Sample records for air surface waters

  1. Interpreting contact angle results under air, water and oil for the same surfaces

    NASA Astrophysics Data System (ADS)

    Ozkan, Orkun; Yildirim Erbil, H.

    2017-06-01

    Under-water and under-oil superhydropobicity and superhydrophilicity have gained significant attention over the last few years. In this study, contact angles on five flat surfaces (polypropylene, poly(methyl methacrylate), polycarbonate, TEFLON-FEP and glass slide) were measured in water drop-in-air, air bubble-under-water, oil drop-in-air, air bubble-under-oil, oil drop-under-water and water drop-under-oil conditions. Heptane, octane, nonane, decane, dodecane, and hexadecane hydrocarbons were used as oils. Immiscible water/oil pairs were previously mutually saturated to provide thermodynamical equilibrium conditions and their surface and interfacial tensions were determined experimentally. These pairs were used in the two-liquid contact angle measurements. Surface free energies of the solid surfaces in air were determined independently by using the van Oss-Good method, using the contact angle results of pure water, ethylene glycol, formamide, methylene iodide and α-bromonaphalene. In addition, Zisman’s ‘critical surface tension’ values were also determined for comparison. In theory, the summation of contact angle results in a complementary case would give a total of 180° for ideal surfaces. However, it was determined that there are large deviations from this rule in practical cases and these deviations depend on surface free energies of solids. Three complementary cases of (water-in-air with air bubble-under-water); (oil-in-air with air bubble-under-oil); and (oil-under-water with water-under-oil) were investigated in particular to determine the deviations from ideality. A novel approach, named ‘complementary hysteresis’ [γ WA(cosθ 1  -  cosθ 2) and γ OW(cosθ 6  -  cosθ 5)] was developed where γ WA and γ OW represent the interfacial tensions of water/air and oil/water, and θ 1, θ 2, θ 5, and θ 6 were the contact angles of water/air, air bubble/water, oil/water and water/oil respectively. It was experimentally determined that complementary hysteresis varies almost linearly with the surface free energy of the flat solid samples. This is the first report showing the relation of the surface free energy of a solid which is determined under-air with the contact angles obtained on the same solid in different three-phase systems.

  2. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  3. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.

  4. Environmental Assessment: Improvements to Silver Flag Training Area at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2013-01-01

    moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program soils , wetlands, surface water, floodplains, vegetation, fish...magnitude, on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, smf ace water, floodplains, vegetation, fish and wildlife...range from negligible to moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, surface water

  5. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  6. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin

    2017-12-01

    Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.

  7. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  8. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  9. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  10. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  11. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  12. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    PubMed

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    PubMed

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  14. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    PubMed

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-07

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

  15. Earth Observation

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too are the product of winds moving off of the land surface.

  16. The humidity dependence of ozone deposition onto a variety of building surfaces

    NASA Astrophysics Data System (ADS)

    Grøntoft, Terje; Henriksen, Jan F.; Seip, Hans M.

    Measurements of the dry deposition velocity of O 3 to material samples of calcareous stone, concrete and wood at varying humidity of the air, were performed in a deposition chamber. Equilibrium surface deposition velocities were found for various humidity values by fitting a model to the time-dependent deposition data. A deposition velocity-humidity model was derived giving three separate rate constants for the surface deposition velocities, i.e. on the dry surface, on the first mono-layer of adsorbed water and on additional surface water. The variation in the dry air equilibrium surface deposition velocities among the samples correlated with variations in effective areas, with larger effective areas giving higher measured deposition velocities. A minimum for the equilibrium surface deposition velocity was generally measured at an intermediate humidity close to the humidity found to correspond to one mono-layer of water molecules on the surfaces. At low air humidity the equilibrium surface deposition velocity of O 3 was found to decrease as more adsorbed water prevented direct contact of the O 3 molecules with the surface. This was partly compensated by an increase as more adsorbed water became available for reaction with O 3. At high air humidity the equilibrium surface deposition velocity was found to increase as the mass of water on the surface increased. The deposition velocity on bulk de-ionised water at RH=90% was an order of magnitude lower than on the sample surfaces.

  17. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  18. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Statistics of surface divergence and their relation to air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  20. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  2. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  3. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  4. Elasticity of the hair cover in air-retaining Salvinia surfaces

    NASA Astrophysics Data System (ADS)

    Ditsche, Petra; Gorb, Elena; Mayser, Matthias; Gorb, Stanislav; Schimmel, Thomas; Barthlott, Wilhelm

    2015-11-01

    Immersed in water superhydrophobic surfaces (e.g., lotus) maintain thin temporary air films. In certain aquatic plants and animals, these films are thicker and more persistent. Floating ferns of the genus Salvinia show elaborated hierarchical superhydrophobic surface structures: a hairy cover of complex trichomes. In the case of S. molesta, they are eggbeater shaped and topped by hydrophilic tips, which pin the air-water interface and prevent rupture of contact. It has been proposed that these trichomes can oscillate with the air-water interface, when turbulences occur and thereby stabilize the air film. The deformability of such arrays of trichomes requires a certain elasticity of the structures. In this study, we determined the stiffness of the trichome coverage of S. molesta and three other Salvinia species. Our results confirm the elasticity of the trichome coverage in all investigated Salvinia species. We did not reveal a clear relationship between the time of air retention and stiffness of the trichome coverage, which means that the air retention function is additionally dependent on different parameters, e.g., the trichome shape and surface free energy. These data are not only interesting for Salvinia biology, but also important for the development of biomimetic air-retaining surfaces.

  5. Air pollutant intrusion into the Wieliczka Salt Mine

    USGS Publications Warehouse

    Salmon, L.G.; Cass, G.R.; Kozlowski, R.; Hejda, A.; Spiker, E. C.; Bates, A.L.

    1996-01-01

    The Wieliczka Salt Mine World Cultural Heritage Site contains many rock salt sculptures that are threatened by water vapor condensation from the mine ventilation air. Gaseous and particulate air pollutant concentrations have been measured both outdoors and within the Wieliczka Salt Mine, along with pollutant deposition fluxes to surfaces within the mine. One purpose of these measurements was to determine whether or not low deliquescence point ionic materials (e.g., NH4NO3) are accumulating on surfaces to an extent that would exacerbate the water vapor condensation problems in the mine. It was found that pollutant gases including SO2 and HNO3 present in outdoor air are removed rapidly and almost completely from the air within the mine by deposition to surfaces. Sulfur isotope analyses confirm the accumulation of air pollutant-derived sulfur in liquid dripping from surfaces within the mine. Particle deposition onto interior surfaces in the mine is apparent, with resulting soiling of some of those sculptures that have been carved from translucent rock salt. Water accumulation by salt sculpture surfaces was studied both experimentally and by approximate thermodynamic calculations. Both approaches suggest that the pollutant deposits on the sculpture surfaces lower the relative humidity (RH) at which a substantial amount of liquid water will accumulate by 1% to several percent. The extraordinarily low SO2 concentrations within the mine may explain the apparent success of a respiratory sanatorium located deep within the mine.

  6. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (

  7. Perception of airborne odors by loggerhead sea turtles.

    PubMed

    Endres, C S; Putman, N F; Lohmann, K J

    2009-12-01

    Sea turtles are known to detect chemical cues, but in contrast to most marine animals, turtles surface to breathe and thus potentially have access to olfactory cues both in air and in water. To determine whether sea turtles can detect airborne chemical cues, captive loggerhead turtles (Caretta caretta) were placed into a circular, water-filled arena in which odorants could be introduced to the air above the water surface. Air that had passed across the surface of a cup containing food elicited increased activity, diving and other behavior normally associated with feeding. By contrast, air that had passed across the surface of an identical cup containing distilled water elicited no response. Increases in activity during food odor trials occurred only after turtles surfaced to breathe and peaked in the first post-breath minute, implying that the chemical cues eliciting the responses were unlikely to have been detected while the turtles were under water. These results provide the first direct evidence that sea turtles can detect airborne odors. Under natural conditions, this sensory ability might function in foraging, navigation or both.

  8. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  10. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807

  11. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.

    PubMed

    Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V

    2013-04-09

    The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.

  12. Generalized water-table and water-level data at the US Air Force plant 42 and vicinity, Palmdale, California, March-April, 1997

    USGS Publications Warehouse

    Christensen, Allen H.

    1999-01-01

    The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.

  13. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  14. Laser-assisted surface modification of Ti-implant in air and water environment

    NASA Astrophysics Data System (ADS)

    Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.

    2018-01-01

    A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.

  15. Adsorption of Egg-PC to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure

    PubMed Central

    Mitsche, Matthew A.; Wang, Libo; Small, Donald M.

    2010-01-01

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low salt buffer. The surface tension (γ) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts ~12 and 15 mN/m of pressure (Π) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette and the surface was compressed to study the Π/area relationship. To determine the surface concentration (Γ), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques, thus Γ on the bubble can be determined by overlaying the two isotherms. TO and EPC are both surface active so in a mixed TO/EPC monolayer both molecules will be exposed to water. Since TO is less surface active than EPC, as Π increases the TO is progressively ejected. To understand the Π/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Γ can be estimated. This allows determination of Γ of EPC on a TO bubble as a function of Π. PMID:20151713

  16. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    PubMed

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  17. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  18. Installation Restoration Program. Preliminary Assessment: Record Search for the 110th Tactical Air Support Group, Michigan Air National Guard, W. K. Kellogg Regional Airport, Battle Creek, Michigan.

    DTIC Science & Technology

    1987-09-01

    these wetlands. Because of the generally low relief at the Base, several manmade drainage ditches have been constructed to improve surface water ...northerly boundary (Hickock, 1985). Within the Marshall Formation, the water table or piezometric surface con- forms somewhat to the land surface. The...34hills" in the water table underlie hills seen on land. The " lows " in the water table coincide with low areas on land (Vanlier, 1966). Thus, the

  19. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    PubMed

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  20. Improved recovery of Listeria monocytogenes from stainless steel and polytetrafluoroethylene surfaces using air/water ablation.

    PubMed

    Gião, M S; Blanc, S; Porta, S; Belenguer, J; Keevil, C W

    2015-07-01

    To develop a gentle ablation technique to recover Listeria monocytogenes biofilms from stainless steel (SS) and polytetrafluoroethylene (PTFE) surfaces by using compressed air and water injection. Biofilms were grown for 4, 24 and 48 h or 7 days and a compressed air and water flow at 2, 3 and 4 bars was applied for cell removal. Collected cells were quantified for total/dead by staining with SYTO 9/PI double staining and cultivable populations were determined by plating onto brain heart infusion (BHI) agar, while coupon surfaces also were stained with DAPI to quantify in situ the remaining cells. The recovery efficiency was compared to that of conventional swabbing. Results showed that the air/water ablation is able to collect up to 98·6% of cells from SS surfaces while swabbing only recovered 11·2% of biofilm. Moreover, air/water ablation recovered 99·9% of cells from PTFE surfaces. The high recovery rate achieved by this technique, along with the fact that cells were able to retain membrane integrity and cultivability, indicate that this device is suitable for the gentle recovery of viable L. monocytogenes biofilm cells. This work presents a highly efficient technique to remove, collect and quantify L. monocytogenes from surfaces commonly used in the food industry, which can thus serve as an important aid in verifying cleaning and sanitation as well as in reducing the likelihood of cross-contamination events. © 2015 The Society for Applied Microbiology.

  1. Imaging across the interface of small-scale breaking waves

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra H.; Belden, Jesse L.

    2007-11-01

    Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.

  2. The interfacial structure of water droplets in a hydrophobic liquid

    NASA Astrophysics Data System (ADS)

    Smolentsev, Nikolay; Smit, Wilbert J.; Bakker, Huib J.; Roke, Sylvie

    2017-05-01

    Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ~50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.

  3. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  4. Plastron Respiration Using Commercial Fabrics

    PubMed Central

    Atherton, Shaun; Brennan, Joseph C.; Morris, Robert H.; Smith, Joshua D.E.; Hamlett, Christopher A.E.; McHale, Glen; Shirtcliffe, Neil J.; Newton, Michael I.

    2014-01-01

    A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer membranes is investigated, and how the surface of the materials mimics this mechanism of underwater respiration is demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage of the surface with the plastron air layer was measured using confocal microscopy. A zinc/oxygen cell is used to consume oxygen within containers constructed from the different membranes, and the oxygen consumed by the cell is compared to the change in oxygen concentration as measured by an oxygen probe. By comparing the membranes to an air-tight reference sample, it was found that the membranes facilitated oxygen transfer from the water into the container, with the most successful membrane showing a 1.90:1 ratio between the cell oxygen consumption and the change in concentration within the container. PMID:28788469

  5. Frequency-depth dependent spherical reflection response from the sea surface - A transmission experiment

    NASA Astrophysics Data System (ADS)

    Wehner, D.; Landrø, M.; Amundsen, L.; Westerdahl, H.

    2018-05-01

    In academia and the industry, there is increasing interest in generating and recording low seismic frequencies, which lead to better data quality, deeper signal penetration and can be important for full-waveform inversion. The common marine seismic source in acquisition is the air gun which is towed behind a vessel. The frequency content of the signal produced by the air gun mainly depends on its source depth as there are two effects which are presumed to counteract each other. First, there is the oscillating air bubble generated by the air gun which leads to more low frequencies for shallow source depths. Secondly, there is the interference of the downgoing wave with the first reflection from the sea surface, referred to as the ghost, which leads to more low frequencies for deeper source depths. It is still under debate whether it is beneficial to place the source shallow or deep to generate the strongest signal for frequencies below 5 Hz. Therefore, the ghost effect is studied in more detail by measuring the transmission at the water-air interface. We conduct experiments in a water tank where a small-volume seismic source is fired at different depths below the water surface to investigate how the ghost varies with frequency and depth. The signal from the seismic source is recorded with hydrophones inside water and air during the test to estimate the transmitted signal through the interface. In a second test, we perform experiments with an acoustic source located in air which is fired at different elevations above the water surface. The source in air is a starter gun and the signals are again recorded in water and air. The measured data indicates an increasing transmission of the signal through the water-air interface when the source is closer to the water surface which leads to a decreasing reflection for sources close to the surface. The measured results are compared with modeled data and the existing theory. The observed increase in transmission for shallow source depths could be explained by the theory of a spherical wave front striking the interface instead of assuming a plane wave front. The difference can be important for frequencies below 1 Hz. The results suggest that deploying a few sources very shallow during marine seismic acquisition could be beneficial for these very low frequencies. In addition, the effect of a spherical wave front might be considered for modeling far field signatures of seismic sources for frequencies below 1 Hz.

  6. Surface, Water and Air Biocharacterization (SWAB)

    NASA Image and Video Library

    2009-08-18

    ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  7. Performance Enhancement of a High Speed Jet Impingement System for Nonvolatile Residue Removal

    NASA Technical Reports Server (NTRS)

    Klausner, James F.; Mei, Renwei; Near, Steve; Stith, Rex

    1996-01-01

    A high speed jet impingement cleaning facility has been developed to study the effectiveness of the nonvolatile residue removal. The facility includes a high pressure air compressor which charges the k-bottles to supply high pressure air, an air heating section to vary the temperature of the high pressure air, an air-water mixing chamber to meter the water flow and generate small size droplets, and a converging- diverging nozzle to deliver the supersonic air-droplet mixture flow to the cleaning surface. To reliably quantify the cleanliness of the surface, a simple procedure for measurement and calibration is developed to relate the amount of the residue on the surface to the relative change in the reflectivity between a clean surface and the greased surface. This calibration procedure is economical, simple, reliable, and robust. a theoretical framework is developed to provide qualitative guidance for the design of the test and interpretation of the experimental results. The result documented in this report support the theoretical considerations.

  8. Thermal behaviour of an urban lake during summer

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans

    2015-04-01

    One of the undesirable effects of urbanisation is higher summer air temperatures in cites compared to rural areas. One of the most important self-cooling mechanism of cities is presence of water. Comparative studies showed that from all urban land-use types open water is the most efficient in reducing the heat in its surrounding. Urban water bodies vary from small ponds to big lakes and rivers, but already the presence of a swimming pool in a garden resulted in lower temperatures in the area. Moving and still water both exhibit slightly different patterns with respect to the environment. While ponds tend to respond more to air temperature changes, faster flowing rivers are expected to have more stable temperature over time. There are two major components of cooling effect of a surface water:(1) through evaporation, and (2) by storing heat and increasing its own temperature. This study shows results from a detailed temperature measurements, using Distributed Temperature Sensing (DTS), in an urban lake in Delft (The Netherlands). A two meter tall construction measuring temperature with 2 mm vertical spatial resolution was placed partly in the water, reaching all the way to the muddy underlayer, and partly in the air. Data from continuous two month measurement campaign show the development of water temperature with respect to solar radiation, air temperature, rain and inflow of rainwater from surrounding streets, etc. Most interesting is the 1-2 cm thick layer of colder air right above the water surface. This layer reaches values lower than both the air and the water, which suggests that certain part of the potential cooling capacity of open water is restricted by a small layer of air just above its surface.

  9. Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.

    PubMed

    Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin

    2012-09-25

    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.

  10. Experimental und numerical investigations on cooling efficiency of Air-Mist nozzles on steel during continuous casting

    NASA Astrophysics Data System (ADS)

    Arth, G.; Taferner, M.; Bernhard, C.; Michelic, S.

    2016-07-01

    Cooling strategies in continuous casting of steel can vary from rapid cooling to slow cooling, mainly controlled by adjusting the amount of water sprayed onto the surface of the product. Inadequate adjustment however can lead to local surface undercooling or reheating, leading to surface and inner defects. This paper focuses on cooling efficiency of Air-Mist nozzles on casted steel and the experimental and numerical prediction of surface temperature distributions over the product width. The first part explains the determination of heat transfer coefficients (HTC) on laboratory scale, using a so called nozzle measuring stand (NMS). Based on measured water distributions and determined HTC's for air-mist nozzles using the NMS, surface temperatures are calculated by a transient 2D-model on a simple steel plate, explained in the second part of this paper. Simulations are carried out varying water impact density and spray water distribution, consequently influencing the local HTC distribution over the plate width. Furthermore, these results will be interpreted with regard to their consequence for surface and internal quality of the cast product. The results reveal the difficulty of correct adjustment of the amount of sprayed water, concurrent influencing water distribution and thus changing HTC distribution and surface temperature.

  11. The nature of the air-cleaved mica surface

    NASA Astrophysics Data System (ADS)

    Christenson, Hugo K.; Thomson, Neil H.

    2016-06-01

    The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.

  12. Movement of fine particles on an air bubble surface studied using high-speed video microscopy.

    PubMed

    Nguyen, Anh V; Evans, Geoffrey M

    2004-05-01

    A CCD high-speed video microscopy system operating at 1000 frames per second was used to obtain direct quantitative measurements of the trajectories of fine glass spheres on the surface of air bubbles. The glass spheres were rendered hydrophobic by a methylation process. Rupture of the intervening water film between a hydrophobic particle and an air bubble with the consequent formation of a three-phase contact was observed. The bubble-particle sliding attachment interaction is not satisfactorily described by the available theories. Surface forces had little effect on the particle sliding with a water film, which ruptured probably due to the submicrometer-sized gas bubbles existing at the hydrophobic particle-water interface.

  13. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  14. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  15. Adsorption of surfactant ions and binding of their counterions at an air/water interface.

    PubMed

    Tagashira, Hiroaki; Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2009-01-01

    An expression for the surface tension of an aqueous mixed solution of surfactants and electrolyte ions in the presence of the common ions was derived from the Helmholtz free energy of an air/water surface. By applying the equation to experimental data for the surface tension, the adsorption constant of surfactant ions onto the air/water interface, the binding constant of counterions on the surfactants, and the surface potential and surface charge density of the interface were estimated. The adsorption constant and binding constant were dependent on the species of surfactant ion and counterion, respectively. Taking account of the dependence of surface potential and surface charge density on the concentration of electrolyte, it was suggested that the addition of electrolyte to the aqueous surfactant solution brings about the decrease in the surface potential, the increase in the surface density of surfactant ions, and consequently, the decrease in the surface tension. Furthermore, it was found that the configurational entropy plays a predominant role for the surface tension, compared to the electrical work.

  16. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  17. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces

    PubMed Central

    Hosoda, Naoe; Gorb, Stanislav N.

    2012-01-01

    For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties. PMID:22874756

  19. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.

  20. Interaction of gases with lunar materials. [surface properties of lunar fines, especially on exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Gammage, R. B.

    1975-01-01

    The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor.

  1. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  2. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    NASA Astrophysics Data System (ADS)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  3. Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.

  4. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  5. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  7. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  8. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    NASA Astrophysics Data System (ADS)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.

  9. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.

  10. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  11. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  12. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  13. Liquid-Vapor Interfacial Properties of Aqueous Solutions of Guanidinium and Methyl Guanidinium Chloride: Influence of Molecular Orientation on Interface Fluctuations

    PubMed Central

    Ou, Shuching; Cui, Di; Patel, Sandeep

    2014-01-01

    The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431

  14. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  15. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  16. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  17. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  18. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...

  19. The water-filled versus air-filled status of vessels cut open in air: the 'Scholander assumption' revisited

    Treesearch

    M.T. Tyree; H. Cochard; P. Cruziat

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by continued transpiration, The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut...

  20. Observational Constraints on the Water Vapor Feedback Using GPS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Fetzer, E. J.

    2016-12-01

    The air refractive index at L-band frequencies depends on the air's density and water vapor content. Exploiting these relationships, we derive a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. Current research indicates that GPS RO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among different data sets will provide us with additional constraints on the water vapor feedback. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated using Atmospheric Infrared Sounder (AIRS) and NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data sets. In particular, the GPS RO-derived dq/dTs is larger by 6% than that estimated using the AIRS data set. This agrees with past evidence that AIRS may be dry-biased in the upper troposphere. Compared to the MERRA estimations, the GPS RO-derived dq/dTs is 10% smaller, also agreeing with previous results that show that MERRA may have a wet bias in the upper troposphere. Because of their high sensitivity to fractional changes in water vapor, and their inherent long-term accuracy, current and future GPS RO observations show great promise in monitoring climate feedbacks and their trends.

  1. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. SFG and AFM Studies of Polymer Surface Monolayers

    NASA Astrophysics Data System (ADS)

    Somorjai, Gabor A.

    2003-03-01

    Sum frequency generation vibrational spectroscopy and atomic force microscopy techniques were utilized to study the structure and composition of polymer surfaces ranging from polyethylene and polypropylene to copolymers of polyurethane and polystyrene. The surface methyl groups aligned perpendicular to the surface above the glass transition temperature of polypropylene. Large side groups such as the phenyl group on polystyrene is also near the surface normal at the polymer-air interface. At the air interface hydrophobic groups are dominant on the polymer surface while at solid-water interface hydrophilic groups segregate to the surface. Minimizing surface energy is the cause of readjusting the surface composition at polymer-water interfaces as compared to polymer-air interfaces. Upon stretching the soft component of two-component polymer systems segregates to the surface and both the surface structure and the surface composition undergo reversible or irreversible changes depending on the magnitude of the stretch. Since the heart beat forces bio-polymers to stretch over 40 million times a year the molecular behavior due to stretching has important physiological consequences.

  3. Heterotrophic bacteria in an air-handling system.

    PubMed Central

    Hugenholtz, P; Fuerst, J A

    1992-01-01

    Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins. Images PMID:1476435

  4. Heterotrophic bacteria in an air-handling system.

    PubMed

    Hugenholtz, P; Fuerst, J A

    1992-12-01

    Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins.

  5. Experimental Measurements of the Water Evaporation Rate of a Physical Model

    NASA Astrophysics Data System (ADS)

    Turza, Róbert; Füri, Belo B.

    2017-03-01

    As the number of indoor swimming pools and wellness centers are currently growing, it is necessary to concentrate on the parameters of indoor environments. These parameters are necessary for the design of the HVAC systems that operate these premises. In indoor swimming-pool facilities, the energy demand is large due to ventilation losses from exhaust air. Since water evaporates from a pool's surface, exhaust air has a high water content and specific enthalpy. In this paper the results of the water evaporation rate measured from swimming pool surfaces at higher thermal water temperatures are described.

  6. Installation Restoration Program Records Search for Dobbins Air Force Base, Georgia

    DTIC Science & Technology

    1982-04-01

    migation Death to irond water ____________ lift ogaeiitation 1 . Subsurface flow_____I a _____________ Direct aess W 4round water______ j Submrs(10 x actr...potential pathways, surface water migation , flooding, and ground-water * migration. Select the highest rating, and proceed to C. f 1. Surface water migration

  7. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  8. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.

  9. In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.

    PubMed

    Stocco, Antonio; Su, Ge; Nobili, Maurizio; In, Martin; Wang, Dayang

    2014-09-28

    Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fairly low surface coverage. For water-oil interfaces, in situ nanoparticle contact angles agree with the macroscopic equilibrium contact angles of planar gold surfaces with the same polymer coatings, whilst for water-air interfaces, significant differences have been observed.

  10. Diminished mercury emission from waters with duckweed cover

    NASA Astrophysics Data System (ADS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-06-01

    Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.

  11. Langmuir circulation inhibits near-surface water turbulence

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.

  12. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties.

