested air in the duct and to validate the mixing diagnostics. During the tests, each of the two rocket nozzles ejected up to two pounds mass per second into the 13.6 square inch duct. The tests showed that the mass flow of the rockets was great enough to cause the entrained air to go sonic at the strut, which is the location of the rocket nozzles. More tests are necessary to determine whether the entrained air chokes due to the reduction in the area of the duct at the strut (a physical choke), or because of the addition of mass inside the duct at the nozzle exit (a Fabri choke). The initial tests of the mixing diagnostics are showing promise.

  8. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air

    NASA Astrophysics Data System (ADS)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.

    2009-03-01

    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  9. 35 mm PHOTOGRAPH TAKEN PRIOR TO DEMOLITION OF STRUCTURE. SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35 mm PHOTOGRAPH TAKEN PRIOR TO DEMOLITION OF STRUCTURE. SOUTH (SIDE) AND EAST (FRONT) ELEVATIONS OF BUILDING. VIEW TO NORTHWEST - Plattsburgh Air Force Base, Gas Station, New York Road, Plattsburgh, Clinton County, NY

  10. Comparison of ATP and Ergosterol as Indicators of Fungal Biomass Associated with Decomposing Leaves in Streams

    PubMed Central

    Suberkropp, K.; Gessner, M. O.; Chauvet, E.

    1993-01-01

    ATP and ergosterol were compared as indicators of fungal biomass associated with leaves decomposing in laboratory microcosms and streams. In all studies, the sporulation rates of the fungi colonizing leaves were also determined to compare patterns of fungal reproductive activity with patterns of mycelial growth. During leaf degradation, ATP concentrations exhibited significant, positive correlations with ergosterol concentrations in the laboratory and when leaves had been air dried prior to being submerged in a stream. However, when freshly shed leaves were submerged in a stream, concentrations of ATP and ergosterol were negatively correlated during degradation. This appeared to be due to the persistence of leaf-derived ATP in freshly shed leaves during the first 1 to 2 weeks in the stream. Estimates of fungal biomass from ergosterol concentrations of leaf litter were one to three times those calculated from ATP concentrations. ATP, ergosterol, and sporulation data generally provided similar information about the fungi associated with decomposing leaves in streams during periods when fungi were growing. Ergosterol concentrations provide a more accurate indication of fungal biomass in situations in which other organisms make significant contributions to ATP pools. PMID:16349069

  11. Unconsciously elicited perceptual prior

    PubMed Central

    Chang, Raymond; Baria, Alexis T.; Flounders, Matthew W.; He, Biyu J.

    2016-01-01

    Increasing evidence over the past decade suggests that vision is not simply a passive, feed-forward process in which cortical areas relay progressively more abstract information to those higher up in the visual hierarchy, but rather an inferential process with top-down processes actively guiding and shaping perception. However, one major question that persists is whether such processes can be influenced by unconsciously perceived stimuli. Recent psychophysics and neuroimaging studies have revealed that while consciously perceived stimuli elicit stronger responses in higher visual and frontoparietal areas than those that fail to reach conscious awareness, the latter can still drive high-level brain and behavioral responses. We investigated whether unconscious processing of a masked natural image could facilitate subsequent conscious recognition of its degraded counterpart (a black-and-white “Mooney” image) presented many seconds later. We found that this is indeed the case, suggesting that conscious vision may be influenced by priors established by unconscious processing of a fleeting image.

  12. 14 CFR 212.9 - Prior authorization requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Prior authorization requirements. 212.9 Section 212.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.9 Prior authorization requirements. (a) Certificated...

  13. Reconstructing the atmospheric concentration and emissions of CF4, C2F6 and C3F8 prior to direct atmospheric measurements, using air from polar firn and ice

    NASA Astrophysics Data System (ADS)

    Trudinger, Cathy; Etheridge, David; Sturges, William; Vollmer, Martin; Miller, Benjamin; Worton, David; Rigby, Matt; Krummel, Paul; Martinerie, Patricia; Witrant, Emmanuel; Rayner, Peter; Battle, Mark; Blunier, Thomas; Fraser, Paul; Laube, Johannes; Mani, Frances; Mühle, Jens; O'Doherty, Simon; Schwander, Jakob; Steele, Paul

    2015-04-01

    Perfluorocarbons are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production, electronic chip manufacture and refrigeration. Mühle et al. (2010) presented records of the concentration and inferred emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from the 1970s up to 2008, using measurements from the Cape Grim Air Archive and a suite of tanks with old Northern Hemisphere air, and the AGAGE in situ network. Mühle et al. (2010) also estimated pre-industrial concentrations of these compounds from a small number of polar firn and ice core samples. Here we present measurements of air from polar firn at four sites (DSSW20K, EDML, NEEM and South Pole) and from air bubbles trapped in ice at two sites (DE08 and DE08-2), along with recent atmospheric measurements to give a continuous record of concentration from preindustrial levels up to the present. We estimate global emissions (with uncertainties) consistent with the concentration records. The uncertainty analysis takes into account uncertainties in characterisation of the age of air in firn and ice by the use of two different (independently-calibrated) firn models (the CSIRO and LGGE-GIPSA firn models). References Mühle, J., A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L. P. Steele, C.M. Trudinger, P.B. Krummel, S. O'Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.

  14. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOEpatents

    Wijmans, Johannes G.; Merkel, Timothy C.; Lin, Haiqing; Thompson, Scott; Daniels, Ramin

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  15. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 10 rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  16. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 19 equivalent rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  17. Incomplete Mixing in a Small, Urban stream

    NASA Astrophysics Data System (ADS)

    Ryan, R. J.; Boufadel, M. C.

    2006-05-01

    Conservative solute tracer experiments were conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania, USA. Estimated flow rates were between 46 L s-1 and 81 L s-1, average stream width was 5.5 m and average stream depth was 0.2 m. Given these dimensions, most researchers would think it reasonable to assume that the stream is completely mixed vertically and horizontally. However, we found that the stream was not vertically completely mixed in a 0.95 m deep, 30 m long pool. The limited mixing was demonstrated by the vertical stratification of a tracer cloud which was completely mixed both laterally and vertically across the stream prior to entering the pool. We suggest that the cause of limited mixing is due to a balance between groundwater inflow and transverse dispersion at the cross section. We show that the unsupported assumption of complete mix may result in a wide range, and thus increased uncertainty, of the values of stream flow and longitudinal dispersion coefficient estimated from these data. We conclude that the assumption of complete mix and one-dimensional modeling must be checked against actual field conditions, even in small streams.

  18. ECOSYSTEM EFFECTS OF URBAN STREAM RESTORATION

    EPA Science Inventory

    In general, the ecosystem function of a restored site will depend upon how degraded the site was prior to restoration and to what extent this was addressed in the restoration design. A stream whose primary impairment is severe water quality problems due to non-point source po...

  19. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  20. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  1. Eighteen Degree Water formation within the Gulf Stream during CLIMODE

    NASA Astrophysics Data System (ADS)

    Joyce, Terrence M.; Thomas, Leif N.; Dewar, William K.; Girton, James B.

    2013-07-01

    Analysis of wintertime CLIMODE data for 2007 indicates that a substantial portion of new Eighteen Degree Water (EDW) is likely ventilated within the eastward flowing Gulf Stream (GS) between 67°W and 52°W longitudes, possibly exceeding that formed elsewhere in the northern Sargasso Sea. Use of some global air-sea interaction data sets applied to the study region for Feb/Mar of 2007 indicate that this winter may have been anomalously energetic in air-sea exchange compared to the mean of the prior 19 yr. The largest heat and freshwater fluxes found directly over the meandering warm core of the Gulf Stream are capable of removing most of the subtropical heat anomaly of the GS, but cross-frontal fluxes of salinity are required to account for the observed regional salinity structure. An isopycnal diffusivity of ˜100 m2 s-1 is inferred from the salinity balance. This mixing would also account for the observation that EDW formed in the GS is slightly fresher than that formed in northern Sargasso Sea. The lateral flux of heat across the GS north wall also acts to cool the resulting EDW water, but the heat balance for EDW production is largely determined from GS advection and air-sea fluxes, in contrast to salinity. Based on oxygen saturation data, we estimate that 1.8-3.0 Sv-yr of new EDW is formed in the GS for the winter of 2007. EDW originating from the GS is generated in a separate location from where it is accumulated in the northern Sargasso Sea. This manner of EDW formation will produce unique characteristics of EDW found in the northern Sargasso Sea: ones that differ in T/S properties from that formed south of the GS under the more traditional 1D, cooling-driven convection process.

  2. The Importance of Prior Knowledge.

    ERIC Educational Resources Information Center

    Cleary, Linda Miller

    1989-01-01

    Recounts a college English teacher's experience of reading and rereading Noam Chomsky, building up a greater store of prior knowledge. Argues that Frank Smith provides a theory for the importance of prior knowledge and Chomsky's work provided a personal example with which to interpret and integrate that theory. (RS)

  3. Menarche: Prior Knowledge and Experience.

    ERIC Educational Resources Information Center

    Skandhan, K. P.; And Others

    1988-01-01

    Recorded menstruation information among 305 young women in India, assessing the differences between those who did and did not have knowledge of menstruation prior to menarche. Those with prior knowledge considered menarche to be a normal physiological function and had a higher rate of regularity, lower rate of dysmenorrhea, and earlier onset of…

  4. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2014-02-01

    Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground events, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms vertical energy exchanges (net radiation, sensible and latent heat fluxes, bed heat conduction, and stream friction) and hyporheic energy fluxes during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that climatic warming may

  5. Inventory of miscellaneous streams

    SciTech Connect

    Haggard, R.D.

    1998-08-14

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities.

  6. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  7. Regex-Stream

    2012-09-01

    Log files are typically semi-or un-structured. To be useable, they need to be parsed into a standard, structured format. Regex-Stream facilitates parsing text files into structured data (JSON) in streams of data.

  8. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  9. Are cosmological neutrinos free-streaming?

    SciTech Connect

    Basboell, Anders; Bjaelde, Ole Eggers; Hannestad, Steen; Raffelt, Georg G.

    2009-02-15

    Precision data from cosmology suggest neutrinos stream freely and hence interact very weakly around the epoch of recombination. We study this issue in a simple framework where neutrinos recouple instantaneously and stop streaming freely at a redshift z{sub i}. The latest cosmological data imply z{sub i} < or approx. 1500, the exact constraint depending somewhat on the assumed prior on z{sub i}. This bound can be translated into a bound on the coupling strength between neutrinos and majoronlike particles.

  10. Sulfur hexafluoride gas tracer studies in streams

    SciTech Connect

    Hibbs, D.E.; Gulliver, J.S.; Parkhill, K.L.

    1998-08-01

    Gas tracers are useful investigative tools in the study of reaeration and the fate of volatile organic contaminants in many natural streams. They enable the direct measurement of a variety of stream parameters, including the gas exchange rates between the stream and the atmosphere, as well as the spreading rate for dissolved pollutants downstream of a discharge point or spill site. The air-water mass transfer coefficients, dispersion coefficients, and mean residence times in two experimental streams and one natural stream are measured using a variation of the standard volatile tracer-dye technique. Sulfur hexafluoride (SF{sub 6}) is used as the volatile tracer and rhodamine WT is used as the conservative tracer. The low limit of quantification of SF{sub 6} makes it possible to inject SF{sub 6}-rich water into many streams and avoid complications with dosing a stream with a gaseous tracer. The experimental methods are described in detail. The SF{sub 6} measurements were extremely precise, producing smooth concentration time curves. The SF{sub 6} measurements collected in side-by-side experimental channels yielded similar values of the gas transfer coefficient.

  11. The Puzzling Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies or globular clusters orbiting the Milky Way can be pulled apart by tidal forces, leaving behind a trail of stars known as a stellar stream. One such trail, the Ophiuchus stream, has posed a serious dynamical puzzle since its discovery. But a recent study has identified four stars that might help resolve this streams mystery.Conflicting TimescalesThe stellar stream Ophiuchus was discovered around our galaxy in 2014. Based on its length, which appears to be 1.6 kpc, we can calculate the time that has passed since its progenitor was disrupted and the stream was created: ~250 Myr. But the stars within it are ~12 Gyr old, and the stream orbits the galaxy with a period of ~350 Myr.Given these numbers, we can assume that Ophiuchuss progenitor completed many orbits of the Milky Way in its lifetime. So why would it only have been disrupted 250 million years ago?Fanning StreamLed by Branimir Sesar (Max Planck Institute for Astronomy), a team of scientists has proposed an idea that might help solve this puzzle. If the Ophiuchus stellar stream is on a chaotic orbit common in triaxial potentials, which the Milky Ways may be then the stream ends can fan out, with stars spreading in position and velocity.The fanned part of the stream, however, would be difficult to detect because of its low surface brightness. As a result, the Ophiuchus stellar stream could actually be longer than originally measured, implying that it was disrupted longer ago than was believed.Search for Fan StarsTo test this idea, Sesar and collaborators performed a search around the ends of the stream, looking for stars thatare of the right type to match the stream,are at the predicted distance of the stream,are located near the stream ends, andhave velocities that match the stream and dont match the background halo stars.Histogram of the heliocentric velocities of the 43 target stars. Six stars have velocities matching the stream velocity. Two of these are located in the main stream; the other

  12. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  13. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  14. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What requirements must I meet for wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...

  15. Prior Distributions on Symmetric Groups

    ERIC Educational Resources Information Center

    Gupta, Jayanti; Damien, Paul

    2005-01-01

    Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…

  16. Dynamics of meteor streams

    NASA Technical Reports Server (NTRS)

    Babadjanov, P. B.; Obrubov, Yu. U.

    1987-01-01

    The overwhelming majority of meteor streams are generally assumed to be formed due to the decay of comets. The most effective process of the release of solid particles from a cometary nucleus is their ejection by sublimating gases when the comet approaches the Sun. The results of investigation of the Geminids and Quadrantids meteor stream evolution show that under the influence of planetary perturbations, the stream may originally be flat but then thicken depending on the variation range of orbital inclinations. Eventually, due to planetary perturbations, a meteor stream may take such a shape as to cause the start of several active showers at different solar longitudes.

  17. User aware video streaming

    NASA Astrophysics Data System (ADS)

    Kerofsky, Louis; Jagannath, Abhijith; Reznik, Yuriy

    2015-03-01

    We describe the design of a video streaming system using adaptation to viewing conditions to reduce the bitrate needed for delivery of video content. A visual model is used to determine sufficient resolution needed under various viewing conditions. Sensors on a mobile device estimate properties of the viewing conditions, particularly the distance to the viewer. We leverage the framework of existing adaptive bitrate streaming systems such as HLS, Smooth Streaming or MPEG-DASH. The client rate selection logic is modified to include a sufficient resolution computed using the visual model and the estimated viewing conditions. Our experiments demonstrate significant bitrate savings compare to conventional streaming methods which do not exploit viewing conditions.

  18. Inventory of miscellaneous streams

    SciTech Connect

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column.

  19. Changes in concentrations of a TCE plume in near- stream zones of a DNAPL contaminated area adjacent to a stream

    NASA Astrophysics Data System (ADS)

    Lee, S.; Hyun, Y.; Lee, K.

    2012-12-01

    A field investigation of a trichloroethylene (TCE) groundwater plume originating at an industrial complex and its discharges to a stream nearby showed that apparent plume attenuation occurred in the near-stream zone of a DNAPL contaminated area adjacent to a stream prior to discharging to the stream. The concentrations of TCE and cis-1,2-dichloroethene (cis-DCE) in groundwater, hyporheic water, stream water and streambed, and hydrogeology were characterized using mini-piezometers, monitoring wells, Ground Penetrating Radar (GPR) surveys, and soil coring. In the near stream zones temporal and spatial TCE plume concentration changes and mass fluxes were investigated along the flowpath of groundwater discharging to the stream. It is evident that observed concentrations of contaminants (TCE and cis-DCE) were reduced in the near-stream zone, resulting that TCE and cis-DCE were not detected in the streambed and stream water. Ground GPR surveys done in the near stream zone found that wire and water treatment pipe conduits were buried under the ground next to the stream, which could lead groundwater flow field distortion in this zone. At streambed, the GPR survey and soil coring indicated the presence of low permeable zones consisting of rotten material deposits at the top of 0.3 m ~ 0.8 m underlain by silty sands. These hydrogeological features can also attribute to no detection of contaminants in the streambed and stream water because low permeable zone is an obstacle to effective interactions between groundwater and stream water. More investigations will be carried out for comprehensive understanding of hydrological and biogeochemical processes associated with TCE plume attenuation in near stream zones and streambed in the site.

  20. Adopt a Stream.

    ERIC Educational Resources Information Center

    Friends of Environmental Education Society of Alberta (Edmonton).

    This environmental education program is designed to increase awareness among junior high school students of stream ecosystems and those habitats which comprise the ecosystems adjacent to streams. The teaching content of the manual is presented in two major sections. The first section provides information and background material for the group…

  1. Citrus waste stream utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waste streams, generated during fruit processing, consist of solid fruit residues in addition to liquid waste streams from washing operations which must be handled in an environmentally acceptable manner. Unsound fruit from packing houses are usually sent off to be processed for juice and the solid ...

  2. MARYLAND BIOLOGICAL STREAM SURVEY

    EPA Science Inventory

    The Maryland Biological Stream Survey (MBSS) is a multi-year probability-based sampling program designed to assess the status of biological resources in non-tidal streams of Maryland. The MBSS is quantifying the extent to which acidic deposition and other human activities have af...

  3. River and Stream Pollution

    MedlinePlus

    ... Pollution Dirt Dirt is a big cause of pollution in our rivers and streams. Rain washes dirt into streams and rivers. Dirt can smother fish and other animals that live in the water. If plants can't get enough sunlight because ...

  4. WADEABLE STREAMS ASSESSMENT

    EPA Science Inventory

    This Wadeable Streams Assessment (WSA) provides the first statistically defensible summary of the condition of the nation’s streams and small rivers, which are so integrally tied to our history. This report brings the results of this ground-breaking study to the American public....

  5. Predicting a prior for Planck

    SciTech Connect

    Hertog, Thomas

    2014-02-01

    The quantum state of the universe combined with the structure of the landscape potential implies a prior that specifies predictions for observations. We compute the prior for CMB related observables given by the no-boundary wave function (NBWF) in a landscape model that includes a range of inflationary patches representative of relatively simple single-field models. In this landscape the NBWF predicts our classical cosmological background emerges from a region of eternal inflation associated with a plateau-like potential. The spectra of primordial fluctuations on observable scales are characteristic of concave potentials, in excellent agreement with the Planck data. By contrast, alternative theories of initial conditions that strongly favor inflation at high values of the potential are disfavored by observations in this landscape.

  6. Ramification of stream networks

    PubMed Central

    Devauchelle, Olivier; Petroff, Alexander P.; Seybold, Hansjörg F.; Rothman, Daniel H.

    2012-01-01

    The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2π/5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km2 groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves. PMID:23223562

  7. DESTRUCTION OF AIR EMISSIONS USING CATALYTIC OXIDATION

    EPA Science Inventory

    The paper discusses key emission stream characteristics and hazardous air pollutant (HAP) characteristics that affect the applicability of catalytic oxidation as an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emi...

  8. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  9. Downstream Propagation of Thermal Pollution in Urban Streams

    NASA Astrophysics Data System (ADS)

    Somers, K. A.; Urban, D. L.; Bernhardt, E. S.; Losordo, M.

    2011-12-01

    Cities create "heat islands" with air temperatures up to 12 degrees C greater than surrounding areas and impervious surface temperatures reaching 50 degrees C greater than the air. Streams that drain urban areas tend to be hotter at baseflow due to warmer air temperatures and decreased riparian canopy cover. Further, urban stormflow routes precipitation over hot impervious surfaces and through storm drains directly into streams, creating rapid changes in stream temperatures. The resulting alterations in stream thermal regimes directly stress aquatic organisms and indirectly lead to changes in stream microbial activity and dissolved oxygen concentrations. To date, there has been little work done to understand how urban heating of streams propagates downstream from thermal pollution sources. In response to this lack, we used a fiber optic distributed temperature sensor as well as multiple individual temperature loggers to measure high spatiotemporal resolution patterns of stream temperature along 1.5 km of Mud Creek in Durham, NC. Mud Creek originates in the storm drains of a suburban neighborhood, where high-density residential complexes with large amounts of impervious surface are connected directly to the stream. The stream flows in a confined channel alongside apartment complexes for 0.5 km before entering a protected forest area. At baseflow, we found temperature was heterogeneous and explained primarily by canopy openness, rather than the amount of development upstream of the location. During summer stormflows, stream temperatures became more homogeneous and increased by up to 4 degrees C due to runoff at the top of the reach. These peak temperatures were dampened to only 2 degrees C increases after 1 km of travel through mature forest. In contrast, a fully forested tributary to Mud Creek decreased in temperature for the same storm events. This spatial propagation of stormflow heat pulses will substantially limit our ability to protect urban stream ecosystems.

  10. Distribution and abundance of stream fishes in relation to barriers: implications for monitoring stream recovery after barrier removal

    USGS Publications Warehouse

    Zydlewski, Joseph; Coghlan Jr., Stephen M.; Gardner, C.; Saunders, R.

    2011-01-01

    Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the focus of a restoration effort that includes the removal of two low-head dams. In this study, we quantified fish assemblage metrics along a longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre-removal baseline conditions and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system associated with dam removal. Over 2 years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the reference stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream-to-downstream pattern along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site. No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long-term assessment of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects.

  11. Twitter Stream Archiver

    SciTech Connect

    Steed, Chad Allen

    2014-07-01

    The Twitter Archiver system allows a user to enter their Twitter developer account credentials (obtained separately from the Twitter developer website) and read from the freely available Twitter sample stream. The Twitter sample stream provides a random sample of the overall volume of tweets that are contributed by users to the system. The Twitter Archiver system consumes the stream and serializes the information to text files at some predefined interval. A separate utility reads the text files and creates a searchable index using the open source Apache Lucene text indexing system.

  12. Twitter Stream Archiver

    2014-07-01

    The Twitter Archiver system allows a user to enter their Twitter developer account credentials (obtained separately from the Twitter developer website) and read from the freely available Twitter sample stream. The Twitter sample stream provides a random sample of the overall volume of tweets that are contributed by users to the system. The Twitter Archiver system consumes the stream and serializes the information to text files at some predefined interval. A separate utility reads themore » text files and creates a searchable index using the open source Apache Lucene text indexing system.« less

  13. NOx reduction in combustion with concentrated coal streams and oxygen injection

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Snyder, William J.

    2004-03-02

    NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.

  14. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  15. Evidence for atmospheric carbon dioxide variability over the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1984-01-01

    Two airborne surveys of atmospheric carbon dioxide concentration have been conducted over the Gulf Stream off the east coast of Virginia and North Carolina on September 7-8, 1983. In situ CO2 data were acquired at an aircraft altitude of 300 m on trajectories that transcected the Gulf Stream near 36 deg N 73 deg W. Data show evidence of a CO2 concentration increase by 4 ppm to 15 ppm above the nominal atmospheric background value of 345 ppm. These enhanced values were associated with the physical location of the Gulf Stream prior to the passage of a weak cold front.

  16. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  17. Stream-gaging cableways

    USGS Publications Warehouse

    Wagner, C. Russell

    1995-01-01

    This manual provides a series of standard designs for stream-gaging cableways used by the U.S. Geological Survey (USGS). It provides helpful information on construction, inspection, and maintenance of cableways.

  18. Stochastic ice stream dynamics.

    PubMed

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  19. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  20. Replay-Stream

    2012-12-01

    For testing and demonstration purposes, it is often necessary to replay saved network and log data. This library facilitates replaying these saved data streams. This module will take in a stream of JSON strings, read their specified timestamp field, and output according to the given criteria. This can include restricting output to a certain time range, and/or outputting the items with some delay based on their timestamp.

  1. Chaos and stellar streams

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.; Valluri, Monica; Pearson, Sarah; Kupper, Andreas Hans Wilhelm; Hogg, David W.

    2016-01-01

    Cosmological simulations predict that dark matter halos around galaxies should be triaxial in shape with universal density profiles. A significant number of orbits in such systems are chaotic, though it is commonly assumed that chaos is not dynamically relevant for galaxy halos because the timescales over which chaos is computed to be important are generally long relative to the dynamical time. In recent work, we showed that even when chaos is not important for restructuring the global structure of a galaxy, chaos can greatly enhance the density evolution and alter the morphologies of stellar streams over just a few orbital times by causing streams to 'fan out.' This occurs because the orbits of the stars in stellar streams have small distributions of fundamental frequencies and are therefore sensitive to mild chaos that modulates the frequencies on small-scales over much faster timescales. This suggests that the morphology of tidal streams alone can be used to estimate the significance of chaos along the orbits of the progenitor systems, thereby placing constraints on the global properties of the gravitational potential. I will explain our theoretical understanding of this phenomenon and discuss implications for a recently discovered stellar stream (the Ophiuchus stream) that may be on a chaotic orbit in the inner Milky Way due to the influence of the time-dependent, triaxial potential of the Galactic bar.

  2. ACRYLONITRILE PLANT AIR POLLUTION CONTROL

    EPA Science Inventory

    Based on available literature, the report identifies and ranks (in terms of efficiency, cost, and energy requirements) air pollution control technologies for each of four major air pollutant emission sources in acrylonitrile plants. The sources are: (1) absorber vent gas streams,...

  3. Comparison of Mercury Mass Loading in Streams to Wet and Dry Atmospheric Deposition in Watersheds of the Western US: Evidence for Non-Atmospheric Mercury Sources

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.

    2015-12-01

    Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.

  4. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    PubMed

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. PMID:23967913

  5. Regional and Local Scale Modeling of Stream Temperatures and Spatio-Temporal Variation in Thermal Sensitivities

    NASA Astrophysics Data System (ADS)

    Hilderbrand, Robert H.; Kashiwagi, Michael T.; Prochaska, Anthony P.

    2014-07-01

    Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air-water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream's thermal sensitivity. Both the regional and the stream-specific air-water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream's thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.

  6. Taking Science On-air with Google+

    NASA Astrophysics Data System (ADS)

    Gay, P.

    2014-01-01

    Cost has long been a deterrent when trying to stream live events to large audiences. While streaming providers like UStream have free options, they include advertising and typically limit broadcasts to originating from a single location. In the autumn of 2011, Google premiered a new, free, video streaming tool -- Hangouts on Air -- as part of their Google+ social network. This platform allows up to ten different computers to stream live content to an unlimited audience, and automatically archives that content to YouTube. In this article we discuss best practices for using this technology to stream events over the internet.

  7. The Sagittarius Dwarf Tidal Stream(s)

    NASA Astrophysics Data System (ADS)

    Law, David R.; Majewski, Steven R.

