Science.gov

Sample records for air stripping technology

  1. APPLICATIONS ANALYSIS REPORT: TOXIC TREATMENTS, IN-SITU STEAM/HOT-AIR STRIPPING TECHNOLOGY

    EPA Science Inventory

    This document is an evaluation of the performance of the Toxic Treatments (USA), Inc., (TTUSA) in situ steam/hot-air stripping technology and its applicability as an on-site treatment technique for hazardous waste site soil cleanup of volatile and semivolatile contaminants. Both ...

  2. Toxic treatments 'in-situ' steam/hot-air stripping technology. Applications analysis report. Rept. for Jun 89-Jun 90

    SciTech Connect

    Jackson, T.

    1991-03-01

    A SITE Demonstration of the Toxic Treatment (USA) Inc. in-situ steam/hot-air stripping technology (Detoxifier) was conducted beginning in the fall of 1989 at the GATX Annex Terminal site located in San Pedro, CA. The chemical storage and transfer facility was contaminated with various solvents due to spillage and a fire. Contamination extended into the salt water table (1.8 meters). Based on the SITE Demonstration and other data, it was concluded that 85% of the volatile organic compounds and 50% of the semivolatile organic compounds were removed from the soil. Fugitive air emissions are very low, and lateral and downward migration of contaminants due to the treatment were minimal. Finally, it was concluded that this in-situ process is cost competitive.

  3. Liability and the marketing of high-tech law enforcement technologies: the air bag and barrier strip stories

    NASA Astrophysics Data System (ADS)

    Overlin, Trudy K.

    1999-01-01

    This paper will present information regarding the fate of technologies developed in the national laboratory, which were designed to meet a specific law enforcement user need, but were or were not successful in making it to market. The two examples, one successful and one not completely successful, will be presented in a perspective to provide discussion as too why their individual fates were as such. The two examples, air bag restraint and barriers strip, both law enforcement technologies, were both designed to meet a targeted need, and yet their success was different. One has been licensed to an industry partner and is currently on the shelf for purchase. The other is awaiting a licensee and its future is still undetermined. The purpose of this paper is to discuss the specific paths these technologies have taken to market, and to demonstrate that even when researchers have a good idea, their technology may never make it to the shelf. This paper also addresses some of the pitfalls of what occurs when researchers are too distant from the user community and what that distance can do to a successful or unsuccessful technology. Understanding this process is essential to the user communities that anticipate the market of technologies that they often help assist with or provide insight to. It is also important for users and manufacturers to understand why the research and development process can take years, and why some things do not fully actualize in accepted technologies.

  4. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  5. Oral strip technology: overview and future potential.

    PubMed

    Dixit, R P; Puthli, S P

    2009-10-15

    Over the recent past, many of the research groups are focusing their research on this technology. Amongst the plethora of avenues explored for rapid drug releasing products, Oral Strip Technology (OST) is gaining much attention. The advantages of OST are the administration to pediatric and geriatric patient population where the difficulty of swallowing larger oral dosage forms is eliminated. This technology has been used for local action, rapid release products and for buccoadhesive systems that are retained for longer period in the oral cavity to release drug in controlled fashion. OST offers an alternate platform for molecules that undergo first pass metabolism and for delivery of peptides. The review article is an overview of OST encompassing materials used in OST, critical manufacturing aspects, applications, commercial technologies and future business prospects of this technology.

  6. Feasibility and energetic evaluation of air stripping for bioethanol production.

    PubMed

    Schläfle, Sandra; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2017-05-01

    Stripping of mashes with air as stripping gas and low ethanol contents between 3 and 5wt% was investigated in terms of its suitability for continuous bioethanol production. Experiments in a Blenke cascade system were carried out and the results were compared with values obtained from theoretical vapour-liquid-equilibrium calculations. The whole stripping process was energetically evaluated by a simulation in ChemCAD and compared to conventional distillation. Therefore several parameters such as temperature, air volume flow and initial ethanol load of the mash were varied. Air stripping was found to be a suitable separation method for bioethanol from mashes with low concentrations. However, energetic aspects have to be considered, when developing a new process.

  7. Cascade air-stripping system for removal of low and semi-volatile organic contaminants

    SciTech Connect

    Jang, Won.

    1989-01-01

    Many hazardous waste sites have been known to have groundwaters contaminated with low volatile, hazardous compounds such as bromoform 1,1,2,2-tetrachloroethane, 1,2-dibromo-3-chloropropane (DBCP), napthalene, and polychlorinated biphenyls (PCBs). In addition, a large number of public water supplies have been reported to have taste and odor problems in drinking water, which are attributed primarily to naturally occurring compounds, such as 2-methylisoborneol (MIB), geosmin, etc. These classes of compounds have very low Henry's Constant, H{sub c}, in the range of 1 to 50 atm. Air-stripping in countercurrent packed towers is a well accepted treatment process for removing volatile organic chemicals (VOCs) from water. The USEPA has identified packed countercurrent air-stripping as not only the least-cost, but also one of the best available technologies for the removal of VOCs. However, the economic viability of this process is limited to volatile compounds of H{sub c} value greater than SO atm. A novel modification of the conventional countercurrent air-stripping process, introduced as cascade air-stripping was proposed for cost effective removal of these classes of compounds from water and at hazardous waste spill-sites. The main objectives of this study were to demonstrate the concept of cascade air-stripping; to compare cascade air-stripping with conventional air-stripping under identical conditions; and to verify the hypothesis that the cascade system is superior to the conventional system at the pilot and prototype scales. Results of the pilot and prototype study showed that the cascade airstrip ping system was a viable and economical approach to remove low and semi-volatile organic compounds from water. The cascade system consistently showed higher removals than the conventional system for both pilot and prototype scale study.

  8. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support

  9. REMEDIATION OF MTBE FROM DRINKING WATER: AIR STRIPPING FOLLOWED BY OFF-GAS ADSORPTION

    EPA Science Inventory

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-ga...

  10. DEMONSTRATION BULLETIN: IN-SITU STEAM/HOT AIR SOIL STRIPPING TOXIC TREATMENT (USA) INC.

    EPA Science Inventory

    This technology uses steam and hot air to strip volatile organics from contaminated soil. The treatment equipment is mobile and treats the soil in-situ without need for soil excavation or transportation. The organic contaminants volatilized from the soil are condensed and col...

  11. In-Well Air Stripping/Bioventing Study at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2012-08-30

    to determine the feasibility of incorporating in-well air stripping systems into the design of bioventing systems to effectively extend bioventing to...Force. This final report describes the Coupled In-Well Air Stripping/Bioventing Study conducted at Tyndall Air Force Base, Florida; the designs of the...the design of bioventing systems to effectively extend bioventing and simultaneously remediate hydrocarbon contamination in both the vadose and

  12. Air-rotor stripping and enamel demineralization in vitro.

    PubMed

    Twesme, D A; Firestone, A R; Heaven, T J; Feagin, F F; Jacobson, A

    1994-02-01

    This investigation sought to evaluate the effects of air-rotor stripping on the susceptibility of human enamel to demineralization using an in vitro caries model. Crowns of extracted premolar teeth were abraded (0.5 mm) on one proximal surface by air-rotor stripping. The teeth were placed in a demineralizing gel and removed at various intervals up to 336 hours. Lesion depth and mineral content on the abraded and intact surfaces was measured with contact microradiography and computerized image analysis (double window technique). For each time interval measured, lesion depth was greater (p < 0.05) on the abraded surfaces and mineral density was significantly less (p < 0.05). In a second experiment, the effect of fluoride supplements (dentifrice or topical gel) were examined on abraded and intact enamel surfaces that were exposed to the acid gel for 192 hours. The data showed that fluoride treatments significantly reduced lesion penetration on intact and abraded surfaces compared with a no fluoride group. Lesion depth on the abraded, fluoride treated surfaces was significantly greater (p < 0.05) than on the intact untreated surfaces. No significant differences (p < 0.05) were apparent between the fluoride treatment groups with respect to lesion depth and mineral density within the lesion. These results suggest that air-rotor stripping significantly increases the susceptibility of proximal enamel surfaces to demineralization. As a result, the clinician should use caution in the application of this technique until the long-term effects on caries susceptibility have been determined.

  13. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 212 citations and includes a subject term index and title list.)

  14. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 225 citations and includes a subject term index and title list.)

  15. Air stripping. January 1980-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Feb 92

    SciTech Connect

    Not Available

    1992-02-01

    The bibliography contains citations concerning the application of air stripping techniques to water treatment, including groundwater decontamination and wastewater purification. The advantages and disadvantages of air stripping over other water treatment processes are discussed. Cleanup of the organic emissions generated by air stripping is also considered. The primary applications of air stripping are in groundwater and soil cleanup. (Contains 58 citations with title list and subject index.)

  16. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  17. INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...

  18. The odour of digested sewage sludge--determination and its abatement by air stripping.

    PubMed

    Winter, P; Jones, N; Asaadi, M; Bowman, L

    2004-01-01

    This paper describes a project to investigate the odour of sewage sludge after anaerobic digestion. The impact of air stripping on the odour of liquid sludge and on the quality of the dewatered product was evaluated at a full-scale sludge treatment installation. A continuous and a batch air-stripping mode were tested. Odour samples were collected during air stripping from the liquid sludge and from the biosolids surface during long term storage. The biosolids were also analysed for hedonic tone and for their potential odour expressed as an odour unit per unit mass. The odour emission profiles for continuous and batch air stripping demonstrated a reduction in the overall (time weighted) emissions during a 24 hr-period compared with emissions from the quiescent liquid storage tank. The averaged specific odour emission rate (Esp) of the biosolids derived from the continuous process was only 13% of the Esp of the biosolids derived from unaerated liquid sludge during the first month of storage. The results of the total potential odour and the hedonic tone of the biosolids underpin the beneficial effects of the air stripping. Odour dispersion modelling showed a noticeable reduction in overall odour impact from the sludge centre when air stripping was applied. The reduction was primarily associated with the reduced odour from stockpiled biosolids. The continuous air-stripping mode appeared to provide the greatest benefits in terms of odour impact from site operations.

  19. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  20. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  1. Using in-situ hot air/steam stripping (HASS) of hydrocarbons in soils

    SciTech Connect

    La Mori, P.N.

    1994-12-31

    The remediation of soils containing volatile (VOC) and semi-volatile (SVC) hydrocarbons is most desirably accomplished in-situ, i.e., without removal of the contaminated soils from the ground. This approach mitigates the environmental problem, i.e., does not transport it to another location, and when properly applied, does not impact on the local environment during remediation NOVATERRA has demonstrated commercially an in-situ, hot air/steam stripping (HASS) technology to remove VOC and SVC from soils both in the vadose and saturated zones. The technology consists of a drill tower which injects and mixes steam and hot air continuously into the soil below ground and a method to immediately capture all vapors escaping to the surface and remove the vaporized VOC/SVC using condensation and carbon beds. The air can be recompressed and recycled. The condensed liquid containing hydrocarbons is purified by distillation. The recovered hydrocarbons can be destroyed or recycled. The technology has successfully removed various chlorinated aliphatics and aromatics, glycol ethers, phthalates, polyaromatic compounds, ketones, petroleum hydrocarbons and many other compound types from sand to clay soils to risk based standards; e.g. 1 increased cancer risk in 1,000,000 using currently acceptable risk assessment standards.

  2. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  3. Clean Air Technology Center Products

    EPA Pesticide Factsheets

    The Clean Air Technology Center provides resources for emerging and existing air pollution prevention and control technologies and provides public access to data and information on their use, effectiveness and cost.

  4. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications.

  5. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  6. Post-test evaluation of the geology, geochemistry, microbiology, and hydrology of the in situ air stripping demonstration site at the Savannah River Site

    SciTech Connect

    Eddy Dilek, C.A.; Looney, B.B.; Hazen, T.C.; Nichols, R.L.; Fliermans, C.B.; Parker, W.H.; Dougherty, J.M.; Kaback, D.S.; Simmons, J.L.

    1993-07-01

    A full-scale demonstration of the use of horizontal wells for in situ air stripping for environment restoration was completed as part of the Savannah River Integrated Demonstration Program. The demonstration of in situ air stripping was the first in a series of demonstrations of innovative remediation technologies for the cleanup of sites contaminated with volatile organic contaminants. The in situ air stripping system consisted of two directionally drilled wells that delivered gases to and extract contamination from the subsurface. The demonstration was designed to remediate soils and sediments in the unsaturated and saturated zones as well as groundwater contaminated with volatile organic compounds. The demonstration successfully removed significant quantities of solvent from the subsurface. The field site and horizontal wells were subsequently used for an in situ bioremediation demonstration during which methane was added to the injected air. The field conditions documented herein represent the baseline status of the site for evaluating the in situ bioremediation as well as the post-test conditions for the in situ air stripping demonstration. Characterization activities focused on documenting the nature and distribution of contamination in the subsurface. The post-test characterization activities discussed herein include results from the analysis of sediment samples, three-dimensional images of the pretest and post-test data, contaminant inventories estimated from pretest and post-test models, a detailed lithologic cross sections of the site, results of aquifer testing, and measurements of geotechnical parameters of undisturbed core sediments.

  7. Preliminary Evaluation of the Control of Microbial Fouling by Laboratory and Pilot-Scale Air-Stripping Columns

    DTIC Science & Technology

    1985-03-01

    AD-A186 558 TECHNICAL REPORT AD NATICK/TR-87/039 PRELIMINARY EVALUATION OF THE CONTROL OF MICROBIAL FOULING BY LABORATORY AND PILOT-SCALE AIR ...Scale Air -Stripping Columns. 12. PERSONAL AUTHOR(S) Darrell Seekins, Morris Rogers 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year...TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP TSUB-GROUP Air -Stripping Microbial Fouling Aeration Biogrowth Control

  8. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  9. Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate.

    PubMed

    Campos, Juacyara Carbonelli; Moura, Denise; Costa, Ana Paula; Yokoyama, Lidia; Araujo, Fabiana Valeria da Fonseca; Cammarota, Magali Christe; Cardillo, Luigi

    2013-01-01

    The objective of this research was to evaluate the air stripping technology for the removal of ammonia from landfill leachates. In this process, pH, temperature, airflow rate and operation time were investigated. Furthermore, the relationship between the leachate alkalinity and the ammonia removal efficiency during the process was studied. The leachate used in the tests was generated in the Gramacho Municipal Solid Waste Landfill (Rio de Janeiro State, Brazil). The best results were obtained with a temperature of 60(o)C, and they were independent of the pH value for 7 h of operation (the ammonia nitrogen removal was greater than 95%). A strong influence of the leachate alkalinity on the ammonia nitrogen removal was observed; as the alkalinity decreased, the ammonia concentration also decreased because of prior CO2 removal, which increased the pH and consequently favored the NH3 stripping. The air flow rate, in the values evaluated (73, 96 and 120 L air.h(-1).L(-1) of leachate), did not influence the results.

  10. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  11. Membrane air stripping: A process for removal of organics from aqueous solutions

    SciTech Connect

    Mahmud, H.; Kumar, A.; Narbaitz, R.M.; Matsuura, T.

    1998-10-01

    The membrane air-stripping (MAS) process using microporous polypropylene hollow fiber membranes has shown potential for the removal of volatile organics from aqueous streams over conventional treatment processes, particularly in reducing the size of the equipment. This paper reviews the theoretical aspects and experimental investigations on the performance of these membranes in terms of overall mass transfer capabilities in the removal of organics from aqueous solutions. The reported findings of the effect of pH, ozone, chlorine, influence of packing density and possible fouling on the performance of these hollow fibers membranes are presented. The fate of the stripped air is discussed. Other possible applications as well as the future research needs are highlighted, along with critical assessment of the reported work.

  12. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  13. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping.

    PubMed

    Ippersiel, D; Mondor, M; Lamarche, F; Tremblay, F; Dubreuil, J; Masse, L

    2012-03-01

    The practice of intensive animal production in certain areas has resulted in excessive manure production for the available regional land base. Consequently, there is a need to develop treatment technologies to recover the valuable nutrients that manure contains so that the resulting product can be transported and used as fertilizer on agricultural land. The project presented here used electrodialysis in a dilution/concentration configuration to transfer the manure ammonia in the diluate solution by electromigration to an adjacent solution separated by an ion-exchange membrane under the driving force of an electrical potential. Then, air stripping from the electrodialysis-obtained concentrate solution without pH modification was used to isolate the ammonia in an acidic solution. An optimal process operating voltage of 17.5 V was first determined on the basis of current efficiency and total energy consumption. During the process, the swine manure pH varied from 8.5 to 8.2, values favourable for NH(4)(+) electromigration. Total ammonia nitrogen reached 21,352 mg/L in the concentrate solution, representing approximately seven times the concentration in the swine manure. Further increases in concentration were limited by water transfer from the diluate solution due to electroosmosis and osmosis. Applying vacuum to the concentrate reservoir was found to be more efficient than direct concentrate solution aeration for NH(3) recuperation in the acid trap, given that the ammonia recuperated under vacuum represented 14.5% of the theoretical value of the NH(3) present in the concentrate solution as compared to 6.2% for aeration. However, an excessively low concentrate solution pH (8.6-8.3) limited NH(3)volatilization toward the acid trap. These results suggest that the concentrate solution pH needs to be raised to promote the volatile NH(3) form of total ammonia nitrogen.

  14. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  15. TECHNOLOGY ASSESSMENT OF SOIL VAPOR EXTRACTION AND AIR SPARGING

    EPA Science Inventory

    Air sparging, also called "in situ air stripping and in situ volatilization" injects air into the saturated zone to strip away volatile organic compounds (VOCs) dissolved in groundwater and adsorbed to soil. hese volatile contaminants transfer in a vapor phase to the unsaturated ...

  16. Water treatment: Air stripping. December 1981-July 1989 (Citations from the Selected Water Resources Abstracts data base). Report for December 1981-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations concerning the application of air stripping techniques to water treatment, including ground-water decontamination and waste-water purification. The advantages and disadvantages of air stripping over other water-treatment processes are discussed. Cleanup of the organic emissions generated by air stripping is also considered. The primary applications of air stripping are in ground-water and soil cleanup. Other water treatment processes are discussed in separate bibliographies. (Contains 74 citations fully indexed and including a title list.)

  17. About the Clean Air Technology Center

    EPA Pesticide Factsheets

    The Clean Air Technology Center provides resources for emerging and existing air pollution prevention and control technologies and provides public access to data and information on their use, effectiveness and cost.

  18. SEM and profilometric evaluation of enamel surface after air rotor stripping--an in vitro study.

    PubMed

    Mikulewicz, Marcin; Szymkowski, Janusz; Matthews-Brzozowska, Teresa

    2007-01-01

    The aim of the study was to evaluate roughness of the enamel surface after Air Rotor Stripping (ARS). Thirty interproximal surfaces of human premolars were used as the biological material. Research was conducted using a contact profilometer and a scanning electron microscope (SEM). Sets of 3D parameters and topographical maps of enamel surface before and after ARS treatment were used to define roughness of the surfaces. SEM images of stripped surfaces were taken with microscopic magnification of 100x and 1000x. The data revealed a general roughness of enamel arising after ARS procedure. Summarized values of chosen parameters increased after ARS procedure compared to the values of untreated enamel. Topographical maps showed areas of both well polished and badly polished enamel. In conclusion, comparison of the mean values of the measured parameters of ARS treated enamel surfaces indicated that roughness of the enamel arises after ARS, but it must be emphasized that on every evaluated surface well polished areas were also present. Moreover, the well polished areas were smoother than those on the untreated enamel surfaces. Contact fluoridation and improved oral hygiene after ARS appear to be necessary because of the presence of areas of increased roughness on evaluated surfaces.

  19. Use of an air-fluid exchange system to promote graft adhesion during Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Meisler, David M; Dupps, William J; Covert, Douglas J; Koenig, Steven B

    2007-05-01

    Dislocation of the graft is a well-recognized complication of Descemet's stripping automated endothelial keratoplasty (DSAEK). We describe a technique to promote adhesion of the graft during DSAEK using an anterior chamber air-fluid infusion and exchange for direct control of the pressure and medium used to tamponade the graft against the host stroma.

  20. In-well air stripping/bioventing study at Tyndall Air Force Base, Florida. Final technical report, 13 September 1991-30 November 1995

    SciTech Connect

    Alleman, B.C.

    1996-01-03

    This study was conducted to determine the feasibility of incorporating in-well air stripping systems into the design of bioventing systems to effectively extend bioventing to simultaneously remediate hydrocarbon contamination in both the vadose and saturated zones. The field study was conducted for 12 months between June 1994 and June 1995. The data demonstrated that the in-well air stripping systems were able to circulate the groundwater throughout the 25-foot radius of influence. The well systems were shown to be effective at remediating the benzene, toluene, ethylbenzene, and xylenes (BTEX) of the hydrocarbon contamination in the groundwater within the treatment cell. Conclusions made included: (1) the air lift pumping mechanism was capable of circulating groundwater in the aquifer; (2) the volatile compounds were effectively stripped from the groundwater; (3) anoxic groundwater entering the well was sufficiently oxygenated during air lift; (4) the residual oxygen in the off-gas from the in-well air stripping system was sufficient for supporting bioventing in the vadose zone; (5) volatile compounds in the off-gas from the well system were degraded in the vadose zone through bioventing when the mass loading did not exceed the degradative capacity of the microorganisms; and (6) bioventing was very effective for remediating residual hydrocarbon contamination in the vadose zone.

  1. Characterization of the geology, geochemistry, hydrology and microbiology of the in-situ air stripping demonstration site at the Savannah River Site

    SciTech Connect

    Eddy, C.A.; Looney, B.B.; Dougherty, J.M.; Hazen, T.C.; Kaback, D.S.

    1991-05-01

    The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of the demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.

  2. Air Force Research Laboratory Technology Milestones 2008

    DTIC Science & Technology

    2008-01-01

    Air Force Research Laboratory ( AFRL ) is the only science and technology (S&T) organization for the Air Force . Accordingly, AFRL fulfills a mission to...Readership survey is sponsored by the Air Force Research Laboratory ( AFRL ), Wright-Patterson Air Force Base, Ohio. Thank you in advance for your...Base Defense AFRL researchers participated in the Robotic Physical Security Experiment, conducted at

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR AIR POLLUTION CONTROL TECHNOLOGIES: FINAL REPORT

    EPA Science Inventory

    The technical objective of the Environmental Technology Verification (ETV) Program's Air Pollution Control Technology (APCT) Center is to verify environmental technology performance by obtaining objective quality-assured data, thus providing potential purchasers and permitters wi...

  4. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  5. Next-generation air measurement technologies | Science ...

    EPA Pesticide Factsheets

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  6. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  7. Robotic sensors for aircraft paint stripping

    NASA Astrophysics Data System (ADS)

    Weniger, Richard J.

    1990-10-01

    Aircraft of all types need to have paint routinely removed from their outer surfaces. Any method needs to be controlled to remove all the paint and not damage the surface of the aircraft. Human operators get bored with the monotonous task of stripping paint from an aircraft and thus do not control the process very well. This type of tedious operation tends itself to robotics. A robot that strips paint from aircraft needs to have feedback as to the state of the stripping process, its location in respect to the aircraft, and the availability of stripping material. This paper describes the sensors used on the paint stripping robot being developed for the United States Air Force's Manufacturing Technology Program. Particular attention is given to the paint sensor which is the feedback element for determining the state of the stripping process.

  8. Disruptive Innovation in Air Measurement Technology: Reality ...

    EPA Pesticide Factsheets

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  9. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION AND INDOOR AIR

    EPA Science Inventory

    The paper discusses environmental technology verification and indoor air. RTI has responsibility for a pilot program for indoor air products as part of the U.S. EPA's Environmental Technology Verification (ETV) program. The program objective is to further the development of sel...