    PubMed

    Di Mundo, Rosa; Bottiglione, Francesco; Palumbo, Fabio; Notarnicola, Michele; Carbone, Giuseppe

    2016-11-15

    Micro-scale textured Teflon surfaces, resulting from plasma etching modification, show extremely high water contact angle values and fairly good resistance to water penetration when hit by water drops at medium-high speed. This behavior is more pronounced when these surfaces present denser and smaller micrometric reliefs. Tailoring the top of these reliefs with a structure which further stabilizes the air may further increase resistance to wetting (water penetration) under static and dynamic conditions. Conditions of the oxygen fed plasma were tuned in order to explore the possibility of obtaining differently topped structures on the surface of the polymer. Scanning Electron Microscopy (SEM) was used to explore topography and X-ray Photoelectron Spectroscopy (XPS) to assess chemical similarity of the modified surfaces. Beside the usual advancing and receding water contact angle (WCA) measurements, surfaces were subjected to high speed impacting drops and immersion in water. At milder, i.e. shorter time and lower input power, plasma conditions formation of peculiar filaments is observed on the top of the sculpted reliefs. Filamentary topped surfaces result in a lower WCA than the spherical ones, appearing in this sense less superhydrophobic. However, these surfaces give rise to the formation of a more pronounced air layer when placed underwater. Further, when hit by water drops falling at medium/high speed, they show a higher resistance to water penetration and a sensitively lower surface-liquid contact time. The contact time is as low as previously observed only on heated solids. This behavior may be ascribed to the cavities formed beneath the filaments which, similarly with the salvinia leaf structures, require a surplus of pressure to be filled by water. Also, it suggests a different concept of superhydrophobicity, which cannot be expected on the basis of the conventional water contact angle characterization. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  14. Use of experimentally determined Henry's Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters.

    PubMed

    Willey, Joan D; Powell, Jacqueline P; Avery, G Brooks; Kieber, Robert J; Mead, Ralph N

    2017-09-01

    The Henry's law constant for ethanol in seawater was experimentally determined to be 221 ± 4 M/atm at 22 °C compared with 247 ± 6 M/atm in pure water. The salting out coefficient for ethanol was 0.13 M -1 . In seawater ln(K H ) = -(12.8 ± 0.7) + (5310 ± 197)/T where K H is in M atm -1 and temperature is in K. This plus the salting out coefficient allow calculation of K H for any estuarine or sea water between 1 and 35 °C. High concentrations of dissolved organic carbon do not affect K H values in fresh or seawater. Nearshore surface waters were usually undersaturated with respect to gas phase ethanol except when air concentrations decreased, whereas surface seawater 40 km from shore was supersaturated. The percent saturation in surface waters is driven primarily by changes in air concentrations because these change quickly (hours) and more extensively than surface water. This study allows calculation of ethanol saturation states from air and surface water concentrations which is a necessary step to define the role of surface oceans in the global biogeochemical cycling of ethanol both now and in the future as use of ethanol biofuel continues to grow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy.

    PubMed

    Stiopkin, Igor V; Weeraman, Champika; Pieniazek, Piotr A; Shalhout, Fadel Y; Skinner, James L; Benderskii, Alexander V

    2011-06-08

    The air-water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth's surface and strongly affects atmospheric, aerosol and environmental chemistry. The air-water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is. Theoretical studies have suggested a surprisingly short 'healing length' of about 3 ångströms (1 Å = 0.1 nm), with the bulk-phase properties of water recovered within the top few monolayers. However, direct experimental evidence has been elusive owing to the difficulty of depth-profiling the liquid surface on the ångström scale. Most physical, chemical and biological properties of water, such as viscosity, solvation, wetting and the hydrophobic effect, are determined by its hydrogen-bond network. This can be probed by observing the lineshape of the OH-stretch mode, the frequency shift of which is related to the hydrogen-bond strength. Here we report a combined experimental and theoretical study of the air-water interface using surface-selective heterodyne-detected vibrational sum frequency spectroscopy to focus on the 'free OD' transition found only in the topmost water layer. By using deuterated water and isotopic dilution to reveal the vibrational coupling mechanism, we find that the free OD stretch is affected only by intramolecular coupling to the stretching of the other OD group on the same molecule. The other OD stretch frequency indicates the strength of one of the first hydrogen bonds encountered at the surface; this is the donor hydrogen bond of the water molecule straddling the interface, which we find to be only slightly weaker than bulk-phase water hydrogen bonds. We infer from this observation a remarkably fast onset of bulk-phase behaviour on crossing from the air into the water phase.

  16. Permian paleoclimate data from fluid inclusions in halite

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.

    1999-01-01

    This study has yielded surface water paleotemperatures from primary fluid inclusions in mid Permian Nippewalla Group halite from western Kansas. A 'cooling nucleation' method is used to generate vapor bubbles in originally all-liquid primary inclusions. Then, surface water paleotemperatures are obtained by measuring temperatures of homogenization to liquid. Homogenization temperatures ranged from 21??C to 50??C and are consistent along individual fluid inclusion assemblages, indicating that the fluid inclusions have not been altered by thermal reequilibration. Homogenization temperatures show a range of up to 26??C from base to top of individual cloudy chevron growth bands. Petrographic and fluid inclusion evidence indicate that no significant pressure correction is needed for the homogenization temperature data. We interpret these homogenization temperatures to represent shallow surface water paleotemperatures. The range in temperatures from base to top of single chevron bands may reflect daily temperatures variations. These Permian surface water temperatures fall within the same range as some modern evaporative surface waters, suggesting that this Permian environment may have been relatively similar to its modern counterparts. Shallow surface water temperatures in evaporative settings correspond closely to local air temperatures. Therefore, the Permian surface water temperatures determined in this study may be considered proxies for local Permian air temperatures.

  17. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    USGS Publications Warehouse

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  18. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.

  19. Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme.

    PubMed

    Puzyn, T; Haranczyk, M; Suzuki, N; Sakurai, T

    2011-02-01

    We have estimated degradation half-lives of both brominated and chlorinated dibenzo-p-dioxins (PBDDs and PCDDs), furans (PBDFs and PCDFs), biphenyls (PBBs and PCBs), naphthalenes (PBNs and PCNs), diphenyl ethers (PBDEs and PCDEs) as well as selected unsubstituted polycyclic aromatic hydrocarbons (PAHs) in air, surface water, surface soil, and sediments (in total of 1,431 compounds in four compartments). Next, we compared the persistence between chloro- (relatively well-studied) and bromo- (less studied) analogs. The predictions have been performed based on the quantitative structure-property relationship (QSPR) scheme with use of k-nearest neighbors (kNN) classifier and the semi-quantitative system of persistence classes. The classification models utilized principal components derived from the principal component analysis of a set of 24 constitutional and quantum mechanical descriptors as input variables. Accuracies of classification (based on an external validation) were 86, 85, 87, and 75% for air, surface water, surface soil, and sediments, respectively. The persistence of all chlorinated species increased with increasing halogenation degree. In the case of brominated organic pollutants (Br-OPs), the trend was the same for air and sediments. However, we noticed that the opposite trend for persistence in surface water and soil. The results suggest that, due to high photoreactivity of C-Br chemical bonds, photolytic processes occurring in surface water and soil are able to play significant role in transforming and removing Br-OPs from these compartments. This contribution is the first attempt of classifying together Br-OPs and Cl-OPs according to their persistence, in particular, environmental compartments.

  20. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.

    2013-11-01

    In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.

  1. Water Resources Data for Illinois - Water Year 2005 (Includes Historical Data)

    USGS Publications Warehouse

    LaTour, J.K.; Weldon, E.A.; Dupre, D.H.; Halfar, T.M.

    2006-01-01

    This annual Water-Data Report for Illinois contains current water year (Oct. 1, 2004, to Sept. 30, 2005) and historical data of discharge, stage, water quality and biology of streams; stage of lakes and reservoirs; levels and quality of ground water; and records of precipitation, air temperature, dew point, solar radiation, and wind speed. The current year's (2005) data provided in this report include (1) discharge for 182 surface-water gaging stations and for 9 crest-stage partial-record stations; (2) stage for 33 surface-water gaging stations; (3) water-quality records for 10 surface-water stations; (4) sediment-discharge records for 14 surface-water stations; (5) water-level records for 98 ground-water wells; (6) water-quality records for 17 ground-water wells; (7) precipitation records for 48 rain gages; (8) records of air temperature, dew point, solar radiation and wind speed for 1 meteorological station; and (9) biological records for 6 sample sites. Also included are miscellaneous data collected at various sites not in the systematic data-collection network. Data were collected and compiled as a part of the National Water Information System (NWIS) maintained by the U.S. Geological Survey in cooperation with Federal, State, and local agencies.

  2. Superhydrophobic materials for drug delivery

    NASA Astrophysics Data System (ADS)

    Yohe, Stefan Thomas

    Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension. Superhydrophobicity is shown to be enhanced with further increases in PGC-C18 content and surface roughness (a decrease in fiber size). We demonstrate the utility of superhydrophobicity as a method for drug delivery. When the camptothecin derivatives SN-38 and CPT-11 are encapsulated within electrospun meshes, changes in air layer stability (due to changes in PGC-C18 content) dictate the rate of drug release by controlling the rate in which water can permeate into the porous 3D electrospun structure. Drug release can be tuned from 2 weeks to >10 weeks from 300 mum meshes, and meshes effectively kill a variety of cancer cell lines (lung, colon, breast) when utilized in a cytotoxicity assay. After determining that air could be used to control the rate of drug release, superhydrophobic 3D materials are explored for three applications. First, meshes are considered as a potential combination reinforcement-drug delivery device for use in resectable colorectal cancer. Second, removal of the air layer in superhydrophobic meshes is used as a method to trigger drug release. The pressure generated from high-intensity focused ultrasound (0.75-4.25 MPa) can remove the air layer spatially and temporally, allowing drug release to be controlled with application of a sufficient treatment. Third, "connective" electrosprayed coatings are deposited on chemically distinct material surfaces, which are both three-dimensional and mechanically robust. In summary, superhydrophobic 3D materials are fabricated and characterized, and are utilized as drug delivery devices. Controlled air removal from these materials offers an entirely new strategy for drug delivery, and is promising for the applications considered in this work as well as many others.

  3. Is Superhydrophobicity Equal to Underwater Superaerophilicity: Regulating the Gas Behavior on Superaerophilic Surface via Hydrophilic Defects.

    PubMed

    Cao, Moyuan; Li, Zhe; Ma, Hongyu; Geng, Hui; Yu, Cunming; Jiang, Lei

    2018-06-20

    Superhydrophobic surfaces have long been considered as superaerophilic surfaces while being placed in the aqueous environment. However, versatile gas/solid interacting phenomena were reported by utilizing different superhydrophobic substrates, indicating that these two wetting states cannot be simply equated. Herein, we demonstrate how the hydrophilic defects on the superhydrophobic track manipulate the underwater gas delivery, without deteriorating the water repellency of the surface in air. The versatile gas-transporting processes can be achieved on the defected superhydrophobic surfaces; on the contrary, in air, a water droplet is able to roll on those surfaces indistinguishably. Results show that the different media pressures applied on the two wetting states determine the diversified fluid-delivering phenomena; that is, the pressure-induced hydrophilic defects act as a gas barrier to regulate the bubble motion behavior under water. Through the rational incorporation of hydrophilic defects, a series of gas-transporting behaviors are achieved purposively, for example, gas film delivery, bubble transporting, and anisotropic bubble gating, which proves the feasibility of this underwater air-controlling strategy.

  4. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Desiccation by Foliar Deposition of Hygroscopic Aerosols may link Air Pollution to Forest Decline and Tree Mortality associated with Global-Change-Type Drought

    NASA Astrophysics Data System (ADS)

    Burkhardt, J.; Grantz, D. A.; Hunsche, M.; Pariyar, S.; Sutton, M. A.; Zinsmeister, D.

    2016-12-01

    Leaf surfaces are a major sink for atmospheric aerosol deposition. Plants benefit from aerosol associated nutrients and are able to increase deposition by leaf surface micromorphology. Recent studies have shown that deposited hygroscopic aerosols can also influence plant water relations. This might be an important issue even for remote forest ecosystems, given the strong anthropogenic influence on aerosol production and efficient atmospheric transport. We study processes of aerosol deposition to plant surfaces and their impact on water relations and drought tolerance, both for experimental particle amendment and for aerosol exclusion in filtered air (FA). FA plants experience an environment with < 10% concentration of hygroscopic aerosols compared to ambient air (AA), but no difference in trace gases. Increasing particle concentration leads to decreasing water use efficiency and increasing minimum epidermal conductance (gmin; a measure of uncontrolled water loss inversely related to drought tolerance). After particle amendment, anisohydric beech seedlings increased transpiration and maintained photosynthesis, while isohydric pine seedlings maintained transpiration and tended to reduce photosynthesis. FA seedlings of pine, oak, and fir showed lower gmin than corresponding AA seedlings. The results support the concept of hydraulic activation of stomata (HAS) and an associated wick action caused by leaf surface particles. Concentrated salt solutions formed by hygroscopicity even in unsaturated air may create a thin liquid film that penetrates the stomatal pore, allowing evaporation of liquid water at the leaf surface. Increased gmin suggests the significance of this process under ambient conditions. The direct impact of air pollution on plant drought tolerance is poorly integrated in current scenarios of forest decline and tree mortality, but might represent an important component.

  6. Soil water content spatial pattern estimated by thermal inertia from air-borne sensors

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio

    2010-05-01

    Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.

  7. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  8. Compositions of surface layers formed on amalgams in air, water, and saline.

    PubMed

    Hanawa, T; Gnade, B E; Ferracane, J L; Okabe, T; Watari, F

    1993-12-01

    The surface layers formed on both a zinc-free and a zinc-containing dental amalgam after polishing and aging in air, water, or saline, were characterized using x-ray photoelectron spectroscopy (XPS) to determine the compositions of the surface layers which might govern the release of mercury from amalgam. The XPS data revealed that the formation of the surface layer on the zinc-containing amalgam was affected by the environment in which the amalgam was polished and aged, whereas that on the zinc-free amalgam was not affected. In addition, among the elements contained in amalgam, zinc was the most reactive with the environment, and was preferentially dissolved from amalgam into water or saline. Mercury atoms existed in the metallic state in the surface layer.

  9. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  10. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    PubMed

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  11. Respiratory function of the plastron in the aquatic bug Aphelocheirus aestivalis (Hemiptera, Aphelocheiridae).

    PubMed

    Seymour, Roger S; Jones, Karl K; Hetz, Stefan K

    2015-09-01

    The river bug Aphelocheirus aestivalis is a 40 mg aquatic insect that, as an adult, relies totally on an incompressible physical gill to exchange respiratory gases with the water. The gill (called a 'plastron') consists of a stationary layer of air held in place on the body surface by millions of tiny hairs that support a permanent air-water interface, so that the insect never has to renew the gas at the water's surface. The volume of air in the plastron is extremely small (0.14 mm(3)), under slightly negative pressure and connected to the gas-filled tracheal system through spiracles on the cuticle. Here, we measure PO2 of the water and within the plastron gas with O2-sensing fibre optics to understand the effectiveness and limitations of the gas exchanger. The difference in PO2 is highest in stagnant water and decreases with increasing convection over the surface. Respiration of bugs in water-filled vials varies between 33 and 296 pmol O2 s(-1), depending on swimming activity. The effective thickness of the boundary layer around the plastron was calculated from respiration rate, PO2 difference and plastron surface area, according to the Fick diffusion equation and verified by direct measurements with the fibre-optic probes. In stagnant water, the boundary layer is approximately 500 μm thick, which nevertheless can satisfy the demands of resting bugs, even if the PO2 of the free water decreases to half that of air saturation. Active bugs require thinner boundary layers (∼ 100 μm), which are achieved by living in moving water or by swimming. © 2015. Published by The Company of Biologists Ltd.

  12. Thermodynamic properties of adsorption and micellization of n-oktyl-β-D-glucopiranoside.

    PubMed

    Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław

    2014-02-01

    Measurements of the surface tension, density and viscosity of aqueous solutions of n-oktyl-β-D-glucopiranoside (OGP) were made at 293 K. From the obtained results the Gibbs surface excess concentration of OGP at the water-air interface and its critical micelle concentration were determined. The Gibbs surface excess concentration of OGP used in the Gu and Zhu isotherm equation allowed us to determine the Gibbs standard free energy of OGP adsorption at the water-air interface. The Gibbs standard free energy of OGP adsorption was also determined on the basis of the Langmuir, Szyszkowski, Gamboa and Olea equations as well the surface tension of "hydrophobic" part of OGP and "hydrophobic" part-water interface tension. It appeared that there is an agreement between the values of Gibbs standard free energy of OGP adsorption at the water-air interface determined by using all the above mentioned methods. It also proved that standard free energy of OGP micellization determined from CMC is consistent with that obtained on the basis of the free energy of the interactions between the "hydrophobic" part of the OPG through the water phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  14. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly

    PubMed Central

    Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404

  15. The Dolphin in the Mirror - A Familiar Face?

    NASA Astrophysics Data System (ADS)

    Dibble, Dianna Samuelson; Van Alstyne, Kaitlin Katie; Rohr, Jim; Ridgway, Sam

    2017-01-01

    We suggest how a basic physics problem becomes much richer when researchers of various disciplines converse. Our discussion explores Snell's window from the perspective of what a dolphin might see. An aperture, Snell's window, allows light to travel through the air-water interface. Outside this window, there is total reflection from under the water-air interface. Dolphins see through the aperture to follow our movements above the water's surface. When dolphins look outside the window, can they see their own reflections from under the water-air interface?

  16. Do we understand the temperature profile of air-water interface?

    NASA Astrophysics Data System (ADS)

    Solcerova, A.; van Emmerik, T. H. M.; Uittenbogaard, R.; van de Ven, F. H. M.; Van De Giesen, N.

    2017-12-01

    Lakes and reservoirs exchange energy with the atmosphere through long-wave radiation and turbulent heat fluxes. Calculation of those fluxes often depend on the surface temperature. Several recent studies used high resolution Distributed Temperature Sensing (DTS) to measure the temperature of air-water interface. We present results of three of such studies conducted on three different locations with three different climates (Ghana, Israel, The Netherland). Measurements from all presented studies show a distinct temperature drop close to the water surface during daytime. We provide several possible explanations for existence of such deviation of temperature, and discuss the plausibility of each. Explaining the measured temperature drop is crucial for a better understanding of the energy balance of lake surface, and estimation of the surface energy balance.

  17. Satellite (SWOT) and Airborne (AirSWOT) Wide-Swath Altimeters to Study the Garonne River

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Rodriguez, E.; Goutal, N.; Ricci, S.; Mognard, N.; Rogel, P.; Le Pape, E.

    2013-09-01

    The future NASA/CNES Surface Water and Ocean Topography (SWOT) satellite mission will provide global 2D maps of water elevations, water surface volume change and river discharge at an unprecedented resolution. To prepare this mission, airborne campaigns, called AirSWOT, will fly over the Garonne River (and other targets of interest) in 2014. To plan AirSWOT flights over the Garonne, 1D and 2D hydrodynamic models of the 50 km Garonne River reach between Tonneins and La Reole towns developed by the Laboratoire National d'Hydraulique et Environnement (LNHE) will be used. Models outputs will help to validate airborne measurements. After validation, AirSWOT measurements will be assimilated in the models to reduce model errors. Finally, potential algorithms to estimate discharge from AirSWOT and SWOT observations will be tested over this river reach. This paper presents the study domain, the hydrodynamic models and their use in the context of AirSWOT campaigns in France.

  18. Installation-restoration program. Phase 2. Confirmation/quantification. Stage 1 for Shaw Air Force Base, South Carolina. Final report, January 1984-October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, W.J.; Liddle, S.K.

    1986-09-01

    The primary objectives of this project were to collect and analyze groundwater, surface water, and sediment samples and to perform an initial characterization of the hydrogeochemical regime at potential contamination sites on Shaw Air Force Base near Sumter, South Carolina. This study constituted Phase II of the U.S. Air Force Installation Restoration Program (IRP). Five potential sources of groundwater pollution were studied. The evaluation primarily included the drilling of soil test borings, the installation, development, and sampling of groundwater monitoring wells, and the analyses of soil, surface water, and groundwater samples. Also used in the study were field measurements ofmore » water quality, water-level measurements site observations, published hydrogeologic data and Shaw AFB documents.« less

  19. Applying Henry`s Law to groundwater treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidgopkar, V.R.

    Air strippers are very popular equipment for mass transfer where air and water are contacted and the contaminants are transferred from water into the air phase. In a typical air-stripper arrangement, water flows from the top and air is blown from the bottom. The increase in surface area between the air and the water phases increases the removal efficiency. In packed towers, high-surface-area packing materials are used to that end. In a sieve tray tower, water flows across the tray through channels separated by baffles and air flows from the bottom, up through holes in the tray. In diffused aerators,more » air is introduced through a bubbler or a nozzle into the water stream. All these units are commercially available. Several environmental consulting and remediation engineering firms use Henry`s Law to predict the stripping performance of volatile and semi-volatile contaminants present using the above equipment. Extensive work has been done during the past few decades to determine Henry`s Law constant, H. Different procedures are reported in the literature to determine henry`s Law constant for various chemicals from the experimental data and from empirical correlations. This article discusses the reasons why so much error is observed in reported values of henry`s Law constants in the literature--the effect of various parameters such as temperature, co-solubility, etc., on H value. A modified experimental procedure to measure Henry`s Law constant is presented, then the law is applied in predicting stripping performance of various chemicals.« less

  20. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    PubMed

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Glassy-winged sharpshooter feeding does not cause air embolisms in xylem of well-watered plants.

    USDA-ARS?s Scientific Manuscript database

    Plant xylem vessels are under negative hydrostatic pressure (tension) as evapotranspiration of water from the leaf surface pulls the column of water in xylem upwards. When xylem fluid flux is under extreme tension, any puncture or breakage of the xylem vessel wall can cause formation of air embolis...

  2. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  3. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2 efflux in karst groundwater-fed reservoir was much higher than that of reservoir in non-karst area due to groundwater of DIC-rich input from karst aquifer and thermal stratification.

  4. Liquid-surface entrainment induced by shocked air stream

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2018-02-01

    Recently, we experimentally studied, in a shock tube environment, shock waves propagating over horizontal free water layers having depths of 10, 20, and 30 mm for shock wave Mach numbers M_is equal to 1.1 and 1.4. The qualitative interaction process was observed by means of high-speed visualizations, and the pressures arising in the air and in the water layer were measured and interpreted in terms of the various incident and refracted shock waves in air and water; in particular, it was concluded that the compression wave in the water is driven by the planar shock wave in the air. Additional experiments have been conducted and the novel contributions of the present technical note are quantitative results regarding the liquid-surface entrainment. At low Mach number (M_is=1.1 ), we show that the velocity of the droplets ejected into the air is independent of the water depth, unlike the wavelength of initial ripples and the angle of ejection. When the shock wave strength increases (M_is=1.4 ), the dispersion of a very thin droplet mist and a single large wave take place. We show that the thickening of the water mist and the velocity of the subsequent large wave decreases with the water-layer depth.

  5. 40 CFR 170.150 - Decontamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., water, plants, plant surfaces, and plant parts. (2) Exception. The 30-day time period established in... restricted-entry interval applies, including, but not limited to, soil, water, air, or surfaces of plants... agricultural employer shall provide workers with enough water for routine washing and emergency eyeflushing. At...

  6. 40 CFR 170.150 - Decontamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., water, plants, plant surfaces, and plant parts. (2) Exception. The 30-day time period established in... restricted-entry interval applies, including, but not limited to, soil, water, air, or surfaces of plants... agricultural employer shall provide workers with enough water for routine washing and emergency eyeflushing. At...

  7. 40 CFR 170.150 - Decontamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., water, plants, plant surfaces, and plant parts. (2) Exception. The 30-day time period established in... restricted-entry interval applies, including, but not limited to, soil, water, air, or surfaces of plants... agricultural employer shall provide workers with enough water for routine washing and emergency eyeflushing. At...

  8. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    PubMed

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  9. Using GPS radio occultations to infer the water vapor feedback

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Fetzer, Eric J.

    2016-11-01

    The air refractive index at L-band frequencies depends on the air's water vapor content and density. Exploiting this relationship, we derive for the first time a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model by using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated by using the Atmospheric Infrared Sounder and the NASA's Modern-Era Retrospective Analysis for Research and Applications data sets. Because of their high sensitivity to fractional changes in water vapor, current and future GPS RO observations show great promise in monitoring climate feedback and their trends.

  10. Janus Colloids Actively Rotating on the Surface of Water.

    PubMed

    Wang, Xiaolu; In, Martin; Blanc, Christophe; Würger, Alois; Nobili, Maurizio; Stocco, Antonio

    2017-12-05

    Biological or artificial microswimmers move performing trajectories of different kinds such as rectilinear, circular, or spiral ones. Here, we report on circular trajectories observed for active Janus colloids trapped at the air-water interface. Circular motion is due to asymmetric and nonuniform surface properties of the particles caused by fabrication. Motion persistence is enhanced by the partial wetted state of the Janus particles actively moving in two dimensions at the air-water interface. The slowing down of in-plane and out-of-plane rotational diffusions is described and discussed.

  11. Biological and Chemical Significance of Surface Microlayers in Aquatic Ecosystems

    ERIC Educational Resources Information Center

    Parker, B.; Barsom, G.

    1970-01-01

    Reviews methods of study, chemical composition, physical properties and ecology of surface microlayers in marine and fresh water habitats. Relates to problems of air and water pollution. Suggests areas for further research. (EB)

  12. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  13. Miscibility of binary monolayers at the air-water interface and interaction of protein with immobilized monolayers by surface plasmon resonance technique.

    PubMed

    Wang, Yuchun; Du, Xuezhong

    2006-07-04

    The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).

  14. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied. Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly.

  15. Improved Satellite Estimation of Near-Surface Humidity Using Vertical Water Vapor Profile Information

    NASA Astrophysics Data System (ADS)

    Tomita, H.; Hihara, T.; Kubota, M.