    The Milky Way's prominent and widely studied Sagittarius (Sgr) dSph tidal stream has proven a valuable tool for exploring a number of problems in galactic astronomy. In this review of the Sgr system, we present a descriptive portrait of the most salient and unambiguous observational properties (e.g., location, radial velocity, proper motion, and chemical composition) of the Sgr core and tidal streams as they are presently known. We discuss how the history of these observations has shaped the development of numerical models of the system over time, and some of the major conclusions that have been drawn from such modeling efforts with regard to the size and shape of the Milky Way's gravitational potential and the patterns of enrichment throughout its stellar halo. Finally, we summarize some of the known failings of the present models, which we lay out as a challenge for future progress on understanding this remarkable and fortuitous example of hierarchical galaxy growth via merging in action.

  8. Students' Experiences of Ability-Based Streaming in Vocational Education

    ERIC Educational Resources Information Center

    Tanggaard, Lene; Nielsen, Klaus; Jørgensen, Christian Helms

    2015-01-01

    Purpose: Since 2007, it has been mandatory for all vocational schools in Denmark to assess the prior qualifications of all students when they begin at the school and to use this assessment to divide students into different ability-based courses (streaming) with the aim of increasing the retention of students. The purpose of this paper is to…

  9. Seasonal nitrate uptake and denitrification potential in small headwater streams in the Willamette Valley, Oregon

    EPA Science Inventory

    Background/Question/Methods Headwater streams can serve as important sources and sinks for nitrogen (N) for downstream receiving waters. Prior research on N removal in small streams has largely focused on growing season conditions. Here we examine the influence of headwater...

  10. STABLE SULFUR ISOTOPES OF SULFATE IN PRECIPITATION AND STREAM SOLUTIONS IN A NORTHERN HARDWOODS WATERSHED

    EPA Science Inventory

    table 5 isotopes of 5042 in precipitation and stream solutions in a northern hardwoods watershed (Bear Brooks Watershed, Maine) were examined to determine sources of stream S042- and to identify watershed processes that may affect atmospherically deposited S042 prior to reaching ...

  11. Digital Multicasting of Multiple Audio Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell; Bullock, John

    2007-01-01

    The Mission Control Center Voice Over Internet Protocol (MCC VOIP) system (see figure) comprises hardware and software that effect simultaneous, nearly real-time transmission of as many as 14 different audio streams to authorized listeners via the MCC intranet and/or the Internet. The original version of the MCC VOIP system was conceived to enable flight-support personnel located in offices outside a spacecraft mission control center to monitor audio loops within the mission control center. Different versions of the MCC VOIP system could be used for a variety of public and commercial purposes - for example, to enable members of the general public to monitor one or more NASA audio streams through their home computers, to enable air-traffic supervisors to monitor communication between airline pilots and air-traffic controllers in training, and to monitor conferences among brokers in a stock exchange. At the transmitting end, the audio-distribution process begins with feeding the audio signals to analog-to-digital converters. The resulting digital streams are sent through the MCC intranet, using a user datagram protocol (UDP), to a server that converts them to encrypted data packets. The encrypted data packets are then routed to the personal computers of authorized users by use of multicasting techniques. The total data-processing load on the portion of the system upstream of and including the encryption server is the total load imposed by all of the audio streams being encoded, regardless of the number of the listeners or the number of streams being monitored concurrently by the listeners. The personal computer of a user authorized to listen is equipped with special- purpose MCC audio-player software. When the user launches the program, the user is prompted to provide identification and a password. In one of two access- control provisions, the program is hard-coded to validate the user s identity and password against a list maintained on a domain-controller computer

  12. SAR observations of the Gulf Stream during SWADE

    NASA Technical Reports Server (NTRS)

    Vachon, Paris W.; Liu, Antony K.; Mollo-Christensen, Erik

    1992-01-01

    The Surface Wave Dynamics Experiment (SWADE) has gathered SAR observations of the Gulf Stream that show a change in ocean surface brightness; this may be due to the effects of a change in air-sea temperature difference across the observed edge, where the boundary is defined by warm, quickly flowing Gulf Stream water and cooler, relatively stationary shelf water. The two images discussed indicate the possibility of deepening understanding of Gulf Stream front dynamics by using the abundant spatial data of SAR imagery, in conjunction with more conventional (point-like) data on hydrography and currents.

  13. Image-Specific Prior Adaptation for Denoising.

    PubMed

    Lu, Xin; Lin, Zhe; Jin, Hailin; Yang, Jianchao; Wang, James Z

    2015-12-01

    Image priors are essential to many image restoration applications, including denoising, deblurring, and inpainting. Existing methods use either priors from the given image (internal) or priors from a separate collection of images (external). We find through statistical analysis that unifying the internal and external patch priors may yield a better patch prior. We propose a novel prior learning algorithm that combines the strength of both internal and external priors. In particular, we first learn a generic Gaussian mixture model from a collection of training images and then adapt the model to the given image by simultaneously adding additional components and refining the component parameters. We apply this image-specific prior to image denoising. The experimental results show that our approach yields better or competitive denoising results in terms of both the peak signal-to-noise ratio and structural similarity. PMID:26316129

  14. Estimating cumulative effects of clearcutting on stream temperatures

    USGS Publications Warehouse

    Bartholow, J.M.

    2000-01-01

    The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.

  15. Stream discharge events increase the reaction efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Trauth, N.; Schmidt, C.

    2015-12-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has not been studied so far. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally variable hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, generating in combination with the stream water level, losing, neutral, or gaining stream conditions. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate into the modelling domain across the top boundary and can react with each other by aerobic respiration and denitrification. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone are deeper than under base flow conditions and small events where gaining conditions prevail. Consequently, stream discharge events may

  16. Recognition of Prior Vocational Learning in Sweden

    ERIC Educational Resources Information Center

    Andersson, Per; Fejes, Andreas; Ahn, Song-Ee

    2004-01-01

    Initiatives in the recognition of prior learning (RPL) have been taken in Sweden in recent years, mainly focusing on prior vocational learning among immigrants. The government started different projects to find methods for recognising a person's prior learning in the field of vocational competence. This article presents a study of how these…

  17. Prior Learning Assessment Workgroup: 2014 Progress Report

    ERIC Educational Resources Information Center

    West, Jim

    2015-01-01

    Legislation passed in 2011 required the Washington Student Achievement Council (WSAC) to convene a Prior Learning Assessment Workgroup. The workgroup was tasked with coordinating and implementing seven goals, described in statute, to promote the award of college credit for prior learning. Awarding college credit for prior learning increases access…

  18. 19 CFR 162.74 - Prior disclosure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... loss of revenue finally calculated by CBP shall result in denial of the prior disclosure. (d) Effective... 19 Customs Duties 2 2010-04-01 2010-04-01 false Prior disclosure. 162.74 Section 162.74 Customs... disclosure. (a) In general—(1) A prior disclosure is made if the person concerned discloses the...

  19. 28 CFR 2.58 - Prior orders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Prior orders. 2.58 Section 2.58 Judicial..., AND JUVENILE DELINQUENTS United States Code Prisoners and Parolees § 2.58 Prior orders. Any order of the United States Board of Parole entered prior to May 14, 1976, including, but not limited to,...

  20. 28 CFR 2.58 - Prior orders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Prior orders. 2.58 Section 2.58 Judicial..., AND JUVENILE DELINQUENTS United States Code Prisoners and Parolees § 2.58 Prior orders. Any order of the United States Board of Parole entered prior to May 14, 1976, including, but not limited to,...

  1. Stream temperature response to variable glacier coverage in coastal watersheds of northern southeast Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; Fellman, J. B.; Nagorski, S. A.; Vermilyea, A.; Pyare, S.; Scott, D.

    2012-12-01

    Glaciers in southeast Alaska are experiencing high rates of ice thinning and retreat. These ongoing changes in glacier volume are altering the proportion of streamflow derived from glacial runoff, which can be an important control on the thermal regime of streams in the region. We measured stream temperature continuously during the 2011 summer runoff season (May through October) in nine watersheds of southeast Alaska that provide spawning habitat for Pacific salmon. Six of the nine watersheds have glacier coverage ranging from 2 to 63%. Our goal was to determine how air temperature and watershed land cover, particularly glacier coverage, influence stream temperature across the seasonal hydrograph. Multiple linear regression identified mean watershed elevation, which is tied to glacier extent, and watershed lake coverage (%) as the strongest landscape controls on mean monthly stream temperature, with the weakest (May) and strongest (July) models explaining 86% and 97% of the temperature variability, respectively. Mean weekly stream temperature was significantly related to mean weekly air temperature in seven of the nine streams; however, the relationships were weak to non-significant in the streams dominated by glacial runoff. Peak summer stream temperatures occurred much earlier in the glacial streams (typically around late May) and glaciers also had a cooling effect on monthly mean stream temperature during the summer (July through September) equivalent to a decrease of 1.1°C for each 10% increase in glacier coverage. Streams with >30% glacier coverage demonstrated decreasing stream temperatures with rising summer air temperatures, while those with <30% glacier coverage exhibited summertime warming. The maximum weekly average temperature (MWAT, an index of thermal suitability for salmon species) in the six glacial streams was substantially below the lower threshold for optimum salmonid growth. This finding suggests that, while glaciers are important for

  2. BALTIMORE STREAM RESTORATION PROJECT

    EPA Science Inventory

    26 Feb 2003



    Approach - We will employ a 4-tiered research approach to investigate restoration effects on hydrology and stream water quality: 1) monitoring ground water and surface water, 2) quantifying denitrification activity, 3) measuring carbon supply and rete...

  3. STREAM WATER QUALITY MODEL

    EPA Science Inventory

    QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

    • One dimensional. The channel is well-mixed vertically a...

    • STREAMS_P

      EPA Science Inventory

      Streams (polygon features) coverage showing some double line rivers and islands on the Colorado River Indian Reservation in Arizona. This coverage was digitized off of USGS 7.5 minute quad maps by the Phoenix office of the Bureau of Indian Affairs.

    • Practical Meteor Stream Forecasting

      NASA Technical Reports Server (NTRS)

      Cooke, William J.; Suggs, Robert M.

      2003-01-01

      Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

    • Semianalytical solutions for stream depletion in partially penetrating streams.

      PubMed

      Chen, Xunhong; Yin, Yanfeng

      2004-01-01

      In the analysis of streamflow depletion, the Hunt (1999) solution has an important advantage because it considers a partially penetrating stream. By extending the Hunt drawdown solution, this paper presents semianalytical solutions for gaining streams that evaluate the induced stream infiltration and base flow reduction separately. Simulation results show that for a given deltah (the initial hydraulic head difference between stream and aquifer beneath the channel), the base flow reduction is in direct proportion to the product of streambed leakage (lambda) and the distance between pumping well and stream (L), and the induced stream infiltration is in inverse proportion to lambdaL. Deltah has a significant effect on the ratio of stream infiltration to base flow reduction. The results from the semianalytical solutions agree well with those from MODFLOW simulations. The semianalytical solutions are useful in the verification of numerical simulations and in the analysis of stream-aquifer interactions where water quantity or quality is concerned. PMID:14763621

    • Minimally Informative Prior Distributions for PSA

      SciTech Connect

      Dana L. Kelly; Robert W. Youngblood; Kurt G. Vedros

      2010-06-01

      A salient feature of Bayesian inference is its ability to incorporate information from a variety of sources into the inference model, via the prior distribution (hereafter simply “the prior”). However, over-reliance on old information can lead to priors that dominate new data. Some analysts seek to avoid this by trying to work with a minimally informative prior distribution. Another reason for choosing a minimally informative prior is to avoid the often-voiced criticism of subjectivity in the choice of prior. Minimally informative priors fall into two broad classes: 1) so-called noninformative priors, which attempt to be completely objective, in that the posterior distribution is determined as completely as possible by the observed data, the most well known example in this class being the Jeffreys prior, and 2) priors that are diffuse over the region where the likelihood function is nonnegligible, but that incorporate some information about the parameters being estimated, such as a mean value. In this paper, we compare four approaches in the second class, with respect to their practical implications for Bayesian inference in Probabilistic Safety Assessment (PSA). The most commonly used such prior, the so-called constrained noninformative prior, is a special case of the maximum entropy prior. This is formulated as a conjugate distribution for the most commonly encountered aleatory models in PSA, and is correspondingly mathematically convenient; however, it has a relatively light tail and this can cause the posterior mean to be overly influenced by the prior in updates with sparse data. A more informative prior that is capable, in principle, of dealing more effectively with sparse data is a mixture of conjugate priors. A particular diffuse nonconjugate prior, the logistic-normal, is shown to behave similarly for some purposes. Finally, we review the so-called robust prior. Rather than relying on the mathematical abstraction of entropy, as does the constrained

    • Sequential stagnation of Kamb Ice Stream, West Antarctica

      NASA Astrophysics Data System (ADS)

      Catania, G. A.; Scambos, T. A.; Conway, H.; Raymond, C. F.

      2006-07-01

      Ice-penetrating radar data confirm the presence of two relict northern margins of Kamb Ice Stream (KIS), West Antarctica in an area called the Duckfoot. Between the two relict margins, deep layers are preserved and buried crevasses remain at a constant depth until roughly 1.5 km from the innermost (youngest) margin suggesting that this outer portion of the ice stream stagnated suddenly (<10 years). Stagnation was likely accomplished through changes in basal conditions (i.e., reduced lubrication) beneath this outer portion of the ice stream and resulted in a narrowing of the ice stream trunk by 27% and a reduction in flow speed ~200 years prior to complete stagnation. Flowstripe deformation as a result of Duckfoot stagnation provides an estimate of KIS paleo-velocity of 210 m/a after Duckfoot stagnation.

    • The power prior: theory and applications.

      PubMed

      Ibrahim, Joseph G; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang

      2015-12-10

      The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A-to-Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Frequentist properties of power priors in posterior inference are established, and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials. PMID:26346180

    • Combustor air flow control method for fuel cell apparatus

      DOEpatents

      Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

      2001-01-01

      A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

    • IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

      SciTech Connect

      King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: wbrown@cfa.harvard.edu E-mail: skenyon@cfa.harvard.edu

      2012-05-01

      We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

    • Dam removal increases American eel abundance in distant headwater streams

      USGS Publications Warehouse

      Hitt, Nathaniel P.; Eyler, Sheila; Wofford, John E.B.

      2012-01-01

      American eel Anguilla rostrata abundances have undergone significant declines over the last 50 years, and migration barriers have been recognized as a contributing cause. We evaluated eel abundances in headwater streams of Shenandoah National Park, Virginia, to compare sites before and after the removal of a large downstream dam in 2004 (Embrey Dam, Rappahannock River). Eel abundances in headwater streams increased significantly after the removal of Embrey Dam. Observed eel abundances after dam removal exceeded predictions derived from autoregressive models parameterized with data prior to dam removal. Mann–Kendall analyses also revealed consistent increases in eel abundances from 2004 to 2010 but inconsistent temporal trends before dam removal. Increasing eel numbers could not be attributed to changes in local physical habitat (i.e., mean stream depth or substrate size) or regional population dynamics (i.e., abundances in Maryland streams or Virginia estuaries). Dam removal was associated with decreasing minimum eel lengths in headwater streams, suggesting that the dam previously impeded migration of many small-bodied individuals (<300 mm TL). We hypothesize that restoring connectivity to headwater streams could increase eel population growth rates by increasing female eel numbers and fecundity. This study demonstrated that dams may influence eel abundances in headwater streams up to 150 river kilometers distant, and that dam removal may provide benefits for eel management and conservation at the landscape scale.

    • A Simulated Stream Ecology Study.

      ERIC Educational Resources Information Center

      Zampella, Robert A.

      1979-01-01

      Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)

    • Benthic Macroinvertebrates in Wadeable Streams

      EPA Science Inventory

      This indicator describes the presence and distribution of benthic macroinvertebrates in wadeable streams nationwide as surveyed from 2000 to 2004. Benthic macroinvertebrates are particularly sensitive to disturbances in stream chemistry and physical habitat, making their prese...

    • Stream discharge events increase the reactive efficiency of the hyporheic zone of an in-stream gravel bar

      NASA Astrophysics Data System (ADS)

      Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

      2016-04-01

      Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has received less attention to date. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally varying hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, resulting in losing, neutral, or gaining conditions in the stream with respect to exchange with groundwater. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate across the top of the modelling domain, where aerobic respiration and denitrification are simulated. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone deeper than under base flow conditions and small hydrologic events where gaining conditions prevail. Consequently, stream discharge events may

    • Does the restoration of an inner-city stream in Seoul affect local thermal environment?

      NASA Astrophysics Data System (ADS)

      Kim, Y.-H.; Ryoo, S.-B.; Baik, J.-J.; Park, I.-S.; Koo, H.-J.; Nam, J.-C.

      2008-05-01

      Changes in local thermal environment associated with the restoration of an inner-city stream in Seoul, Korea, are investigated using observational data. The stream, called the Cheonggye stream, which had been hidden and covered with cement/asphalt for 46 years, runs 5.8 km eastward through a central region of Seoul. Intensive observations were made in the stream area for a number of summertime periods before, during, and after the stream restoration to detect the effects of the stream on local environment and to quantify them. It is estimated that after the stream restoration the near-surface temperature averaged over the stream area dropped by 0.4 °C, with the largest local temperature drop being 0.9 °C. However, it cannot be stated that this 0.4 °C temperature drop is due entirely to the stream effect only, because synoptic-scale and local-scale weather conditions during the two periods were inevitably not identical. The stream effect on air temperature is also evident in the temperature distribution along a street traversing the stream. In the daytime after the stream restoration, the sensible heat flux was greatly reduced and the ratio of sensible heat flux to net radiative flux dramatically decreased. These first-time results of the restored-stream effects on urban thermal environment could contribute to the scientific basis of urban planning which aims to make a large city comfortable to live in and nature- and environment-friendly.

    • ENVIRONMENTAL EFFECTS OF OIL SHALE MINING AND PROCESSING. PART II: THE AQUATIC MACROINVERTEBRATES OF THE PICEANCE BASIN, COLORADO, PRIOR TO OIL SHALE PROCESSING

      EPA Science Inventory

      A study was conducted at sampling sites on four streams in the Piceance Basin of northwestern Colorado to acquire data on benthic macroinvertebrate communities prior to commencement of oil shale mining and processing activities. Piceance Creek, the major stream studied, exhibited...

    • Denitrification of a gas stream

      SciTech Connect

      Tamony, A.E.; Youngson, C.R.

      1981-10-13

      Nitric oxide and other oxides of nitrogen is removed from a gas stream by contacting the gas stream with chlorine in the presence of water in the liquid phase and scrubbing the gas stream with an aqueous mixture of a hydrochloride and a hypochlorite.

    • Autonomous Byte Stream Randomizer

      NASA Technical Reports Server (NTRS)

      Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

      2013-01-01

      Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

    • The LHCb Turbo stream

      NASA Astrophysics Data System (ADS)

      Puig, A.

      2016-07-01

      The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses. This will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 with a selection of physics analyses. It is anticipated that the turbo stream will be adopted by an increasing number of analyses during the remainder of LHC Run II (2015-2018) and ultimately in Run III (starting in 2020) with the upgraded LHCb detector.

  1. The LHCb Turbo Stream

    NASA Astrophysics Data System (ADS)

    Benson, Sean; Gligorov, Vladimir; Vesterinen, Mika Anton; Williams, John Michael

    2015-12-01

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process these datasets, which will limit the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction and discarding the raw event. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses, and this will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 with a selection of physics analyses. It is anticipated that the turbo stream will be adopted by an increasing number of analyses during the remainder of LHC Run II (2015-2018) and ultimately in Run III (starting in 2020) with the upgraded LHCb detector.

  2. Gas stream cleanup

    SciTech Connect

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  3. Influence of a Waterfall on Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Moore, R. D.

    2015-12-01

    Summer stream temperature generally increases from the headwaters down to the outlets of major rivers, with longitudinal thermal gradients modified by riparian forest cover, groundwater and tributary inflows, the presence of surface water bodies, and potentially other landscape features. The objective of this study was to document downstream changes in summer stream temperature associated with a waterfall. The study focused on Shannon Falls in south coastal British Columbia, which descends 350 m over a horizontal distance of 500 m. Flow is cascading and highly aerated for most of its descent. Stream temperature was recorded at 10-minute intervals above and below the falls, and discharge was recorded 200 m downstream of the falls. Hourly air temperature, relative humidity and wind speed were recorded at Squamish Airport, 12 km from the falls; air temperature and humidity were also recorded upstream of the falls at streamside and at an open site 100 m from the stream. The stream warmed 1 to 4 °C during its descent, with diurnal variations of about 1 °C during fine weather. A full energy balance analysis is not possible due to an inability to quantify the stream's surface area and its complex radiation geometry. Calculations indicate that the conversion of potential energy accounts for 0.8 °C of warming. An index of the combined effects of sensible and latent heat flux explained 70% of the variance in the downstream temperature changes, consistent with the hypothesis that the turbulent exchanges are enhanced in cascading, aerated flow.

  4. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  5. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  6. A direct approach for quantifying stream shading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive stream water temperature causes thermal stress in fish and invertebrates, decreases dissolved oxygen, and encourages bacterial and algal growth. Solar radiation affects stream temperature. Shade cast by riparian vegetation reduces thermal inputs to stream water. Stream shading standards...

  7. Generalization of stream-temperature data in Washington

    USGS Publications Warehouse

    Collings, M.R.

    1973-01-01

    The effect of water temperature on the ecosystem of streams necessitates an analysis of various physical characteristics that influence stream temperatures. This study was conducted to determine (1) the effective relations that define site-to-site variation in stream temperatures, (2) equations and methods to estimate stream temperatures at sites where little or no data are now available, and (3) a procedure to evaluate the effect of water impoundment on natural stream temperatures. Statistical multiple-regression analyses were used to develop equations for relations between stream temperatures and topographic and climatic characteristics of the drainage basins. Multiple-regression techniques, generally, produced more accurate equations for estimating temperatures of streams in western Washington than for those in eastern Washington. A standard error of estimate was used to show how precisely stream temperatures may be defined by air-temperature and topographic drainage-basin characteristics. Of 24 original parameters tested, 15 were found effective to determine the equations of one or more of the 15 stream-temperature characteristics. Effects of holding reservoirs on downstream water temperatures may be evaluated by the use of harmonic curves of probable maximum and minimum stream temperatures. By examples, it was shown that (1) below a hydroelectric-power dam winter-minimum river temperatures were raised and occur 9 days later than they would under natural conditions; and (2) below a flood-control dam, which also augments natural flows during low-flow periods, summer-minimum river temperatures were raised and occur 4 days earlier than they would under natural conditions.

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  11. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOEpatents

    Kobayashi, Hisashi; Bool, Lawrence E.; Snyder, William J.

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  14. On selecting a prior for the precision parameter of Dirichlet process mixture models

    USGS Publications Warehouse

    Dorazio, R.M.

    2009-01-01

    In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.

  15. Effects of plantation forest clearfelling on stream temperatures in the Plynlimon experimental catchments, mid-Wales

    NASA Astrophysics Data System (ADS)

    Stott, T.; Marks, S.

    Hourly stream temperatures monitored over 28 months, which spanned a 3 month period of environmentally sensitive plot-scale harvesting of 20 ha. (20%) of the Nant Tanllwyth catchment (0.89 km2) on the south side of the main stream in early 1996, resulted in a 0.58°C (p< 0.001) increase in monthly mean stream temperature. Over the same 28 month experimental period, there was no significant increase in the monthly mean air temperature recorded at a nearby automatic weather station. Monthly mean temperatures are highest in July and August in the year before and the year after the clearfelling, and one of the main effects of the clearfelling was to decrease the difference between the monthly mean stream and air temperatures. Despite the air temperatures being cooler in the post-clearfelling year, the stream temperatures still showed an increase in the summer months. Monthly mean maximum stream temperatures, also highest in July and August in the year before and the year after the clearfelling, showed a marked increase of 7.0°C: in July and 5.3°C in August from the pre- to the post-clearfelling years, while monthly mean minimum air temperatures actually showed a slight decrease for the same months. The likely effects on stream fauna are discussed, as are suggestions for, and likely effects of, buffer strips alongside the streams.

  16. Improving Open Access through Prior Learning Assessment

    ERIC Educational Resources Information Center

    Yin, Shuangxu; Kawachi, Paul

    2013-01-01

    This paper explores and presents new data on how to improve open access in distance education through using prior learning assessments. Broadly there are three types of prior learning assessment (PLAR): Type-1 for prospective students to be allowed to register for a course; Type-2 for current students to avoid duplicating work-load to gain…

  17. Prior Computer Experience and Technology Acceptance

    ERIC Educational Resources Information Center

    Varma, Sonali

    2010-01-01

    Prior computer experience with information technology has been identified as a key variable (Lee, Kozar, & Larsen, 2003) that can influence an individual's future use of newer computer technology. The lack of a theory driven approach to measuring prior experience has however led to conceptually different factors being used interchangeably in…

  18. 19 CFR 162.74 - Prior disclosure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Prior disclosure. 162.74 Section 162.74 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Special Procedures for Certain Violations § 162.74 Prior disclosure. (a) In general—(1) A...

  19. Unusual behaviour of cows prior to a large earthquake

    NASA Astrophysics Data System (ADS)

    Fidani, Cristiano; Freund, Friedemann; Grant, Rachel

    2013-04-01

    Unusual behaviour of domestic cattle before earthquakes has been reported for centuries, and often relates to cattle becoming excited, vocal, aggressive or attempting to break free of tethers and restraints. Cattle have also been reported to move to higher or lower ground before earthquakes. Here, we report unusual movements of domestic cows 2 days prior to the Marche-Umbria (M=6) earthquake in 1997. Cows moved down from their usual summer pastures in the hills and were seen in the streets of a nearby town, a highly unusual occurrence. We discuss this in the context of positive holes and air ionisation as proposed by Freund's unified theory of earthquake precursors.

  20. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  1. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  2. Orbit of the Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Bernard, Edouard J.; Bovy, Jo; Cohen, Judith G.; Caldwell, Nelson; Ness, Melissa; Johnson, Christian I.; Ferguson, Annette M. N.; Martin, Nicolas; Rix, Hans-Walter; Ford Schlafly, Eddie; Pan-Starrs1 Collaboration

    2015-01-01

    Ophiuchus Stream is the most recently discovered stellar stream in the Milky Way (Bernard et al. 2014). Due to its location (˜5 kpc from the Galactic center) and its puzzling morphology (a thin and short stream, and yet with no visible progenitor), this stream may represent an important piece in our efforts to understand the Galactic potential and the dynamical evolution of accreted structures. In this talk, I will present a followup study of the stream during which we obtained high-quality spectroscopic data on 14 stream member stars using Keck and MMT telescopes. I will show how these newly acquired spectroscopic and existing photometric data enabled us to constrain i) the distance and line-of-sight extent of the stream, ii) the full 3D kinematics of the stream, iii) the chemical properties of the stream and the nature of its progenitor, and iv) the orbit of the stream. I will finish by discussing future prospects in this field in light of the upcoming public release of Pan-STARRS1, Palomar Transient Factory, and GAIA data.

  3. Comparison of Stream Restoration and Vegetation Restoration on Stream Temperature in the Middle Fork John Day River, Oregon

    NASA Astrophysics Data System (ADS)

    Diabat, M.; Wondzell, S. M.; Haggerty, R.