  11. Impact of Mining Activities on the Air Quality in The Village Nearby a Coal Strip Mine

    NASA Astrophysics Data System (ADS)

    Pokorná, Petra; Hovorka, Jan; Brejcha, Jan

    2016-10-01

    The objective of the presented study was to estimate a share of atmospheric aerosol emitted by coal strip mine on PM10 or PM1-10, mass concentration of aerosol particles < 10μm or 1-10μm in aerodynamic diameter respectively, in the village situated in proximity to the mine. Parallel measurements were conducted in the mine and village situated in the northern part of the Czech Republic from the 15th to 27th November 2012. Three size fractions, consisting PM10, were sampled by a Davis rotating-drum impactor and analysed for 27 elements by Synchrotron-XRF with time resolution 1 hour. Appropriate hourly PM10 were measured by a Beta attenuation monitor in the village and calculated from 5 minute values by a nephelometer in the mine. Also, 24 hour aerosol samples for five size fractions were sampled by a personal cascade impactor sampler and viewed by scanning electron microscopy - SEM. Meteorological parameters were also recorded. Average contribution of coarse aerosol, PM1-10, to PM10 was 70% (119 +59 μgm-3) in the mine and 20% (12 + 10 μgm-3) in the village. The SEM revealed solely soil particles in the mine samples but bioaerosol, ash and aggregates of ultrafine particles in the village samples. Databases of hourly elemental and mass concentrations from the two localities were analysed by EPA PMF 5.0. There were revealed following sources/average contribution to local PM10: wood burning/34%, resuspended dust/30%, coal combustion/22%, industry/11% and gypsum/3% in the village while resuspended dust/43%, coal combustion/37%, gypsum/16% and mining technologies/4% in the mine. Based on factor chemical profiles, the mine was found to contribute to PM1-10 and PM10 in the village by 6% and 20%, respectively.

  12. VERIFICATION TESTING OF TECHNOLOGIES TO CLEAN OR FILTER VENTILATION AIR

    EPA Science Inventory

    Because of the importance of indoor air quality, Research Triangle Institute's Air Pollution Control Technology is adding indoor air products as a new technology category available for testing. This paper discusses RTI's participation in previous Environmental Technology Verifica...

  13. Indicator strip and portable instrument technologies for determining nitroesters or moisture in combustible cartridge cases

    SciTech Connect

    Griest, W.H.; Ho, C.H.; Moneyhun, J.H.; Agouridis, D.C.; Gayle, T.M.; Bates, B.E.

    1993-10-01

    The sometimes large round-to-round variability observed in accelerated environmental testing, plus difficulties in quantifying the environmental histories of a given round suggest the need for nondestructive rapid tests of munitions to supplement lifetime prediction models in quality assurance of munitions. Technologies are being developed for reagent strips which can be affixed to rounds and which will visually indicate the presence and extent of nitroester migration by a visible color change. A solid state adaptation of a modified Griess reagent develops a red-purple color in the presence of nitroesters. Performance of current designs tested in the laboratory suggest a short-term (ca. one month) single usage. Dielectric capacitance is a promising means for rapid, nondestructive moisture determinations using a portable battery-powered instrument. Laboratory studies with a modified, inexpensive, commercial device have demonstrated fast (a few seconds) detection of case wall moisture content.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...

  15. Photocatalytic materials and technologies for air purification.

    PubMed

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis.

  16. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance using stripping technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Group I Polymers and Resins § 63.495 Back-end process provisions—procedures to determine compliance using stripping technology. (a) If an owner or operator complies with the residual organic HAP... residual organic HAP content for each month in which any portion of the back-end of an elastomer...

  17. A Tire Air Maintenance Technology

    ERIC Educational Resources Information Center

    Pierce, Alan

    2012-01-01

    Improperly inflated car tires can reduce gas mileage and car performance, speed up tire wear, and even cause a tire to blow out. The AAA auto club recommends that someone check the air pressure of one's car's tires at least once a month. Wouldn't it be nice, though, if someone came up with a tire pressure-monitoring system that automatically kept…

  18. A scanning electron microscopy comparison of enamel polishing methods after air-rotor stripping.

    PubMed

    Piacentini, C; Sfondrini, G

    1996-01-01

    In the last few years, orthodontic literature has shown particular interest in the interproximal enamel reduction technique described as stripping or slenderizing. Most researchers have shown, by scanning electron microscopy (SEM) studies, the difficulties encountered while attempting to remove coarse abrasions left after stripping with the first instrument. The objective of this SEM study was to compare the different polishing methods proposed in the literature and to assess the efficiency of our own procedure. For this purpose, 48 healthy human teeth (premolars and molars) were used after removal for orthodontic or periodontal reasons. The teeth were divided into eight groups of six teeth each (two molars and four premolars), and mounted on a typodont to simulate a clinical situation. Each group underwent stripping according to one of the following techniques: 16-blade tungsten carbide bur and fine and ultrafine diamond burs; coarse diamond bur and fine and ultrafine diamond burs; coarse diamond disk and Sof-Lex disks (Dental products/3M, St. Paul, Minn.); 16-blade tungsten carbide bur and phosphoric acid on finishing strip; and 8-straight blade tungsten carbide diamond bur and Sof-Lex disks. The SEM investigations demonstrated that it is not possible to eliminate, with normal polishing and cleaning methods, the furrows left on the enamel both by the diamond burs and the diamond disks and the 16-blade tungsten carbide burs. Mechanical and chemical stripping as well did not prove to be effective. By contrast, with the use of a 8-straight blade tungsten carbide bur followed by Sof-Lex disks for polishing the enamel, it is possible to obtain well-polished surfaces that many times appear smoother than the intact or untreated enamel.

  19. Positive Displacement Compressor Technology for Air Congitioners

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for air conditioners are presented in this paper. HFC refrigerants such is R410A and R407C are promising candidates as an alternative for R22. Performance of rotary and scroll compressors in the operation with R410A and R407C are described. In addition, compressor technologies such as efficiency improvement, reliability and simulation methods are described in both cases of rotary and scroll compressors. Advanced compressor technologies developed for air conditioners are desired in the field of the global environment protection and the energy saving.

  20. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report describes the activities and progress of the pilot Air Pollution Control Technologies (APCT) portion of the Environmental Technology Verification (ETV) Program during the period from 09/15/97 to 09/15/02. The objective of the ETV Program is to verify the performance of...

  2. Laboratory Investigations of Cascade Crossflow Packed Towers for Air Stripping of Volatile Organics from Groundwater

    DTIC Science & Technology

    1990-12-01

    end of four 0.635 cm (1/4-inch) stainless steel rods. The bottom ring and two sides of the support were covered with stainless steel welded wire ...packing and liquid flows down by gravity. High pressure drops and low liquid and gas throughputs limit the applicability of this mode of operation...high Henry’s constants such as trichloro- ethylene (TCE), high stripping efficiency can be achieved at relatively low gas rates. In such cases, the

  3. Compressed air energy storage technology program

    NASA Astrophysics Data System (ADS)

    Loscutoff, W. V.

    1980-06-01

    Progress in the development of compressed air energy storage (CAES) technologies for central station electric utility applications is reported. It is reported that the concept improves the effectiveness of a gas turbine using petroleum fuels, could reduce petroleum fuel consumption of electric utility peaking plants, and is technically feasible and economically viable. Specific topics discussed include stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications and second-generation technologies that have minimal or no dependence on petroleum fuels. The latter includes integration of thermal energy storage, fluidized bed combustion, or coal gasification with CAES.

  4. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  5. PROMOTING AIR QUALITY THROUGH ENVIRONMENTAL TECHNOLOGY VERIFICATION

    EPA Science Inventory

    The paper discusses the promotion of improved air quality through environmental technology verifications (ETVs). In 1995, the U.S. EPA's Office of Research and Development began the ETV Program in response to President Clinton's "Bridge to a Sustainable Future" and Vice Presiden...

  6. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    SciTech Connect

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  7. AIR STRIPPING AND OFF-GAS ADSORPTION FOR THE REMOVAL OF MTBE FROM DRINKING WATER

    EPA Science Inventory

    Methyl-tertiary butyl ether (MTBE) is a synthetic organic chemical, primarily used for oxgenating fuel. The 1990 Federal Clean Air Act Amendments mandated the use of fuel oxgenates in areas where air quality did not meet national standards, which led to widespread use of MTBE in...

  8. Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate.

    PubMed

    Bousek, J; Scroccaro, D; Sima, Jan; Weissenbacher, Norbert; Fuchs, W

    2016-03-01

    Impact of strip gas composition on side stream ammonia stripping, a technology aiming at the reduction of high ammonia levels in anaerobic reactors, was investigated. Evaluation of the effect of oxygen contact during air stripping showed a distinct, though lower than perceived, inhibition of anaerobic microflora. To circumvent, the feasibility and possible constraints of biogas and flue gas as alternatives in side stream stripping were studied. Experiments, with ammonia bicarbonate model solution and digestate, were conducted. It was demonstrated that the stripping performance is negatively correlated to the CO2 level in the strip gas with a progressive performance loss towards higher concentrations. In contrast to biogas with its high CO2 content, the efficiency reduction observed for flue gas was significantly less pronounced. The later provides the additional benefit that its high thermal energy can be re-utilized in the stripping unit and it is therefore considered a viable alternative for air.

  9. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  10. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  11. Evaluation of a new contact technology for a planar high-purity germanium double-sided strip detector

    NASA Astrophysics Data System (ADS)

    Jackson, Emily

    This thesis is an evaluation of a new electrode technology for segmented germanium gamma-ray detectors. The detector assessed herein is a planar high-purity germanium wafer (a LEPS or low-energy photon spectrometer) with 16 photolithographic-deposited, amorphous-germanium contacts on either side. This new contact material is shown to be an improvement over the current standard, lithium and boron electrodes, in both ease-of-manufacture and in performance. The symmetry gained with the use of one material for all the contacts is shown to greatly reduce the difference in energy collected by strips on either side. The stability of the amorphous germanium allows for finer electrode segmentation, reducing the gap between each strip. This smaller gap leads to a more uniform electric field in the active volume and ultimately less charge loss between strips. These improvements are quantified with the analysis of the energy difference and distribution of one- and two-hit interactions in the crystal by mono-energetic gamma rays from a 137Cs source. The detector is shown to be a major step forward in the development of contact technologies necessary for the application of position-sensitive gamma-detection outside of fundamental research, such as in nuclear medicine, astrophysics, and homeland security.

  12. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  13. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist.

    PubMed

    Chen, Hongliang; Liu, Renlong; Shu, Jiancheng; Li, Wensheng

    2015-01-01

    Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996).

  14. 1994 Technology report: Land, sea & air

    SciTech Connect

    1994-12-31

    The IGTI 1994 Technology Report, Land, Sea & Air, is compiled, edited, published and distributed by the International Gas Turbine Institute in Atlanta, Georgia. The report represents the best industrial accomplishments and brightest technological advances in the gas turbine and aeroengine industry this year. The report consists of a compilation of submittals from companies, governmental agencies and organizations, universities, IGTI Committee chairs, and other individuals involved in gas turbine technology worldwide. This year`s edition features over 200 reports from twenty-six countries around the globe. In accordance with IGTI policy, these reports are new contributions to the gas turbine industry. No reports have been repeated from previous IGTI publications. There are 25 new contributors to the report including submissions from Hungary, Korea, Sweden and Turkey to this year`s edition. It demonstrates IGTI`s commitment to fostering cooperation and building partnerships on a truly international basis.

  15. Air sparging technology: State of the art in air sparging technologies

    SciTech Connect

    Marley, M.C.

    1995-11-01

    In situ air sparging is a remediation technology primarily applied to the removal of volatile organic contaminants (VOCs) or biodegradable organic compounds from ground water aquifers. Conceptually, IAS is simple: clean air is injected into the aquifer beneath the water table to induce mass transfer of contaminants to the vapor phase and mass transfer of oxygen to the aqueous phase. IAS usually is used in conjunction with soil vapor extraction to control the migration of sparged contaminants in the vadose zone. This paper will present an update on air sparging in a number of areas including the applicability of air sparging, air flow in porous media, ground water mounding and hydraulics, aquifer clogging, biological degradation and pilot testing for radius of influence.

  16. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  17. The pathway of in-situ ammonium removal from aerated municipal solid waste bioreactor: nitrification/denitrification or air stripping?

    PubMed

    Hao, Yong-Jun; Ji, Min; Chen, Ying-Xu; Wu, Wei-Xiang; Hao, Yong-Jun; Zhang, Shu-Guang; Liu, Han-Qiao

    2010-12-01

    In-situ ammonium removal from municipal solid waste (MSW) landfill is an attractive method due to its economic advantages. In this study, two simulated MSW bioreactors with different degrees of initial bio-stabilization were utilized to investigate the effects of intermittent aeration mode and the addition of activated sludge on the removal of ammonium. The results showed that up to 90% of ammonium could be removed and the amount of NO(x)-N produced was less than 1% of NH4 (+)-N removed in both reactors. The pH values increased rapidly and finally arrived at a high level of 8.5-8.8. The efficiency of ammonium removal was improved by increasing the continuous aeration time, but it was not affected by the addition of activated sludge. A portion of liquid escaped from the reactors in the form of vapour, and as high as 195-258 mg L(-1) of NH(4) ( +)-N was detected in the vapour collector. According to calculation, nitrification was inhibited by the high level of free ammonia in the bioreactors. As a result, air stripping was enhanced and became the primary pathway of ammonium removal. Therefore, controlling free ammonia concentration was essential in ammonium removal from the aerated MSW bioreactor.

  18. Static voltage distribution between turns of secondary winding of air-core spiral strip transformer and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-bo; Liu, Jin-liang; Cheng, Xin-bing; Zhang, Yu

    2011-09-01

    The static voltage distribution between winding turns has great impact on output characteristics and lifetime of the air-core spiral strip pulse transformer (ACSSPT). In this paper, winding inductance was calculated by electromagnetic theory, so that the static voltage distribution between turns of secondary winding of ACSSPT was analyzed conveniently. According to theoretical analysis, a voltage gradient because of the turn-to-turn capacitance was clearly noticeable across the ground turns. Simulation results of Pspice and CST EM Studio codes showed that the voltage distribution between turns of secondary winding had linear increments from the output turn to the ground turn. In experiment, the difference in increased voltage between the ground turns and the output turns of a 20-turns secondary winding is almost 50%, which is believed to be responsible for premature breakdown of the insulation, particularly between the ground turns. The experimental results demonstrated the theoretical analysis and simulation results, which had important value for stable and long lifetime ACSSPT design. A new ACSSPT with improved structure has been used successfully in intense electron beam accelerators steadily.

  19. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect

    Boylan, John A.

    2012-07-01

    . Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  20. Preliminary evaluation of the control of microbial fouling by laboratory and pilot-scale air-stripping columns. Final report, March-December 1984

    SciTech Connect

    Seekins, D.; Rogers, M.R.

    1985-03-01

    The U.S. Army Natick Research, Development and Engineering Center (Natick) undertook a study to investigate the buildup of microbial slimes primarily pseudomonas, bacillus and azotobacter in Air Stripping Columns that are used by the military to remove volatile compounds from contaminated groundwater. The air-stripping and carbon-adsorption columns were previously used at the Anniston Army Depot (ANAD) to treat groundwater that had been contaminated with chemical solvents and metal-plating wastes. The major groundwater contaminants were: trichloroethylene (TCE), dichloroethylene (DCE), methylene chloride (MeCl), phenol, and chromium. The results of the study will provide the basis for recommendations on preventative or control measures to be taken in future applications of these water-treatment methods. Measures to prevent buildup of microbial slimes will allow for longer column life and reduction in costs. Treatment of the laboratory-scale column with 3% and 15% hydrogen peroxide reduced total microbial counts but was not successful at disinfecting the column. It was concluded that to prevent microbial fouling of air-stripping columns, the packing material should be disinfected prior to use and should be shock-chlorinated during use if microbial fouling should start to occur. The column should be run continuously if possible to keep the inside temperature as low as possible to retard the growth of microorganisms. If iron fouling should occur, the column should be treated with dilute HCl to clear the packing material of the hydroxide buildup.

  1. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  2. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  3. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  4. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  5. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  6. Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange

    NASA Technical Reports Server (NTRS)

    Haynes, Brian D.

    2015-01-01

    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data exchange needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for air, ground, & air-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information exchange functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the

  7. X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of in situ vapor stripping

    SciTech Connect

    West, O.R.; Siegrist, R.L.; Jennings, H.L.; Lucero, A.J.; Greene, D.W.; Schmunk, S.W.

    1993-06-01

    The goal of the study described in this report was to determine the efficiency of vapor stripping coupled with soil mixing for removing volatile organic compounds (VOCs) from clay soils such as those that underlie the PORTS X-231B Solid Waste Management Unit. This was accomplished by conducting experiments wherein contaminated soil cores were treated in the laboratory using a system that simulated a field-scale vapor stripping/soil mixing treatment process. Treatment efficiencies obtained using several sets of process conditions, such as air temperature and flow rate, were determined through subsampling of the soil cores to establish pre- and posttreatment levels of VOCs in the soil. Two series of experiments were conducted under this study. In the first series, laboratory treatment was performed on intact soil cores that were taken from contaminated zones within the PORTS X-231B Unit using sampler liners that could be adapted as reaction lysimeters. Since soil core disturbance was minimized using this approach, the treatability experiments were conducted on soil that was fairly close to in situ conditions in terms of both soil structure and contaminant levels. The second series of experiments were performed on cores that were packed using X-231B soil and spiked with known amounts of trichloroethylene (TCE). This approach was taken for the second series because the VOC levels in the intact cores were found to be much lower than field values. In addition, the packed cores were smaller than the intact soil cores, with treatment volumes that were about a fifth of the treatment volumes in the intact soil cores. The smaller packed cores were not only easier to handle but were also more reliably characterized due to smaller treatment volumes from which samples were taken.

  8. Lower cost air measurement technology – what is on the ...

    EPA Pesticide Factsheets

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  9. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  10. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  11. FIELD MEASUREMENT TECHNOLOGY FOR MERCURY IN SOIL AND SEDIMENT MTI INC'S PDV 6000 STRIPPING VOLTAMMETRY

    EPA Science Inventory

    Monitoring Technologies International Pty. Ltd. (MTI) has developed a Portable Digital Voltammeter (PDV) designed to identify and measure the concentration of heavy metal ions. MTI's PDV 6000 was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Tec...

  12. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    SciTech Connect

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  13. Air Quality Monitoring and Sensor Technologies

    EPA Pesticide Factsheets

    EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.

  14. Indoor Air Quality Science and Technology

    EPA Pesticide Factsheets

    Understand indoor air in homes, schools, and offices. Most of us spend much of our time indoors. The air that we breathe in our homes, in schools, and in offices can put us at risk for health problems. Some pollutants can be chemicals, gases, and living or

  15. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  16. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  17. Rapid evolution of air sensor technologies

    EPA Science Inventory

    Outdoor air pollution measurement approaches have historically been conducted using stationary shelters that require significant space, power, and expertise to operate. The cost and logistical requirements to conduct monitoring have limited the number of locations with continuou...

  18. VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN

    EPA Science Inventory

    This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...

  19. Future Technologies Needs Analysis. An Air University Staff Report.

    ERIC Educational Resources Information Center

    Reed, Dorothy D.

    This report summarizes the findings of a survey of all permanently assigned personnel at the Air University at Maxwell Air Force Base (Alabama) to determine what future workplace technologies will be needed to support the university's two major programs, Professional Military Education (PME) and Professional Continuing Education (PCE). The…

  20. The Application of Advanced Technology to Improve Air Bag Performance

    NASA Technical Reports Server (NTRS)

    Phen, R.; Dowdy, M.; Ebbeler, D.; Kim, E.; Moore, N.; Van Zandt, T.

    1998-01-01

    In December 1996 the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) signed a memorandum of understanding for NASA to assess the capability of advanced technology to reduce air bag inflation-induced injuries and increase air bag effectiveness.

  1. IMPROVING AIR QUALITY THROUGH ENVIRONMENTAL TECHNOLOGY VERIFICATIONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) began the Environmental Technology Verification (ETV) Program in 1995 as a means of working with the private sector to establish a market-based verification process available to all environmental technologies. Under EPA's Office of R...

  2. Optimization as a support for design of hot rolling technology of dual phase steel strips

    NASA Astrophysics Data System (ADS)

    Szeliga, Danuta; Sztangret, Łukasz; Kusiak, Jan; Pietrzyk, Maciej

    2013-05-01

    The objective of the paper was performing of the sensitivity analysis of the model used for design of manufacturing technology for auto body parts made of the Advanced High Strength Steels (AHSS). Dual phase steel was considered as an example. The sensitivity analysis was performed to evaluate the importance of all variables as far as their influence on the finishing rolling temperature and grain size. The phase composition after cooling was also considered. An arbitrary hot rolling process characterized only by a number of passes and cooling conditions between passes, as well as by laminar cooling parameters, was selected for the analysis. Metamodel of the rolling cycle was developed to decrease the computing costs for the optimization task. Modified Avrami equation was used for modelling phase transformations during cooling. Such process parameters as the initial temperature, interpass times, heat exchange coefficients and rolling velocities were selected as optimization variables for the rolling process. Parameters of the thermal cycles were selected as the optimization variables for the laminar cooling process. Achieving the required phase composition of product was the optimization objective function. Optimization was performed using various techniques, including methods inspired by nature optimization.

  3. Biofiltration: An innovative air pollution control technology for VOC emissions

    SciTech Connect

    Leson, G. ); Winer, A.M. )

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.

  4. Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings

    NASA Astrophysics Data System (ADS)

    Schuöcker, Georg D.; Bielak, Robert

    2007-05-01

    During the last years surface preparation prior to coating operations became an important research and development task, since tightened environmental regulations have to be faced in view of the deliberation of hazardous compounds of coatings. Especially, ship-yards get more and more under pressure, because the environmental commitment of their Asian competitors is fairly limited. Therefore, in the US and in Europe several technology evaluation projects have been launched to face this challenge. The majority of coating service providers and ship yards use grit blasting; this process causes heavy emissions as of dust and enormous amounts of waste as polluted sand. Coating removal without any blasting material would reduce the environmental impact. Laser processing offers ecological advantages. Therefore thermal processes like laser ablation have been studied thoroughly in several published projects and also in this study. Many of these studies have been focused on the maintenance of airplanes, but not on de-coating of heavy protective coatings. In this case the required laser power is extra-high. This study is focused on the maintenance of heavy anti-corrosion coatings and compares the industrial requirements and the opportunities of the innovative laser processes. Based on the results of this analysis similar approaches as e.g. plasma jet coating ablation have been studied. It was concluded that none of these methods can compete economically with the conventional processes as grit blasting and water jetting since the required ablation rate is very high (>60m2/h). A new process is required that is not based on any blasting operation and which does not depend strongly on the coating's characteristic. The delamination of the coating where the coatings is not removed by evaporation, but in little pieces of the complete coating system meets these requirements. The delamination can be accomplished by the thermal destruction of the primer coating by an intense heat pulse

  5. Disruptive Innovation in Air Measurement Technology: Reality or Hype?

    EPA Science Inventory

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  6. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  7. SITE EMERGING TECHNOLOGY SUMMARY: INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    In a recently completed test program, bench-scale laboratory studies at Arizona State University (ASU) in Tempe, AZ, and pilot-scale studies in a simulated field test situation at Zentox Corp in Ocala, FL, were performed to evaluate the integration of gas-solid ultraviolet (UV) p...

  8. An assessment of lighter than air technology

    NASA Technical Reports Server (NTRS)

    Vittek, J. F., Jr. (Editor)

    1975-01-01

    The workshop on LTA is summarized. The history and background are reviewed. The workshop reports for the following working groups are presented: policy, market analysis, economics, operations, and technology.

  9. In-well vapor stripping drilling and characterization work plan

    SciTech Connect

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  10. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  11. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    SciTech Connect

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and

  12. Opacification of a hydrophilic acrylic intraocular lens with a hydrophobic surface after air injection in Descemet-stripping automated endothelial keratoplasty in a patient with Fuchs dystrophy.

    PubMed

    Mojzis, Peter; Studeny, Pavel; Werner, Liliana; Piñero, David P

    2016-03-01

    A 71-year-old woman with Fuchs endothelial dystrophy in the right eye had uneventful phacoemulsification cataract surgery with implantation of a single-piece intraocular lens (IOL) (CT47S) in January 2012. Because of corneal problems and vision loss, uneventful Descemet-stripping automated endothelial keratoplasty (DSAEK) was performed in May 2013. Four months later, a new corneal lamella (repeat DSAEK) was implanted with reinjection of an air bubble into the anterior chamber. Six months after the initial DSAEK, the patient complained of blurred vision. On examination, the cornea was transparent but the IOL presented opacification in the central area. The opacified IOL was explanted and analyzed by light microscopy, which showed the presence of thin granular deposits distributed in an overall round pattern that stained positive for calcium. The opacification of hydrophilic acrylic IOLs is a complication that can occur after uneventful endothelial keratoplasty, especially when rebubbling is necessary.