    2018-01-01

    Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.

  16. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.

  17. 78 FR 45871 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... components: Hydrogeologic study; Surface water sampling study; Stream biological study; Air quality survey... components: Biological survey; Biota survey; Surface water and sediment characterization; Groundwater... impacted groundwater in three water bearing zones at the Site; the unconsolidated materials zone, the upper...

  18. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  19. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  20. Acid Rain

    MedlinePlus

    ... Clean Air Status and Trends Network (CASTNET) Surface Water Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  1. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  2. Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Rezkallah, Kamiel S.

    1996-01-01

    Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.

  3. KENNEDY SPACE CENTER, FLA. - Two manatees surface for air in water on KSC. Manatees live in Florida's warm water rivers and inland springs. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

    NASA Image and Video Library

    2003-08-15

    KENNEDY SPACE CENTER, FLA. - Two manatees surface for air in water on KSC. Manatees live in Florida's warm water rivers and inland springs. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

  4. A Model for the Formation and Melting of Ice on Surface Waters.

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Wessels, H. R. A.

    1988-02-01

    Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.

  5. Effect of airborne contaminants on the wettability of supported graphene and graphite

    NASA Astrophysics Data System (ADS)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  6. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    PubMed

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checco, A.; Hofmann, T.; DiMasi, E.

    The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavitymore » geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.« less

  8. Non-Contact Ultrasonic Imaging

    DTIC Science & Technology

    2016-10-31

    difficult to measure because of the amount of sound at the difference frequency still produced in the air. Nonlinear Reflection off of a Curved Surface...separate sound generated in air from sound generated in liquid. Two incoming rays incident upon a curved surface may reflect collinearly. At a different... sound reflecting off of the air-water interface from the air, the energy density of the incident and reflected waves are around 1000x that of the

  9. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  10. 40 CFR 270.14 - Contents of part B: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... strata, surface water, or air, which may include the installation of wells, where the Director ascertains... water supplies; (iv) Mitigate effects of equipment failure and power outages; (v) Prevent undue exposure... contour interval must be sufficient to clearly show the pattern of surface water flow in the vicinity of...

  11. Influence of storage methods on the surface roughness of tissue conditioners.

    PubMed

    Hong, Guan; Li, YingAi; Maeda, Takeshi; Mizumachi, Wataru; Sadamori, Shinsuke; Hamada, Taizo; Murata, Hiroshi

    2008-03-01

    The purpose of this study was to compare the influence of three kinds of storage methods on surface roughness of tissue conditioners. Four commercial tissue conditioners (GC Soft Liner, Softone, Fictioner, and Hydro-Cast) were used in this study. Five samples of each material were stored in distilled water, air, and a denture cleanser (Polident). Mean surface roughness (R(a)) values of dental stone casts made from the tissue conditioners were measured after 0, 1, 3, 7, and 14 days of immersion using a profilometer. Significant differences in the R(a) values of the specimens were found among the three storage methods. The values of R(a) significantly increased with increase in immersion time for each storage method, except for the materials stored in air. It was found that the materials stored in air showed the most stable and lowest values of R(a). Results obtained suggested that a tissue conditioner exhibited smooth and minimal change in surface roughness with time when stored in air than in distilled water and denture cleanser.

  12. Air, water, and surface bacterial contamination in a university-hospital autopsy room.

    PubMed

    Maujean, Géraldine; Malicier, Daniel; Fanton, Laurent

    2012-03-01

    Today, little is known about the bacteriological environment of the autopsy room and its potential interest for medico-legal practices. Seven hundred fifty microbiological samples were taken from surface (n = 660), air (n = 48), and water (n = 42) to evaluate it in a French University Forensic Department. Median bacterial counts were compared before and during autopsy for air samples, and before and after autopsy for surface samples, using Wilcoxon matched pairs signed ranks test. Bacterial identification relied on traditional phenotypic methods. Bacterial counts in the air were low before autopsy, increased significantly during procedure, and seemed more linked to the number of people in the room than to an important production of aerosol-containing bacteria. Despite cleaning, human fecal flora was omnipresent on surfaces, which revealed insufficient disinfection. Bacteriological sampling is an easy way to monitor cleaning practices in postmortem rooms, but chiefly a way to improve the reliability of medico-legal proofs of infectious deaths. © 2012 American Academy of Forensic Sciences.

  13. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation

    NASA Technical Reports Server (NTRS)

    Ryan, robert E.; Underwood, Lauren W.

    2007-01-01

    More than 75 percent of the U.S. population lives in urban communities where people are exposed to levels of smog or pollution that exceed the EPA (U.S. Environmental Protection Agency) safety standards. Urban air quality presents a unique problem because of a number of complex variables, including traffic congestion, energy production, and energy consumption activities, all of which can contribute to and affect air pollution and air quality in this environment. In environmental engineering, photocatalysis is an area of research whose potential for environmental clean-up is rapidly developing popularity and success. Photocatalysis, a natural chemical process, is the acceleration of a photoreaction in the presence of a catalyst. Photocatalytic agents are activated when exposed to near UV (ultraviolet) light (320-400 nm) and water. In recent years, surfaces coated with photocatalytic materials have been extensively studied because pollutants on these surfaces will degrade when the surfaces are exposed to near UV light. Building materials, such as tiles, cement, glass, and aluminum sidings, can be coated with a thin film of a photocatalyst. These coated materials can then break down organic molecules, like air pollutants and smog precursors, into environmentally friendly compounds. These surfaces also exhibit a high affinity for water when exposed to UV light. Therefore, not only are the pollutants decomposed, but this superhydrophilic nature makes the surface self-cleaning, which helps to further increase the degradation rate by allowing rain and/or water to wash byproducts away. According to the Clean Air Act, each individual state is responsible for implementing prevention and regulatory programs to control air pollution. To operate an air quality program, states must adopt and/or develop a plan and obtain approval from the EPA. Federal approval provides a means for the EPA to maintain consistency among different state programs and ensures that they comply with the requirements of the Clean Air Act.

  14. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  15. Hybrid surface design for robust superhydrophobicity.

    PubMed

    Dash, Susmita; Alt, Marie T; Garimella, Suresh V

    2012-06-26

    Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.

  16. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  17. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  18. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  19. Definition of Free O-H Groups of Water at the Air-Water Interface.

    PubMed

    Tang, Fujie; Ohto, Tatsuhiko; Hasegawa, Taisuke; Xie, Wen Jun; Xu, Limei; Bonn, Mischa; Nagata, Yuki

    2018-01-09

    Free O-H groups of water are often found at the water-hydrophobic medium interface, e.g. for water contact with hydrophobic protein residues, or at the water-air interface. In surface-specific vibrational spectroscopic studies using sum-frequency generation (SFG) spectroscopy, free O-H groups are experimentally well characterized in the O-H stretch region by a sharp 3700 cm -1 peak. Although these free O-H groups are often defined as the O-H groups which are not hydrogen-bonded to other water molecules, a direct correlation between such non-hydrogen-bonded O-H groups and the 3700 cm -1 SFG response has been lacking. Our data show that commonly used hydrogen bond definitions do not adequately capture the free O-H groups contributing to the 3700 cm -1 peak. We thus formulate a new definition for capturing the subensemble of the surface free O-H groups using the intermolecular distance and the angle formed by the water dimer, through the comparison of the ∼3700 cm -1 SFG response and the responses from the selected free O-H groups at the HOD-air interface. Using these optimized free O-H group definitions, we infer the fraction of interfacial water molecules with free O-H groups of 28%, a vibrational lifetime of the free O-H groups of 1.3 ps, and the angle formed by the free O-H groups and the surface normal of 67° at the water-air interface. We expect that this improved free O-H group definition can be helpful in exploring the structure and dynamics of the interfacial water.

  20. Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model

    NASA Technical Reports Server (NTRS)

    Molod, Andrea

    2012-01-01

    Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.

  1. The role of size in synchronous air breathing of Hoplosternum littorale.

    PubMed

    Sloman, Katherine A; Sloman, Richard D; De Boeck, Gudrun; Scott, Graham R; Iftikar, Fathima I; Wood, Chris M; Almeida-Val, Vera M F; Val, Adalberto L

    2009-01-01

    Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.

  2. Temporal changes in VOC discharge to surface water from a fractured rock aquifer during well installation and operation, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Robertson, J.F.

    1996-01-01

    Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.

  3. Water penetration/accommodation and phase behaviour of the neutral Langmuir monolayer at the air/water interface probed with sum frequency generation vibrational spectroscopy (SFG-VS).

    PubMed

    Zhang, Zhen; Zheng, De-Sheng; Guo, Yuan; Wang, Hong-Fei

    2009-02-14

    A strong and broad hydrogen bonded O-H band around 3520 cm(-1) is observed in the insoluble monolayer of the neutral liquid crystal molecules of 4''-n-pentyl-4-p-cyanobiphenyl (5CB) and 4''-n-octyl-4-p-cyanobiphenyl (8CB) throughout the whole surface density range, but not in the 4-pentyl-4'-cyanoterphenyl (5CT) monolayer, at the air/water interface. This novel spectral feature suggests the existence of an oriented water cluster species which has penetrated or accommodated into the Langmuir monolayer of the 8CB and 5CB molecules. This finding provided a molecular level mechanism for the stark difference in the phase behaviour between the CB and CT insoluble Langmuir monolayers at the air/water interface. It also calls for attention to the details of the specific water-surface interaction in mediating the structure and the phase behaviour of the molecular assemblies at the heterogeneous aqueous interfaces.

  4. Keeping warm with fur in cold water: entrainment of air in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette

    2015-11-01

    Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.

  5. Effect of water depth and water velocity upon the surfacing frequency of the bimodally respiring freshwater turtle, Rheodytes leukops.

    PubMed

    Gordos, Matthew A; Franklin, Craig E; Limpus, Colin J

    2004-08-01

    This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.

  6. Water Resources Investigations at Edwards Air Force Base since 1988

    USGS Publications Warehouse

    Sneed, Michelle; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Edwards Air Force Base (EAFB) in southern California (fig. 1) has relied on ground water to meet its water-supply needs. The extraction of ground water has led to two major problems that can directly affect the mission of EAFB: declining water levels (more than 120 ft since the 1920s) and land subsidence, a gradual downward movement of the land surface (more than 4 ft since the late 1920s). As water levels decline, this valuable resource becomes depleted, thus requiring mitigating measures. Land subsidence has caused cracked (fissured) runways and accelerated erosion on Rogers lakebed. In 1988, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, began investigations of the effects of declining water levels and land subsidence at EAFB and possible mitigation measures, such as the injection of imported surface water into the ground-water system. The cooperative investigations included data collection and analyses, numerical simulations of ground-water flow and land subsidence, and development of a preliminary simulation-optimization model. The results of these investigations indicate that the injection of imported water may help to control land subsidence; however, the potential ground-water-quality impacts are unknown.

  7. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  8. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate in the top surface region is momentarily faster than the humidification rate (due to the initial roughness of the newly formed surface); (3) after some time, the top layer itself becomes humidified through diffusion of water from the subphase, and thus it becomes non-glassy, leading to the relaxation of the applied compressive stress.

  9. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  10. Interaction of Strong Turbulence With Free Surfaces

    NASA Astrophysics Data System (ADS)

    Dalrymple, Robert A.

    Spray from a nozzle, spilling breakers, and “rooster tails” from speeding boats are all examples of a turbulent flow with a free surface. In many cases like these, the free surface is difficult to discern as the volume of air in the fluid can exceed that of the water.In traditional studies, the free surface is simply defined as a continuous surface separating the fluid from air. The pressure at the surface is assumed to be atmospheric pressure and the fluid comprising the surface moves with the surface. While these conditions are sufficient for non-turbulent flows, such as nonbreaking water waves, and lead to the (albeit non-linear) dynamic and kinematic free surface boundary conditions that serve to provide sufficient conditions to determine the surface, they are not valid descriptions for a bubbly free surface in a highly turbulent regime, such as the roller in front of a spilling breaker or the propeller wash behind a ship.

  11. Yatesville Lake, Big Sandy River Basin, Blaine Creek, Kentucky. Foundation Report. Construction of Dam and Appurtenant Works, Phase 2. Volume 1

    DTIC Science & Technology

    1990-09-01

    and grouting were performed from the rock surface using expandable-air packers . Grouting was performed by injecting, into a hole, a neat grout ( cement ...Water & cement type I & II Mix: ........................... 6:1 to 0.75:1 Connection: .................... Air packer , close to surface...pressure tested then backfilled. The holes were hydraulic-pressure tested with a single air- expanding packer near the surface at 5 psi gauge pressure. If

  12. Amplification of the electroosmotic velocity by induced charges at fluidic interfaces

    NASA Astrophysics Data System (ADS)

    Steffes, Clarissa; Baier, Tobias; Hardt, Steffen

    2010-11-01

    The performance of microfluidic devices like electroosmotic pumps is strongly limited by drag forces at the channel walls. In order to replace the standard no-slip condition at the wall with a more favorable slip condition, superhydrophobic surfaces are employed. In the Cassie-Baxter state, air is entrapped in the surface cavities, so that a significant fraction of water-air interfaces at which slip does occur is provided. However, such surfaces do not enhance electroosmotic flow. Since no net charge accumulates at the water-air interfaces, the driving force is reduced, and no flow enhancement is obtained. We consider electrodes incorporated in the superhydrophobic structure to induce charges at these interfaces, thereby increasing the driving force. A theoretical model is set up, yielding an understanding of the influence of the surface morphology on the flow, which serves as a basis for ongoing experimental work. While a considerable enhancement of the electroosmotic velocity is already expected for standard superhydrophobic surfaces, greater amplifications of one order of magnitude may be achieved by substituting the air in the surface cavities by oil, reducing the risk for electric breakdown or transition to the unfavorable Wenzel state.

  13. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  14. Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro

    2014-03-01

    Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.

  15. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    PubMed

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  16. Chemical effect on ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  17. Carbon speciation at the air-sea interface during rain

    NASA Astrophysics Data System (ADS)

    McGillis, Wade; Hsueh, Diana; Takeshita, Yui; Donham, Emily; Markowitz, Michele; Turk, Daniela; Martz, Todd; Price, Nicole; Langdon, Chris; Najjar, Raymond; Herrmann, Maria; Sutton, Adrienne; Loose, Brice; Paine, Julia; Zappa, Christopher

    2015-04-01

    This investigation demonstrates the surface ocean dilution during rain events on the ocean and quantifies the lowering of surface pCO2 affecting the air-sea exchange of carbon dioxide. Surface salinity was measured during rain events in Puerto Rico, the Florida Keys, East Coast USA, Panama, and the Palmyra Atoll. End-member analysis is used to determine the subsequent surface ocean carbonate speciation. Surface ocean carbonate chemistry was measured during rain events to verify any approximations made. The physical processes during rain (cold, fresh water intrusion and buoyancy, surface waves and shear, microscale mixing) are described. The role of rain on surface mixing, biogeochemistry, and air-sea gas exchange will be discussed.

  18. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  19. 76 FR 27610 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ..., freezers, water heaters, dishwashers, trash compactors, air conditioners, ovens, microwave ovens, and other... appliance product. A large appliance product is also defined as any organic surface-coated metal range, oven, microwave, refrigerator, freezer, washer, dryer, dishwasher, water heater, or trash compactor manufactured...

  20. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  1. Surfing with capillary waves: a survival strategy for trapped bees

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Gharib, Morteza

    2017-11-01

    Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  2. Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, Elena; Favrel, Arthur; Andolfatto, Loïc; Avellan, François

    2018-06-01

    Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air-water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m = 1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.

  3. Superhydrophilic Coatings for Improved Sonobuoy Performance

    DTIC Science & Technology

    2011-06-13

    surface evenly with water. This effect is the exact opposite of superhydrophobicity . [0006] Superhydrophobicity has the requirement of a hydrophobic...the surface roughness is not critical; but to make a superhydrophobic surface then the correct degree of surface roughness is crucial. [0007] The...elastomer that is neither superhydrophilic nor superhydrophobic . Because of this coating, as soon as the device makes contact with the water, air

  4. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ionization state of L-phenylalanine at the air-water interface.

    PubMed

    Griffith, Elizabeth C; Vaida, Veronica

    2013-01-16

    The ionization state of organic molecules at the air-water interface and the related problem of the surface pH of water have significant consequences on the catalytic role of the surface in chemical reactions and are currently areas of intense research and controversy. In this work, infrared reflection-absorption spectroscopy (IRRAS) is used to identify changes in the ionization state of L-phenylalanine in the surface region versus the bulk aqueous solution. L-phenylalanine has the unique advantage of possessing two different hydrophilic groups, a carboxylic acid and an amine base, which can deprotonate and protonate respectively depending on the ionic environment they experience at the water surface. In this work, the polar group vibrations in the surface region are identified spectroscopically in varying bulk pH solutions, and are subsequently compared with the ionization state of the polar groups of molecules residing in the bulk environment. The polar groups of L-phenylalanine at the surface transition to their deprotonated state at bulk pH values lower than the molecules residing in the bulk, indicating a decrease in their pK(a) at the surface, and implying an enhanced hydroxide ion concentration in the surface region relative to the bulk.

  6. Estimating changes in heat energy stored within a column of wetland surface water and factors controlling their importance in the surface energy budget

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Sumner, David M.; Castillo, Adrian

    2005-01-01

    Changes in heat energy stored within a column of wetland surface water can be a considerable component of the surface energy budget, an attribute that is demonstrated by comparing changes in stored heat energy to net radiation at seven sites in the wetland areas of southern Florida, including the Everglades. The magnitude of changes in stored heat energy approached the magnitude of net radiation more often during the winter dry season than during the summer wet season. Furthermore, the magnitude of changes in stored heat energy in wetland surface water generally decreased as surface energy budgets were upscaled temporally. A new method was developed to estimate changes in stored heat energy that overcomes an important data limitation, namely, the limited spatial and temporal availability of water temperature measurements. The new method is instead based on readily available air temperature measurements and relies on the convolution of air temperature changes with a regression‐defined transfer function to estimate changes in water temperature. The convolution‐computed water temperature changes are used with water depths and heat capacity to estimate changes in stored heat energy within the Everglades wetland areas. These results likely can be adapted to other humid subtropical wetlands characterized by open water, saw grass, and rush vegetation type communities.

  7. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    NASA Astrophysics Data System (ADS)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  8. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  9. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less

  10. Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong

    2017-01-01

    Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  11. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, J.; Feingold, G.; Wang, Hailong

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.« less

  12. Spray Irrigation Effects on Surface-Layer Stability in an Experimental Citrus Orchard during Winter Freezes.

    NASA Astrophysics Data System (ADS)

    Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David

    1997-02-01

    Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops against frost damage.

  13. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  14. Evaluation of the Effectiveness of Wet Blast Cleaning Methods of Surface Preparation

    DTIC Science & Technology

    1985-06-01

    for Air Abrasive Wet Blast: Complete System Water Abrasive Mixing Chamber in Slurry Blast Unit Schematic of unit Control Unit Slurry Blast — Air/Water...this discussion we present some general. user guidelines regarding what to look for in con- sidering the use or purchase of wet blasting equipment...These units use compressed air as the medium to propel the eroding material. They differ from air abrasive wet blast units in that the abrasive is mixed

  15. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  16. Experimental forensic and bioanthropological aspects of soft tissue taphonomy: 1. Factors influencing postmortem tissue desiccation rate.

    PubMed

    Aturaliya, S; Lukasewycz, A

    1999-09-01

    Euthanized rats' carcasses were exposed in an environmental chamber to multiple variables including: (1) position, (2) enveloping clothing, and (3) soil interment in an effort to determine the individual variables' effect on postmortem rate of body and visceral organ water loss. Results indicated that body water loss was enhanced by a horizontal position versus vertical, probably because of wider spread of bacteria- and enzyme-laden abdominal fluid secondary to diaphragm digestion with consequent greater tissue digestion and liquefaction. Clothing also accelerated the desiccation rate. Desiccation was about equally as effective by soil interment as by air exposure, though simulating windy conditions by tripling the air flow rate resulted in much more rapid desiccation in the air-exposed specimen. These studies suggest that the single most important factor influencing postmortem body water loss rate is the environment at the skin surface that acts to enhance or impair water removal from the skin surface and thus influences the water concentration gradient between the skin and underlying deeper tissues.

  17. [Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira

    2014-01-01

    To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.

  18. Hydrodynamic water impact. [Apollo spacecraft waterlanding

    NASA Technical Reports Server (NTRS)

    Kettleborough, C. F.

    1972-01-01

    The hydrodynamic impact of a falling body upon a viscous incompressible fluid was investigated by numerically solving the equations of motion. Initially the mathematical model simulated the axisymmetric impact of a rigid right circular cylinder upon the initially quiescent free surface of a fluid. A compressible air layer exists between the falling cylinder and the liquid free surface. The mathematical model was developed by applying the Navier-Stokes equations to the incompressible air layer and the incompressible fluid. Assuming the flow to be one dimensional within the air layer, the average velocity, pressure and density distributions were calculated. The liquid free surface was allowed to deform as the air pressure acting on it increases. For the liquid the normalized equations were expressed in two-dimensional cylindrical coordinates. The governing equations for the air layer and the liquid were expressed in finite difference form and solved numerically. For the liquid a modified version of the Marker-and-Cell method was used. The mathematical model has been reexamined and a new approach has recently been initiated. Essentially this consists of examining the impact of an inclined plate onto a quiesent water surface with the equations now formulated in cartesian coordinates.

  19. Fusion of vesicles with the air-water interface: the influence of polar head group, salt concentration, and vesicle size.

    PubMed

    Gugliotti, M; Chaimovich, H; Politi, M J

    2000-02-15

    Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.

  20. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...

  1. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...

  2. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...

  3. Improving the efficiency of an Er:YAG laser on enamel and dentin.

    PubMed

    Rizcalla, Nicolas; Bader, Carl; Bortolotto, Tissiana; Krejci, Ivo

    2012-02-01

    To evaluate the influence of air pressure, water flow rate, and pulse frequency on the removal speed of enamel and dentin as well as on their surface morphology. Twenty-four bovine incisors were horizontally cut in slices. Each sample was mounted on an experimental assembly, allowing precise orientation. Eighteen cavities were prepared, nine in enamel and nine in dentin. Specific parameters for frequency, water flow rate, and air pressure were applied for each experimental group. Three groups were randomly formed according to the air pressure settings. Cavity depth was measured using a digital micrometer gauge, and surface morphology was checked by means of scanning electron microscopy. Data was analyzed with ANOVA and Duncan post hoc test. Irradiation at 25 Hz for enamel and 30 Hz for dentin provided the best ablation rates within this study, but efficiency decreased if the frequency was raised further. Greater tissue ablation was found with water flow rate set to low and dropped with higher values. Air pressure was found to have an interaction with the other settings, since ablation rates varied with different air pressure values. Fine-tuning of all parameters to get a good ablation rate with minimum surface damage seems to be key in achieving optimal efficiency for cavity preparation with an Er:YAG laser.

  4. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wire, G. L.; Mills, W. J.

    2002-08-01

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventionalmore » deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.« less

  5. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and amore » silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.« less

  6. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  7. Improvement of water management in a vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Masdar, M. Shahbudin; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O , and methanol, PCH3OH , at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.

  8. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space filling mat on the surface which removes a significant amount of the surface water. The water adjacent to the hydrophobic solid surface is of high energy due to incomplete hydrogen bonding; its removal significantly lowers the tension and reduces the contact angle. Hydrocarbon surfactants cannot remove as much surface water because their large polar groups prevent the chains from cohering lengthwise. In our report last year we presented a poster describing the preparation of model very hydrophobic surfaces which are homogeneous and atomically smooth using self assembled monolayers of octadecyl trichlorosilane (OTS). In this poster we will use these surfaces as test substrates in developing hydrocarbon based surfactant systems which superspread. We studied a binary hydrocarbon surfactant systems consisting of a very soluble large polar group polyethylene oxide surfactant (C12E6 (CH3(CH2)11(OCH2CH2)6OH) and a long chain alcohol dodecanol. By mixing the alcohol with this soluble surfactant we have found that the contact angle of the mixed system on our test hydrophobic surfaces is very low. We hypothesize that the alcohol fills in the gaps between adjacent adsorbed chains of the large polar group surfactant. This filling in removes the surface water and effects the decrease in contact angle. We confirm this hypothesis by demonstrating that at the air/water interface the mixed layer forms condensed phases while the soluble large polar group surfactant by itself does not. We present drop impact experiments which demonstrate that the dodecanol/C12E6 mixture is effective in causing impacting drops to spread on the very hydrophobic model OTS surfaces.

  9. Local feedback mechanisms of the shallow water region around the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun

    2014-10-01

    The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.

  10. Seasonal and intraseasonal variations in evaporation and surface energy budget from eddy covariance measurements over an open water surface in Mississippi, U.S.A.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, Y.; Williams, Q. L.; Jiang, H.; Sheng, L.