    2013-12-01

    Stream temperature is an important component of aquatic ecosystems. During the past century, various anthropogenic activities (such as timber harvest, mining, and agriculture) reduced riparian vegetation and channel complexity along many streams around the world. As a result, stream temperature increased and suitable habitat for cool- and cold-water organisms declined. Stream temperatures are expected to increase even more under future climate. The effects of warmer climate and anthropogenic activities are proposed to be mitigated by restoration projects aimed to reduce stream temperatures. Common restoration practices are replanting natural vegetation along stream banks and restoring channel complexity. The Middle Fork John Day River, in northeastern Oregon, USA is an example of such a process. We modeled stream temperature along a 37-km section of the Middle Fork John Day River for current and projected conditions of climate, restored riparian vegetation along 6.6-km, and restored channel meanders along 1.5 km. Preliminary simulations suggest that if current riparian vegetation remains unchanged, an average summertime air warming of 4°C increased the 7-day average daily maximum (7DADM) by about 1.3°C. However, restored riparian vegetation reduced the 7DADM by about 0.7°C relative to the current temperature. Restored channel meanders reduced the 7DADM by less than 0.05°C relative to the current temperature. These preliminary simulations assume no hyporheic exchange and riparian vegetation that is 10 m tall and has 30% canopy density.

  4. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGESBeta

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  5. Riparian deforestation, stream narrowing, and loss of stream ecosystem services.

    PubMed

    Sweeney, Bernard W; Bott, Thomas L; Jackson, John K; Kaplan, Louis A; Newbold, J Denis; Standley, Laurel J; Hession, W Cully; Horwitz, Richard J

    2004-09-28

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  6. Riparian deforestation, stream narrowing, and loss of stream ecosystem services

    PubMed Central

    Sweeney, Bernard W.; Bott, Thomas L.; Jackson, John K.; Kaplan, Louis A.; Newbold, J. Denis; Standley, Laurel J.; Hession, W. Cully; Horwitz, Richard J.

    2004-01-01

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation regarding abundance of fish, quality of dissolved organic matter, and pesticide degradation. These findings show that forested stream channels have a wider and more natural configuration, which significantly affects the total in-stream amount and activity of the ecosystem, including the processing of pollutants. The results reinforce both current policy of the United States that endorses riparian forest buffers as best management practice and federal and state programs that subsidize riparian reforestation for stream restoration and water quality. Not only do forest buffers prevent nonpoint source pollutants from entering small streams, they also enhance the in-stream processing of both nonpoint and point source pollutants, thereby reducing their impact on downstream rivers and estuaries. PMID:15381768

  7. Tidal Streams Near and Far

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.

    2014-06-01

    The Pandas survey of stars in M31's disk and halo is crisscrossed by numerous tidal features from both M31 and the Milky Way. Here I focus on two narrow stellar streams visible in the survey. They have comparable angular extent in the survey (10-13 degrees long versus only 0.3 degree wide), but one is a local Milky Way stream at about 30 kpc and one is in M31, roughly 25 times more distant. I estimate the stellar mass and metallicity in the streams and the distance gradient along them. The kinematics of the M31 stream is sparsely sampled by red giant stars and globular clusters. Bayesian modeling of the stream data yields accurate constraints on the orbital parameters of the streams.

  8. Slip stream effect

    NASA Technical Reports Server (NTRS)

    Montieth, Charles N

    1926-01-01

    The horizontal tail surfaces of a new airplane usually are proportional so that the curve of moment about the center of gravity, combined with a similar curve for the wings alone, gives a composite curve which provides a certain specified degree of static stability. With the application of power three additional factors must be considered in calculations: the moment of the propeller thrust; the change in the velocity of the air over the tail due to the slipstream; and the change in direction of the air over the tail due to the slipstream. The last two factors are considered in this report.

  9. Optimizing Inequality Constrained Priors in Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Holmes, Dawn E.

    2005-11-01

    Intelligent systems based on Bayesian networks have been successful in medical diagnosis, finance and many other areas. Updating probabilities in Bayesian networks relies on algorithms that require complete causal information. Sensitivity analysis now strongly indicates that probabilities in Bayesian networks are not robust and this reinforces the view that a sound theoretical model for finding a minimally prejudiced estimate of the prior distribution is desirable. In this paper we are concerned with how to find the optimum prior distribution, given all and only the knowledge available. In particular, we show how to integrate prior knowledge expressed in terms of inequality constraints, into a Bayesian network based intelligent system.

  10. Stream Discharge Measurements From Cableways

    USGS Publications Warehouse

    Nolan, K. Michael; Sultz, Lucky

    2000-01-01

    Cableways have been used for decades as a platform for making stream discharge measurements. Use of cableways eliminates the need to expose personnel to hazards associated with working from highway bridges. In addition, cableways allow sites to be selected that offer the best possible hydraulic characteristics for measuring stream discharge. This training presentation describes methods currently used by the U.S. Geological Survey to make stream discharge measurements from cableways.

  11. Stream Lifetimes Against Planetary Encounters

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  12. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  13. The Phoenix Stream: A Cold Stream in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Balbinot, E.; Yanny, B.; Li, T. S.; Santiago, B.; Marshall, J. L.; Finley, D. A.; Pieres, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; March, M.; Martini, P.; Miquel, R.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A. R.; DES Collaboration

    2016-03-01

    We report the discovery of a stellar stream in the Dark Energy Survey Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with age τ = 11.5 ± 0.5 Gyr and [Fe/H] < -1.6, located 17.5 ± 0.9 kpc from the Sun, gives an adequate description of the stream stellar population. The stream is detected over an extension of 8.°1 (2.5 kpc) and has a width of ˜54 pc assuming a Gaussian profile, indicating that a globular cluster (GC) is a probable progenitor. There is no known GC within 5 kpc that is compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities (ODs) along the stream, however, no obvious counterpart-bound stellar system is visible in the coadded images. We also find ODs along the stream that appear to be symmetrically distributed—consistent with the epicyclic OD scenario for the formation of cold streams—as well as a misalignment between the northern and southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe OD.

  14. A Simulation of Pell Grant Awards and Costs Using Prior-Prior Year Financial Data

    ERIC Educational Resources Information Center

    Kelchen, Robert; Jones, Gigi

    2015-01-01

    We examine the likely implications of switching from a prior year (PY) financial aid system, the current practice in which students file the Free Application for Federal Student Aid (FAFSA) using income data from the previous tax year, to prior-prior year (PPY), in which data from two years before enrollment is used. While PPY allows students to…

  15. Waste streams in a crewed space habitat II.

    PubMed

    Golub, M A; Wydeven, T

    1992-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, has been updated. This paper augments that compilation by the inclusion of the following new data: those uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwash water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants and dust generation. This paper also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom. PMID:11537495

  16. Waste streams in a typical crewed space habitat: An update

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Wydeven, T.

    1992-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, was updated. This report augments that compilation by the inclusion of the following new data: those data uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears, and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwasher water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants, and dust generation. This report also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom.

  17. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest.

    PubMed

    Weston, D P; Asbell, A M; Hecht, S A; Scholz, N L; Lydy, M J

    2011-10-01

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 °C), and in one additional sample at a more environmentally realistic temperature (13 °C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. PMID:21592636

  18. 34 CFR 642.32 - Prior experience.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... points to be awarded each eligible applicant, the Secretary considers the applicant's prior experience of..., based on the applicant's success in meeting the administrative requirements and programmatic objectives... participants, project evaluation reports, the previously funded application, the negotiated program...

  19. Proportion estimation using prior cluster purities

    NASA Technical Reports Server (NTRS)

    Terrell, G. R. (Principal Investigator)

    1980-01-01

    The prior distribution of CLASSY component purities is studied, and this information incorporated into maximum likelihood crop proportion estimators. The method is tested on Transition Year spring small grain segments.

  20. On the prior distribution of extinction time.

    PubMed

    Solow, Andrew R

    2016-06-01

    Bayesian inference about the extinction of a species based on a record of its sightings requires the specification of a prior distribution for extinction time. Here, I critically review some specifications in the context of a specific model of the sighting record. The practical implication of the choice of prior distribution is illustrated through an application to the sighting record of the Caribbean monk seal. PMID:27277952

  1. Stream Water and Sediment Phosphorus Equilibrium Concentrations in Ozark Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is broadly available on the fate and transport of dissolved phosphorus (DP) in streams draining agricultural and urban catchments, although in-stream processes might have a substantial influence on downstream transport. This study evaluated sediment-water P equilibrium concentrat...

  2. Analyzing indicators of stream health for Minnesota streams

    USGS Publications Warehouse

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  3. ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS

    EPA Science Inventory

    Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...

  4. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    EPA Science Inventory

    Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid and liquid-liquid mass transfer interfaces. Modular contactors were used in a two-step process designed to transfer VOCs from a contaminated air stream, through a stripping fluid, to a deg...

  5. An approach to prior austenite reconstruction

    SciTech Connect

    Abbasi, Majid; Nelson, Tracy W.; Sorensen, Carl D.; Wei Lingyun

    2012-04-15

    One area of interest in Friction Stir Welding (FSW) of steels is to understand microstructural evolution during the process. Most of the deformation occurs in the austenite temperature range. Quantitative microstructural measurements of prior austenite microstructure are needed in order to understand evolution of the microstructure. Considering the fact that room temperature microstructure in ferritic steels contains very little to no retained austenite, prior austenite microstructure needs to be recovered from the room temperature ferrite. In this paper, an approach based on Electron Backscattered Diffraction (EBSD) is introduced to detect Bain zones. Bain zone detection is used to reconstruct prior austenite grain structure. Additionally, a separate approach based on phase transformation orientation relationships is introduced in order to recover prior austenite orientation. - Highlights: Black-Right-Pointing-Pointer This approach provides a tool to reconstruct large-scale austenite microstructures. Black-Right-Pointing-Pointer It recovers prior austenite orientation without relying on retained austenite. Black-Right-Pointing-Pointer It utilizes EBSD data from the room temperature microstructure. Black-Right-Pointing-Pointer Higher number of active variants leads to more accurate reconstructions. Black-Right-Pointing-Pointer At least two variants are needed in order to recover prior austenite orientation.

  6. Attentional and Contextual Priors in Sound Perception

    PubMed Central

    Wolmetz, Michael; Elhilali, Mounya

    2016-01-01

    Behavioral and neural studies of selective attention have consistently demonstrated that explicit attentional cues to particular perceptual features profoundly alter perception and performance. The statistics of the sensory environment can also provide cues about what perceptual features to expect, but the extent to which these more implicit contextual cues impact perception and performance, as well as their relationship to explicit attentional cues, is not well understood. In this study, the explicit cues, or attentional prior probabilities, and the implicit cues, or contextual prior probabilities, associated with different acoustic frequencies in a detection task were simultaneously manipulated. Both attentional and contextual priors had similarly large but independent impacts on sound detectability, with evidence that listeners tracked and used contextual priors for a variety of sound classes (pure tones, harmonic complexes, and vowels). Further analyses showed that listeners updated their contextual priors rapidly and optimally, given the changing acoustic frequency statistics inherent in the paradigm. A Bayesian Observer model accounted for both attentional and contextual adaptations found with listeners. These results bolster the interpretation of perception as Bayesian inference, and suggest that some effects attributed to selective attention may be a special case of contextual prior integration along a feature axis. PMID:26882228

  7. Solute specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.

    2013-04-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the watershed. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, the scaling exponent for nitrate (NO3-) was 1.19 and for soluble reactive phosphorus (SRP) was 1.35, suggesting that uptake lengths for these nutrients increased more rapidly than increases in specific discharge. Additionally, the ratio of nitrogen (N) uptake length to SRP uptake length declined with stream size; there was lower demand for SRP relative to N as stream size increased. Ammonium and NO3- uptake velocity positively related with stream metabolism, while SRP did not. Finally, we related the scaling of uptake length and specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  8. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  9. 46 CFR 34.10-90 - Installations contracted for prior to May 26, 1965-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... enough water to the fire main so that the topmost outlet on the fire main emits two jets of water at a Pitot tube pressure of 50 pounds per square inch through two combination solid stream and water spray... FIREFIGHTING EQUIPMENT Fire Main System, Details § 34.10-90 Installations contracted for prior to May 26,...

  10. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries. PMID:11434287

  11. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  12. Source apportionment modeling of volatile organic compounds in streams

    USGS Publications Warehouse

    Pankow, J.F.; Asher, W.E.; Zogorski, J.S.

    2006-01-01

    It often is of interest to understand the relative importance of the different sources contributing to the concentration cw of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted cw,1, cw,2, cw,3, etc. Like c w, 'he fractions ??1, = cw,1/c w, ??2 = cw,2/cw, ??3 = cw,3/cw, etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of cw. Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over cw,1 cw,2, c w,3, etc. in proportion to their corresponding ?? values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding cw values approaching the common water quality guideline range of 1 to 10 ??g/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the ??j, for the compound remain unchanged over that section while cw decreases. A characteristic time ??d can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating

  13. Save Our Streams and Waterways.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    Protection of existing water supplies is critical to ensuring good health for people and animals alike. This program is aligned with the Izaak Walton League of American's Save Our Streams program which is based on the concept that students can greatly improve the quality of a nearby stream, pond, or river by regular visits and monitoring. The…

  14. We All Stream for Video

    ERIC Educational Resources Information Center

    Technology & Learning, 2008

    2008-01-01

    More than ever, teachers are using digital video to enhance their lessons. In fact, the number of schools using video streaming increased from 30 percent to 45 percent between 2004 and 2006, according to Market Data Retrieval. Why the popularity? For starters, video-streaming products are easy to use. They allow teachers to punctuate lessons with…

  15. Industrial-Strength Streaming Video.

    ERIC Educational Resources Information Center

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  16. Stream, Lake, and Reservoir Management.

    PubMed

    Mei, Ying; Chang, Chein-Chi; Dong, Zhanfeng; Wei, Li

    2016-10-01

    This review on stream, lake, and reservoir management covers selected 2015 publications on the focus of the following sections: • Biota • Climate effect • Models • Remediation and restoration • Reservoir operations • Stream, Lake, and Reservoir Management • Water quality. PMID:27620102

  17. Simulation forecasts complex flow streams from Ekofisk

    SciTech Connect

    Arnes, F.C.; Lillejord, H.

    1996-10-28

    A commercial steady-state process flowsheet simulation program serves as the basis for a rigorous calculation model for predicting produced flow rates from the Ekofisk complex in the Norwegian sector of the North Sea. The complex is the center of an extensive gathering system that collects oil and gas streams from several producing fields. Prior to running a production forecast, the simulation model is initiated by matching several years of production. Once the simulation model matches historical production data within acceptable limits, it then is driven by production forecasts from reservoir simulations to develop long-term forecasts of gas, NGL, and oil production. The paper describes the Ekofisk field, the process simulation, implementation of the model, and problems encountered.

  18. Stream processing health card application.

    PubMed

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data. PMID:22127523

  19. FireHose Streaming Benchmarks

    SciTech Connect

    Karl Anderson, Steve Plimpton

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created in the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.

  20. Dynamical modeling of tidal streams

    SciTech Connect

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  1. Dynamical Modeling of Tidal Streams

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2014-11-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its "track") in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of "orphan" streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  2. Century-Scale Ice Stream Variability and Stability: A case study of Kamb Ice Stream, West Antarctica.

    NASA Astrophysics Data System (ADS)

    Catania, G. A.; Scambos, T.; Conway, H.; Raymond, C.

    2005-12-01

    Observational and model studies are synthesized to obtain a 700 year ice flow history for the Kamb Ice Stream (KIS) region of West Antarctica which is used to infer the nature and pattern of the KIS shutdown. This ice flow history reveals a dominance of short-term (order of 100 years) variability in ice stream position and discharge that is linked to changes in subglacial conditions and ice thickness. Evidence suggests that the trunk of KIS was wide, thin and temporarily ungrounded between ~550-350 years ago [Catania et al., Journal of Glaciol., in press]. Since grounded conditions currently exist throughout the trunk region we suggest that rapid changes in basal conditions were possible during the last few hundred years prior to shutdown. Simultaneous with re-grounding in the trunk region was a narrowing of the ice stream width. Such large events in the history of the ice stream may be linked to the sudden loss of fully lubricated basal conditions during the transition from ungrounded to grounded conditions and may have initiated the eventual shutdown in the ice stream trunk some 200 years later. We also observe that the short-term variability of KIS appears to be in part, controlled by neighboring Whillans Ice Stream (WIS). Examples of this include; 1) grounding throughout the trunk likely occurring because of a prior diversion in flow direction of WIS to the north, 2) migration of the northern WIS margin that was coincident with the KIS shutdown and 3) a switch in flow direction of a tributary into KIS (now flowing into WIS) [Conway et al., Nature, 419 (6906), 465-467, 2002]. Such interdependence suggests that conclusions regarding the behavior of an individual ice stream cannot be examined in isolation. In the context of long-term (1000 years) ice stream history, the observed short-term variability of one particular ice stream may be seen as "noise" within a system that is in constant flux but one that may maintain a stable mass balance over large temporal and

  3. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  4. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  5. Dynamic emotion perception and prior expectancy.

    PubMed

    Dzafic, Ilvana; Martin, Andrew K; Hocking, Julia; Mowry, Bryan; Burianová, Hana

    2016-06-01

    Social interactions require the ability to rapidly perceive emotion from various incoming dynamic, multisensory cues. Prior expectations reduce incoming emotional information and direct attention to cues that are aligned with what is expected. Studies to date have investigated the prior expectancy effect using static emotional images, despite the fact that dynamic stimuli would represent greater ecological validity. The objective of the study was to create a novel functional magnetic resonance imaging (fMRI) paradigm to examine the influence of prior expectations on naturalistic emotion perception. For this purpose, we developed a dynamic emotion perception task, which consisted of audio-visual videos that carry emotional information congruent or incongruent with prior expectations. The results show that emotional congruency was associated with activity in prefrontal regions, amygdala, and putamen, whereas emotional incongruency was associated with activity in temporoparietal junction and mid-cingulate gyrus. Supported by the behavioural results, our findings suggest that prior expectations are reinforced after repeated experience and learning, whereas unexpected emotions may rely on fast change detection processes. The results from the current study are compatible with the notion that the ability to automatically detect unexpected changes in complex dynamic environments allows for adaptive behaviours in potentially advantageous or threatening situations. PMID:27126841

  6. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  7. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  8. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  9. Method for treating a nuclear process off-gas stream

    DOEpatents

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  10. Commissioning of the PRIOR proton microscope

    DOE PAGESBeta

    Varentsov, D.; Antonov, O.; Bakhmutova, A.; Barnes, C. W.; Bogdanov, A.; Danly, C. R.; Efimov, S.; Endres, M.; Fertman, A.; Golubev, A. A.; et al

    2016-02-18

    Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5–4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This study describes the PRIOR setup as well asmore » the results of the first static and dynamic protonradiography experiments performed at GSI.« less

  11. Commissioning of the PRIOR proton microscope

    NASA Astrophysics Data System (ADS)

    Varentsov, D.; Antonov, O.; Bakhmutova, A.; Barnes, C. W.; Bogdanov, A.; Danly, C. R.; Efimov, S.; Endres, M.; Fertman, A.; Golubev, A. A.; Hoffmann, D. H. H.; Ionita, B.; Kantsyrev, A.; Krasik, Ya. E.; Lang, P. M.; Lomonosov, I.; Mariam, F. G.; Markov, N.; Merrill, F. E.; Mintsev, V. B.; Nikolaev, D.; Panyushkin, V.; Rodionova, M.; Schanz, M.; Schoenberg, K.; Semennikov, A.; Shestov, L.; Skachkov, V. S.; Turtikov, V.; Udrea, S.; Vasylyev, O.; Weyrich, K.; Wilde, C.; Zubareva, A.

    2016-02-01

    Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 μm spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This paper describes the PRIOR setup as well as the results of the first static and dynamic proton radiography experiments performed at GSI.

  12. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  13. Electronic Eye: Streaming Video On-Demand.

    ERIC Educational Resources Information Center

    Meulen, Kathleen

    2002-01-01

    Discusses the use of on-demand streaming video in school libraries. Explains how streaming works, considers advantages and technical issues, and describes products from three companies that are pioneering streaming in the educational video market. (LRW)

  14. New insights into West Greenland ice sheet/stream dynamics during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Roberts, David; Lane, Tim; Rea, Brice; Cofaigh, Colm O.; Jamieson, Stewart; Vieli, Andreas; Rodes, Angel

    2015-04-01

    Onshore and offshore geomorphological mapping and deglacial chronologies from West Greenland constrain the nature and magnitude of ice advance and decay of the Greenland Ice Sheet (GrIS) during the last glacial cycle. Several ice stream troughs are known to have fed ice to the shelf edge during the last glacial cycle. Their offshore expression suggests that many were coalescent systems fed by smaller outlet glaciers and ice streams onshore but their central flow pathways were also controlled by geology and preglacial topography. The bed morphology of these large ice streams shows they operated over soft, deforming beds with drumlins, mega-scale glacial lineations and grounding zone wedges marking an offshore transition from predominant areal scour onshore. Records of offshore deglacial chronology remain sparse but the Uummannaq and Disko Bugt ice stream corridors are now well constrained. The Uummannaq ice stream (UIS) completely deglaciated from the continental shelf between 14.8 ka and 11.0 ka in response to rising air temperatures, increasing JJA solar radiation and sea-level rise, but temporary standstills and the asynchronous retreat history of its feeder zones suggest that topography/bathymetry strongly modulated retreat rates as ice became 'locked' back into the coastal fjord system. Initial reconstructions of behaviour UIS discounted an oceanic role in early deglaciation and favoured retreat from the mid-shelf and inner-shelf prior to the Younger Dryas but both these concepts remain under investigation. In Disko Bugt, Jakobshavn Isbrae deglaciated later than the UIS and remained on the outer shelf during the Younger Dyras stadial (12.8 - 11.7 cal. kyrs BP) only reaching in the inner coast fjords at approximately 10.0 ka. The later deglaciation of the Disko system (despite similar external forcing mechanisms) was controlled by regional topographic/bathymetric contrasts in their respective trough morphologies. This hypothesis is supported by recent model

  15. Regular patterns stabilize auditory streams.

    PubMed

    Bendixen, Alexandra; Denham, Susan L; Gyimesi, Kinga; Winkler, István

    2010-12-01

    The auditory system continuously parses the acoustic environment into auditory objects, usually representing separate sound sources. Sound sources typically show characteristic emission patterns. These regular temporal sound patterns are possible cues for distinguishing sound sources. The present study was designed to test whether regular patterns are used as cues for source distinction and to specify the role that detecting these regularities may play in the process of auditory stream segregation. Participants were presented with tone sequences, and they were asked to continuously indicate whether they perceived the tones in terms of a single coherent sequence of sounds (integrated) or as two concurrent sound streams (segregated). Unknown to the participant, in some stimulus conditions, regular patterns were present in one or both putative streams. In all stimulus conditions, participants' perception switched back and forth between the two sound organizations. Importantly, regular patterns occurring in either one or both streams prolonged the mean duration of two-stream percepts, whereas the duration of one-stream percepts was unaffected. These results suggest that temporal regularities are utilized in auditory scene analysis. It appears that the role of this cue lies in stabilizing streams once they have been formed on the basis of simpler acoustic cues. PMID:21218898

  16. Ooishi's Observation: Viewed in the Context of Jet Stream Discovery.

    NASA Astrophysics Data System (ADS)

    Lewis, John M.

    2003-03-01

    Although aircraft encounters with strong westerly winds during World War II provided the stimulus for postwar research on the jet stream, Wasaburo Ooishi observed these winds in the 1920s. Ooishi's work is reviewed in the context of earlier work in upperair observation and postwar work on the jet stream. An effort is made to reconstruct Ooishi's path to the directorship of Japan's first upper-air observatory by reliance on historical studies and memoirs from the Central Meteorological Observatory.Archival records from Japan's Aerological Observatory have been used to document Ooishi's upperair observations. The first official report from the observatory (written in 1926 and in the auxiliary language of Esperanto) assumes a central role in the study. In this report, data are stratified by season and used to produce the mean seasonal wind profiles. The profile for winter gives the first known evidence of the persistent strong westerlies over Japan that would later become known as the jet stream.

  17. Diurnal discharge fluctuations and streambed ablation in a supraglacial stream on the Vaughan-Lewis and Gilkey glaciers, Juneau Icefield, Alaska

    SciTech Connect

    Stock, J.W. |; Pinchak, A.C. |

    1995-12-31

    The study reported here focuses on the dynamics of two supraglacial streams on the Juneau Icefield in southeast Alaska. Data on streambed ablation (melting) rates, stream discharge, radiation, and air temperature and humidity were collected in August 1990 and 1991. Radiation had the greatest effect on stream discharge. Daily peak discharges occurred only 30 minutes after peak radiation, but two hours after peak temperature. Factors influencing variation in discharge of the streams were velocity, stream depth, and stream width, in decreasing order of importance. Streambed ablation due to radiation was greater than glacier surface ablation due to radiation. Streambed ablation due to frictional heating was very small.

  18. Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.

    2013-11-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  19. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    USGS Publications Warehouse

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  20. 21 CFR 181.5 - Prior sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adulteration or the misbranding provisions of the Act. (c) All known prior sanctions shall be the subject of a... use of the ingredient, in order to prevent the adulteration of food in violation of section 402 of the... use of an ingredient constitutes a determination that excluded uses would result in adulteration...

  1. 19 CFR 162.74 - Prior disclosure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... statistical sampling satisfies the criteria in 19 CFR 163.11(c)(3). The prior disclosure must include an... party may use statistical sampling to “disclose the circumstances of a violation” and for calculation of...-review, are subject to CBP review and approval. In accordance with 19 CFR 163.11(c)(1), in...

  2. 7 CFR 550.27 - Prior approvals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE GENERAL ADMINISTRATIVE POLICY FOR NON-ASSISTANCE COOPERATIVE AGREEMENTS Management of Agreements Program Management § 550.27 Prior approvals. (a) The budget is the financial expression of the project or... accordance with OMB Circular A-21, “Cost Principles for Educational Institutions,” (2 CFR part 220),...

  3. Accrediting Prior Learning at a Distance.

    ERIC Educational Resources Information Center

    Butterworth, Christine; Edwards, Richard

    1993-01-01

    Discusses the Assessment of Prior Learning (APL) and describes a pilot project at the Open University (United Kingdom) that introduced credit for APL in one course. Steps in the assessment process are outlined, including constructing a student portfolio; and workload, staff development, and costs are considered. (LRW)

  4. Student Models for Prior Knowledge Estimation

    ERIC Educational Resources Information Center

    Nižnan, Juraj; Pelánek, Radek; Rihák, Jirí

    2015-01-01

    Intelligent behavior of adaptive educational systems is based on student models. Most research in student modeling focuses on student learning (acquisition of skills). We focus on prior knowledge, which gets much less attention in modeling and yet can be highly varied and have important consequences for the use of educational systems. We describe…

  5. Augmenting system reliability analyses with observation priors

    SciTech Connect

    Lawrence, Earl; Anderson-cook, Christine

    2009-01-01

    Occasionally, a system may fail a test without an obvious component being at fault. Instead, experts may know that at least one of a set of components has failed, but there is uncertainty about which members in the set were the actual failures. When no further information is available, this missing data may be imputed using standard data augmentation (DA). This process is already used in the current implementation of the JMP complex-system reliability modeling codes. In some cases when this situation arises, there may be some supplemental information about the nature of the failure that suggests which subset of components are more likely to have failed. the behavior of the system during the failure may make certain components more likely candidates, and lead the engineering experts to have certain prior beliefs about what occurred. In this case, it is still known that at least one of a set of components failed, but the experts have some idea that certain failure scenarios are more likely than others. This white paper addresses this situation by modifying the imputation process of data augmentation through the use of an observation prior. This prior is specific to particular observations, and a given outcome which is repeated several times could potentially have different observation priors associated with each occurrence.