  13. Air Force Research Laboratory Technology Milestones 2010

    DTIC Science & Technology

    2010-01-01

    are transitioning state-of-the-art technologies related to the improved manufacture of coated silicon carbide ( SiC ) fibers—which, as vital materials...Advanced Composites Office “HAMs” It Up ........................................................................................................83 SiC ...to test their 51” x 48” test article array in speeds exceeding Mach 6, a scenario effectively mirroring realistic reentry conditions. Both the

  14. Air Force Science and Technology Plan

    DTIC Science & Technology

    2011-01-01

    propulsion; complex materials and structures Physics and Electronics Complex electronics and fundamental quantum processes; plasma physics and high energy...synthetic teammates, simulation-based cognitive readiness analysis, performance tracking and prediction algorithm research - Develop technologies...on discrete mathematics, cryptography and networking. It is also developing strategies to assess cyber education methods and incorporate the best

  15. Air sparging technology: A practice update

    SciTech Connect

    Marley, M.C.; Bruell, C.J.; Hopkins, H.H.

    1995-12-31

    An evaluation of data describing in situ air sparging (IAS) systems at 59 sites has been assembled into a database by the American Petroleum Institute (API-IAS Database). The IAS radius of influence (ROI) is defined in the field based on measurements in a number of physical, chemical, or biological monitoring parameters. Measurement of groundwater dissolved oxygen levels was the technique used most often to evaluate the ROI. Other parameters such as pressure changes in the vadose and saturated zones, groundwater mounding, air bubbling in wells, and tracer gases were used to aid in the evaluation of IAS ROI. A review of 37 pilot studies revealed that IAS ROI is generally between 3 m and 8 m (10 to 26 ft). Analysis of design and operation data at 40 IAS sites revealed that a typical IAS well is 5.08 cm (2 in.) in diameter, with a 0.61 m (2 ft) screen, positioned 1.52 to 3.05 m (5 to 10 ft) beneath the water table. The wells typically were operated at an overpressure of less than 34.45 kPa (5 psi) with a flowrate of less than 8.5 m{sup 3}/h (5 cfm).

  16. Air Force Research Laboratory’s 2006 Technology Milestones

    DTIC Science & Technology

    2006-01-01

    suitable for the SOFC , permits the use of a reliable and easily operated fuel cell power system as an alternative to current mobile electric power (MEP...transfer, or technical achievement AFRL Technologies Air Force Office of Scientific Research (AFOSR) Mission Statement: AFOSR orchestrates the Air Force...and Microsystems Boundary Layers and Hypersonics Unsteady and Rotating Flows Combustion and Diagnostics Space Power and Propulsion Metallic Materials

  17. Integrated Technology Air Cleaners (ITAC): Design and Evaluation

    SciTech Connect

    Fisk, William J.; Cohn, Sebastian; Destaillats, Hugo; Henzel, Victor; Sidheswaran, Meera; Sullivan, Douglas P.

    2013-09-13

    The primary objective of this project was to design, build, and test an air cleaner for residential use with the potential to substantially improve indoor air quality, or maintain indoor air quality unchanged, when outdoor air ventilation rates are reduced to save energy. Two air cleaners were designed and fabricated. The design targets for airflow rate, fan power, and projected cost were met. In short term laboratory studies, both units performed as expected; however, during field studies in homes, the formaldehyde removal performance of the air cleaners was much lower than expected. In subsequent laboratory studies, incomplete decomposition of some indoor air volatile organic compounds, with formaldehyde as a product of partial decomposition of volatile organic compounds, was confirmed as the explanation for the poor formaldehyde removal performance in the field studies. The amount of formaldehyde produced per unit of decomposition of other volatile organic compounds was substantially diminished by increasing the amount of catalyst on the filter and also by decreasing the air velocity. Together, these two measures reduced formaldehyde production, per unit destruction of other volatile organic compounds, by a factor of four, while increasing the removal efficiency of volatile organic compounds by a factor of 1.4. A company with a southern California office is conducting studies in conjunction with Lawrence Berkeley National Laboratory, with the goal of incorporating the ITAC catalytic air cleaning technology in their future commercial products.

  18. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Earpiece System, or ACCES®, under a Cooperative Research and Development Agreement with Westone Laboratories, Inc. The innovative technology improves...trained in creating impressions for the custom-molded earpieces . Often this meant contacting researchers at AFRL. With hundreds of sets of this product...the flyers’ ears. By integrating specialized electronics into custom-molded earpieces , ACCES allows wearers to experience clear audio communications

  19. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  20. Detection system for concentration quantization of colloidal-gold test strips based on embedded and image technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Facing the increasing food safety issues, Chinese government has been carrying out compulsory tests on food to meet the requirements of domestic and foreign markets. Colloidal-gold test strips using the colorimetric principle are widely used for rapid qualitative detection of harmful residues in fo...

  1. TREATMENT OF CYANIDE SOLUTIONS AND SLURRIES USING AIR-SPARGED HYDROCYCLONE (ASH) TECHNOLOGY

    SciTech Connect

    Jan D. Miller; Terrence Chatwin; Jan Hupka; Doug Halbe; Tao Jiang; Bartosz Dabrowski; Lukasz Hupka

    2003-03-31

    The two-year Department of Energy (DOE) project ''Treatment of Cyanide Solutions and Slurries Using Air-Sparged Hydrocyclone (ASH) Technology'' (ASH/CN) has been completed. This project was also sponsored by industrial partners, ZPM Inc., Elbow Creek Engineering, Solvay Minerals, EIMCO-Baker Process, Newmont Mining Corporation, Cherokee Chemical Co., Placer Dome Inc., Earthworks Technology, Dawson Laboratories and Kennecott Minerals. Development of a new technology using the air-sparged hydrocyclone (ASH) as a reactor for either cyanide recovery or destruction was the research objective. It was expected that the ASH could potentially replace the conventional stripping tower presently used for HCN stripping and absorption with reduced power costs. The project was carried out in two phases. The first phase included calculation of basic processing parameters for ASH technology, development of the flowsheet, and design/adaptation of the ASH mobile system for hydrogen cyanide (HCN) recovery from cyanide solutions. This was necessary because the ASH was previously used for volatile organics removal from contaminated water. The design and modification of the ASH were performed with the help from ZPM Inc. personnel. Among the modifications, the system was adapted for operation under negative pressure to assure safe operating conditions. The research staff was trained in the safe use of cyanide and in hazardous material regulations. Cyanide chemistry was reviewed resulting in identification of proper chemical dosages for cyanide destruction, after completion of each pilot plant run. The second phase of the research consisted of three field tests that were performed at the Newmont Mining Corporation gold cyanidation plant near Midas, Nevada. The first field test was run between July 26 and August 2, 2002, and the objective was to demonstrate continuous operation of the modified ASH mobile system. ASH units were applied for both stripping and absorption, to recover cyanide

  2. Investigation of air transportation technology at Princeton University

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1983-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along six avenues during the past year: investigation of fuel use characteristics of general aviation aircraft, experimentation with an ultrasonic altimeter, single pilot instrument flight, application of fiber optics in flight control systems, voice recognition inputs for navigation/communication receiver tuning, and computer aided aircraft design.

  3. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  4. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  5. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  6. Investigation of air transportation technology at Princeton University, 1981

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1982-01-01

    A summary of the air transportation technology program is presented. The following topics were examined: (1) fuel use characteristics of general aviation aircraft; (2) dead-reckoning concept incorporating a fluidic rate sensor; (3) experimentation with an ultrasonic altimeter; (4) development of laser-based collision avoidance systems; (5) flight path reconstruction from sequential DME data; (6) application of fiber optics in flight control systems; and (7) voice recognition inputs for navigation/communication receiver tuning.

  7. Investigation of air transportation technology at Princeton University, 1986

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  8. Air Pollution Studies in Metromanila and Catalysis Technology Towards Clean Air Philippines

    NASA Astrophysics Data System (ADS)

    Gallardo, S. M.

    - Considerable air quality and emission data gathered in Metropolitan Manila (MM) led to the development of automobile exhaust treatment catalysts as well as their continued improvement. Findings of a 5-year (1993-1998) collaborative work on the development of base metal oxide catalysts for automobile exhaust are summarized here. One study in 1991 reveals an average 16% increase in the number of motor vehicles in MM where 16% are new and the rest are old ones. Another study in 1992 shows the CO and hydrocarbon emission levels from different types of motor vehicles in MM as a function of the age of the vehicle, type of fuel, and the operating condition. Reports of the Department of Environment and Natural Resources (DENR) and other related studies also provided data showing the quality of air in MM. Currently, there are several requirements to further improve the catalyst performance towards the reduction of NOX and to develop catalyst-sorbent for simultaneous NOX-SOX removal. This is so because of the present condition of rain acidification that is found in certain places in MM. These air quality and emission data are needed not only to establish practical emission standards for motor vehicles and the stationary industries and power plants but also in the development of technologies for air pollution control and other clean technologies for cleaner air in the country.

  9. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  10. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  11. National Security Science and Technology Initiative: Air Cargo Screening

    SciTech Connect

    Bingham, Philip R; White, Tim; Cespedes, Ernesto; Bowerman, Biays; Bush, John

    2010-11-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive

  12. Compressed air energy storage technology program. Annual report for 1979

    SciTech Connect

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  13. Improving estimates of air pollution exposure through ubiquitous sensing technologies

    PubMed Central

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-01-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743

  14. Compressed air energy storage technology program. Annual report for 1980

    SciTech Connect

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  15. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  16. Compressed-air energy-storage technology: Program overview

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1981-07-01

    A new technology designed to reduce the consumption of oil in the generation of electric power was developed. The program has two major elements: reservoir stability studies and second generation concepts studies. The reservoir stability studies are aimed at developing stability criteria for long term operation of large underground reservoirs used for compressed air storage. The second generation concepts studies are aimed at developing new concepts that will require little or no petroleum fuels for operation. The program efforts are outlined and major accomplishments towards the objectives of the program are identified.

  17. Investigation of air transportation technology at Princeton University, 1984

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  18. Modern air protection technologies at thermal power plants (review)

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  19. Technology status report: Off-gas treatment technologies for chlorinated volatile organic compound air emissions

    SciTech Connect

    Rossabi, J.; Haselow, J.S.

    1992-04-15

    The purpose of this document is to review technologies for treatment of air streams that contain chlorinated volatile organic compounds (CVOCS) and to describe a Department of Energy Office of Technology Development program that is planned to demonstrate innovative technologies for the abatement of CVOC emissions. This report describes the first phase of testing of off-gas treatment technologies. At least one more phase of testing is planned. Guidance for the preparation of this document was provided by a predecisional draft outline issued by the Department of Energy`s Office of Technology Development. The report is intended to evaluate the technical and regulatory aspects, public acceptance, and estimated costs of technologies selected for development and testing. These technologies are compared to currently practiced or baseline methods for treatment of CVOC-laden airstreams. A brief overview is provided rather than detailed cost and data comparisons because many of these technologies have not yet been field tested. A description of other promising technologies for the treatment of CVOC emissions is also included. Trichloroethylene (TCE) and perchloroethylene (PCE) were used for industrial cleaning and solvent applications for several decades. These chemicals can be classified as CVOCS. As a result of past standard disposal practices, these types of compounds are persistent groundwater and soil contaminants throughout the United States and the Department of Energy Complex.

  20. Technology status report: Off-gas treatment technologies for chlorinated volatile organic compound air emissions

    SciTech Connect

    Rossabi, J.; Haselow, J.S.

    1992-04-15

    The purpose of this document is to review technologies for treatment of air streams that contain chlorinated volatile organic compounds (CVOCS) and to describe a Department of Energy Office of Technology Development program that is planned to demonstrate innovative technologies for the abatement of CVOC emissions. This report describes the first phase of testing of off-gas treatment technologies. At least one more phase of testing is planned. Guidance for the preparation of this document was provided by a predecisional draft outline issued by the Department of Energy's Office of Technology Development. The report is intended to evaluate the technical and regulatory aspects, public acceptance, and estimated costs of technologies selected for development and testing. These technologies are compared to currently practiced or baseline methods for treatment of CVOC-laden airstreams. A brief overview is provided rather than detailed cost and data comparisons because many of these technologies have not yet been field tested. A description of other promising technologies for the treatment of CVOC emissions is also included. Trichloroethylene (TCE) and perchloroethylene (PCE) were used for industrial cleaning and solvent applications for several decades. These chemicals can be classified as CVOCS. As a result of past standard disposal practices, these types of compounds are persistent groundwater and soil contaminants throughout the United States and the Department of Energy Complex.

  1. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  2. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Equipment and Technology ACTION: Notice; request for information. SUMMARY: The FAA seeks information from industry developers, manufacturers, and the public related to effective air cleaning technology and sensor technology for the engine and auxiliary power unit bleed air supplied to the passenger cabin and flight...

  3. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  4. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  5. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  6. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  7. Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator

    DTIC Science & Technology

    2012-06-01

    Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator by Asha J. Hall, Richard A...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6040 June 2012 Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate ...2011 to April 2012 4. TITLE AND SUBTITLE Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph

  8. Evaporative heat transfer and enhancement performance of serpentine tubes with strip-type inserts using refrigerant-134a

    SciTech Connect

    Hsieh, S.S.; Jang, K.J.; Huang, M.T.

    1999-08-01

    Recent technological implications have given rise to increased interest in enhancement of the in-tube evaporation used in many air conditioning and refrigeration systems. Although many past studies have examined in-tube evaporative heat transfer enhancement and the associated pressure drop with internally finned tubes, in-tube evaporations with strip-type inserts, using R-134a as a refrigerant, have not been conducted. In addition, the fundamental phenomenon of nucleate boiling from a heated wall subject to a strip-type insert is as yet not well understood, especially for the flow in serpentine tubes. In this study, flow boiling tests were conducted in serpentine coil with inserts. To accomplish these tasks, experiments were performed in a seven-pass serpentine test tube with longitudinal strip and cross-strip types inserts, 10.6-mm inside diameter with R-134a as the boiling fluid immersed in a hot water bath.

  9. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  11. Verification Testing of Air Pollution Control Technology Quality Management Plan Revision 2.3

    EPA Pesticide Factsheets

    The Air Pollution Control Technology Verification Center was established in 1995 as part of the EPA’s Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technologies’ performance.

  12. New technology revolutionizing how we understand the air around us

    EPA Science Inventory

    This presentation covers various technologies that I have been involved with, that have increased the spatial resolution possible for air pollution measurements. This includes the GMAP, Village Green Project, and emerging sensor technology.

  13. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  14. Air Vehicles Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2005-3060 AIR VEHICLES TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020 : Prediction Of... Technology Integration Program (AVTIP) 5b. GRANT NUMBER Delivery Order 0020 : Prediction Of Manufacturing Tolerances For Laminar Flow 5c. PROGRAM

  15. Impact of new technology weapons on SAC (Strategic Air Command) conventional air operations. Research report

    SciTech Connect

    Bodenheimer, C.E.

    1983-06-01

    Chapter I introduces the issue of conventional-response capability. The point stressed first is that the strategic bomber's primary mission is in support of the single integrated operations plan (SIOP) as a nuclear weapons delivery vehicle. However, as cited by Secretary of Defense Caspar Weinberger, we must have a rapid deployment conventional capability to areas where there are small if any U.S. forces present. The SAC strategic projection force (SPF) is available but with gravity weapons of World War II vintage. New technology can provide answers to the problem by providing highly accurate long-range conventional standoff weapons. Chapter II gives a basic historical perspective on the use of the strategic bomber in past wars. It discusses the development of strategy, weapons, and targets in World War II, Korean War, and Vietnam War. Chapter III presents a very brief look at current US policy, strategy, and guidance. Chapter IV covers the aircraft attrition issue in today's highly lethal defensive environment. Chapter V describes the development of air-to-ground weapons. Chapter VI addresses the potential for the future in the shifting balance of Soviet and US technology. The final chapter makes the point that a decision must be made on weapons-acquisition programs and bomber force structure. New technology-standoff conventional weapons could make AAA and SAM defenses a modern Maginot Line.

  16. DEMONSTRATION BULLETIN: UNTERDUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL - ROY F. WESTON, INC./IEG TECHNOLOGIES CORPORATION

    EPA Science Inventory

    The Weston/IEG UVB technology is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile organic compounds. A UVB system consists of a single well with two hydraulically separated screened interva...

  17. SITE TECHNOLOGY CAPSULE: UNTERDRUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL

    EPA Science Inventory

    The UVB technology is an in situ groundwater remediation technology for aquifers contaminated with compounds amenable to air stripping, and is an alternative method to pump-and-treat remediation of groundwater. The UVB technology is designed to remove VOCs from groundwater by tra...

  18. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  19. An investigation of air transportation technology at the Massachusetts Institute of Technology, 1990-1991

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1991-01-01

    Brief summaries are given of research activities at the Massachusetts Institute of Technology (MIT) under the sponsorship of the FAA/NASA Joint University Program. Topics covered include hazard assessment and cockpit presentation issues for microburst alerting systems; the situational awareness effect of automated air traffic control (ATC) datalink clearance amendments; a graphical simulation system for adaptive, automated approach spacing; an expert system for temporal planning with application to runway configuration management; deterministic multi-zone ice accretion modeling; alert generation and cockpit presentation for an integrated microburst alerting system; and passive infrared ice detection for helicopter applications.

  20. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0004: Advanced Sol-Gel Adhesion Processes

    DTIC Science & Technology

    2002-04-01

    AFRL-ML-WP-TR-2003-4173 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0004: Advanced Sol-Gel Adhesion Processes Kay Y...2001 – 03/31/2002 5a. CONTRACT NUMBER F33615-00-D-3052 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  1. A Program in Air Transportation Technology (Joint University Program)

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1996-01-01

    The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.

  2. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    DTIC Science & Technology

    1995-09-01

    relay race, where one runner passes the baton to the next. Richard Dorf describes in "Models for Technology Transfer From Universities and Research...Meeting. 9. Dorf , Richard C. "Models for Technology Transfer From Universities and Research Laboratories," Technology Management Publication TM1.1988...both located at Wright- Patterson Air Force Base, Ohio. Namely, Tim Sharp, Chief, Technology Transfer Division and my faculty advisor, Major Richard

  3. Benzene stripping in a flotation unit

    SciTech Connect

    Hillquist, D.; Litchfield, J.; Willet, S.; Whiteford, R.

    1994-12-31

    An induced gas flotation unit is used as a combination stripping/flotation vessel with fuel gas as the stripping/flotation medium. The gas bubbles simultaneously float the oils and solids, and strip out and recover the benzene and other volatile components from wastewater and from the floated oils and solids. The effluent stripping gas is then either used as fuel gas, or recycled to the process for product recovery. The induced gas flotation stripper, IGFS, is self-cleaning and normally experiences no sludge build up or fouling. The unit requires a minimum of operator attention and maintenance. It is sealed to eliminate emissions, has a high stripping efficiency, and has a significantly wider operating range than conventional strippers. The unit does not experience the biological fouling and disposal problems of air strippers, or the fouling and higher capital and operating costs of steam strippers. The IGFS unit was installed at the BF Goodrich ethylene plant in Calvert City in 1991. The unit was designed to treat a combined stream consisting of quench water, neutralized spent caustic, and a number of intermittent smaller oily water streams. The unit is operating effectively in stripping the benzene to levels below the NESHAP requirements. The average benzene removal efficiency is above 97%. Operating data indicate that the benzene removal efficiency can be further enhanced by increasing temperature, increasing stripping flow, reducing oil emulsions in the influent and eliminating dilution from recycled water. This paper presents performance and operating experience of the IGFS unit.

  4. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  5. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    NASA Astrophysics Data System (ADS)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo; Sundell, Jan; Wargocki, Pawel; Zhang, Jensen; Little, John C.; Corsi, Richard; Deng, Qihong; Leung, Michael H. K.; Fang, Lei; Chen, Wenhao; Li, Jinguang; Sun, Yuexia

    2011-08-01

    Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two authors, who further reduced the number of articles to 160 based on the full texts. These articles were reviewed by the panel using predefined inclusion criteria during their first meeting. Additions were also made by the panel. Of these, 133 articles were finally selected for detailed review. Each article was assessed independently by two members of the panel and then judged by the entire panel during a consensus meeting. During this process 59 articles were deemed conclusive and their results were used for final reporting at their second meeting. The conclusions are that: (1) None of the reviewed technologies was able to effectively remove all indoor pollutants and many were found to generate undesirable by-products during operation. (2) Particle filtration and sorption of gaseous pollutants were among the most effective air cleaning technologies, but there is insufficient information regarding long-term performance and proper maintenance. (3) The existing data make it difficult to extract information such as Clean Air Delivery Rate (CADR), which represents a common benchmark for

  6. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  7. Delta XTE Spacecraft Arrives at CCAS Skid Strip

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Footage shows the U.S Air Force Aircraft "Air Mobility Command" approaching, and landing at the Cape Canaveral Air Station Skid Strip (CCAS). The truck carrying the Delta XTE Spacecraft is also shown as it leaves the Air Mobility Command.

  8. Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity

    NASA Technical Reports Server (NTRS)

    Brinton, Christopher R.

    1996-01-01

    The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.

  9. Cost effectiveness studies of environmental technologies: Volume 1

    SciTech Connect

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology.

  10. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. ); Hemenway, A. )

    1991-01-01

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  11. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.; Hemenway, A.

    1991-12-31

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  12. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  13. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  14. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  15. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  16. Investigation of hybrid membrane-sorption technologies for air fractionating

    NASA Astrophysics Data System (ADS)

    Laguntsov, N. I.; Kurchatov, I. M.; Korolev, M. V.; Tishin, A. V.

    2016-09-01

    Main aim of the work is to develop and to research single-circuit hybrid membrane- sorption system for enriching air with oxygen. The developed system allows to produce air, enriched with air up to 50%, purified from dust of any size, including nanoscale dust received in consequence of sorbent abrasion. In the course of the work the research of existing systems for air enrichment with oxygen, and the possibility of combining two methods of gas separation: membrane, and sorption, was conducted. The developed system differs from its analogues in that it has improved energy efficiency compared to methods of the membrane and sorption separation. Also work presents method of cyclogram determining of the hybrid system. In this methodic an algorithm for calculating of the cycles number, and determining of the stages duration in order to obtain the desired performance was presented.

  17. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  18. Environmental Technology Verification Report for Applikon MARGA Semi-Continuous Ambient Air Monitoring System

    EPA Science Inventory

    The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...

  19. Capability and Interface Assessment of Gaming Technologies for Future Multi-Unmanned Air Vehicle Systems

    DTIC Science & Technology

    2011-08-01

    technologies evaluated include Real-Time Strategy (RTS) games , which require the simultaneous control of multiple entities; Massively Multiplayer Online Role...Air Vehicle, Unmanned Air Vehicle Systems, Real-Time Strategy, Massively Multiplayer Online Role Playing Games , Situation Awareness, UAV, UAS, RTS...tested platform for simultaneous control of multiple entities. Similarly, the popularity of Massively Multiplayer Online Role Playing Games (MMORPG

  20. Acquisition: Air Force Transition of Advanced Technology Programs to Military Applications

    DTIC Science & Technology

    2006-05-31

    Requirements Review and Assessment process examines capabilities in Global Strike, Homeland Security, Global Response, Global Mobility , Air and Space...Sum m ary of A dvanced T echnology D evelopm ent Projects R eview ed 23 Note: See footnotes at the end of the appendix. Advanced Technology...Armaments Center (AAC) Yes Yes No Yes Yes n/a10 (Cat 2B) Yes Yes Global Air Mobility Advanced Technologies

  1. The impact of changing technology on the demand for air transportation

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1978-01-01

    Demand models for air transportation that are sensitive to the impact of changing technology were developed. The models are responsive to potential changes in technology, and to changing economic, social, and political factors as well. In addition to anticipating the wide differences in the factors influencing the demand for long haul and short haul air travel, the models were designed to clearly distinguish among the unique features of these markets.

  2. Precise time technology for selected Air Force systems: Present status and future requirements

    NASA Technical Reports Server (NTRS)

    Yannoni, N. F.

    1981-01-01

    Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.

  3. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  4. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  5. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  6. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    SciTech Connect

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  7. Validation of the Hot Strip Mill Model

    SciTech Connect

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  8. Air-to-Ground Fratricide Reduction Technology: An Analysis

    DTIC Science & Technology

    2005-01-01

    Jennifer, and my children, Dean and Eden , for their patience and support during this long project. iv EXECUTIVE SUMMARY Title: Air-to...Fire.” Military Intelligence Professional Bulletin, March 2004, 15. URL: http://infoweb.newsbank.com. Accessed 4 September 2004. Cline, Bobby

  9. Air Force Research in Aero Propulsion Technology (AFRAPT)

    DTIC Science & Technology

    1990-09-27

    impact on rotordynamic stability. Air (or other gas) flowing through the clearances of labyrinth seals can induce an asymmetric pressure distribution... Rotordynamic Instability, College Station, TX, May 1990. 17 B Ih=o.166 KgIS (baeJ A i6O.137 KgIS el r0.1S@ Kg/S

  10. Investigation of air transportation technology at Ohio University, 1981. [loran

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1982-01-01

    The increased availability of Loran signals in the United States encouraged consideration of Loran for airborne applications. High quality signal processing to obtain effective signal-to-noise ratios which permit good reliability in position determination consistent with airborne applications is considered. Techniques for deriving air navigation quality information from Loran-C were investigated.