    2008-12-01

    Understanding seasonal and intraseasonal variations in evaporation over lake/reservoir is important for water resource management as well as predicting variations in hydrology as a result of climate change. Since August of 2007, we have conducted a long-term eddy covariance measurement of evaporation and the surface energy budget over Ross Barnett Reservoir (32o26'N, 90o02'W) in Mississippi, USA. The fetch for eddy covariance system exceeds 2 km in all directions and the water depth is about 4 m around the flux tower. The tower with its height of 4 m stands over a stationary wood platform with its size of 3 m × 3 m and height of about 1 m above the water surface. Along with sensible and latent heat fluxes, microclimate data are also measured, including wind speed, wind direction, relative humidity, solar radiation, net radiation, air temperature at four levels, water surface temperature, and water temperature at eight depths down to about 4 m. Mississippi is subject to frequent influences of different synoptic weather systems in a year around. Incursions of these different systems bring in air masses with different properties in temperature and moisture. Cold fronts, for example, carry them with cold and dry air from north while warm fronts with warm and moist air. Our results indicate that synoptic weather variations play an important role in controlling evaporations and the surface energy budget. For example, daily H and LE (i.e., evaporation) during the passages of cold fronts are around 2-4 times those of normal days and these cold front events lead to an increase in the seasonal H by approximately 420 and LE by 160%. However, the warm weather systems suppress largely the turbulent exchanges of sensible and latent heat, leading to very small evaporation and sensible heat fluxes (even negative). These results imply that future potential changes in cold front activities (intensity, frequency, and duration) as a result of climate change may lead to substantial shifts in regional energy budget and hydrological balance in the southern regions with an abundance of open water bodies (e.g., lakes, reservoirs, swamps etc). Using these datasets, the daytime and nighttime evaporation rates are also analyzed and nighttime evaporative water losses are substantial, contributing a significant portion to the total evaporative water loss.

  11. Carbon Dioxide Removal from Air using Seafloor Peridotite

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Brandt, A. R.; Benson, S. M.

    2016-12-01

    We describe a method for Carbon Dioxide Removal from Air (CDR) using CO2 uptake via mineral carbonation, about half the cost of that proposed by Kelemen & Matter [1,2]. Reaction of CO2-bearing fluids and gases with peridotite rapidly forms inert, non-toxic carbonate minerals. In proposed methods for combined capture and storage of ambient CO2 via reaction of seawater or ground water with peridotite [1-5], return of depleted water to the surface draws down CO2 from air. Because they use available chemical and thermal energy that drive spontaneous natural reactions, they may be the least expensive methods for capture of CO2 from air. We focus on subsurface CO2 uptake during flow of surface water through fractured peridotite. Previously [1-3], we envisioned a design similar to enhanced geothermal systems (EGS), involving two large diameter boreholes, subject to the challenges of achieving rapid, efficient return flow that limit the success of EGS. Recent discussions yielded a less expensive, more robust design: A single well produces ambient, CO2-depleted pore water from seafloor peridotite. Such water has low carbon and high pH [6,7,8]. Where such waters are delivered to the surface, observations reveal rapid CO2 uptake from air [1,3,8-10]. Delivery to the sea surface would also reduce local acidification. Thermal buoyancy and pumps powered by wave and tidal energy would bring warm formation water from wells to the surface through conduits surrounded by colder seawater. Recharge would be via flow in natural or enhanced fracture networks in unconfined submarine aquifers. This method could be tested and scaled-up in coastal, sub-seafloor peridotite with onshore drilling off Oman, New Caledonia and Papua New Guinea, Spain, Morocco, USA, etc. It is possible to achieve much larger scale. Giant volumes of peridotite are exposed on the seafloor along slow-spreading mid-ocean ridges [3]. Robotic drills could install wells that deliver CO2-depleted water through fabric tubes to the sea surface. Does anyone know James Cameron's phone number? [1] Kelemen & Matter PNAS 08 [2] Kelemen & Matter AGU Fall 14 [3] Kelemen et al AREPS 11 [4] Wilson et al IJGHGC 14 [5] Schuiling & Krijgsman Climate Change 06 [6] Barnes & O'Neil GSA Bull 69 [7] Kelley et al Science 01 [8] Paukert et al Chem Geol 12 [9] Mervine et al GCA 13 [10] Mervine et al Chem Geol 15

  12. REMEDIATION OF MTBE FROM DRINKING WATER: AIR STRIPPING FOLLOWED BY OFF-GAS ADSORPTION

    EPA Science Inventory

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-ga...

  13. Contraction of an air disk caught between two different liquids

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Thoroddsen, S. T.

    2013-12-01

    When a drop impacts a pool of liquid it entraps a thin disk of air under its center. This disk contracts rapidly into a bubble to minimize surface energy. Herein we use ultra-high-speed imaging to measure the contraction speed of this disk when the drop and pool are of different liquids. For miscible liquids the contraction rate is governed by the weaker of the two surface tensions. Some undulations are observed on the edge of the disk for a water drop impacting a pool of water, but not on a pool of lower surface tension. Similar results are observed for a pair of immiscible liquids.

  14. Coniferyl alcohol reactivity at the air/water interface.

    PubMed

    Cathala, Bernard; Aguié-Béghin, Véronique; Douillard, Roger

    2004-01-01

    In order to investigate the sensitivity of the lignin monomer coupling reactions to the environment physicochemical conditions, coniferyl alcohol (CA) was polymerised at the air/water interface. Characterisation of the interface during the reaction by surface pressure measurement and ellipsometry demonstrates that the reaction occurs near or at the interface. Coupling products were analysed by HPLC and compared to reaction products obtained in the case of polymerisation in solution. Relative proportions of beta-beta and beta-O-4 dehydrodimers were found to increase in air/water interface experiment.

  15. A comparative study on laser induced shock cleaning of radioactive contaminants in air and water

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.

    2018-03-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.

  16. Performance of a water suction system using hydrophilic fibrous cloth under low gravity and microgravity in parabolic flight.

    PubMed

    Tani, A; Saito, T; Kitaya, Y; Takahashi, H; Goto, E

    2000-06-01

    For suction of water from a water supply vessel including both water and air under microgravity and g-jitter conditions, a water suction system using hydrophilic fibrous cloth was developed and its performance was evaluated at 0.01-0.02 g-realized for 20 s by parabolic flight in an aircraft. Vessels used for the experiment were glass flasks and had a suction port for suction filtration. A piece of hydrophilic fibrous cloth was arranged along the inner surface of the vessels and the end was fixed to the suction port of the vessels. In vessel without hydrophilic cloths and containing 220 mL of water, the water did not move more than 5 mm along the inner surface and did not reach the suction port under low gravity. When hydrophilic cloths were used, on the other hand, water gathered onto the cloth surface, moved up along the cloth and reached the suction port under low gravity. The amount of water sucked from vessels varied with the amount of water in the vessel and the sectional area of hydrophilic cloths. When the vessels including both water and air were flown during parabolic flight (10(-4) g), water in the vessel moved along the cloth and a water film was formed on the cloth. These results indicated that it is possible to suck water using the fibrous cloth suction system under low gravity and microgravity conditions. Under low gravity conditions, it was difficult to suck water only. However, it is not necessary to separate water from air when the system is used for supplying water to plant root medium consisting of both liquid and gas phases.

  17. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System.

    PubMed

    Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S

    2016-12-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  18. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    NASA Astrophysics Data System (ADS)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  19. Air-sea interaction and remote sensing

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1992-01-01

    The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the air-sea exchange processes and the sea state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared sea surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface fluxes (of momentum, sensible heat, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized.

  20. Flying fish accelerate at 5 G to leap from the water surface

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David

    2013-11-01

    Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.

  1. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  2. On the sloshing free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, E.; Andolfatto, L.; Avellan, F.

    2017-04-01

    Hydropower plants may be required to operate in synchronous condenser mode in order to supply reactive power to the grid for compensating the fluctuations introduced by the intermittent renewable energies such wind and solar. When operating in this mode, the tail water in the Francis turbine or pump-turbine is depressed below the runner by injecting pressurized air in order to spin in air to reduce the power consumption. Many air-water interaction phenomena occur in the machine causing air losses and a consequent power consumption to recover the air lost. In this paper, the experimental investigation of the sloshing motion in the cone of a dewatered Francis turbine performed by image visualization and pressure measurements is presented. The developed image post processing method for identifying the amplitude and frequency of the oscillation of the free surface is described and the results obtained are illustrated and discussed.

  3. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

    PubMed

    Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei

    2010-03-16

    Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.

  4. Tritium behavior on a cultivated plot in the 1994 chronic HT release experiment at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, H.; Yokoyama, S.; Kinouchi, N.

    1995-10-01

    The behavior of HT and HTO in air and surface soil has been studied extensively in the chronic HT release experiment carried out at Chalk River during the summer of 1994. HTO concentrations in air moisture and soil water collected in a cultivated plot showed similar time-variations, increasing rapidly during the first and second days and becoming gradual after the first 3-4 days. The air HTO concentration decreased during and following rainfall but recovered within a day. The rainfall reduced the HTO concentrations in ridge soil water but little in furrows. Time histories of HTO concentrations in air moisture andmore » soil water suggest that the system was near steady-state within a continuous HT release period of 12 days, in spite of the presence of rain during the period. The air HTO concentrations on clear days showed diurnal cycles that were higher during daytime than at night. The experimental field had a very complex soil regime with respect to HT deposits. The deposits to soil surface varied depending on soil conditions. 12 refs., 5 figs.« less

  5. 43 CFR 3430.4-4 - Environmental costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...

  6. 43 CFR 3430.4-4 - Environmental costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...

  7. 43 CFR 3430.4-4 - Environmental costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...

  8. 43 CFR 3430.4-4 - Environmental costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and analyzing baseline data on surface water quality and quantity (collecting and analyzing samples...). (2) Groundwater—costs of collecting and analyzing baseline data on groundwater quality and quantity... analyzing baseline air quality data (purchasing rain, air direction, and wind guages and air samplers and...

  9. Let’s not forget the critical role of surface tension in xylem water relations

    Treesearch

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  10. Fabricating Superhydrophobic and Superoleophobic Surfaces with Multiscale Roughness Using Airbrush and Electrospray

    NASA Astrophysics Data System (ADS)

    AL-Milaji, Karam N.

    Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag reduction, anti-icing, anti-fogging, energy conservation, noise reduction, and self-cleaning. In fact, the same concept could be applied in designing and producing surfaces that repel organic contaminations (e.g. low surface tension liquids). However, superoleophobic surfaces are more challenging to fabricate than superhydrophobic surfaces since the combination of multiscale roughness with re-entrant or overhang structure and surface chemistry must be provided. In this study, simple, cost-effective and potentially scalable techniques, i.e., airbrush and electrospray, were employed for the sake of making superhydrophobic and superoleophobic coatings with random and patterned multiscale surface roughness. Different types of silicon dioxide were utilized in this work to in order to study and to characterize the effect of surface morphology and surface roughness on surface wettability. The experimental findings indicated that super liquid repellent surfaces with high apparent contact angles and extremely low sliding angles were successfully fabricated by combining re-entrant structure, multiscale surface roughness, and low surface energy obtained from chemically treating the fabricated surfaces. In addition to that, the experimental observations regarding producing textured surfaces in mask-assisted electrospray were further validated by simulating the actual working conditions and geometries using COMSOL Multiphysics.

  11. The Water music of Vanuatu

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd; Hurd, Randy; Belden, Jesse; Speirs, Nathan; Merritt, Andrew; Allen, John

    2017-11-01

    Female musicians from the northern islands of Vanuatu (within larger Polynesia) use the water surface as an instrument to create a variety of unique sounds. Water music is often made by a line of performers standing side by side, waist deep in clear island waters. Accompanied by singing, the women work in unison exhibiting several percussive techniques, which include striking the water surface and throwing handfuls of water which scatter into droplets before impacting the surface. Each interaction produces a unique acoustic response corresponding to the air-water-hand interaction. We highlight the connection between water interaction, cavity shape and the resulting sound which was discovered by these people through their own experimentation.

  12. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for one of the four trajectories and stable for the other three trajectories. Two of three transects carried out under stable conditions are complicated because, as revealed by back-trajectory analysis, different air masses were sampled at each station, and, for one of these transects, the air masses spent significant portions of time over land. Analyses of legacy pesticide concentrations carried out to date suggest that under stable and unstable conditions, fluxes were out of the lake. We present and compare micrometeorological measurements and two-film estimates of fluxes of legacy pesticides and PCBs.

  13. Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell's window of the flat water surface.

    PubMed

    Horváth, G; Varjú, D

    1995-06-01

    The grass shrimp (Palaemonetes vulgaris) orients itself by means of the polarization pattern of the sky visible through Snell's window of the water surface. The celestial polarization pattern viewed from water is distorted and modified because of refraction and repolarization of skylight at the air-water interface. This work provides a quantitative account of the repolarization of skylight transmitted through a flat water surface. The degree and direction of linear polarization, the transmissivity and the shape of the refraction-polarization oval are calculated at the air-water interface as functions of the polarization characteristics and the incident angle of partially linearly polarized incoming light. Two-dimensional patterns of linear polarization ellipses and of the degree and direction of polarization of skylight are presented for different zenith distances of the sun. The corresponding underwater refraction-polarization patterns are computed. Transmissivity patterns of a flat water surface are calculated for unpolarized light of an overcast sky and for partially polarized light of clear skies as a function of the zenith distance of the sun. The role of these refraction-polarization patterns in orientation and polarization vision of the grass shrimp (P. vulgaris) and rainbow trout (Oncorhyncus mykiss) is reviewed. The effects of cloud cover, surface waves and water turbidity on the refraction-polarization patterns are briefly discussed.

  14. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development of a Model to Correct Multi-View Angle above Water Measurements for the Analysis of the Bidirectional Reflectance of Coral and Other Reef Substrates

    NASA Astrophysics Data System (ADS)

    Miller, I.; Forster, B. C.; Laffan, S. W.

    2012-07-01

    Spectral reflectance characteristics of substrates in a coral reef environment are often measured in the field by viewing a substrate at nadir. However, viewing a substrate from multiple angles would likely result in different spectral characteristics for most coral reef substrates and provide valuable information on structural properties. To understand the relationship between the morphology of a substrate and its spectral response it is necessary to correct the observed above-water radiance for the effects of atmosphere and water attenuation, at a number of view and azimuth angles. In this way the actual surface reflectance can be determined. This research examines the air-water surface interaction for two hypothetical atmospheric conditions (clear Rayleigh scattering and totally cloudcovered) and the global irradiance reaching the benthic surface. It accounts for both water scattering and absorption, with simplifications for shallow water conditions, as well as the additive effect of background reflectance being reflected at the water-air surface at angles greater than the critical refraction angle (~48°). A model was developed to correct measured above-water radiance along the refracted view angle for its decrease due to path attenuation and the "n squared law of radiance" and the additive surface reflectance. This allows bidirectional benthic surface reflectance and nadir-normalised reflectance to be determined. These theoretical models were adapted to incorporate above-water measures relative to a standard, diffuse, white reference panel. The derived spectral signatures of a number of coral and non-coral benthic surfaces compared well with other published results, and the signatures and nadir normalised reflectance of the corals and other benthic surface classes indicate good class separation.

  16. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial variability of surface ocean pCO2 to be mapped from satellite data in the southern region.

  17. Protein adsorption at the electrified air-water interface: implications on foam stability.

    PubMed

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  18. 40 CFR 98.449 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... into the atmosphere, indoor air, oceans, or surface water. Underground Injection Control permit means a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY... below, all terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of...

  19. Fact Sheet: Water Monitoring Reveals More Well Contamination

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  20. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary-layer structure in summer, the surface was often warmer than the atmosphere in autumn, regardless of surface type. Hence the autumn boundary-layer structure was more dependent on synoptic scale meteorology.

  1. Environmental monitoring at Mound: 1986 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carfagno, D.G.; Farmer, B.M.

    1987-05-11

    The local environment around Mound was monitored for tritium and plutonium-238. The results are reported for 1986. Environmental media analyzed included air, water, vegetation, foodstuffs, and sediment. The average concentrations of plutonium-238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1986 were 0.03% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1986 was 0.0005% of themore » DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1986 was 0.005% of the DOE DCG. The average incremental concentrations of plutonium-238 found during 1986 in surface and area drinking water were less than 0.00006% of the DOE DCG. The average incremental concentration of tritium in surface water was less than 0.005% of the DOE DCG. All tritium in drinking water data is compared to the US EPA Drinking Water Standard. The average concentrations in local private and municipal drinking water systems were less than 25% and 1.5%, respectively. Although no DOE DCG is available for foodstuffs, the average concentrations are a small fraction of the water DCG (0.04%). The concentrations of sediment samples obtained at offsite surface water sampling locations were extremely low and therefore represent no adverse impact to the environment. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are within 1% of the DOE standard of 100 mrem. None of these exceptions, however, had an adverse impact on the water quality of the Great Miami River or caused the river to exceed Ohio Stream Standards. 20 refs., 5 figs., 31 tabs.« less

  2. 77 FR 25872 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... air or water quality standards issued under the authority of the Clean Water Act (33 U.S.C. 1251 et seq.) or the Clean Air Act (42 U.S.C. 7401 et seq.). None of the revisions that Oklahoma proposed to... regulatory program under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). Oklahoma...

  3. 77 FR 20572 - Airworthiness Directives; BAE Systems (Operations) Limited Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... at the water trap/air drier unit of the forward discharge valve due to corrosion. This proposed AD... failure of the fuselage skin, leading to a possible sudden loss of cabin pressure. DATES: We must receive... surface anomalies (bulges and/or dents) of the fuselage skin at the water trap/air drier unit of the...

  4. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    USGS Publications Warehouse

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  5. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  6. The atmosphere can be a source of certain water soluble volatile organic compounds in urban streams

    USGS Publications Warehouse

    Kenner, Scott J.; Bender, David A.; Zogorski, John S.; ,; James F. Pankow,

    2014-01-01

    Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m- & p-xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long-term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one-half the LTMDL in water. Six compounds (chloroform, p-isopropyltoluene, methylene chloride, perchloroethene, 1,1,1-trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m- & p-xylene, methyl tert-butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.

  7. AirSWOT: A New Airborne Instrument for Hydrology

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Behar, A.; Carswell, J.; Chu, V.; Farquharson, G.; Gleason, C. J.; Hensley, S.; Minear, J. T.; Moller, D.; Pavelsky, T.; Perkovic-Martin, D.; Pitcher, L. H.; Sanchez-Barmetty, M.; Smith, L. C.; Wu, X.

    2013-12-01

    The proposed NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) Mission would provide the first global inventory of storage change in fresh water bodies and river discharge. The SWOT mission would produce elevation maps and imagery of all surface water bodies using Ka-band SAR interferometry. From these data, estimates of surface water extent, stage and slope could be derived, and, in theory, from their temporal variability, river bathymetry and Manning's roughness coefficient can also be estimated, enabling estimates of river discharge. Although significant modeling work and some empirical measurements have been used to validate the feasibility of turning SWOT observables into hydrologic measurements of storage change and discharge, no data have been collected using SWOT-like measurements. To overcome this limitation, a new airborne interferometric system, called AirSWOT, has been developed by Remote Sensing Solutions and integrated, tested, and deployed on the NASA Dryden King Air B200 by the Jet Propulsion Laboratory. As part of the validation of AirSWOT, four data collections were devoted to hydrology targets. The first hydrology target consisted of a large reach of the Sacramento River north of Sacramento, CA. The reach was imaged on consecutive days, coincident with a 1,000 cubic-feet/second release from a dam. Ground data were obtained from HOBO water level loggers and gauges deployed by the USGS. An innovative GPS drifter capable of providing centimeter-level elevation measurements and river slopes was developed by UCLA/JPL and deployed along a significant fraction of the reach. The second target was the Sacramento-San Joaquin Delta region, imaged at low and high tides during the same day. For both targets, APL-UW deployed an airborne instrument suite consisting of an along-track interferometer to measure water surface velocities, a thermal infrared camera to validate measurements of river width, and an experimental lidar system. Finally, a team from UCLA, UNC, and JPL collected in situ phenology and pressure transducer data for both sites. In this work, we use the in situ data to validate AirSWOT's ability to measure hydrology parameters. The ability to identify water bodies and estimate river width will be assessed via comparisons with the optical imagery, as well as point measurements. Elevation measurements are validated against the HOBO's, pressure transducers, and the GPS drifter. The GPS drifter also provides a unique resource for validating AirSWOT's ability to measure river slope and its changes. Finally, we use AirSWOT data to validate assumptions made by the SWOT mission regarding the radar brightness of water and land, the ability to resolve water from land, and the ability to form high-resolution images of rivers. These assumptions, which to date have only a limited empirical basis, are key for assessing SWOT's ability to meet its science goals.

  8. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  9. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  10. Surface tension dominates insect flight on fluid interfaces.

    PubMed

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  11. Signatures of Air-Wave Interactions Over a Large Lake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Bou-Zeid, Elie; Vercauteren, Nikki; Parlange, Marc

    2018-06-01

    The air-water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress-wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress-wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave-wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (κ ) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.

  12. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    PubMed

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  13. Self-assembly of short amyloidogenic peptides at the air-water interface.

    PubMed

    Chaudhary, Nitin; Nagaraj, Ramakrishnan

    2011-08-01

    Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Protein-lipid interactions at the air/water interface.

    PubMed

    Lad, Mitaben D; Birembaut, Fabrice; Frazier, Richard A; Green, Rebecca J

    2005-10-07

    Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

  15. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds

    DTIC Science & Technology

    2012-09-30

    Lagrangian methods for free - surface turbulence and wave simulation . In the far field, coupled wind and wave simulations are used to obtain wind...to conserve the mass precisely. When the wave breaks, the flow at the free surface may become very violent, air and water may be highly mixed...fluids free - surface flows that can be used to study the fundamental physics of wave breaking. The research will improve the understanding of air-sea

  16. Air-water exchange and dry deposition of polybrominated diphenyl ethers at a coastal site in Izmir Bay, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-02-01

    The air-water exchange of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired air-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net air-water exchange fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.

  17. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral-to-core tissue-temperature gradient with each device indicated that peripheral tissues insulated the core, thus slowing heat transfer. PMID:15114200

  18. Climate Responses to Changes in Land-surface Properties due to Wildfires

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hao, X.; Qu, J. J.

    2015-12-01

    Wildfires can feedback the atmosphere by impacting atmospheric radiation transfer and cloud microphysics through emitting smoke particles and the land-air heat and water fluxes through modifying land-surface properties. While the impacts through smoke particles have been extensively investigated recently, very few studies have been conducted to examine the impacts through land-surface property change. This study is to fill this gap by examining the climate responses to the changes in land-surface properties induced by several large wildfires in the United States. Satellite remote sensing tools including MODIS and Landsat are used to quantitatively evaluate the land-surface changes characterized by reduced vegetation coverage and increased albedo over long post-fire periods. Variations in air and soil temperature and moisture of the burned areas are also monitored. Climate modeling is conducted to simulate climate responses and understand the related physical processes and interactions. The preliminary results indicate noticeable changes in water and heat transfers from the ground to the atmosphere through several mechanisms. Larger albedo reduces solar radiation absorbed on the ground, leading to less energy for latent and sensible heat fluxes. With smaller vegetation coverage, water transfer from the soil to the atmosphere through transpiration is reduced. Meanwhile, the Bowen ratio becomes larger after burning and therefore more solar energy absorbed on the ground is converted into sensible heat instead of being used as latent energy for water phase change. In addition, reduced vegetation coverage reduces roughness and increases wind speed, which modify dynamic resistances to water and heat movements. As a result of the changes in the land-air heat and water fluxes, clouds and precipitation as well as other atmospheric processes are affected by wildfires.

  19. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  20. Removing Biofilms from Microstructured Titanium Ex Vivo: A Novel Approach Using Atmospheric Plasma Technology

    PubMed Central

    Rupf, Stefan; Idlibi, Ahmad Nour; Marrawi, Fuad Al; Hannig, Matthias; Schubert, Andreas; von Mueller, Lutz; Spitzer, Wolfgang; Holtmann, Henrik; Lehmann, Antje; Rueppell, Andre; Schindler, Axel

    2011-01-01

    The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 µm) were exposed to human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 µm (24 h) to 91 µm (72 h) covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease. PMID:22016784

  1. AN EXPERIMENTAL STUDY OF SHOCK WAVES RESULTING FROM THE IMPACT OF HIGH VELOCITY MISSILES ON ANIMAL TISSUES

    PubMed Central

    Harvey, E. Newton; McMillen, J. Howard

    1947-01-01

    The spark shadowgram method of studying shock waves is described. It has been used to investigate the properties of such waves produced by the impact of a high velocity missile on the surface of water. The method can be adapted for study of behavior of shock waves in tissue by placing the tissue on a water surface or immersing it in water. Spark shadowgrams then reveal waves passing from tissue to water or reflected from tissue surfaces. Reflection and transmission of shock waves from muscle, liver, stomach, and intestinal wall are compared with reflection from non-living surfaces such as gelatin gel, steel, plexiglas, cork, and air. Because of its heterogeneous structure, waves transmitted by tissue are dispersed and appear as a series of wavelets. When the accoustical impedance (density x wave velocity) of a medium is less than that in which the wave is moving, reflection will occur with inversion of the wave; i.e., a high pressure wave will become a low pressure wave. This inversion occurs at an air surface and is illustrated by shadowgrams of reflection from stomach wall, from a segment of colon filled with gas, and from air-filled rubber balloons. Bone (human skull and beef ribs) shows good reflection and some transmission of shock waves. When steel is directly hit by a missile, clearly visible elastic waves pass from metal to water, but a similar direct hit on bone does not result in elastic waves strong enough to be detected by a spark shadowgram. PMID:19871617

  2. Environmental Assessment for the Construction of a Phase I Surface Deployment and Distribution Command Transportation Command Consolidation Facility and a Phase I & II Mobility Air Force Logistics Support Center

    DTIC Science & Technology

    2006-04-01

    Interagency Working Group on Environmental Justice defines adverse as “having deleterious effects on human health or the environment that is significant...Drinking water for Scott AFB is provided by the Illinois-American Water Company and no potable water wells are located on the installation. As a result...Environment Scott Air Force Base, Illinois April 2006 Illinois-American Water Company uses the Mississippi River as its source of drinking water and

  3. America's Urban Forests: Keeping Our Cities Cool

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1997-01-01

    The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Tree canopies can reduce the urban heat island effect by dissipating the solar energy received by transpiring water from leaf surfaces which cools the air by taking "heat" from the air to evaporate the water and by shading surfaces like asphalt, roofs, and concrete parking lots which prevents initial heating and storage of heat. It is difficult to take enough temperature measurements over a large city area to characterize the surface temperature variability and quantify the temperature reduction effects of tree canopies. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville AL were performed in September 1994 and over Atlanta in May 1997. In this article we will examine the techniques of analyzing remotely sensed data for measuring the effect of tree canopies in reducing the urban heat island effect.