  6. 22 CFR 129.8 - Prior notification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Prior notification. 129.8 Section 129.8 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS REGISTRATION AND LICENSING OF...,000, except for sharing of basic marketing information (e.g., information that does not...

  7. Tuning Your Priors to the World

    PubMed Central

    Feldman, Jacob

    2013-01-01

    The idea that perceptual and cognitive systems must incorporate knowledge about the structure of the environment has become a central dogma of cognitive theory. In a Bayesian context, this idea is often realized in terms of “tuning the prior”—widely assumed to mean adjusting prior probabilities so that they match the frequencies of events in the world. This kind of “ecological” tuning has often been held up as an ideal of inference, in fact defining an “ideal observer.” But widespread as this viewpoint is, it directly contradicts Bayesian philosophy of probability, which views probabilities as degrees of belief rather than relative frequencies, and explicitly denies that they are objective characteristics of the world. Moreover, tuning the prior to observed environmental frequencies is subject to overfitting, meaning in this context overtuning to the environment, which leads (ironically) to poor performance in future encounters with the same environment. Whenever there is uncertainty about the environment—which there almost always is—an agent's prior should be biased away from ecological relative frequencies and toward simpler and more entropic priors. PMID:23335572

  8. Understanding the Complexities of Prior Knowledge

    ERIC Educational Resources Information Center

    Soiferman, L. Karen

    2014-01-01

    The purpose of the study was to gain an understanding of the kinds of prior knowledge students bring with them from high school as it relates to the conventions of writing that they are expected to follow in ARTS 1110 Introduction to University. The research questions were "Can first-year students taking the Arts 1110 Introduction to…

  9. 19 CFR 162.74 - Prior disclosure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... statistical sampling satisfies the criteria in 19 CFR 163.11(c)(3). The prior disclosure must include an...-review, are subject to CBP review and approval. In accordance with 19 CFR 163.11(c)(1), in circumstances... properly raise under applicable regulations, as provided in 19 CFR 163.11(c)(1). (2) If a private...

  10. Objective prior distribution of climate sensitivity

    NASA Astrophysics Data System (ADS)

    Pueyo, S.

    2012-04-01

    The problems posed by the choice of prior distribution constitute one of the most fundamental obstacles to assign probabilities to the possible values of climate sensitivity S. The prior is the probability distribution that we assume before introducing data. In the literature about climate sensitivity, the most frequently used prior is the uniform. On first inspection, this distribution would seem to represent absence of information, but, as is well known, this assumption leads to paradoxes. This observation has led to the widespread belief that priors are inherently subjective and should be decided by expert elicitation, even though this amounts to questioning the objective value of scientific results. In general, the climate science community is unaware of the "objective Bayesian" literature, which seeks objective criteria to determine non-informative prior distributions (or reference priors). In a recent paper (Pueyo 2011) I applied an objective Bayesian approach to climate sensitivity. I described three lines of evidence indicating that the distribution that really represents absence of information about S is log-uniform, i.e. it consists of a uniform distribution of log(S) instead of S: • In the case of S, only the log-uniform distribution satisfies Jaynes' invariant groups criterion, i.e. this distribution does not change when modifying assumptions that are not explicitly included in the enunciate of the problem (I only included the definition of S). • In terms of information theory, information about S can be identified with mutual information between changes in radiative forcing and in temperature. Absence of mutual information between these variables implies a log-uniform distribution of S. • The frequency distribution of sets of parameters formally comparable to climate sensitivity is approximately log-uniform for a broad range of values. A log-uniform distribution of S is intermediate between a uniform distribution of S and a uniform distribution

  11. Prior voluntary wheel running attenuates neuropathic pain.

    PubMed

    Grace, Peter M; Fabisiak, Timothy J; Green-Fulgham, Suzanne M; Anderson, Nathan D; Strand, Keith A; Kwilasz, Andrew J; Galer, Erika L; Walker, Frederick Rohan; Greenwood, Benjamin N; Maier, Steven F; Fleshner, Monika; Watkins, Linda R

    2016-09-01

    Exercise is known to exert a systemic anti-inflammatory influence, but whether its effects are sufficient to protect against subsequent neuropathic pain is underinvestigated. We report that 6 weeks of voluntary wheel running terminating before chronic constriction injury (CCI) prevented the full development of allodynia for the ∼3-month duration of the injury. Neuroimmune signaling was assessed at 3 and 14 days after CCI. Prior exercise normalized ipsilateral dorsal spinal cord expression of neuroexcitatory interleukin (IL)-1β production and the attendant glutamate transporter GLT-1 decrease, as well as expression of the disinhibitory P2X4R-BDNF axis. The expression of the macrophage marker Iba1 and the chemokine CCL2 (MCP-1), and a neuronal injury marker (activating transcription factor 3), was attenuated by prior running in the ipsilateral lumbar dorsal root ganglia. Prior exercise suppressed macrophage infiltration and/or injury site proliferation, given decreased presence of macrophage markers Iba1, iNOS (M1), and Arg-1 (M2; expression was time dependent). Chronic constriction injury-driven increases in serum proinflammatory chemokines were suppressed by prior running, whereas IL-10 was increased. Peripheral blood mononuclear cells were also stimulated with lipopolysaccharide ex vivo, wherein CCI-induced increases in IL-1β, nitrite, and IL-10 were suppressed by prior exercise. Last, unrestricted voluntary wheel running, beginning either the day of, or 2 weeks after, CCI, progressively reversed neuropathic pain. This study is the first to investigate the behavioral and neuroimmune consequences of regular exercise terminating before nerve injury. This study suggests that chronic pain should be considered a component of "the diseasome of physical inactivity," and that an active lifestyle may prevent neuropathic pain. PMID:27355182

  12. MODELING PLUMES IN SMALL STREAMS

    EPA Science Inventory

    Pesticides accumulate on land surfaces from agricultural, commercial, and domestic application, and wash into streams and rivers during dry and wet weather. Flood water retention basins or structures often collect this contaminated runoff, providing intermediate storage and limit...

  13. ATLAS Live: Collaborative Information Streams

    NASA Astrophysics Data System (ADS)

    Goldfarb, Steven; ATLAS Collaboration

    2011-12-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  14. Ion streams in the magnetotail

    SciTech Connect

    Sharp, R.D.; Carr, D.L.; Peterson, W.K.; Shelley, E.G.

    1981-06-01

    Ion mass spectrometer observations of low-temperature streaming plasmas in the earth's magnetotail are reported. Measurements in the energy per charge range 0< or =E/q< or =17 keV/e were made at geocentric radial distances <23 R/sub E/ from the ISEE 1 spacecraft. Ion streams of solar wind origin in the magnetotail boundary layer and of ionospheric origin in the tail lobes and plasma sheet are described. A statistical study of some of the characteristics of the streams allows us to infer that the central tail plasmas are primarily primarily constituted of ion streams of ionosphere is a significant contributor to the hot plasmas that form the plasma sheet.

  15. FireHose Streaming Benchmarks

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the streammore » of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created in the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  16. Biological and economic impact of stream alteration in the Virginia Piedmont

    USGS Publications Warehouse

    Whelan, James B.

    1981-01-01

    A 31 month (September 1974 - March 1977) study was conducted on warmwater streams located in the Roanoke Creek watershed of the Piedmont Region of Virginia. The purpose of the study was to determine the effects of stream channelization on the aquatic/riparian wildlife resource and agricultural land-use patterns associated with the altered streams. Three streams, which were channelized 3, 6, and 10 years prior to initiation of the study, and teo unaltered streams, were selected as representative streams for the study. Recently channelized streams lacked overstory cover but has an abundance of herbaceous and small woody plany cover, Conversely, control streams had significantly larger percentages of trees over 46 m tall. Plant species diversity, foliage height diversity, and evenness diversity increased as age since channelization increased. No major differences in water quality parameters were found for either channelized or control streams, although channelized streams had greater deposits of sand and lesser amount of rock, rubble, and gravel. These changes in substrate composition did not significantly modify actual stream flow rates. Fish species composition and species diversity among channelized and unchannelized streams were only slightly different, with most of the differences probably attributable to strays from adjacent habitats, However, evenness diversity for fish communities was lower in channelized streams. The benthic population showed greater changes than did the fish populations with an increase in Chironominae tolerant of unstable sand substrates in channelized streams. Evenness diversity of benthic populations was also higher and showed more consistency in the control stream than in channelized streams. Evenness diversity of benthic communities in control stream averaged between 0.5 to 0.6 and was quite consistent; whereas, the average in the two youngest channelized streams was 0.3 to 0.4. These data seem to indicate decreased stability of the

  17. Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates

    NASA Astrophysics Data System (ADS)

    Winterdahl, Mattias; Laudon, Hjalmar; Lyon, Steve W.; Pers, Charlotta; Bishop, Kevin

    2016-01-01

    Dissolved organic carbon (DOC) is a significant constituent in aquatic ecosystems with concentrations in streams influenced by both temperature and water flow pathway dynamics associated with changes in discharge (streamflow). We investigated the sensitivity of DOC concentrations in 12 high-latitude headwater streams to changes in temperature and discharge using a mathematical model. The implications of differences in sensitivities were explored by using downscaled projections of air temperature and discharge to simulate possible trajectories of DOC concentrations in a changing climate. We found two distinct responses: (i) catchments where stream DOC sensitivity was high to temperature but low to discharge and (ii) catchments where stream DOC sensitivity was low to temperature but high to discharge. Streams with strong seasonal DOC dynamics were more sensitive to temperature changes than nonseasonal systems. In addition, stream DOC sensitivity to discharge was strongly correlated with vertical soil water DOC differences in the near-stream zone. Simulations of possible future changes in DOC concentrations indicated median increases of about 4-24% compared to current levels when using projections of air temperature and discharge but even larger increases were observed for base flow concentrations (13-42%). Streams with high-temperature sensitivity showed the largest increases in DOC concentrations. Our results suggest that future climatic changes could bring significant increases in surface water DOC concentrations in boreal and hemiboreal areas but that the response ultimately is dependent on vertical soil solution DOC differences and soil organic carbon distribution.

  18. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  19. Removal of gasoline vapors from air streams by biofiltration

    SciTech Connect

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  20. MICROBIAL COMETABOLISM OF RECALCITRANT CHEMICALS IN CONTAMINATED AIR STREAMS

    EPA Science Inventory

    Chlorinated Solvents: The treatment system consists of a laboratory-scale hollow fiber membrane (HFM) module containing a center baffle and a radial cross-flow pattern on the shell side of the fibers. The shell and lumen fluids are contacting in a counter-current f...

  1. CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS

    EPA Science Inventory

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contam...

  2. Corrections on the Thermometer Reading in an Air Stream

    NASA Technical Reports Server (NTRS)

    Van Der Maas, H J; Wynia, S

    1940-01-01

    A method is described for checking a correction formula, based partly on theoretical considerations, for adiabatic compression and friction in flight tests and determining the value of the constant. It is necessary to apply a threefold correction to each thermometer reading. They are a correction for adiabatic compression, friction and for time lag.

  3. CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS

    EPA Science Inventory

    Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam fro...

  4. Acoustic streaming flows and sample rotation control

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene

    1998-11-01

    Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].

  5. Genome position specific priors for genomic prediction

    PubMed Central

    2012-01-01

    Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casuative mutation alleles are reversed across populations, or the actual casuative mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed. Results Results showed an increase in accuracy of up to 3.5% for the Jersey population when using BayesRS with a prior derived from Australian Holstein compared to a model without location specific priors. The increase in accuracy was however lower than was achieved when reference populations were combined to estimate SNP effects, except in the case of fat yield. The small size of the Jersey validation set meant that these improvements in accuracy were not significant using a Hotelling-Williams t-test at the 5% level. An increase in accuracy of 1-2% for all traits was observed in the Australian Holstein population when using a prior derived from the Nordic Holstein population compared to using no prior information. These improvements were significant (P<0.05) using the Hotelling

  6. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  7. RELATIONSIPS BETWEEN AQUATIC INVERTEBRATE ASSEMBLAGES AND REACH AND LANDSCAPE ATTRIBUTES ON WADEABLE, WILLAMETTE VALLEY STREAMS IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    In summer 1997, we sampled reaches in 24 wadeable, Willamette Valley ecoregion streams draining agriculturally-infiuenced watersheds. Within these reaches, physical habitat, water chemistry, aquatic invertebrate and fish data and samples were collected. Low-level air photos were ...

  8. Community detection with and without prior information

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Ver Steeg, G.; Galstyan, A.

    2010-04-01

    We study the problem of graph partitioning, or clustering, in sparse networks with prior information about the clusters. Specifically, we assume that for a fraction ρ of the nodes their true cluster assignments are known in advance. This can be understood as a semi-supervised version of clustering, in contrast to unsupervised clustering where the only available information is the graph structure. In the unsupervised case, it is known that there is a threshold of the inter-cluster connectivity beyond which clusters cannot be detected. Here we study the impact of the prior information on the detection threshold, and show that even minute (but generic) values of ρ>0 shift the threshold downwards to its lowest possible value. For weighted graphs we show that a small semi-supervising can be used for a non-trivial definition of communities.

  9. Distance priors from Planck 2015 data

    NASA Astrophysics Data System (ADS)

    Huang, Qing-Guo; Wang, Ke; Wang, Sai

    2015-12-01

    We update the distance priors by adopting Planck TT,TE,EE+lowP data released in 2015, and our results impose at least 30% tighter constraints than those from Planck TT+lowP. Combining the distance priors with the combination of supernova Union 2.1 compilation of 580 SNe (Union 2.1) and low redshift Baryon Acoustic Oscillation (BAO) data, we constrain the cosmological parameters in the freely binned dark energy (FBDE) and FBDE+Ωk models respectively, and find that the equations of state of dark energy in both models are consistent with w=-1. Furthermore, we show that the tension with the BAO data at z=2.34 from Lyα forest (LyαF) auto-correlation and Combined LyαF cannot be relaxed in the FBDE and FBDE+Ωk models.

  10. Knowledge Modeling in Prior Art Search

    NASA Astrophysics Data System (ADS)

    Graf, Erik; Frommholz, Ingo; Lalmas, Mounia; van Rijsbergen, Keith

    This study explores the benefits of integrating knowledge representations in prior art patent retrieval. Key to the introduced approach is the utilization of human judgment available in the form of classifications assigned to patent documents. The paper first outlines in detail how a methodology for the extraction of knowledge from such an hierarchical classification system can be established. Further potential ways of integrating this knowledge with existing Information Retrieval paradigms in a scalable and flexible manner are investigated. Finally based on these integration strategies the effectiveness in terms of recall and precision is evaluated in the context of a prior art search task for European patents. As a result of this evaluation it can be established that in general the proposed knowledge expansion techniques are particularly beneficial to recall and, with respect to optimizing field retrieval settings, further result in significant precision gains.

  11. Image Reconstruction Using Analysis Model Prior.

    PubMed

    Han, Yu; Du, Huiqian; Lam, Fan; Mei, Wenbo; Fang, Liping

    2016-01-01

    The analysis model has been previously exploited as an alternative to the classical sparse synthesis model for designing image reconstruction methods. Applying a suitable analysis operator on the image of interest yields a cosparse outcome which enables us to reconstruct the image from undersampled data. In this work, we introduce additional prior in the analysis context and theoretically study the uniqueness issues in terms of analysis operators in general position and the specific 2D finite difference operator. We establish bounds on the minimum measurement numbers which are lower than those in cases without using analysis model prior. Based on the idea of iterative cosupport detection (ICD), we develop a novel image reconstruction model and an effective algorithm, achieving significantly better reconstruction performance. Simulation results on synthetic and practical magnetic resonance (MR) images are also shown to illustrate our theoretical claims. PMID:27379171

  12. Image Reconstruction Using Analysis Model Prior

    PubMed Central

    Han, Yu; Du, Huiqian; Lam, Fan; Mei, Wenbo; Fang, Liping

    2016-01-01

    The analysis model has been previously exploited as an alternative to the classical sparse synthesis model for designing image reconstruction methods. Applying a suitable analysis operator on the image of interest yields a cosparse outcome which enables us to reconstruct the image from undersampled data. In this work, we introduce additional prior in the analysis context and theoretically study the uniqueness issues in terms of analysis operators in general position and the specific 2D finite difference operator. We establish bounds on the minimum measurement numbers which are lower than those in cases without using analysis model prior. Based on the idea of iterative cosupport detection (ICD), we develop a novel image reconstruction model and an effective algorithm, achieving significantly better reconstruction performance. Simulation results on synthetic and practical magnetic resonance (MR) images are also shown to illustrate our theoretical claims. PMID:27379171

  13. Transformational Learning through Prior Learning Assessment

    ERIC Educational Resources Information Center

    Stevens, Karen; Gerber, Dan; Hendra, Rick

    2010-01-01

    Upon graduation from University Without Walls (UWW), Robin said, "During first semester you told us that if we allowed it to, this experience [writing a prior learning portfolio] would change us. I was so angry with you for saying that because I liked who I was and didn't want to change. But you were right. And I'm glad." For the past 39 years the…

  14. Diversity priors for learning early visual features.

    PubMed

    Xiong, Hanchen; Rodríguez-Sánchez, Antonio J; Szedmak, Sandor; Piater, Justus

    2015-01-01

    This paper investigates how utilizing diversity priors can discover early visual features that resemble their biological counterparts. The study is mainly motivated by the sparsity and selectivity of activations of visual neurons in area V1. Most previous work on computational modeling emphasizes selectivity or sparsity independently. However, we argue that selectivity and sparsity are just two epiphenomena of the diversity of receptive fields, which has been rarely exploited in learning. In this paper, to verify our hypothesis, restricted Boltzmann machines (RBMs) are employed to learn early visual features by modeling the statistics of natural images. Considering RBMs as neural networks, the receptive fields of neurons are formed by the inter-weights between hidden and visible nodes. Due to the conditional independence in RBMs, there is no mechanism to coordinate the activations of individual neurons or the whole population. A diversity prior is introduced in this paper for training RBMs. We find that the diversity prior indeed can assure simultaneously sparsity and selectivity of neuron activations. The learned receptive fields yield a high degree of biological similarity in comparison to physiological data. Also, corresponding visual features display a good generative capability in image reconstruction. PMID:26321941

  15. Diversity priors for learning early visual features

    PubMed Central

    Xiong, Hanchen; Rodríguez-Sánchez, Antonio J.; Szedmak, Sandor; Piater, Justus

    2015-01-01

    This paper investigates how utilizing diversity priors can discover early visual features that resemble their biological counterparts. The study is mainly motivated by the sparsity and selectivity of activations of visual neurons in area V1. Most previous work on computational modeling emphasizes selectivity or sparsity independently. However, we argue that selectivity and sparsity are just two epiphenomena of the diversity of receptive fields, which has been rarely exploited in learning. In this paper, to verify our hypothesis, restricted Boltzmann machines (RBMs) are employed to learn early visual features by modeling the statistics of natural images. Considering RBMs as neural networks, the receptive fields of neurons are formed by the inter-weights between hidden and visible nodes. Due to the conditional independence in RBMs, there is no mechanism to coordinate the activations of individual neurons or the whole population. A diversity prior is introduced in this paper for training RBMs. We find that the diversity prior indeed can assure simultaneously sparsity and selectivity of neuron activations. The learned receptive fields yield a high degree of biological similarity in comparison to physiological data. Also, corresponding visual features display a good generative capability in image reconstruction. PMID:26321941

  16. Entropic Priors and Bayesian Model Selection

    NASA Astrophysics Data System (ADS)

    Brewer, Brendon J.; Francis, Matthew J.

    2009-12-01

    We demonstrate that the principle of maximum relative entropy (ME), used judiciously, can ease the specification of priors in model selection problems. The resulting effect is that models that make sharp predictions are disfavoured, weakening the usual Bayesian ``Occam's Razor.'' This is illustrated with a simple example involving what Jaynes called a ``sure thing'' hypothesis. Jaynes' resolution of the situation involved introducing a large number of alternative ``sure thing'' hypotheses that were possible before we observed the data. However, in more complex situations, it may not be possible to explicitly enumerate large numbers of alternatives. The entropic priors formalism produces the desired result without modifying the hypothesis space or requiring explicit enumeration of alternatives; all that is required is a good model for the prior predictive distribution for the data. This idea is illustrated with a simple rigged-lottery example, and we outline how this idea may help to resolve a recent debate amongst cosmologists: is dark energy a cosmological constant, or has it evolved with time in some way? And how shall we decide, when the data are in?

  17. Miscellaneous streams best management practices (BMP) report

    SciTech Connect

    Lueck, K.J., Westinghouse Hanford

    1996-07-24

    The Washington State Department of Ecology (Ecology) and U.S. Department of Energy Consent Order No. DE 91NM-177 (Consent Order) lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (`State Waste Discharge Permit Program`) or WAC 173-218 (`Washington Underground Injection Control Program`) where applicable. Hanford Site liquid effluent streams discharging to the soil column are categorized as Phase I and Phase II Streams, and Miscellaneous Streams. There were originally 33 Phase I and Phase II Streams, however some of these streams have been eliminated. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams, and are subject to the requirements of several milestones identified in the Consent Order. The three criteria for identifying streams that are potentially affecting groundwater are: (1) streams discharging to surface contaminated areas (referred to as category `b` streams); (2) potentially contaminated streams (referred to as category `c` streams); and (3) streams discharging within 91 meters (300 feet) of a contaminated crib, ditch, or trench (referred to as category `d` streams). Miscellaneous Streams that meet any of these criteria must be evaluated for application of best management practices (BMP). The purpose of this report is to provide the best management practice preferred alternative. The list of BMP streams has been revised since the original submittal. Several streams from the original list of BMP streams have already been eliminated through facility upgrades, reduction of steam usage, and facility shutdowns. This document contains a description of the changes to the list of BMP streams, applicable definitions and regulatory requirements and possible alternatives, and a schedule for implementing the preferred alternatives.

  18. Stream bed organic carbon and biotic integrity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allochthonous organic matter provides a basis for some stream ecosystems. Channel incision, which is a common result of anthropogenic impacts on watersheds and stream channels, may deplete stream bed C stores due to erosion, less frequent hydrologic exchanges between stream and floodplain, and remov...

  19. Jet stream related observations by MST radars

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  20. Unique Challenges to (Federal) Enterprise Streaming

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    2006-01-01

    Enterprise streaming has different parameters than consumer Streaming. The government enterprise has some differences on top of that. I'd like to highlight some issues shared by the Federal government as a whole, with a closer look at streaming within NASA. Then we'll look at NASA's strategy for streaming.

  1. Stream Temperature Sensitivity to Climate Warming in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Null, S.; Viers, J. H.; Deas, M.; Tanaka, S.; Mount, J.

    2010-12-01

    Water temperatures influence the distribution, abundance, and health of aquatic organisms in stream ecosystems. Improving understanding of climate warming on the thermal regime of rivers will help water managers better manage instream habitat. This study assesses climate warming impacts on unregulated stream temperatures in California’s west-slope Sierra Nevada watersheds from the Feather River to the Kern River. We used unregulated hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year timeseries of weekly instream flow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, a simplified model based on equilibrium temperature theory, to estimate stream temperatures using net heat exchange, coarse river channel geometry, and exposure time of water to atmospheric conditions. Air temperature was uniformly increased by 2○C, 4○C, and 6○C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were left unchanged from historical values. Overall, stream temperatures increased by an average of 1.6○C for each 2○C rise in air temperature, and increased most at middle elevations. Thermal heterogeneity existed within and between basins (Figure 1). The high watersheds of the southern Sierra Nevada and the Feather River watershed were less vulnerable to changes in the thermal regime of rivers from climate warming. Precipitation as rainfall instead of snowfall, and low flow conditions were two characteristics that drove water temperatures dynamics with climate warming. These results suggest the thermal regime of rivers will change with climate warming. Viable coldwater habitat will shift to higher elevations and will likely be reduced in California. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and must be

  2. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  3. The Impact of Geologic Heterogeneity on Stream Temperatures in the McKenzie River, Oregon: Implications for Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Farrell, M. J.; Tague, C.; Grant, G. E.; Jefferson, A.; Lewis, S. L.

    2004-05-01

    Stream temperature is recognized as an important component of water quality for aquatic life; less well understood is how the regional geologic setting controls stream temperature regimes. The McKenzie River watershed in western Oregon exhibits significant differences in geology and rock age between two contiguous volcanic provinces: the Plio-Pleistocene High Cascades and the Tertiary Western Cascades. Streamflow regimes from spring-fed streams originating in basins underlain by fractured and permeable High Cascade rocks have more gradual recession curves and higher baseflow unit discharges than surface-flow dominated Western Cascade streams. We examined corresponding differences in temperature between these two regions. Using spatial regime regressions, we analyzed stream temperature data from 56 sites within the McKenzie watershed. Streams with a majority contributing area composed of High Cascade rocks are colder and are less sensitive to air temperature fluctuations than Western Cascade streams during the July-September baseflow period. Based on site-specific air-stream temperature regressions, High Cascade spring-fed streams are less likely, given future air temperature increases, to exceed EPA stream temperature recommendations for chinook salmon and bull trout habitat. Finally, stream temperature for four surface-dominated and four spring-fed streams was modeled using a predictive heat budget model \\(SSTemp\\) to examine potential effects of a clearcut on stream temperatures. Model results show that spring-fed streams were less affected by this land use simulation than surface-dominated streams. However, slight perturbations to spring-fed streams may have cumulative effects on downstream reaches.

  4. Sizing woodwaste prior to storage facilitates reclaim

    SciTech Connect

    Schwieger, B.

    1980-02-01

    This article describes woodwaste unloading and handling systems which are necessary in fuel preparation. The methods used for the separation of dirt, iron and grit from wastewood are described and include disc screens, flotation and air separation. Oversize woodwaste is comminuted by a hog of which two types, a knife hog and a hammermill are described.

  5. Inactive comets within meteoroid streams

    NASA Astrophysics Data System (ADS)

    Kokhirova, Gulchekhra; Babadzhanov, Pulat; Obrubov, Yuri

    2015-08-01

    The modern concepts of formation and evolution of the meteoroid streams originated as a result of disintegration of cometary nuclei are presented. The action of planetary perturbations that defines the orbital evolution of meteoroids is discussed. The main regularities in variations of the orbital elements as well as of the heliocentric distances of ascending and descending nodes are found on the base of calculation of orbital evolution of a sample of NEAs. A dispersion of the orbits is increasing with a time and meteoroid streams in dependence of the type of a parent comet orbit can produce up to eight meteor showers observable at the Earth. It is recognized that some meteoroid streams contain large extinct fragments of cometary nuclei. These fragments have been found among NEAs and should be considered as the constituent parts of meteoroid streams. Consequently, meteoroid streams consist of both small particles and large fireball-producing bodies. This fact supported by the results of investigation of a sample of three asteroid-meteoroid complexes.