  11. Demonstration of Diesel Engine Air Emissions Reduction Technologies

    DTIC Science & Technology

    2008-12-01

    Naval Facilities Engineering Command NDIR non dispersive infrared NMHC non-methane hydrocarbon NORAD North American Air Defense Command NOx nitrogen...Duration Lower Quantifiable Limit (Expressed in terms of fundamental measurement) Pierburg non dispersive infrared ( NDIR ) CO2, CO 1 second 50 - 500

  12. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  13. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  14. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0054: Opportune Landing Site (OLS) Critical Experiment

    DTIC Science & Technology

    2008-04-01

    AFRL-RB-WP-TR-2009-3118 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0054: Opportune Landing Site (OLS) Critical...VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0054: Opportune Landing Site (OLS) Critical Experiment 5a. CONTRACT NUMBER F33615-00

  16. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  17. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  18. The Air Force Manufacturing Technology (MANTECH): Technology transfer methodology as exemplified by the radar transmit/receive module program

    NASA Technical Reports Server (NTRS)

    Houpt, Tracy; Ridgely, Margaret

    1991-01-01

    The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.

  19. Treatment of stripping perforations.

    PubMed

    Allam, C R

    1996-12-01

    Strippings are problems that are frequent on thin and concave roots. Treatment and prognosis differ from that of a lateral root perforation because of the size, oval shape, and thin edges of the striping. We propose a two-step technique: an endodontic phase in which the root canal system is sealed with gutta-percha overflowing through the stripping perforation and a surgical second step that will allow elimination of this excess.

  20. Geometrical deuteron stripping revisited

    SciTech Connect

    Neoh, Y. S.; Yap, S. L.

    2014-03-05

    We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

  1. Investigation of air transportation technology at Princeton University, 1983

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    Progress is discussed for each of the following areas: voice recognition technology for flight control; guidance and control strategies for penetration of microbursts and wind shear; application of artificial intelligence in flight control systems; and computer-aided aircraft design.

  2. Air Force Research Laboratory High Power Electric Propulsion Technology Development

    DTIC Science & Technology

    2009-10-27

    are currently less mature than the Hall thruster variants. Comparisons of candidate technologies are evaluated with VASIMR , a well publicized high...propellants. However, FRCs are currently less mature than the Hall thruster variants. Comparisons of candidate technologies are evaluated with VASIMR ...publicized VASIMR VX-200, a nominal 200-kW dual thruster system currently in development by Ad Astra for the International Space Station. This

  3. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  4. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  5. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  6. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  7. Investigation of air transportation technology at Ohio University, 1984

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.

    1987-01-01

    The operational development of Loran-C for enroute navigation and nonprecision approaches was studied, and is only one of the many projects funded by the Joint University Program for Air Transportation at Ohio University. Other projects included work on the DATAC data bus monitor, global positioning system test bed receiver development, fiber optic data bus application in general aviation aircraft, and advanced remote monitoring techniques.

  8. Combustion Technology for Incinerating Wastes from Air Force Industrial Processes.

    DTIC Science & Technology

    1984-02-01

    Conservation and Recovery Act and are properly disposed at cost to the Air Force. Onsite incineration with heat recovery is being considered as a...the heat released during thermal processing could reduce the costs of waste incineration. 0 * Normally, relatively small amounts of individual wastes...wastes. Task 3: Combustion Analysis. Determine and quantify the essential combustion parameters of industrial process wastes with respect to heat

  9. Air strippers and their emissions control at Superfund sites. Technical report, February-April 1987

    SciTech Connect

    Blaney, B.L.; Branscome, M.

    1988-08-01

    Air stripping, a traditional means of making slightly contaminated ground water potable, is being applied increasingly to more-severe groundwater pollution at remedial action sites. Concentrations of volatile and semivolatile compounds at such sites may reach hundreds of parts per million. As a result, several changes have resulted in air-stripping technology. New air stripping technologies are being employed to achieve very high (>99% removal of volatile compounds and to increase the removal of semivolatiles. New stripper designs are being investigated for compactness and mobility. In addition, emissions controls are being added because air-pollution impacts are larger. The paper discusses these trends and provides examples from ground-water cleanup at remedial-action sites in the United States.

  10. Investigation of air transportation technology at Princeton University, 1985

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.

  11. The Virtual Combat Air Staff. The Promise of Information Technologies,

    DTIC Science & Technology

    1996-08-07

    Resource \\ cut 1 Combat i 1 power 1 T Chain of command & support hierarchy 1 1— Combat pow (air wings er 1 1...communications power at his fingertips than the entire Combat Operations Center used in two months in Desert Storm. The "L- T " called out to his boss...MR759.cover 8/7/96 12:07 PM Page 1 <^ Arthur F. Huber Philip S. Sauer J. Lawrence Hollett Kenneth Keskel William L. Shelton, Jr. John T

  12. Wavelength Division Multiplexing (WDM) Technology for Naval Air Applications

    DTIC Science & Technology

    2000-04-18

    Platforms. • Many Common Issues with FTTH and FTTD Aerospace Photonics APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED 3 AEROSPACE PLATFORM...Backshells • Designed to withstand Temperature, Shock, Vibration APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED 10 SYSTEM DEMONSTRATIONS • BROADBAND...Commercial WDM Technology • Aerospace Environment is the Challenge • COTS Components Must be Designed , Packaged or Screened to Operate in this Harsh

  13. Clearing the Air: The Impact of the Clean Air Act on Technology.

    ERIC Educational Resources Information Center

    Redmond, John C., Ed.; And Others

    This compendium has been prepared to summarize the notable aspects of the U. S. Clear Air Amendments of 1970 for members of the Institute of Electrical and Electronics Engineers and others. The work is not a complete explanation of the law and all of its ramifications; it is, rather, an expedient means to gain rapid insight into the more…

  14. USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE

    SciTech Connect

    Adu-Wusu, K; Daniel McCabe, D; Bill Wilmarth, B

    2007-04-04

    A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.

  15. AEC brings new technology to US: Compressed air provides peaking power

    SciTech Connect

    Not Available

    1989-09-01

    The first power plant utilizing compressed air energy storage technology (CAES) in the United States is being built by Alabama Electric Cooperative near McIntosh, Alabama. CAES technology, which stores pressurized air in underground chambers during periods of low power demand for generating power during high demand periods, is capable of producing up to three times more power per BTU of fuel burned than conventional gas turbine generators. A 19 million-cubic foot air storage cavern is being excavated in a salt dome 1,400 feet underground for the 110 MW McIntosh plant. Once finished, the cavern is expected to be 200 feet in diameter and 600 feet deep, storing enough air to operate the generator for 26 consecutive hours.

  16. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  17. Neuro-Linguistic Programming: Human Technology for Today’s Air Force.

    DTIC Science & Technology

    1986-04-01

    Part III, pp. 4-5. ’ 26. Ibid, p. 6. 27. Donald W. McCormick, " Neurolinguistic Programming : A Resource Guide and Review of the Research, The 1984...Carol Johnson, " Neurolinguistic Programming --Mystique or Mistake?" Army Organizational Effectiveness Journal, No. 1, 1985, pp. 74-80. 29. Dilts...AD-RI67 836 NEURO-LINGUISTIC PROGRAMMING : HUHAN TECHNOLOGY FOR / TODAY’S AIR FORCEMU AIR COMMAND ANM STAFF COLL NAXHELL AFB AL J B CAULFIELD APR 86

  18. Leveraging Advanced Technology in Army and Air Force Readiness and Sustainment Training

    DTIC Science & Technology

    2007-11-02

    USAWC STRATEGY RESEARCH PROJECT LEVERAGING ADVANCED TECHNOLOGY IN ARMY AND AIR FORCE READINESS AND SUSTAINMENT TRAINING by Kathy Lindsey Department...of Air Force Colonel Richard M. Meinhart Project Advisor The views expressed in this academic research paper are those of the author and do not...necessarily reflect the official policy or position of the U.S. Government, the Department of Defense, or any of its agencies. U.S. Army War College CARLISLE

  19. Situation assessment for air combat based on the Bayesian networks technology

    NASA Astrophysics Data System (ADS)

    Sun, Zhaolin; Yang, Hongwen; Hu, Weidong; Yu, Wenxian

    2005-11-01

    This paper researches on the method of situation assessment for the air combat based on the Bayesian networks technology. It analyzes the events occur in the process of air combat, and presents a hybrid method of fuzzy sets and Bayesian networks to detect these events. Then, it presents a method to construct Bayesian networks using the events and then uses the networks to reason the purpose of enemy fighter pilots. Finally, it shows the method by an illustrative example.

  20. Preliminary assessment of worker and ambient air exposures during soil remediation technology demonstration.

    PubMed

    Romine, James D; Barth, Edwin F

    2002-01-01

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead-contaminated soil sites. Industrial hygiene surveys and air monitoring programs for both lead and dust were performed during initial soil sampling activities and during pilot scale technology demonstration activities at two lead-contaminated soil sites to assess whether worker protection or temporary resident relocation would be suggested during any subsequent remediation technology activities. The concentrations of lead and dust in the air during pilot scale technology demonstration studies were within applicable exposure guidelines, including Occupational Health and Safety Administration permissible exposure limits, National Institute for Occupational Safety and Health recommended exposure limits, American Conference of Governmental Industrial Hygiene threshold limit values, and the United States Environmental Protection Agency's National Ambient Air Quality Standards program limits.

  1. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  2. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  3. [Post-stripping telangiectasis].

    PubMed

    Hutinel, B; Maraval, M

    1985-01-01

    These telangiectasia appear between one and six months after the operation, especially in cases of capillary fragility. The most common localizations are the antero-internal and external sides of the thighs and knees. Unnecessary strippings, of continent saphenous veins, are the most frequent cause of these. Their prevention consists of the least possible traumatising stripping, using a fine stripper, a very rigorous post-operative support, and the wearing of light varicose stockings or tights for between one and three months. The treatment using microsclerosis, often delicate, should not be undertaken before six months.

  4. Performance and costs of particle air filtration technologies.

    PubMed

    Fisk, W J; Faulkner, D; Palonen, J; Seppanen, O

    2002-12-01

    This paper predicts the reductions in the indoor mass concentrations of particles attainable from use of filters in building supply airstreams and also from use of stand-alone fan-filter units. Filters with a wide efficiency range are considered. Predicted concentration reductions are provided for indoor-generated particles containing dust-mite and cat allergen, for environmental tobacco smoke (ETS) particles, and for outdoor air fine-mode particles. Additionally, this paper uses a simple model and available data to estimate the energy and total costs of the filtration options. Predicted reductions in cat and dust-mite allergen concentrations range from 20 to 80%. To obtain substantial, e.g. 50%, reductions in indoor concentrations of these allergens, the rate of airflow through the filter must be at least a few indoor volumes per hour. Increasing filter efficiencies above approximately ASHRAE Dust Spot 65% does not significantly reduce predicted indoor concentrations of these allergens. For ETS particles and outdoor fine-mode particles, calculations indicate that relatively large, e.g. 80%, decreases in indoor concentrations are attainable with practical filter efficiencies and flow rates. Increasing the filter efficiency above ASHRAE 85% results in only modest predicted incremental decreases in indoor concentration. Energy costs and total costs can be similar for filtration using filters with a wide range of efficiency ratings. Total estimated filtration costs of approximately $0.70 to $1.80 per person per month are insignificant relative to salaries, rent, or health insurance costs.

  5. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy

    NASA Astrophysics Data System (ADS)

    Keith, D. W.

    2002-05-01

    It is physically possible to capture CO2 directly from the air and immobilize it in geological structures. Today, there are no large-scale technologies that achieve air capture at reasonable cost. Yet, strong arguments suggest that it will comparatively easy to develop practical air capture technologies on the timescales relevant to climate policy [1]. This paper first analyzes the cost of air capture and then assesses the implications for climate policy. We first analyze the lower bound on the cost needed for air capture, describing the thermodynamic and physical limits to the use of energy and land. We then compare the costs of air capture to the cost of capture from combustion exhaust streams. While the intrinsic minimum energy requirement is larger for air capture, we argue that air capture has important structural advantages, such as the reduction of transport costs and the larger potential for economies of scale. These advantages suggest that, in the long-run air capture be competitive with other methods of achieving deep emissions reductions. We provide a preliminary engineering-economic analysis of an air capture system based on CaO to CaCO3 chemical looping [1]. We analyze the possibility of doing the calcination in a modified pressurized fluidized bed combustor (PFBC) burning coal in a CO2 rich atmosphere with oxygen supplied by an air separation unit. The CaCO3-to-coal ratio would be ~2:1 and the system would be nearly thermally neutral. PFBC systems have been demonstrated at capacities of over 100 MW. Such systems already include CaCO3 injection for sulfur control, and operate at suitable temperatures and pressures for calcination. We assess the potential to recover heat from the dissolution of CaO in order to reduce the overall energy requirements. We analyze the possibility of adapting existing large water/air heat exchangers for use as contacting systems to capture CO2 from the air using the calcium hydroxide solution. The implications of air capture

  6. Mastering Interproximal Stripping: With Innovations in Slenderization

    PubMed Central

    Shrivastav, Sunita S; Hazarey, Pushpa V

    2012-01-01

    ABSTRACT Crowding and irregularity remain a consistent problem for children. Management of space problems continues to play an important role in a dental practice. It also represents an area of major interaction between the primary provider and the specialists. Proximal stripping is routinely carried out to avoid extraction in borderline cases where space discrepancy is less and in cases where there is a discrepancy between the mesio- distal width of maxillary and mandibular teeth to satisfy Bolton ratio. Proximal stripping is carried out using of metallic abrasive strip, safe sided carborundum disk, or with long thin tapered fissure burs with air rotor. The use of rotary cutting instrument can harm the pulp by exposure of mechanical vibration and heat generation (in some cases). Whereas, the large diameter of the disk obstructs vision of the working area. Also fracturing away a portion is a common problem with disk. Tapered fissure burs cut the tooth structure as the width of bur or overcutting may occur of the tooth structure due to high speed. The use of metallic abrasive strip is the safest procedure amongst the above. The strip can be placed in the anterior region without any difficulty but using it in the posterior region is difficult as, it is difficult to hold it with fingers while stripping the posterior teeth. To avoid this inconvenience here with a simple and economical way of fabricating strip holder from routine lab material is presented. Clinical implications: Proper management of space in the primary and mixed dentitions can prevent unnecessary loss in arch length. Diagnosing and treating space problems requires an understanding of the etiology of crowding and the development of the dentition to render treatment for the mild, moderate and severe crowding cases. Most crowding problems with less than 4.5 mm can be resolved through preservation of the leeway space, regaining space or limited expansion in the late mixed dentition. In cases with 5 to 9 mm

  7. Review of Benzene Stripping Alternatives for the Small Tank Precipitation Facility

    SciTech Connect

    Dworjanyn, L.O.

    2000-11-07

    Packed columns provide a proven technology for stripping benzene from salt solution. With continuous Small Tank Precipitation process the stripping load is reduced by a factor of four vs. former ITP cycling, and process continuity is maintained through to the Saltstone transfer tank. Lower stripping capacity allows new design options, including coarser packing and possibly reduced foaming packing.

  8. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  9. International Diffusion of Open Path FTIR Technology and Air Monitoring Methods: Taiwan (Republic of China).

    PubMed

    Giese-Bogdan, Stefan It; Levine, Steven P

    1996-08-01

    International cooperation and diffusion of environmental technologies is a central goal of the U.S. EPA Environmental Technology Initiative, and is of great interest to many countries. One objective is to exchange knowledge and skills concerning new monitoring technologies. In this case, the technology was open path Fourier Transform Infrared Spectrometry (op-FTIR). Taiwan is a high-technology, newly industrialized country. Because of air pollution problems, it is interested in obtaining skills, knowledge, and instrumentation for monitoring air pollutants. In April 1994, the Industrial Technology Research Institute, Center for Industrial Safety and Health Technology (ITRI/CISH) in Hsinchu, Taiwan, requested intensive training in op-FTIR. Training was held between September 30,1994 and October 29,1994. During the stay, the instructor provided intensive training on op-FTIR theory as well as an introduction to available instrumentation and software. The training concluded with a field demonstration of the instrumentation in a manufacturing facility. This report gives an overview of the training methods, structure, and materials in the op-FTIR training course. It will also address various problems encountered while teaching this course. In addition, the potential use for this technology in industry as well as by the Taiwanese government will be explained.

  10. Health in strip cartoons.

    PubMed

    Videlier, P; Piras, P

    1990-01-01

    Strip cartoons are among the most vivid means of communication at our disposal, and they are particularly popular with the young. Medical matters have featured in many stories, though usually in a peripheral role. Could more be done to use this powerful medium, or would deliberate exploitation destroy it?

  11. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  12. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  13. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  14. Strip and load data

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The method of taking batch data files and loading these files into the ADABAS data base management system (DBMS) is examined. This strip and load process allows the user to quickly become productive. Techniques for data fields and files definition are also included.

  15. Investigation of air transportation technology at Princeton University, 1990-1991

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    The Air Transportation Technology Program at Princeton University is a program that emphasizes graduate and undergraduate student research. The program proceeded along six avenues during the past year: microburst hazards to aircraft, intelligent failure tolerant control, computer-aided heuristics for piloted flight, stochastic robustness of flight control systems, neural networks for flight control, and computer-aided control system design.

  16. The Citizen Science Toolbox: A One-Stop Resource for Air Sensor Technology

    EPA Science Inventory

    The air sensor technology market is exploding with new sensors in all kinds of forms. Developers are putting sensors in wristbands, headphones, and cell phone add-ons. Small, portable and lower-cost measurement devices using sensors are coming on the market with a wide variety of...

  17. Evaluating the Air Quality, Climate Change, and Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    This is an abstract for a presentation that describes a project to evaluate economic and environmental performance of several biogas management technologies. It will analyze various criteria air pollutants, greenhouse gas emissions, and costs associated with the use of biogas. Th...

  18. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  19. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  20. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  1. Accustrip - The next generation in nontoxic low impact stripping

    NASA Astrophysics Data System (ADS)

    Lee, Rick C.; Kirschner, Larry

    1989-03-01

    Accustrip: a new 'wet stripping' process that allows depainting in existing chemical stripping facilities utilizes a proprietary blend of sodium bicarbonate as a media along with a mixture of air and water. The media is manufactured and blended as food grade quality. The process has several major benefits. It has very low dust emissions, removes oil and grease, and has ability to remove surface corrosion from metal substrates during stripping without additional steps or materials. The blended sodium bicarbonate is nontoxic to the worker and environment. Economics of the media do not require costly reclaim facilities or dust collecting systems. Disposal costs are minimal.

  2. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow, Task 6

    DTIC Science & Technology

    2006-09-01

    AFRL-VA-WP-TR-2007-3086 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020: Prediction of Manufacturing Tolerances for...NUMBER F33615-00-D-3054-0020 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020

  3. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  4. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  5. Evaluation of Innovative Volatile Organic Compound and Hazardous Air Pollutant Control Technologies for U.S. Air Force Paint Spray Booths

    DTIC Science & Technology

    1990-10-01

    AVAILABLE COPY APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED AIR FORCE ENGINEERING & SERVICES CENTER ENGINEERING & SERVICES LABORATORY TYNDALL AIR...FORCE BASE, FLORIDA 32403 91 10 IDg X1. NOTICE Plezse do not request copies of this report from HO AFESC/RD (Engineering and Services Laboratory ...cooperation with the Air and Energy Engineering Research Laboratory (AEERL) of the U.S. Environmental Protection Agency (EPA), initiated technology evaluation

  6. Ammonia stripping for enhanced biomethanization of piggery wastewater.

    PubMed

    Zhang, Lei; Lee, Yong-Woo; Jahng, Deokjin

    2012-01-15

    In this study, the effects of ammonia removal by air stripping as a pretreatment on the anaerobic digestion of piggery wastewater were investigated. Ammonia stripping results indicated that ammonia removal was strongly dependent on pH and aeration rate, and the ammonia removal rate followed the pseudo-first-order kinetics. A significant enhancement of biomethanization was observed for wastewaters of which ammonia was air-stripped at pH 9.5 and pH 10.0. The methane productivity increased from 0.23 ± 0.08 L CH(4)/Ld of the control (raw piggery wastewater) to 0.75 ± 0.11 L CH(4)/Ld (ammonia-stripped at pH 9.5) and 0.57 ± 0.04 L CH(4)/Ld (ammonia-stripped at pH 10.0). However, the improvement of methane production from the piggery wastewater pretreated at pH 11.0 was negligible compared to the control, which was thought to be due to the high concentration of sodium ions supplied from sodium hydroxide for pH adjustment. From these results, it was concluded that ammonia removal through air stripping at the alkaline pH could be a viable option for preventing the failure of anaerobic digestion of the raw piggery wastewater. Additionally, it was also found that a high concentration of sodium ion originated from sodium hydroxide for pH adjustment inhibited methane production.

  7. Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology

    DTIC Science & Technology

    2003-01-01

    Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology January 2003 Report Documentation Page Form ApprovedOMB No. 0704...2003 to 00-00-2003 4. TITLE AND SUBTITLE Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology...iii LIST OF FIGURES Page Figure 1. Air-Sparged Hydrocyclone (ASH) Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. ASH

  8. CONTACT: An Air Force technical report on military satellite control technology

    NASA Astrophysics Data System (ADS)

    Weakley, Christopher K.

    1993-07-01

    This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.

  9. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    SciTech Connect

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  10. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  11. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  12. ATLAS strip tracker stavelets

    NASA Astrophysics Data System (ADS)

    Phillips, P. W.

    2012-02-01

    The engineering challenges related to the supply of electrical power to future large scale detector systems are well documented. Two options remain under active study in our community, namely serial powering and the use of DC-DC converters. Whilst clearly different in detail, both have the potential to increase the efficiency of the powering system. The ATLAS Upgrade Strip Tracker Community has constructed two demonstrator stavelets using the ABCN-25 ASIC, each comprising four silicon strip detector modules. The first stavelet is serially powered, using shunt transistors integrated into the ABCN-25 chip to maintain the required operating voltage given a constant supply current, and the second stavelet uses STV-10 DC-DC converters provided by the CERN group. Although the detailed test programme shall continue at CERN, results from stavelet tests made at RAL are presented here.

  13. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  14. Robotic Paint Stripping Cell

    DTIC Science & Technology

    1993-11-01

    based controls are used for all F-1 a substrate materials, Inc, ding graphite-epoxy composhes. The RPSC is a fully automated plastic media blast paint...based controls are used for all F.16 substrate materials, including graphite-epoxy composites. The RPSC is a fully automated plastic media blast...control the paint stripping rate and prevent overblasting of the substrate . Four halogen lamps provide an infrared-rich light source which is reflected

  15. Investigation of air transportation technology at Massachusetts Institute of Technology, 1986

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1988-01-01

    There were three areas of research sponsored in the Flight Transportation Lab. at MIT under the Joint University Research Program during 1986. The first was the completion of efforts investigating the possibility of using Loran-C for final approach guidance to a runway; the second is a preliminary exploration of the application of automated speech recognition in Air Traffic Control; the third is a continuation of a series of research topics into aircraft icing problems.

  16. Control of Cimex lectularius using heat combined with dichlorvos resin strips.

    PubMed

    Lehnert, M P; Pereira, R M; Koehler, P G; Walker, W; Lehnert, M S

    2011-12-01

    Successful management of the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is difficult because of its pesticide resistance, which can allow a reduction in population, but not elimination. We evaluated the effect of heat and/or air circulation on the efficacy of dichlorvos resin strips in the control of bed bugs. Treatments were performed in unoccupied dormitory rooms and consisted of dichlorvos resin strips containing 18.6% active ingredient, the same strips + fan, and strips + fan + heat. The mortality of recently fed bed bugs and weight loss of the dichlorvos strips were evaluated over 7 days. Dichlorvos resin strips killed bed bugs and eggs in just over 7 days. The addition of a fan or a fan + heat decreased time to 100% mortality to 3 days and 36 h, respectively. Eggs located in treated rooms did not hatch. Resin strips in the strips + fan treatment and the strips + fan + heat treatment volatilized 10 and 70 times, respectively, faster than strips in the strips-only treatment. The addition of heat in treatments with dichlorvos resin strips enhances the overall efficacy of the volatile insecticide and reduces the time required to eliminate live bed bugs and eggs.