  4. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes

    PubMed Central

    Yohe, Stefan T.; Freedman, Jonathan D.; Falde, Eric J.; Colson, Yolonda L.; Grinstaff, Mark W.

    2014-01-01

    Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate-co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications. PMID:25309305

  5. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids.

    PubMed

    Fainerman, V B; Aksenenko, E V; Miller, R

    2017-06-01

    The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C 10 EO 8 , C n TAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of β-сasein (BCS), β-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C 10 EO 8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Π coh . This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chemical composition of natural waters of contaminated area: The case for the Imandra Lake catchment (the Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Evtyugina, Z. A.; Guseva, N. V.; Kopylova, J. G.; A, Vorobeva D.

    2016-03-01

    The study of the current chemical composition of natural waters in the eastern and western parts of the Imandra Lake catchment was performed using ion chromatography, potentiometry and inductively coupled plasma mass spectrometry. It was found that the content of trace elements in the surface water is considerably higher than that in the groundwater. The nickel and copper concentrations exceed the background levels over 19 and 2 times respectively in groundwater, and 175 and 61 times in the surface waters. These data show that the Severonikel influences negatively air and surface water.

  7. Super-hydrophobicity fundamentals: implications to biofouling prevention.

    PubMed

    Marmur, Abraham

    2006-01-01

    The theory of wetting on super-hydrophobic surfaces is presented and discussed, within the general framework of equilibrium wetting and contact angles. Emphasis is put on the implications of super-hydrophobicity to the prevention of biofouling. Two main lines of thought are discussed, viz. i) "mirror imaging" of the Lotus effect, namely designing a surface that repels biological entities by being super-hydrophilic, and ii) designing a surface that minimises the water-wetted area when submerged in water (by keeping an air film between the water and the surface), so that the suspended biological entities have a low probability of encountering the solid surface.

  8. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  9. Taiwan-China: Recent Economic, Political, and Military Developments Across the Strait, and Implications for the United States. Hearing Before The U.S.-China Economic and Security Review Commission, One Hundred Eleventh Congress, Second Session

    DTIC Science & Technology

    2010-03-18

    and ant i­air  warfare  in  t he  waters   sur rounding Taiwan.  Similar ly,   advanced  fight er   aircraft   and  int egrat ed  air   defense  syst...advanced surface combatants and submarines to increase its capabilities  for  anti­surface  and  anti­air  warfare  in  the  waters   surrounding  Taiwan...lower radar cross section than larger frigates and destroyers, are  able to operate with more flexibility in coastal  waters .  Taiwan has a valid

  10. Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface.

    PubMed

    Griffith, Elizabeth C; Perkins, Russell J; Telesford, Dana-Marie; Adams, Ellen M; Cwiklik, Lukasz; Allen, Heather C; Roeselová, Martina; Vaida, Veronica

    2015-07-23

    The interaction of L-phenylalanine with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-water interface was explored using a combination of experimental techniques and molecular dynamics (MD) simulations. By means of Langmuir trough methods and Brewster angle microscopy, L-phenylalanine was shown to significantly alter the interfacial tension and the surface domain morphology of the DPPC film. In addition, confocal microscopy was used to explore the aggregation state of L-phenylalanine in the bulk aqueous phase. Finally, MD simulations were performed to gain molecular-level information on the interactions of L-phenylalanine and DPPC at the interface. Taken together, these results show that L-phenylalanine intercalates into a DPPC film at the air-water interface, thereby affecting the surface tension, phase morphology, and ordering of the DPPC film. The results are discussed in the context of biological systems and the mechanism of diseases such as phenylketonuria.

  11. Lung collapse among aquatic reptiles and amphibians during long-term diving.

    PubMed

    Ultsch, Gordon R; Brainerd, Elizabeth L; Jackson, Donald C

    2004-09-01

    Numerous aquatic reptiles and amphibians that typically breathe both air and water can remain fully aerobic in normoxic (aerated) water by taking up oxygen from the water via extrapulmonary avenues. Nevertheless, if air access is available, these animals do breathe air, however infrequently. We suggest that such air breathing does not serve an immediate gas exchange function under these conditions, nor is it necessarily related to buoyancy requirements, but serves to keep lungs inflated that would otherwise collapse during prolonged submergence. We also suggest that lung deflation is routine in hibernating aquatic reptiles and amphibians in the northern portions of their ranges, where ice cover prevents surfacing for extended periods.

  12. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  13. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  14. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study.

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-06-22

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.

  15. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study

    PubMed Central

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-01-01

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202

  16. Experimental investigation of turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Andre, Matthieu A.; Bardet, Philippe M.

    2011-11-01

    Water jet flowing on a flat plate surrounded by quiescent air constitutes a standard case for the study of the interaction between turbulence and the liquid-air interface. This is of particular interest in the understanding of heat and mass transfers across interfaces. The structure of the surface has a great influence on the rate of the transfers which is critical for chemical processes like separation or absorption; pool-type nuclear reactor; climate modeling etc. This study focuses on high Froude (8 to 12) and Weber (3300 to 7400) numbers at which the surface exhibits small wavelength and large amplitude deformations, such as ligaments, surface break up with air entrainment and droplets projection. The experiment features a high velocity (up to 7.5 m/s) water wall jet (19.05mm thick at the nozzle exit) flowing on a flat plate (Re =105 to 1 . 5 .105). High speed movies and PLIF visualization show the evolution of the surface from smooth to 2D structures, then 3D disturbances as the turbulence arising from the wall interacts with the surface.

  17. "Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidrectional Ammonia Flux in CMAQ"

    EPA Science Inventory

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  18. Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidirectional Ammonia Flux in CMAQ

    EPA Science Inventory

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  19. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  20. Mars surface based factory. Phase 2, task 1C: Computer control of a water treatment system to support a space colony on Mars

    NASA Technical Reports Server (NTRS)

    Fuller, John; Ali, Warsame; Willis, Danette

    1989-01-01

    In a continued effort to design a surface based factory on Mars for the production of oxygen and water, a preliminary study was made of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the Martian atmosphere. Based on the initial studies, oxygen and water were determined to be the two products that could be produced economically under the Martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the Martian conditions. Even though the initial effort was the production of oxygen and water, it was found necessary to produce some diluted gases that can be mixed with the oxygen produced to constitute 'breathable' air. The conceptual design of a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use were completed. The design objective was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use.

  1. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  2. Sloshing motion dynamics of a free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François

    2016-11-01

    The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.

  3. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not seen in marine air. This study shows strong evidence suggesting the utility of applying these isotope tracers and, provides data to quantify atmospheric moisture variability in land surface models.

  4. Formation, dissolution and properties of surface nanobubbles

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Theodorakis, Panagiotis E.

    2017-02-01

    Surface nanobubbles are stable gaseous phases in liquids that form on solid substrates. While their existence has been confirmed, there are many open questions related to their formation and dissolution processes along with their structures and properties, which are difficult to investigate experimentally. To address these issues, we carried out molecular dynamics simulations based on atomistic force fields for systems comprised of water, air (N2 and O2), and a Highly Oriented Pyrolytic Graphite (HOPG) substrate. Our results provide insights into the formation/dissolution mechanisms of nanobubbles and estimates for their density, contact angle, and surface tension. We found that the formation of nanobubbles is driven by an initial nucleation process of air molecules and the subsequent coalescence of the formed air clusters. The clusters form favorably on the substrate, which provides an enhanced stability to the clusters. In contrast, nanobubbles formed in the bulk either move randomly to the substrate and spread or move to the water--air surface and pop immediately. Moreover, nanobubbles consist of a condensed gaseous phase with a surface tension smaller than that of an equivalent system under atmospheric conditions, and contact angles larger than those in the equivalent nanodroplet case. We anticipate that this study will provide useful insights into the physics of nanobubbles and will stimulate further research in the field by using all-atom simulations.

  5. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.

    PubMed

    da Cruz, André Luis; Fernandes, Marisa Narciso

    2016-12-01

    The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O 2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O 2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    NASA Astrophysics Data System (ADS)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  7. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves

    NASA Astrophysics Data System (ADS)

    Hemeda, A. A.; Gad-el-Hak, M.; Tafreshi, H. Vahedi

    2014-08-01

    While the air-water interface over superhydrophobic surfaces decorated with hierarchical micro- or nanosized geometrical features have shown improved stability under elevated pressures, their underwater longevity—-the time that it takes for the surface to transition to the Wenzel state—-has not been studied. The current work is devised to study the effects of such hierarchical features on the longevity of superhydrophobic surfaces. For the sake of simplicity, our study is limited to superhydrophobic surfaces composed of parallel grooves with side fins. The effects of fins on the critical pressure—-the pressure at which the surface starts transitioning to the Wenzel state—-and longevity are predicted using a mathematical approach based on the balance of forces across the air-water interface. Our results quantitatively demonstrate that the addition of hierarchical fins significantly improves the mechanical stability of the air-water interface, due to the high advancing contact angles that can be achieved when an interface comes in contact with the fins sharp corners. For longevity on the contrary, the hierarchical fins were only effective at hydrostatic pressures below the critical pressure of the original smooth-walled groove. Our results indicate that increasing the length of the fins decreases the critical pressure of a submerged superhydrophobic groove but increases its longevity. Increasing the thickness of the fins can improve both the critical pressure and longevity of a submerged groove. The mathematical framework presented in this paper can be used to custom-design superhydrophobic surfaces for different applications.

  8. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    USDA-ARS?s Scientific Manuscript database

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  9. RECOVERY OF SURFACE WATERS IN THE NORTHEASTERN U.S. FROM DECREASES IN ATMOSPHERIC DEPOSITION OF SULFUR

    EPA Science Inventory

    A simple mass flux model was developed to simulate the response of SO concentrations in surface waters to past and anticipated future changes in atmospheric deposition of SO . Values of bulk (or wet) SO deposition and dry deposition of S determined from measured air concentrat...

  10. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    NASA Astrophysics Data System (ADS)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  11. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  12. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2016-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project, i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  13. Simulation of Ground-Water Flow and Optimization of Withdrawals from Aquifers at the Naval Air Station Patuxent River, St. Mary's County, Maryland

    USGS Publications Warehouse

    Dieter, Cheryl A.; Fleck, William B.

    2008-01-01

    Potentiometric surfaces in the Piney Point-Nanjemoy, Aquia, and Upper Patapsco aquifers have declined from 1950 through 2000 throughout southern Maryland. In the vicinity of Lexington Park, Maryland, the potentiometric surface in the Aquia aquifer in 2000 was as much as 170 feet below sea level, approximately 150 feet lower than estimated pre-pumping levels before 1940. At the present rate, the water levels will have declined to the regulatory allowable maximum of 80 percent of available drawdown in the Aquia aquifer by about 2050. The effect of the withdrawals from these aquifers by the Naval Air Station Patuxent River and surrounding users on the declining potentiometric surface has raised concern for future availability of ground water. Growth at Naval Air Station Patuxent River may increase withdrawals, resulting in further drawdown. A ground-water-flow model, combined with optimization modeling, was used to develop withdrawal scenarios that minimize the effects (drawdown) of hypothetical future withdrawals. A three-dimensional finite-difference ground-water-flow model was developed to simulate the ground-water-flow system in the Piney Point-Nanjemoy, Aquia, and Upper Patapsco aquifers beneath the Naval Air Station Patuxent River. Transient and steady-state conditions were simulated to give water-resource managers additional tools to manage the ground-water resources. The transient simulation, representing 1900 through 2002, showed that the magnitude of withdrawal has increased over that time, causing ground-water flow to change direction in some areas. The steady-state simulation was linked to an optimization model to determine optimal solutions to hypothetical water-management scenarios. Two optimization scenarios were evaluated. The first scenario was designed to determine the optimal pumping rates for wells screened in the Aquia aquifer within three supply groups to meet a 25-percent increase in withdrawal demands, while minimizing the drawdown at a control location. The resulting optimal solution showed that pumping six wells above the rate required for maintenance produced the least amount of drawdown in the local potentiometric surface. The second hypothetical scenario was designed to determine the optimal location for an additional well in the Aquia aquifer in the northeastern part of the main air station. The additional well was needed to meet an increase in withdrawal of 43,000 cubic feet per day. The optimization model determined the optimal location for the new well, out of a possible 10 locations, while minimizing drawdown at control nodes located outside the western boundary of the main air station. The optimal location is about 1,500 feet to the east-northeast of the existing well.

  14. Mercury exchange at the air-water-soil interface: an overview of methods.

    PubMed

    Fang, Fengman; Wang, Qichao; Liu, Ruhai

    2002-06-12

    An attempt is made to assess the present knowledge about the methods of determining mercury (Hg) exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water) are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  15. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  16. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  17. Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.

    PubMed

    Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A

    2009-09-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.

  18. Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air-water interface studied by tensiometry, ellipsometry, and surface dilational rheology.

    PubMed

    Alahverdjieva, V S; Grigoriev, D O; Fainerman, V B; Aksenenko, E V; Miller, R; Möhwald, H

    2008-02-21

    The competitive adsorption at the air-water interface from mixed adsorption layers of hen egg-white lysozyme with a non-ionic surfactant (C10DMPO) was studied and compared to the mixture with an ionic surfactant (SDS) using bubble and drop shape analysis tensiometry, ellipsometry, and surface dilational rheology. The set of equilibrium and kinetic data of the mixed solutions is described by a thermodynamic model developed recently. The theoretical description of the mixed system is based on the model parameters for the individual components.

  19. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  20. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  1. Designing Energy-Efficient Heat Exchangers--- Creating Micro-Channels on the Aluminum Fin Surface

    NASA Astrophysics Data System (ADS)

    Ying, Jia; Sommers, Andrew; Eid, Khalid

    2010-03-01

    In this research, a method for patterning micro-channels on aluminum surfaces is described for the purpose of exploiting those features to affect the surface wettability. Minimizing water retention on aluminum is important in the design of energy-efficient heat exchangers because water retention can deteriorate the performance of such devices. It increases the air-side pressure drop and can decrease the sensible heat transfer coefficient thereby increasing energy consumption and contributing to higher pollution levels in the environment. Photolithography is used to create the micro-scale channels and a hydrophobic polymer is used to reduce the surface energy of the aluminum plates. Droplets are both injected on the surface using a micro-syringe and condensed on the surface using an environmentally-controlled chamber. A ram'e-hart goniometer is used to determine the advancing and receding contact angles of water droplets on these modified surfaces, and a tilt-table assembly is used to measure the critical inclination angle for sliding. Our results show that droplets placed on these patterned surfaces not only have significantly lower critical inclination angles for sliding but are easier to remove from the surface at low air flow rates. Efforts to model the onset of droplet movement on these surfaces using a simple force balance relationship are currently underway.

  2. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  3. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    PubMed Central

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-01-01

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high. PMID:28793583

  4. Data Assimilation of AirSWOT and Synthetically Derived SWOT Observations of Water Surface Elevation in a Multichannel River

    NASA Astrophysics Data System (ADS)

    Altenau, E. H.; Pavelsky, T.; Andreadis, K.; Bates, P. D.; Neal, J. C.

    2017-12-01

    Multichannel rivers continue to be challenging features to quantify, especially at regional and global scales, which is problematic because accurate representations of such environments are needed to properly monitor the earth's water cycle as it adjusts to climate change. It has been demonstrated that higher-complexity, 2D models outperform lower-complexity, 1D models in simulating multichannel river hydraulics at regional scales due to the inclusion of the channel network's connectivity. However, new remote sensing measurements from the future Surface Water and Ocean Topography (SWOT) mission and it's airborne analog AirSWOT offer new observations that can be used to try and improve the lower-complexity, 1D models to achieve accuracies closer to the higher-complexity, 2D codes. Here, we use an Ensemble Kalman Filter (EnKF) to assimilate AirSWOT water surface elevation (WSE) measurements from a 2015 field campaign into a 1D hydrodynamic model along a 90 km reach of Tanana River, AK. This work is the first to test data assimilation methods using real SWOT-like data from AirSWOT. Additionally, synthetic SWOT observations of WSE are generated across the same study site using a fine-resolution 2D model and assimilated into the coarser-resolution 1D model. Lastly, we compare the abilities of AirSWOT and the synthetic-SWOT observations to improve spatial and temporal model outputs in WSEs. Results indicate 1D model outputs of spatially distributed WSEs improve as observational coverage increases, and improvements in temporal fluctuations in WSEs depend on the number of observations. Furthermore, results reveal that assimilation of AirSWOT observations produce greater error reductions in 1D model outputs compared to synthetic SWOT observations due to lower measurement errors. Both AirSWOT and the synthetic SWOT observations significantly lower spatial and temporal errors in 1D model outputs of WSEs.

  5. Study of variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet environments

    NASA Astrophysics Data System (ADS)

    Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom; Begum, Narjis; Hussain, Tousif

    2017-07-01

    Variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet ambient environments has been investigated. For this purpose, the silver targets were exposed for various number of laser pulses in ambient environment of air, ethanol and de-ionized water for various number of laser pulses i.e. 500, 1000, 1500 and 2000. Scanning Electron Microscope (SEM) was employed to investigate the surface morphology of irradiated silver. SEM analysis reveals significant surface variations for both dry and wet ambient environments. For lower number of pulses, in air environment significant mass removal is observed but in case of ethanol no significant change in surface morphology is observed. In case of de-ionized water small sized cavities are observed with formation of protrusions with spherical top ends. For higher number of laser pulses, refilling of cavities by shock liquefied material, globules and protrusions are observed in case of dry ablation. For ablation in ethanol porous and coarse periodic ripples are observed whereas, for de-ionized water increasing density of protrusions is observed for higher number of pulses. EDS analysis exhibits the variation in chemical composition along with an enhanced diffusion of oxygen under both ambient conditions. The crystal structure of the exposed targets were explored by X-ray Diffraction (XRD) technique. XRD results support the EDS results. Formation of Ag2O in case of air and ethanol whereas, Ag2O and Ag3O in case of de-ionized water confirms the diffusion of oxygen into the silver surface after irradiation. Vickers Hardness tester was employed to measure the hardness of laser treated targets. Enhanced hardness is observed after irradiation in both dry and wet ambient environments. Initial decrease and then increase in hardness is observed with increase in number of laser pulses in air environment. In case of ethanol, increase in number of laser pulses results in continuous decrease in hardness. Whereas, in case of de-ionized water hardness increases with increase in number of laser pulses.

  6. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    PubMed

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  7. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  8. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  9. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.

  10. Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša

    Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.

  11. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  12. Empirical relationships among atmospheric variables from rawinsonde and field data as surrogates for AVIRIS measurements: Estimation of regional land surface evapotranspiration

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack

    1992-01-01

    Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.

  13. The Influence of Electrolytes on the Mixed Micellization of Equimolar (Monomeric and Dimeric) Surfactants

    NASA Astrophysics Data System (ADS)

    Alam, Md. Sayem; Siddiq, A. Mohammed; Mandal, Asit Baran

    2018-01-01

    The influence of halide ions of (sodium salt) electrolytes on the mixed micellization of a cationic gemini (dimeric) surfactant, hexanediyl-1,6-bis(dimethylcetylammonium) bromide (16-6-16) and a cationic conventional (monomeric) surfactant, cetyltrimethylammonium bromide (CTAB) have been investigated. The critical micelle concentration (CMC) of the mixed (16-6-16+CTAB) surfactants was measured by the surface tension measurements. The surface properties: viz., the surfactant concentration required to reduce the surface tension by 20 mN/m ( C 20), the surface pressure at the CMC (ΠCMC), the maximum surface excess concentration at the air/water interface (Γmax), the minimum area per surfactant molecule at the air/water interface ( A min), etc. of the mixed micellar surfactant systems were evaluated. In the absence and presence of electrolytes, the thermodynamic parameters of the mixed micellar surfactant systems were also evaluated.

  14. Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure

    PubMed Central

    2016-01-01

    The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid–base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92–98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10–16% to about 37–41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. PMID:26900413

  15. Use of the erbium, chromium:yttrium-scandium-gallium-garnet laser on human enamel tissues. Influence of the air-water spray on the laser-tissue interaction: scanning electron microscope evaluations.

    PubMed

    Olivi, Giovanni; Angiero, Francesca; Benedicenti, Stefano; Iaria, Giuseppe; Signore, Antonio; Kaitsas, Vassilios

    2010-11-01

    The study investigated the influence of varying amounts of air/water spray and the energy used by an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) 2,780 nm laser when treating dental tissues. The morphological effects produced by the laser interaction on healthy human enamel were evaluated by scanning electron microscopy (SEM). The vestibular and lingual surfaces of ten molars were treated with laser at different power settings; each surface was subdivided into cervical, median, and occlusal parts and treated with different proportions of water spray; the series contained 60 tooth portions. Treatment differed in terms of power setting and air/water percentage. All specimens were then subjected to dehydration and metallisation. At SEM evaluation, the classic aspect of laser-treated enamel was visible: grooves, flakes, shelves and sharp edges, indicative of micro-explosion rather than melting. Vaporisation of the tissue created a clear delimitation from surrounding healthy tissue, with partial respect to the prismatic structure of the treated enamel. The aspect of the enamel was rarely type 1 Silverstone but more frequently type 2 or 3, with prismatic structure not respected and/or completely disordered. These morphological differences appeared to be correlated with the inclination of the laser beam aimed at the enamel prisms and with the percentage of air/water used. The laser system analysed showed itself to be effective at removing human dental enamel. The results appeared to be closely correlated with the variation of the percentage of the laser's water-air spray.

  16. Updated polychlorinated biphenyl mass budget for Lake Michigan

    USGS Publications Warehouse

    Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Li, An; Kreis, Russell; Hites, Ronald A.; Venier, Marta

    2017-01-01

    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994–1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budget. Five of the 11 LMMBP tributaries were revisited in 2015. In these five tributaries, the geometric mean concentrations of ∑PCBs (sum of 85 congeners) ranged from 1.52 to 22.4 ng L–1. The highest concentrations of PCBs were generally found in the Lower Fox River and in the Indiana Harbor and Ship Canal. The input flows of ∑PCBs from wet deposition, dry deposition, tributary loading, and air to water exchange, and the output flows due to sediment burial, volatilization from water to air, and transport to Lake Huron and through the Chicago Diversion were calculated, as well as flows related to the internal processes of settling, resuspension, and sediment–water diffusion. The net transfer of ∑PCBs is 1240 ± 531 kg yr–1 out of the lake. This net transfer is 46% lower than that estimated in 1994–1995. PCB concentrations in most matrices in the lake are decreasing, which drove the decline of all the individual input and output flows. Atmospheric deposition has become negligible, while volatilization from the water surface is still a major route of loss, releasing PCBs from the lake into the air. Large masses of PCBs remain in the water column and surface sediments and are likely to contribute to the future efflux of PCBs from the lake to the air.

  17. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies.

    PubMed

    Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R

    2003-11-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  18. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    PubMed

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  19. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  20. Plastron properties of a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.; Perry, Carole C.; Pyatt, F. Brian

    2006-09-01

    Most insects and spiders drown when submerged during flooding or tidal inundation, but some are able to survive and others can remain submerged indefinitely without harm. Many achieve this by natural adaptations to their surface morphology to trap films of air, creating plastrons which fix the water-vapor interface and provide an incompressible oxygen-carbon dioxide exchange surface. Here the authors demonstrate how the surface of an extremely water-repellent foam mimics this mechanism of underwater respiration and allows direct extraction of oxygen from aerated water. The biomimetic principle demonstrated can be applied to a wide variety of man-made superhydrophobic materials.

  1. Molecular dynamics simulations of amphiphilic graft copolymer molecules at a water/air interface.

    PubMed

    Anderson, Philip M; Wilson, Mark R

    2004-11-01

    Fully atomistic molecular dynamics simulations of amphiphilic graft copolymer molecules have been performed at a range of surface concentrations at a water/air interface. These simulations are compared to experimental results from a corresponding system over a similar range of surface concentrations. Neutron reflectivity data calculated from the simulation trajectories agrees well with experimentally acquired profiles. In particular, excellent agreement in neutron reflectivity is found for lower surface concentration simulations. A simulation of a poly(ethylene oxide) (PEO) chain in aqueous solution has also been performed. This simulation allows the conformational behavior of the free PEO chain and those tethered to the interface in the previous simulations to be compared. (c) 2004 American Institute of Physics.

  2. Water harvest via dewing.

    PubMed

    Lee, Anna; Moon, Myoung-Woon; Lim, Hyuneui; Kim, Wan-Doo; Kim, Ho-Young

    2012-07-10

    Harvesting water from humid air via dewing can provide a viable solution to a water shortage problem where liquid-phase water is not available. Here we experimentally quantify the effects of wettability and geometry of the condensation substrate on the water harvest efficiency. Uniformly hydrophilic surfaces are found to exhibit higher rates of water condensation and collection than surfaces with lower wettability. This is in contrast to a fog basking method where the most efficient surface consists of hydrophilic islands surrounded by hydrophobic background. A thin drainage path in the lower portion of the condensation substrate is revealed to greatly enhance the water collection efficiency. The optimal surface conditions found in this work can be used to design a practical device that harvests water as its biological counterpart, a green tree frog, Litoria caerulea , does during the dry season in tropical northern Australia.