  6. Streaming Compression of Hexahedral Meshes

    SciTech Connect

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  7. Fish populations in Plynlimon streams

    NASA Astrophysics Data System (ADS)

    Crisp, D. T.; Beaumont, W. R. C.

    In Plynlimon streams, brown trout (Salmo trutta L.) are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996). Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  8. Flow variability and ongoing margin shifts on Bindschadler and MacAyeal Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hulbe, C. L.; Scambos, T. A.; Klinger, M.; Fahnestock, M. A.

    2016-02-01

    Ice streams on the Ross Sea side of the West Antarctic Ice Sheet are known to experience flow variability on hourly, annual, and multicentury time scales. We report here on observations of flow variability at the decade scale on the Bindschadler and MacAyeal Ice Streams (BIS and MacIS). Our analysis makes use of archived ice velocity data and new mappings from composited Landsat 7 and Landsat 8 imagery that together span the interval from 1985 to 2014. Both ice streams speedup and slowdown in a range of about ±5 m a-2 over our various comparison intervals. The rates of change are variable in both time and space, and there is no evidence of external forcing at work across the two streams. Widespread changes are most likely linked to instability in the subglacial till and/or subglacial water flow. Sticky spots near the confluence of the two ice streams are loci for speed changes. These relatively young and slow-flowing features appear to be forcing shifts in margin position near the outlets of both streams. The margin jumps reduce the effective outlet widths of the streams by 20% and 30% on BIS and MacIS, respectively. Those magnitudes are similar to the outlet narrowing experienced by Kamb Ice Stream prior to its stagnation.

  9. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  10. Effects of forest harvesting on summer stream temperatures in New Brunswick, Canada: an inter-catchment, multiple-year comparison

    NASA Astrophysics Data System (ADS)

    Bourque, C. P.-A.; Pomeroy, J. H.

    This paper presents a pre- and post-harvest comparison of stream temperatures collected in five neighbouring streams (sub-catchments) over a period of five years (1994-1998). The aim of the study was to determine whether land cover changes from clear cutting in areas outside forest buffer zones (applied to streams >0.5 m wide) might contribute to an increase in summer mean stream temperatures in buffered streams downslope by infusion of warmed surface and sub-surface water into the streams. Specific relationships were observed in all five forest streams investigated. To assist in the analysis, several spatially-relevant variables, such as land cover change, mid-summer potential solar radiation, flow accumulation, stream location and slope of the land were determined, in part, from existing aerial photographs, GIS-archived forest inventory data and a digital terrain model of the study area. Spatial calculations of insolation levels for July 15th were used as an index of mid-summer solar heating across sub-catchments. Analysis indicated that prior to the 1995 harvest, differences in stream temperature could be attributed to (i) topographic position and catchment-to-sun orientation, (ii) the level of cutting that occurred in the upper catchment prior to the start of the study, and (iii) the average slope within harvested areas. Compared to the pre-harvest mean stream temperatures in 1994, mean temperatures in the three streams downslope from the 1995 harvest areas increased by 0.3 to 0.7°C (representing a 4-8% increase; p-value of normalised temperatures <<0.05). The greatest temperature change occurred in the stream that had the greatest proportion of its upper catchment harvested (16.8%), which also had the highest calculated potential solar loading ( ~2749 MJ per stream cell). From the analysis it was determined that the thinning applied to the forest buffer of that stream, with a basal area removal of ~28%, was insufficient to cause significant change in the

  11. Heat Transfer and Hydraulic Flow Resistance for Streams of High Velocity

    NASA Technical Reports Server (NTRS)

    Lelchuk, V. L.

    1943-01-01

    Problems of hydraulic flow resistance and heat transfer for streams with velocities comparable with acoustic have present great importance for various fields of technical science. Especially, they have great importance for the field of heat transfer in designing and constructing boilers.of the "Velox" type. In this article a description of experiments and their results as regards definition of the laws of heat transfer in differential form for high velocity air streams inside smooth tubes are given.

  12. Antarctic climate cooling and response of diatoms in glacial meltwater streams

    USGS Publications Warehouse

    Esposito, R.M.M.; Horn, S.L.; McKnight, Diane M.; Cox, M.J.; Grant, M.C.; Spaulding, S.A.; Doran, P.T.; Cozzetto, K.D.

    2006-01-01

    To understand biotic responses to an Antarctic cooling trend diatom samples from glacial meltwater streams in the McMurdo Dry Valleys, the largest ice-free area in Antarctica. Diatoms are abundant in these streams, and 24 of 40 species have only been found in the Antarctic. The percentage of these Antarctic diatom species increased with decreasing annual stream flow and increasing harshness of the stream habitat. The species diversity of assemblages reached a maximum when the Antarctic species accounted for 40-60% of relative diatom abundance. Decreased solar radiation and air-temperatures reduce annual stream flow, raising the dominance of these Antarctic species to levels above 60%. Thus, cooling favors the Antarctic species, and lowers diatom species diversity in this region. Copyright 2006 by the American Geophysical Union.

  13. Recurring Cold Winters over the Gulf Stream and Implications for Northern Hemisphere Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Strey, S. T.

    2015-12-01

    As polar amplification of climate warming continues, the potential for increased blocking patterns in the Northern Hemisphere jet stream in conjunction with Arctic climate change exists. During such blocking events the Gulf Stream may be exposed to repeated Cold Air Outbreak (CAO) events, especially during winter. Hypothesizing, based upon basic physical and thermodynamic properties of seawater, one would expect increased CAO events to lead alteration of key characteristics of the Gulf Stream. As the Gulf Stream is a well-known participant in the Atlantic meridional overturning circulation (AMOC), and the Gulf Stream feeds the North Atlantic Current into the Arctic Ocean, interesting consequences to alterations of this local system into the large-scale general climate circulation are expected. This study uses CESM's POP to examine 30 years of CAO intensive winters alongside 30 years of repeated winter warm events to quantify potential subsequent changes in the AMOC and North Atlantic Arctic Ocean inflow.

  14. Dissolved phosphorus retention and release from southeastern USA Coastal Plain in-stream wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern USA Coastal Plain region, many inland surface water systems will meander through flat or depressional landscape areas prior to discharge into coastal estuaries. Slow water flow through these areas often causes flooding that promotes formation of in-stream wetlands with dense vege...

  15. The Gulf Stream - Troposphere connection: warm and cold paths

    NASA Astrophysics Data System (ADS)

    Czaja, Arnaud; Sheldon, Luke; Vanniere, Benoit; Parfitt, Rhys

    2015-04-01

    In this talk, the role of moist processes in ocean-atmosphere coupling over the Gulf Stream will be discussed, using ERA interim reanalysis data (1979-2012) and nested simulations with the UK Met Office Unified Model. The focus is on the cold season (December through February). Two types of moist processes will be highlighted. First, shallow convection driven by surface fluxes of heat and moisture, usually found behind the cold front of extra-tropical cyclones. It will be shown that the warm flank of the Gulf Stream is instrumental in amplifying these convective events. In addition, it will be suggested that they are also responsible for simulated changes in precipitation found in numerical experiments with Atmospheric General Circulation Models forced with smoothed and realistic sea surface temperature (SST) distributions. The impact of this type of air-sea interaction on the larger scale is however unclear as it mostly affects low levels (below 700hPa). The second type of moist processes of relevance is that of moist inertial ascent along the cold front of extra-tropical cyclones. It will be shown that such ascent typically occurs 10% of the time in winter and that it is preferentially rooted over the warm flank of the Gulf Stream. The moist inertial ascent is intense and narrow, and not compensated within a given synoptic system. As a result, and despite being infrequent, it will be shown to contribute crucially to the time mean upward motion over the Gulf Stream at middle (500hPa) and upper tropospheric levels (300 hPa). This result suggests that warm advection by the Gulf Stream acts in effect as a horizontally broad, downward push, on air masses above the boundary layer, a push required to compensate for the upward mass flux in the moist inertial ascent.

  16. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  17. Meteoroid streams and comet disintegration

    NASA Astrophysics Data System (ADS)

    Guliyev, A.

    2016-01-01

    The results of the statistical analysis of the dynamic parameters of 114 comets that have undergone nuclear splitting are presented in the article. The list of the objects contains: comets that have split in the period of the observation; data of twin-comets; lost comets with designation D; comets with large-scale structure in the coma. We will describe these comets as "splitted". Some aspects of the following hypothesis are studied: disintegration of comet nuclei happens as the result of their collision with meteoroid streams. For the verification of this hypothesis, the position of splitted comet orbits relatively to 125 meteor streams from Kronk's list is analyzed. It was found that the total number of comet orbit nodes located close to the meteor stream planes (for the distances up to 0.1 AU) is N = 1041. It is shown that if these comets are replaced by randomly selected different comets, N will be reduced by a factor of approximately three.

  18. Dynamic visualization of data streams

    DOEpatents

    Wong, Pak Chung; Foote, Harlan P.; Adams, Daniel R.; Cowley, Wendy E.; Thomas, James J.

    2009-07-07

    One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

  19. The Big-Fish-Little-Pond Effect and a National Policy of Within-School Ability Streaming: Alternative Frames of Reference

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.; Marsh, Herbert W.; Martin, Andrew J.; McInerney, Dennis M.; Yeung, Alexander S.

    2013-01-01

    The big-fish-little-pond effect (BFLPE) was evaluated with 4,461 seventh to ninth graders in Singapore where a national policy of ability streaming is implemented. Consistent with the BFLPE, when prior achievement was controlled, students in the high-ability stream had lower English and mathematics self-concepts (ESCs and MSCs) and those in the…

  20. How do hydrodynamics in the critical zone relate to stream temperature distribution?

    NASA Astrophysics Data System (ADS)

    Isaacson, M. R.; Boutt, D. F.

    2013-12-01

    Rising air temperature and decreasing stream flow trends are predicted to result in corresponding increases in stream temperatures. As a result, the future of ectothermic stream fishes, which rely on seasonal and spatial temperature distributions for growth and survival, could be in jeopardy. Fortunately, contradicting stream temperature trends in forested headwater catchments suggest that non-climatic variables, such as baseflow indices and catchment geologic structure, may have an important confounding influence on the future of stream temperature. Most significantly, the annual variability of groundwater temperature has long been recognized as an important contributor to the advective heat budget of streams. In this study we move beyond the hyporheic zone to investigate the drivers of shallow groundwater temperature variability in the recharge zone of a shallow bedrock/till-mantled headwater catchment. We use isotopic and hydrometric analyses to investigate the potential influence that near surface hydrodynamics have on how air and shallow groundwater temperatures relate to baseflow temperature distributions. We use field studies and numerical analysis to investigate how conductive heat signals in the near surface behave with respect to soil saturation, thermal conductivity, and threshold discharge events. We examine how antecedent moisture conditions in the near-surface impact the thermal conduction of air temperature into shallow water tables, and how that translates to temperature distributions in baseflow. Our results also document step increases in groundwater temperature that coincide with threshold recharge events from the till-overburden into the deep bedrock aquifer. Similarly, temperatures in the shallow water table showed high variability with weak or no correlation to air temperature. Our investigation to helps demonstrate how the coupling of air and stream temperature can be mitigated by the hydrologic dynamics of the critical zone interface.

  1. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOEpatents

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  2. A model for evaluating stream temperature response to climate change in Wisconsin

    USGS Publications Warehouse

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Integrating the SWB Model with the ANN Model provided a mechanism by which downscaled global or regional climate model results could be used to estimate the potential effects of climate change on future stream temperature on a daily time step. To address future climate scenarios, statistically downscaled air temperature and precipitation projections from 10 GCMs and 2 time periods were used with the SWB-ANNv1 Model to project future stream temperature. Projections of future stream temperatures at mid- (2046–65) and late- (2081–2100) 21st century showed the July mean water temperature increasing for all stream segments with about 80 percent of stream kilometers increasing by 1 to 2 degrees Celsius (°C) by mid-century and about 99 percent increasing by 1 to 3 °C by late-century. Projected changes in stream temperatures also affected changes in thermal classes with a loss in the total amount of cold-water, cold-transition, and warm-transition thermal habitat and a gain in warm-water and very warm thermal habitat for both mid- and late-21st century time periods. The greatest losses occurred for cold-water streams and the greatest gains for warm-water streams, with a contraction of cold-water streams in the Driftless Area of western and southern Wisconsin and an expansion of warm-water streams across northern Wisconsin. Results of this study suggest that such changes will affect the composition of fish assemblages, with a loss of suitable habitat for cold-water fishes and gain in suitable habitat for warm-water fishes. In the end, these projected changes in thermal habitat attributable to climate may result in a net loss of fisheries, because many warm-water species may be unable to colonize habitats formerly occupied by cold-water species because of other habitat limitations (e.g., stream size, gradient). Although projected stream temperatures may vary greatly, depending on the emissions scenario and models used, the results presented in this report represent one

  3. Temperature of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  4. Stream Bank Erosion Rates of Small Missouri Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sedimentation of surface waters in the United States is a significant environmental concern. Investigating land use impacts on stream bank erosion rates is intended to lead to the development of improved management practices and provide the basis for targeting the placement of management practices t...

  5. Experimental and analytical investigation of acoustic streaming generated by standing ultrasonic waves in an open boundaries

    NASA Astrophysics Data System (ADS)

    Kwon, K.; Loh, B.-G.; Lee, D.-R.

    2007-12-01

    Acoustic streaming patterns, velocity fields, which is induced by a cylindrical ultrasonic exciter vibrating at 28.4kHz in an open physical boundaries, is analytically and experimentally investigated using Particle Imaging Velocimetry (PIV). Induced acoustic streaming patterns and velocity fields for the gaps of 18mm at which the irrotational tangential velocity becomes a maximum, resulting in a substantial increase in the acoustic streaming velocity and pronounced visualization of streaming patterns between the vibrator and quiescent glass plate are presented. The overall air flow patterns at the gaps of 24, 30, 36mm are similar to the gap of 18 mm but as the gap increases the frequency of occurrence and irregularity of vortices in the gap appear to increase. The symmetric definite steady circular flow with local vortices is observed. The maximum streaming velocity measured stands at 0.16 cm/s with a vibration amplitude of 50 micrometers. Theoretical analysis indicates that the pattern of air flow in the gap is determined by the top and bottom limiting velocities induced by acoustic streaming within the Stokes boundary layer and that the streaming pattern is symmetrical with respect to the center axis of the vibrator by reason of symmetry. The comparison between the experimental data and the theoretical estimation based on Nyborg and Jackson is performed.

  6. Movement speed is biased by prior experience

    PubMed Central

    Yousif, Nada; Greenwood, Richard; Rothwell, John C.; Diedrichsen, Jörn

    2013-01-01

    How does the motor system choose the speed for any given movement? Many current models assume a process that finds the optimal balance between the costs of moving fast and the rewards of achieving the goal. Here, we show that such models also need to take into account a prior representation of preferred movement speed, which can be changed by prolonged practice. In a time-constrained reaching task, human participants made 25-cm reaching movements within 300, 500, 700, or 900 ms. They were then trained for 3 days to execute the movement at either the slowest (900-ms) or fastest (300-ms) speed. When retested on the 4th day, movements executed under all four time constraints were biased toward the speed of the trained movement. In addition, trial-to-trial variation in speed of the trained movement was significantly reduced. These findings are indicative of a use-dependent mechanism that biases the selection of speed. Reduced speed variability was also associated with reduced errors in movement amplitude for the fast training group, which generalized nearly fully to a new movement direction. In contrast, changes in perpendicular error were specific to the trained direction. In sum, our results suggest the existence of a relatively stable but modifiable prior of preferred movement speed that influences the choice of movement speed under a range of task constraints. PMID:24133220

  7. Receptive Field Inference with Localized Priors

    PubMed Central

    Park, Mijung; Pillow, Jonathan W.

    2011-01-01

    The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110

  8. Depth image enhancement using perceptual texture priors

    NASA Astrophysics Data System (ADS)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  9. How prior expectations shape multisensory perception.

    PubMed

    Gau, Remi; Noppeney, Uta

    2016-01-01

    The brain generates a representation of our environment by integrating signals from a common source, but segregating signals from different sources. This fMRI study investigated how the brain arbitrates between perceptual integration and segregation based on top-down congruency expectations and bottom-up stimulus-bound congruency cues. Participants were presented audiovisual movies of phonologically congruent, incongruent or McGurk syllables that can be integrated into an illusory percept (e.g. "ti" percept for visual «ki» with auditory /pi/). They reported the syllable they perceived. Critically, we manipulated participants' top-down congruency expectations by presenting McGurk stimuli embedded in blocks of congruent or incongruent syllables. Behaviorally, participants were more likely to fuse audiovisual signals into an illusory McGurk percept in congruent than incongruent contexts. At the neural level, the left inferior frontal sulcus (lIFS) showed increased activations for bottom-up incongruent relative to congruent inputs. Moreover, lIFS activations were increased for physically identical McGurk stimuli, when participants segregated the audiovisual signals and reported their auditory percept. Critically, this activation increase for perceptual segregation was amplified when participants expected audiovisually incongruent signals based on prior sensory experience. Collectively, our results demonstrate that the lIFS combines top-down prior (in)congruency expectations with bottom-up (in)congruency cues to arbitrate between multisensory integration and segregation. PMID:26419391

  10. Reconstructing the prior probabilities of allelic phylogenies.

    PubMed Central

    Golding, G Brian

    2002-01-01

    In general when a phylogeny is reconstructed from DNA or protein sequence data, it makes use only of the probabilities of obtaining some phylogeny given a collection of data. It is also possible to determine the prior probabilities of different phylogenies. This information can be of use in analyzing the biological causes for the observed divergence of sampled taxa. Unusually "rare" topologies for a given data set may be indicative of different biological forces acting. A recursive algorithm is presented that calculates the prior probabilities of a phylogeny for different allelic samples and for different phylogenies. This method is a straightforward extension of Ewens' sample distribution. The probability of obtaining each possible sample according to Ewens' distribution is further subdivided into each of the possible phylogenetic topologies. These probabilities depend not only on the identity of the alleles and on 4N(mu) (four times the effective population size times the neutral mutation rate) but also on the phylogenetic relationships among the alleles. Illustrations of the algorithm are given to demonstrate how different phylogenies are favored under different conditions. PMID:12072482

  11. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  12. Sensitivity Analysis and Assessment of Prior Model Probabilities in MLBMA with Application to Unsaturated Fractured Tuff

    SciTech Connect

    Ye, Ming; Neuman, Shlomo P.; Meyer, Philip D.; Pohlmann, Karl

    2005-12-24

    Previous application of Maximum Likelihood Bayesian Model Averaging (MLBMA, Neuman [2002, 2003]) to alternative variogram models of log air permeability data in fractured tuff has demonstrated its effectiveness in quantifying conceptual model uncertainty and enhancing predictive capability [Ye et al., 2004]. A question remained how best to ascribe prior probabilities to competing models. In this paper we examine the extent to which lead statistics of posterior log permeability predictions are sensitive to prior probabilities of seven corresponding variogram models. We then explore the feasibility of quantifying prior model probabilities by (a) maximizing Shannon's entropy H [Shannon, 1948] subject to constraints reflecting a single analyst's (or a group of analysts?) prior perception about how plausible each alternative model (or a group of models) is relative to others, and (b) selecting a posteriori the most likely among such maxima corresponding to alternative prior perceptions of various analysts or groups of analysts. Another way to select among alternative prior model probability sets, which however is not guaranteed to yield optimum predictive performance (though it did so in our example) and would therefore not be our preferred option, is a min-max approach according to which one selects a priori the set corresponding to the smallest value of maximum entropy. Whereas maximizing H subject to the prior perception of a single analyst (or group) maximizes the potential for further information gain through conditioning, selecting the smallest among such maxima gives preference to the most informed prior perception among those of several analysts (or groups). We use the same variogram models and log permeability data as Ye et al. [2004] to demonstrate that our proposed approach yields the least amount of posterior entropy (residual uncertainty after conditioning) and enhances predictive model performance as compared to (a) the non-informative neutral case in

  13. Salamander occupancy in headwater stream networks

    USGS Publications Warehouse

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  14. Prior experience biases subcortical sensitivity to sound patterns.

    PubMed

    Skoe, Erika; Krizman, Jennifer; Spitzer, Emily; Kraus, Nina

    2015-01-01

    To make sense of our ever-changing world, our brains search out patterns. This drive can be so strong that the brain imposes patterns when there are none. The opposite can also occur: The brain can overlook patterns because they do not conform to expectations. In this study, we examined this neural sensitivity to patterns within the auditory brainstem, an evolutionarily ancient part of the brain that can be fine-tuned by experience and is integral to an array of cognitive functions. We have recently shown that this auditory hub is sensitive to patterns embedded within a novel sound stream, and we established a link between neural sensitivity and behavioral indices of learning [Skoe, E., Krizman, J., Spitzer, E., & Kraus, N. The auditory brainstem is a barometer of rapid auditory learning. Neuroscience, 243, 104-114, 2013]. We now ask whether this sensitivity to stimulus statistics is biased by prior experience and the expectations arising from this experience. To address this question, we recorded complex auditory brainstem responses (cABRs) to two patterned sound sequences formed from a set of eight repeating tones. For both patterned sequences, the eight tones were presented such that the transitional probability (TP) between neighboring tones was either 33% (low predictability) or 100% (high predictability). Although both sequences were novel to the healthy young adult listener and had similar TP distributions, one was perceived to be more musical than the other. For the more musical sequence, participants performed above chance when tested on their recognition of the most predictable two-tone combinations within the sequence (TP of 100%); in this case, the cABR differed from a baseline condition where the sound sequence had no predictable structure. In contrast, for the less musical sequence, learning was at chance, suggesting that listeners were "deaf" to the highly predictable repeating two-tone combinations in the sequence. For this condition, the cABR also

  15. Experimental investigations into processes controlling stream and hyporheic temperatures, Fryxell Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Cozzetto, Karen; McKnight, Diane; Nylen, Thomas; Fountain, Andrew

    2006-02-01

    Glacial meltwater streams in the McMurdo Dry Valleys, Antarctica exhibit daily cycles in temperature with maxima frequently reaching 10-15 °C, often 10 °C above air temperatures. Hydrologic and biogeochemical processes occurring in these streams and their hyporheic zones strongly influence the flux of water, solutes, and sediment to the ice-covered lakes on the valley bottoms. The purpose of this study was to identify the dominant processes controlling water temperature in these polar desert streams and to investigate in particular the role of hyporheic exchange. In order to do this, we analyzed stream temperature patterns on basin-wide, longitudinal, and reach scales. In the basin-wide study, we examined stream temperature monitoring data for seven streams in the Lake Fryxell Basin. For the longitudinal study, we measured temperatures at seven sites along a 5-km length of Von Guerard Stream. Maximum temperatures in the Fryxell Basin streams ranged from 8 to 15 °C. Daily temperature changes in the streams averaged 6-9 °C. Stream temperature patterns showed strong diel cycles peaking at roughly the same time throughout the lake basin as well as along the longitudinal gradient of Von Guerard Stream. Further, temperature patterns closely matched the associated net shortwave radiation patterns. Von Guerard Stream experienced its greatest amount of warming, 3-6 °C, in a playa region and cooled below snowfields. Temperatures in several streams around Lake Fryxell converged on similar values for a given day as did temperatures in downstream reaches of Von Guerard Stream not influenced by snowfields suggesting that at a certain point instream warming and cooling processes balance one another. The reach-scale investigation involved conducting two dual-injection conservative tracer experiments at mid-day in a 143-m reach of Von Guerard Stream instrumented with temperature and specific conductance probes. In one experiment, snow was added to the stream to suppress the

  16. Long-Term Data Reveal Patterns and Controls on Stream Water Chemistry in a Forested Stream: Walker Branch, Tennessee

    SciTech Connect

    Lutz, Brian D; Mulholland, Patrick J; Bernhardt, Emily

    2012-01-01

    We present 20 years of weekly stream water chemistry, hydrology, and climate data for the Walker Branch watershed in eastern Tennessee, USA. Since 1989, the watershed has experienced a similar to 1.08 degrees C increase in mean annual temperature, a similar to 20% decline in precipitation, and a similar to 30% increase in forest evapotranspiration rates. As a result, stream runoff has declined by similar to 34%. We evaluate long-term trends in stream water concentrations and fluxes for nine solutes and use wet deposition data to calculate approximate watershed input-output budgets. Dissolved constituents were classified as geochemical solutes (Ca2+, Mg2+, and SO42-) or nutrients (NH4+, NO3-, soluble reactive phosphorus [SRP], total soluble nitrogen [TSN], total soluble phosphorus [TSP], and dissolved organic carbon [DOC]). Geochemical solutes are predominantly controlled by discharge, and the long-term changes in catchment hydrology have led to significant trends in the concentrations and fluxes of these solutes. Further, the trends in geochemical solute concentrations indicate shifting soil flowpath contributions to streamflow generation through time, with deep groundwater having a greater proportional contribution in recent years. Despite dramatic changes in watershed runoff, there were no trends in inorganic nutrient concentrations (NH4+, NO3-, and SRP). While most nutrients entering the watershed are retained, stream fluxes of nutrient solutes have declined significantly as a result of decreasing runoff. Nutrient concentrations in the stream exhibit large seasonality controlled by in-stream biological uptake. Stream benthic communities are sensitive to hydrologic disturbance, and changes in the frequency or intensity of storm events through time can affect nutrient fluxes. Stream NO3- concentrations are also sensitive to drought, with concentrations decreasing (increasing) if conditions during the three years prior to the time of sampling were drier (wetter

  17. ALIENS IN WESTERN STREAM ECOSYSTEMS

    EPA Science Inventory

    The USEPA's Environmental Monitoring and Assessment Program conducted a five year probability sample of permanent mapped streams in 12 western US states. The study design enables us to determine the extent of selected riparian invasive plants, alien aquatic vertebrates, and some ...

  18. Frequency response of ice streams

    PubMed Central

    Williams, C. Rosie; Hindmarsh, Richard C. A.; Arthern, Robert J.