  17. A Review of Monitoring Technologies for Trace Air Contaminants in the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.; McCoy, J. Torin

    2004-01-01

    NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature. All but one technology involved the use of gas chromatography for separation, and there were various detectors proposed including several mass spectrometers and ion mobility spectrometers. In general there was a tradeoff between large systems with considerable capability to address the target list and smaller systems that had much more limited capability.

  18. Strengthening Bridges with Prestressed CFRP Strips

    NASA Astrophysics Data System (ADS)

    Siwowski, Tomasz; Żółtowski, Piotr

    2012-06-01

    Limitation of bridge's carrying bearing capacity due to aging and deterioration is a common problem faced by road administration and drivers. Rehabilitation of bridges including strengthening may be applied in order to maintain or upgrade existing bridge parameters. The case studies of strengthening of two small bridges with high modulus prestressed CFRP strips have been presented in the paper. The first one - reinforced concrete slab bridge - and the other - composite steel-concrete girder bridge - have been successfully upgraded with quite new technology. In both cases the additional CFRP reinforcement let increasing of bridge carrying capacity from 15 till 40 metric tons. The CFRP strip prestressing system named Neoxe Prestressing System (NPS), developed by multi-disciplinary team and tested at full scale in Rzeszow University of Technology, has been also described in the paper.

  19. Human-Centered Technologies and Procedures for Future Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney

    1997-01-01

    The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.

  20. Site Evaluation for Application of Fuel Cell Technology, Nellis Air Force Base, NV

    DTIC Science & Technology

    2001-03-01

    participated in the development and application of advanced fuel cell technology since fiscal yea 1993 (FY93). CERL selected and evaluated application sites...feedback to manufacturers for 29 of 30 commercially available fuel cell power plants and their thermal interfaces installed at Department of Defense...DoD) locations. This report presents an overview of the information collected at Nellis Air Force Base, NV, along with a conceptual fuel cell installation

  1. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0049: Computational Prototyping of Micro Air Vehicles

    DTIC Science & Technology

    2013-01-01

    integration at the system level . To quantitatively assess MAV technology, a more detailed engineering description is needed. 2 Approved for public...descriptions. A fairly unique source of system- level FWMAV data is the NATO AVT Task Group 184, “Characterization of Bio-Inspired Micro Air Vehicle...control geometric description utilizes the same underlying geometric description in the aerodynamics analysis, but adds an abstract level of describing

  2. Air emissions and control technology for leather tanning and finishing operations

    SciTech Connect

    Mitsch, B.F.; Howie, R.H.; McClintock, S.C.

    1993-06-01

    The document provides information for use in assessing appropriate measures to control volatile organic compound (VOC) emissions from leather tanning and finishing facilities. It also provides a general description of the industry; describes the key processes employed in manufacturing leather; characterizes the emissions of VOC's and HAPs from the industry; describes applicable emission reduction technologies; and finally, discusses current State and local air pollution regulations affecting the industry.

  3. Investigation of Air Transportation Technology at Princeton University, 1989-1990

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1990-01-01

    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given.

  4. Dry stripping as a surface treatment method

    NASA Astrophysics Data System (ADS)

    Nieminen, Ilkka

    1992-03-01

    High environmental and safety standards as well as use of new paint and substrate materials have created the need for developing stripping methods to substitute chemical and mechanical methods and on the other hand for expanding the applicability of blasting as a surface treatment. Plastic Media Blasting (PMB) (alternatively Dry Stripping System (DSS)) is an emerging technology first used in aircraft maintenance for paint stripping. Traditionally this task is performed by brushing and grinding or by using chemical solvents. With plastic media it is possible to remove thick paints with high adhesion without damaging the substrate and even layer by layer. If suitable type of plastic media, blasting pressure low enough, media concentration high enough and on the other right blasting time, blasting distance and blasting angle are chosen, the effectiveness of PMB can be varied to a large extent. In regard to the hardness of media plastic particles are situated between some organic materials and shots used in sand blasting. Therefore composite materials can be treated without damaging the substrate or thin metal plates without causing any deformations. The principle of plastic media blasting equipment is similar to traditional blasting equipment. Nevertheless the properties of plastic media are different to harder particles used in shot peening resulting in higher demands for filtration, ventilation and recycling systems. In addition the facilities have to contain proper recovery equipment, because plastic media can be reused, even 20 times. In recycling systems plastic media is cleaned, too large and too small particles are removed, hard and magnetic particles are removed from reusable media and dust is separated from media. In addition to paint stripping PMB can successfully be used for cleaning of surfaces from contamination and to some extent for polishing, grinding and roughening. Paint stripping has been the main application so far, but there may be many other

  5. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  6. Novel Strip Test for Circulating Hormones

    DTIC Science & Technology

    1996-10-01

    level of discrimination will permit 72 hour advance notice of impending ovulation , making the strips a useful tool in family planning in that they...provide sufficient advance notice of ovulation to allow for the lifetime of sperm in the vagina. To implement this novel immunoassay technology, a new...before the peak of luteinizing hormone (LH) until two days after the peak.’ The maximum notification of impending ovulation provided by measurement

  7. Long-term impacts of air capture technologies on optimal climate strategies under economic uncertainties

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.

    2014-12-01

    Despite widespread attention to the consequences of climate change, tangible and concerted progress toward mitigation of the adverse effects of greenhouse-gas (GHG) emissions has yet to be coordinated among various national and international agents. The energy objectives set by such initiatives as 'Sustainable Energy for All' partially help slow down the global warming in short term, but the risks posed by GHG emissions would persist for a long time. This fact makes negative emission solutions more appealing as a part of the climate protection efforts. Here I use integrated assessment modeling to investigate the potential added value of air capture technologies as a complement for more conventional solutions such as carbon capture and storage, and the use of renewables. Thermodynamic limits of air capture technologies are used as a general guideline for the estimation of the performance of air capture technologies. Optimal long-run climate strategies are discussed taking into account the uncertainties in the impact of CO2 concentration on the Global Wealth Product, and possible scenarios that result in an overshoot beyond the 2°C warming limit.

  8. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  9. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  10. Identification of Air Force Emerging Technologies and Militarily Significant Emerging Technologies.

    DTIC Science & Technology

    1985-08-31

    lithium thionyl chloride from one to two hours. Thus, lithium technology is allowing primary and reserve batteries to achieve rates and times...current batteries . Lithium chloride is one such candidate. Lithium chloride is a high temperature battery with a power density of 16 Amps/cm2 at 2.5 volts...missile guidance seekers. Lithium chloride batteries capable of achieving 40 watts/cm2 is still in early 6.2 develop- mental research

  11. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  12. Paresev on Taxi Strip

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  13. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  14. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  15. Simulation of the introduction of new technologies in air traffic management

    NASA Astrophysics Data System (ADS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2015-07-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernisation of large infrastructure problems. This is especially true in the modernisation of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behaviour due to complex human/machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviours. However, such models are difficult to produce, especially to show unexpected emergent behaviour coming from many human operators interacting simultaneously within a complex system. Instead, we introduce an alternate approach. Instead of engineering complex human models, we directly model the emergent behaviour with relatively simple goal-directed agents. In this model, each autonomous agent in a system pursues individual goals, and the high-level behaviour of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method is capable of reflecting the integration of new technologies in a historical case, and apply the same methodology for a possible future technology. Finally, we show how these high-level simulated behaviours compare to actual deployed air traffic control mechanisms in use today.

  16. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers

    SciTech Connect

    Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga

    2007-07-01

    High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

  17. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    NASA Astrophysics Data System (ADS)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  18. An investigation of air transportation technology at the Massachusetts Institute of Technology, 1991-1992

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1993-01-01

    There are two completed projects and five new or continuing research activities under the sponsorship of the FAA/NASA Joint University Program as the 1991-92 period ends. A brief summary of some of the continuing research projects is provided. The active research projects are: (1) extensions for the FASA (Final Approach Spacing Advisory) System; (2) radar tracking around a turn; (3) impact of advanced technologies of single pilot IFR operations; (4) system and human limitations in millimeter wave and infrared synthetic vision systems; and (5) differences in party line information usage by operational user groups.

  19. Efficient ozone, sulfate, and ammonium free resist stripping process

    NASA Astrophysics Data System (ADS)

    Dattilo, Davide; Dietze, Uwe

    2014-07-01

    In recent years, photomask resist strip and cleaning technology development was substantially driven by the industry's need to prevent surface haze formation through the elimination of sulfuric acid and ammonium hydroxide from these processes. As a result, conventional SPM (H2SO4 + H2O2) was replaced with Ozone water (DIO3) for resist stripping and organic removal to eliminate chemical haze formation [1, 2]. However, it has been shown that DIO3 basted strip and clean process causes oxidative degradation of photomask materials [3, 4]. Such material damage can affect optical properties of funcitional mask layers, causeing CD line-width, phase, transmission and reflection changes, adversely affecting image transfer during the Lithography process. To overcome Ozone induced surface damage, SUSS MicroTec successfully developed a highly efficient strip process, where photolysis of DIO3 is leading to highly reactive hydroxyl radical formation, as the main contribution to hydrocarbon removal without surface damage [5]. This technology has been further extended to a final clean process, which is utilizing pure DI water for residual organic material removal during final clean [6]. Recently, SUS MicroTec did also successfully release strip and clean processes which completely remove NH4OH, eliminating any chemicals known today to induce haze [7]. In this paper we show the benefits of these new technologies for highly efficient sulfate and ammonium free stripping and cleaning processes.

  20. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    PubMed

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  1. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  2. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    PubMed Central

    Yoshida, Yukiko

    2006-01-01

    Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

  3. Air Force electrochemical power research and technology program for space applications

    NASA Technical Reports Server (NTRS)

    Allen, Douglas

    1987-01-01

    An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.

  4. NASA/Air Force/Environmental Protection Agency Interagency Depainting Study

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    1998-01-01

    Many popular and widely used paint stripping products have traditionally contained methylene chloride as their main active ingredient. However, the Environmental Protection Agency (EPA) has critically curved the allowable use of methylene chloride under the National Emission Standard for Hazardous Air Pollutants regulating Aerospace Manufacturing and Rework Facilities . Compliance with this rule was mandatory by September 1998 for affected facilities. An effort is underway to identify and evaluate alternative depainting technologies emphasizing those believed both effective and environmentally benign. On behalf of the EPA and in cooperation with the United States Air Force, the National Aeronautics and Space Administration is conducting a technical assessment of several alternative technologies ( i.e. : chemical stripping, two CO2 blasting processes, CO2 xenon lamp coating removal, CO2 Laser stripping, plastic media blasting, sodium bicarbonate wet stripping, high pressure water stripping, and wheat starch blasting). These depainting processes represent five removal method categories, namely abrasive, impact, cryogenic, thermal, and/or molecular bonding dissociation. This paper discusses the test plan and parameters for this interagency study. Several thicknesses of clad and non-clad aluminum substrates were used to prepare test specimens. Each depainting process has been assigned a specimen lot, all of which have completed three to five stripping cycles. Numerous metallurgical evaluations are underway to assess the impact of these alternative depainting processes upon the structural integrity of the substrate.

  5. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  6. Innovative pollution prevention program at Air Force owned Raytheon operated facility incorporating Russian technology

    SciTech Connect

    Stallings, J.H.; Cepeda-Calderon, S.

    1999-07-01

    Air Force Plant 44 in Tucson, Arizona is owned by the Air Force and operated by Raytheon Missile Systems Company. A joint Air Force/Raytheon Pollution Prevention Team operates at AFP 44 with the ultimate goal to minimize or eliminate the use of hazardous substances. The team works together to uncover new technologies and methods that will replace chemicals used in the plant's missile manufacturing facilities. The program maximizes pollution prevention by first eliminating hazardous material use, then chemical recycling, next hazardous waste reduction and finally wastewater treatment and recycling. From fiscal years 1994 through 1997, nine pollution prevention projects have been implemented, totaling $2.6 million, with a payback averaging less than two years. A unique wastewater treatment method has been demonstrated as part of this program. This is electroflotation, a Russian technology which removes dispersed particles from liquid with gas bubbles obtained during water electrolysis. A unit was built in the US which successfully removed organic emulsions from wastewater. Operational units are planned for the removal of waste from waterfall paint booths. The pollution prevention joint team continues to be very active with two projects underway in FY 98 and two more funded for FY 99.

  7. Environmental Assessment: For the Testing and Evaluation of Directed Energy System Using Laser Technology, Edwards Air Force Base

    DTIC Science & Technology

    2006-08-01

    Test Center Edwards Air Force Base, California Final August 2006 Edwards AFB 95th Air Base Wing Report Documentation Page Form ApprovedOMB No. 0704...light amplification by stimulated emission of rad iation (laser) technology at Edwards Air Force Base (AFB), California , and w ithin the R-2508 Complex...Force Flight Test Center, Edwards AFB, California . 2.0 DESCRIPTION OF THE PROPOSED ACTION AND ALTERN A TJVES CONSIDERED The Proposed Action would

  8. Sustainable intensive livestock production demands manure and exhaust air treatment technologies.

    PubMed

    Melse, Roland W; Timmerman, Maikel

    2009-11-01

    Intensive livestock production is connected with a number of environmental effects, including discharges to soils and surface waters and emissions to the atmosphere. In areas with a high livestock density the low availability of nearby arable land, together with the preferred use of chemical fertilizer by arable farmers, results in high off-farm disposal costs for manure. Furthermore, ammonia abatement technologies, such as treatment of exhaust air, are important as ammonia emissions may account up to a quarter of the total nitrogen flux. Firstly, the paper describes and discusses the development of manure treatment in the Netherlands since the 1970's. Manure treatment processes that result in products that compete with and replace the use of chemical fertilizers can (partly) close the nutrient cycle again. From this point of view aerobic treatment of manure (nitrification/denitrification) can not be considered sustainable as nitrogen is taken out of the cycle at high environmental costs. Secondly, the state-of-the-art of techniques for treatment of exhaust air is presented. Besides ammonia, application of air treatment may also reduce environmental emissions of odour and particulate matter (dust). Both manure treatment and treatment of exhaust air are considered essential for sustainable livestock operations in areas with a high livestock density.

  9. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology.

    PubMed

    Bokotko, Romuald P; Hupka, Jan; Miller, Jan D

    2005-02-15

    Laboratory results from an initial study on the removal of SO2 from gas mixtures are reported using air-sparged hydrocyclone (ASH) technology. Tap water and alkaline solutions were used for absorption, and the influence of gas flow rate, water flow rate, and length of the ASH unit were investigated. The research results indicate thatthe air-sparged hydrocyclone can be used as a highly efficient absorber for SO2 emissions. The ASH allows for 97% SO2 removal using water alone for sulfur dioxide content in the gas phase of 5 g/m3. All SO2 is removed in weakly alkaline solution (0.01 mol NaOH/dm3).

  10. Silent Discharge Plasma Technology for the Treatment of Air Toxics and Other Applications

    SciTech Connect

    Rosocha, Louis A.; Chase, Peter J.; Gross, Michael P.

    1998-09-21

    Under this CRADA, the Los Alamos National Laboratory (LANL) and High Mesa Technologies, Inc. (HMT) carried out a joint project on the development of the silent discharge plasma (SDP) technology for the treatment of hazardous air pollutants and other hazardous or toxic chemicals. The project had two major components: a technology-demonstration part and a scale-up and commercialization part. In the first part, a small-scale, mobile SDP plasma processor, which was being developed under a CRADA with the Electric Power Research Institute (EPRI) was the mobile equipment was modified for higher capacity service and employed for an innovative remediation technologies demonstration on soil-vapor extraction off-gases at the McClellan Air Force Base near Sacramento, CA. The performance of the SDP system for the variety of volatile organic compounds (VOCs) encountered at the McClellan site was sufficiently promising to the project HMT and LANL worked together to formulate a scale-up strategy and commercialization/manufacturing plan, and to design a prototype scaled-up SDP unit. HMT and LANL are now in the final stages of completing a licensing agreement for the technology and HMT is in the process of raising funds to engineer and manufacture commercial prototype SDP equipment focused on stack-gas emissions control and environmental remediation. HMT, in collaboration with another Northern New Mexico business, Coyote Aerospace, has also been successful in receiving a Phase I Small Business Innovative Research (SBIR) award from the Army Research Office to develop, design, and construct a small non-thermal plasma reactor for laboratory studies ("Non-Thermal Plasma Reactor for Control of Fugitive Emissions of Toxic Gases")

  11. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  12. Directions in US Air Force space power technology for global virtual presence

    NASA Astrophysics Data System (ADS)

    Keener, David; Reinhardt, Kitt; Mayberry, Clay; Radzykewycz, Dan; Donet, Chuck; Marvin, Dean; Hill, Carole

    1998-01-01

    Recent trends in the development of high efficiency, light-weight, compact, reliable and cost-effective space power technologies needed to support the development of next-generation military and commercial satellites will be discussed. Development of new light-weight and reduced volume electrical power system (EPS) technologies are required to enable the design of future ``smallsats'' with power requirements less than 1500W, to ``monstersats'' having projected power levels ranging from 10-50kW for commercial communication and military space based radar type satellites. In support of these projected requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Research Laboratory's Space Vehicles Directorate. The technologies presented in this paper include high efficiency multijunction solar cells, alkali metal thermal electric converters (AMTEC), high-voltage (70-130V)/high-efficiency/high-density power management and distribution (PMAD) electronics, and high energy density electrochemical and mechanical energy storage systems (sodium sulfur, lithium-ion, and flywheels). Development issues and impacts of individual technologies will be discussed in context with global presence satellite mission requirements.

  13. High Altitude Long Endurance Air Vehicle Analysis of Alternatives and Technology Requirements Development

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.

  14. MECHANIZATION STUDY OF THE AIR FORCE INSTITUTE OF TECHNOLOGY LIBRARY, WRIGHT-PATTERSON AFB, OHIO

    DTIC Science & Technology

    The Air Force Institute of Technology (AFIT) Library uses an IBM 1401 computer to produce a list of journal holdings, alphabetically arranged and provided with an abbreviation glossary. One list was produced and circulated. Input to the system is EAM cards with journal data. Because of difficulties in obtaining use of the computer--which is not owned by the Library--within a reasonable time , the Library has decided to abandon computer mechanization and to use instead Library--owned Flexowriter equipments interfaced with supplemental EAM card punch, sorter, and reader.

  15. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  16. MHD air heater technology development. Annual technical progress report, January 1, 1980-December 31, 1980

    SciTech Connect

    1981-03-01

    Progress on the technology development of the directly-fired high temperature air heater (HTAH) for MHD power plants is described in detail. The objective of task 1 is to continue development of ceramic materials technology for the directly-fired HTAH. The objectives of task 2 are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. The objectives of task 3 are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. (WHK)

  17. Better-Than-Visual Technologies for Next Generation Air Transportation System Terminal Maneuvering Area Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.

    2011-01-01

    A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.

  18. Procuring High-Efficiency Air Conditioners: Harnessing Competition to Achieve Advances in Technology

    SciTech Connect

    Hollomon, J Bradford; Gordon, Kelly L.

    2002-03-01

    The Departments of Energy and Defense have joined forces to devise an innovative approach to acquiring more efficient unitary air conditioners that minimize life-cycle cost through improved technology. The resulting procurement solicitation challenges manufacturers to offer products with reduced life-cycle cost, taking into account both the initial prices of their units and the costs of their ongoing electric consumption. Competing products are evaluated according to a formula that reflects both full- and part-load efficiencies under a simulated set of time-varying climate conditions. The authors will report on the progress of the procurement, including the choice of target product based on market prospects and technology readiness, development of the technical specifications and electric consumption simulator, approaches to administrative and procedural challenges, responses from manufacturers, and plans for product promotion in the future.

  19. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  20. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 3.0

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Scardina, John; Shay, Richard F.

    2016-01-01

    This document describes the goals, benefits, technologies, and procedures of the Concept of Operations (ConOps) for the Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1), and provides an update to the previous versions of the document [ref 1 and ref 2].

  1. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  2. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  3. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  4. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  5. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  6. Directions in US Air Force space power energy generation and distribution technology

    NASA Astrophysics Data System (ADS)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  7. Air quality and climate impacts of alternative bus technologies in Greater London.

    PubMed

    Chong, Uven; Yim, Steve H L; Barrett, Steven R H; Boies, Adam M

    2014-04-15

    The environmental impact of diesel-fueled buses can potentially be reduced by the adoption of alternative propulsion technologies such as lean-burn compressed natural gas (LB-CNG) or hybrid electric buses (HEB), and emissions control strategies such as a continuously regenerating trap (CRT), exhaust gas recirculation (EGR), or selective catalytic reduction with trap (SCRT). This study assessed the environmental costs and benefits of these bus technologies in Greater London relative to the existing fleet and characterized emissions changes due to alternative technologies. We found a >30% increase in CO2 equivalent (CO2e) emissions for CNG buses, a <5% change for exhaust treatment scenarios, and a 13% (90% confidence interval 3.8-20.9%) reduction for HEB relative to baseline CO2e emissions. A multiscale regional chemistry-transport model quantified the impact of alternative bus technologies on air quality, which was then related to premature mortality risk. We found the largest decrease in population exposure (about 83%) to particulate matter (PM2.5) occurred with LB-CNG buses. Monetized environmental and investment costs relative to the baseline gave estimated net present cost of LB-CNG or HEB conversion to be $187 million ($73 million to $301 million) or $36 million ($-25 million to $102 million), respectively, while EGR or SCRT estimated net present costs were $19 million ($7 million to $32 million) or $15 million ($8 million to $23 million), respectively.

  8. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  9. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  10. JV Task 75 - Lignite Fuel Enhancement via Air-Jigging Technology

    SciTech Connect

    Jason Lamb; Steven Benson; Joshua Stanislowski

    2007-03-01

    Several North Dakota lignite coals from the Falkirk Mine were processed in a 5-ton-per-hour dry coal-cleaning plant. The plant uses air-jigging technology to separate undesirable ash constituents as well as sulfur and mercury. The results of this study indicate average ash, sulfur, and mercury reductions on a weight basis of 15%, 22%, and 28%, respectively. The average heating value was increased by 2% on a Btu/lb basis. Two computer models were used to understand the impact of a cleaned fuel on boiler performance: PCQUEST{reg_sign} and Vista. The PCQUEST model indicated improvements in slagging and fouling potential when cleaned coals are used over feed coals. The Vista model was set up to simulate coal performance and economics at Great River Energy's Coal Creek Station. In all cases, the cleaned fuel performed better than the original feed coal, with economic benefits being realized for all fuels tested. The model also indicated that one fuel considered to be unusable before cleaning was transformed into a potentially salable product. While these data indicate full-scale implementation of air-jigging technology may be beneficial to the mine and the plant, complete economic analysis, including payback period, is needed to make the final decision to implement.

  11. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    EPA Pesticide Factsheets

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,

  12. PROFILE: Potential for Advanced Technology to Improve Air Quality and Human Health in Shanghai.

    PubMed

    STREETS; HEDAYAT; CARMICHAEL; ARNDT; CARTER

    1999-04-01

    / Air quality in most Asian cities is poor and getting worse. It will soon become impossible to sustain population, economic, and industrial growth without severe deterioration of the atmospheric environment. This paper addresses the city of Shanghai, the air-quality problems it faces over the next 30 years, and the potential of advanced technology to alleviate these problems. Population, energy consumption, and emission profiles are developed for the city at 0.1 degrees x 0.1 degrees resolution and extrapolated from 1990 to 2020 using sector-specific economic growth factors. Within the context of the RAINS-Asia model, eight technology scenarios are examined for their effects on ambient concentrations of sulfur dioxide and sulfate and their emission control costs. Without new control measures, it is projected that the number of people exposed to sulfur dioxide concentrations in excess of guidelines established by the World Health Organization will rise from 650,000 in 1990 to more than 14 million in 2020. It is apparent that efforts to reduce emissions are likely to have significant health benefits, measured in terms of the cost of reducing the number of people exposed to concentrations in excess of the guidelines ($10-50 annually per person protected). Focusing efforts on the control of new coal-fired power plants and industrial facilities has the greatest benefit. However, none of the scenarios examined is alone capable of arresting the increases in emissions, concentrations, and population exposure. It is concluded that combinations of stringent scenarios in several sectors will be necessary to stabilize the situation, at a potential cost of $500 million annually by the year 2020. KEY WORDS: Coal; China; Shanghai; Sulfur dioxide; Air quality; Health effects

  13. Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site

    SciTech Connect

    Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

    1980-05-01

    As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

  14. Development of a Novel Gas Pressurized Process-Based Technology for CO2 Capture from Post-Combustion Flue Gases Preliminary Year 1 Techno-Economic Study Results and Methodology for Gas Pressurized Stripping Process

    SciTech Connect

    Chen, Shiaoguo

    2013-03-01

    Under the DOE’s Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 – Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007” was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS’ GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe

  15. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  16. Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process

    NASA Astrophysics Data System (ADS)

    See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy

    1993-03-01

    The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.