  3. Air bells of water spiders are an extended phenotype modified in response to gas composition.

    PubMed

    Schütz, Dolores; Taborsky, Michael; Drapela, Thomas

    2007-10-01

    The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O2, pure CO2, or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO2 treatment than in the O2 treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat.

  4. Reducing Water/Hull Drag By Injecting Air Into Grooves

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Bushnell, Dennis M.; Weinstein, Leonard M.

    1991-01-01

    Proposed technique for reduction of friction drag on hydrodynamic body involves use of grooves and combinations of surfactants to control motion of layer on surface of such body. Surface contains many rows of side-by-side, evenly spaced, longitudinal grooves. Dimensions of grooves and sharpnesses of tips in specific case depends on conditions of flow about vessel. Requires much less air than does microbubble-injection method.

  5. Environment surveillance of filamentous fungi in two tertiary care hospitals in China.

    PubMed

    Hao, Zhen-feng; Ao, Jun-hong; Hao, Fei; Yang, Rong-ya; Zhu, He; Zhang, Jie

    2011-07-05

    Invasive fungal infections have constituted an increasingly important cause of morbidity and mortality in immunocompromised patients. In this study, a surveillance project was conducted in three different intensive care units of two large tertiary hospitals in China. A one-year surveillance project was conducted in two tertiary hospitals which located in northern China and southwest China respectively. Air, surfaces and tap water were sampled twice a month in a central intensive care unit, a bone marrow transplant unit, a neurosurgery intensive care unit and a live transplant department. Environmental conditions such as humidity, temperature and events taking place, for example the present of the visitors, healthcare staff and cleaning crew were also recorded at the time of sampling. The air fungal load was 91.94 cfu/m(3) and 71.02 cfu/m(3) in the southwest China hospital and the northern China hospital respectively. The five most prevalent fungi collected from air and surfaces were Penicillium spp., Cladospcrium spp., Alternaria spp., Aspergillus spp. and Saccharomyces spp. in the southwest China hospital, meanwhile Penicillium spp., Fusarium spp., Aspergillus spp., Alternaria spp. and Cladospcrium spp. in the northern China hospital. The least contaminated department was intensive care units, and the heaviest contaminated department was neurosurgery intensive care unit. Seventy-three percent of all surfaces examined in the northern China hospital and eighty-six percent in the southwest China hospital yielded fungi. Fifty-four percent of water samples from the northern China hospital and forty-nine percent from the southwest China hospital yielded fungi. These findings suggested that the fungus exist in the environment of the hospital including air, surface and water. Air and surface fungal load fluctuated over the year. Air fungal load was lower in winter and higher in summer and autumn, but seldom exceeded acceptable level. The higher values were created during May to August in the northern China hospital and May to June and September to October in the southwest China hospital. A correlation between air fungal load and humidity, as well as personnel was observed.

  6. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  7. Modeling the effects of urban vegetation on air pollution

    Treesearch

    David J. Nowak; Patrick J. McHale; Myriam Ibarra; Daniel Crane; Jack C. Stevens; Chris J. Luley

    1998-01-01

    Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e.g., buildings, roads), and by...

  8. Chemically Assisted Photocatalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Andino, Jean; Wu, Chang-Yu; Mazyck, David; Teixeira, Arthur A.

    2009-01-01

    The chemically assisted photocatalytic oxidation system (CAPOS) has been proposed for destroying microorganisms and organic chemicals that may be suspended in the air or present on surfaces of an air-handling system that ventilates an indoor environment. The CAPOS would comprise an upstream and a downstream stage that would implement a tandem combination of two partly redundant treatments. In the upstream stage, the air stream and, optionally, surfaces of the air-handling system would be treated with ozone, which would be generated from oxygen in the air by means of an electrical discharge or ultraviolet light. In the second stage, the air laden with ozone and oxidation products from the first stage would be made to flow in contact with a silica-titania photocatalyst exposed to ultraviolet light in the presence of water vapor. Hydroxyl radicals generated by the photocatalytic action would react with both carbon containing chemicals and microorganisms to eventually produce water and carbon dioxide, and ozone from the first stage would be photocatalytically degraded to O2. The net products of the two-stage treatment would be H2O, CO2, and O2.

  9. Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate

    NASA Astrophysics Data System (ADS)

    Ryerson, T. B.; Aikin, K. C.; Angevine, W. M.; Atlas, E. L.; Blake, D. R.; Brock, C. A.; Fehsenfeld, F. C.; Gao, R.-S.; de Gouw, J. A.; Fahey, D. W.; Holloway, J. S.; Lack, D. A.; Lueb, R. A.; Meinardi, S.; Middlebrook, A. M.; Murphy, D. M.; Neuman, J. A.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Warneke, C.; Watts, L. A.

    2011-04-01

    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (˜258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (˜33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (˜14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills.

  10. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  11. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  12. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic.

    PubMed

    Stawarczyk, Bogna; Krawczuk, Andreas; Ilie, Nicoleta

    2015-03-01

    This study was conducted in order to assess the pretreatment method (air abrasion, both wet and dry, and Al2O3 grinder), the conditioning method (comprised of different adhesive systems), the repair resin composite (low and high modulus of elasticity), the contamination of CoJet air-abraded surfaces with water, and the effect phosphoric acid on the macrotensile bond strength (TBS) to aged CAD/CAM resin nanoceramic (RNC). Aged RNC substrates (LAVA Ultimate, 3M ESPE; N = 900; 10,000 cycles, 5 °C/55 °C) were air-abraded (CoJet 3M ESPE) with and without water contamination or treated with an Al2O3 grinder (Cimara, Voco). Immediately after pretreatment, half of the specimens were additionally cleaned with phosphoric acid, while the rest were only rinsed with water. Four intermediate agents (Futurabond U/VOCO, Scotchbond Universal/3M ESPE, One Coat Bond/Coltène Whaledent, visio.link/bredent) were selected for conditioning the surface, while no conditioned specimens acted as control groups. Specimens were thereafter repaired using two direct resin composites (Arabesk Top and GrandioSo, VOCO), stored for 24 h at 37 °C in H2O, and thermally aged for 10,000 cycles (5 °C/55 °C; n = 15/subgroup). TBS and failure types were determined and evaluated with four- and one-way ANOVA and χ (2) test (p < 0.05). The highest influence on TBS was exerted by the conditioning method (partial eta-squared (η P (2)) = 0.273, p < 0.05), followed by the resin composite repair (η P (2) = 0.07, p < 0.05) and the surface pretreatment method (η P (2) = 0.032, p < 0.05), while an acid contamination after surface pretreatment was insignificant (p = 0.154). Air abrasion produced superior TBS compared to grinding of the surface with Al2O3 prior to repair. The tested universal adhesives proved to be effective intermediate agents for repairing aged CAD/CAM RNC, while visio.link and Scotchbond Universal performed slightly better than Futurabond U. Phosphoric acid or water contamination of the air-abraded surface does not affect the repair bond strength.

  13. Numerical analysis of the air chemical non-equilibrium effect in combustion for a semi-sphere with opposing jet

    NASA Astrophysics Data System (ADS)

    Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei

    2018-05-01

    The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.

  14. RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface

    NASA Astrophysics Data System (ADS)

    Sahin, Halil Turgut

    2013-01-01

    An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.

  15. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface.

    PubMed

    Liu, Wei; Li, Shanghao; Wang, Zhuguang; Yan, Elsa C Y; Leblanc, Roger M

    2017-08-01

    Biofilm is an extracellular matrix of bacteria and serves as a protective shield of bacterial communities. It is crucial for microbial growth and one of the leading causes of human chronic infections as well. However, the structures and molecular mechanism of biofilm formation remain largely unknown. Here, we examined a protein, BslA, expressed in the biofilms of Bacillus subtilis. We characterized the Langmuir monolayers of BslA at the air/water interface. Using techniques in surface chemistry and spectroscopy, we found that BslA forms a stable and robust Langmuir monolayer at the air/water interface. Our results show that the BslA Langmuir monolayer underwent two-stage elasticity in the solid state phase upon mechanical compression: one is possibly due to the intermolecular interaction and the other is likely due to both the intermolecular compulsion and the intramolecular distortion. The Langmuir monolayer of BslA shows abrupt changes in rigidities and elasticities at ∼25 mN/m. This surface pressure is close to the one at which BlsA saturates the air/water interface as a self-assembled film without mechanical compression, corresponding to a mean molecular area of ∼700 Å 2 per molecule. Based on the results of surface UV-visible spectroscopy and infrared reflective-absorption spectroscopy, we propose that the BslA Langmuir monolayer carries intermolecular elasticity before ∼25 mN/m and both intermolecular and intramolecular elasticity after ∼25 mN/m. These results provide valuable insights into the understanding of biofilm-associated protein under high mechanical force, shedding light on further investigation of biofilm structure and functionalities.

  16. Wedron Groundwater Site in Wedron, Illinois

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  17. 40 CFR 302.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... water, drinking water supply, land surface or subsurface strata, or ambient air within the United States... from a nuclear incident, as those terms are defined in the Atomic Energy Act of 1954, if such release...

  18. 40 CFR 302.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... water, drinking water supply, land surface or subsurface strata, or ambient air within the United States... from a nuclear incident, as those terms are defined in the Atomic Energy Act of 1954, if such release...

  19. 40 CFR 302.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water, drinking water supply, land surface or subsurface strata, or ambient air within the United States... from a nuclear incident, as those terms are defined in the Atomic Energy Act of 1954, if such release...

  20. 40 CFR 302.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water, drinking water supply, land surface or subsurface strata, or ambient air within the United States... from a nuclear incident, as those terms are defined in the Atomic Energy Act of 1954, if such release...

  1. 40 CFR 302.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water, drinking water supply, land surface or subsurface strata, or ambient air within the United States... from a nuclear incident, as those terms are defined in the Atomic Energy Act of 1954, if such release...

  2. Model for dynamic self-assembled magnetic surface structures

    NASA Astrophysics Data System (ADS)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.

    2010-07-01

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  3. Air- and Dustborne Mycoflora in Houses Free of Water Damage and Fungal Growth

    PubMed Central

    Horner, W. Elliott; Worthan, Anthony G.; Morey, Philip R.

    2004-01-01

    Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of “normal and typical” types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems. PMID:15528497

  4. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  5. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2 fluxes by up to 15%, and, therefore, play important local and regional roles in regulating air-sea interactions.

  6. 7 CFR 1466.20 - Application for contracts and selecting applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concerning soil, water and air quality; wildlife habitat; and ground and surface water conservation; (vi... include water conservation or irrigation efficiency practices, the State Conservationist will give... conservation practices; (ii) The magnitude of the expected environmental benefits resulting from the...

  7. 7 CFR 1466.20 - Application for contracts and selecting applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concerning soil, water and air quality; wildlife habitat; and ground and surface water conservation; (vi... include water conservation or irrigation efficiency practices, the State Conservationist will give... conservation practices; (ii) The magnitude of the expected environmental benefits resulting from the...

  8. 7 CFR 1466.20 - Application for contracts and selecting applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... concerning soil, water and air quality; wildlife habitat; and ground and surface water conservation; (vi... include water conservation or irrigation efficiency practices, the State Conservationist will give... conservation practices; (ii) The magnitude of the expected environmental benefits resulting from the...

  9. Influence of surface crusting on infiltration of a loess plateau soil

    USDA-ARS?s Scientific Manuscript database

    Surface sealing and crusting are common widespread processes that occur in many cultivated soils worldwide, especially in arid and semiarid regions. Soil crusting negatively affects water infiltration, increases surface runoff, reduces seedling emergence, restricts air exchange between the soil and ...

  10. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).

    PubMed

    Park, Hae-Woong; Choi, Je; Ohn, Kimberly; Lee, Hyunsuk; Kim, Jin Woong; Won, You-Yeon

    2012-08-07

    It has been reported that the surface pressure-area isotherm of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) at the air-water interface exhibits several interesting features: (1) a plateau at intermediate compression levels, (2) a sharp rise in surface pressure upon further compression, and (3) marked surface pressure-area hysteresis during compression-expansion cycles. To investigate the molecular origin of this behavior, we conducted an extensive set of surface pressure and AFM imaging measurements with PLGA materials having several different molecular weights and also a poly(D,L-lactic acid-ran-glycolic acid-ran-caprolactone) (PLGACL) material in which the caprolactone monomers were incorporated as a plasticizing component. The results suggest that (i) the plateau in the surface pressure-area isotherm of PLGA (or PLGACL) occurs because of the formation (and collapse) of a continuous monolayer of the polymer under continuous compression; (ii) the PLGA monolayer becomes significantly resistant to compression at high compression because under that condition the collapsed domains become large enough to become glassy (such behavior was not observed in the nonglassy PLGACL sample); and (iii) the isotherm hysteresis is due to a coarsening of the collapsed domains that occurs under high-compression conditions. We also investigated the monolayer properties of PEG-PLGA and PEG-PLGACL diblock copolymers. The results demonstrate that the tendency of PLGA (or PLGACL) to spread on water allows the polymer to be used as an anchoring block to form a smooth biodegradable monolayer of block copolymers at the air-water interface. These diblock copolymer monolayers exhibit protein resistance.

  11. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  12. Environmental Assessment of the 445th Airlift Wing Conversion from C-5 to C-17 Aircraft at Wright-Patterson Air Force Base

    DTIC Science & Technology

    2010-12-01

    effects on ground - water would continue to occur as a result of aircraft operations. Long-Term: No impact. Surface Water...that existed at the time the 15 study was prepared as well as a Maximum Mission Scenario that was based on the noise effects of various 16 potentially ...and human health of a community or locale. Storm water 19 is an important component of surface water systems because of its potential to

  13. Displacement of Tethered Hydro-Acoustic Modems by Uniform Horizontal Currents

    DTIC Science & Technology

    2009-12-01

    smooth and plane surfaces (in incompressible flow ) in air and in water (From [4]) ..............22  Figure 13.  Drag of streamline bodies, tested in...from a stationary sea- surface buoy or Unmanned Surface Vehicle (USV) weighted by a dense object at the free end (Figure 2). The equations of static...forces on the free end are caused by an attached ballast or float. The moored cable has a free -moving sub- surface buoy positioned at a water depth

  14. Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles.

    PubMed

    Kawashima, Hisato; Paven, Maxime; Mayama, Hiroyuki; Butt, Hans-Jürgen; Nakamura, Yoshinobu; Fujii, Syuji

    2017-09-27

    Remotely controlling the movement of small objects is desirable, especially for the transportation and selection of materials. Transfer of objects between liquid and solid surfaces and triggering their release would allow for development of novel material transportation technology. Here, we describe the remote transport of a material from a water film surface to a solid surface using quasispherical liquid marbles (LMs). A light-induced Marangoni flow or an air stream is used to propel the LMs on water. As the LMs approach the rim of the water film, gravity forces them to slide down the water rim and roll onto the solid surface. Through this method, LMs can be efficiently moved on water and placed on a solid surface. The materials encapsulated within LMs can be released at a specific time by an external stimulus. We analyzed the velocity, acceleration, and force of the LMs on the liquid and solid surfaces. On water, the sliding friction due to the drag force resists the movement of the LMs. On a solid surface, the rolling distance is affected by the surface roughness of the LMs.

  15. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    PubMed

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  16. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  17. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    PubMed

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Spiers Memorial Lecture. Ions at aqueous interfaces.

    PubMed

    Jungwirth, Pavel

    2009-01-01

    Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close contact with experiment. For the simplest of these interfaces, i.e. the open water surface, we demonstrate that the traditional picture of an ion-free surface is not valid for large, soft (polarizable) ions such as the heavier halides. Both simulations and spectroscopic measurements indicate that these ions can be present and even enhanced at surface of water. In addition we show that the ionic product of water exhibits a peculiar surface behavior with hydronium but not hydroxide accumulating at the air/water and alkane/water interfaces. This result is supported by surface-selective spectroscopic experiments and surface tension measurements. However, it contradicts the interpretation of electrophoretic and titration experiments in terms of strong surface adsorption of hydroxide; an issue which is further discussed here. The applicability of the observed behavior of ions at the water surface to investigations of their affinity for the interface between proteins and aqueous solutions is explored. Simulations show that for alkali cations the dominant mechanism of specific interactions with the surface of hydrated proteins is via ion pairing with negatively charged amino acid residues and with the backbone amide groups. As far as halide anions are concerned, the lighter ones tend to pair with positively charged amino acid residues, while heavier halides exhibit affinity to the amide group and to non-polar protein patches, the latter resembling their behavior at the air/water interface. These findings, together with results for more complex molecular ions, allow us to formulate a local model of interactions of ions with proteins with the aim to rationalize at the molecular level ion-specific Hofmeister effects, e.g. the salting out of proteins.

  19. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  20. Surface forces between hydrophilic silica surfaces in a moisture-sensitive oleophilic diacrylate monomer liquid

    NASA Astrophysics Data System (ADS)

    Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru

    2018-02-01

    We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.

  1. Wedron Groundwater Site Frequently Asked Questions 2013

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  2. Functional morphology of the gills of the bowfin, Amia calva L., with special reference to their significance during air exposure.

    PubMed

    Daxboeck, C; Barnard, D K; Randall, D J

    1981-03-01

    The bowfin, Amia calva is a facultative air breathing fish restricted to North America and is reported to estivate. The relative and functional gill surface areas of A. calva are not reduced, as in many amphibious fish, but have areas comparable to many completely aquatic species. The secondary lamellae are fused to form a lattice-work of rectangular pores, a gill arrangement unique among fresh-water fishes. This highly modified gill structure imparts considerable rigidity such that these do not collapse upon air exposure. In vivo blood gas measurements from air exposed Amia reveal that these gills must be free of water, since there is both O2 uptake and CO2 excretion across them. The observed ventilatory motions therefore pass air over the secondary lamellae for diffusive gas exchange during air exposure. In the artificial conditions of our experiments, however, air exposure was associated with a marked acidosis and the fish died within 2 hours of being returned to normoxic water.

  3. Formation, dissolution and properties of surface nanobubbles.

    PubMed

    Che, Zhizhao; Theodorakis, Panagiotis E

    2017-02-01

    Surface nanobubbles are stable gaseous phases in liquids that form on solid substrates. While their existence has been confirmed, there are many open questions related to their formation and dissolution processes along with their structures and properties, which are difficult to investigate experimentally. To address these issues, we carried out molecular dynamics simulations based on atomistic force fields for systems comprised of water, air (N 2 and O 2 ), and a Highly Oriented Pyrolytic Graphite (HOPG) substrate. Our results provide insights into the formation/dissolution mechanisms of nanobubbles and estimates for their density, contact angle, and surface tension. We found that the formation of nanobubbles is driven by an initial nucleation process of air molecules and the subsequent coalescence of the formed air clusters. The clusters form favorably on the substrate, which provides an enhanced stability to the clusters. In contrast, nanobubbles formed in the bulk either move randomly to the substrate and spread or move to the water-air surface and pop immediately. Moreover, nanobubbles consist of a condensed gaseous phase with a surface tension smaller than that of an equivalent system under atmospheric conditions, and contact angles larger than those in the equivalent nanodroplet case. We anticipate that this study will provide useful insights into the physics of nanobubbles and will stimulate further research in the field by using all-atom simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

    1980-06-01

    From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

  6. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    NASA Technical Reports Server (NTRS)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  7. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  8. Environmental Assessment, Project MOUNTAINVIEW Facility, Buckley Air Force Base, Colorado

    DTIC Science & Technology

    2011-10-01

    Overall, construction and demolition activities would have the potential to result in adverse effects on surface water quality, but the development of a ... Studied in Detail This EA examines potential effects of the Proposed Action and No Action Alternative on 10 resource areas: noise, land use, air...not in a floodplain. Any potential indirect effects on floodplains would be addressed through the use of storm water best management practices

  9. Inclusion Complexes Behavior at the Air-Water Interface. Molecular Dynamic Simulation Study.

    NASA Astrophysics Data System (ADS)

    Gargallo, L.; Vargas, D.; Sandoval, C.; Saavedra, M.; Becerra, N.; Leiva, A.; Radić, D.

    2008-08-01

    The interfacial properties of the inclusion complexes (ICs), obtained from the threading of α-cyclodextrin (α-CD) onto poly(ethylene-oxide)(PEO), poly(ɛ-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF) and their precursor homopolymers (PHPoly), were studied at the air-water interface. The free surface energy was determined by wettability measurements. The experimental behavior of these systems was described by an atomistic molecular dynamics simulation (MDS).

  10. Influence of Hydrostatic Pressure on the Corrosion Behavior of Superhydrophobic Surfaces on Bare and Oxidized Aluminum Substrates.

    PubMed

    Ou, J F; Fang, X Z; Zhao, W J; Lei, S; Xue, M S; Wang, F J; Li, C Q; Lu, Y L; Li, W

    2018-05-22

    It is generally recognized that superhydrophobic surfaces in water may be used for corrosion resistance due to the entrapped air in the solid/liquid interface and could find potential applications in the protection of ship hull. For a superhydrophobic surface, as its immersion depth into water increases, the resultant hydrostatic pressure is also increased, and the entrapped air can be squeezed out much more easily. It is therefore predicted that high hydrostatic pressure would cause an unexpected decrease in corrosion resistance for the vessels in deep water (e.g., submarines) because of the unstable entrapped air. In this work, in order to clarify the role of hydrostatic pressure in the corrosion behavior of superhydrophobic surfaces, two typical superhydrophobic surfaces (SHSs) were prepared on bare and oxidized aluminum substrates, respectively, and then were immersed into the NaCl aqueous solutions with different depths of ∼0 cm (hydrostatic pressure ∼0 kPa), 10 cm (1 kPa), and 150 cm (15 kPa). It was found out for the SHSs on the oxidized Al, as the hydrostatic pressure increased, the corrosion behavior became severe. However, for the SHSs on the bare Al, their corrosion behavior was complex due to hydrostatic pressure. It was found that the corrosion resistance under 1 kPa was the highest. Further mechanism analysis revealed that this alleviated corrosion behavior under 1 kPa resulted from suppressing the oxygen diffusion through the liquid and reducing the subsequent corrosion rate as compared with 0 kPa, whereas the relatively low hydrostatic pressure (HP) could stabilize the entrapped air and hence enhance the corrosion resistance, compared with 15 kPa. The present study therefore provided a fundamental understanding for the applications of SHSs to prevent the corrosion, especially for various vessels in deep water.

  11. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  12. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  13. The effects of cooling systems on CO2-lased human enamel.

    PubMed

    Lian, H J; Lan, W H; Lin, C P

    1996-12-01

    The thermal effects on dentin during CO2 laser irradiation on human enamel were investigated. To simulate the clinical practice, two cooling methods (air and water spray) were applied immediately after laser exposure, whereas one group without cooling was served as control. Three hundred and sixty uniform tooth blocks were obtained from freshly extracted human third molars. Temperature change measurements were made via electrical thermocouple implanted within the tooth block 2 mm away from the enamel surface. Experimental treatments consisted of lasing without cooling, lasing with 0.5-ml/sec water cooling, and lasing with 15-psi air cooling. Our results indicated that (1) both air- and water-cooling groups could reduce temperature elevation significantly; (2) the larger power energy resulted in the higher temperature elevation. In conclusion, for CO2 laser irradiation on human enamel both water- and air-cooling methods may be effective on prevention of thermal damage of pulp.

  14. Measured and simulated soil water evaporation from four Great Plains soils

    USDA-ARS?s Scientific Manuscript database

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  15. The Relationship Between Temperature and Gas Concentration Fluctuation Rates at an Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Jessup, A. T.; Liang, H.; Zappa, C. J.

    2008-12-01

    The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG(CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry's Gas Law equilibrium, and CW is the gas concentration in the bulk water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Surface divergence theory for the air-water transfer of gas and heat predicts that kG and kH will scale as the square root of the surface divergence rate, r. However, because of the interaction between diffusivity and the scale depth of the surface divergences, the scale factor for heat is likely to be different from the scale factor for gases. Infrared imagery was used to measure the timescales of variations in temperature at a water surface and laser-induced fluorescence (LIF) was used to measure temporal fluctuations in aqueous-phase concentrations of carbon dioxide (CO2) at a water surface. The rate at which these temperature and concentration fluctuations occur is then assumed to be related to r. The divergence rates derived for temperature from the IR images can be compared to the rates for gas derived from the LIF measurements to understand how r estimated from the two measurements differ. The square root of r is compared to concurrently measured kG for helium and sulfur hexafluoride to test the assumption that r1/2 scales with kG. Additionally, we measured kH using the active controlled flux technique, and those heat transfer velocities can also be used to test for a r1/2 dependence. All measurements reported here were made in the APL-UW synthetic jet array facility.

  16. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.

  17. In Situ Experiments To Reveal the Role of Surface Feature Sidewalls in the Cassie–Wenzel Transition

    PubMed Central

    2014-01-01

    Waterproof and self-cleaning surfaces continue to attract much attention as they can be instrumental in various different technologies. Such surfaces are typically rough, allowing liquids to contact only the outermost tops of their asperities, with air being entrapped underneath. The formed solid–liquid–air interface is metastable and, hence, can be forced into a completely wetted solid surface. A detailed understanding of the wetting barrier and the dynamics of this transition is critically important for the practical use of the related surfaces. Toward this aim, wetting transitions were studied in situ at a set of patterned perfluoropolyether dimethacrylate (PFPEdma) polymer surfaces exhibiting surface features with different types of sidewall profiles. PFPEdma is intrinsically hydrophobic and exhibits a refractive index very similar to water. Upon immersion of the patterned surfaces into water, incident light was differently scattered at the solid–liquid–air and solid–liquid interface, which allows for distinguishing between both wetting states by dark-field microscopy. The wetting transition observed with this methodology was found to be determined by the sidewall profiles of the patterned structures. Partial recovery of the wetting was demonstrated to be induced by abrupt and continuous pressure reductions. A theoretical model based on Laplace’s law was developed and applied, allowing for the analytical calculation of the transition barrier and the potential to revert the wetting upon pressure reduction. PMID:25496232

  18. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  19. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  20. Coplanar surface barrier discharge ignited in water vapor—a selective source of OH radicals proved by (TA)LIF measurement

    NASA Astrophysics Data System (ADS)

    Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.