    2012-01-01

    Changes at the grounding line of ice streams have consequences for inland ice dynamics and hence sea level. Despite substantial evidence documenting upstream propagation of frontal change, the mechanisms by which these changes are transmitted inland are not well understood. In this vein, the frequency response of an idealized ice stream to periodic forcing in the downstream strain rate is examined for basally and laterally resisted ice streams using a one-dimensional, linearized membrane stress approximation. This reveals two distinct behavioural branches, which we find to correspond to different mechanisms of upstream velocity and thickness propagation, depending on the forcing frequency. At low frequencies (centennial to millennial periods), slope and thickness covary hundreds of kilometres inland, and the shallow-ice approximation is sufficient to explain upstream propagation, which occurs through changes in grounding-line flow and geometry. At high frequencies (decadal to sub-decadal periods), penetration distances are tens of kilometres; while velocity adjusts rapidly to such forcing, thickness varies little and upstream propagation occurs through the direct transmission of membrane stresses. Propagation properties vary significantly between 29 Antarctic ice streams considered. A square-wave function in frontal stress is explored by summing frequency solutions, simulating some aspects of the dynamical response to sudden ice-shelf change. PMID:23197934

  19. POPULATION DECLINE IN STREAM FISH

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  20. Video Streaming in Online Learning

    ERIC Educational Resources Information Center

    Hartsell, Taralynn; Yuen, Steve Chi-Yin

    2006-01-01

    The use of video in teaching and learning is a common practice in education today. As learning online becomes more of a common practice in education, streaming video and audio will play a bigger role in delivering course materials to online learners. This form of technology brings courses alive by allowing online learners to use their visual and…

  1. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  2. NATIONAL STREAM SURVEY DATABASE GUIDE

    EPA Science Inventory

    The National Stream Survey (NSS), conducted in the spring of 1985 and 1986, is one component of the U.S Environmental Protection Agency's National Surface Water Survey. This effort is in support of the National Acid Precipitation Assessment Program. he NSS was a synoptic, spring ...

  3. Frequency response of ice streams.

    PubMed

    Williams, C Rosie; Hindmarsh, Richard C A; Arthern, Robert J

    2012-11-01

    Changes at the grounding line of ice streams have consequences for inland ice dynamics and hence sea level. Despite substantial evidence documenting upstream propagation of frontal change, the mechanisms by which these changes are transmitted inland are not well understood. In this vein, the frequency response of an idealized ice stream to periodic forcing in the downstream strain rate is examined for basally and laterally resisted ice streams using a one-dimensional, linearized membrane stress approximation. This reveals two distinct behavioural branches, which we find to correspond to different mechanisms of upstream velocity and thickness propagation, depending on the forcing frequency. At low frequencies (centennial to millennial periods), slope and thickness covary hundreds of kilometres inland, and the shallow-ice approximation is sufficient to explain upstream propagation, which occurs through changes in grounding-line flow and geometry. At high frequencies (decadal to sub-decadal periods), penetration distances are tens of kilometres; while velocity adjusts rapidly to such forcing, thickness varies little and upstream propagation occurs through the direct transmission of membrane stresses. Propagation properties vary significantly between 29 Antarctic ice streams considered. A square-wave function in frontal stress is explored by summing frequency solutions, simulating some aspects of the dynamical response to sudden ice-shelf change. PMID:23197934

  4. Pretreatment of sallow prior to enzymatic hydrolysis

    SciTech Connect

    Galbe, M.; Zacchi, G.; Scott, C.D.

    1986-01-01

    Pretreatment of fast-growing sallow by steam explosion prior to enzymic hydrolysis was investigated to find optimum conditions regarding pretreatment temperature and time. Some preliminary experiments with impregnation of the material with H/sub 2/SO/sub 4/ or Na/sub 2/SO/sub 3/ were performed to reduce the byproduct formation and to increase the xylose yield. A temperature of 220 degrees for 15 minutes gave the highest yield, approximately 80% of the glucose available based on raw material. The xylose recovered was equal to or less than 20% when no chemicals were added. Impregnation with Na/sub 2/SO/sub 3/ gave an improvement compared with the unimpregnated material. About 30% of the xylose content could thus be recovered after the enzymic hydrolysis. The results are promising. (Refs. 5).

  5. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  6. Dyslexics' usage of visual priors is impaired.

    PubMed

    Jaffe-Dax, Sagi; Lieder, Itay; Biron, Tali; Ahissar, Merav

    2016-07-01

    Human perception benefits substantially from familiarity, via the formation of effective predictions of the environment's pattern of stimulation. Basic stimulation characteristics are automatically retrieved and integrated into our perception. A quantitatively measurable manifestation of the integration of priors is known as "contraction to the mean"; i.e., perception is biased toward the experienced mean. We previously showed that in the context of auditory discrimination, the magnitude of this bias is smaller among dyslexic individuals than among good readers matched for age and general reasoning skills. Here we examined whether a similarly reduced contraction characterizes dyslexics' behavior on serial visual tasks. Using serial spatial frequency discrimination tasks, we found that dyslexics' bias toward the experiment's mean spatial frequency was smaller than that observed for the controls. Thus, dyslexics' difficulties in automatic detection and integration of stimulus statistics are domain-general. These difficulties are likely to impede the acquisition of reading expertise. PMID:27472497

  7. [Haemostatic testing prior to elective surgery? Yes!].

    PubMed

    Albert, F W; Eichler, H; Haubelt, H; Loreth, R; Matzdorff, A; Peetz, D; Pindur, G; Schinzel, H; Seyfert, U; Hellstern, P

    2009-01-01

    Haemorrhagic disorders must be excluded prior to any operation or other invasive procedure that has the potential to involve serious bleeding. When assessing the individual risk of bleeding, screening tests of hemostasis must be combined with the patient's clinical history and symptoms, and any history of bleeding must be explored under direct medical supervision using a standardized questionnaire. However, this bleeding history is neither very specific, nor is it particularly sensitive. Screening tests that have been found to be useful include platelet count, activated partial thrombo plastin time (aPTT), prothrombin time (PT) and clottable fibrinogen. No reliable, sensitive and specific screening test is however available today to screen for platelet dysfunction or von Willebrand disease. A specialized coagulation laboratory should be involved when the bleeding history or laboratory screening indicate a potential haemorrhagic disorder. PMID:19151848

  8. Spatial Stream Segregation by Cats.

    PubMed

    Javier, Lauren K; McGuire, Elizabeth A; Middlebrooks, John C

    2016-06-01

    Listeners can perceive interleaved sequences of sounds from two or more sources as segregated streams. In humans, physical separation of sound sources is a major factor enabling such stream segregation. Here, we examine spatial stream segregation with a psychophysical measure in domestic cats. Cats depressed a pedal to initiate a target sequence of brief sound bursts in a particular rhythm and then released the pedal when the rhythm changed. The target bursts were interleaved with a competing sequence of bursts that could differ in source location but otherwise were identical to the target bursts. This task was possible only when the sources were heard as segregated streams. When the sound bursts had broad spectra, cats could detect the rhythm change when target and competing sources were separated by as little as 9.4°. Essentially equal levels of performance were observed when frequencies were restricted to a high, 4-to-25-kHz, band in which the principal spatial cues presumably were related to sound levels. When the stimulus band was restricted from 0.4 to 1.6 kHz, leaving interaural time differences as the principal spatial cue, performance was severely degraded. The frequency sensitivity of cats in this task contrasts with that of humans, who show better spatial stream segregation with low- than with high-frequency sounds. Possible explanations for the species difference includes the smaller interaural delays available to cats due to smaller sizes of their heads and the potentially greater sound-level cues available due to the cat's frontally directed pinnae and higher audible frequency range. PMID:26993807

  9. Streams in the urban heat island: spatial and temporal variability in temperature

    USGS Publications Warehouse

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  10. In-stream hydrokinetic power: Review and appraisal

    DOE PAGESBeta

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year ofmore » extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.« less

  11. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  12. In-stream hydrokinetic power: Review and appraisal

    SciTech Connect

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year of extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.

  13. Rebound of continuous droplet streams from an immiscible liquid pool

    NASA Astrophysics Data System (ADS)

    Doak, William J.; Laiacona, Danielle M.; German, Guy K.; Chiarot, Paul R.

    2016-05-01

    We report on the rebound of high velocity continuous water droplet streams from the surface of an immiscible oil pool. The droplets have diameters and velocities of less than 90 μm and 15 m/s, respectively, and were created at frequencies up to 60 kHz. The impact and rebound of continuous droplet streams at this scale and velocity have been largely unexplored. This regime bridges the gap between single drop and jet impacts. The impinging droplets create a divot at the surface of the oil pool that had a common characteristic shape across a wide-range of droplet and oil properties. After impact, the reflected droplets maintain the same uniformity and periodicity of the incoming droplets but have significantly lower velocity and kinetic energy. This was solely attributed to the generation of a flow induced in the viscous oil pool by the impacting droplets. Unlike normally directed impact of millimeter-scale droplets with a solid surface, our results show that an air film does not appear to be maintained beneath the droplets during impact. This suggests direct contact between the droplets and the surface of the oil pool. A ballistic failure limit, correlated with the Weber number, was identified where the rebound was suppressed and the droplets were driven through the oil surface. A secondary failure mode was identified for aperiodic incoming streams. Startup effects and early time dynamics of the rebounding droplet stream were also investigated.

  14. Estimation of stream temperature in support of fish production modeling under future climates in the Klamath River Basin

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature

  15. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    PubMed

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed. PMID:23715732

  16. Aeroacoustics of Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  17. Effects of Stream Channel Characteristics on Nitrate Delivery to Streams and In-Stream Denitrification Rates, Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; O'Connell, M.

    2004-05-01

    Streams in agricultural areas often exhibit significant channel and sediment modifications; they are often incised and transport more fine sediment than non-agricultural streams. These channel characteristics can influence stream water quality by modifying surface-groundwater interactions. In the Raccoon River basin, channel incision increases the delivery of nitrate from the groundwater to the streams. The sandy in-stream sediments, however, serve as very effective sites for in-stream denitrification. Nitrate delivery and in-stream denitrification was examined in 3 subwatersheds of the Raccoon River. Stream morphology, water quality, and sediment characteristics were measured at 35 sites with varying land uses. Headwater stream nitrate concentration increased with percent row crops and the amount of channel incision. Downstream sites showed a wide variation in nitrate concentration with land use. Stream nitrate concentrations were measured at 6 sites in each of 3 streams with high percentages of row crop land uses during high summer baseflow following the 1993 floods and during average summer baseflow in 1995. Nitrate concentrations were systematically higher for the high baseflow conditions of 1993 than the average year (1995). This change in nitrate concentration is interpreted as the increased effectiveness of nitrate delivery to the stream during periods of high water tables. The effect was most pronounced in incised reaches. All 3 streams show downstream decreases in nitrate concentration. Water samples for all the sites in the watersheds were analyzed for nitrogen isotopic composition. The nitrogen isotopic composition shifts with towards higher d 15N values with decreasing nitrate concentration. This is consistent with denitrification reactions that selectively remove the 14N leaving a higher proportion of 15N in the nitrate. This suggests that most of the downstream decrease in nitrate concentrations is a result of in-stream denitrification. The high rates

  18. Detection of inconsistent regions in video streams

    NASA Astrophysics Data System (ADS)

    Gaborski, Roger S.; Vaingankar, Vishal S.; Chaoji, Vineet S.; Teredesai, Ankur M.; Tentler, Aleksey

    2004-06-01

    Humans have a general understanding about their environment. We possess a sense of distinction between what is consistent and inconsistent about the environment based on our prior experience. Any aspect of the scene that does not fit into this definition of normalcy tends to be classified as an inconsistent event, also referred to as novel event. An example of this is a casual observer standing over a bridge on a freeway, tracking vehicle traffic, where the vehicles traveling at or around the same speed limit are generally ignored and a vehicle traveling at a much higher (or lower) speed is subject to one's immediate attention. In this paper, we present a computational learning based framework for novelty detection on video sequences. The framework extracts low-level features from scenes, based on the focus of attention theory and combines unsupervised learning with habituation theory for learning these features. The paper presents results from our experiments on natural video streams for identifying novelty in velocity of moving objects and static changes in the scene.

  19. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds.

    PubMed

    Fellman, Jason B; Hood, Eran; Dryer, William; Pyare, Sanjay

    2015-01-01

    Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L(-1) suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, P<0.01) and Cowee Creek (R2=0.93, P<0.01). However, DO in Peterson Creek was mildly related to stream temperature (R2=0.15, P<0.01) and strongly influenced by discharge (R2=0.46, P<0.01) on days when stream temperature exceeded 10°C. Moreover, Peterson Creek had DO values that were particularly low (<5.0 mg L(-1)) on days when discharge was low but also when spawning salmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone. PMID:26222506

  20. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds

    PubMed Central

    Fellman, Jason B.; Hood, Eran; Dryer, William; Pyare, Sanjay

    2015-01-01

    Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L−1 suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, P<0.01) and Cowee Creek (R2=0.93, P<0.01). However, DO in Peterson Creek was mildly related to stream temperature (R2=0.15, P<0.01) and strongly influenced by discharge (R2=0.46, P<0.01) on days when stream temperature exceeded 10°C. Moreover, Peterson Creek had DO values that were particularly low (<5.0 mg L−1) on days when discharge was low but also when spawning salmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone. PMID:26222506

  1. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    SciTech Connect

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  3. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    NASA Astrophysics Data System (ADS)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  4. Did the pre-1980 use of in-stream structures improve streams? A reanalysis of historical data.

    PubMed

    Thompson, Douglas M

    2006-04-01

    In the 1930s, after only three years of scientific investigation at the University of Michigan Institute for Fisheries Research, cheap labor and government-sponsored conservation projects spearheaded by the Civilian Conservation Corps allowed the widespread adoption of in-stream structures throughout the United States. From the 1940s through the 1970s, designs of in-stream structures remained essentially unchanged, and their use continued. Despite a large investment in the construction of in-stream structures over these four decades, very few studies were undertaken to evaluate the impacts of the structures on the channel and its aquatic populations. The studies that were undertaken to evaluate the impact of the structures were often flawed. The use of habitat structures became an "accepted practice," however, and early evaluation studies were used as proof that the structures were beneficial to aquatic organisms. A review of the literature reveals that, despite published claims to the contrary, little evidence of the successful use of in-stream structures to improve fish populations exists prior to 1980. A total of 79 publications were checked, and 215 statistical analyses were performed. Only seven analyses provide evidence for a benefit of structures on fish populations, and five of these analyses are suspect because data were misclassified by the original authors. Many of the changes in population measures reported in early publications appear to result from changes in fishing pressure that often accompanied channel modifications. Modern evaluations of channel-restoration projects must consider the influence of fishing pressure to ensure that efforts to improve fish habitat achieve the benefits intended. My statistical results show that the traditional use of in-stream structures for channel restoration design does not ensure demonstrable benefits for fish communities, and their ability to increase fish populations should not be presumed. PMID:16711062

  5. Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Niemeyer, J. C.; Schleicher, D. R. G.

    2014-06-01

    Baryonic streaming motions produced prior to the epoch of recombination became supersonic during the cosmic dark ages. Various studies suggest that such streaming velocities change the halo statistics and also influence the formation of Population III stars. In this study, we aim to explore the impact of streaming velocities on the formation of supermassive black holes at z>10 via the direct collapse scenario. To accomplish this goal, we perform cosmological large eddy simulations for two haloes of a few times 107M⊙ with initial streaming velocities of 3, 6 and 9 km s-1. These massive primordial haloes illuminated by the strong Lyman-Werner flux are the potential cradles for the formation of direct collapse seed black holes. To study the evolution for longer times, we employ sink particles and track the accretion for 10 000 years. Our findings show that higher streaming velocities increase the circular velocities from about 14 to 16 km s-1. They also delay the collapse of haloes for a few million years, but do not have any significant impact on the halo properties such as turbulent energy, radial velocity, density and accretion rates. Sink particles of about ˜105M⊙ are formed at the end of our simulations and no clear distribution of sink masses is observed in the presence of streaming motions. It is further found that the impact of streaming velocities is less severe in massive haloes compared to the minihaloes as reported in the previous studies.

  6. Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach.

    PubMed

    Drummond, Jennifer D; Davies-Colley, Robert J; Stott, Rebecca; Sukias, James P; Nagels, John W; Sharp, Alice; Packman, Aaron I

    2015-07-01

    Long-term survival of pathogenic microorganisms in streams enables long-distance disease transmission. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers. Microbes continuously immobilize and resuspend during downstream transport owing to a variety of processes including gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. We developed a stochastic model to describe these microbial transport and retention processes in rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of Escherichia coli in a small stream and the underlying streambed sediments as measured from multitracer injection experiments. The results demonstrate that the combination of laboratory experiments on sediment cores, stream reach-scale tracer experiments, and multiscale stochastic modeling improves assessment of microbial transport in streams. This study (1) demonstrates new observations of microbial dynamics in streams with improved data quality than prior studies, (2) advances a stochastic modeling framework to include microbial inactivation processes that we observed to be important in these streams, and (3) synthesizes new and existing data to evaluate seasonal dynamics. PMID:26039244

  7. On Short-Perihelion Meteor Streams

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra; Bakanas, Elena; Barabanov, Sergey

    2013-02-01

    Research was conducted concerning the relation of short-perihelion meteor streams with comets and asteroids. But the origin of meteor streams with small perihelion distance (of the Arietid and Geminid types) has always represented a special problem for obvious reasons. Over four hundred meteor and fireball streams (by optical and TV-observations) contained 20 streams of perihelion distance q ≤ 0.26 AU. The research shows that 8 of 20 streams displayed a relation with small bodies. No relation was found either with comets or asteroids for the remaining 12 streams. Short-period streams may be formed on quasiparabolic comet orbits with small q in the perihelion area as well. In particular, SOHO comets may be a rich source both of small and large meteor bodies, forming short-perihelion meteor streams among others.

  8. Stream Channelization: Conflict Between Ditchers, Conservationists

    ERIC Educational Resources Information Center

    Gillette, Robert

    1972-01-01

    Summarizes the argument between the advocates of stream straightening for flood control, drainage, and navigation, and those concerned with the maintenance of ecological communities and the aesthetic values of natural" streams. (AL)

  9. Stream Tables and Watershed Geomorphology Education.

    ERIC Educational Resources Information Center

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  10. Stream Gauges and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  11. A model for evaluating stream temperature response to climate change scenarios in Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven

    2010-01-01

    Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.

  12. Time of travel of selected Arkansas streams

    USGS Publications Warehouse

    Lamb, T.E.

    1982-01-01

    Between 1971 and 1981, time-of-travel and dispersion measurements were made in 15 streams in Arkansas. Most of the streams studied were at or near base flow. Graphs are presented for predicting traveltime of solutes in segments of the streams studied. The relationship of time of passage and peak unit concentration to traveltime is presented for two of the streams. Examples of use and application of the data are given. (USGS)

  13. Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    NASA Astrophysics Data System (ADS)

    Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  14. 40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  15. 40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  16. Temperature in lowland Danish streams: contemporary patterns, empirical models and future scenarios

    NASA Astrophysics Data System (ADS)

    Lagergaard Pedersen, Niels; Sand-Jensen, Kaj

    2007-01-01

    Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold-water and oxygen-demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air-water regression model (r2: 0.903-0.947). The predictions improved in all instances (r2: 0.927-0.964) by a non-linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0.933-0.969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un-shaded sites, relative humidity, precipitation and discharge. Application of the non-linear logistic model for a warming scenario of 4-5 °C higher air temperatures in Denmark in 2070-2100 yielded predictions of temperatures rising 1.6-3.0 °C during winter and summer and 4.4-6.0 °C during spring in un-shaded streams with low groundwater input. Groundwater-fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright

  17. Dynamical Properties of Collisionless Star Streams

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.

    2015-02-01

    A sufficiently extended satellite in the tidal field of a host galaxy loses mass to create nearly symmetric leading and trailing tidal streams. We study the case in which tidal heating drives mass loss from a low mass satellite. The stream effectively has two dynamical components, a common angular momentum core superposed with episodic pulses with a broader angular momentum distribution. The pulses appear as spurs on the stream, oscillating above and below the stream centerline, stretching and blurring in configuration space as they move away from the cluster. Low orbital eccentricity streams are smoother and have less differential motion than high eccentricity streams. The tail of a high eccentricity stream can develop a fan of particles that wraps around at apocenter in a shell feature. We show that scaling the essentially stationary action-angle variables with the cube root of the satellite mass allows a low mass satellite stream to accurately predict the features in the stream from a satellite a thousand times more massive. As a practical astrophysical application, we demonstrate that narrow gaps in a moderate eccentricity stream, such as GD-1, blur out to 50% contrast over approximately six radial periods. A high eccentricity stream, such as Pal 5, will blur small gaps in only two radial orbits as can be understood from the much larger dispersion of angular momentum in the stream.

  18. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  19. Hydrology of Channelized and Natural Headwater Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding hydrology is paramount for optimal ecologic function and management of headwater streams. The objective of this study was to characterize and compare headwater streams within the Upper Big Walnut Creek watershed in Ohio. Two channelized and two unchannelized streams were instrumented w...

  20. The Stream Table in Physical Geography Instruction.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lightfoot, Dale R.

    1997-01-01

    Outlines a number of activities to be conducted with a stream table (large wooden box filled with sediment and designed for water to pass through) in class. Activities illustrate such fluvial processes as stream meandering, erosion, transportation, and deposition. Includes a diagram for constructing a stream table. (MJP)

  1. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  2. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    PubMed

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  3. Ambient air quality monitoring plan, Cumberland Steam Plant

    SciTech Connect

    Owen, A.E. Jr.; Carter, R.V.

    1981-09-01

    The Tennessee Valley Authority (TVA) has conducted ambient air quality monitoring at Cumberland Steam Plant since 1971. The monitoring network was operated to collect background air quality information prior to plant startup (1972) and to document ambient air quality after the plant reached full operating levels in 1973. This monitoring plan presents a new network design for Cumberland Steam Plant.

  4. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  5. Prolonged Instability Prior to a Regime Shift

    PubMed Central

    Spanbauer, Trisha L.; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.

    2014-01-01

    Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. PMID:25280010

  6. Theoretical priors on modified growth parametrisations

    SciTech Connect

    Song, Yong-Seon; Hollenstein, Lukas; Caldera-Cabral, Gabriela; Koyama, Kazuya E-mail: Lukas.Hollenstein@unige.ch E-mail: Kazuya.Koyama@port.ac.uk

    2010-04-01

    Next generation surveys will observe the large-scale structure of the Universe with unprecedented accuracy. This will enable us to test the relationships between matter over-densities, the curvature perturbation and the Newtonian potential. Any large-distance modification of gravity or exotic nature of dark energy modifies these relationships as compared to those predicted in the standard smooth dark energy model based on General Relativity. In linear theory of structure growth such modifications are often parameterised by virtue of two functions of space and time that enter the relation of the curvature perturbation to, first, the matter over- density, and second, the Newtonian potential. We investigate the predictions for these functions in Brans-Dicke theory, clustering dark energy models and interacting dark energy models. We find that each theory has a distinct path in the parameter space of modified growth. Understanding these theoretical priors on the parameterisations of modified growth is essential to reveal the nature of cosmic acceleration with the help of upcoming observations of structure formation.

  7. Putting Priors in Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.

  8. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. PMID:22245736

  9. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  10. Pitch perception prior to cortical maturation

    NASA Astrophysics Data System (ADS)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  11. Streaming visualization for collaborative environments.

    SciTech Connect

    Hereld, M.; Olson, E.; Papka, M. E.; Uram, T. D.

    2008-01-01

    Connecting expensive and scarce visual data analysis resources to end-users is a major challenge today. We describe a flexible mechanism for meeting this challenge based on commodity compression technologies for streaming video. The advantages of this approach include simplified application development, access to generic client components for viewing, and simplified incorporation of improved codecs as they become available. In this paper we report newly acquired experimental results for two different applications being developed to exploit this approach and test its merits. One is based on a new plugin for ParaView that adds video streaming cleanly and transparently to existing applications. The other is a custom volume rendering application with new remote capabilities. Using typical datasets under realistic conditions, we find the performance for both is satisfactory.

  12. Metamers of the ventral stream

    PubMed Central

    Freeman, Jeremy; Simoncelli, Eero P.

    2011-01-01

    The human capacity to recognize complex visual patterns emerges in a sequence of brain areas known as the ventral stream, beginning with primary visual cortex (V1). We develop a population model for mid-ventral processing, in which non-linear combinations of V1 responses are averaged within receptive fields that grow with eccentricity. To test the model, we generate novel forms of visual metamers — stimuli that differ physically, but look the same. We develop a behavioral protocol that uses metameric stimuli to estimate the receptive field sizes in which the model features are represented. Because receptive field sizes change along the ventral stream, the behavioral results can identify the visual area corresponding to the representation. Measurements in human observers implicate V2, providing a new functional account of this area. The model explains deficits of peripheral vision known as “crowding”, and provides a quantitative framework for assessing the capabilities of everyday vision. PMID:21841776

  13. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  14. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  15. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  16. Where Did All the Streams Go? Effects of Urbanization on Hydrologic Permanence of Headwater Streams

    EPA Science Inventory

    Headwater streams represent a majority (up to 70%) of the stream length in the United States; however, these small streams are often piped or filled to accommodate residential, commercial, and industrial development. Legal protection of headwater streams under the Clean Water Ac...

  17. Interplanetary stream magnetism - Kinematic effects

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1976-01-01

    The particle density and the magnetic-field intensity and direction are calculated for volume elements of the solar wind as a function of the initial magnetic-field direction and the initial speed gradient. It is assumed that the velocity is constant and radial. These assumptions are approximately valid between about 0.1 and 1.0 AU for many streams. Time profiles of the particle density, field intensity, and velocity are calculated for corotating streams, neglecting effects of pressure gradients. The compression and rarefaction of the magnetic field depend sensitively on the initial field direction. By averaging over a typical stream, it is found that the average radial field intensity is inversely proportional to the square of the heliocentric distance, whereas the average intensity in the direction of the planets' motion does not vary in a simple way, consistent with deep space observations. Changes of field direction may be very large, depending on the initial angle; but when the initial angle at 0.1 AU is such that the base of the field line corotates with the sun, the spiral angle is the preferred direction at 1 AU. The theory is also applicable to nonstationary flows.

  18. Towards quantifying fuzzy stream power

    NASA Astrophysics Data System (ADS)

    Schwanghart, W.; Korup, O.

    2012-04-01

    Deterministic flow direction algorithms such as the D8 have wide application in numerical models of landscape evolution. These simple algorithms play a central role in quantifying drainage basin area, and hence approximating—via empirically derived relationships from regional flood frequency and hydraulic geometry—stream power or fluvial erosion potential. Here we explore how alternative algorithms that employ a probabilistic choice of flow direction affect quantitative estimates of stream power. We test a probabilistic multi-flow direction algorithm within the MATLAB TopoToolbox in model and real landscapes of low topographic relief and minute gradients, where potentially fuzzy drainage divides are dictated by, among others, alluvial fan dynamics, playa infill, and groundwater fluxes and seepage. We employ a simplistic numerical landscape evolution model that simulates fluvial incision and hillslope diffusion and explicitly models the existence and capture of endorheic basins that prevail in (semi-)arid, low-relief landscapes. We discuss how using this probabilistic multi-flow direction algorithm helps represent and quantify uncertainty about spatio-temporal drainage divide locations and how this bears on quantitative estimates of downstream stream power and fluvial erosion potential as well as their temporal dynamics.

  19. Multitier image streaming teleradiology system

    NASA Astrophysics Data System (ADS)

    Swarnakar, Vivek; Eldar, Adi; Pourfathi, Shahrzad; Keselbrener, Laurence; Genant, Harry K.