  17. Development of a thin steel strip casting process. Final report

    SciTech Connect

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  18. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  19. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  20. Fermilab silicon strip readout chip for BTev

    SciTech Connect

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  1. Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.

    SciTech Connect

    Lee, Moo Yul; Bauer, Stephen J.

    2004-06-01

    This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

  2. Performance Evaluation of Technology Demonstration for Dynamic Underground Stripping with Hydrous Pyrolysis Oxidation (DUS/HPO) Using a Single Well at Beale Air Force Base

    DTIC Science & Technology

    2005-04-07

    characterization was carried out, which focused on the areas of historically high contamination including the area south of Doolittle Drive and near SB...29 in Doolittle Drive (Figure 2-3). The Navy’s Site Characterization and Analysis Penetrometer System (SCAPS) rig was used to complete a near real...The punch locations were selected based on likely source areas and migration directions of DNAPL. Sampling began near building PB-160 and continued

  3. Strip casting with fluxing agent applied to casting roll

    SciTech Connect

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  4. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  5. Air-Based Remediation Workshop - Section 1 Sampling And Analysis Revelant To Air-Based Remediation Technologies

    EPA Science Inventory

    Pursant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Force Air Remediation Workshop in Taipei to deliver expert training to the Environme...

  6. Methods proposed to achieve air quality standards for mobile sources and technology surveillance.

    PubMed Central

    Piver, W T

    1975-01-01

    The methods proposed to meet the 1975 Standards of the Clean Air Act for mobile sources are alternative antiknocks, exhaust emission control devices, and alternative engine designs. Technology surveillance analysis applied to this situation is an attempt to anticipate potential public and environmental health problems from these methods, before they happen. Components of this analysis are exhaust emission characterization, environmental transport and transformation, levels of public and environmental exposure, and the influence of economics on the selection of alternative methods. The purpose of this presentation is to show trends as a result of the interaction of these different components. In no manner can these trends be interpreted explicitly as to what will really happen. Such an analysis is necessary so that public and environmental health officials have the opportunity to act on potential problems before they become manifest. PMID:50944

  7. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  8. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  9. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    NASA Astrophysics Data System (ADS)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  10. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  11. Field demonstration and commercialization of silent discharge plasma hazardous air pollutant control technology

    SciTech Connect

    Rosocha, L.A.; Coogan, J.J.; Korzekwa, R.A.; Secker, D.A.; Reimers, R.F.; Herrmann, P.G.; Chase, P.J.; Gross, M.P. |; Jones, M.R.

    1996-07-01

    Silent electrical discharge plasma (dielectric barrier) reactors can decompose gas-phase pollutants by free-radical attack or electron-induced fragmentation. The radicals or electrons are produced by the large average volume nonthermal plasmas generated in the reactor. In the past decade, the barrier configuration has attracted attention for destroying toxic chemical agents for the military, removing harmful greenhouse gases, and treating other environmentally- hazardous chemical compounds. At the Los Alamos National Laboratory, we have been studying the silent discharge plasma (SDP) for processing gaseous-based hazardous chemicals for approximately five years. The key objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more easily managed. The main applications have been for treating off-gases from thermal treatment units, and for abating hazardous air-pollutant emissions (e.g., industrial air emissions, vapors extracted from contaminated soil or groundwater). In this paper, we will summarize the basic principles of SDP processing, discuss illustrative applications of the technology, and present results from small-scale field tests that are relevant to our commercialization effort.

  12. Final Technical Report: Science and technology reviews of FACE[Free Air Carbon Enrichment

    SciTech Connect

    Strain, Boyd R.

    1998-03-23

    The purpose of this grant was to bring together the principals of all known facilities that had been developed, principals who had submitted proposals to develop FACE facilities, and principals who want to develop proposals for facilities. In addition, critical program personnel from potential funding agencies and a few high level science administrators were invited to observe the proceedings and to visit a working FACE facility. The objectives of this study are to conduct a three-day international meeting on scientific aspects of research with the new and developing free air carbon enrichment (FACE) technology. Immediately following the science meeting, conduct a two-day international meeting on experimental protocols to be applied in FACE research. To conduct a four day international meeting on the assessment of the responses of forest ecosystems to elevated atmospheric carbon dioxide. The three meetings supported by this grant were all highly successful meetings and resulted in the formation of an organized and identified working group with the acronym InterFACE (International Free-Air Carbon Dioxide Enrichment) working group.

  13. Investigation of air transportation technology at Princeton University, 1988-1989

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1990-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along several avenues during the past year. A study of optimal trajectories for penetration of microbursts when encounter is unavoidable was conducted. The emphasis of current wind shear research is on developing an expert system for wind shear avoidance. A knowledge-based reconfigurable flight control system that is implemented with the Pascal programming language using parallel microprocessors was developed. This expert system could be considered a prototype for a failure-tolerant control system that can be constructed using existing hardware. Development of a real-time cockpit simulator continued during the year. The simulator provides a single-person crew station with both conventional and advanced control devices; it currently is programmed to simulate the Navion single-engine general aviation airplane. Alternatives for the air traffic control system giving particular attention to the institutional structure of the FAA are analyzed. A simple numerical procedure for estimating the stochastic robustness of control systems is being investigated. The revitalization of the general aviation industry is also discussed.

  14. Information and Communication Technologies in Behavioral Health: A Literature Review with Recommendations for the Air Force.

    PubMed

    Breslau, Joshua; Engel, Charles C

    2016-05-09

    The dramatic evolution in information and communication technologies (ICTs) online and on smartphones has led to rapid innovations in behavioral health care. To assist the U.S. Air Force in developing a strategy for use of ICTs, the authors reviewed the scientific literature on their use to prevent and treat behavioral health conditions, such as major depression, posttraumatic stress disorder, and alcohol misuse. There is currently little scientific evidence supporting additional investment in ICT-based psychosocial programs for resilience or prevention of posttraumatic stress symptoms, depression, or anxiety. Instead, preventive interventions might prioritize problems of alcohol misuse and intimate partner violence. ICT applications that play a role in the treatment process may be used for patient education and activation, to improve decisionmaking by clinicians, to provide a therapy, to improve adherence to treatment, or to maintain treatment gains over time. However, partly due to the rapid pace of development of the technology, there is little or no evidence in the literature regarding the efficacy of the most recently developed types of ICTs, in particular those using smartphones. Despite the lack of solid research evidence to date, ICTs hold promise in addressing the challenges of mental health care. One promising avenue is development of reliable methods for patient-clinician communication between therapy sessions; another is Internet-based cognitive behavioral therapy. The authors recommend that the Air Force should take an incremental approach to adopting the use of ICTs-one that involves a program of measurement-based implementation and process and outcome monitoring rather than urgent dissemination.

  15. A Method for Making Cross-Comparable Estimates of the Benefits of Decision Support Technologies for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Lee, David; Long, Dou; Etheridge, Mel; Plugge, Joana; Johnson, Jesse; Kostiuk, Peter

    1998-01-01

    We present a general method for making cross comparable estimates of the benefits of NASA-developed decision support technologies for air traffic management, and we apply a specific implementation of the method to estimate benefits of three decision support tools (DSTs) under development in NASA's advanced Air Transportation Technologies Program: Active Final Approach Spacing Tool (A-FAST), Expedite Departure Path (EDP), and Conflict Probe and Trial Planning Tool (CPTP). The report also reviews data about the present operation of the national airspace system (NAS) to identify opportunities for DST's to reduce delays and inefficiencies.

  16. Electromechanical responses of Cu strips

    NASA Astrophysics Data System (ADS)

    Zhao, Guangfeng; Liu, Ming; An, Zhinan; Ren, Yang; Liaw, Peter K.; Yang, Fuqian

    2013-05-01

    Electrical-thermal-mechanical behavior of materials plays an important role in controlling the structural integrity of electromechanical structures of small volumes. The electromechanical response of Cu strips was studied by passing an electric current through the strips with electric current densities in the range of 12.34 to 29.60 kA/cm2. The passage of the electric current of high current densities introduced electrical-thermal-mechanical interactions, which caused grain growth and grain rotation in both the melted region and heat-affected zone. The electrothermal interactions led to the elastoplastic buckling of the Cu strips with the maximum deflection of the Cu strips increasing with the increase of the electric current density. The total strain is a quadratic function of the electric current density. There was a quasi-steady state in which the electric resistance of the Cu strips linearly increased with time before the occurrence of electric fusing. A power-law relation was used to describe the dependence of the time-to-failure (electric fusing) on the electric current density. For the region of relatively low current densities, the current exponent ranged from 17.9 to 44.6, and for the region of high current densities, the current exponent ranged from 2.5 to 5.2. The current exponent for relatively low current densities decreased with increasing the length of Cu strips, showing size-dependence. Finite element analyses were performed to analyze the current-induced deflection of a Cu strip. The simulation results showed that the maximum deflection for the electric current density larger than or equal to 5 kA/cm2 is a linear function of the current density in agreement with the experimental observation.

  17. Evaluation of innovative volatile organic compound and hazardous air-pollutant-control technologies for U. S. Air Force paint spray booths. Final report, Aug 88-Aug 89

    SciTech Connect

    Ritts, D.H.; Garretson, C.; Hyde, C.; Lorelli, J.; Wolbach, C.D.

    1990-10-01

    Significant quantities of volatile organic compounds (VOCs) and hazardous air pollutants are released into the atmosphere during USAF maintenance operations. Painting operations conducted in paint spray booths are major sources of these pollutants. Solvent based epoxy primers and solvent-based polyurethane coatings are typically used by the Air Force for painting aircraft and associated equipment. Solvents used in these paints include methyl ethyl ketone (MEK), toluene, lacquer thinner, and other solvents involved in painting and component cleaning. In this report, carbon paper adsorption/catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) were evaluated as control technologies to destroy VOC emissions from paint spray booths. Simultaneous testing of pilot-scale units was performed to evaluate the technical performance of both technologies. Results showed that each technology maintained greater than 99 percent Destruction and Removal Efficiencies (DREs). Particulate emissions from both pilot-scale units were less than 0.08 grains/dry standard cubic foot. Emissions of the criteria pollutants--sulfur oxides, nitrogen oxides, and carbon monoxide--were also below general regulatory standards for incinerators. Economic evaluations were based on a compilation of manufacturer-supplied data and energy consuption data gathered during the pilot scale testing. CPACM and FBCI technologies are less expensive than standard VOC control technologies when net present costs for a 15-year equipment life are compared.

  18. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  19. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  20. Restitution of enamel after interdental stripping.

    PubMed

    Lundgren, T; Milleding, P; Mohlin, B; Nannmark, U

    1993-01-01

    This paper studies the effect of interdental stripping on the enamel surface and evaluates methods to restitute the treated surface. Extracted teeth mounted in a semielastic material were subjected to stripping by different kinds of steel strips. The treated enamel surfaces were then polished in several different ways. The effects were studied by SEM and profilometry. It was concluded that the coarsest strips produced irregularities of such a magnitude that polishing had very limited effect. Polishing starting with coarse polishing strips followed by gradually finer gave the best result. An increase in number of strokes and use of all grades of polishing strips slightly improved the result.

  1. Review & Analysis: Technological Impact on Future Air Force Personnel & Training: Distributed Collaborative Decision-Making, Volume 1

    DTIC Science & Technology

    2015-04-14

    information overload , auditory overload , command pressure, threat, adverse physical conditions, and rapid interaction requirements. Consequently, training...complex and stressful. Situations are characterized as rapidly evolving, ambiguous scenarios, complex, multi-component decisions, information overload ...CSERIAC CREW SYSTEM ERGONOMICS INFORMATION ANALYSIS CENTER CSERIAC-RA-97-007A Review & Analysis Technological Impact on Future Air Force

  2. Smart Warriors: A Rationale for Educating Air Force Academy Cadets in the History of Science, Technology, and Warfare.

    ERIC Educational Resources Information Center

    Astore, William J.

    2003-01-01

    Identifies enhancing the judgments of cadets through education at a military institution like the United States Air Force Academy (USAFA) as a crucial pedagogical issue facing instructors of History of Science and Technology (HST). Discusses the experience of helping cadets to meet such challenges in learning HST in the context of professional…

  3. Field Operations and Enforcement Manual for Air Pollution Control. Volume II: Control Technology and General Source Inspection.

    ERIC Educational Resources Information Center

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…

  4. Transfer and Use of Training Technology in Air Force Technical Training: A Model to Guide Training Development. Final Report.

    ERIC Educational Resources Information Center

    Haverland, Edgar M.

    This guide describes the final stage in a project to develop an Air Force technical training development model and presents the model. Chapter 1 summarizes the total project and its objective to facilitate the effective use of training technology through the development of a model for matching training approaches or innovations with specific…

  5. Development, prototyping and characterization of double sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  6. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  7. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation - OCP Hardware Integration

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2006-3075 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled...2001– 05/28/2004 5a. CONTRACT NUMBER F33615-00-D-3052-0015 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  8. Bimaterial Thermal Strip With Increased Flexing

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.

  9. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  10. U.S. Air Force Research Technology Area Plan, FY 1989

    DTIC Science & Technology

    1988-09-01

    a knowledge base that permits the production, storage and controlled use of antimatter as a future source of energy. o. Provide advanced propulsion ...Air Force Weapons Laboratory (AFWL) Air Force Wright Aeronautical Laboratories (AFWAL) Aero Propulsion Laboratory (AFWAL/PO) Avionics Laboratory...High Energy Density Propellants and other advanced propulsion concepts - Civil and environmental engineering to enhance air base operations - Vertical

  11. 75 FR 22548 - Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... in Accordance With Clean Air Act Sections, Sections 112(g) and 112(j) AGENCY: Environmental... hazardous air pollutants under section 112(j) of the Clean Air Act. We are announcing an extension of the... March 30, 2010, when EPA published a proposed rule (75 FR 15655) amending the Section 112(j) rule...

  12. Intraply Hybrid Composites Would Contain Control Strips

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Chi-Yu

    1996-01-01

    "Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.

  13. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with conventional'' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  14. SNS Laser Stripping for H- Injection

    SciTech Connect

    V.V. Danilov, Y. Liu, K.B. Beard, V.G. Dudnikov, R.P. Johnson, Michelle D. Shinn

    2009-05-01

    The ORNL spallation neutron source (SNS) user facility requires a reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron has the potential to provide the needed beam currents, but it will be limited by intrinsic limitations of carbon and diamond stripping foils. A laser in combination with magnetic stripping has been used to demonstrate a new technique for high intensity proton injection, but several problems need to be solved before a practical system can be realized. Technology developed for use in Free Electron Lasers is being used to address the remaining challenges to practical implementation of laser controlled H- charge exchange injection for the SNS. These technical challenges include (1) operation in vacuum, (2) the control of the UV laser beam to synchronize with the H- beam and to shape the proton beam, (3) the control and stabilization of the Fabry-Perot resonator, and (4) protection of the mirrors from radiation.

  15. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification.

    PubMed

    Lei, Xiaohui; Sugiura, Norio; Feng, Chuanping; Maekawa, Takaaki

    2007-07-16

    In this study, ammonia stripping was optimized for pretreating anaerobic digestion effluent from an anaerobic digestion plant, and the possibility of using CO(2) stripping and biogas injection for adjusting the pH of the effluent before and after the ammonia stripping process was also investigated. For ammonia stripping, the results showed that an overdose of calcium hydroxide, i.e., 27.5g/L wastewater, achieved higher ammonia, phosphorus, chemical oxygen demand, suspended solids, and turbidity removal efficiency. An air flow rate of 5L/min for 1L of wastewater was thought as suitable for engineering application. The pH of the anaerobic digestion effluent can be increased from about 7 to about 9 by CO(2) stripping, however which is insufficient for ammonia stripping. For 1L of wastewater treated after ammonia stripping, the pH can be neutralized to about 7 from greater than 11 through biogas injection at 1L/min for less than 30min, and continuous injection does not decrease the pH. It was roughly estimated that 43m(3) of biogas (CH(4):CO(2) approximately 60%:40%) produced daily could be purified to CH(4):CO(2) approximately 74%:26% by neutralizing the pH of the 5m(3) anaerobic digestion effluent pretreated by ammonia stripping.

  16. Using Comic Strips in Language Classes

    ERIC Educational Resources Information Center

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  17. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  18. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  19. Thermal Insulation Strips Conserve Energy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  20. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  1. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  2. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  3. Final Environmental Assessment for Advanced Littoral Reconnaissance Technologies (ALRT) Project at Eglin Air Force Base, Florida

    DTIC Science & Technology

    2008-05-28

    404 of the CWA established a program to regulate the discharge of dredged and fill material into waters of the United States , including wetlands...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Air Force ,Eglin Air Force Base...Code of Federal Regulations (CFR) 1500-1508 and the United States Air Force Environmental Impact Analysis Process as effectuated by 32 CFR Part 989

  4. Air Force Science & Technology Issues & Opportunities Regarding High Performance Embedded Computing

    DTIC Science & Technology

    2009-09-23

    Challenges by Domain * Air: Persistent air dominance is at risk * Increasingly effective air defenses * Proliferation of 5th generation fighters, cheap cruise missiles, and UASs * Light-speed war possibilities are terrifying * Space: Now a contested domain * Increasingly important * Increasingly vulnerable * Cyber: Cyber warfare has begun * We don’t control the battlespace * We rely on it more and more * We can’t find the enemy.

  5. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  6. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  7. Chloroform stripping from waste waters

    SciTech Connect

    Kolev, N.; Darakchiev, R.; Semkov, K.

    1997-01-01

    The problem treated in this paper is the purification of waste industrial waters from chloroform. An industrial installation with a stripping column is designed, and the results of its study and industrial tests are presented. It is shown that, in a column with 6400 mm total height of the used packing (Holpack), the chloroform concentration in the waste water decreases 150,000 times, approaching that of drinking water.

  8. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  9. CONTACT: An Air Force Technical Report on Military Satellite Control Technology

    DTIC Science & Technology

    1993-07-09

    Technolog projections; Future AFSCN topologies; Modeling of the AFSCN; Wide Area Communicatio s Technology evelution; Automating AFSCN Resource...Projections: Methods and Faults Assistant Editor/Desktop Publishing: - Lin Sten Jack Spiker, Scitor Corporation 03 Topologies and Technologies for the...Loral difficult to predict. On dile other hand, technology break- Corporate Technical Journal. He holds two patents and has pub- throughs can happen

  10. EPA'S CONTROL TECHNOLOGY APPROACH TO ASSISTING STATES AND REGIONS WITH AIR TOXICS PROBLEMS: FIVE CASE STUDIES

    EPA Science Inventory

    The paper discusses a new U.S. strategy to reduce public exposure to toxic air pollutants in the ambient air. he strategy calls for state and local authorities to take on more of the lead regulatory role. he shift in emphasis and responsibility prompted EPA's Offices of Research ...

  11. The Arteries of Global Trade: Industrial Restructuring and Technological Change in the Transatlantic Air Cargo Industry

    ERIC Educational Resources Information Center

    Schwarz, Guido

    2010-01-01

    Air cargo enjoys a special importance: together with maritime transport it is the backbone of global trade and is indispensable for contemporary globalization. Air transport is the only mode that combines worldwide reach with high speed. Nonetheless there is a dearth of geographic research that analyzes the current restructuring affecting the air…

  12. Air Force Institute of Technology, Civil Engineering School: Environmental Protection Course.

    ERIC Educational Resources Information Center

    Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

    This document contains information assembled by the Civil Engineering School to meet the initial requirements of NEPA 1969 and Executive Orders which required the Air Force to implement an effective environmental protection program. This course presents the various aspects of Air Force environmental protection problems which military personnel…

  13. Buffing, burnishing, and stripping of vinyl asbestos floor tile

    SciTech Connect

    Hollett, B.A.; Edwards, A.; Clark, P.J.

    1995-10-01

    Studies were conducted to evaluate airborne asbestos concentrations during the three principal types of preventative maintenance (low-speed spray-buffing, ultra high-speed burnishing, and wet-stripping) used on asbestos-containing floor tiles. These were done under pre-existing and prepared levels of floor care maintenance. Airborne asbestos concentrations were measured before and during each floor care procedure to determine the magnitude of the increase in airborne asbestos levels during each procedure. Airborne total fiber concentrations were also measured for comparison with the Occupational Safety and Health Administration`s (OSHA) Permissible Exposure Limit (PEL) of 0.1 f/cm{sup 3}. Low-speed spray-buffing and wet-stripping were evaluated on pre-existing floor conditions and three levels of prepared floor care conditions (poor, medium, and good). Ultra high-speed burnishing and wet-stripping were evaluated on two levels of prepared floor care conditions (poor and good). Floor care conditions were defined in consultation with the Chemical Specialty Manufacturers Association and other representatives of floor-care chemical manufacturers. Controlled studies were conducted in an unoccupied building at the decommissioned Chanute Air Force Base in Rantoul, Illinois, with the cooperation of the U.S. Air Force. The building offered approximately 8600 ft{sup 2} of open floor space tiled with 9-inch by 9-inch resilient floor tile containing approximately 5% chrysotile asbestos.

  14. Micro-strip metal detector for the beam profile monitoring

    NASA Astrophysics Data System (ADS)

    Pugatch, V.; Borysova, M.; Mykhailenko, A.; Fedorovitch, O.; Pylypchenko, Y.; Perevertaylo, V.; Franz, H.; Wittenburg, K.; Schmelling, M.; Bauer, C.

    2007-10-01

    The Micro-strip Metal Detector (MMD) design and production technology, readout electronics as well as areas of applications are described. The MMD was designed for beam profile monitoring of charged particle and synchrotron radiation beams. Using photolithography and plasma-chemistry etching technologies we succeeded in creating detectors with a metal strip's thickness of less than 2 μm and without any other materials in the working area. The principle of operation is based on the Secondary Electron Emission (SEE). The results obtained with the MMD at the monochromatic synchrotron radiation beam at HASYLAB (DESY) are also presented. The current version of the MMD allows measuring a beam profile and position with an accuracy of 20 μm.

  15. Clinical evaluation of a novel on-strip calibration method for blood glucose measurement.

    PubMed

    Noble, Michael; Rippeth, John; Edington, David; Rayman, Gerry; Brandon-Jones, Sarah; Hollowood, Zoe; Kew, Simon

    2014-07-01

    This study evaluated a novel technology for improving accuracy of self-monitoring of blood glucose (SMBG). The technology calibrates each and every test by measuring the response from a predetermined amount of glucose present in the sample chamber of each test strip. SMBG test strips were modified to include a lid coated with a fast dissolving formulation containing glucose. These test strips were characterized for hematocrit (Hct) and temperature induced error response to develop a calibration algorithm. The modified test strips were used in a clinical evaluation involving fingerstick blood samples from 160 subjects. Experiments involving Hct and temperature induced errors show that the technology generates a signal characteristic of the error conditions in any particular test, but independent of glucose concentration, allowing a correction algorithm to be derived. The approach substantially reduced Hct and temperature derived errors. Clinical evaluation using fingerstick blood directly applied to prototype strips showed the error (measured as MARD) was reduced from 11.1 to 5.9% by the on-strip correction approach and the number of outliers reduced by approximately 90%. This technology could improve the accuracy and precision of glucose monitoring systems and so reduce decision errors particularly in clinical situations where hematocrit and temperature may be significant confounders.

  16. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  17. Ignition, Burning, and Extinction of a Strained Fuel Strip

    NASA Technical Reports Server (NTRS)

    Selerland, T.; Karagozian, A. R.