    2018-01-01

    Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.

  1. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s internal or external surfaces except for water and air as prescribed in paragraphs (c) and (d) of this section. (c) For water-cooled engines, two types of cooling are permitted: (1) Water may be circulated through the engine's water coolant system. (i) The coolant may be flowed in either direction and...

  2. Final Environmental Assessment for the Disposal of the Former Lynn Haven Fuel Depot, Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2015-12-01

    groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management, drainage, transportation systems, electricity and...on water resources (i.e., surface water and groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management...3-8 3.3.6.4 Sanitary Sewer

  3. 78 FR 4165 - Notice of Availability of the Draft Environmental Impact Statement for the Arturo Mine Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... office, substation and associated power transmission lines, water wells, water distribution and sewer...; access; discharges to surface water; air quality (including mercury); and impacts to stream drainages... which may impact water resources, and the Elko County Board of Commissioners have raised concerns about...

  4. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  5. Water- and air-quality and surficial bed-sediment monitoring of the Sweetwater Reservoir watershed, San Diego County, California, 2003-09

    USGS Publications Warehouse

    Mendez, Gregory O.; Majewski, Michael S.; Foreman, William T.; Morita, Andrew Y.

    2015-01-01

    Sampling results show concentrations of the gasoline oxygenate methyl tert-butyl ether in water and air samples declined after it was phased out by the State of California in January 2004. The largest concentrations of gasoline hydrocarbons benzene and toluene in water were detected at or near the surface of the SWR. Isophorone and phenol were the two most frequently detected BNA compounds in water. Diuron, prometon, and simazine were the most frequently detected pesticide compounds in water. Concentrations of benzene and toluene in air samples were highest during the cooler months and had a consistent seasonal pattern over time. Ten PAH compounds were detected frequently in air samples. Twelve pesticide compounds were also detected in air samples. Surficial bed-sediment samples were analyzed for 53 PAHs; 22 of the compounds had one or more detections. Surficial bed-sediment samples were analyzed for 22 organic compounds; only 6 compounds had one or more detections. Surficial bed-sediment samples were analyzed for 37 metals.

  6. Variability of the gaseous elemental mercury sea-air flux of the Baltic Sea.

    PubMed

    Kuss, Joachim; Schneider, Bernd

    2007-12-01

    The importance of the sea as a sink for atmospheric mercury has been established quantitatively through models based on wet and dry deposition data, but little is known about the release of mercury from sea areas. The concentration of elemental mercury (Hg0) in sea surface water and in the marine atmosphere of the Baltic Sea was measured at high spatial resolution in February, April, July, and November 2006. Wind-speed records and the gas-exchange transfer velocity were then used to calculate Hg0 sea-air fluxes on the basis of Hg0 sea-air concentration differences. Our results show that the spatial resolution of the surface water Hg0 data can be significantly improved by continuous measurements of Hg0 in air equilibrated with water instead of quantitative extraction of Hg0 from seawater samples. A spatial and highly seasonal variability of the Hg0 sea-air flux was thus determined. In winter, the flux was low and changed in direction. In summer, a strong emission flux of up to 150 ng m(-2) day(-1) in the central Baltic Sea was recorded. The total emission of Hg0 from the studied area (235000 km2) was 4300 +/- 1600 kg in 2006 and exceeded deposition estimates.

  7. Microbial environmental contamination in Italian dental clinics: A multicenter study yielding recommendations for standardized sampling methods and threshold values.

    PubMed

    Pasquarella, Cesira; Veronesi, Licia; Napoli, Christian; Castiglia, Paolo; Liguori, Giorgio; Rizzetto, Rolando; Torre, Ida; Righi, Elena; Farruggia, Patrizia; Tesauro, Marina; Torregrossa, Maria V; Montagna, Maria T; Colucci, Maria E; Gallè, Francesca; Masia, Maria D; Strohmenger, Laura; Bergomi, Margherita; Tinteri, Carola; Panico, Manuela; Pennino, Francesca; Cannova, Lucia; Tanzi, Marialuisa

    2012-03-15

    A microbiological environmental investigation was carried out in ten dental clinics in Italy. Microbial contamination of water, air and surfaces was assessed in each clinic during the five working days, for one week per month, for a three-month period. Water and surfaces were sampled before and after clinical activity; air was sampled before, after, and during clinical activity. A wide variation was found in microbial environmental contamination, both within the participating clinics and for the different sampling times. Before clinical activity, microbial water contamination in tap water reached 51,200cfu/mL (colony forming units per milliliter), and that in Dental Unit Water Systems (DUWSs) reached 872,000cfu/mL. After clinical activity, there was a significant decrease in the Total Viable Count (TVC) in tap water and in DUWSs. Pseudomonas aeruginosa was found in 2.38% (7/294) of tap water samples and in 20.06% (59/294) of DUWS samples; Legionella spp. was found in 29.96% (89/297) of tap water samples and 15.82% (47/297) of DUWS samples, with no significant difference between pre- and post-clinical activity. Microbial air contamination was highest during dental treatments, and decreased significantly at the end of the working activity (p<0.05). The microbial buildup on surfaces increased significantly during the working hours. This study provides data for the establishment of standardized sampling methods, and threshold values for contamination monitoring in dentistry. Some very critical situations have been observed which require urgent intervention. Furthermore, the study emphasizes the need for research aimed at defining effective managing strategies for dental clinics. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broman, D.; Axelman, J.; Bandh, C.

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over watermore » and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.« less

  9. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    NASA Astrophysics Data System (ADS)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  10. Sea Ice Flows, Sea of Okhotsk, CIS

    NASA Image and Video Library

    1991-05-06

    STS039-84-29AL (28 April-6 May 1991) --- This nearly vertical photograph of the North Atlantic, taken outside of the sunglint pattern, illustrates the extreme contrast between highly reflective ice, having a large percentage of between-crystal air space, and the low-reflectance water, which absorbs most of the light that propagates into it from the air. The ice drifts along with the surface currents and wind and may therefore be used as a natural Langranian* tracer. Photographs such as this, taken several times over the course of a mission, may be used to investigate near-surface circulation in high-latitude oceans. *A Langranian tracer is anything that can be tracked as it drifts along with the water, as opposed to staying in one position and measuring how fast the water goes by.

  11. Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.

    2007-12-01

    Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  12. Coadsorption of Human Milk Lactoferrin into the Dipalmitoylglycerolphosphatidylcholine Phospholipid Monolayer Spread at the Air/Water Interface

    PubMed Central

    Miano, Fausto; Zhao, Xiubo; Lu, Jian R.; Penfold, Jeff

    2007-01-01

    The coadsorption of human milk lactoferrin into a spread monolayer of dipalmitoylglycerol phosphatidylcholine (DPPC) at the air/water interface has been studied by neutron reflection. The system is a good model of the preocular tear film outer interface, which was the motivation for the study. The association of the protein with the surface was indicated by an increase of the surface pressure exerted by the DPPC monolayer. The extent of lactoferrin coadsorption was found to decrease with increasing surface pressure in the lipid monolayer, a trend consistent with the observation reported for other proteins, such as lysozyme and β-lactoglobulin. The neutron reflectivity measurements were subsequently carried out at the three surface pressures of 8, 15, and 35 mN/m to examine the structure and composition of lactoferrin coadsorbed at the interface. Whereas the DPPC monolayer effectively prevented lactoferrin insertion at the high surface pressure, a measurable amount of lactoferrin was found at the air/water interface at the two lower surface pressures. At 15 mN/m it was difficult to identify the distribution of lactoferrin with respect to the DPPC monolayer, due to its relatively low adsorbed amount and much broader distribution. At the lowest surface pressure of 8 mN/m, the lactoferrin coadsorption was found to increase with time over the first few hours. After 5 h the distribution of the lactoferrin layer became similar to, though quantitatively lower than, that adsorbed in the absence of the DPPC monolayer. It is characterized by a top dense sublayer of 15 Å with a bottom diffuse sublayer of 60 Å, indicating structural unfolding induced by surface adsorption under these conditions. PMID:17114223

  13. Does the kinorhynch have a hydrophobic body surface? Measurement of the wettability of a meiobenthic metazoan

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Yamasaki, Hiroshi; Uozumi, Ryosuke; Hirose, Euichi

    2016-10-01

    The body surface of aquatic invertebrates is generally thought to be hydrophilic to prevent the attachment of air bubbles. In contrast, some interstitial invertebrates, such as kinorhynchs and some crustaceans, have a hydrophobic body surface: they are often trapped at the water surface when the sediment in which they reside is mixed with air and water. Here, we directly measured the wettability of the body surface of the kinorhynch Echinoderes komatsui, using a microscopic contact angle meter. The intact body surface of live specimens was not hydrophobic, but the anterior part was less hydrophilic. Furthermore, washing with seawater significantly decreased the wettability of the body surface, but a hydrophilic surface was recovered after a 1 h incubation in seawater. We believe that the hydrophobic cuticle of the kinorhynch has a hydrophilic coat that is readily exfoliated by disturbance. Ultrastructural observations supported the presence of a mucus-like coating on the cuticle. Regulation of wettability is crucial to survival in shallow, fluctuating habitats for microscopic organisms and may also contribute to expansion of the dispersal range of these animals.

  14. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  15. 40 CFR 279.52 - General facility standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas, or dry chemicals), spill control equipment and decontamination equipment; and (iv) Water at adequate volume and pressure to supply water hose streams, or foam producing equipment, or automatic..., explosion, or any unplanned sudden or non-sudden release of used oil to air, soil, or surface water which...

  16. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Ujjwal Man, E-mail: umjoshi@gmail.com; Subedi, Deepak Prasad, E-mail: deepaksubedi2001@yahoo.com

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase inmore » surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.« less

  17. Fluidic Active Transducer for Electricity Generation

    PubMed Central

    Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-01-01

    Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626

  18. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  19. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  20. Water-Based Peeling of Thin Hydrophobic Films

    NASA Astrophysics Data System (ADS)

    Khodaparast, Sepideh; Boulogne, François; Poulard, Christophe; Stone, Howard A.

    2017-10-01

    Inks of permanent markers and waterproof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows for complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface.

  1. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  2. Surface temperatures and temperature gradient features of the US Gulf Coast waters

    NASA Technical Reports Server (NTRS)

    Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.

    1977-01-01

    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.

  3. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    PubMed

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  4. Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.

  5. Installation Restoration Program for Richards-Gebaur AFB. Phase 2. Field Evaluation

    DTIC Science & Technology

    1983-12-01

    of the Phase I--Records Search. "ýThe specific task was to determine whether environmental contamination of groundwater or surface water had resulted...concentrations (4 and 5 ug/L, respectively) which exceeded the Missouri Water Quality Standards for groundwater (I ug/L). A limited followup study was...contamination of groundwater and surface water had resulted from waste handling and disposal at two ’and- fills on Richards-Gebaur Air Force Base (AFB

  6. Second-Order Vibrational Lineshapes from the Air/Water Interface.

    PubMed

    Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M

    2018-05-10

    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.

  7. Silica nano-particle super-hydrophobic surfaces: the effects of surface morphology and trapped air pockets on hydrodynamic drainage forces.

    PubMed

    Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R

    2009-01-01

    We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.

  8. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    PubMed Central

    Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk

    2016-01-01

    The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149

  9. Fate of polycyclic aromatic hydrocarbons from the North Pacific to the Arctic: Field measurements and fugacity model simulation.

    PubMed

    Ke, Hongwei; Chen, Mian; Liu, Mengyang; Chen, Meng; Duan, Mengshan; Huang, Peng; Hong, Jiajun; Lin, Yan; Cheng, Shayen; Wang, Xuran; Huang, Mengxue; Cai, Minggang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) have accumulated ubiquitously inArctic environments, where re-volatilization of certain organic pollutants as a result of climate change has been observed. To investigate the fate of semivolatile organic compounds in the Arctic, dissolved PAHs in the surface seawaters from the temperate Pacific Ocean to the Arctic Ocean, as well as a water column in the Arctic Ocean, were collected during the 4th Chinese National Arctic Research Expedition in summer 2010. The total concentrations of seven dissolved PAHs in surface water ranged from 1.0 to 5.1 ng L -1 , decreasing with increasing latitude. The vertical profile of PAHs in the Arctic Ocean was generally characteristic of surface enrichment and depth depletion, which emphasized the role of vertical water stratification and particle settling processes. A level III fugacity model was developed in the Bering Sea under steady state assumption. Model results quantitatively simulated the transfer processes and fate of PAHs in the air and water compartments, and highlighted a summer air-to-sea flux of PAHs in the Bering Sea, which meant that the ocean served as a sink for PAHs, at least in summer. Acenaphthylene and acenaphthene reached equilibrium in air-water diffusive exchange, and any perturbation, such as a rise in temperature, might lead to disequilibrium and remobilize these compounds from their Arctic reservoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Vijande, J.; García-Martínez, T.

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate ofmore » the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. Conclusions: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.« less

  11. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Air Force Plant 4, Fort Worth, Texas. Volume 8. Appendices B-E.

    DTIC Science & Technology

    1987-12-01

    d the location documented on a project site map . c. Split all water , sedi:-ent and soil p~ts as -art of the ccntractor’s specific Quality Assurance...regional/site specific hydrcg.volog-y, -]Il And boring logs, data from water level surveys, grcundwater surface and gradient maps , water quality and...COMMAND COMMAND BIOENVIRONMENTAL ENGINEER (AFSC/SGPB) ANDR-WS AIR FORCE BASE, DC 20334-5000 DECEMBER 1987 PREPARED BY RADIAN CORPORATION 8501 MO-PAC

  12. Surface Oscillations of a Free-Falling Droplet of an Ideal Fluid

    NASA Astrophysics Data System (ADS)

    Kistovich, A. V.; Chashechkin, Yu. D.

    2018-03-01

    According to observations, drops freely falling in the air under the action of gravity are deformed and oscillate in a wide range of frequencies and scales. A technique for calculating surface axisymmetric oscillations of a deformed droplet in the linear approximation under the assumption that the amplitude and wavelength are small when compared to the droplet diameter is proposed. The basic form of an axisymmetric droplet is chosen from observations. The calculation results for surface oscillations agree with recorded data on the varying shape of water droplets falling in the air.

  13. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  14. Assessing the Impact of Removing Select Materials from Coal Mine Overburden, Central Appalachia Region, USA

    EPA Science Inventory

    The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 µS/cm for mine water dischar...

  15. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; the control of erosion, flooding, and pollution of water; the isolation of toxic materials; the prevention of air pollution; the reclamation by revegetation, replacement of soil, or by other means, of... lowering of water quality below standards established by the appropriate State water pollution control...

  16. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    PubMed

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  17. Captive bubble and sessile drop surface characterization of a submerged aquatic plant, Hydrilla verticillata

    USDA-ARS?s Scientific Manuscript database

    The surface energy parameters of the invasive aquatic weed, Hydrilla verticillata, were determined using contact angle measurements using two different methods. The abaxial and adaxial surfaces of the leaves and stem were characterized for the weed while submerged in water using captive air and octa...

  18. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  19. Vessel contents of leaves after excision: a test of the Scholander assumption

    Treesearch

    Melvin T. Tyree; Herve Cochard

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by tissue rehydration and/or continued transpiration. The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels...

  20. Installation Restoration Program. Phase I. Records Search, Hazardous Materials Disposal Sites. Myrtle Beach Air Force Base, South Carolina.

    DTIC Science & Technology

    1981-10-01

    Geography 3-1 Topography 3-. Drainage 3-1 ii Page Surface Geology 3-3 Barrier Sediments 3-3 Myrtle Beach Backbarrier Sediments 3-3 soils 3-5 Subsurface...Beach AFB Surface Drainage and Surface Water Sampling Points 3-2 3.2 Myrtle Beach AFB Surface Soils 3-4 3.3 Myrtle Beach AFB Location of Geologic Cross...has created a potential contamination problem. This situation is compounded by the site’s sandy soil and shallow ground water table. b.) Weathering Pit

  1. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    PubMed

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  2. Surface crystallization of supercooled water in clouds

    PubMed Central

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at −33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near −40°C. PMID:12456877

  3. Climatic data for Mirror Lake, West Thornton, New Hampshire, 1984

    USGS Publications Warehouse

    Sturrock, A.M.; Buso, D.C.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of Mirror lake, (north-central) New Hampshire includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: temperature of lake water surface; dry-bulb and wet-bulb air temperatures; wind speed at 3 levels above the water surface; and solar and atmospheric radiation. Data are collected at raft and land stations. (USGS)

  4. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.

  5. Environmental dust effects on aluminum surfaces in humid air ambient.

    PubMed

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-04-05

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems.

  6. Environmental dust effects on aluminum surfaces in humid air ambient

    PubMed Central

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-01-01

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798

  7. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    USGS Publications Warehouse

    Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2018-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger-scale climate refugia for cold water fish species, even with strong groundwater discharge.

  8. USDA Forest Service national protocols for sampling air pollution-sensitive waters

    Treesearch

    T. J. Sullivan

    2012-01-01

    The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...

  9. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.

  10. Flattened-Top Domical Water Drops Formed through Self-Organization of Hydrophobin Membranes: A Structural and Mechanistic Study Using Atomic Force Microscopy.

    PubMed

    Yamasaki, Ryota; Takatsuji, Yoshiyuki; Asakawa, Hitoshi; Fukuma, Takeshi; Haruyama, Tetsuya

    2016-01-26

    The Trichoderma reesei hydrophobin, HFBI, is a unique structural protein. This protein forms membranes by self-organization at air/water or water/solid interfaces. When HFBI forms a membrane at an air/water interface, the top of the water droplet is flattened. The mechanism underlying this phenomenon has not been explored. In this study, this unique phenomenon has been investigated. Self-organized HFBI membranes form a hexagonal structured membrane on the surface of water droplets; the structure was confirmed by atomic force microscopy (AFM) measurement. Assembled hexagons can form a planar sheet or a tube. Self-organized HFBI membranes on water droplets form a sheet with an array of hexagonal structures or a honeycomb structure. This membrane, with its arrayed hexagonal structures, has very high buckling strength. We hypothesized that the high buckling strength is the reason that water droplets containing HFBI form flattened domes. To test this hypothesis, the strength of the self-organized HFBI membranes was analyzed using AFM. The buckling strength of HFBI membranes was measured to be 66.9 mN/m. In contrast, the surface tension of water droplets containing dissolved HFBI is 42 mN/m. Thus, the buckling strength of a self-organized HFBI membrane is higher than the surface tension of water containing dissolved HFBI. This mechanistic study clarifies why the water droplets formed by self-organized HFBI membranes have a flattened top.

  11. Lock Culvert Valves; Hydraulic Design Considerations

    DTIC Science & Technology

    2011-06-01

    gate.” Musical note shape seals are also not suitable as sill seals although they appear to be in use. Lewin (1995) also warns that particular...of the tailwater rather than the high water surface maintained with a reverse tainter valve. Air entrainment through the valve well, which would...the valve. The air vent is located such that the air drawn into the culvert is entrained in the form of very small bubbles, avoiding large air pockets

  12. HCMM/soil moisture experiment. [relationship between surface minus air temperature differential and available water according to crop type in Canada

    NASA Technical Reports Server (NTRS)

    Cihlar, J. (Principal Investigator)

    1980-01-01

    Progress in the compilation and analysis of airborne and ground data to determine the relationship between the maximum surface minus maximum air temperature differential (delta Tsa) and available water (PAW) is reported. Also, results of an analysis of HCMM images to determine the effect of cloud cover on the availability of HCMM-type data are presented. An inverse relationship between delta Tsa and PAW is indicated along with stable delta Tsa vs. PAW distributions for fully developed canopies. Large variations, both geographical and diurnal, in the cloud cover images are reported. The average monthly daytime cloud cover fluctuated between 40 and 60 percent.

  13. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    NASA Astrophysics Data System (ADS)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems (<1000 m2). We present data linking measurements of hydrologic regime and methane gas fluxes in Delmarva bay wetlands to explore how water level, wetland storage capacity, and water residence time influence the magnitude, source area, and fate of wetland methane emissions. We measured air-water and soil-air gas fluxes using transects of chamber measurements spanning from wetland center to upland, in order to quantify the areal extent of the methane emissions source area throughout seasonal changes in surface water inundation (water level 0 to > 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  14. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  15. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  16. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    NASA Astrophysics Data System (ADS)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  17. Evaluating the Impacts of Climate Change on the Operations and Future Development of the U.S. Electricity System

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.

    2014-12-01

    Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  18. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi.

    PubMed

    da Cruz, André Luis; da Silva, Hugo Ribeiro; Lundstedt, Lícia Maria; Schwantes, Arno Rudi; Moraes, Gilberto; Klein, Wilfried; Fernandes, Marisa Narciso

    2013-04-01

    Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2-5 AB h(-1)). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h(-1)) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb-O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

  19. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  20. Modulating surface rheology by electrostatic protein/polysaccharide interactions.

    PubMed

    Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H

    2006-11-21

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.

  1. Germs: Learn How Germs Work and What You Can Do to Protect Yourself

    MedlinePlus

    ... the air; on food, plants and animals; in soil and water — on just about every other surface, ... of humans or other hosts, living in food, soil, water or insects. Some protozoans invade your body ...

  2. Technical note: Examining ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic c...

  3. Estimating lake-water evaporation from data of large-aperture scintillometer in the Badain Jaran Desert, China, with two comparable methods

    NASA Astrophysics Data System (ADS)

    Han, Peng-Fei; Wang, Xu-Sheng; Jin, Xiaomei; Hu, Bill X.

    2018-06-01

    Accurate quantification of evaporation (E0) from open water is vital in arid regions for water resource management and planning, especially for lakes in the desert. The scintillometers are increasingly recognized by researchers for their ability to determine sensible (H) and latent heat fluxes (LE) accurately over distances of hundreds of meters to several kilometers, though scintillometers are mainly used to monitor the land surface processes. In this paper, it is installed on both sides of the shore over a lake. Compared to the data of evaporationpan, the scintillometer was successfully applied to Sumu Barun Jaran in Badain Jaran Desert using the classical method and the proposed linearized β method. Due to the difficulty in measuring water surface temperature and the easiness to monitor the water temperature at different depths, it is worth thinking that if is feasible to utilize the shallow water temperature instead of the water surface temperature and how much errors it will cause. Water temperature at 10 and 20 cm depths were used to replace the lakewater surface temperature in the two methods to analyze the changes of sensible and latent heat fluxes in hot and cold seasons at halfhour time scales. Based on the classical method, the values of H were almost barely affected, and the average value of LE using water temperature at 20 cm depth is 0.8-9.5 % smaller than that at 10 cm depth in cold seasons. In hot seasons, compared to the results at 10 cm depth, the average value of H increased by 20-30 %, and LE decreased by about 20 % at 20 cm depth. In the proposed linearized β method of scintillometer, only the slope of the saturation pressure curve (Δ) is related to the water surface temperature, which was estimated using available equations of saturated vapor pressure versus temperature of the air. Compared to the values of estimated by the air temperature, while the water surface temperature are replaced by water temperature at 10 and 20 cm depths, in different seasons, the errors of 2-25 % in Δ were caused. Thus was calculated by the original equation in the proposed linearized β method of scintillometer. Interestingly, the water temperature at 10 and 20 cm depths had little effect on H, LE (E0) in different seasons. The reason is that the drying power of the air (EA) accounted for about 85 % of the evaporation (i.e. the changes of Δ have only about 3 % impact on evaporation), which indicated that the driving force from unsaturated to saturated vapor pressure at 2 m height (i.e. the aerodynamic portion) has the main role on evaporation. Therefore, the proposed linearized β method of scintillometer is recommended to quantify the H, LE (E0) over open water, especially when the water surface temperature cannot be accurately measured.

  4. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts,more » and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.« less

  5. Sensing the flux of volatile chemicals through the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackay, D.; Schroeder, W.H.; Ooijen, H. von

    1997-12-31

    There are several situations in which there is a need to assess the direction and magnitude of the flux across the air-water interface. Contaminants may be evaporating or absorbing in wastewater treatment systems in natural lake, river, estuarine and marine systems, and any attempt to compile a mass balance must include this process. In this study the authors review the theory underlying air-water exchange, then describe and discuss a sparging approach by which the direction and magnitude of the flux can be ascertained. The principle of the method is that a known flow rate of air is bubbled through themore » sparger and allowed to equilibrate with the water. The gas exiting the water surface is passed through a sorbent trap and later analyzed. The concentration, and hence the fugacity, of the contaminant in the sparged air can be deduced. In parallel, a similar flow of air from the atmosphere above the water is drawn through another sparger at a similar flow rate for a similar time and the trapped chemical analyzed giving the concentration and fugacity in the air. These data show the direction of air-water exchange (i.e. from high to low fugacity) and with information on the mass transfer coefficients and area, the flux. Successful tests were conducted of the system in a laboratory tank, in Lake Ontario and in Hamilton Harbour. Analyses of the traps showed a large number of peaks on the chromatogram many of which are believed to be of petroleum origin from fuels and vessel exhaust. The system will perform best under conditions where concentrations of specific contaminants are large, as occurs in waste water treatment systems. The approach has the potential to contribute to more accurate assessment of air-water fluxes. It avoids the problems of different analytical methodologies and the effect of sorption in the water column.« less

  6. Kaolinite-catalyzed air oxidation of hydrazine: Consideration of several compositional, structural and energetic factors in surface activation

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Mariner, R.; Rice, A.