    2001-08-01

    With the advent of real-time image streaming, a new paradigm for development of image display and viewing systems that communicate with Picture Archiving and Communication (PACS) systems can be proposed. In this paradigm, the high bandwidth requirements of current systems can be significantly relaxed and security features can be seamlessly adopted and enforced. Based upon this paradigm RealTimeImage and OARG have developed a multi-tiered web-based image display and analysis system for teleradiology. The system architecture consisted of a backend module to communicate with the PACS system via direct file system access or standard DICOM protocols, an Image Server to stream image data to its clients using RealTimeImage Pixel-On-DemandTM streaming technology and a web-based client to provide image display and analysis functionality. The system was used in a clinical research study that required analysis of several hundred images and included participants located at various remote geographical locations. Performance and maintainability of the system were objectively quantified. Usability issues were subjectively identified by the various users of the system. It was observed that the performance of such a system is comparable to that of today's systems over fast LAN, even if the user is connected via standard, dial-up connections. This level of performance was achieved without compromising the usability of the system required for the research study.

  20. Slow Climate Velocities in Mountain Streams Impart Thermal Resistance to Cold-Water Refugia Across the West

    NASA Astrophysics Data System (ADS)

    Isaak, D.; Young, M.; Luce, C.; Hostetler, S.; Wenger, S. J.; Peterson, E.; Ver Hoef, J.

    2015-12-01

    Mountain streams provide important headwater refugia for native fish, amphibians, and other cold-water fauna globally. Although the well documented existence of such refugia indicates some level of resistance to ongoing environmental change, stream warming associated with climate change raises questions about their future persistence. Moreover, evidence exists that air temperatures are warming faster at higher elevations, and some stream temperature models predict that cold streams associated with snowmelt hydrologies will be most sensitive to air temperature increases (i.e. high ratio of stream Δ˚C:air Δ˚C). Here, we estimate stream sensitivities to climate forcing using long-term monitoring records from 927 sites across the topographically complex northwestern U.S. Sensitivity values are combined with high-resolution NorWeST stream temperature scenarios (website: http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html) to map climate velocities at 1 kilometer resolution throughout the 450,000 stream kilometers in the regional network. Our results suggest that cold mountain streams are often 'double buffered' against the thermal effects of climate change due to low sensitivities (0.3ºC/ºC) and steep gradients, which translated to very slow climate velocities (<0.35 km/decade for streams >3% slope) from 1968-2011 when air temperatures warmed at the rate of 0.2ºC/decade. Alternative scenarios based on aggressive air temperature warming rates (2x historical rates) and higher sensitivity values of cold streams suggests velocities will remain low in mountain streams due to the dominant effects of steep channel slope and strong local temperature gradients. These results reinforce earlier predictions from high-resolution species distribution models that show which watersheds are most likely to host resilient native trout populations across the West later this century (Climate Shield project website: http://www.fs

  1. Prior Clues of Internal Activity on Pluto

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Singer and Stern's theories of internal activity, but raise new questions about the nature of that activity! As data from New Horizons keeps streaming in (in fact, atmospheric data from the Alice instrument is expected to pin down the atmospheric loss rate very soon), we can hope to continue to piece this picture together. Citation: Kelsi N. Singer and S. Alan Stern 2015 ApJ, 808, L50.

  2. Operation of a 1/10 scale mixed water incinerator air pollution control system

    SciTech Connect

    Burns, D.B.; Wong, A.; Walker, W.

    1996-08-01

    The Consolidated Incineration Facility (CIF) at the Savannah River Site is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. The technologies selected for use in the CIF air pollution control system (APCS) were based on reviews of existing commercial and DOE incinerators, on-site air pollution control experience, and recommendations from contracted consultants. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, known as the Offgas Components Test Facility (OCTF) was constructed and has been in operation since late 1994. Its current mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Due to the nature of the wastes to be incinerated at the CIF, High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas stream before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber.

  3. Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; Van Horn, David; Sudman, Zachary; McKnight, Diane M.; Welch, Kathleene A.; Lyons, William B.

    2016-03-01

    Stream channels in the McMurdo Dry Valleys are characteristically wide, incised, and stable. At typical flows, streams occupy a fraction of the oversized channels, providing habitat for algal mats. In January 2012, we discovered substantial channel erosion and subsurface thermomechanical erosion undercutting banks of the Crescent Stream. We sampled stream water along the impacted reach and compared concentrations of solutes to the long-term data from this stream ( ˜ 20 years of monitoring). Thermokarst-impacted stream water demonstrated higher electrical conductivity, and concentrations of chloride, sulfate, sodium, and nitrate than the long-term medians. These results suggest that this mode of lateral permafrost degradation may substantially impact stream solute loads and potentially fertilize stream and lake ecosystems. The potential for sediment to scour or bury stream algal mats is yet to be determined, though it may offset impacts of associated increased nutrient loads to streams.

  4. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  5. Towards Flexible Exascale Stream Processing System Simulation

    SciTech Connect

    Li, Cheng-Hong; Nair, Ravi; Ohba, Noboyuki; Shvadron, Uzi; Zaks, Ayal; Schenfeld, Eugen

    2012-01-01

    Stream processing is an important emerging computational model for performing complex operations on and across multi-source, high-volume, unpredictable dataflows. We present Flow, a platform for parallel and distributed stream processing system simulation that provides a flexible modeling environment for analyzing stream processing applications. The Flow stream processing system simulator is a high-performance, scalable simulator that automatically parallelizes chunks of the model space and incurs near-zero synchronization overhead for acyclic stream application graphs. We show promising parallel and distributed event rates exceeding 149 million events per second on a cluster with 512 processor cores.

  6. Scaling relations for galaxies prior to reionization

    SciTech Connect

    Chen, Pengfei; Norman, Michael L.; Xu, Hao; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-11-10

    The first galaxies in the universe are the building blocks of all observed galaxies. We present scaling relations for galaxies forming at redshifts z ≥ 15 when reionization is just beginning. We utilize the 'Rarepeak' cosmological radiation hydrodynamics simulation that captures the complete star formation history in over 3300 galaxies, starting with massive Population III stars that form in dark matter halos as small as ∼10{sup 6} M {sub ☉}. We make various correlations between the bulk halo quantities, such as virial, gas, and stellar masses and metallicities and their respective accretion rates, quantifying a variety of properties of the first galaxies up to halo masses of 10{sup 9} M {sub ☉}. Galaxy formation is not solely relegated to atomic cooling halos with virial temperatures greater than 10{sup 4} K, where we find a dichotomy in galaxy properties between halos above and below this critical mass scale. Halos below the atomic cooling limit have a stellar mass-halo mass relationship log M {sub *} ≅ 3.5 + 1.3log (M {sub vir}/10{sup 7} M {sub ☉}). We find a non-monotonic relationship between metallicity and halo mass for the smallest galaxies. Their initial star formation events enrich the interstellar medium and subsequent star formation to a median of 10{sup –2} Z {sub ☉} and 10{sup –1.5} Z {sub ☉}, respectively, in halos of total mass 10{sup 7} M {sub ☉}, which is then diluted by metal-poor inflows well beyond Population III pre-enrichment levels of 10{sup –3.5} Z {sub ☉}. The scaling relations presented here can be employed in models of reionization, galaxy formation, and chemical evolution in order to consider these galaxies forming prior to reionization.

  7. Scaling Relations for Galaxies Prior to Reionization

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Wise, John H.; Norman, Michael L.; Xu, Hao; O'Shea, Brian W.

    2014-11-01

    The first galaxies in the universe are the building blocks of all observed galaxies. We present scaling relations for galaxies forming at redshifts z >= 15 when reionization is just beginning. We utilize the "Rarepeak" cosmological radiation hydrodynamics simulation that captures the complete star formation history in over 3300 galaxies, starting with massive Population III stars that form in dark matter halos as small as ~106 M ⊙. We make various correlations between the bulk halo quantities, such as virial, gas, and stellar masses and metallicities and their respective accretion rates, quantifying a variety of properties of the first galaxies up to halo masses of 109 M ⊙. Galaxy formation is not solely relegated to atomic cooling halos with virial temperatures greater than 104 K, where we find a dichotomy in galaxy properties between halos above and below this critical mass scale. Halos below the atomic cooling limit have a stellar mass-halo mass relationship log M sstarf ~= 3.5 + 1.3log (M vir/107 M ⊙). We find a non-monotonic relationship between metallicity and halo mass for the smallest galaxies. Their initial star formation events enrich the interstellar medium and subsequent star formation to a median of 10-2 Z ⊙ and 10-1.5 Z ⊙, respectively, in halos of total mass 107 M ⊙, which is then diluted by metal-poor inflows well beyond Population III pre-enrichment levels of 10-3.5 Z ⊙. The scaling relations presented here can be employed in models of reionization, galaxy formation, and chemical evolution in order to consider these galaxies forming prior to reionization.

  8. Lateral inflows, stream-groundwater exchange, and network geometry influence stream water composition

    NASA Astrophysics Data System (ADS)

    Mallard, John; McGlynn, Brian; Covino, Tim

    2014-06-01

    The role of stream networks and their hydrologic interaction with hillslopes and shallow groundwater in modifying and transporting watershed signals is an area of active research. One of the primary ways that stream networks can modify watershed signals is through spatially variable stream gains and losses, described herein as hydrologic turnover. We measured hydrologic gain and loss at the reach scale using tracer experiments throughout the Bull Trout watershed in the Sawtooth Mountains of Idaho. We extended the results of reach scale experiments to the stream network using empirical relationships between (1) watershed area and stream discharge and (2) stream discharge and percent stream water loss to the groundwater system. We thus incorporate linkages between (1) hillslopes and stream networks via lateral inflows and (2) stream networks and shallow groundwater via hydrologic exchange. We implemented these relationships within a concise analytical framework to simulate hydrologic turnover across stream networks and estimate the variable influence exerted by upstream reaches and streamflow source locations on stream water composition across stream networks. Application to six natural Sawtooth watersheds and seven synthetic watersheds with varying topographic structure and stream network geometry indicated that contributions to discharge from any upstream source depend on the magnitude of the initial input, but also on the distribution of hydrologic turnover occurring along the stream network. The evolution of stream water source compositions along stream networks was unique in each watershed due to the combination of watershed structure and stream network geometry. Our results suggest that a distributed representation of hydrologic turnover at the stream network scale can improve understanding of how the stream network can modify source water compositions along the stream.

  9. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    NASA Astrophysics Data System (ADS)

    Povak, Nicholas A.; Hessburg, Paul F.; Reynolds, Keith M.; Sullivan, Timothy J.; McDonnell, Todd C.; Salter, R. Brion

    2013-06-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially affected biota, and create resource protection strategies. In this study, we developed correlative models to predict the acid neutralizing capacity (ANC) of streams across the southern Appalachian Mountain region, USA. Models were developed using stream water chemistry data from 933 sampled locations and continuous maps of pertinent environmental and climatic predictors. Environmental predictors were averaged across the upslope contributing area for each sampled stream location and submitted to both statistical and machine-learning regression models. Predictor variables represented key aspects of the contributing geology, soils, climate, topography, and acidic deposition. To reduce model error rates, we employed hurdle modeling to screen out well-buffered sites and predict continuous ANC for the remainder of the stream network. Models predicted acid-sensitive streams in forested watersheds with small contributing areas, siliceous lithologies, cool and moist environments, low clay content soils, and moderate or higher dry sulfur deposition. Our results confirmed findings from other studies and further identified several influential climatic variables and variable interactions. Model predictions indicated that one quarter of the total stream network was sensitive to additional sulfur inputs (i.e., ANC < 100 µeq L-1), while <10% displayed much lower ANC (<50 µeq L-1). These methods may be readily adapted in other regions to assess stream water quality and potential biotic sensitivity to acidic inputs.

  10. The pre-LGM evolution of the Uummannaq ice Stream system in West Greenland

    NASA Astrophysics Data System (ADS)

    Roberts, David; Lane, Tim; Rea, Brice; Jamieson, Stewart

    2016-04-01

    Ice streams are a key component of an ice sheet system. They are fast flowing, dynamic corridors of ice that play a pivotal role in modulating ice flux from the interior of an ice sheet to its terrestrial or marine margin. The behaviour of marine-terminating ice streams in particular is critical in determining the dynamic (in)stability of ice sheets and ice/ocean interaction through time. However, despite an increase in palaeo-ice stream reconstructions and improvements in numerical modelling, in many instances we know little about the evolution of ice streams beyond the last glacial cycle. This is particularly true for topographically-guided or constrained ice stream systems that must represent the end-member state of a system that has developed over million year time scales. Recent research suggests that topographic focussing, subglacial geology, meltwater routing and calving margins are the primary controls on ice stream evolution. However, few studies have considered the combined role of geology, pre Quaternary landscapes and uplift in pre-conditioning a landscape for ice stream onset. This paper explores the factors that have controlled the evolution of the Uummannaq Ice Stream (UIS) system in West Greenland. During the last glacial cycle the UIS was a topographically-guided system, but the variables that led to ice stream onset prior to the Late Quaternary remain poorly understood. Geology, selective linear erosion and dynamic feedbacks were all important controls, but the influence of rifting, early uplift and pre-glacial topography in particular may have been pivotal controls on the evolution and location of the UIS onset zone.

  11. Stream-Groundwater Interactions in Streams Wetting Up and Drying Down

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Ward, A. S.; Payn, R. A.; Voltz, T. J.; Bernzott, E. D.; Fitzgerald, M.; McGlynn, B. L.; Bencala, K. E.; Wondzell, S. M.; Singha, K.; McKnight, D. M.

    2011-12-01

    Stream-groundwater interactions including gross gains and losses of streamflow and hyporheic exchange are, in part, dependent upon the hydraulic gradients in head between the riparian zone and the stream. Hence, we expect stream-groundwater interactions to vary as a consequence of the particular riparian-to-stream boundary conditions associated with perennial and ephemeral streams. Here we present results of field studies of stream groundwater interactions in two perennial headwater mountain streams during seasonal baseflow recession to document the drying down condition. We note that as baseflow recession progresses: 1) in a stream in the Tenderfoot Experimental Forest, Montana, streamflow gains and losses become more closely associated with subsurface geologic structure, and 2) in a stream in the HJ Andrews Experimental Forest, Oregon, hyporheic exchange was positively but loosely related to increasing lateral riparian hydraulic gradients and decreasing longitudinal riparian hydraulic gradients. In this steep headwater stream, over a wide range of flows, the riparian hydraulic gradients generally follow the strongest surface topographic gradient in the valley floor, which is longitudinal (down-valley). Under wetting conditions, we present findings from an ephemeral glacial meltwater stream in the McMurdo Dry Valleys, Antarctica. In this stream, we observe a strong positive correlation between stream discharge and stream-hyporheic zone interactions. The three examples presented here illustrate a range of of stream-groundwater interactions across flow regimes.

  12. How Prior Knowledge Affects Word Identification and Comprehension

    ERIC Educational Resources Information Center

    Priebe, Sarah J.; Keenan, Janice M.; Miller, Amanda C.

    2012-01-01

    While prior knowledge of a passage topic is known to facilitate comprehension, little is known about how it affects word identification. We examined oral reading errors in good and poor readers when reading a passage where they either had prior knowledge of the passage topic or did not. Children who had prior knowledge of the topic were matched on…

  13. Recognition of Prior and Experiential Learning in European Universities

    ERIC Educational Resources Information Center

    Valk, Aune

    2009-01-01

    This paper focuses on the state of the art for recognition of prior experiential learning in European universities. Although recognition of prior learning and prior experiential learning have been officially stated as being important aims by national ministers of education in their Bologna Process communiques, implementation in the majority of…

  14. 37 CFR 2.36 - Identification of prior registrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Identification of prior registrations. 2.36 Section 2.36 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... prior registrations. Prior registrations of the same or similar marks owned by the applicant should...

  15. 22 CFR 129.7 - Prior approval (license).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Prior approval (license). 129.7 Section 129.7 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS REGISTRATION AND LICENSING OF BROKERS § 129.7 Prior approval (license). (a) The following brokering activities require the prior written approval of the Directorate...

  16. 50 CFR 12.32 - Effect of prior illegality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Effect of prior illegality. 12.32 Section... PLANTS SEIZURE AND FORFEITURE PROCEDURES Disposal of Forfeited or Abandoned Property § 12.32 Effect of prior illegality. The effect of any prior illegality on a subsequent holder of any wildlife or...

  17. Community of Priors: A Bayesian Approach to Consensus Building

    ERIC Educational Resources Information Center

    Hara, Motoaki

    2010-01-01

    Despite having drawn from empirical evidence and cumulative prior expertise in the formulation of research questions as well as study design, each study is treated as a stand-alone product rather than positioned within a sequence of cumulative evidence. While results of prior studies are typically cited within the body of prior literature review,…

  18. Shotgun metagenomic data streams: surfing without fear

    SciTech Connect

    Berendzen, Joel R

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomic sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.

  19. Hourly wind profiler observations of the jet stream - Wind shear and pilot reports of turbulence

    NASA Technical Reports Server (NTRS)

    Syrett, William J.

    1991-01-01

    Hourly wind profiler observations of the jet stream are reported on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages over western and central Pennsylvania during mid-November 1986 and mid-January 1987. The mean wind speed profile with error bars for the 79 hr that the Crown radar was determined to be 'under' the jet stream is shown. A mean speed of 83 m/s for the period was found. A plot of wind shear for the hours of interest is given. Typically, the shear was at a maximum from 3 to 4 km below the level of maximum wind. Thus, an aircraft would have to fly through potentially rough air to reach the fuel savings and relative smoothness of flight at the jet stream level. A good correlation between pilot reports of turbulence and wind shear was found.

  20. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA). PMID:10863011

  1. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  2. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  3. A probe for sampling interstitial waters of stream sediments and bog soils

    USGS Publications Warehouse

    Nowlan, G.A.; Carollo, C.

    1974-01-01

    A probe for sampling interstitial waters of stream sediments and bog soils is described. Samples can be obtained within a stratigraphic interval of 2-3 cm, to a depth of 60-80 cm, and with little or no contamination of the samples by sediment or air. ?? 1974.

  4. Digital communication constraints in prior space missions

    NASA Technical Reports Server (NTRS)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  5. Summary of prior grain entrapment rescue strategies.

    PubMed

    Roberts, M J; Deboy, G R; Field, W E; Maier, D E

    2011-10-01

    Entrapment in flowable agricultural material continues to be a relevant problem facing both farmers and employees of commercial grain storage and handling operations. While considerable work has been done previously on the causes of entrapment in grain and possible preventative measures, there is little research on the efficacy of current first response or extrication techniques. With the recent introduction of new grain rescue equipment and training programs, it was determined that the need exists to document and summarize prior grain rescue strategies with a view to develop evidence-based recommendations that would enhance the efficacy of the techniques used and reduce the risks to both victims and first responders. Utilizing the Purdue University Agricultural Entrapment Database, all data were queried for information related to extrication of victims from grain entrapments documented over the period 1964-2006. Also analyzed were data from other sources, including public records related to entrapments and information from onsite investigations. Significant findings of this study include the following: (1) between 1964 and 2006, the number of entrapments averaged 16 per year, with the frequency increasing over the last decade; (2) of all cases documented, about 45% resulted in fatality; (3) no less than 44% of entrapments occurred in shelled corn; (4) fatality was the result in 82% of cases where victims were submerged beneath the grain surface, while fatality occurred in 10% of cases where victims were only partially engulfed; (5) the majority of rescues were reported to have been conducted by untrained personnel who were at the scene at the time of entrapment; and (6) in those cases where the rescue strategies were known, 56% involved cutting or punching holes in the side walls of the storage structure, 19% involved utilizing onsite fabricated grain retaining walls to extricate partially entrapped victims, and the use of grain vacuum machines as a rescue

  6. Sensitivity of salmonid freshwater life history in western US streams to future climate conditions.

    PubMed

    Beer, W Nicholas; Anderson, James J

    2013-08-01

    We projected effects of mid-21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature-dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid-21st century, the effects of climate change are projected to be mixed. Fish in warm-region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid-21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year-to-year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams. PMID:23640715

  7. Recent Research toward Understanding Spatial, Temporal, and Climatic Variation in Stream Temperatures across the Northwest U.S.

    NASA Astrophysics Data System (ADS)

    Isaak, D.; Roper, B.; Luce, C.; Holden, Z.

    2012-12-01

    Global air temperature increases raise concerns about effects on thermal regimes of the Earth's rivers and streams. These concerns are acute in the Northwest U.S. due to legislatively mandated water quality standards and the importance of recreational and commercial fisheries for cold-water species such as salmon and trout. Efforts to study climate effects on stream thermal regimes are limited by sparse long-term monitoring records, resulting in a lack of information on historical spatial and temporal variation from which to measure departure. We present research from the last five years that begins to address these shortcomings, including: 1) estimation of stream warming rates in recent decades associated with long-term climate change (+0.11 °C/decade for mean annual temperatures; +0.22 °C/decade for summer temperatures), 2) development of an inexpensive protocol for monitoring full-year temperatures in dynamic mountain streams, 3) rapid expansion of an informal regional monitoring network from < 1,000 stream sites to > 3,000 sites in the last three years, 4) development and use of high-resolution (i.e., 100's of meters) air temperature microclimate models to understand variation in stream temperatures, 5) development of NorWeST, a comprehensive stream temperature database consisting of > 45,000 summers of temperature measurement at > 15,000 unique stream sites, and 6) use of new spatial statistical stream network models with NorWeST to krige predictions at unsampled locations and develop thermal information for most of the region's 350,000 stream kilometers. There is much yet to be learned regarding thermal regimes in rivers and streams but the accelerating pace of knowledge discovery driven by inexpensive sensors, computational improvements, geospatial technologies, and new analyses suggests that many important remaining unknowns will be resolved in the next five years.

  8. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  9. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  10. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  11. Stream Temperature Variability as an Indicator of Groundwater-Surface Water Interactions in Two Groundwater-Fed Streams

    NASA Astrophysics Data System (ADS)

    Middleton, M.; Allen, D. M.

    2009-12-01

    , consistent with a greater groundwater input. In contrast, Bertrand Creek water temperature patterns resembled the variability in the air temperatures, which ranged from -7.7oC to 32.4oC, with daily and seasonal fluctuations. The different responses in the stream suggest that stream morphology, riparian cover and/or surficial geology/land use are influencing timing and magnitude of the groundwater-surface water interactions. Fishtrap Creek has limited riparian cover and is situated in heterogeneous coarse grained surficial deposits. In contrast, Bertrand Creek has well developed riparian cover and is situated in a fine grained, low conductivity surficial geology unit. Despite the lack of riparian cover, which generally buffers water temperatures, Fishtrap Creek was found to have a generally stable water temperature regime relative to Bertrand Creek. The results suggest that the surficial geology of each stream exerts a greater influence on the groundwater-surface water interactions than do the riparian cover and land use patterns.

  12. The Influence of Prior Knowledge on the Retrieval-Directed Function of Note Taking in Prior Knowledge Activation

    ERIC Educational Resources Information Center

    Wetzels, Sandra A. J.; Kester, Liesbeth; van Merrienboer, Jeroen J. G.; Broers, Nick J.

    2011-01-01

    Background: Prior knowledge activation facilitates learning. Note taking during prior knowledge activation (i.e., note taking directed at retrieving information from memory) might facilitate the activation process by enabling learners to build an external representation of their prior knowledge. However, taking notes might be less effective in…

  13. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  14. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  15. Assessing stream temperature response to environmental change

    NASA Astrophysics Data System (ADS)

    MacDonald, R. J.; Boon, S.; Byrne, J. M.

    2010-12-01

    Stream temperature controls aquatic ecosystem function by directly influencing water quality, ecosystem productivity, and the physiological functioning of aquatic organisms. To date, there are limited studies of the impacts of environmental disturbance on stream temperature, particularly on the eastern slopes of the Rocky Mountains. This region provides key habitat for native salmonid species such as westslope cutthroat trout (Oncorhynchus clarkii lewisi) and bull trout (Salvelinus confluentus), which are listed as ‘threatened’ and ‘species of special concern’, respectively. Increases in stream temperature could limit habitat availability, reduce competitive advantage, and potentially increase mortality rates for these native species. This study uses field data collected at high spatiotemporal resolution to develop a spatial stream temperature model that simulates the mass and energy balance of the stream system. Preliminary field results demonstrate the high spatial and temporal variability in processes governing stream temperature in three study stream reaches. Groundwater/surface water interactions, topographic setting, and local meteorological conditions all contribute in determining stream thermal regimes. This work discusses how these primary drivers of stream temperature can be incorporated into a physically based spatial model, and demonstrates how depending on the scale of interest, the temperature of a stream can be governed by very different contributing factors.

  16. Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams

    DOEpatents

    Siriwardane, Ranjani V.

    2016-05-10

    Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  17. A multi-scaled approach to evaluating the fish assemblage structure within southern Appalachian streams USA.

    USGS Publications Warehouse

    Kirsch, Joseph; Peterson, James T.

    2014-01-01

    There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.

  18. Software to Control and Monitor Gas Streams

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Curley, Charles; Gore, Eric; Floyd, David; Lucas, Damion

    2012-01-01

    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

  19. Facilitating Analysis of Multiple Partial Data Streams

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.; Liebersbach, Robert R.

    2008-01-01

    Robotic Operations Automation: Mechanisms, Imaging, Navigation report Generation (ROAMING) is a set of computer programs that facilitates and accelerates both tactical and strategic analysis of time-sampled data especially the disparate and often incomplete streams of Mars Explorer Rover (MER) telemetry data described in the immediately preceding article. As used here, tactical refers to the activities over a relatively short time (one Martian day in the original MER application) and strategic refers to a longer time (the entire multi-year MER missions in the original application). Prior to installation, ROAMING must be configured with the types of data of interest, and parsers must be modified to understand the format of the input data (many example parsers are provided, including for general CSV files). Thereafter, new data from multiple disparate sources are automatically resampled into a single common annotated spreadsheet stored in a readable space-separated format, and these data can be processed or plotted at any time scale. Such processing or plotting makes it possible to study not only the details of a particular activity spanning only a few seconds, but also longer-term trends. ROAMING makes it possible to generate mission-wide plots of multiple engineering quantities [e.g., vehicle tilt as in Figure 1(a), motor current, numbers of images] that, heretofore could be found only in thousands of separate files. ROAMING also supports automatic annotation of both images and graphs. In the MER application, labels given to terrain features by rover scientists and engineers are automatically plotted in all received images based on their associated camera models (see Figure 2), times measured in seconds are mapped to Mars local time, and command names or arbitrary time-labeled events can be used to label engineering plots, as in Figure 1(b).

  20. Streams in Catskill Mountains still susceptible to acid rain

    NASA Astrophysics Data System (ADS)

    Burns, Douglas A.; Lawrence, Gregory B.; Murdoch, Peter S.

    Precipitation in North America has become less acidic over the past 2 decades because of reduced power plant emissions and compliance with the Clean Air Act Amendments [Sirois, 19937rsqb;. The 1990 Clean Air Act Amendments were developed to reduce the acidity of sensitive surface waters, which are primarily in upland forested environments, where acidified waters and associated high aluminum concentrations are toxic to many species of aquatic flora and fauna [Schindler et al., 1989]. Our studies show that in spite of less acidic precipitation, the buffering capacity of streams in upland forests of the Catskill Mountains in southeastern New York has not increased in recent years. These data suggest that long-term leaching by acid rain has lowered exchangeable calcium ion concentrations in the soil in upland areas, where the underlying, slow-weathering bedrock provides an inadequate supply of cations to neutralize acidity.