    1996-01-01

    Flame structure and ignition and extinction processes associated with a strained fuel strip are explored numerically using detailed transport and complex kinetics for a propane-air reaction. Ignition modes are identified that are similar to those predicted by one-step activation energy asymptotics, i.e., modes in which diffusion flames can ignite as independent or dependent interfaces, and modes in which single premixed or partially premixed flames ignite. These ignition modes are found to be dependent on critical combinations of strain rate, fuel strip thickness, and initial reactant temperatures. Extinction in this configuration is seen to occur due to fuel consumption by adjacent flames, although viscosity is seen to have the effect of delaying extinction by reducing the effective strain rate and velocity field experienced by the flames.

  18. Confinement and Tritium Stripping Systems for APT Tritium Processing

    SciTech Connect

    Hsu, R.H.; Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  19. Software Assurance Best Practices for Air Force Weapon and Information Technology Systems - Are We Bleeding

    DTIC Science & Technology

    2008-03-01

    write -in) B5-9 H2 H3 B10 H B5-10 H D12 B, D Thesis Author 21. Does the program office have access to the...negative experiences o Hindered ability to comply with regulations o Other (please write -in) o Don’t know/unsure Thesis Author 24. How is...BLEEDING? THESIS Ryan A. Maxon, Major, USAF AFIT/GIR/ENV/08-M13 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE

  20. Integration of GIS technology with air compliance for the Oak Ridge National Laboratory

    SciTech Connect

    Gurney, I.A.; Humphreys, M.P.

    1994-12-31

    ORNL uses a Geographical Information System (GIS) to achieve air quality compliance effectively and with minimum expense. Since implementation of MapInfo for Environmental Air Compliance activities, plant-wide adoption of the sytem is occurring. The common forum for data exchange allows compliance groups to pursue more of a management and planning rather than merely a regulatory role. Field surveys are implemented by personnel directly involved with the activities and this data is then transmitted via MapInfo. Examples are given of how the Environmental Compliance Section at ORNL uses it to achieve air quality compliance for Titles III and V, NEPA, and NESHAPs.

  1. System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies

    NASA Technical Reports Server (NTRS)

    Ugweje, Okechukwu C.

    2000-01-01

    This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations

  2. Spray-forming monolithic aluminum alloy and metal matrix composite strip

    SciTech Connect

    McHugh, K.M.

    1995-10-01

    Spray forming with de Laval nozzles is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. Using this approach, aluminum alloys have been spray formed as strip, with technoeconomic advantages over conventional hot mill processing and continuous casting. The spray-formed strip had a flat profile, minimal porosity, high yield, and refined microstructure. In an adaptation to the technique, 6061 Al/SiC particulate-reinforced metal matrix composite strip was produced by codeposition of the phases.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PHOTOACOUSTIC SPECTROPHOTOMATER INNOVA AIR TECH INSTRUMENTS MODEL 1312 MULTI-GAS MONITOR

    EPA Science Inventory

    The U.S. Environmental Protection Agency, Through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. This report documents demons...

  4. QUALITY MANAGEMENT DURING SELECTION OF TECHNOLOGIES; EXAMPLE SITE MARCH AIR FORCE BASE, USA

    EPA Science Inventory

    This paper describes the remedial approach, organizational structure and key elements facilitating effective and efficient remediation of contaminated sites at March Air Force Base (AFB), California. The U.S. implementation and quality assurance approach to site remediation for a...

  5. QUALITY MANAGEMENT DURING SELECTION OF TECHNOLOGIES EXAMPLE SITE MARCH AIR FORCE BASE, USA

    EPA Science Inventory

    This paper describes the remedial approach, organizational structure and key elements facilitating effective and efficient remediation of contaminated sites at March Air Force Base (AFB), California. The U.S. implementation and quality assurance approach to site remediation for ...

  6. Rapid evolution of air pollution sensor technology for research and consumer product applications

    EPA Science Inventory

    Outdoor air pollution measurement approaches have historically been conducted using stationary shelters that require significant space, power, and expertise to operate. The cost and logistical requirements to conduct monitoring have limited the number of locations with continuou...

  7. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  8. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....

  9. CAPSULE REPORT: SOURCES AND AIR EMISSION CONTROL TECHNOLOGIES AT WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The chemicals processed during waste management operations can volatilize into the atmosphere and cause carcinogenic or other toxic effects or contribute to ozone formation. Regulations have been developed to control air emissions from these operations. The EPA has promulgated st...

  10. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  11. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  12. Method for maintaining precise suction strip porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H. (Inventor)

    1989-01-01

    This invention relates to a masking method generally and, more particularly to a method of masking perforated titanium sheets having laminar control suction strips. As illustrated in the drawings, a nonaerodynamic surface of a perforated sheet has alternating suction strip areas and bonding land areas. Suction strip tapes overlie the bonding land areas during application of a masking material to an upper surface of the suction strip tapes. Prior to bonding the perforated sheet to a composite structure, the bonding land tapes are removed. The entire opposite aerodynamic surface is masked with tape before bonding. This invention provides a precise control of suction strip porosities by ensuring that no chemicals penetrate the suction strip areas during bonding.

  13. Air Superiority at Red Flag: Mass, Technology, and Winning the Next War

    DTIC Science & Technology

    2009-10-01

    improved their estimate. In The Art of Wargaming, Peter Perla suggests that adding exercise analysis could help. He recommends a “continuous cycle...Survey, 44. 45. Ibid., 27–28. 46. “Desert Shield Tactical Air Force Combat Losses, Damage, and Muni- tions Consumption.” 47. Ibid. 48. Perla , Art of...Williamson. Strategy for Defeat: The Luftwaffe, 1933– 1945, 1983. Reprint. Maxwell AFB, AL: Air University Press, 2007. Perla , Peter P. The Art of Wargaming

  14. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    SciTech Connect

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  15. ATR technology holds the key to a better, faster, and safer way to perform postattack air base damage assessment

    NASA Astrophysics Data System (ADS)

    Mohd, Maqsood A.

    1993-11-01

    Modern combat aircraft depend on high quality airfield surfaces for takeoff and landings (TOLs). This makes TOL surfaces a very attractive target to enemy attack. After an attack, the number one priority of the recovery forces at a combat air base is to restore the air base's war fighting capability; therefore, an accurate and expedient assessment of damage is the first step of the restoration process. At present a damage assessment system (DAS) that can accurately, rapidly, and safely characterize and evaluate the magnitude of damage from an enemy attack with conventional weaponry such as mines and bombs does not exist. Using the systems engineering approach, this paper develops a DAS based on the promising ATR technology for improving the conduct of the postattack air base DA function. This paper also examines and identifies the sensors and the sensor fusion techniques that form the core of this DAS. Furthermore, this paper ranks the exploitable technologies and recommends test-worthy systems for further analysis.

  16. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  17. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  18. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  19. Use of Blood-Glucose Test Strips for Introducing Enzyme Electrodes and Modern Biosensors

    NASA Astrophysics Data System (ADS)

    Wang, Joseph; Macca, Carlo

    1996-08-01

    Electroanalytical experiments in teaching laboratories have traditionally relied on introducing classical polarography to the instrumental analysis laboratory. More modern experiments have been proposed to introduce advanced techniques, such as cyclic voltammetry or stripping analysis. Little attention, however, is given to the field of chemical sensors, despite the growing importance of these devices in real-life applications. In this article we introduce students to modern biosensor technology, and in paticular to disposable screen-printed glucose strips.

  20. Power and Thermal Technologies for Air and Space-Scientific Research Program. Delivery Order 0012: High-Temperature Superconductor Performance Enhancement

    DTIC Science & Technology

    2010-06-01

    AFRL-RZ-WP-TR-2010-2167 POWER AND THERMAL TECHNOLOGIES FOR AIR AND SPACE‒SCIENTIFIC RESEARCH PROGRAM Delivery Order 0012: High -Temperature...AND SUBTITLE POWER AND THERMAL TECHNOLOGIES FOR AIR AND SPACE‒SCIENTIFIC RESEARCH PROGRAM Delivery Order 0012: High -Temperature Superconductor...electrically connect them to the substrate. 4) Develop improved measurement techniques and standards of measurement for properties of high temperature

  1. Large-scale soil remediation using low temperature thermal volatilization technology at the Chanute Air Force Base

    SciTech Connect

    Davis, H.A.; Silkebakken, D.M.; Ghosh, S.B.; Beardsley, G.P.

    1995-12-31

    Chanute Air Force Base (AFB) in Rantoul, Illinois, was selected for closure by the Round 1 Base Closure Commission, pursuant to the Base Realignment and Closure (BRAC) Act of 1988. As part of the requirements for base closure, Parsons Engineering Science, Inc. was retained by the Air Force Center for Environmental Excellence (AFCEE) to treat petroleum-contaminated soil using low temperature thermal volatilization (LTTV). Using this technology, over 40,000 tons of fuel contaminated soils were successfully treated using one of the largest transportable LTTV treatment units in the world. The soil treatment system, soil management procedures, cost-effectiveness, and limitations of the use of this system are described in this paper.

  2. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  3. Maximizing benefits of technology: a strategy for air traffic control requirements definition

    NASA Astrophysics Data System (ADS)

    Chen, James L.; Calzetta, Robert K.

    1995-06-01

    Technologies for communications, navigation and surveillance are emerging at an astonishing rate. Keeping up with the changes in technology is a full time effort; efficiently applying technology to satisfy the needs of aviation users is another effort entirely. This paper describes a methodology currently seeing limited use by the Federal Aviation Administration to identify current and future weather and surveillance system needs and to extend the use of this needs information to a process of technical requirements definition. The methodology can be used to: identify user needs in a manner that facilitates the selection of technology, (2) translate user needs into operational and technical requirements, and (3) `match' system technological capabilities to the identified needs and requirements of aviation users. This methodology permits system engineers to optimize benefits attained from the infusion of new capabilities into today's National Airspace System by capitalizing on technologies appropriate to user decision making.

  4. Integrated Mission Precision Attack Cockpit Technology (IMPACT). Phase 1: Identifying Technologies for Air-to-Ground Fighter Integration.

    DTIC Science & Technology

    1994-10-31

    also used as a "first cut" assessment of thebe oud n hediscussion section. Emphasis technologies. The next set of ratings be found in the presented (see...and control aircraft orbiting a display, giving Jack a real time, accurate,secure update of the enemy ground order of 49 battle . What a quantum leap...CAS aircraft were multiple friendly and enemy forces are intermixed (tanks on battle field), but for long distant deliveries of advanced weapons from

  5. NASA Turbulence Technologies In-Service Evaluation: Delta Air Lines Report-Out

    NASA Technical Reports Server (NTRS)

    Amaral, Christian; Dickson, Steve; Watts, Bill

    2007-01-01

    Concluding an in-service evaluation of two new turbulence detection technologies developed in the Turbulence Prediction and Warning Systems (TPAWS) element of the NASA Aviation Safety and Security Program's Weather Accident Prevention Project (WxAP), this report documents Delta's experience working with the technologies, feedback gained from pilots and dispatchers concerning current turbulence techniques and procedures, and Delta's recommendations regarding directions for further efforts by the research community. Technologies evaluated included an automatic airborne turbulence encounter reporting technology called the Turbulence Auto PIREP System (TAPS), and a significant enhancement to the ability of modern airborne weather radars to predict and display turbulence of operational significance, called E-Turb radar.

  6. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review.

    PubMed

    Helsen, Lieve

    2005-09-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices.

  7. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  8. 1986 CACTS International Conference on Air Cushion Technology, Toronto, Canada, Sept. 16-18, 1986, Preprints

    NASA Astrophysics Data System (ADS)

    MacEwen, W. R.

    The present conference on the design and development, innovative configurational concepts, test result analyses and operational characteristics of ACVs gives attention to design criteria for light, high-speed ACVs in desert environments, preliminary over-water tests of linear propellers, tests on high speed hovercraft icebreaking, and the performance of an air cushion crawler all-terrain vehicle. Also discussed are the use of ACVs as high speed ASW vehicles, performance criteria for air cushion heave dynamics, the bounce characteristics of an ACV's responsive skirt, and the use of hovercraft in ice enforcement.

  9. Review and status of heat-transfer technology for internal passages of air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Yeh, F. C.; Stepka, F. S.

    1984-01-01

    Selected literature on heat-transfer and pressure losses for airflow through passages for several cooling methods generally applicable to gas turbine blades is reviewed. Some useful correlating equations are highlighted. The status of turbine-blade internal air-cooling technology for both nonrotating and rotating blades is discussed and the areas where further research is needed are indicated. The cooling methods considered include convection cooling in passages, impingement cooling at the leading edge and at the midchord, and convection cooling in passages, augmented by pin fins and the use of roughened internal walls.

  10. Understanding the Emergence of Disruptive Innovation in Air Force Science and Technology Organizations

    DTIC Science & Technology

    2008-03-01

    performance of the disruptive technology surpasses the old technology and establishes a new dominant design as the standard for the marketplace. While...share dominance , market growth rates, and financial objectives (Day, 1975 ). Maideique and Patch (1978) capitalized on the work of Ansoff and...specific product features once dominant design emerges Moderate Many, but declining in numbers after emergence of dominant design Product

  11. Dynamic Underground Stripping Post-Treatment Characterization Plan

    SciTech Connect

    Vangelas, K.M.

    2001-04-17

    The A/M-Area of the Savannah River Site is a known area of solvent release to the subsurface. The Solvent Storage Tank Area is an area of documented dense non-aqueous phase liquids (DNAPL) in the subsurface. June 30, 2000 a remediation using the Dynamic Underground Stripping (DUS) treatment technology commenced. This technology injects steam into the subsurface through a series of injection wells located within the treatment zone. The steam is pulled through the subsurface to an extraction well where it is removed. The heating of the subsurface causes the DNAPL present to be volatilized and removed through the extraction well.

  12. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  13. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  14. PRELIMINARY ASSESSMENT OF WORKER AND AMBIENT AIR EXPOSURES DURING SOIL REMEDIATION TECHNOLOGY DEMONSTRATIONS

    EPA Science Inventory

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead contaminated soil sites. An industrial hygiene survey and air monitoring program for both lead and dust were performed during initial soil sampling acti...

  15. CORONA DESTRUCTION: AN INNOVATIVE CONTROL TECHNOLOGY FOR VOCS AND AIR TOXICS

    EPA Science Inventory

    This paper discusses the work and results to date leading to the demonstration of the corona destruction process at pilot scale. The research effort in corona destruction of volatile organic compounds (VOCs) and air toxics has shown significant promise for providing a valuable co...

  16. Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

    2010-04-12

    This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

  17. EMERGING TECHNOLOGY REPORT: DESTRUCTION OF ORGANIC CONTAMINANTS IN AIR USING ADVANCED ULTRAVIOLET FLASHLAMPS

    EPA Science Inventory

    This paper describes a new process for photo-oxidation of volatile organic compounds (VOCs) in air using an advanced ultraviolet source, a Purus xenon flashlamp. The flashlamps have greater output at 200-250 nm than medium-pressure mercury lamps at the same power and therefore ca...

  18. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  19. Predicting the impacts of new technology aircraft on international air transportation demand

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  20. Science and Technology: The Making of the Air Force Research Laboratory

    DTIC Science & Technology

    2000-01-01

    Jr. . . . . . . . . . . . . . . 110 Blaise Durante . . . . . . . . . . . . . . . . . . . . . . 122 Ms. Wendy...of the Air Force, gave her perspective on the single lab. Also, Mr. Blaise Du ran te , who briefed Secretary Widnall on the final single-lab proposal...which reported di- rectly to General Viccellio. Russo also routinely interacted with Blaise Durante , deputy ass is tant secretary for manage

  1. [Microbiological quality of indoor air at the School of Building and Environmental Engineering at Białystok University of Technology].

    PubMed

    Butarewicz, Andrzej

    2005-01-01

    The investigation of microbiological rate of indoor air pollution on Faculty of Building and Environmental Engineering at Białystok University of Technology were made by sedimentation method in accordance with Polish standards (PN-89/Z-04111/01,02,03). Six series of measurements were carried out from autumn 2002 to spring 2003. The results show bad microbiological quality of indoor air on Faculty of Building and Environmental Engineering at Białystok University of Technology. It was found that the number of Staphylococcus, Actinomycetales as well as the total count of bacteria were too high and broke the Polish regulations of the clear air. Because of the students' and other workers' safety, monitoring of microbiological pollution of the indoor air must be done and existing emergency to improve the quality of the air must be lead.

  2. 7 CFR 29.6041 - Strips.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strips. 29.6041 Section 29.6041 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6041 Strips. The sides of a tobacco leaf from which the stem has...

  3. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  4. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  5. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  6. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  7. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, Robert S.; Campbell, Steven L.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  8. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, R.S.; Campbell, S.L.

    1997-07-29

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  9. Vacuum stripping of ethanol during high solids fermentation of corn.

    PubMed

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay

    2014-05-01

    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  10. Utilizing intake-air oxygen-enrichment technology to reduce cold- phase emissions

    SciTech Connect

    Poola, R.B.; Ng, H.K.; Sekar, R.R.; Baudino, J.H.; Colucci, C.P.

    1995-12-31

    Oxygen-enriched combustion is a proven, serious considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engineout and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the US Environmental Protection Agency`s (EPA`s) ``Off-Cycle`` test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen-enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NO{sub x}) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NO, emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (NUR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen-enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NO{sub x}, emissions were much higher than those with the ambient air.

  11. Plant uses closed-capture technology to improve air quality, reduce energy

    SciTech Connect

    Cole, J.P.

    1996-03-01

    Ford Motor Company`s Cleveland Engine Plant 2 is a 1.5 million ft{sup 2} (1.4 km{sup 2}) engine manufacturing facility in Brook Park, Ohio, that was built in phases starting in 1953. Forty years later a challenge was made to upgrade the plant into a world-class powertrain facility. This was part of a series of major plant modernizations. The success of the project allowed for the installation of the world`s largest engine test carousel (85 feet or 2,590 cm) and a complete upgrade of the mechanical systems. The existing machining operations generated oil mist that migrated throughout the facility, and with it, increased plant humidity levels. Even with high ventilation rates, this condition caused numerous employee complaints. The existing pneumatic control systems were not able to coordinate the operation of the building air handling system to meet process equipment exhaust requirements. This condition resulted in the facility operating at an extreme negative pressure. This article describes the design of the system which includes: a direct-fired, natural gas heating system for all air handling equipment to replace existing steam and condensate systems; chilled-water cooling coils in all air handling units serving manufacturing and assembly areas to reduce the supply air temperature; central chilled-water system including chilled-water thermal storage tanks to serve building air handling units, office areas, and process equipment; renovation of selected building exhaust fans to provide truss space heat relief and smoke evacuation; enclosure of machining equipment to prevent oil mist migration into the plant; and a programmable logic controller-based management system that interfaced to the client`s plant floor information system.

  12. Ultrasonic examination of JBK-75 strip material

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material (1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)), feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches (0.28 mm deep (0.011 in., about 17% of the strip thickness)) were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests.

  13. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  14. Some Labour Implications of Technological Change in Rail and Air Transport.

    ERIC Educational Resources Information Center

    Gil, Avishai

    1986-01-01

    Repercussions of recent economic difficulties on job content, employment levels, structure of the work force, and industrial relations are examined. The effect of new technologies on these areas is discussed. (Author/CT)

  15. Clean Air Act Section 112(d)(6) Technology Review for Pulping and Papermaking Processes Memorandum

    EPA Pesticide Factsheets

    The purpose of this November 2011 document is to present the results of a review of available information on developments in practices, processes, and control technologies that apply to pulping and papermaking processes.

  16. National Security Science and Technology Initiative: Air Cargo Screening, Final Report for CRADA Number NFE-07-01081

    SciTech Connect

    Bingham, Philip; Bush, John; Bowerman, Biays; Cespedes, Ernesto; White, Timothy

    2004-12-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security’s Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009.

  17. Characterization of Air-Gap Sealing with Organic Dielectric Using Spin-Coating Film Transfer and Hot-Pressing Technology

    NASA Astrophysics Data System (ADS)

    Sato, Norio; Machida, Katsuyuki; Ishii, Hiromu; Ishimura, Yoji; Saito, Hidenori; Asakuma, Sumitoshi; Kawagoe, Masafumi; Adachi, Hideki

    2007-12-01

    This paper describes a dielectric material and its application to sealing air gaps using spin-coating film transfer and hot-pressing (STP) technology. STP technology is a new film-formation process that consists of spin coating a dielectric material on a base film, hot pressing the dielectric film on a wafer with gaps in a vacuum chamber, and peeling the base film off the dielectric adhered to the wafer. In order to seal the gaps with thin dielectric films, it is necessary to prevent the dielectric from breaking during the peel-off step. Thus, a dielectric of poly(benzoxazole) (PBO) with additives for reducing the adhesion strength between the dielectric and the base film is proposed. The experimental results show that 0.3-μm-wide gaps can be sealed with dielectric films as thin as 0.25 μm without film breaking. The mechanism by which adhesion strength decreases in the peel-off step is discussed in terms of its dependence on the proportion of additives. The synergy of the STP process and the type of dielectric material used paves the way for the development of future interconnect schemes using air gaps.

  18. Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition.

    PubMed

    Hu, Lin; Yan, Xue-Wu; Li, Qi; Zhang, Xue-Ji; Shan, Dan

    2017-05-05

    In this work, a new visual colorimetric strip based on cellulose acetate nanofiber mats modified by 2-(5-Bromo-2-pyridylazo)-5-(diethylamino) phenol was successfully prepared via electrospinning technology. The prepared colorimetric strip showed high sensitivity towards UO2(2+) with the yellow-to-purple color change signal. Upon the optimal conditions of solution pH at 6.0 and response time for 80min, the detection limit for UO2(2+) can reach 50 ppb. Moreover, the strip also exhibited excellent anti-interference ability in the presence of other metal ions. In order to achieve the quantitative detection for UO2(2+), a color-differentiation map was established, which was prepared from converted H values. Finally, the strip was also used to detect UO2(2+) in the seawater and showed high sensitivity.

  19. Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions

    NASA Astrophysics Data System (ADS)

    Verd, J.; Uranga, A.; Abadal, G.; Teva, J.; Torres, F.; Pérez-Murano, F.; Fraxedas, J.; Esteve, J.; Barniol, N.

    2007-07-01

    Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10-11g/cm2Hz equivalent to 0.9ag/Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10-17g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity.

  20. Lighter-Than-Air and Pressurized Structures Technology for Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2010-01-01

    Cuben Fiber is a form of ultra-high molecular weight polyethylene ( UHMWPE ) and is produced by Cubic Tech Corp. While very light and very strong... UHMWPE -based fabrics require special techniques to form air-tight, if not helium-tight, seals. In addition, there are some proposed designs that may...length, the combined characteristics of weight and strength in UHMWPE -based fabrics are required to have high percentages of buoyancy. Cubic Tech

  1. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  2. 46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Equipment required for conducting the stripping quantity test. 153.1600 Section 153.1600 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator...

  3. 46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Equipment required for conducting the stripping quantity test. 153.1600 Section 153.1600 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator...

  4. Chemical Cleaning of Ship Tanks - Laboratory Investigation of Stripping Agents for Epoxy Coatings.

    DTIC Science & Technology

    1986-07-01

    metal water pollution problems. For removal of alkyd paints with STABCHAPS, alkaline stripping agents could be used. For removal of epoxy coatings or...can also be sprayed by hand lance at 2,000 psi. The STABCHAPS was developed as an alternate to sandblasting and its attendant air pollution and heavy

  5. Apparatus and method for low temperature thermal stripping of volatile organic compounds from soil

    SciTech Connect

    Noland, J.W.

    1991-12-24

    This patent describes a method of removing volatile and semi-volatile hazardous organic contaminants from natural soil containing moisture and such contaminants. It comprises removing the soil from the earth and placing it in a soil container; sealing the soil against substantial contact with air and conveying the soil in sealed condition to a stripping conveyor with heated flights, vapor stripping the hazardous organic contaminants from the soil in the conveyor at a temperature below the boiling temperatures of the contaminants by driving the moisture out of the soil by volatilization of the moisture; separately by combustion of fuel firing a heater for heating the stripping conveyor (and thereby generating non-oxidizing combustion gases); sweeping (the combustion) non-oxidizing sweep gases countercurrently over the soil subjected to vapor stripping in the stripping conveyor; and controlling the temperature and flow rate of the countercurrent sweep to maintain moisture continuously present at the surface of the soil as and after the soil enters the stripping conveyor.