    1991-01-01

    Clay minerals have been shown to have numerous, curious, energetic properties by virtue of ultra-violet light release which can be triggered by gentle environmental changes such as wetting and dewetting by a variety of liquids, unique among them water and hydrazine. Since both water and hydrazine play multiple key roles in the air-oxidation of hydrazine on kaolinite surfaces, this reaction would seem to have prime potential for studying interrelationships of energy storage, release and chemical reactivity of clay surfaces, capacities basic to either the Bernal or Cairns-Smith roles of minerals in the origin of life. Establishment of the capacity for stored electronic energy to significantly alter surface chemistry is important, regardless of the reaction chosen to demonstrate it. Hydrazine air oxidation is overawingly complex, given the possibilities for step-wise control and monitoring of parameters. In the light of recently extended characterization of the kaolinite and model sheet catalysts we used to study hydrazine oxidation and gamma-irradiated silica, previous studies of hydrazine air-oxidation on aluminosilicate surfaces have been reevaluated. Our former conclusion remains intact that, whereas trace structural and surface contaminants do play some role in the catalysis of oxidation, they are not the only, nor even the dominant, catalytic centers. Initial intermediates in the oxidation can now be proposed which are consistent with production via O(-)-centers as well as ferric iron centers. The greater than square dependence of the initial reaction rate on the weight of the clay is discussed in the light of these various mechanistic possibilities.

  7. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be discussed. Furthermore, the application of a combined VSFG/Langmuir trough experiment to investigate the reaction kinetics of heterogeneous oxidation processes will be highlighted. The ozonolysis of monolayers of unsaturated fatty acids serves as model system for natural aging processes of surfactant layers at the sea surface. Finally, a VSFG time series study of the sea surface nanolayer at a western Baltic Sea near-shore sampling station will be presented. The observed seasonality reveals a significant temporal shift with respect to the spring algal bloom showing that high organic material content in the microlayer does not necessarily correlate with high nanolayer abundance. This interesting finding and implications for the formation of surfactant material by degradation of biological material will be discussed briefly.

  8. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  9. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  10. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  11. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of film slicks on near-surface wind

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  13. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less

  14. Some physicochemical aspects of water-soluble mineral flotation.

    PubMed

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  16. Air-surface exchange of H2O, CO2, and O3 at a tallgrass prairie in relation to remotely sensed vegetation indices

    NASA Technical Reports Server (NTRS)

    Gao, W.; Wesely, M. L.; Cook, D. R.; Hart, R. L.

    1992-01-01

    Parameters derived from eddy correlation measurements of the air-surface exchange rates of H2O, CO2, and O3 over a tallgrass prairie are examined in terms of their relationships with spectral reflectance data remotely sensed from aircraft and satellites during the four 1987 intensive field campaigns of the First ISLSCP Field Experiment (FIFE). The surface conductances were strongly modulated by photosynthetically active radiation received at the surface when the grass was green and well watered; mesophyll resistances were large for CO2 but negligible for H2O and O3.

  17. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  18. Influence of handpiece maintenance sprays on resin bonding to dentin.

    PubMed

    Sugawara, Toyotarou; Kameyama, Atsushi; Haruyama, Akiko; Oishi, Takumi; Kukidome, Nobuyuki; Takase, Yasuaki; Tsunoda, Masatake

    2010-01-01

    To investigate the influence of maintenance spray on resin bonding to dentin. The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical), and resin composite (Clearfil AP-X, Kuraray Medical) build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick) perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test. Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups) showed significantly lower μTBS than control specimens (P < 0.05). However, there was no significant difference between the spray-contaminated groups (P > 0.05). Maintenance spray significantly reduces the bond strength of Clearfil SE Bond to dentin.

  19. The diving bell and the spider: the physical gill of Argyroneta aquatica.

    PubMed

    Seymour, Roger S; Hetz, Stefan K

    2011-07-01

    Argyroneta aquatica is a unique air-breathing spider that lives virtually its entire life under freshwater. It creates a dome-shaped web between aquatic plants and fills the diving bell with air carried from the surface. The bell can take up dissolved O(2) from the water, acting as a 'physical gill'. By measuring bell volume and O(2) partial pressure (P(O(2))) with tiny O(2)-sensitive optodes, this study showed that the spiders produce physical gills capable of satisfying at least their resting requirements for O(2) under the most extreme conditions of warm stagnant water. Larger spiders produced larger bells of higher O(2) conductance (G(O(2))). G(O(2)) depended on surface area only; effective boundary layer thickness was constant. Bells, with and without spiders, were used as respirometers by measuring G(O(2)) and the rate of change in P(O(2)). Metabolic rates were also measured with flow-through respirometry. The water-air P(O(2)) difference was generally less than 10 kPa, and spiders voluntarily tolerated low internal P(O(2)) approximately 1-4 kPa before renewal with air from the surface. The low P(O(2)) in the bell enhanced N(2) loss from the bell, but spiders could remain inside for more than a day without renewal. Spiders appeared to enlarge the bells in response to higher O(2) demands and lower aquatic P(O(2)).

  20. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOEpatents

    Gorlov, Alexander M.

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  1. Interannual variability (1979-2013) of the North-Western Mediterranean deep water mass formation: past observation reanalysis and coupled ocean-atmosphere high-resolution modelling

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe

    2015-04-01

    The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.

  2. Durability of resin cement bond to aluminium oxide and zirconia ceramics after air abrasion and laser treatment.

    PubMed

    Foxton, Richard M; Cavalcanti, Andrea N; Nakajima, Masatoshi; Pilecki, Peter; Sherriff, Martyn; Melo, Luciana; Watson, Timothy F

    2011-02-01

    The erbium laser has been introduced for cutting enamel and dentin and may have an application in the surface modification of high-strength aluminum oxide and zirconia ceramics. The aim of this study was to evaluate the durability of the bond of conventional dual-cured resin cements to Procera Al(2)O(3) and zirconium oxide ceramics after surface treatment with air abrasion and erbium laser. One hundred twenty Al(2)O(3) and 120 zirconia specimens measuring 3 × 3 × 0.7 mm(3) were divided equally into three groups, and their surfaces treated as follows: either untreated (controls), air abraded with Al(2)O(3) particles, or erbium-laser-treated at a power setting of 200 mJ. The surface of each specimen was then primed and bonded with one of two dual-cured resin cements (either SCP-100 Ceramic Primer and NAC-100 or Monobond S and Variolink II) using a 1-mm thick Tygon tube mold with a 0.75-mm internal bore diameter. After 24 hours and 6 months of water storage at 37°C, a microshear bond strength test was performed at a crosshead speed of 1 mm/min. Surface morphology was examined using a confocal microscope, and failure modes were observed using an optical microscope. The data were analyzed using the Kaplan-Meier nonparametric survival analysis. In the case of zirconia, air abrasion and Erbium:yttrium-aluminum-garnet (Er:YAG) laser treatment of the ceramic surface resulted in a significant reduction in the bond strengths of both resin cements after 6 months water storage; however, when the zirconia surface was left untreated, the SCP-100/NAC-100 group did not significantly reduce in bond strength. In the case of alumina, no treatment, air abrasion and Er:YAG laser treatment of the surface led to no significant reduction in the bond strengths of the three SCP-100/NAC-100 groups after 6 months water storage, whereas all three Monobond S/Variolink II groups showed a significant reduction. Er:YAG laser treatment of the zirconia surface did not result in a durable resin cement/ceramic bond; however, a durable bond between a conventional dual-cured resin cement and Procera All Ceram and Procera All Zirkon was formed using a ceramic primer containing the phosphate monomer, MDP, without any additional surface treatment. © 2011 by The American College of Prosthodontists.

  3. Reiter works with SWAB ASD Filter Kit in the U.S. Laboratory during Expedition 13

    NASA Image and Video Library

    2006-09-10

    ISS013-E-80066 (10 Sept. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 13 flight engineer, works with the surface, water and air biocharacterization (SWAB) air sampling device (ASD) filter kit in the Destiny laboratory of the International Space Station.

  4. Modeling green infrastructure land use changes on future air quality in Kansas City

    EPA Science Inventory

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also resu...

  5. A theoretical model of the influence of spray on the exchange of momentum, with storm and hurricane winds

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina

    2013-04-01

    A stochastic model of the "life cycle" of a droplet, the torn off the crest of a steep surface wave and then falling down to the water is constructed. The model includes the following constituents: i) a model of motion of a heavy particle in the forcing air flow (equation of motion), ii) a model of the wind flow (wind velocity, wave-induced disturbances, turbulent fluctuations), iii) a model of spray injection, iiii) the droplet statistics (size distribution, wind-speed dependence) The interaction of water droplets in the atmospheric boundary layer with turbulent fluctuations is described in terms of the Markovian chain. The mean wind field in the marine atmospheric boundary layer is determined by the momentum exchange associated with the turbulent and wave momentum transfer and by sprays. The wave and turbulent momentum exchange is parameterized by the Charnok expression for the roughness parameter. Wave disturbances induced in the air flow by waves at the surface, were calculated within the model of the marine atmospheric boundary suggested in [1]. The greatest uncertainty in this model is the mechanism of droplets injection. We consider two models for the injection of droplets in the air flow. In the first model the droplets formed by the development of the Kelvin-Helmholtz instability, are entered in the flow with the orbital velocity of the wave (Koga's model [2]), The second mechanism, investigated in many papers, considers droplets from the breakdown of a jet which rises at high speeds from the bottom of the collapsing air bubble cavity [3]. To determine the number of drops injected to the atmospheric boundary layer from the sea surface, the Spray generation function proposed in [4] was in use. Within the model the momentum acquired by every droplet in the interaction with the air flow was calculated. Depending on the particular field of air velocity, wave parameters and the radius of the droplet, it can both get and deliver momentum give impetus to the air flow during the life cycle from taking them off the water to fall into the water. Contribution of droplets to the momentum balance of air flow is determined by the total momentum balance of sea sprays. The calculations in the model showed that the momentum exchange with the spray can lead to either a weak (less than 10%) increase of the aerodynamic surface drag or to a weak reduction (within Koga's model [2]). Recommendations for the experiment on investigation of the "life cycle" of spray in the air flow are suggested. This work was supported by RFBR (project 11-05-12047-ofi-m, 13-05-00865-a, 12-05-33070 mol-a-ved, 12-05-31435 mol-a, 12-05-01064_A). References 1. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions J.Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778. 2. Koga M. Direct production of droplets from breaking wind-waves - its observation by a multi-colored overlapping exposure photographing technique // Tellus. 1981. V.33. Issue 6. P. 552-563. 3. Spiel D.E. On the birth of jet drops from bubbles bursting on water surfaces // J. Geophys. Res. 1995. V.100. P. 4995-5006. 4. Andreas E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s21. J. Phys. Oceanogr., 28, 2175-2184.

  6. Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane.

    PubMed

    Jeong, Hye-Jeong; Kim, Dong-Kwon; Lee, Soo-Bok; Kwon, Soo-Han; Kadono, Kohei

    2001-03-01

    Coating films on glass substrate were prepared by sol-gel process using alkoxide solutions containing perfluoroalkylsilane (PFAS) and tetraethoxysilane (TEOS). The physical properties of the coating films were characterized by SEM, FT-IR, and XRD. And their surface properties were investigated by measuring contact angles and atomic compositions. Transparent coating films with smooth surface and uniform thickness could be obtained. The contact angles of the coating films for water and methylene iodide are extremely high, at 118 degrees and 97 degrees, respectively, and their surface free energies are about 9.7 dyn/cm. It was found that the water-repellent glass prepared is very hydrophobic and exhibits excellent water-repellency. Hydrophobic perfluoroalkyl groups are preferentially enriched to the outermost layer at the coating film-air interface, and two layers probably exist in the coating film. The upper layer oriented toward the air is composed of mainly perfluoroalkyl groups originating from PFAS, and the lower layer is composed of mainly -OSiO- groups originating from TEOS. The heat treatment after drying step cannot influence the surface enrichment of the perfluoroalkyl group. The hydrolysis reaction should be more completely done before the dip coating step to obtain lower surface free energy. The burning temperature should be less than 300 degrees C because the perfluoroalkyl group begins to decompose from this temperature. Copyright 2001 Academic Press.

  7. Simulating Urban Tree Effects on Air, Water, and Heat Pollution Mitigation: iTree-Hydro Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Endreny, T. A.; Nowak, D.

    2011-12-01

    Urban and suburban development changes land surface thermal, radiative, porous, and roughness properties and pollutant loading rates, with the combined effect leading to increased air, water, and heat pollution (e.g., urban heat islands). In this research we present the USDA Forest Service urban forest ecosystem and hydrology model, iTree Eco and Hydro, used to analyze how tree cover can deliver valuable ecosystem services to mitigate air, water, and heat pollution. Air pollution mitigation is simulated by dry deposition processes based on detected pollutant levels for CO, NO2, SO2, O3 and atmospheric stability and leaf area indices. Water quality mitigation is simulated with event mean concentration loading algorithms for N, P, metals, and TSS, and by green infrastructure pollutant filtering algorithms that consider flow path dispersal areas. Urban cooling considers direct shading and indirect evapotranspiration. Spatially distributed estimates of hourly tree evapotranspiration during the growing season are used to estimate human thermal comfort. Two main factors regulating evapotranspiration are soil moisture and canopy radiation. Spatial variation of soil moisture is represented by a modified urban topographic index and radiation for each tree is modified by considering aspect, slope and shade from surrounding buildings or hills. We compare the urban cooling algorithms used in iTree-Hydro with the urban canopy and land surface physics schemes used in the Weather Research and Forecasting model. We conclude by identifying biophysical feedbacks between tree-modulated air and water quality environmental services and how these may respond to urban heating and cooling. Improvements to this iTree model are intended to assist managers identify valuable tree services for urban living.

  8. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Is there evidence for man-made nanoparticles in the Dutch environment?

    PubMed

    Bäuerlein, Patrick S; Emke, Erik; Tromp, Peter; Hofman, Jan A M H; Carboni, Andrea; Schooneman, Ferry; de Voogt, Pim; van Wezel, Annemarie P

    2017-01-15

    Only very limited information is available on measured environmental concentrations of nanoparticles. In this study, several environmental compartments in The Netherlands were probed for the presence of nanoparticles. Different types of water were screened for the presence of inorganic (Ag, Au, TiO 2 ) and organic nanoparticles (C 60 , C 70 , [6,6]-phenyl-C 61 -butyric acid octyl ester, [6,6]-phenyl-C 61 -butyric acid butyl ester, [6,6]-phenyl-C 61 -butyric acid methyl ester, [6,6]-bis-phenyl-C 61 -butyric acid methyl ester, [6,6]-phenyl-C 71 -butyric acid methyl ester, [6,6]-thienyl-C 61 -butyric acid methyl ester). Air samples were analysed for the presence of nanoparticulate Mo, Ag, Ce, W, Pd, Pt, Rh, Zn, Ti, Si, B as well as Fe and Cu. ICP-MS, Orbitrap-HRMS, SEM and EDX were used for this survey. Water samples included dune and bank filtrates, surface waters and ground waters as well as influents, effluents and sludge of sewage treatment plants (STPs), and surface waters collected near airports and harbours. Air samples included both urban and rural samples. C 60 was detected in air, sewage treatment plants, influents, effluents and sludge, but in no other aqueous samples despite the low detection limit of 0.1ng/L. C 70 and functionalised fullerenes were not detected at all. In STP sludge and influent the occurrence of Ag and Au nanoparticles was verified by SEM/EDX and ICP-MS. In air up to about 25m% of certain metals was found in the nanosize fraction. Overall, between 1 and 6% of the total mass from metals in the air samples was found in the size fraction <100nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    PubMed Central

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  11. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    PubMed

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.

  12. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    NASA Astrophysics Data System (ADS)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  13. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  14. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.

    PubMed

    Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali

    2017-02-28

    Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).

  15. Atomic Level Cleaning of Poly Methyl Methacrylate Residues from the Graphene Surface Using Radiolized Water at High Temperatures (Postprint)

    DTIC Science & Technology

    2017-09-05

    AFRL-RX-WP-JA-2017-0321 ATOMIC LEVEL CLEANING OF POLY-METHYL- METHACRYLATE RESIDUES FROM THE GRAPHENE SURFACE USING RADIOLIZED WATER AT...N. Zakharov and Eric A. Stach Brookhaven National Laboratory Jennifer Carpena-Nunez National Research Council 9 March 2017 Interim Report...Distribution Statement A. Approved for public release: distribution unlimited. © 2017 AIP PUBLISHING (STINFO COPY) AIR FORCE RESEARCH

  16. Brushless Cleaning of Solar Panels and Windows

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  17. Climatic data for Mirror Lake, West Thornton, New Hampshire : 1985

    USGS Publications Warehouse

    Sturrock, Alex M.; Buso, D.C.; Scarborough, J.L.; Winter, T.C.

    1988-01-01

    Research on the hydrology of Mirror Lake, West Thornton, New Hampshire, includes a study of evaporation. Those climatic data needed for energy-budget and mass-transfer evaporation studies are presented, including: water surface temperature, dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data are collected at raft and land stations. (USGS)

  18. Simultaneous measurement of displacement current and absorption spectra of Langmuir film

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Kubota, Tohru; Iwamoto, Mitsumasa

    1995-07-01

    A Maxwell-displacement-current measuring system coupled with the system used for the measurement of absorption spectra of monolayers on a water surface has been developed. Using this system, the displacement current and the absorbance across monolayers of squarylium dye at the air/water surface were detected. It was found that the change in J aggregate in the monolayers with monolayer compression was detectable using the system.

  19. Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles.

    PubMed

    Han, Chung-Ta; Chao, Ling

    2015-01-07

    Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.

  20. Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions.

    PubMed

    Wada, Ryuichi; Matsumi, Yutaka; Nakayama, Tomoki; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Kurita, Naoyuki; Muramoto, Kenichiro; Takanashi, Satoru; Kodama, Naomi; Takahashi, Yoshiyuki

    2017-12-01

    Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO 2 and water vapour were observed. The isotope ratios of both CO 2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ 13 C-CO 2 and δ 18 O-CO 2 increased, while δ 2 H-H 2 Ov and δ 18 O-H 2 Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO 2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO 2 and H 2 Ov could be used as a tracer of meteorological information.

  1. Gas exchange and dive characteristics of the free-swimming backswimmer Anisops deanei.

    PubMed

    Jones, Karl K; Snelling, Edward P; Watson, Amy P; Seymour, Roger S

    2015-11-01

    Many aquatic insects utilise air bubbles on the surface of their bodies to supply O2 while they dive. The bubbles can simply store O2, as in the case of an 'air store', or they can act as a physical 'gas gill', extracting O2 from the water. Backswimmers of the genus Anisops augment their air store with O2 from haemoglobin cells located in the abdomen. The O2 release from the haemoglobin helps stabilise bubble volume, enabling backswimmers to remain near neutrally buoyant for a period of the dive. It is generally assumed that the backswimmer air store does not act as a gas gill and that gas exchange with the water is negligible. This study combines measurements of dive characteristics under different exotic gases (N2, He, SF6, CO) with mathematical modelling, to show that the air store of the backswimmer Anisops deanei does exchange gases with the water. Our results indicate that approximately 20% of O2 consumed during a dive is obtained directly from the water. Oxygen from the water complements that released from the haemoglobin, extending the period of near-neutral buoyancy and increasing dive duration. © 2015. Published by The Company of Biologists Ltd.

  2. Sink or Swim: Ions and Organics at the Ice-Air Interface.

    PubMed

    Hudait, Arpa; Allen, Michael T; Molinero, Valeria

    2017-07-26

    The ice-air interface is an important locus of environmental chemical reactions. The structure and dynamics of the ice surface impact the uptake of trace gases and kinetics of reactions in the atmosphere and snowpack. At tropospheric temperatures, the ice surface is partially premelted. Experiments indicate that ions increase the liquidity of the ice surface but hydrophilic organics do not. However, it is not yet known the extent of the perturbation solutes induce at the ice surface and what is the role of the disordered liquid-like layer in modulating the interaction between solutes and their mobility and aggregation at the ice surface. Here we use large-scale molecular simulations to investigate the effect of ions and glyoxal, one of the most abundant oxygenated volatile organic compounds in the atmosphere, on the structure, dynamics, and solvation properties of the ice surface. We find that the premelted surface of ice has unique solvation properties, different from those of liquid water. The increase in surface liquidity resulting from the hydration of ions leads to a water-mediated attraction of ions at the ice surface. Glyoxal molecules, on the other hand, perturb only slightly the surface of ice and do not experience water-driven attraction. They nonetheless accumulate as dry agglomerates at the ice surface, driven by direct interactions between the organic molecules. The enhanced attraction and clustering of ions and organics at the ice surface may play a significant role in modulating the mechanism and rate of heterogeneous chemical reactions occurring at the surface of atmospheric ice particles.

  3. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-03

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  4. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  5. Columnar phase of pyramidic amphiphiles spread at the air-water interface

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Muller, P.; Peretti, P.; Gallet, F.; Billard, J.

    1993-06-01

    Two compounds, forming thermotropic liquid-crystalline phases in the bulk, were spread at the air-water interface. For both compounds, the surface pressure versus molecular area diagrams exhibit a large domain of molecular areas where the surface pressure of the film is quasi-constant. This plateau region of the isotherms corresponds to a transition from a monolayer in a liquid-expanded phase to a metastable condensed monolayer in which the molecules may adopt an “edge-on” arrangement. In this arrangement, the base of the pyramidic core is normal to the air-water interface. The film was also observed by means of fluorescence and polarizing microscopy. These techniques allowed us to show the formation of anisotropic slowly growing multilayered domains from the “edge-on” monolayer. An original method, based on the light reflectivity of the domains, was developed to measure their thickness and their optical anisotropy. The results show that these domains are formed by an arrangement of the molecules in rectilinear columns for one compound and in spiral columns for the other compound.

  6. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  7. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  8. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.

  9. HIGH REACTIVITY SORBENTS FOR SO2 CONTROL

    EPA Science Inventory

    The paper discusses studies, relating to air pollution control from coal-fired utility boilers, that show that the primary variable affecting sorbent reactivity at high temperature or at low temperature with water droplets is surface area. For the development of high surface area...

  10. Simulation study of air and water cooled photovoltaic panel using ANSYS

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  11. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  12. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in this study shows natural emissions are primarily from grassland and dry cropland. Such an emission pattern may alter the current understanding of Hg emission outflow from China as reported by Lin et al. (2010b) because a substantial natural Hg emission occurs in West China.

  13. Improving the indoor air quality by using a surface emissions trap

    NASA Astrophysics Data System (ADS)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  14. Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer

    PubMed Central

    Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun

    2016-01-01

    The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630

  15. Heat and water rate transfer processes in the human respiratory tract at various altitudes.

    PubMed

    Kandjov, I M

    2001-02-01

    The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters-convective heat transfer coefficient h(c)(W m(-2) degrees C(-1)) and evaporative heat transfer coefficient h(e)(W m(-2)hPa(-1)). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O(2)and CO(2)densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime. Copyright 2001 Academic Press.

  16. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    PubMed

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  17. Modeling green infrastructure land use changes on future air ...

    EPA Pesticide Factsheets

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  18. Effect of temperature and concentration on the surface tension of chia seed mucilage

    NASA Astrophysics Data System (ADS)

    Fu, Yuting; Arye, Gilboa

    2017-04-01

    The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.

  19. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-04-28

    ISS015-E-05481 (28 April 2007) --- Patuxent River Naval Air Station, Maryland is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Patuxent River Naval Air Station - or NAS Patuxent River -- is located on a small peninsula, bordered by the Patuxent River to the north-northeast and Chesapeake Bay to the east and southeast. The air station was commissioned in 1943, replacing farmlands that had occupied the peninsula less than a year earlier. The primary purpose of "Pax River" (as the site is known by the US Navy) was to consolidate geographically-dispersed air testing facilities that existed in the US prior to World War II into a central location. The NAS Patuxent River is now the primary center for naval air technology research, development, testing, and support, as well as being the location of the Navy Test Pilot School. The NAS Patuxent River is used frequently as a geographic reference point and training target by station crews. This view illustrates why --the distinctive pattern of the airfield runways and the station's location in Chesapeake Bay make it easy to spot from orbit, and provides sharp land cover boundaries for camera focusing practice. This particular image also captures surface water current patterns around the peninsula. Wind and wave-roughened water surfaces appear silver-gray due to increased reflectance of light back towards the camera (sunglint), whereas dark blue water patches indicate water smoothed by the presence of oils and surfactants. A zone of mixing from converging shoreline currents extends northeast into the bay from Cedar Point.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, R. P., E-mail: rajendra.giri@saha.ac.in; Mukhopadhyay, M. K.

    The spontaneous surface aggregation of diblock copolymer, containing polystyrene-polydimethylsiloxane or PS-PDMS, have been studied at air-water interface using Brewster’s angle microscopy (BAM) and grazing incidence small angle x-ray scattering (GISAXS) technique. Pronounced differences in the molecular weight and solvent dependence of the size of aggregation on the water surface are observed. Structural characterization is done using atomic force microscopy (AFM) for a monolayer transferred to Si substrate. It shows that, individual polymer chains coalesce to form some disc like micelle aggregation on the Si surface which is also evident from the BAM image of the water floated monolayer. GISAXS studymore » is also corroborating the same result.« less

Top