  1. DEMONSTRATION BULLETIN: ADSORPTION-INTEGRATED-REACTION (AIR2000) PROCESS, KSE, INC.

    EPA Science Inventory

    This Bulletin is a brief description of the AIR2000 technology developed by KSE, Inc., of Amherst, MA. The AIR2000 unit treats air streams containing volatile organic compounds (VOCs). The demonstration occurred at the Stamina Mills superfund site in North Smithfield, RI from Aug...

  2. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  3. Efficient Visualization of Document Streams

    NASA Astrophysics Data System (ADS)

    Grčar, Miha; Podpečan, Vid; Juršič, Matjaž; Lavrač, Nada

    In machine learning and data mining, multidimensional scaling (MDS) and MDS-like methods are extensively used for dimensionality reduction and for gaining insights into overwhelming amounts of data through visualization. With the growth of the Web and activities of Web users, the amount of data not only grows exponentially but is also becoming available in the form of streams, where new data instances constantly flow into the system, requiring the algorithm to update the model in near-real time. This paper presents an algorithm for document stream visualization through a MDS-like distance-preserving projection onto a 2D canvas. The visualization algorithm is essentially a pipeline employing several methods from machine learning. Experimental verification shows that each stage of the pipeline is able to process a batch of documents in constant time. It is shown that in the experimental setting with a limited buffer capacity and a constant document batch size, it is possible to process roughly 2.5 documents per second which corresponds to approximately 25% of the entire blogosphere rate and should be sufficient for most real-life applications.

  4. Streaming potential measurements of biosurfaces

    NASA Technical Reports Server (NTRS)

    Van Wagenen, R. A.; Andrade, J. D.; Hibbs, J. B., Jr.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the electrokinetic region of the cell periphery. This approach is feasible for cell lines propagated in in-vitro cell cultures in monolayer form. The advantage of this system is that cells may be evaluated in the living state atttached to a substrate; it is not necessary to subject the cells to enzymatic, chemical, or mechanical trauma required to obtain monodisperse suspensions which are then normally evaluated by microelectrophoresis. In this manner, it should be possible to study the influence of substrate and environmental factors on the charge density and potential at the cell periphery. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of borosilicate capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming-potential measurements is discussed. The electrokinetic potential of BALB/c 3T12 fibroblasts has been quantified as a function of pH, ionic strength, glutaraldehyde fixation, and Giemsa staining.

  5. Optimized Predictors For Data Streams

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Smith, L. A.

    An algorithm for optimizing local predictors constructed from data streams is dis- cussed, focusing on questions of efficiency, accuracy, and the duration of observations required for profitable application. Our approach considers the real-time selection of a learning set, extracted from a data source where the sampling rate is so large that re- taining and processing all observations is impractical (i.e. a data stream). Our refined learning set selectively covers those regions of state space which contribute most to the accurate prediction of the underlying dynamical system. The approach of Smith (Phil. Trans. R. Soc. Lond. A 348, 371-381, 1994) is extended to better include noisy observations and the internal consistency of the estimated model. Our approach is contrasted with the traditional algorithms in which the learning set is uniformly dis- tributed with respect to the invariant measure of the system (i.e. 'uniform on the at- tractor', if such a thing exists); the refined data set is adapted to the local curvature and the local data density on the attractor. The method is discussed in the context of local polynomial prediction as well as analogue prediction. It is illustrated on low di- mensional analytical examples; potential geophysical applications (and restrictions) are discussed.

  6. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  7. RAT CARDIOVASCULAR DYSFUNCTION PRIOR TO DEATH DURING EXPOSURE TO CONCENTRATED AMBIENT AIR PARTICLES. (R825242)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. GCN: a gaseous Galactic halo stream?

    NASA Astrophysics Data System (ADS)

    Jin, Shoko

    2010-10-01

    We show that a string of HI clouds that form part of the high-velocity cloud complex known as GCN is a probable gaseous stream extending over more than 50° in the Galactic halo. The radial velocity gradient along the stream is used to deduce transverse velocities as a function of distance, enabling a family of orbits to be computed. We find that a direction of motion towards the Galactic disc coupled with a mid-stream distance of ~20kpc provides a good match to the observed sky positions and radial velocities of the HI clouds comprising the stream. With an estimated mass of 105Msolar, its progenitor is likely to be a dwarf galaxy. However, no stellar counterpart has been found amongst the currently known Galactic dwarf spheroidal galaxies or stellar streams and the exact origin of the stream is therefore currently unknown.

  9. Transitive closure on the imagine stream processor

    SciTech Connect

    Griem, Gorden; Oliker, Leonid

    2003-11-11

    The increasing gap between processor and memory speeds is a well-known problem in modern computer architecture. The Imagine system is designed to address the processor-memory gap through streaming technology. Stream processors are best-suited for computationally intensive applications characterized by high data parallelism and producer-consumer locality with minimal data dependencies. This work examines an efficient streaming implementation of the computationally intensive Transitive Closure (TC) algorithm on the Imagine platform. We develop a tiled TC algorithm specifically for the Imagine environment, which efficiently reuses streams to minimize expensive off-chip data transfers. The implementation requires complex stream programming since the memory hierarchy and cluster organization of the underlying architecture are exposed to the Imagine programmer. Results demonstrate that limited performance of TC is achieved primarily due to the complicated data-dependencies of the blocked algorithm. This work is an ongoing effort to identify classes of scientific problems well-suited for streaming processors.

  10. Information Propagation in Prior-Image-Based Reconstruction

    PubMed Central

    Stayman, J. Webster; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2016-01-01

    Advanced reconstruction methods for computed tomography include sophisticated forward models of the imaging system that capture the pertinent physical processes affecting the signal and noise in projection measurements. However, most do little to integrate prior knowledge of the subject – often relying only on very general notions of local smoothness or edges. In many cases, as in longitudinal surveillance or interventional imaging, a patient has undergone a sequence of studies prior to the current image acquisition that hold a wealth of prior information on patient-specific anatomy. While traditional techniques tend to treat each data acquisition as an isolated event and disregard such valuable patient-specific prior information, some reconstruction methods, such as PICCS[1] and PIR-PLE[2], can incorporate prior images into a reconstruction objective function. Inclusion of such information allows for dramatic reduction in the data fidelity requirements and more robustly accommodate substantial undersampling and exposure reduction with consequent benefits to imaging speed and reduced radiation dose. While such prior-image-based methods offer tremendous promise, the introduction of prior information in the reconstruction raises significant concern regarding the accurate representation of features in the image and whether those features arise from the current data acquisition or from the prior images. In this work we propose a novel framework to analyze the propagation of information in prior-image-based reconstruction by decomposing the estimation into distinct components supported by the current data acquisition and by the prior image. This decomposition quantifies the contributions from prior and current data as a spatial map and can trace specific features in the image to their source. Such “information source maps” can potentially be used as a check on confidence that a given image feature arises from the current data or from the prior and to more

  11. NUTRIENT DYNAMICS IN STREAMS AND THE ROLE OF J-NABS

    SciTech Connect

    Mulholland, Patrick J; Webster, Jackson

    2010-01-01

    Nutrient dynamics in streams has been an important topic of research since the 1960s. Here we review this topic and the significant role played by J-NABS in its development. We limit this review almost exclusively to studies of N and P because these elements have been shown to limit productivity in streams. We use the expression nutrient dynamics for studies that included some measures of biological processes occurring within streams. Prior to the 1970s, instream biological processes were little studied, but through 1985 conceptual advances were made, and 4 types of studies made important contributions to our understanding of instream processes: (1) evidence of increased plant production and decomposition in response to nutrient addition, (2) studies showing a downstream decrease in nutrient concentrations, (3) studies using radioisotopes, and (4) budget studies. Beginning with the first paper printed in its first issue, J-NABS has been the outlet for key papers advancing our understanding of rates and controls of nutrient dynamics in streams. In the first few years, an important review and a conceptual model for conducting experiments to study nutrient dynamics in streams were published in J-NABS. In the 1990s, J-NABS published a number of papers on nutrient recycling within algal communities, the role of the hyporheic zone, the role of spawning fish, and the coupling of data from field {sup 15}N additions and a N-cycling model to provide a synoptic view of N dynamics in streams. Since 2000, J-NABS has published influential studies on nutrient criteria for streams, rates of and controls on nitrification and denitrification, uptake of stream nutrients by riparian vegetation, and nutrient dynamics in urban streams. Nutrient dynamics will certainly continue to be an important topic in J-NABS. Topics needing further study include techniques for studying nutrient dynamics, nutrient dynamics in larger streams and rivers, the ultimate fate of nutrients taken up by plants

  12. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams.

    PubMed

    McDonnell, T C; Sloat, M R; Sullivan, T J; Dolloff, C A; Hessburg, P F; Povak, N A; Jackson, W A; Sams, C

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species' distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions. PMID:26247361

  13. Impacts of Permafrost Degradation on Stream Geomorphology and Sediment Transport in Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Sudman, Z. W.

    2015-12-01

    The McMurdo Dry Valleys (MDV) of Antarctica are a unique ice-free landscape that supports complex, microbially dominated ecosystems despite the harsh environment (<10 cm water equivalent/yr, -18°C mean air temperature). Recent observations suggest that this region is nearing a threshold of rapid landscape change. One such observation was the recent discovery of extensive thermokarst development (permafrost thaw features) along the banks of Crescent Stream in Taylor Valley. In 2012, a large stretch of the West Branch of Crescent Stream had significant bank failures, while the adjacent East Branch was unaffected. The objective of this study was to determine the rate of land surface change occurring on the stream bank, and the impacts of the sediment loading on the stream bed material. Three annually repeated terrestrial LiDAR scans were compared to determine the rates of ground surface change due to thermokarst degradation on the stream bank. The areal extent of the thermokarst was shown to be decreasing, however the average vertical erosion rate remained constant. Field measurements including, pebble counts, fine sediment counts, and sieve samples were collected and analyzed to determine the effects of the introduction of fine sediment on the stream bed material. The bed sediment of the thermokarst-impacted branch was consistently finer than the adjacent unaffected branch. The fine material introduced to the stream altered the bed material composition, which consequently increased the mobility of the of the bed material. These changes imposed on the stream have implications for stream morphology, endemic algal mat communities, and downstream aquatic systems.

  14. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams

    PubMed Central

    Jackson, W. A; Sams, C.

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions. PMID:26247361

  15. Measurement of Stream Discharge by Wading

    USGS Publications Warehouse

    Nolan, K. Michael; Shields, Ronald R.

    2000-01-01

    Most years the U.S. Geological Survey (USGS) makes over 50,000 stream discharge measurements. Over 75 percent of those measurements are made by wading streams and using the velocity-area method. This PowerPoint presentation describes how stream discharge should be measured when wading and using the velocity-area method. It is intended as a learning and reference tool for anyone responsible for making wading discharge measurements.

  16. Can warmwater streams be rehabilitated using watershed-scale standard erosion control measures alone?

    PubMed

    Shields, F Douglas; Knight, Scott S; Cooper, Charles M

    2007-07-01

    Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks ("habitat rehabilitation"). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means > or = 40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat

  17. The hydrology of riparian buffer zones; two case studies in an ephemeral and a perennial stream

    NASA Astrophysics Data System (ADS)

    Rassam, David W.; Fellows, Christine S.; De Hayr, Robert; Hunter, Heather; Bloesch, Philip

    2006-06-01

    Riparian zones can provide a protective buffer between streams and adjacent land-based activities by removing nitrate from shallow groundwater flowing through them. Hydrological factors are an important influence on the effectiveness of riparian buffer zones in reducing pollutant loads delivered to streams. In this paper, we present results from a study of the hydrology of two riparian buffers belonging to an ephemeral and a perennial stream, which are part of a research project to study nitrogen transport and transformation processes in shallow groundwater in South-East Queensland, Australia. The investigation at the ephemeral site has shown that a shallow perched water table forms shortly after stream flow commences as a result of lateral flow from the stream to floodplain; it resides within the carbon-rich root zone and drains off after stream flow ceases. The low head gradient of 1% results in a low flow rate of about 6 cm/day along the floodplain, slow enough to allow effective removal of nitrate via denitrification to occur. The investigation at the perennial site has shown that water table dynamics within the floodplain are dissociated from the up-slope area except during over-bank flood events. During non-event conditions, there is low streamward gradient that results in a base flow component to the stream; the water table depth is about 3.5 m, hence missing most of the carbon-rich soils located close to the soil surface. During flood events, a reverse gradient towards the floodplain is formed; the streamward gradient is re-established after the flood wave passes. The water table fluctuates between 1.8 and 3.5 m under these conditions thus having a higher chance of interacting with more active floodplain sediments. Water stored in the floodplain has a residence time of 2-10 days, providing an opportunity for denitrification to reduce nitrate concentrations prior to water draining back to the stream.

  18. Assessing effects of water abstraction on fish assemblages in Mediterranean streams

    USGS Publications Warehouse

    Benejam, Lluis; Angermeier, Paul L.; Munne, Antoni; García-Berthou, Emili

    2010-01-01

    1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.

  19. Can Warmwater Streams Be Rehabilitated Using Watershed-Scale Standard Erosion Control Measures Alone?

    NASA Astrophysics Data System (ADS)

    Shields, F. Douglas; Knight, Scott S.; Cooper, Charles M.

    2007-07-01

    Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat

  20. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  1. CAMS: OLAPing Multidimensional Data Streams Efficiently

    NASA Astrophysics Data System (ADS)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  2. Feasibility of streaming potential measurements during hydrofracturing

    SciTech Connect

    Wurmstich, B.; Buettgenbach, T.; Morgan, F.D.

    1995-12-31

    A simple model study shows that the onset of hydraulic fracturing and eventually fracture directions may be detected in streaming potential measurements. To model streaming potential responses of hydraulic fracturing, a theory of slowly time-varying electrokinetic phenomena and a self-consistent model to describe rock conductivities in terms of intrinsic rock properties are developed. Measureable streaming potential responses are generated during the hydraulic fracturing process. The fracturing process amplifies the observable streaming potential response by up to one order of magnitude when compared to a similar experiment without fracturing. The resolution of fractures is better in monitoring wells than on the surface.

  3. Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes

    DOEpatents

    Zaczepinski, Sioma; Billimoria, Rustom M.; Tao, Frank; Lington, Christopher G.; Plumlee, Karl W.

    1984-01-01

    Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

  4. Modeling the effects of prior infection on vaccine efficacy

    SciTech Connect

    Smith, D.J.; Forrest, S.; Ackley, D.H.; Perelson, A.S.

    1997-11-01

    We performed computer simulations to study the effects of prior infection on vaccine efficacy. We injected three antigens sequentially. The first antigen, designated the prior, represented a prior infection or vaccination. The second antigen, the vaccine, represented a single component of the trivalent influenza vaccine. The third antigen, the epidemic, represented challenge by an epidemic strain. For a fixed vaccine to epidemic strain cross-reactivities to the vaccine and to the epidemic strains. We found that, for many cross-reactivities, vaccination, when it had been preceded by a prior infection, provided more protection than vaccination alone. However, at some cross-reactivities, the prior infection reduced protection by clearing the vaccine before it had the chance to produce protective memory. The cross-reactivities between the prior, vaccine and epidemic strains played a major role in determining vaccine efficacy. This work has applications to understanding vaccination against viruses such as influenza that are continually mutating.

  5. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    differences in stream morphology, but rather to changes in elevation and associated air temperatures. These results demonstrate strong indirect effects of forest age and valley morphometry on organic matter storage and animal secondary production in streams that is mediated by direct effects associated with the presence or absence of logjams.

  6. Selected flows with free surfaces: Streams and drops

    NASA Astrophysics Data System (ADS)

    Kowalewski, Tomasz A.

    1995-03-01

    The basic purpose of the research described in this article was to develop a non contact method for diagnosing the physical parameters of the free surface of a liquid using drop oscillation analysis. In particular, the purpose is to measure the temperature of an evaporating surface. The realization of this goal has led to the development of new experimental techniques which make it possible to record fast processes using video and digital imaging equipment. Experimental studies of the process of the formation of drops as a result of the controlled breakup of a stream revealed the existence of an additional phase in the process based on the formation of microstreams and microsatellites with micrometer-like dimensions. A comparison of measurement results with Eggers' asymptotic model (23) confirmed the model's basic assumption of the local nature of the final phase in the disintegration of the stream, which at the same time points to the existence of a number of discrepancies which provide evidence of the limitations of this approximation. The next part of the article presents the results of observations of the instability of streams of liquid caused by its evaporation. In an attempt to analyze the mechanisms which initiate the turbulence of the evaporating surface, the author focused on surface tension gradients as an essential factor in the destabilization of small-diameter streams. The author also described the occurrence of a number of new phenomena in the destabilization of a stream, including the separation of surface fragments, their stabilization by the flow of vapor, and a quasistable change in the trajectory of the stream. The author also developed an experimental method which makes it possible to detect and produce a precise description of the deformation of drops. Measurements of the oscillations of small drops in the air led to the development of a complete non-linear model of the oscillations of a viscous drop and made it possible to verify simplified

  7. THERMAL HETEROGENEITY, STREAM CHANNEL MORPHOLOGY, AND SALMONID ABUNDANCE IN NORTHEASTERN OREGON STREAMS

    EPA Science Inventory

    Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...

  8. Event-based prediction of stream turbidity using a combined cluster analysis and classification tree approach

    NASA Astrophysics Data System (ADS)

    Mather, Amanda L.; Johnson, Richard L.

    2015-11-01

    Stream turbidity typically increases during streamflow events; however, similar event hydrographs can produce markedly different event turbidity behaviors because many factors influence turbidity in addition to streamflow, including antecedent moisture conditions, season, and supply of turbidity-causing materials. Modeling of sub-hourly turbidity as a function of streamflow shows that event model parameters vary on an event-by-event basis. Here we examine the extent to which stream turbidity can be predicted through the prediction of event model parameters. Using three mid-sized streams from the Mid-Atlantic region of the U.S., we show the model parameter set for each event can be predicted based on the event characteristics (e.g., hydrologic, meteorologic and antecedent moisture conditions) using a combined cluster analysis and classification tree approach. The results suggest that the ratio of beginning event discharge to peak event discharge (an estimate of the event baseflow index), as well as catchment antecedent moisture, are important factors in the prediction of event turbidity. Indicators of antecedent moisture, particularly those derived from antecedent discharge, account for the majority of the splitting nodes in the classification trees for all three streams. For this study, prediction of turbidity during streamflow events is based upon observed data (e.g., measured streamflow, precipitation and air temperature). However, the results also suggest that the methods presented here can, in future work, be used in conjunction with forecasts of streamflow, precipitation and air temperature to forecast stream turbidity.

  9. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    SciTech Connect

    Lomov, I; Liu, B; Georgevich, V; Antoun, T

    2007-07-31

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  10. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Liu, Benjamin; Georgevich, Vlad; Antoun, Tarabay

    2007-12-01

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  11. Numerical simulation of interaction of hypervelocity particle stream with a target

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Liu, Benjamin; Georgevich, Vlad; Antoun, Tarabay

    2007-06-01

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  12. Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Barnhart, B. L.; Knouft, J. H.; Stewart, I. T.; Maurer, E. P.; Letsinger, S. L.; Whittaker, G. W.

    2014-12-01

    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to

  13. Simulation of multistream plate-fin heat exchangers of an air separation unit

    NASA Astrophysics Data System (ADS)

    Boehme, R.; Parise, J. A. R.; Pitanga Marques, R.

    2003-06-01

    Hot and cold reversible heat exchangers of an air separation unit are simulated. Five fluid streams exchange heat with six fluid streams in parallel and counter flow. The numerical method employed divides the heat exchanger in a number of sections, for which fluid properties, capacity rates and heat transfer coefficients are considered constant. Single and two-phase streams are taken into account. Results obtained from the model are compared with field data.

  14. Prior Learning Assessment in Canada: A Credit to Workforce Development.

    ERIC Educational Resources Information Center

    Burke, Roberta; Van Kleef, Joy

    1997-01-01

    Describes the implementation of Prior Learning Assessment (PLA) at many educational institutions across Canada. Suggests that PLA should be incorporated into every skills training and upgrading program. (JOW)

  15. Prior knowledge in recalling arguments in bioethical dilemmas

    PubMed Central

    Schmidt, Hiemke K.; Rothgangel, Martin; Grube, Dietmar

    2015-01-01

    Prior knowledge is known to facilitate learning new information. Normally in studies confirming this outcome the relationship between prior knowledge and the topic to be learned is obvious: the information to be acquired is part of the domain or topic to which the prior knowledge belongs. This raises the question as to whether prior knowledge of various domains facilitates recalling information. In this study 79 eleventh-grade students completed a questionnaire on their prior knowledge of seven different domains related to the bioethical dilemma of prenatal diagnostics. The students read a text containing arguments for and arguments against prenatal diagnostics. After 1 week and again 12 weeks later they were asked to write down all the arguments they remembered. Prior knowledge helped them recall the arguments 1 week (r = 0.350) and 12 weeks (r = 0.316) later. Prior knowledge of three of the seven domains significantly helped them recall the arguments 1 week later (correlations between r = 0.194 and 0.394). Partial correlations with interest as a control item revealed that interest did not explain the relationship between prior knowledge and recall. Prior knowledge of different domains jointly supports the recall of arguments related to bioethical topics. PMID:26441702

  16. Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream

    USGS Publications Warehouse

    Butler, J.J., Jr.; Zlotnik, V.A.; Tsou, M.-S.

    2001-01-01

    Commonly used analytical approaches for estimation of pumping-induced drawdown and stream depletion are based on a series of idealistic assumptions about the stream-aquifer system. A new solution has been developed for estimation of drawdown and stream depletion under conditions that are more representative of those in natural systems (finite width stream of shallow penetration adjoining an aquifer of limited lateral extent). This solution shows that the conventional assumption of a fully penetrating stream will lead to a significant overestimation of stream depletion (> 100 %) in many practical applications. The degree of overestimation will depend on the value of the stream leakance parameter and the distance from the pumping well to the stream. Although leakance will increase with stream width, a very wide stream will not necessarily be well represented by a model of a fully penetrating stream. The impact of lateral boundaries depends upon the distance from the pumping well to the stream and the stream leakance parameter. In most cases, aquifer width must be on the order of hundreds of stream widths before the assumption of a laterally infinite aquifer is appropriate for stream-depletion calculations. An important assumption underlying this solution is that stream-channel penetration is negligible relative to aquifer thickness. However, an approximate extension to the case of nonnegligible penetration provides reasonable results for the range of relative penetrations found in most natural systems (up to 85%). Since this solution allows consideration of a much wider range of conditions than existing analytical approaches, it could prove to be a valuable new tool for water management design and water rights adjudication purposes.

  17. Incremental learning from stream data.

    PubMed

    He, Haibo; Chen, Sheng; Li, Kang; Xu, Xin

    2011-12-01

    Recent years have witnessed an incredibly increasing interest in the topic of incremental learning. Unlike conventional machine learning situations, data flow targeted by incremental learning becomes available continuously over time. Accordingly, it is desirable to be able to abandon the traditional assumption of the availability of representative training data during the training period to develop decision boundaries. Under scenarios of continuous data flow, the challenge is how to transform the vast amount of stream raw data into information and knowledge representation, and accumulate experience over time to support future decision-making process. In this paper, we propose a general adaptive incremental learning framework named ADAIN that is capable of learning from continuous raw data, accumulating experience over time, and using such knowledge to improve future learning and prediction performance. Detailed system level architecture and design strategies are presented in this paper. Simulation results over several real-world data sets are used to validate the effectiveness of this method. PMID:22057060

  18. Multicellular Streaming in Solid Tumours

    NASA Astrophysics Data System (ADS)

    Kas, Josef

    As early as 400 BCE, the Roman medical encyclopaedist Celsus recognized that solid tumours are stiffer than surrounding tissue. However, cancer cell lines are softer, and softer cells facilitate invasion. This paradox raises several questions: Does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumour? If the latter, how can a more rigid tissue contain more soft cells? Here we show that in primary tumour samples from patients with mammary and cervix carcinomas, cells do exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissue. Mechanical modelling based on patient data reveals that, surprisingly, tumours with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.

  19. Prediction of mountain stream morphology

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Merritt, David

    2005-08-01

    We use a large and diverse data set from mountain streams around the world to explore relationships between reach-scale channel morphology and control variables. The data set includes 177 step-pool reaches, 44 plane-bed reaches, and 114 pool-riffle reaches from the western United States, Panama, and New Zealand. We performed several iterations of stepwise discriminant analysis on these data. A three-variable discriminant function using slope (S), D84, and channel width (w) produced an error rate of 24% for the entire data set. Seventy percent of plane-bed reaches were correctly classified (16% incorrectly classified as pool-riffle and 14% incorrectly classified as step-pool). Sixty-seven percent of pool-riffle channels were correctly classified (31% incorrectly classified as plane-bed and 2% as step-pool). Eighty-nine percent of step-pool reaches were correctly classified (9% incorrectly classified as plane-bed and 2% as pool-riffle). The partial R2 values and F tests indicate that S is by far the most significant single explanatory variable. Comparison of the eight discriminant functions developed using different data sets indicates that no single variable is present in all functions, suggesting that the discriminant functions are sensitive to the specific stream reaches being analyzed. However, the three-variable discriminant function developed from the entire data set correctly classified 69% of the 159 channels included in an independent validation data set. The ability to accurately classify channel type in other regions using the three-variable discriminant function developed from the entire data set has important implications for water resources management, such as facilitating prediction of channel morphology using regional S-w-D84 relations calibrated with minimal field work.

  20. Photocatalytic oxidation of gas-phase BTEX-contaminated waste streams

    SciTech Connect

    Gratson, D A; Nimlos, M R; Wolfrum, E J

    1995-03-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been exploring heterogeneous photocatalytic oxidation (PCO) as a remediation technology for air streams contaminated with benzene, toluene, ethyl-benzene, and xylenes (BTEX). This research is a continuation of work performed on chlorinated organics. The photocatalytic oxidation of BTEX has been studied in the aqueous phase, however, a study by Turchi et al. showed a more economical system would involve stripping organic contaminants from the aqueous phase and treating the resulting gas stream. Another recent study by Turchi et al. indicated that PCO is cost competitive with such remediation technologies as activated carbon adsorption and catalytic incineration for some types of contaminated air streams. In this work we have examined the photocatalytic oxidation of benzene using ozone (0{sub 3}) as an additional oxidant. We varied the residence time in the PCO reactor, the initial concentration of the organic pollutant, and the initial ozone concentration in a single-pass reactor. Because aromatic hydrocarbons represent only a small fraction of the total hydrocarbons present in gasoline and other fuels, we also added octane to the reaction mixture to simulate the composition of air streams produced from soil-vapor-extraction or groundwater-stripping of sites contaminated with gasoline.