  6. Technology Solutions Case Study: Combustion Safety for Appliances Using Indoor Air

    SciTech Connect

    2014-05-01

    This case study describes how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  7. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  8. Analysis of soft and hard strip-loaded horns using a circular cylindrical model

    NASA Astrophysics Data System (ADS)

    Lier, Erik

    1990-06-01

    Strip-loaded horns with transverse (soft) and longitudinal (hard) strips are analyzed theoretically. The method is based on a circular cylindrical and uniform waveguide model with a periodic strip structure. The field is represented by an infinite series of space harmonics (Floquet modes) in the air-filled central region and in the dielectrically filled wall region. The tangential field is forced to be continuous across the air-dielectric boundary. The propagation constant and the total field (including the hybrid factor) can be determined by solving the resulting matrix equations. The convergence of the solution has been accelerated by calculating the higher-order terms analytically. It is shown that the soft-strip-loaded horn in principle exhibits the same electrical behavior as a corrugated horn. The horn represents an interesting alternative to the corrugated horn in wide-band or dual-band applications, in particular for millimeter waves and for lightweight applications onboard satellites. The hard-strip-loaded horn has potentially high gain and low cross polarization over a certain frequency range, dependent on the horn dimensions, thickness of the dielectric wall and on how strongly the stripline modes are being excited.

  9. An improved rolled strip pulse forming line.

    PubMed

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  10. An improved rolled strip pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  11. Human-Centered Technologies and Procedures for Future Air Traffic Management: A Preliminary Overview of 1996 Studies and Results

    NASA Technical Reports Server (NTRS)

    Smith, Philip; McCoy, Elaine; Denning, Rebecca; Woods, David; Sarter, Nadine; Dekker, Sidney; Billings, Charles

    1996-01-01

    In this project, we have been exploring the use of a general methodology to predict the impact of future Air Traffic Management (ATM) concepts and technologies. In applying this methodology, our emphasis has been on the importance of modeling coordination and cooperation among the multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, trying to identify critical problem areas and looking for exemplars suggestive of general approaches for solving such problems. Based on the results of these field studies, we have developed a set of scenarios centered around potential future system designs, and have conducted studies using these scenarios involving a total 40 controllers, dispatchers, pilots and traffic managers. The purpose of this report is to provide NASA with an early summary of the major recommendations that have resulted from our research under the AATT Program thus far. Recommendations 1-3 deal with general approaches that our findings suggest should be incorporated in future AATT Program activities, while Recommendations 4-11 identify some specific topics and technologies that merit research and development activities. Detailed technical reports containing supporting data, as well as the results of our still ongoing analyses, will be provided at a later date. The remainder of this report is organized as follows. Section 1 briefly describes the general design philosophy supported by our empirical studies. Section 2 presents the research methods we have used for identifying requirements for future system designs and for evaluating alternative design solutions. Section 3 discusses preliminary results from an initial set of investigations that we have conducted using these research methods. Section 4 then provides an

  12. Air pollution control residues from waste incineration: Current UK situation and assessment of alternative technologies

    SciTech Connect

    Amutha Rani, D.; Boccaccini, A.R.; Deegan, D.; Cheeseman, C.R.

    2008-11-15

    Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.

  13. A Strip Cell in Pyroelectric Devices

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  14. Transfusion and blood donation in comic strips.

    PubMed

    Lefrère, Jean-Jacques; Danic, Bruno

    2013-07-01

    The representation of blood transfusion and donation of blood in the comic strip has never been studied. The comic strip, which is a relatively recent art, emerged in the 19th century before becoming a mass medium during the 20th century. We have sought, by calling on collectors and using the resources of Internet, comic strips devoted, wholly or in part, to the themes of transfusion and blood donation. We present some of them here in chronologic order, indicating the title, country of origin, year of publication, and names of authors. The theme of the superhero using transfusion to transmit his virtues or his powers is repeated throughout the 20th century in North American comic strips. More recently, comic strips have been conceived from the outset with a promotional aim. They perpetuate positive images and are directed toward a young readership, wielding humor to reduce the fear of venipuncture. Few comic strips denounce the abuse of the commercialization of products derived from the human body. The image of transfusion and blood donation given by the comic strips is not to be underestimated because their readership is primarily children, some of whom will become blood donors. Furthermore, if some readers are transfused during their lives, the impact of a memory more or less conscious of these childhood readings may resurface, both in hopes and in fears.

  15. Charge collection in silicon strip detectors

    SciTech Connect

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 ..mu..m in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors.

  16. Gas-phase photocatalytic oxidation: Cost comparison with other air pollution control technologies

    SciTech Connect

    Turchi, C S; Wolfrum, E J; Miller, R A

    1994-11-01

    Gas-phase photocatalytic oxidation (PCO) appears to be particularly well suited for waste streams with low pollutant concentrations (1000 ppm or less) and low to moderate flow rates (< 20,000 cubic feet per minute, cfm). The PCO technology is modular in nature and thus is well suited to treat dispersed or low flow rate streams. This same attribute minimizes the advantages of scale for PCO and makes the technology comparatively less attractive for high volume waste streams. Key advantages for PCO lie in its low operating cost and ability to completely destroy pollutants at ambient temperature and pressure.

  17. How the Air Force Should Stay Engaged in Computer Vision Technology Development

    DTIC Science & Technology

    2007-04-01

    humanoid robots . m/l Na l l m v m v v v v 0.0 2.5 2.5 5.0 0.0 1.0 Visual thinking systems capable of artistic abstraction, association, and visual...difficult technology. Another participant predicted that by 2030 we would have humanoid robots with visual understanding. Of all 35 technologies in the...3D dynamic scenes. (b) Natural/comfortable glassesless 3D visual display. Visual understanding for humanoid robots . Artificial human eye

  18. Investigation of air transportation technology at Princeton University, 1992-1993

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1994-01-01

    The Air Transportation Research Program at Princeton University proceeded along five avenues during the past year: (1) Flight Control System Robustness; (2) Microburst Hazards to Aircraft; (3) Wind Rotor Hazards to Aircraft; (4) Intelligent Aircraft/Airspace Systems; and (5) Aerospace Optical Communications. This research resulted in a number of publications, including theses, archival papers, and conference papers. An annotated bibliography of publications that appeared between June 1992 and June 1993 is included. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period.

  19. Strip and microstrip line periodic heterogeneities

    NASA Astrophysics Data System (ADS)

    Lerer, A. M.; Lerer, B. M.; Ryazanov, V. D.; Sledkov, V. A.

    1985-04-01

    A quasistatic method is described for analyzing periodic heterogeneities in single and coupled strip lines and microstrip lines. An ALGOL program on a BESM-6 computer calculated the running inductance and capacitance, wave impedances and delay coefficients for single and coupled strip lines and microstrip lines with periodic heterogeneities of arbitrary form. The analyzed quantities are investigated as a function of distance (from side shield to the strip), number of terms in the series and number of approximated functions. The method demonstrates good convergence and requires little machine time and results were verified experimentally.

  20. Instabilities and Solitons in Minimal Strips.

    PubMed

    Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  1. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  2. Instabilities and Solitons in Minimal Strips

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  3. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  4. Comparison of absolute and relative air humidity sensors fabricated with inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Selma, R.; Tarapata, G.; Marzecki, M.

    2015-09-01

    This paper describes design, manufacturing and testing of novelty humidity sensors manufactured in inkjet printing technology. Two types of sensors were produced - sensor for dew point hygrometer, along with heater and thermistor, and a relative humidity sensor. Both were tested and proven to be functional, with both advantages and disadvantages described further in the article.

  5. Towards a Technology Policy: Implications for Education and Retraining. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    van Terwisga, Henk B.; van Rosmalen, Karel M. A.

    This paper investigates technology policy for national governments, particularly the importance of education and training and the role of institutions of higher education as components of such policies for the diffusion and absorption of knowledge, as part of an overall strategy for improving the competitive edge of a nation's enterprises. The…

  6. An Evaluation of Wind Turbine Technology at Peterson Air Force Base

    DTIC Science & Technology

    2005-03-01

    gearbox /bearings efficiency - 14 - The average velocity of wind affects wind turbine performance and increases with altitude. Average wind velocity...electricity cannot be generated and if its velocity is too high, then the turbines can sustain damage from the extreme wind conditions . Generally, wind ...AN EVALUATION OF WIND TURBINE TECHNOLOGY

  7. Horizons in Learning Innovation through Technology: Prospects for Air Force Education Benefits

    DTIC Science & Technology

    2010-06-10

    Gray and Joseph Dalton Hooker, the zoologist Thomas Henry Huxley, and the naturalist Alfred Russel Wallace .” Emerging technologies (e.g., email...Erlbaum. Allport, G.W. (1935). Attitudes. A Handbook of Social Psychology (Vol 2). C.A. Murchison (Ed.). New York: Russell . Amabile, T.M. (1983). The

  8. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  9. Improvement of the conditions of high-accuracy rolling of soft magnetic strips due to the application of a refined mathematical model of the process

    NASA Astrophysics Data System (ADS)

    Traino, A. I.; Rusakov, A. D.

    2012-03-01

    The specific features of deformation during cold rolling are studied to develop a refined model for the cold rolling of precision soft magnetic strips. The results of development of the theory of cold rolling are used for highly worked thin strips to calculate and optimize the technological conditions of production of a wide range of precision strips applied in instrument making, electrotechnical industry, and so on.

  10. Technology diffusion and environmental regulation: Evidence from electric power plants under the Clean Air Act

    NASA Astrophysics Data System (ADS)

    Frey, Elaine F.

    Even though environmental policy can greatly affect the path of technology diffusion, the economics literature contains limited empirical evidence of this relationship. My research will contribute to the available evidence by providing insight into the technology adoption decisions of electric generating firms. Since policies are often evaluated based on the incentives they provide to promote adoption of new technologies, it is important that policy makers understand the relationship between technological diffusion and regulation structure to make informed decisions. Lessons learned from this study can be used to guide future policies such as those directed to mitigate climate change. I first explore the diffusion of scrubbers, a sulfur dioxide (SO 2) abatement technology, in response to federal market-based regulations and state command-and-control regulations. I develop a simple theoretical model to describe the adoption decisions of scrubbers and use a survival model to empirically test the theoretical model. I find that power plants with strict command-and-control regulations have a high probability of installing a scrubber. These findings suggest that although market-based regulations have encouraged diffusion, many scrubbers have been installed because of state regulatory pressure. Although tradable permit systems are thought to give firms more flexibility in choosing abatement technologies, I show that interactions between a permit system and pre-existing command-and-control regulations can limit that flexibility. In a separate analysis, I explore the diffusion of combined cycle (CC) generating units, which are natural gas-fired generating units that are cleaner and more efficient than alternative generating units. I model the decision to consider adoption of a CC generating unit and the extent to which the technology is adopted in response to environmental regulations imposed on new sources of pollutants. To accomplish this, I use a zero-inflated Poisson

  11. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael

    2013-01-01

    This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  12. Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project

    SciTech Connect

    Not Available

    1994-01-01

    This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

  13. Light propagation in strip and slot waveguide arrays for sensing

    NASA Astrophysics Data System (ADS)

    Ma, Qingyan; Qi, Fan; Wang, Yufei; Liu, Zhishuang; Zheng, Wanhua

    2016-11-01

    Light propagation in strip and slot waveguide arrays for sensing are proposed and analyzed with a new theory of quantum walk. The waveguide arrays are designed on silicon-on-insulator and can be fabricated with mature and cost-efficient complementary metal-oxide semiconductor technology. A new slot waveguide array modified by conventional strip waveguide array with electric field mainly confined in the cladding region is investigated. Quantum walks have an exact mapping to classical phenomena as verified by experiments using bright laser light, so that they are introduced in our work as theoretical foundation. We take the width of waveguide of 450 nm and the coupling distance of 200 nm for strip waveguide array, and 420 nm and 180 nm for slot waveguide array, but with a 100nm slot in the center of waveguide. At last the waveguide array covered by a thin layer of graphene is investigated, which brings higher sensing property as well as a much better biocompatibility. With the monochrome light injection the intensity distribution at the end of the arrays changes with the refractive index of the sensing area (cladding region) and it can be explained by quantum walks theory. The designed waveguide arrays can possess compact footprint and high refractive index resolution, reaching 1E-11 RIU theoretically.

  14. Air quality management using modern remote sensing and spatial technologies and associated societal costs.

    PubMed

    Uddin, Waheed

    2006-09-01

    This paper presents a study of societal costs related to public health due to the degradation of air quality and the lack of physical activity, both affected by our built environment. The paper further shows road safety as another public health concern. Traffic fatalities are the number one cause of death in the world. Traffic accidents result in huge financial loss to the people involved and the related public health cost is a significant part of the total societal cost. Motor vehicle exhausts and industrial emissions, gasoline vapors, and chemical solvents as well as natural sources emit nitrogen oxides and volatile organic compounds, which are precursors to the formation of ground-level Ozone. High concentration values of ground-level Ozone in hot summer days produce smog and lead to respiratory problems and loss in worker's productivity. These factors and associated economic costs to society are important in establishing public policy and decision-making for sustainable transportation and development of communities in both industrialized and developing countries. This paper presents new science models for predicting ground-level Ozone and related air quality degradation. The models include predictor variables of daily climatological data, traffic volume and mix, speed, aviation data, and emission inventory of point sources. These models have been implemented in the user friendly AQMAN computer program and used for a case study in Northern Mississippi. Lifecycle benefits from reduced societal costs can be used to implement sustainable transportation policies, enhance investment decision-making, and protect public health and the environment.

  15. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol

  16. A video strip chart program

    SciTech Connect

    Jones, N.L.

    1994-12-31

    A strip chart recorder has been utilized for trend analysis of the Oak Ridge National Laboratory EN tandem since 1987. At the EN, the author could not afford the nice eight channel thermal pen recorder that was used at the 25 URC. He had to suffice with two channel fiber tip or capillary pen type recorders retrieved from salvage and maintained with parts from other salvaged recorders. After cycling through several machines that eventually became completely unserviceable, a search for a new thermal recorder was begun. As much as he hates to write computer code, he decided to try his hand at getting an old data acquisition unit, that had been retrieved several years ago from salvage, to meet his needs. A BASIC language compiler was used because time was not available to learn a more advanced language. While attempting to increase acquisition and scroll speed on the 6 MHz 80286 that the code was first developed on, it became apparent that scrolling only the first small portion of the screen at high speed and then averaging that region and histogramming the average provided both the speed necessary for capturing fairly short duration events, and a trend record without use of back scrolling and disk storage routines. This turned out to be quite sufficient.

  17. The Use of Restricted Air Force Technologies in Joint Federal Investigations

    DTIC Science & Technology

    1992-01-01

    technology, will significantly increase. In order to oxmpete in their new market-based . ,s(and initially not just to cxipete but to survive ) these new...Operation Desert Shield/Storm). Subsequent investigations have been even more successful. Mvie Hoffman case (identified in Chapter II) revealed that...transfer briefings will be ensure the items never leave AFOSI custody reported on the AFOSI Form 186, CACTIS and protection. The AFOSI agent receipting

  18. Technology of Performance Improvement Brushless DC Motors and Inverter for Air conditioning

    NASA Astrophysics Data System (ADS)

    Baba, Kazuhiko; Matsuoka, Atsushi; Shinomoto, Yosuke; Arisawa, Koichi

    High efficiency motors are demanded because of the viewpoint of environmental preservation. It is necessary to develop the technology of the energy conservation that can be achieved at low cost so that we may expand high efficiency motors onto the world. In this paper, the current status of the brushless DC motors and invertors to satisfy high efficiency, small size, high power and low cost is reviewed.

  19. Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc., in Illinois are described. The need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, are discussed, and the costs, environmental impacts and licensing requirements of CAES are compared with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage. The overall environmental impact of a CAES plant is minimal, and there should be no great difficulties with CAES licensing.

  20. Extinction cross section of a dielectric strip

    NASA Astrophysics Data System (ADS)

    Dowerah, Subratananda; Chakrabarti, Aloknath

    1988-05-01

    The problem of scattering of a plane electromagnetic wave by a dielectric strip is formulated in terms of an uncoupled system of three-part Wiener-Hopf equations by using a set of approximate boundary conditions derived and utilized recently. The resulting Wiener-Hopf problems are solved approximately for sufficiently large values of the width of the strip by using Jones' method (1964). An analytical formula is derived for the excitation cross section of the strip under consideration from which numerical values are obtained in specific situations and the results are presented graphically. The radar cross section of the strip is also computed for several special circumstances and these are presented separately.

  1. Plaque accumulations caused by interdental stripping.

    PubMed

    Radlanski, R J; Jäger, A; Schwestka, R; Bertzbach, F

    1988-11-01

    Human enamel surfaces were stripped with orthodontic grinding and finishing materials, and evaluated with the scanning electron microscope (SEM). Even under in vitro conditions with the finest finishing strips, it was not possible to produce an enamel surface free of the furrows that result from the initial abrasion caused by the coarse strip. Enamel surfaces stripped gradually from coarse to superfine were left in the mouths of patients for 12 weeks and evaluated with the SEM. The edges of the furrows were found to be smoother but the furrows remained wide and deep enough to facilitate more plaque accumulations than those on untreated surfaces. The use of dental floss did not result in prevention of plaque accumulations along the bottom of the furrows.

  2. Air Quality Management Using Modern Remote Sensing and Spatial Technologies and Associated Societal Costs

    PubMed Central

    Uddin, Waheed

    2006-01-01

    This paper presents a study of societal costs related to public health due to the degradation of air quality and the lack of physical activity, both affected by our built environment. The paper further shows road safety as another public health concern. Traffic fatalities are the number one cause of death in the world. Traffic accidents result in huge financial loss to the people involved and the related public health cost is a significant part of the total societal cost. Motor vehicle exhausts and industrial emissions, gasoline vapors, and chemical solvents as well as natural sources emit nitrogen oxides and volatile organic compounds, which are precursors to the formation of ground-level Ozone. High concentration values of ground-level Ozone in hot summer days produce smog and lead to respiratory problems and loss in worker’s productivity. These factors and associated economic costs to society are important in establishing public policy and decision-making for sustainable transportation and development of communities in both industrialized and developing countries. This paper presents new science models for predicting ground-level Ozone and related air quality degradation. The models include predictor variables of daily climatological data, traffic volume and mix, speed, aviation data, and emission inventory of point sources. These models have been implemented in the user friendly AQMAN computer program and used for a case study in Northern Mississippi. Life-cycle benefits from reduced societal costs can be used to implement sustainable transportation policies, enhance investment decision-making, and protect public health and the environment. PMID:16968969

  3. Technology base research on zinc/air battery systems: Final report

    SciTech Connect

    Sierra Alcazar, H.B.; Nguyen, P.D.; Pinoli, A.A.

    1987-09-01

    The capacity extension of additives was tested in a 200 cm/sup 2/bi-cell and a Zn powder moving-bed slurry. It was found that for the Type A additives in 12 M KOH, 25 g/l of silicate provided higher capacity than stannate, titanate and aluminate additives. The optimum concentration of sorbitol (a Type B additive that stabilizes polymeric chains involving ZnO) was found to be 15 g/l in 12 M KOH. A silicate and sorbitol combination added to Zn powder slurry in 12 M KOH provided a 20% increase in discharge capacity (195 Ah/l at 200 A/cm/sup 2/) compared to the maximum capacity obtained with silicate alone. A much lower capacity (74 Ah/l) was realized with silicate as Type C additive (precipitation of ZnO away from the Zn surface, for low KOH concentrations). The mechanisms of passivation and capacity extension were discussed and a model presented. The cell voltage and power densities were determined for the discharge process as a function of (a) current densities, (b) cathode depolarizer (air or oxygen), and (c) type of slurry (Zn powder or Zn coated polymeric bead). Air depolarization was observed to decrease the maximum power densities of both slurry types. The power densities obtained with Zn powder slurries were higher at all current densities investigated than those obtained with Zn coated polymeric beads (Zn-powder peak power densities more than doubled peak power densities obtained with Zn coated polymeric beads). The recharge process was studied with a planar electrode and with a rotating cylinder electrode. The current efficiency and cathode potentials were determined for glassy carbon and Mg cathodes. The dendritic Zn deposits were mechanically removed from the rotating cylinder electrode with fixed blades. Mechanical removal proved to be unsatisfactory in the embodiment investigated due to preferential dendritic growth on the baldes. Further investigations of discharge cell designs are underway. 19 refs., 40 figs., 5 tabs.

  4. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    PubMed

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades.

  5. Alternative technology for transit-bus air conditioning: the rotary-screw compressor. Final report 1981-82

    SciTech Connect

    Perez, D.

    1984-11-01

    This report summarizes the results of the test and evaluation of a prototype rotary-screw compressor design. The UMTA-funded RandD program consisted of two phases. The objectives of the first phase were to ascertain the extent of the problems with current bus air-conditioning systems and to determine the feasibility of adapting alternative compressor technology for use in transit buses. This work was carried out by the (Garrett) AiResearch Manufacturing Co. of Torrance, California and Dunham-Bush, Inc. of W. Hartford, Connecticut and has been documented in UMTA Report No. CA-06-0145-80-1 (NTIS No. PB-215-502). The second phase was to test a prototype alternative compressor under a wide range of simulated, and actual, bus revenue service environmental conditions and was also conducted by Dunham-Bush, Inc. It is the results of this effort that are documented in this report.

  6. Application of free-air CO sub 2 enrichment (FACE) technology to a forest canopy: A simulation study

    SciTech Connect

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.L. ); Alexander, Y. )

    1992-03-01

    Forest ecosystems constitute an important part of the planet's land cover. Understanding their exchanges of carbon with the atmosphere is crucial in projecting future net atmospheric CO{sub 2} increases. It is also important that experimental studies of these processes be performed under conditions which are as realistic as possible, particularly with respect to photosynthesis and evapotranspiration. New technology and experimental protocols now exist which can facilitate studying an undisturbed forest canopy under long-term enriched CO{sub 2} conditions. The International Geosphere Biosphere Program of the International Council of Scientific Unions has established a subprogram on Global Change and Terrestrial Ecosystems (GCTE). This program is driven by two major concerns: to be able to predict the effects of global change on the structure and function of ecosystems, and to predict how these changes will control both atmospheric CO{sub 2} and climate, through various feedback pathways. Brookhaven National Laboratory (BNL) has developed a system for exposing field-grown plants to controlled elevated concentrations of atmospheric gases, without use of confining chambers that alter important atmospheric exchange processes. This system, called FACE for Free Air CO{sub 2} Enrichment. This paper focuses on the fluid mechanics of free-air fumigation and uses a numerical simulation model based on superposed gaussian plumes to project how the present ground-based system could be used to fumigate an elevated forest canopy.

  7. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    SciTech Connect

    Not Available

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.

  8. Air Sensor Toolbox

    EPA Pesticide Factsheets

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  9. Fixture for multiple-FCC chemical stripping and plating

    NASA Technical Reports Server (NTRS)

    Angele, W.; Norton, W. E.

    1971-01-01

    For chemical stripping, lead tape applied near ends to be stripped protects insulation. Taped ends are submerged half way in stripping solution. For electroplating, both ends of FCC are stripped - top ends for electric contact, others for submersion in electroplating solution.

  10. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  11. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  12. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  13. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  14. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  15. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  16. Application of Advanced Technologies to Small, Short-haul Air Transports

    NASA Technical Reports Server (NTRS)

    Adcock, C.; Coverston, C.; Knapton, B.

    1980-01-01

    A study was conducted of the application of advanced technologies to small, short-haul transport aircraft. A three abreast, 30 passenger design for flights of approximately 100 nautical miles was evaluated. Higher wing loading, active flight control, and a gust alleviation system results in improved ride quality. Substantial savings in fuel and direct operating cost are forecast. An aircraft of this configuration also has significant benefits in forms of reliability and operability which should enable it to sell a total of 450 units through 1990, of which 80% are for airline use.

  17. Breakthrough Technologies Developed by the Air Force Research Laboratory and Its Predecessors

    DTIC Science & Technology

    2005-12-21

    Laboratory.8 The OCD consisted of a Collins INS and Collins fast acquisition GPS receiver installed on a GBU-15. Technical report , Ren-Young Liu, Tamim El...solution when GPS is denied.12 Technical report , G. Diemond, M. Fisher, and J. McMullan, "Tactical GPS Antijam Technology," WL-TR-94-7074, DTIC Accession...Number ADB199201, Oct. 1993; Technical report , A, Auteri, R. Briones, R. Cantwell, S. Howard, M. Kimmitt, S. Manfanovsky, E. Perdue, E. Reilly, and

  18. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    NASA Astrophysics Data System (ADS)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  19. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    SciTech Connect

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G.R.; Zutshi, V.; Hostachy, J. -Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J. -C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J. -C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  20. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE PAGES

    Francis, K.; Repond, J.; Schlereth, J.; ...

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less